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Enforcing the confidentiality and integrity of information is critical in distributed ap-

plications. Production systems typically use some form of authorization mechanism to

protect information, but these mechanisms do not typically provide end-to-end informa-

tion security guarantees. Information flow control mechanisms provide end-to-end secu-

rity, but their guarantees break down when trust relationships may change dynamically,

a common scenario in production environments. This dissertation presents flow-limited

authorization, a new foundation for enforcing information security. Flow-limited autho-

rization is an approach to authorization in that it can be used to reason about whether a

principal is permitted to perform an action. It is an approach to information flow control

in that it can be used to reason about whether a flow of information is secure.

This dissertation presents the theoretical foundation of this approach, the Flow-

Limited Authorization Model (FLAM). FLAM uses a novel principal algebra that unifies

authority and information flow policies and a logic for making secure authorization and

information flow decisions. This logic ensures that such decisions cannot be influenced

by attackers or leak confidential information.

We embed the FLAM logic in a core programming model, the Flow-Limited Au-

thorization Calculus (FLAC). FLAC programs selectively enable flows of information;

the type system ensures that attackers cannot create unauthorized flows. A well-typed

FLAC not only ensures proper authorization, but also secure information flow.

The FLAC approach to secure programming is instantiated in FLAME, a library and

compiler plugin for enforcing flow-limited authorization in Haskell programs. Flame

uses type-level constraints and monadic effects to statically enforce flow-limited autho-

rization for Haskell programs in a modular way.
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CHAPTER 1

INTRODUCTION

A major concern of computer security is the protection of information. There are several

dimensions of information worthy of protection, but of particular interest are its confi-

dentiality and integrity. To protect the confidentiality of information, a system must

ensure that unauthorized entities cannot learn that information, either in whole or in

part. To protect the integrity of information, a system must ensure that unauthorized

entities cannot corrupt or otherwise influence the content of that information.

Most production systems today protect information using some form of access con-

trol. An access control mechanism uses authorization data to represent access policies

for protected resources. Authorization data may come in many forms, but typically falls

into one of two categories: access control lists and capabilities. Access control lists

associate a list of entities with each protected resource. Access requests from entities on

the list are granted; other requests are denied. Capability-based mechanisms associate

permissions with a credential or token possessed by an entity. Here, access requests are

granted when they include a valid credential with appropriate permissions. Requests

with invalid credentials or insufficient permissions are denied.

When configured and deployed properly, these mechanisms have proven relatively

effective at securing information. However, modern systems are increasingly dis-

tributed, decentralized, and dynamic. Existing approaches are ill-suited for developing

and deploying authorization mechanisms that are secure in these new environments.

Distribution Distributed applications often use distributed authorization mechanisms

that store authorization data or perform authorization-related computations remotely.

Distribution may introduce vulnerabilities that were not anticipated by their security

models. Authorization data itself may be confidential, so permitting remote access may

reveal secret information. Low-integrity authorization data could enable an attacker to
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influence the application in harmful ways. Furthermore, the act of accessing remote

authorization data may itself reveal secret information in the application’s state.

Decentralization Modern systems are also increasingly decentralized. Entities in

fully decentralized systems may have very limited or even no trust in each other. De-

ploying authorization mechanisms in decentralized settings is challenging since entities

may disagree on what actions are authorized or who may authorize them.

Dynamism For large-scale applications with millions of users, security policies are

constantly changing as new information is created, relationships between users are up-

dated, or new services are integrated. Controlling when and how security policies may

change is very challenging, but also crucial to the information security of modern dis-

tributed applications.

These aspects of modern systems demand new mechanisms for enforcing informa-

tion security. One appealing approach is information flow control. Information flow

control enables the expression of high-level information security policies describing the

end-to-end behavior of the system. These policies are inherently compositional. Fur-

ther, they can be formally characterized in terms of semantic security conditions such as

noninterference [35], permitting rigorous proofs that enforcement mechanisms enforce

policies as intended.

While control of information flow is crucial to security, it alone is not enough. In

particular, real systems need to be able to prevent release of confidential information,

but also to release that information under suitable conditions. Controlled release of

information, such as through downgrading of information flow labels, is a violation of

noninterference.

Decentralized information flow control (DIFC) [63] introduced the idea that infor-

mation flow control mechanisms could control the use of downgrading mechanisms
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through an authorization mechanism. In a DIFC system, information flow labels are

therefore expressed using the vocabulary of the authorization mechanism. For exam-

ple, the original Decentralized Label Model (DLM) [63] expresses labels in terms of

principals. Delegations between principals (expressing the trust between those princi-

pals) affect which information flows are permitted. Information may be relabeled from

one label to another only if the target label is at least as restrictive as the originating

one. Subsequent DIFC systems use labels expressed in terms of tags combined with

capabilities [28, 48, 73, 99], or tags combined with principals [22].

The narrow interactions between authorization and information flow in these DIFC

systems permit many details of the authorization mechanism to be abstracted away. At

this high level of abstraction, many existing approaches to authorization would seem

applicable to DIFC settings, including authorization logics [2,49,78], role-based access

control (RBAC) [33], and trust management [9, 51, 83]. Unfortunately, this level of ab-

straction omits important aspects of authorization mechanisms that impact the security

of the information they are meant to protect—especially in the distributed, decentral-

ized, and dynamic settings most relevant to modern applications.

An important oversight in previous work is that authorization mechanisms them-

selves are implemented as components of the system they are meant to secure. Like

the other system components, authorization mechanisms access stored data and perform

computation on it, but the information flows created by these mechanisms is often over-

looked in the authorization models they are based upon. These flows are significant be-

cause they can create a channel through which information may be accidentally leaked

or corrupted, or can even allow the authorization mechanism to be used as a means to

attack the system.

This oversight has created a blind spot in many authorization models: confiden-

tiality. Most models cannot express authorization policies that are confidential or are
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Figure 1.1: A JavaScript probing attack. A malicious website can learn the friends of a visitor
by embedding images that only a friend of particular users may access.

based on confidential data. Real systems, however, use confidential data for authoriza-

tion all the time: users on social networks receive access to photos based on friend

lists, frequent fliers receive tickets based on credit card purchase histories, and doctors

exchange patient data while keeping doctor–patient relationships confidential. While

many models can ensure, for instance, that only friends are permitted to access a photo,

few can say anything about the secondary goal of preserving the confidentiality of the

friend list. Such authorization schemes may fundamentally require some information to

be disclosed, but failing to detect these disclosures can lead to unintentional leaks.

For instance, a malicious website can “probe” the friends of a visitor by embedding

an image that is only accessible to friends of a particular user on a social network. This

attack is illustrated in figure 1.1. The website sends an IMG tag referring to the protected

image, along with code that checks whether the image loads successfully. If the visitor

is authorized to view the image, then she must be a friend of the user. The problem

here is that access to the image is authorized based on confidential information: the

visitor’s friendship with the user. However, the result of the authorization is not treated

as confidential. Thus the website is able to learn that the visitor and the user are friends.
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Developers have been aware of these kinds of attacks for years [20], and even used them

to gather information about their visitors [71].

Authorization without integrity is meaningless, so authorization mechanisms are

typically better at enforcing integrity. However, many formal models make unreasonable

or unintuitive assumptions about integrity. For instance, in many models (for example,

[49], [2], [51]) authorization policies either do not change or change only when modi-

fied by a trusted administrator. This is a reasonable assumption in centralized systems

where such an administrator will always exist, but in decentralized systems, there may

be no single entity that is trusted by all other entities.

Even in centralized systems, administrators must be careful when performing up-

dates based on partially trusted information, since malicious users may try to use the

administrator to carry out an attack on their behalf. Unfortunately, existing models offer

little help to administrators that need to reason about how attackers may have influenced

security-critical update operations.

Another difficulty in building secure systems is that assumptions made by the au-

thorization mechanism may be subtly incompatible with assumptions made by the ap-

plication that employs it. For instance, in the original Fabric system [54], nodes only

run code that is installed by an administrator of the node. The security model, there-

fore, makes the reasonable assumption that attackers cannot control what code is run

by a node, though they might attempt to subvert security via remote procedure calls or

malicious data.

Under this model, covert channels have limited utility to an attacker. For example, a

read channel [98] is a covert channel that occurs when a public resource is accessed for

a secret reason; the provider of the resource learns something about the secret since the

resource was accessed. Because attackers have limited control over where resources are

allocated or the contexts they were accessed in, permitting these channels was deemed
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an acceptable risk.

A later extension of Fabric, called Mobile Fabric [6], provides support for secure

mobile code. This extension gives attackers more control over what code runs at a node,

meaning that covert channels, especially read channels, are much easier to leverage.

Consequently, Mobile Fabric introduced access policies, which control where data is

allocated and in what contexts it may be accessed. Enforcing these policies eliminates

read channels.

However, access policies were not applied to authorization data in Mobile Fabric.

Neither were there any restrictions on the context of authorization queries or how to en-

force the information security of the results of these queries. This means that updates to

authorization data are not adequately protected and that queries might reveal information

about the querying context. Characterizing and eliminating the vulnerabilities that were

introduced by this gap in enforcement led to a re-examination of how the Decentralized

Label Model represents authorization.

The result, flow-limited authorization, recasts information flow control itself as a

kind of authorization mechanism. Instead of authorizing access to information, informa-

tion flow control authorizes flows of information. Furthermore, since any computation

creates flows of information, all authorization mechanisms must enforce the informa-

tion security of the authorization data they process. Thus, flow-limited authorization

mechanisms make explicit any assumptions they have regarding the confidentiality and

integrity of authorization data and query results. By representing the information secu-

rity assumptions and guarantees of authorization mechanisms, we obtain a more general

security model that unifies authorization with information flow control. This approach

extends the notion of a principal’s authority or privilege level from the set of actions a

principal may perform to include the set of flows of a principal may receive or influence.
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1.1 Modeling information flow and authorization

In real systems, it is important that the trust relationships be able to change by delegating

or revoking trust, but these changes can lead to security vulnerabilities:

• Delegations of authority can enable information relabeling equivalent to unautho-

rized downgrading.

• Relabeling information limits a principal’s ability to revoke access to that infor-

mation in the future.

• Changes to trust relationships can leak information from the agent performing the

change.

• Authorization queries can leak information from the agent performing the query.

All but the most limited existing information flow control and authorization mod-

els are susceptible to at least some of these security vulnerabilities, including several

systems [9, 39, 59, 60, 83, 91, 92] designed to handle changes in trust securely.

To address these vulnerabilities, this dissertation describes a new approach called

flow-limited authorization. Flow-limited authorization explicitly models how informa-

tion flows both through updates to trust relationships and through the authorization

mechanism itself.

The theoretical foundation of this approach is the Flow-Limited Authorization

Model (FLAM). This model comprises two primary components. The first component is

a novel principal algebra that unifies principals with information flow labels, providing

a clean, abstract vocabulary for exploring interactions between authorization and infor-

mation flow. The second component is a logic for reasoning about relationships between

principals so that authorization and information flow decisions are made securely.

FLAM’s system model, illustrated in Figure 1.2, consists of a set of principals that

each store some authorization data locally. Principals derive trust relationships using

7



Bob
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Figure 1.2: FLAM system model. Principals communicate to derive trust relationships from
local and remote authorization data.

their local authorization data and by communicating with other principals. This view

makes FLAM applicable to many challenging real-world scenarios, including federated

distributed systems, where hosts in the network may have mutual distrust.

FLAM has several additional properties that make it attractive as a security model.

• It enables fully decentralized trust in the sense that each principal’s view of the

trust configuration is represented and all principals’ policies are enforced simul-

taneously.

• It explicitly models communication, making it appropriate for systems whose au-

thorization data is distributed across multiple hosts.

• It makes no assumptions regarding the well-formedness of authorization data or

the honesty of hosts. Any number of malicious hosts may store malicious delega-

tions and participate in distributed authorization.

• All derivations in the FLAM logic satisfy an important security property called

robust authorization that ensures malicious delegations and revocations cannot

affect which flows are authorized.
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• It has been formalized in Coq [57], along with machine-checked proofs that

FLAM enforces robust authorization.

1.2 Building information security abstractions

A great deal of effort has gone into developing new and better security mechanisms

like cryptographic protocols, blockchain technology, and trusted hardware. In contrast,

less effort has focused on developing better security abstractions. The lack of good ab-

stractions makes these mechanisms more difficult to use, and errors that undermine the

security of these mechanisms are common [56]. Incorporating information flow control

into the design of security abstractions is attractive, since it offers compositional, end-to-

end security guarantees. The Flow-Limited Authorization Model provides a foundation

upon which information flow control can be applied to these mechanisms in a meaning-

ful way.

The second part of this dissertation demonstrates that FLAM can be embedded into

a core programming model for authorization and information flow control, so that dy-

namic authorization mechanisms—as well as the programs that employ them—can be

statically verified. Approaching the verification of programs from this perspective is at-

tractive for two reasons. First, it gives a model for building secure authorization mech-

anisms by construction rather than verifying them after the fact. This model offers

programmers insight into the sometimes subtle interaction between information flow

and authorization, and helps programmers address problems early, during the design

process. Second, it addresses a core weakness lurking at the heart of existing language-

based security schemes: that the underlying policies may change in a way that breaks se-

curity. By statically verifying the information security of dynamic authorization mech-

anisms, we expand the real-world scenarios in which language-based information flow

control is useful and strengthen its security guarantees.
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The Flow-Limited Authorization Calculus (FLAC) is a functional language for de-

signing and verifying decentralized authorization protocols. FLAC supports dynamic

authorization while enforcing information flow control. It uses FLAM’s principal model

and FLAM’s logical reasoning rules to define an operational model and type system for

authorization computations that preserve information security. FLAC is inspired by the

Polymorphic Dependency Core Calculus [2] (DCC).1 Abadi develops DCC as an autho-

rization logic, but DCC is limited to static trust relationships defined externally to DCC

programs by a lattice of principals.

The types in a FLAC program can be considered propositions [88] in an authoriza-

tion logic, and the programs can be considered proofs that the proposition holds. Well-

typed FLAC programs are not only proofs of authorization, but also proofs of secure

information flow, ensuring the confidentiality and integrity of authorization policies and

of the data those policies depend upon.

FLAC is useful from a logical perspective, but also serves as a core programming

model for real language implementations. Since FLAC programs can dynamically au-

thorize computation and flows of information, FLAC applies to more realistic settings

than previous authorization logics. Thus FLAC offers more than a type system for prov-

ing propositions—FLAC programs do useful computation.

FLAC programs exhibit strong semantic security. Programs in low-integrity con-

texts exhibit noninterference, ensuring attackers cannot leak or corrupt information, and

cannot subvert authorization mechanisms. Programs in higher-integrity contexts exhibit

robust declassification, ensuring attackers cannot influence authorized disclosures of in-

formation.
1DCC was first presented in [3]. We use the abbreviation DCC to refer to the extension to polymorphic

types in [2].
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1.3 Enforcing flow-limited authorization in Haskell

The final component of this dissertation is FLAME, a library for enforcing flow-limited

authorization in Haskell applications. Flame helps programmers develop security ab-

stractions for their authorization mechanisms and ensures that applications use these

abstractions securely.

Flame does this by embedding elements of the FLAC type system into Haskell pro-

grams using type-level constraints that are checked by the compiler. A custom GHC [85]

type checker plug-in checks these constraints using implementations of algorithms de-

veloped for FLAM. Implementing Flame as a lightweight compiler plug-in and library

makes it easier to interact with existing libraries, even libraries that implement autho-

rization mechanisms.

Haskell is a particularly attractive language for our purposes. It is a pure functional

language, keeping our implementation close to the syntax and abstractions of FLAC. In

Haskell, input, output, and observable side effects must occur in the IO monad. This

makes it easier to enforce information flow control via the type system. Despite its

sophisticated type system, Haskell is a popular programming language [72] with an

active developer community that is familiar with the approach of using expressive types

to obtain strong run-time guarantees for their programs.

To demonstrate the versatility of Flame, we have created secure bindings for lib-

macaroons [32], an implementation of Macaroons [13], which authorizes users based

on bearer credentials with caveats. We discuss the workflow for integrating this library

into a Flame program.
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CHAPTER 2

VULNERABILITIES IN EXISTING APPROACHES

Delegation and revocation of trust are important features of authorization mecha-

nisms and the DIFC systems that build upon them, but previous approaches fall short

with respect to both their expressiveness and the security guarantees they offer. Three

classes of vulnerabilities arise in these authorization mechanisms. We motivate them

primarily in the context of the Decentralized Label Model, but the vulnerabilities dis-

cussed in this section are generally applicable to other DIFC and authorization models.

2.1 Delegation loopholes

Delegation of trust allows principals in a system to specify other principals that may act

on their behalf. In addition to representing trust between two entities, delegation may

encode membership in groups or roles represented by principals. Most previous mod-

els treat delegations as universally agreed-upon, but in a decentralized system, different

principals can have different opinions about delegations. Most previous information

flow models, including the DLM, ignore the implications of allowing the trust config-

uration to be controlled by partially trusted principals. As we show, a partially trusted

principal can choose to delegate to an untrusted principal, and thereby achieve the effect

of downgrading information even when it has not been granted the authority to down-

grade. We call this use of delegation to achieve downgrading the delegation loophole.

Some previous work [9, 39, 83] does observe this connection between delegation and

downgrading, but does not eliminate the influence attackers may exert on which flows

are authorized.

To see how the delegation loophole works, consider the following example of an

insider attack. Bob, who works for Acme, has been enticed to disclose valuable trade
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Acme→Bob
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v

(b) Flow ordering (v) of policies inH

Figure 2.1: Delegation loophole. By delegating to Rival, Bob effectively declassifies a label
owned by Acme. Dashed lines indicate relationships influenced by Bob.

secrets to Rival, one of Acme’s competitors. Acme’s policies1 are written in terms of

principals using the DLM [63]. In the DLM, principals like Emp can express member-

ship of a group by delegating to other principals using the acts-for relation <, where we

read the expression p < q as “p acts for q”. Thus, the DLM trust configuration consists

of a set of delegations of the form p < q, called the principal hierarchy. In several DIFC

systems [21,22,63], confidentiality and integrity policies have an associated owner prin-

cipal, expressing the authority necessary to enforce or downgrade the label. In the DLM,

Acme’s trade secrets might be protected under the label component Acme→ Emp. Here,

Acme denotes the owner of a confidentiality 2 policy. This confidentiality policy states

that the associated information is readable only by the employees of Acme, to whom the

principal Emp delegates. These would include Bob, since Bob < Emp.

The idea of the DLM is that only Acme itself should be able to release data labeled

Acme → Emp, because Acme is the owner of the policy. However, if an employee like

Bob is able to control his own delegations, he can effectively release information to a

third party. For instance, Figure 2.1 shows how Bob might abuse his access to Acme’s

trade secrets. Figure 2.1a shows a trust configuration H comprising two delegations:

Bob < Emp, and Rival < Bob. An edge indicates that the higher principal is trusted

to act on behalf of the lower principal; the dashed line indicates that Bob has delegated

trust to Rival.
1We use the word “policy” here to mean a component of an information flow label governing the use

of the labeled data, rather than a global system property such as noninterference.
2indicated by the right arrow,→. Integrity policies are denoted by a left arrow,←
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Figure 2.1b shows the restrictiveness of information flow policies in H. An edge

indicates that the higher policy is at least as restrictive as the lower policy, or in other

words, information with the lower policy may be relabeled to the higher policy. Bob’s

delegation causes Acme to believe it is safe to relabel information from the policy

Acme → Emp to the policy Acme → Rival, since Bob is trusted by Emp and Rival

is trusted by Bob. This influence of Bob causes Acme’s own system to disclose sensitive

data to Rival.

Although the DLM allows the trust configuration to evolve by adding or remov-

ing delegations, it ignores the possibility that changes to the trust configuration may

create insecure information flows, However, recent systems built on the DLM, such as

SIF [24] and Fabric [54], give principals the power to control their delegations dynami-

cally. These systems have therefore opened up the delegation loophole.

Surprisingly, though Bob uses delegation to cause the disclosure, the real weakness

lies in how information is relabeled. Relabeling information upward in the lattice of

information flow labels has heretofore been considered a safe operation requiring no

privilege. This example shows that when such relabeling is justified based on a principal

hierarchy, it is actually a kind of downgrading operation that must be controlled.

2.2 Poaching attacks

The presence of revocation in a DIFC system raises two challenging questions: when

should revocation take effect, and what are the consequences for information flow? An-

swers to the first question are complicated in distributed environments where revocation

messages may not be immediately disseminated. Programs with an inconsistent view of

current trust relationships may make insecure authorizations.

Existing DIFC systems have particularly unsatisfying semantics with regard to the

consequences of revocation. The root of the problem is that current DIFC systems per-
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Acme→Emp

Acme→Bob

client

poach
Assignment:

poach := client

Revocable by Emp
Not revocable by Emp

Figure 2.2: Poaching attack. If information at Acme→Emp is relabeled to a more restrictive
policy, Emp can no longer revoke access.

mit information to flow between different policies without regard to a principal’s ability

to revoke access in the future. This makes it difficult to reason about what information

a principal retains access to after a revocation.

Suppose Acme protects its client list with the policy Acme → Emp so that only

employees may read it. Figure 2.2 illustrates how Bob can use his access to Emp data to

“poach” Acme’s client list, storing it with a more restrictive policy, to which he retains

access in the event of a revocation. The white region beneath Acme → Emp represents

the part of the lattice of information flow policies in which information can be relabeled

to Acme → Emp. The shaded region represents information with policies that relabel to

Acme → Bob, but not to Acme → Emp. The assignment poach:=client assigns the

contents of variable client protected by a policy in the white region to variable poach

protected by a policy in the shaded region. Since Emp delegates to Bob, policies in the

white region may be relabeled to Acme→ Bob.

However, relabeling information from Acme → Emp to Acme → Bob has conse-

quences. Whereas Emp may revoke Bob’s access to information in the white region by

revoking its delegation to Bob, it cannot revoke Bob’s access to information in the shaded

region. Therefore, if Bob can influence what information is relabeled, he can prevent

Emp from ever revoking access (for instance, if Bob is fired).

Like the delegation loophole, poaching attacks demonstrate that relabeling is a kind

of policy downgrade exploitable by an insider. However, the two vulnerabilities dif-
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fer. Delegation enables future relabelings to occur; therefore, to eliminate loopholes,

relabelings must only be based on trusted delegations. On the other hand, relabeling

prevents future revocations from occurring; therefore, to prevent poaching, the decision

to relabel a policy should be trusted by the policy owner.

2.3 Leaking information via authorization

DIFC uses authorization decisions to decide which information flows are permitted.

However, the authorization process has the potential to leak confidential information in

two distinct ways.

The first source of leakage is a side channel in the authorization process. No single

entity in a distributed system has a complete view of the current system state, which

includes the trust configuration. Consequently, to make authorization decisions in a

decentralized way, entities must query the current trust configuration, leading to com-

munication. This communication may leak information to untrusted agents about what

the querying process is doing or about the data it is using. For example, suppose a cer-

tain query is made only if a secret value is true; in other words, it occurs in a secret

context. In this case, it would be insecure to query an entity not trusted to learn the

secret information.

This side channel is an instance of a read channel [98], in which accesses to data

leak information from the accessor. Read channels arising from authorization queries

have been largely ignored in the DIFC literature, perhaps because the implementation

platform was originally assumed to be trusted. In a fully distributed system, however,

different parts of the computing infrastructure, including the implementation of the trust

configuration, may be provided by differently trusted principals. The Fabric system

therefore adds access labels [6] to control information flows via read channels. Fabric

does not, however, consider read channels arising from authorization requests.
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The second source of information leakage via authorization arises if a public deci-

sion is based on the result of an authorization query whose answer depends on a secret

trust relationship. Several distributed authorization systems [59, 60, 90–93, 100] protect

sensitive credentials with access policies, but do not constrain how credentials are used

after granting access, resulting in possible leaks. These systems do not guard against

authorization side channels.

A central challenge of distributed, decentralized authorization is that an entity’s lim-

ited view of the trust configuration constrains its ability to securely process authorization

queries. Any general approach must provide a way to bootstrap knowledge of the dis-

tributed trust configuration from local knowledge while avoiding communication that

could leak information. To bootstrap this knowledge securely, we need a more precise

account of the coupling between authorization and information flow control than has

been previously recognized.

2.4 Vulnerabilities in other systems

Many systems have some degree of vulnerability to the attacks described above. Au-

thorization mechanisms that make no attempt to control information flow are certainly

vulnerable. Additionally, almost all previous DIFC systems that leverage an underly-

ing authorization mechanism are vulnerable to attacks that abuse the way authorization

controls information flow. Clearly, systems based on the DLM, such as Jif [62] and Fab-

ric [54], have these weaknesses. Capability-based DIFC systems such as Asbestos [28],

Histar [99], Flume [48], Laminar [73], and LIO [81] also exhibit delegation loopholes

and poaching attacks, since processes may transfer capabilities and relabel information.

Aeolus [22] has some characteristics of capability-based systems, but maintains a trust

configuration like Fabric. It too is vulnerable to these attacks.
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CHAPTER 3

A MODEL FOR FLOW-LIMITED AUTHORIZATION

3.1 Unifying principals and policies

Our goal is a simple model that supports reasoning about authorization, about infor-

mation flow, and about their interactions, and that guides the construction of secure

distributed systems. Our model, which we call the Flow-Limited Authorization Model

(FLAM), addresses all the security issues discussed in Section 2. FLAM is both an

authorization logic and an information flow model. It is an authorization logic (like

[2, 49, 78]) since it derives judgments about trust. It is an information flow model (like

[15,63,83]) since it derives judgments about secure information flow. FLAM integrates

reasoning about trust and reasoning about information flow; this integration is central to

preventing the security vulnerabilities identified in Section 2. We are unaware of prior

models that support this kind of combined reasoning.

For simplicity, FLAM completely unifies principals, roles, privileges, and informa-

tion flow labels, a perhaps surprising feature that distinguishes FLAM from previous

models for either authorization or information flow1. In FLAM, principals are both au-

thorization entities and information flow policies enforcing confidentiality and integrity.

In subsequent discussion, we sometimes use label (or policy) to talk about a principal

used to specify permitted information flow, but these concepts are interchangeable in

FLAM. As we show, unifying principals with information flow labels enables a simpler,

algebraic presentation of the relationships between information flow policies and the

principals they concern.

This section provides the formal basis for unifying authority and decentralized infor-

mation flow policies. Although the algebraic definitions given in this section may appear

1Some prior work has unified roles with information flow labels, while distinguishing principals from
roles [9, 77, 83].
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complex at first, we show in Section 3.3 that they enable a concise logic, collected in

Figures 3.3 and 3.4. Authorization decisions derived from this logic are protected from

the problems discussed in Section 2.

3.2 Authority projections

All entities in a system are represented as principals that may delegate to each other.

FLAM provides a particularly rich set of principals. We construct this set of principals

by defining operations on principals that combine or attenuate principals in different

ways.

Let N be the set of all primitive principals, which are essentially uninterpreted

names. Starting from primitive principals, we can construct more complex compound

principals. For any two principals p and q, we represent the conjunction of their au-

thority, the authority of both p and q, as the compound principal p ∧ q. Likewise, the

authority of either p or q is written p ∨ q. These conjunction and disjunction operators,

as in Boolean algebra, define a lattice2 over principals. If a principal q trusts principal

p, then we say p acts for q and write p < q. If q represents the privilege or permission

to perform an action, the statement p < q means p has the right to perform that action.

Lattice properties imply p ∧ q < p < p ∨ q for any p and q.

Conjunction and disjunction are already familiar from previous logics for authenti-

cation and authorization, and the acts-for relation of FLAM is related to the speaks-for

relation of authentication logics [2, 49], but Section 3.3.4 draws a distinction between

the speaks-for relation for FLAM and the acts-for relation.

In many DIFC models, the flows-to ordering v between information flow policies

2Authorization logics typically treat > as the least trusted principal and use the symbol ∧ to represent
conjunctive principals, which denote lattice meets. DIFC models often use> to represent the most trusted
principal, yet retain the ∧ notation for conjunctive principals even though they correspond to lattice joins.
We find treating conjunctions of authority as “higher” to be intuitive, and adopt the DIFC approach.
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derives from an ordering on principals that is similar to <. Rather than defining a sepa-

rate space of information flow policies, we characterize confidentiality and integrity as

a limited form of authority. For a principal p, let p→ represent its read authority, and

p← represent its write authority. Separating these components of p’s authority allows us

to think of information flow policies as delegations by one or both of these attenuated

principals. For instance, delegating authority p→ to q grants q read-only access to p’s

data.

FLAM generalizes this idea of attenuating a principal’s authority by defining op-

erations called authority projections, which allow new attenuated principals to be con-

structed from existing principals. In FLAM, we represent p’s read authority (p→) and its

write authority (p←) as projections.

Definition 1 (Authority projections). An authority projection, π, is an operation on

principals such that for any principal p, pπ is a principal, and

1. p < pπ

2. p < q =⇒ pπ < qπ

3. pπ ∧ qπ = (p ∧ q)π

4. pπ ∨ qπ = (p ∨ q)π

5. (pπ)π = pπ

These five properties capture the essence of limited authority derived from a princi-

pal’s general authority, without requiring separate classes of entities such as roles [33],

subprincipals, or groups [78]. Naturally, the originating principal acts for the derived

authority (1), and projection preserves the properties of the authorization lattice (2, 3,

4). Finally, projections are idempotent (5).

FLAM defines two classes of authority projections, basis projections and owner-

ship projections. Basis projections define the different kinds of authority a principal
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may possess, specifically, confidentiality and integrity, whereas ownership projections

(discussed in Section 3.2.2) attenuate a principal’s authority relative to other principals.

For the purpose of this paper, all authority is representable as a combination of con-

fidentiality and integrity authority. In other words, the conjunctive principal p→∧p← has

authority equivalent to p, meaning that confidentiality and integrity projections form a

kind of basis for authority.

Definition 2 (Confidentiality and integrity basis). Let→ and← be authority projections

such that, for all principals

1. p = p→ ∧ p←

2. (p←)→ = (p→)← = ⊥

3. p→ ∨ q← = ⊥

We represent all authority as a combination of confidentiality and integrity author-

ity (1), so any principal that acts for both projections of a principal also acts for the

principal. Additionally, composing (2) or taking the meet (3) of confidentiality and

integrity projections yields ⊥. In this paper, we focus on information flow policies for

confidentiality and integrity, but we expect it is possible to extend FLAM with additional

projections that represent other aspects of security. For instance, [101] adds availabil-

ity policies, and [55] includes reference authority and persistence policies. We leave

representing such policies as basis projections to future work.

Using the above operations, we can extend the set of primitive principals to create a

richer set of principals ordered by<. Let P0 be the closure ofN under the operations ∧

and ∨, and the projections← and→. We can construct a lattice from the preorder < in

the usual way, by defining an equivalence relation a ≡< b ⇐⇒ (a < b and b < a) and

grouping equivalent principals into a single lattice element representing an equivalence

class. Then P0 induces a lattice (P0,<) where we define> and⊥ as distinguished prin-
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Figure 3.1: The FLAM lattices for trust and information flow

cipals with highest and lowest authority, respectively. Joins in P0 are the conjunctions

of principals (∧), and meets are disjunctions (∨).

3.2.1 The information flow ordering

The value of authority projections is that they allow secure information flow to be repre-

sented as authority relationships in a simple and natural way. In fact, there is no explicit

need for a separate lattice of information flow policies; we could express information

flow entirely by authority relationships. It is often convenient, however, to have nota-

tion for the authority ordering on principals as well as the information flow ordering on

principals. Below, we define an information flow lattice whose ordering and operations

are syntactic sugar for authority relationships and operations in the authority lattice.

For principals p and q, we say p flows to q, written p v q, if p acts for q’s integrity

(q trusts information from p) and q acts for p’s confidentiality (p trusts q to protect p’s

secrets). In the definition below, these relationships are represented simultaneously by

conjunctions of authority projections.
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Definition 3 (Secure information flow as authorization).

p v q
4⇐⇒ q→∧ p← < p→∧ q←

p t q , (p ∧ q)→ ∧ (p ∨ q)←

p u q , (p ∨ q)→ ∧ (p ∧ q)←

The flows-to relationv is a preorder, so we can lift it to a partial order just as we did

for acts-for, with equivalences defined by a ≡v b ⇐⇒ (a v b and b v a). The relation

v induces an information flow lattice (P0,v). In this lattice, we represent joins by t

and meets by u. The top element of (P0,v) is the policy that most restricts use of the

information, secret and untrusted: >→ ∧⊥←. The bottom element is the least restrictive

policy, public and trusted: ⊥→ ∧ >←. We often omit projections of the ⊥ principal

to obtain the more concise (but equivalent) principal representation; for example, p→

instead of p→ ∧ ⊥← and p← instead of ⊥→ ∧ p←.

By the definitions above, the equivalence classes of < and v are identical, and

there is a one-to-one correspondence between the elements of (P0,<) and (P0,v), even

though the two orderings are “at right angles” to each other. Figure 3.1 illustrates this

correspondence by aligning both lattices on the same set of elements. Secure informa-

tion flow is from left to right, toward increasing confidentiality and decreasing integrity.

The trust ordering is bottom to top, toward increasing authority. This correspondence

allows us to easily translate relationships from one ordering to another when convenient.

3.2.2 Owned principals

To give FLAM the expressive power of some previous authorization systems, such as

role-based access control (RBAC) [33] and the DLM [63], we introduce another way

to construct principals. In RBAC, principals are assigned roles which they may select

when performing sensitive tasks, and access control policies are specified in terms of
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roles that are permitted access. It is tempting to use delegation to express authorization

concepts such as roles and groups [78]. However, this approach fails to adequately

control modification of role membership. For instance, if Acme uses the principal Emp

to represent a role by delegating to all Acme employees, then Bob can effectively add

employees via delegation. What Acme requires is a way to refer to principals like Bob

while retaining control over their trust relationships. Then a principal like Emp can

delegate to such a principal without risking subversion of its authorization mechanism.

From the perspective of information flow control, the principals from the set P0 can

represent both authority and information flow policies, but the information flow policies

expressible with these principals are rather limited—they are not decentralized in the

sense of the DLM [63]. The key aspect of decentralized policies is that policy owners

retain control over decisions to release information.

In FLAM, we express ownership as a special class of authority projections called

ownership projections. The owned principal Acme:Bob represents3 Bob as a principal

whose trust relationships Acme retains control of. Intuitively, Acme:Bob delegates trust

to the same principals as Bob, but only if Acme allows the delegation. Acme may also

create new delegations of trust from Acme:Bob even though Acme doesn’t act for Bob.

Owned principals are similar in spirit to roles [33], groups, and subprincipals [78], but

are first-class principals that may delegate and be delegated to.

Owned principals are useful for representing decentralized information flow poli-

cies. For instance, the principal (p:q)→ is a confidentiality projection of the ownership

projection p:q. This principal represents a confidentiality policy owned by p that speci-

fies q as a reader, and is similar to the DLM policy p→ q. In the DLM, p→ q v r → s

holds if and only if r < p and s < q. FLAM permits finer-grained delegations of trust,

so the relationship (p:q)→ v (r:s)→ holds, for example, if r:s < p:q but also if r < p

3For better readability and to resemble DLM notation, we abuse the syntax of authority projections
and write p:q instead of p:q .
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and s→ < q→.

Definition 4 formalizes the properties of ownership that unify decentralized policies

with principal authority.

Definition 4 (Ownership projection). For each principal p let :p be a distinguished au-

thority projection, an ownership projection. We say p:q is an owned principal and p is

the owner of p:q. Owned principals satisfy the following properties:

1. p < r and q < s =⇒ p:q < r:s

2. p < r and q < r:s =⇒ p:q < r:s

3. p:p = p

4. p:⊥ = ⊥

5. p:r ∧ p:s = p:(r ∧ s)

6. p:r ∨ p:s = p:(r ∨ s)

7. p:qπ = (p:q)π for π ∈ {←,→}

8. pπ:q = (p:q)π for π ∈ {←,→}

The principal p:q is a principal that represents q but that p, the owner, retains control

over. Specifically, since :q is an authority projection, p acts for p:q. Principal p:q reflects

the delegations of both p and q, so owned principals are similar to disjunctive principals,

but are not commutative: p ∨ q is equivalent to q ∨ p but p:q is not equivalent to q:p.

Property (1) permits a delegation between unowned principals (q < s) to induce one

between corresponding owned principals (p:q < r:s), but only if the owners also have

an acts-for relationship (p < r). This condition on owners is central to the idea of

ownership, since it prevents a delegation to an owned principal p:q from implying a

delegation to the corresponding unowned principal q. Similarly, property (2) ensures

a delegation from an owned principal r:s to an unowned principal q induces a similar
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delegation to a corresponding owned principal p:q, but only if the owners have an acts-

for relationship (p < r).

An ownership projection :p is the identity when applied to the principal p that defines

it (3), and applying the bottom ownership projection :⊥ always yields ⊥ (4). Finally,

conjunction and disjunction distribute through ownership (5, 6), and confidentiality and

integrity projections are associative with and commute with ownership projections (7,

8).

Using ownership projections, we can further extend our set of principals. Let O =

{:p | p ∈ P0} be a set of ownership projections. Then let P be the closure of P0

under the projections in O. Like P0, the equivalence classes of P form lattices (P ,<)

and (P ,v), whose elements have a one-to-one correspondence. Figure 3.1 relates an

owned principal, p:q and its projections, to the other elements of these lattices. For the

remainder of this paper, principals are implicitly members of the set P unless otherwise

specified.

3.2.3 FLAM normal form

Constructing efficient algorithms for manipulating elements of an algebraic system such

as FLAM is much easier when the elements have a normal form. A normal form for

FLAM principals can be obtained from the equational rules and lattice properties al-

ready stated. Using these rules, any FLAM principal can be factored into the join of a

confidentiality projection and an integrity projection p→ ∧ q←, where p and q are each a

join of meets of owned or primitive principals.

Definition 5. A FLAM principal p is in normal form if it is accepted by the following

grammar where n ∈ N .

p ::= J→ ∧ J←

J ::=M |M ∧ J

M ::=L | L ∨M

L ::=n | L:L
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Our prototype implementation, discussed in Section 3.5, includes an algorithm for

converting FLAM principals to normal form. This algorithm is relatively straightfor-

ward: it applies lattice properties and equational rules of authority projections as rewrite

rules to reduce principals to normal form. We have formalized and proved this algorithm

correct in Coq. The rewriting rules are found in Appendix A.2.

3.3 Secure reasoning with dynamic trust

In this section, we present the FLAM system model and a set of inference rules for

deriving authorization decisions from the distributed system state. Unlike most previous

models, FLAM does not presume universally agreed-upon trust relationships. Instead,

principals may regard a trust relationship (that is, a delegation) to be untrustworthy, or

may wish to prevent others from learning of its existence. Furthermore, principals do

not have a global view of the system state and must communicate with other principals

to discover new relationships. These attributes make FLAM an appropriate model for

authorization in distributed systems.

3.3.1 System model and trust configuration

Our goal is to model the security of a distributed system comprising various host nodes

that keep track of different parts of the system’s trust configuration. In FLAM, these

nodes, like all other entities in the system, are represented as principals. Thus, a host

node is a primitive principal in N ; we use n and c to denote such principals. We treat

the trust configuration H as a distributed data structure, wherein each fragment H(n)

is the delegation set stored at node n. Each delegation (p < q, `) has an associated

delegation label ` expressing the confidentiality and integrity of the delegation. Hosts

have complete control over the delegations they store, including the delegation label.
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This means that a host may specify the confidentiality of a delegation to prevent other

hosts from learning it, but it also means that a host may label a delegation with high

integrity when other hosts might deem it untrustworthy.

Definition 6 (FLAM trust configurations). A trust configuration H is a map from prin-

cipals n ∈ N to delegation sets. A delegation set is a set of tuples of the form (p<q, `)

where p, q, ` are principals in P .

For example, a delegation (p<q, n←) might be hosted by principal n; in other words,

(p<q, n←) ∈ H(n). The delegation label n← means that the delegation is public (since

(n←)→ = ⊥) and has the integrity of n. We make no well-formedness assumptions

aboutH; for instance, a malicious node n might store the delegation (n<>,>←).

This abstraction allows us to reason about information flow in the trust configuration

without exposing the details of the underlying distributed data structure. For instance,

H(n) might represent a remote call interface for requesting derived delegations from n,

or it might represent delegations stored or replicated at n that can be fetched on demand.

3.3.2 Flow-limited judgments

Authorization queries are submitted to principals that process them by using local data,

by obtaining remote data via communication with other principals, or by a combination

of both. The answers to queries are used to determine the relationships that currently

exist between principals in the given trust configurationH.

Queries take the form of judgments; positive query results carry proofs (or deriva-

tions) of these judgments. Derivation rules specify how to obtain proofs given a set of

delegations. One approach would be to represent judgments with the form D ` p < q,

meaning that the relationship p < q holds assuming the delegations in D.

However, constructing a proof in a distributed system creates information flows.

Consequently, this form of judgment has two fundamental problems. First, it fails to
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characterize the confidentiality and integrity of the conclusion p < q. Second, it fails to

represent or constrain the side-effects inherent in the distributed computation that is per-

formed across the hosts that collectively store the trust configurationH. Communicating

with these hosts to obtain the delegations inD could leak confidential information about

the query. Failure to constrain how authority may be used to relabel these delegations

could permit poaching attacks.

FLAM solves both problems by parameterizing authorization queries with policies

that restrict the flow of information as the query is answered. The resulting flow-limited

judgments have the following form:

H; c; pc; ` ` p < q

Here, H is the trust configuration and c ∈ N is the current host performing the deriva-

tion. The policy ` is the derivation label, which is an upper bound in (P ,v) for all

delegation labels of delegations used in the derivation. The label pc is the query label,

which is an upper bound in (P ,v) on the confidentiality and integrity of the query. For

remotely issued queries, the integrity of the originating host must flow to the query label,

and the query label must flow to the confidentiality of any host that is contacted during

the derivation.

Flow-limited judgments are constructed by inspecting the delegations in H. Ac-

cesses to local delegations, specifically H(c), are not externally observable, but prin-

cipals may also communicate with any host n ∈ dom(H) to obtain judgments derived

from remote delegations. We abbreviate judgments that hold in any trust configuration,

or statically, as ` p < q. For instance, ` p ∧ q < q holds statically.

As with the trust configuration H, we make no well-formedness assumptions about

the query label or derivation label specified in authorization queries. However, to pro-

tect their own security, we assume that honest hosts specify a query label for top-level

queries that characterizes the confidentiality and integrity of the issuing context; hence
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Client list

Acme:Emp→ Acme

Bob

Acme:Emp→

Rival

Acme:Emp←
>←

Bob←

H; c; Acme:Emp←; Acme:Emp← 1 Acme:Emp→ v Rival→

H; c; Bob←; Acme:Emp← 1 Acme:Emp→ v Bob→
(3.1)

(3.2)

Figure 3.2: Section 2 attacks prevented. The boxed judgments do not hold robustly with the
illustrated delegations. Judgment (3.1) does not hold since Bob’s delegation to Rival cannot be
used to robustly relabel Acme’s policies, closing the delegation loophole. In (3.2), the query
label Bob← has insufficient integrity to relabel Acme’s policies, preventing Bob from poaching
the client list.

the name pc for the program counter label, as in Jif [62]. Likewise, we assume honest

hosts will treat query results in accordance with the derivation label.

3.3.3 Robust derivations

Tracking information flow through judgments is only the first step—we still need to

eliminate delegation loopholes and poaching attacks.

Consider the example of Section 2.1. We can model this scenario with the delegation

set shown in Figure 3.2. Acme grants Bob read-only access with the delegation (Bob<

Acme:Emp→, Acme:Emp←). As before, Bob delegates to Acme’s competitor Rival.

Delegation loopholes arise when attackers influence the derivation of sensitive

queries—when derivations are not robust. In the example, we can close the loophole

by eliminating the influence of attackers like Bob on the derivation of queries about

who acts for Acme’s principals. If Bob’s delegation cannot be used in the proof of a

query like Rival→ < Acme:Emp→, then the proof is robust, and Bob cannot influence

whether Acme:Emp→ can flow to Rival→.

FLAM’s derivation labels allow Acme to constrain Bob’s influence on the derivation.
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Consider the following judgment, which holds in our example trust configuration.

H; c; pc; Acme:Emp← ` Bob < Acme:Emp→

It has integrity Acme:Emp←, so any derivation of this judgment can only depend on del-

egations that have Acme:Emp’s integrity or greater in the authority ordering (<). In con-

trast, there is no robust proof of the following judgment since using Bob’s delegation

would result in a proof with lower integrity than Acme:Emp←.

H; c; pc; Acme:Emp← 0 Rival < Acme:Emp

Poaching attacks arise when attackers influence the decision to relabel information—

that is, when they influence the context of a query. The query label represents the in-

formation flow context of such a query, so by restricting this label, FLAM prevents

attackers from poaching information.

For instance, Figure 3.2 shows Acme’s client list labeled with confidentiality

Acme:Emp→. Suppose Bob wants to copy this list to a file with confidentiality Bob→

so he can maintain access if he is fired. To do so, Acme’s system requires that the

following judgment holds.

H; c; Acme:Emp←; Acme:Emp← ` Bob < Acme:Emp

This judgment is immune to poaching attacks since neither the result nor the query itself

is influenced by Bob. Bob cannot independently issue such a query since his influence

would taint the query label, shown below.

H; c; Acme:Emp← ∨ Bob←; Acme:Emp← ` Bob < Acme:Emp

This query has insufficient authority to robustly relabel Acme:Emp→ to Bob→. This pre-

vents Bob from poaching Acme’s client list, giving Acme control of what information

is released to Bob.
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One might wonder why Acme requires Bob < Acme:Emp to hold instead of Bob→ <

Acme:Emp→. The answer illustrates a fundamental difference between information flow

control and access control. Specifically, Acme wants to know whether it is safe to

enforce information labeled Acme:Emp→ with the policy Bob→. This is a distinct goal

from access control since Acme not only cares about the access to the client list, but also

the propagation of that data. Even though Bob cannot influence whether Acme:Emp→ v

Bob→, he does control what Bob→ flows to. Thus, Acme wants to ensure that Bob has

sufficient integrity to enforce the confidentiality of the client list. Since he does not,

Acme should deny any request to relabel Acme:Emp→ to Bob→.

3.3.4 Speaking for other principals

Prior work on robust downgrading [23, 54, 65] of information flow policies places con-

straints on the influence an attacker may have on declassification and endorsement.

Specifically, a principal should not be able to leak information by influencing downgrad-

ing decisions. Here, we seek similar constraints, but on information flow authorizations

in general, whether they represent a downgrade or not.

In FLAM, the voice of a principal q, written ∇(q), defines the minimum integrity

required to influence the flow of information labeled q.

Definition 7 (Principal voice). For a principal in normal form p→ ∧ q←, the voice of

p→ ∧ q← is defined as

∇(p→ ∧ q←) , p← ∧ q←

As its name suggests, the voice of a principal is related to the speaks-for relation

[2, 49] found in authorization logics. In these models, if Bob speaks for Alice (some-

times written Bob ⇒ Alice) and Bob says some proposition P is true, then Alice also

says P is true. Flow-limited judgments permit a refinement of speaks-for since we can
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reason directly about the influence of principals on authorization decisions. In FLAM,

a principal’s voice is the integrity needed to speak on its behalf, so Bob speaks for Alice

if Bob < ∇(Alice).

This version of speaks-for differs from that in other authorization logics. First, it

derives from the integrity of principals and the acts-for relationships between them.

Second, the speaks-for relation is transitive, but not reflexive. Notice that Acme→ does

not speak for itself.

As in [2], FLAM’s speaks-for relation distinguishes the concepts of speaking for

and acting for a principal. Previous DIFC models [63] have considered these concepts

to be similar, but they are distinct in FLAM to support reasoning separately about the

confidentiality and integrity of principals. For instance, the principal Acme← speaks for

both Acme and Acme→, but acts for neither.

This distinction is often useful when modeling real systems. For instance, Acme←

might represent information cryptographically signed with Acme’s key, and Acme→

might represent information encrypted with Acme’s key. In such a system, it is clearly

useful to be able to distinguish the ability to decrypt a message encrypted with Acme’s

key from the ability to sign a message on Acme’s behalf.

To provide end-to-end information flow security, FLAM distinguishes robust judg-

ments that hold with sufficient integrity to speak on behalf of the principals involved.

Robust judgments in FLAM are identified by the symbol 
. FLAM’s inference rules,

discussed below, use robust judgments to ensure that all derivations exhibit robust infor-

mation flow.

3.3.5 Rules for flow-limited reasoning

Figures 3.3 and 3.4 give inference rules for deriving flow-limited judgments. The pur-

pose of these rules is to enforce the security of delegations in the trust configuration
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[BOT] C ` p < ⊥ [TOP] C ` > < p [REFL] C ` p < p [PROJ]
C ` p < q
C ` pπ < qπ

[PROJR] C ` p < pπ [OWN1]

C ` o < o′
C ` p < p′

C ` o:p < o′:p′
[OWN2]

C ` o < o′
C ` p < o′:p′

C ` o:p < o′:p′

[CONJL]

C ` pk < p
k ∈ {1, 2}

C ` p1 ∧ p2 < p
[CONJR]

C ` p < p1
C ` p < p2

C ` p < p1 ∧ p2
[DISJL]

C ` p1 < p
C ` p2 < p

C ` p1 ∨ p2 < p

[DISJR]

C ` p < pk
k ∈ {1, 2}

C ` p < p1 ∨ p2
[TRANS]

C `p<q C `q<r
C `p<r

[DEL]
(p<q, `) ∈ H(c)
H; c; pc; ` ` p < q

[FWD]

H; c; pc; ` 
 n < pc→ ∧ `
H;n; pc t ` t c←; ` u c→ ` p < q

H; c; pc; ` ` p < q
[WEAKEN]

H; c; pc′; `′ ` p < q
H; c; pc t `′; ` 
 pc v pc′

H; c; pc t `′; ` 
 `′ v `
H ∪H′; c; pc; ` ` p < q

Figure 3.3: Inference rules for flow-limited judgments. For brevity, C denotes
the context H; c; pc; `. The union of trust configurations is defined pointwise:
(H ∪H′)(n) = H(n) ∪H′(n).

and ensure derivations cannot be influenced by attackers. We formalize and verify these

properties in Section 3.4.

Figure 3.3 presents rules for non-robust judgments. Most of these rules are straight-

forward, encoding properties of conjunctions (rules CONJL, CONJR), disjunctions

(rules DISJL, DISJR), authority projections (rules PROJ and PROJR), ownership pro-

jections (rules OWN1, OWN2), and lattices in general (rules BOT, TOP, REFL, TRANS).

The DEL rule allows the use of a local delegation if its label matches the derivation label

of the context.

The WEAKEN rule allows judgment contexts to be weakened. If p < q is deriv-

able with trust configuration H and bounds pc′; `′, then it is still derivable after adding

delegations4 toH or increasing the restrictiveness of the bounds (pc v pc′ and `′ v `).

4The union of two trust configurations is defined to take their pointwise union: (H ∪ H′)(n) =
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Like any other relabelings that use dynamic trust relationships, attackers might try

to abuse these relabelings of pc and `′. For example, Bob could try use WEAKEN to hide

his influence on a judgment by boosting its derivation label from Acme:Emp← t Bob← to

Acme:Emp←, or he could try to reduce a judgment’s confidentiality by downgrading its

derivation label from Acme:Emp→ t Bob→ to Bob→. The rule prevents this by requiring

the relabelings to be robust. Because these robustness proofs are only attempted after the

relabeled judgment is proved, their query labels (pc t `′) are tainted with the derivation

label `′ of the relabeled judgment.

The FWD rule is used to derive acts-for judgments via remote hosts. The first premise

ensures that c can prove the remote host n is trusted to protect both the query’s confiden-

tiality and its derivation label. In the second premise, n derives the desired relationship

with a query label that is tainted both with c’s integrity and with the derivation label of

the first premise. To ensure c can see the result, the derivation label is attenuated by c’s

confidentiality. If these premises hold, then n can release the result to c, and c can trust

it at label `, therefore c can conclude that the relationship holds.

The rules for reasoning about robust judgments are shown in Figure 3.4. The first

three rules specify how robust judgments derive from non-robust judgments. Rule

R-STATIC permits static judgments to be treated as robust judgments in any context,

whereas rule R-LIFT derives robust judgments from dynamic judgments. The first

premise of R-LIFT ensures the judgment holds with the voice ∇(q) of the delegating

principal. The second premise ensures that principals that speak for p’s confidentiality

also speak for q’s confidentiality5. The third premise ensures that the query’s context

is sufficiently trusted to influence this authorization decision. Rule R-LIFTPC handles

judgments regarding the query label as a special case. Rules R-CONJR, R-DISJL, R-

WEAKEN, and R-TRANS are similar to their non-robust counterparts but possess robust

H(n) ∪H′(n)
5The analogous premise for integrity is redundant since acting and speaking for integrity are equiva-

lent: ` p < ∇(q←) ⇐⇒ ` p < q←
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[R-STATIC]
` p < q

C 
 p < q
[R-LIFT]

H; c; pc; ` ∧∇(q) ` p < q
H; c; pc; ` 
 ∇(p→) < ∇(q→)
H; c; pc; ` 
 pc < ∇(q)
H; c; pc; ` 
 p < q

[R-LIFTPC]
H; c; pc; ` ∧∇(q) ` pc < ∇(q)
H; c; pc; ` 
 pc < ∇(q)

[R-CONJR]

C 
 p < p1
C 
 p < p2

C 
 p < p1 ∧ p2

[R-DISJL]

C 
 p1 < p
C 
 p2 < p

C 
 p1 ∨ p2 < p
[R-TRANS]

H; c; pc; ` 
 p < q H; c; pc; ` 
 q < r
H; c; pc; ` 
 pc < ∇(r→)
H; c; pc; ` 
 p < r

[R-FWD]

H; c; pc; ` 
 n < pc→ ∧ ` ∧∇(q)
H;n; pc t ` t c←; ` u c→ 
 p < q

H; c; pc; ` 
 p < q
[R-WEAKEN]

H; c; pc′; `′ 
 p < q
H; c; pc t `′; ` 
 pc v pc′

H; c; pc t `′; ` 
 `′ v `
H ∪H′; c; pc; ` 
 p < q

Figure 3.4: Inference rules for robust judgments.

premises. Rule R-TRANS adds a query label restriction to TRANS to ensure that the

query’s context speaks for r. Likewise, R-FWD adds the restriction that remote princi-

pals must speak for the principal that the judgment concerns.

The need for both robust and non-robust inference rules may not be immediately

apparent. FLAM constrains the flow of information during authorization by selectively

prohibiting derivations that would result in information leakage. However, reasoning

exclusively with robust judgments is too restrictive since it would eliminate many valid

trust configurations and prevent many access control use-cases. For access control deci-

sions (made via non-robust queries), the robust judgments in FWD and WEAKEN ensure

the integrity and confidentiality of authorization decisions. For information flow control

decisions (made via robust judgments), the non-robust judgments in R-STATIC, R-LIFT,

and R-LIFTPC provide a bootstrapping mechanism for trust relationships that preserves

information security.
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3.4 Robust authorization

To demonstrate that the inference rules presented in the previous section prevent the

various attacks described in Section 2, we show that the rules ensure a novel secu-

rity condition that we call robust authorization. This security condition characterizes

how both delegations and revocations may affect authorization decisions in a particular

information-flow context.

Theorem 1 (Robust authorization). IfH; c; pc; ` ` p < q, let D ⊆ H be the delegations

used in the derivation. For each (p′ < q′, `′) ∈ D(n), define n0 . . . nk as the sequence of

nodes in the derivation between n and c, where n0 = n and nk = c, and letN = ∨
i<k ni.

Then the following statements hold:

H; c; pc; ` 
 `′ ∨N v ` (3.1)

H; c; pc; ` 
 N < pc→ ∧ `← (3.2)

k > 0⇒ H; c; pc; ` 
 c < (`′ ∨N)→ (3.3)

Proof. By induction on the derivation ofH; c; pc; ` ` p < q. Verified in Coq [7].

The guarantees robust authorization bestows on authorization queries are quite

strong. Remote principals cannot exceed their authority to influence the derivation,

despite having the power to create arbitrary delegations and participate in the deriva-

tion itself. In particular, the authorization mechanism preserves the end-to-end security

of each delegation’s information flow policy `′ (3.1) while preserving the confidentiality

pc→ of the query and the integrity `← of the result (3.2), and without leaking confidential

information to c (3.3). Conclusion (3.3) only applies to distributed derivations (where

k > 0) since we permit a node to use a local delegation without requiring proof that it

acts for the confidentiality of the delegation label.

FLAM derivations therefore never require unsafe communication: every remote

node that participates in a derivation must robustly act for the confidentiality pc→ of
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the query and integrity `← of the result. Results are received by c only if c is permitted

to learn (implicitly) that c acts for (`′ ∨N)→. Because FLAM makes no assumptions

about the relationship between n and `′, the disjunction N limits the authority of `′ to be

no greater than the nodes in the derivation, ensuring that malicious delegations do not

influence the derivation beyond the authority of these nodes. From the perspective of

confidentiality, the disjunction also ignores information flows in which the claimed con-

fidentiality of the delegation label exceeds the confidentiality authority of nodes provid-

ing the delegation; ignoring such flows makes sense because confidentiality is enforced

by the providers, not by the recipient c.

Robust authorization is a proof-theoretic property since it defines security in terms

of the relationship between FLAM judgments and delegation labels. However, it bears

some resemblance to semantic security properties like noninterference. Adding or re-

moving delegations with more confidentiality or less integrity than ` cannot affect the

output of queries bounded by `. However, since the judgments derivable in a particu-

lar context define which flows are interfering and which are not, there is some subtlety

in the statement that certain delegations cannot affect these derivations. For example,

the delegation (Bob < Acme, Bob←) should be cause for concern: it asserts that Acme

delegates to Bob, but with the integrity of Bob. Thus the delegation should not be suf-

ficient to prove that H; c; pc; Acme← ` Acme→ v Bob→. Theorem 1 states that such

delegations do not affect any judgments with the bound pc; Acme←. In this paper, we do

not make any formal connections between robust authorization and noninterference, but

characterizing semantic guarantees of FLAM is an interesting future research direction.

FLAM ensures robust judgments cannot be leveraged to perform poaching attacks

or other non-robust policy downgrades. The following lemma states that if a query

holds with robust authority, then the query label speaks for any principal whose dynamic

delegations are used in the derivation.
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Lemma 1 (Principal factorization). If H; c; pc; ` 
 p < q, then there exist principals qs

and qd where q ≡< qs ∧ qd such that ` p < qs,H; c; pc; ` 
 p < qd, and

H; c; pc; ` 
 pc < ∇(qd)

Proof. By induction on the derivation ofH; c; pc; ` ` p < q. Verified in Coq [7].

In other words, queries with untrusted query labels can only derive robust judgments

that hold statically, preserving each principal’s control over the revocability of its infor-

mation flow policies.

The fact that we can always split robust acts-for judgments into static and dynamic

components means that we can derive a more traditional transitivity rule for robust judg-

ments:

[R-TRANS*]

H; c; pc; ` 
 p < q

H; c; pc; ` 
 q < r

H; c; pc; ` 
 p < r

The main insight regarding the admissibility of R-TRANS* involves principal factoriza-

tion. By Lemma 1, for any robust judgment H; c; pc; ` 
 q < r, we can factor r into

rs ∧ rd such thatH; c; pc; ` 
 pc < ∇(rd). Therefore, any judgmentH; c; pc; ` 
 p < q

in the same context can be used to derive H; c; pc; ` 
 p < rd by R-TRANS. This re-

lationship, combined with an additional result regarding static judgments, gives us the

above rule.

Theorem 1 and Lemma 1 prove that attackers cannot use delegation and revocation

to interfere with authorization queries, eliminating the delegation loophole (Section 2.1)

and poaching attacks (Section 2.2). New delegations cannot cause unsafe communica-

tion to occur or cause existing delegations to be disclosed (Section 2.3) unless the new

delegations are sufficiently trusted. Furthermore, this result serves as a useful guide to

developers of DIFC systems and languages: supporting delegation and revocation while
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enforcing information flow policies requires all relabeling of policies to be robust—

otherwise, changes in the trust configuration could be exploited to create new flows.

We formalized FLAM principals and our inference rules for deriving flow-limited

judgments in Coq, and used this formalization to prove Theorem 1 and Lemma 1. We

make one primary assumption, that principals that statically act for each other are equiv-

alent. We believe this assumption can be avoided with some refactoring, which we leave

as future work.

3.5 FLAM prototype

We have demonstrated that FLAM can be used to provide robust authorization in re-

alistic authorization mechanisms by developing a prototype implementation and using

it to implement ARBAC97 [76], an expressive role-based access control model. Our

version of ARBAC97 uses owned principals to represent roles and extends the strong

security guarantees of FLAM to role-based access control; for example, untrusted users

cannot use authorization queries to infer the secret membership of roles. Our prototype

currently only uses rules R-LIFT and R-LIFTPC for reasoning about robust judgments,

but these were sufficient for our purposes.

3.5.1 Efficient flow-limited query processing

Our FLAM prototype answers acts-for queries through a proof search; the relation-

ship being queried is said to hold exactly when a proof of the relationship can be found.

This proof search is NP-hard: a FLAM query can encode any 3-SAT problem. To see

this, for any 3-SAT CNF formula F , let Lit(F) be the set of literals in F . Choose

the set of primitive principals N such that a ∈ Lit(F) implies that a,¬a ∈ N . That
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Query: C ` p ∧ q < r ∨ s (C = H; c; pc; `)

Proof strategy 1:

C ` p < r
C ` p < r ∨ s

(DISJR)

C ` p ∧ q < r ∨ s
(CONJL)

Proof strategy 2:

C ` p < r
C ` p ∧ q < r

(CONJL)

C ` p ∧ q < r ∨ s
(DISJR)

Figure 3.5: Redundant work in the basic search algorithm. If the query is not provable, an
exhaustive proof search must be made before a negative result can be returned. Here, both
CONJL and DISJR apply, so the search will try both proof strategies shown. Without caching,
redundant proof searches would be made for the two identical premises shown in red.

is, every literal in F is represented by two principals in N : one for the literal and

one for its negation. Choose H with a single delegation at host c whose disjuncts

encode all possible assignments to the literals in F . This delegation has the form

〈⊥ < (a ∧ b ∧ c ∧ . . .) ∨ (¬a ∧ b ∧ c ∧ . . .),>←〉. In each disjunction of the dele-

gation, a literal or its negation appears at most once, encoding an assignment of 1 or 0

for that literal. Use F to create a FLAM query H; c; pc; ` ` ⊥ < F . Since F has the

form (a ∨ ¬b ∨ c) ∧ (. . .), ⊥ < F if and only if at least one disjunct (that is, a or ¬b or

c) in every conjunct of F appears in a single disjunct of the delegation inH. Therefore,

finding a proof for the judgment H; c; pc; ` ` ⊥ < F requires finding a disjunct that

represents a satisfying assignment for the literals in F . If no such proof exists, then

there is no satisfying assignment.

In practice, however, we expect most queries and trust configurations to be rela-

tively small, making proof search tractable for most applications. For the purposes of

presenting our algorithm, we assume that the trust configuration does not change during

the proof search; in practice, query isolation can be provided by existing mechanisms

for distributed transactions (for example, [54]). The basic proof-search algorithm is a

simple depth-first search with cycle detection. It returns two types of results: PROVED

(which comes with a proof) and FAILED.
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query

pruned

(a) A pruned proof strategy

query

(b) A successful proof strategy

Figure 3.6: Proof diagrams showing two strategies for proving a query. Nodes represent
premises. Edges represent proof dependencies; unexplored edges are dotted. In strategy (a),
the proof search for the blue node is pruned because its proof depends on the red node, which
would introduce a cycle in the proof diagram. Strategy (b) results in a successful proof: the proof
forms a DAG, wherein all leaf nodes are axioms.

This algorithm alone performs poorly, however, owing to much duplicated work.

Queries with FAILED results are particularly expensive, since they require a full ex-

haustive proof search. For example, in Figure 3.5, if the query C ` p ∧ q < r ∨ s

is unprovable, the algorithm must explore all possible proof strategies, including using

CONJL and DISJR, as shown. Both of these strategies have the unprovable subquery

C ` p < r, shown in red. Without caching, redundant proof searches would be made

for these identical subqueries. Furthermore, caching only positive results would not

significantly improve the performance of unprovable queries.

Naively caching intermediate negative results can lead to incompleteness due to

searches that are pruned to avoid infinite recursion and circular reasoning. Figure 3.6

illustrates this using proof diagrams. Nodes represent premises to be proved, and edges

represent their dependencies. Unexplored edges are dotted. In the first proof strategy

(Figure 3.6a), the proof of the blue node is pruned to avoid circular reasoning with the

red node. While it would be sound to cache a FAILED result for the blue node, doing

so would be incomplete. When the proof search later attempts the second proof strategy

(Figure 3.6b), it finds a successful proof for the red node via the green node. With a

cached FAILED result for the blue node, the proof of the white node would simply use

the cached result, failing to notice that because the circularity with the red node has been

resolved, the blue node can now be proved.
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To prevent this incompleteness, our implementation of FLAM uses an intermediate

caching strategy for pruned results. Instead of caching FAILED for pruned subqueries,

we introduce an additional result type, PRUNED. When a cycle is detected during proof

search, the current subproof is abandoned and the subquery is added to a cache of pruned

queries. Each PRUNED cache entry contains a progress condition, a boolean formula that

expresses the conditions under which further progress can be made on the proof of the

subquery. In Figure 3.6, the first proof strategy would result in a PRUNED cache entry for

the blue subquery, with the progress condition Q = , indicating that further progress

can be made on the proof of the blue node exactly when the red node can be proved.

Another progress condition might have the form Q1∨ (Q2∧Q3), meaning that progress

can be made if Q1 is proved or if both Q2 and Q3 are proved.

This cache is used by the proof search to improve performance when resolving

shared subqueries. The cache has three components: an acts-for cache for proofs of

PROVED subqueries, a failed cache for FAILED subqueries, and a pruned-search cache

for PRUNED subqueries and their progress conditions. Figure 3.7 gives the algorithm

for updating the cache with a new result for a subquery query. At the core of this al-

gorithm is the rewriting of progress conditions in the pruned-search cache. If the new

result is PROVED, the progress conditions are rewritten to substitute instances of query

with True (line 7), to indicate that the query condition is satisfied. If this satisfies the

progress condition of a pruned search q, then q should be provable, and is removed from

the cache (lines 8–9); a PROVED entry is not added for q yet because we do not yet

have a proof. If the new result is PRUNED, then instances of query are substituted with

query’s progress condition (line 15). Finally, if the new result is FAILED, then instances

of query are substituted with False (line 21), to indicate that the query condition is not

satisfiable. If the progress condition of a pruned search q becomes unsatisfiable, then q

is also unprovable, and the cache is updated with a FAILED result for q (lines 27–28).
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1: function UPDATE(cache, query, type, data)
2: (proved, pruned, failed)← cache
3: if type = PROVED then
4: proved← proved[query 7→ data]
5: remove query from pruned
6: for [q 7→ Q] in pruned do
7: Q′← Q{query/True}
8: if Q′ |= True then
9: remove q from pruned

10: else
11: pruned← pruned[q 7→ Q′]
12: else if type = PRUNED then
13: pruned← pruned[query 7→ data]
14: for [q 7→ Q] in pruned do
15: pruned← pruned[q 7→ Q{query/data}]
16: else if type = FAILED then
17: add q to failed
18: remove q from pruned
19: new← ∅
20: for [q 7→ Q] in pruned do
21: Q′← Q{query/False}
22: if Q′ |= False then
23: add q to new
24: else
25: pruned← pruned[q 7→ Q′]
26: cache← (proved, pruned, failed)
27: for q in new do
28: cache← UPDATE(cache, q, FAILED,⊥)
29: return cache
30: return (proved, pruned, failed)

Figure 3.7: Algorithm for managing entries of the proof search cache. For type equal to PROVED
or PRUNED, data is either a proof of query or a progress condition, respectively.

Given a query, for each applicable FLAM inference rule, the algorithm searches for a

proof of each premise. If a proof is found for all premises, then the search is successful,

and the proof is returned. If any of the premises’ proof searches were pruned, then the

query may or may not be provable, so the query is added to the pruned cache with the

conjunction of the progress conditions of the pruned searches. Finally, if any premise’s

proof search fails, or if the conjunction of the progress conditions is unsatisfiable, then

the query is unprovable via the chosen rule. If no other FLAM rules apply, then the
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assignUser(a, u, r, pc, `){
if ∃(ar, cr,mn,mx) ∈ can_assign
such that
H; c; pc; ` 
 a < ar

H; c; pc; ` ∧ ar← 
 u < cr

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

then
let `′ = (pc t `) ∧ (ar ∧ r)←

H := H ∪ [c 7→ (u < r, `′)]
}

(a) Authorize a’s assignment of user
u to role r. If the FLAM judgments
hold, a delegation u < r is created
with the integrity of ar and r.

revokeUser(a, u, r, pc, `){
if ∃(ar,mn,mx, pc, `) ∈ can_revoke
such that
H; c; pc; ` ∧ ar← 
 a < ar

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

then
let `′ = (pc t `) ∧ (ar ∧ r)←

H :=
⋃

c∈dom(H)
[c 7→ rev(H, c, u < r, `′)]

}

(b) Authorize a’s revocation of u’s
membership in role r. If the FLAM
judgments hold, all delegations (u <
r, `′′) where `′ v `′′ are revoked.

rev(H, c, p < q, `) , H(c)− {(p < q, `′) ∈ H(c) | H; c; pc; ` 
 ` v `′}

(c) Revocation operation. Returns the delegation set for host c with all delegations (p < q, `′)
where ` v `′ removed.

Figure 3.8: User–role assignment. The FLAM judgments ensure a is a member of the adminis-
trative role ar, that umeets criteria cr (in Figure 3.8a), and that r is in the range [mn,mx]. Each
judgment requires the integrity of ar to ensure only administrators influence role management.

query is false.

The complete search algorithm is found in Appendix A.1.

3.5.2 Example: ARBAC97 access control

To demonstrate the expressiveness of FLAM and the functionality of our implemen-

tation, we have adapted the ARBAC97 role-based access control model for role man-

agement [76] using our FLAM implementation. The implementation required only 242

lines of code, showing that FLAM is already quite expressive. Using FLAM means
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our implementation of ARBAC97 also enjoys stronger security properties; in particular,

robust authorization means that attackers can neither influence the membership of roles

nor learn anything about confidential role assignments.

ARBAC97 controls trust management operations using three separate relations:

user–role assignment (UA), for assigning users to roles; permission–role assignment

(PA), for specifying the permissions granted to roles; and role–role assignment (RH),

for defining role hierarchies. ARBAC authorizes a user’s modifications to these rela-

tions by ensuring an administrator is a member of the appropriate administrative role

and that modifications meet specified conditions.

The key difficulty in representing ARBAC’s role-management authorization poli-

cies is in the separation between management authority and role membership. FLAM

simplifies the ARBAC model since administrative roles, roles, users, and permissions

may all be represented as principals. This allows the unification of the three relations

UA, PA, and RH into a single trust configurationH. Our version of ARBAC97, adapted

from the formalization presented in [86], leverages FLAM’s information flow tracking

and expressive principal algebra to preserve the separation of management authority and

role membership inH.

In ARBAC, the authorization criteria for making modifications to the trust config-

uration are defined by additional relations6. The relations can_assign and can_revoke

encode policies for user–role assignment. Entries of can_assign are tuples of principals

(ar, c,mn,mx), where ar represents an administrative role, cr represents some minimal

criteria7 that users must meet to be assigned the role, and [mn,mx] represents a range

that bounds the role assignments ar is permitted to make. Entries of can_revoke are

tuples of principals (ar,mn,mx) which are similar to those of can_assign, but have no

6For simplicity, we treat these relations as public and trusted, and thus do not track information flows
on them.

7In [76], criteria are more general, allowing cr to specify both roles that a user must have, as well as
roles a user must not have. By separating positive and negative criteria we can represent the general case
in FLAM, but for simplicity of exposition we omit negative criteria.
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minimal criteria.

FLAM strengthens the guarantees of ARBAC97 by tracking information flow on

modifications to trust configuration and ensuring robust authorization. Figures 3.8a and

3.8b illustrate our encoding of user–role assignment authorization. Each method in-

cludes a parameter pc that represents the information flow context of the caller, and a

label ` for specifying the confidentiality and integrity of the role assignment. In Fig-

ure 3.8a, the assignment of user u to role r by administrator a is authorized if there is

an entry in the can_assign relation such that the subsequent FLAM judgments hold

robustly with the integrity of ar. The first judgment ensures a is a member of the ar

role. The second judgment ensures that the user acts for a principal representing some

minimal criteria. Finally, the third and fourth judgments ensure r is within the range

[mn,mx].

When the relevant FLAM judgments hold, delegation or revocation is performed

with the integrity of both ar and r. This indicates that the above methods endorse the

delegation or revocation. As shown below, we use these high-integrity delegations to

keep role membership separate from role management.

ARBAC is a centralized access control model: there is a single hierarchy of ad-

ministrative roles. In addition to providing stronger security guarantees, our FLAM

adaptation extends ARBAC to decentralized settings. Administrative domains may dif-

fer on the roles assigned to a particular user. Let AR be a set of administrative roles. We

use a principal ad to represent an administrative domain, defined as the disjunction of a

set of administrative roles:

ad ,
∨

ar∈AR
ar

Then for a particular administrative domain ad, we can determine if user u is a member

of role r with the following FLAM query:

H; c; pc; ` ∧ ad← 
 u < r
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assignPermission(a, p, r, pc, `){
if ∃(ar, cr,mn,mx) ∈ can_assignp
such that
H; c; pc; ` 
 a < ar

H; c; pc; ` ∧ ar← 
 p < cr

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

then
let `′ = (pc t `) ∧ (ar ∧ p)←

H := H ∪ [c 7→ (r < p, `′)]
}

Authorize a’s grant of permission p to
role r. If the FLAM judgments hold,
a delegation r < p is created with the
integrity of ar and p.

revokePermission(a, p, r, pc, `){
if ∃(ar,mn,mx) ∈ can_revokep
such that
H; c; pc; ` ∧ ar← 
 a < ar

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

then
let `′ = (pc t `) ∧ (ar ∧ p)←

H :=
⋃

c∈dom(H)
[c 7→ rev(H, p, r < p, `′)]

}

Authorize a’s revocation of permission
p for role r. If the FLAM judgments
hold, all delegations (r < p, `′′) where
`′ v `′′ are revoked.

Figure 3.9: Permission–role assignment

By requiring the integrity of ad, we ensure that only delegations created by some ad-

ministrative role are considered. Since the judgment is robust, the delegation must also

have the integrity of r, meaning that ar can only influence delegations via assignUser,

which constrains the roles ar may assign and the users it may assign them to.

The remaining methods for permission–role management and role–role management

share many similarities with the above methods for user–role management. Figure 3.9

defines methods for permission–role management, Figure 3.10 defines range assignment

methods, and Figure 3.11 defines role–role assignment methods.

Our implementation suggests a general approach for extending robust authorization

to traditional access control models. Translating the authority implied by the ARBAC97

roles to FLAM trust relationships allow FLAM queries to securely implement ARBAC

authorization requests without creating authorization side channels. Coupling this trans-

lation with specialized role management code yields a more secure access control sys-
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addToRange(a,mn,mx, r, pc, `){
if ∃(ar,mn,mx) ∈ can_modify
such that
r 6= mn and r 6= mx

H; c; pc; ` ∧ ar← 
 a < ar

then
let `r = (pc t `) ∧ (ar ∧ r)←

let `mn = (pc t `) ∧ (ar ∧mn)←

H := H ∪ [o 7→ (mx < r, `r)]
H := H ∪ [o 7→ (r < mn, `mn)]

}

Authorize a’s addition of r to range
[mn,mx]. If the FLAM judgments
hold, two delegations are created:
mx < r with the integrity of ar and
r, and r < mn with the integrity of ar
and mn.

removeFromRange(a,mn,mx, r, pc, `){
if ∃(ar,mn,mx) ∈ can_modify
such that
r 6= mn and r 6= mx

H; c; pc; ` ∧ ar← 
 a < ar

then
let `r = (pc t `) ∧ (ar ∧ r)←

H :=
⋃

c∈dom(H)
[c 7→ rev(H, p,mx < r, `r)]

let `mn = (pc t `) ∧ (ar ∧mn)←

H :=
⋃

c∈dom(H)
[c 7→ rev(H, p, r < mn, `mn)]

}

Authorize a’s removal of r from range
[mn,mx]. If the FLAM judgments
hold, two revocations occur: (mx <
r, `′r) where `r v `′r and (r < mn, `′mn)
where `mn v `′mn.

Figure 3.10: Range assignment functions

tem. This exercise demonstrates the expressiveness of FLAM policies as well as the

effectiveness of the implemented algorithm; we expect other access control systems

could be enhanced in a similar way.
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addAsSenior(a, r, s, pc, `){
if ∃(ar,mn,mx) ∈ can_modify
such that
H; c; pc; ` 
 a < ar

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

H; c; pc; ` ∧ ar← 
 s < mn

H; c; pc; ` ∧ ar← 
 mx < s

then
let `′ = (pc t `) ∧ (ar ∧ s)←

H := H ∪ [c 7→ (r < s, `′)]
}

Authorize a’s addition of r as a senior
to s.

removeAsSenior(a, r, s, pc, `){
if ∃(ar,mn,mx) ∈ can_modify
such that
H; c; pc; ` 
 a < ar

H; c; pc; ` ∧ ar← 
 r < mn

H; c; pc; ` ∧ ar← 
 mx < r

H; c; pc; ` ∧ ar← 
 s < mn

H; c; pc; ` ∧ ar← 
 mx < s

then
let `′ = (pc t `) ∧ (ar ∧ s)←

H :=
⋃

c∈dom(H)
[c 7→ rev(H, p, r < s, `′)]

}

Authorize a’s removal of r as a senior
to s.

Figure 3.11: Role–role assignment functions
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CHAPTER 4

A CALCULUS FOR FLOW-LIMITED AUTHORIZATION

4.1 Dynamic authorization mechanisms

Dynamic authorization is challenging to implement and use correctly, since authority,

confidentiality, and integrity interact in subtle ways. This chapter presents the Flow-

Limited Authorization Calculus (FLAC), which helps programmers securely implement

both authorization mechanisms and code that uses them. FLAC types support the defi-

nition of compositional security abstractions, and vulnerabilities in the implementations

of these abstractions are caught statically. Further, the guarantees offered by FLAC

simplify reasoning about the security properties of these abstractions.

We illustrate the usefulness and expressive power of FLAC using two important

security mechanisms: commitment schemes and bearer credentials. We show in Sec-

tion 4.4 that these mechanisms can be implemented using FLAC, and that their security

goals are easily verified in the context of FLAC.

4.1.1 Commitment schemes

A commitment scheme [67] allows one party to give another party a “commitment” to

a secret value without revealing the value. The committing party may later reveal the

secret in a way that convinces the receiver that the revealed value is the value originally

committed.

Commitment schemes provide three essential operations: commit, receive, and

open. Suppose p wants to commit to a value to principal q. First, p applies commit to

the value and provides the result to q. Next, q applies receive to the committed value.

Finally, when p wishes to reveal the value, p applies the open operation to the received

value, permitting q to learn it.
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A commitment scheme must have several properties in order to be secure. First, q

should not be able to receive a value that hasn’t been committed by p, since this could

allow q to manipulate p to open a value it had not committed to. Second, q should not

learn any secret of p that has not been opened by p. Third, p should not be able to open

a different value than the one received by q.

One might wonder why a programmer would bother to create high-level implemen-

tations of operations like commit, receive, and open. Why not simply treat these as

primitive operations and give them type signatures so that programs using them can be

type-checked with respect to those signatures? The answer is that an error in a type

signature could lead to a serious vulnerability. Therefore, we want more assurance that

the type signatures are correct. Implementing such operations in FLAC is often easy

and ensures that the type signature is consistent with a set of assumptions about exist-

ing trust relationships and the information flow context the operations are used within.

These FLAC-based implementations serve as language-based models of the security

properties achieved by implementations that use cryptography or trusted third parties.

4.1.2 Bearer credentials with caveats

A bearer credential is a capability that grants authority to any entity that possesses it.

Many authorization mechanisms used in distributed systems employ bearer credentials

in some form. Browser cookies that store session tokens are one example: after a web-

site authenticates a user’s identity, it gives the user a token to use in subsequent inter-

actions. Since it is infeasible for attackers to guess the token, the website grants the

authority of the user to any requests that include the token.

Bearer credentials create an information security conundrum for authorization mech-

anisms. Though they efficiently control access to restricted resources, they create vul-

nerabilities and introduce covert channels when used incorrectly. For example, suppose
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Alice shares a remotely-hosted photo with her friends by giving them a credential to

access the photo. Giving a friend such a credential doesn’t disclose their friendship,

but each friend that accesses the photo implicitly discloses the friendship to the hosting

service. Such covert channels are pervasive, both in classic distributed authorization

mechanisms like SPKI/SDSI [31], as well as in more recent ones like Macaroons [13].

Bearer credentials can also lead to vulnerabilities if they are leaked. If an attacker

obtains a credential, it can exploit the authority of the credential. Thus, to limit the au-

thority of a credential, approaches like SPKI/SDSI and Macaroons provide constrained

delegation in which a newly issued credential attenuates the authority of an existing one

by adding caveats. Caveats require additional properties to hold for the bearer to be

granted authority. Session tokens, for example, might have a caveat that restricts the

source IP address or encodes an expiration time. As pointed out by Birgisson et al. [13],

caveats themselves can introduce covert channels if the properties reveal sensitive infor-

mation.

FLAC is an effective framework for reasoning about bearer credentials with caveats

since it captures the flow of credentials in programs as well as the sensitivity of the infor-

mation the credentials and caveats derive from. We can reason about credentials and the

programs that use them in FLAC with an approach similar to that used for commitment

schemes. That we can do so in a straightforward way is somewhat remarkable; prior for-

malizations of credential mechanisms (for example, [12,13,40]) usually do not consider

confidentiality nor provide end-to-end guarantees about credential propagation.

4.2 The FLAM principal lattice

In FLAC, we use a simplified version of the FLAM principal lattice and inference rules

introduced in Chapter 3 to express authority and information flow policies, which we

briefly review here. For FLAC, it is convenient to define static and dynamic rules
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L � p < q

[BOT] L � p < ⊥ [TOP] L � > < p [REFL] L � p < p [PROJ]
L � p < q
L � pπ < qπ

[PROJR] L � p < pπ [CONJL]

L � pk < p
k ∈ {1, 2}

L � p1 ∧ p2 < p
[CONJR]

L � p < p1
L � p < p2

L � p < p1 ∧ p2

[DISJL]

L � p1 < p
L � p2 < p

L � p1 ∨ p2 < p
[DISJR]

L � p < pk
k ∈ {1, 2}

L � p < p1 ∨ p2
[TRANS]

L �p<q L �q<r
L �p<r

Figure 4.1: Static principal lattice rules, adapted from FLAM. The projection π may be either
confidentiality (→) or integrity (←).

Π; pc; ` 
 p < q

[R-STATIC]
L � p < q

Π; pc; ` 
 p < q
[R-ASSUME]

〈p < q | `〉 ∈ Π
Π; pc; ` 
 p < q

[R-CONJR]

Π; pc; ` 
 p < p1
Π; pc; ` 
 p < p2

Π; pc; ` 
 p < p1 ∧ p2

[R-DISJL]

Π; pc; ` 
 p1 < p
Π; pc; ` 
 p2 < p

Π; pc; ` 
 p1 ∨ p2 < p
[R-TRANS]

Π; pc; ` 
 p < q Π; pc; ` 
 q < r
Π; pc; ` 
 pc < ∇(r→)

Π; pc; ` 
 p < r

[R-WEAKEN]
Π; pc′; `′ 
 p < q Π; pc t `′; ` 
 `′ v ` Π; pc t `′; ` 
 pc v pc′

Π ∪Π′; pc; ` 
 p < q

Figure 4.2: Inference rules for robust assumption, adapted from FLAM.

separately. The static inference rules, presented in Figure 4.1, reason about relation-

ships between principals arising from the structure of the lattice, and are thus present in

any context. For reasoning about dynamic relationships between principals, we adapt

FLAM’s robust inference rules, presented in Figure 4.2. For simplicity, FLAC omits

ownership projections.

The delegation context, Π, is analogous to FLAM’s trust configuration H, but with

two primary differences. First, Π encodes static reasoning about dynamic relationships

in program, so all delegations are local in the sense that no communication is necessary
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to obtain them. For this reason, the current host is omitted from the context of the

judgements in Figure 4.2. Second, unlike H, the type system preserves the invariant

that all delegations in Π are robust. This invariant is leveraged by the ASSUME rule,

which is a robust version of FLAM’s DEL rule.

4.3 Flow-Limited Authorization Calculus

FLAC uses information flow to reason about the security implications of dynamically

computed authority. Like previous information-flow type systems [75], FLAC incorpo-

rates types for reasoning about information flow, but FLAC’s type system goes further

by using flow-limited authorization to ensure that principals cannot use FLAC programs

to exceed their authority, or to leak or corrupt information. FLAC is based on DCC [2],

but unlike DCC, FLAC supports reasoning about authority deriving from the evaluation

of FLAC terms. In contrast, all authority in DCC derives from trust relationships de-

fined by a fixed, external lattice of principals. Thus, using an approach based on DCC

in systems where trust relationships change dynamically could introduce vulnerabilities

like delegation loopholes, probing and poaching attacks, and authorization side chan-

nels.

Figure 4.3 defines the FLAC syntax; evaluation contexts [94] are defined in Fig-

ure 4.4. The core operational semantics in Figure 4.5 is mostly standard except for

assume terms, discussed below.

The core FLAC type system is presented in Figure 4.6. Programs that type check

under these rules are guaranteed to enforce the information flow policies of the informa-

tion they process. We formalize the semantics of this security guarantee in Section 4.6,

and prove that it holds for all well-typed FLAC programs.

FLAC typing judgments have the form Π; Γ; pc ` e : s. The delegation context,

Π, contains a set of labeled dynamic trust relationships 〈p < q | `〉 where p < q (read
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n ∈ N (primitive principals)
x ∈ V (variable names)

p, `, pc ::= n
∣∣ > ∣∣ ⊥ ∣∣ p→ ∣∣ p← ∣∣ p ∧ p ∣∣ p ∨ p

s ::= (p < p)
∣∣ unit ∣∣ (s+ s)

∣∣ (s× s)∣∣ s pc−→ s
∣∣ ` says s ∣∣ X ∣∣ ∀X. s

v ::= ()
∣∣ 〈v, v〉 ∣∣ 〈p < p〉 ∣∣ (η` v)∣∣ inji v ∣∣ λ(x :s)[pc]. e

∣∣ ΛX. e∣∣ v where v
e ::= x

∣∣ v ∣∣ e e ∣∣ 〈e, e〉 ∣∣ (η` e)∣∣ es ∣∣ proji e ∣∣ inji e∣∣ case v of inj1(x). e | inj2(x). e∣∣ bind x = e in e
∣∣ assume e in e∣∣ e where v

Figure 4.3: FLAC syntax. Terms using where are syntactically prohibited in the source language
and are produced only during evaluation.

E ::= [·]
∣∣ E e

∣∣ v E ∣∣ 〈E, e〉 ∣∣ 〈v,E〉 ∣∣ proji E ∣∣ inji E∣∣ (η` E)
∣∣ bind x = E in e

∣∣ bind x = v in E∣∣ Es ∣∣ assume E in e
∣∣ E where v∣∣ case E of inj1(x). e | inj2(x). e

Figure 4.4: FLAC evaluation contexts

as “p acts for q”) is a delegation from q to p , and ` is the confidentiality and integrity

of that information. The typing context, Γ, is a map from variables to types, and pc

is the program counter label, a FLAM principal representing the confidentiality and

integrity of control flow. The type system makes frequent use of judgments adapted

from FLAM’s inference rules. The query and derivation labels of all FLAM judgements

used by the type system are equal. This reflects the design of the delegation context: the

label on delegations in Π is always bound by the current program counter label.

Since FLAC is a pure functional language, it might seem odd for FLAC to have

a label for the program counter; such labels are usually used to control implicit flows
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e −→ e′

[E-APP] (λ(x :s)[pc]. e) v −→ e[x 7→ v] [E-TAPP] (ΛX. e) s −→ e[X 7→ s]

[E-UNPAIR] proji 〈v1, v2〉 −→ vi

[E-CASE] (case (inj1 v) of inj1(x). e1 | inj2(x). e2) −→ ei[x 7→ v]

[E-BINDM] bind x = (η` v) in e −→ e[x 7→ v]

[E-ASSUME] assume 〈p < q〉 in e −→ e where 〈p < q〉 [E-EVAL]
e −→ e′

E[e] −→ E[e′]

Figure 4.5: FLAC operational semantics

through assignments (for example, in [62, 70]). The purpose of FLAC’s pc label is to

control a different kind of side effect: changes to the delegation context, Π.1 In order

to control what information can influence whether a new trust relationship is added to

the delegation context, the type system tracks the confidentiality and security of control

flow. Viewed as an authorization logic, FLAC’s type system expresses deduction con-

strained by an information flow context, a unique feature it derives from FLAM. For

instance, if we have ϕ p←−−→ ψ and ϕ, then (via APP) we may derive ψ in a context with

integrity p←, but not in contexts that don’t flow to p←. This feature offers needed control

over how principals may apply existing facts to derive new facts.

Many FLAC terms are standard, such as pairs 〈e1, e2〉, projections proji e, variants

inji e, polymorphic type abstraction, ΛX. e, and case expressions. Function abstrac-

tion, λ(x : s)[pc]. e, includes a pc label that constrains the information flow context in

which the function may be applied. The rule APP ensures that function application re-

spects these policies, requiring that the robust FLAM judgment Π; pc; pc 
 pc v pc′

holds. This judgment ensures that the current program counter label, pc, flows to the

function label, pc′.

1The same pc label could also be used to control implicit flows through assignments if FLAC were
extended to support mutable references.

57



Π; Γ; pc ` e : s

[VAR] Π; Γ, x : s,Γ′; pc ` x : s [UNIT] Π; Γ; pc ` () : unit [DEL] Π; Γ; pc ` 〈p < q〉 : (p < q)

[LAM]
Π; Γ, x :s1; pc′ ` e : s2

Π; Γ; pc ` λ(x :s1)[pc′]. e : (s1
pc′

−−→ s2)
[APP]

Π; Γ; pc ` e : (s1
pc′

−−→ s2)
Π; Γ; pc ` e′ : s1 Π; pc; pc 
 pc v pc′

Π; Γ; pc ` (e e′) : s2

[TLAM]
Π; Γ, X; pc′ ` e : s

Π; Γ; pc ` ΛX. e : ∀X. s
[TAPP]

Π; Γ; pc ` e : ∀X. s
Π; Γ; pc ` (es′) : s[X 7→ s′]

s′ well-formed in Γ

[PAIR]
Π; Γ; pc ` e1 : s1 Π; Γ; pc ` e2 : s2

Π; Γ; pc ` 〈e1, e2〉 : (s1 × s2)
[UNPAIR]

Π; Γ; pc ` e : (s1 × s2)
Π; Γ; pc ` (proji e) : si

[INJ]
Π; Γ; pc ` e : si

Π; Γ; pc ` (inji e) : (s1 + s2)
[CASE]

Π; Γ; pc ` e : (s1 + s2) Π; pc ` pc ≤ s
Π; Γ, x : s1; pc ` e1 : s Π; Γ, x : s2; pc ` e2 : s
Π; Γ; pc ` case e of inj1(x). e1 | inj2(x). e2 : s

[UNITM]
Π; Γ; pc ` e : s

Π; Γ; pc ` (η` e) : ` says s

[BINDM]

Π; Γ; pc ` e : ` says s′ Π; Γ, x : s′; pc t ` ` e′ : s
Π; pc ` pc t ` ≤ s

Π; Γ; pc ` bind x = e in e′ : s

[ASSUME]

Π; Γ; pc ` e : (p < q)
Π; pc; pc 
 pc < ∇(q) Π; pc; pc 
 ∇(p→) < ∇(q→)

Π; pc ` pc ≤ s Π, 〈p < q | pc〉; Γ; pc ` e′ : s
Π; Γ; pc ` assume e in e′ : s

[WHERE]

Π; Γ; pc ` v : (p < q) Π; pc′; pc′ 
 pc′ v pc
Π; pc′; pc′ 
 pc′ < ∇(q) Π; pc′; pc′ 
 ∇(p→) < ∇(q→)

Π; pc′ ` pc′ ≤ s Π, 〈p < q | pc′〉; Γ; pc′ ` e : s
Π; Γ; pc ` (e where v) : s

Figure 4.6: FLAC type system.
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Branching occurs in case expressions, which conditionally evaluate one of two ex-

pressions. The rule CASE ensures that both expressions have the same type and thus the

same protection level. The premise Π; pc ` pc ≤ s ensures that this type protects the

current pc label.2

Like DCC, FLAC uses monadic operators to track dependencies. The monadic unit

term (η` v) (UNITM) says that a value v of type s is protected at level `. This protected

value has the type ` says s, meaning that it has the confidentiality and integrity of

principal `. Computation on protected values must occur in a protected context (“in

the monad”), expressed using a monadic bind term. The typing rule BINDM ensures

that the result of the computation protects the confidentiality and integrity of protected

values. For instance, the expression bind x = (η` v) in (η`′ x) is only well-typed if `′

protects values with confidentiality and integrity `. Since case expressions may use the

variable x for branching, BINDM raises the pc label to pc t ` to conservatively reflect

the control-flow dependency.

Protection levels are defined by the set of inference rules in Figure 4.8, adapted

from [87]. Expressions with unit type (P-UNIT) do not propagate any information,

so they protect information at any `. Product types protect information at ` if both

components do (P-PAIR). Function types protect information at ` if the return type does

(P-FUN), and polymorphic types protect information at whatever level the abstracted

type does (P-TFUN). If a type s already protects information at `, then `′ says s still

does (P-LBL1). Finally, if ` flows to `′, then `′ says s protects information at ` (P-

LBL2).

Most of the novelty of FLAC lies in its delegation values and assume terms. These

terms enable expressive reasoning about authority and information flow control. A del-

egation value serves as evidence of trust. For instance, the term 〈p < q〉, read “p acts for

2This premise simplifies our proofs, but does not appear to be strictly necessary; BINDM ensures the
same property.
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q”, is evidence that q trusts p. Delegation values have acts-for types; 〈p < q〉 has type

(p < q). 3 The assume term enables programs to use evidence securely to create new

flows between protection levels. In the typing context ∅;x :p← says s; q← (specifically,

Π = ∅, Γ = x :p← says s, and pc = q←), the following expression is not well typed:

bind x′ = x in (ηq← x′)

since p← does not flow to q←, as required by the premise Π; pc ` ` ≤ s in rule BINDM.

Specifically, we cannot derive Π; pc ` p← ≤ q← says s since P-LBL2 requires the

FLAM judgment Π; q←; q← 
 p→ v q← to hold.

However, the following expression is well typed:

assume 〈p← < q←〉 in bind x′ = x in (ηq← x′)

The difference is that the assume term adds a trust relationship, represented by an ex-

pression with an acts-for type, to the delegation context. In this case, the expression

〈p← < q←〉 adds a trust relationship that allows p← to flow to q←. This is secure since

pc = q←, meaning that only principals with integrity q← have influenced the computa-

tion. With 〈p← < q← | q←〉 in the delegation context, added via the ASSUME rule, the

premises of BINDM are now satisfied, so the expression type-checks.

Creating a delegation value requires no special privilege because the type system

ensures only high-integrity delegations are used as evidence that enable new flows. Us-

ing low-integrity evidence for authorization would be insecure since attackers could

use delegation values to create new flows that reveal secrets or corrupt data. The

premises of the ASSUME rule ensure the integrity of dynamic authorization compu-

tations that produce values like 〈p← < q←〉 in the example above.4 The second premise,

Π; pc; pc 
 pc < ∇(q), requires that the pc has enough integrity to be trusted by q,

the principal whose security is affected. For instance, to make the assumption p < q,
3This correspondence with delegation values makes acts-for types a kind of singleton type [29].
4These premises are related to the robust FLAM rule LIFT.
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e −→ e′ where 〈p < q〉

[W-APP] (v where 〈p < q〉) v′ −→ (v v′) where 〈p < q〉

[W-TAPP] (v where 〈p < q〉) s −→ (v s) where 〈p < q〉

[W-UNPAIR] proji (〈v1, v2〉 where 〈p < q〉) −→ (proji 〈v1, v2〉) where v

[W-CASE] (case (v where 〈p < q〉) of inj1(x). e1 | inj2(x). e2) −→
(case v of inj1(x). e1 | inj2(x). e2) where 〈p < q〉

[W-UNITM] (η` v where 〈p < q〉) −→ (η` v) where 〈p < q〉

[W-BINDM] bind x = (v where 〈p < q〉) in e −→ (bind x = v in e) where 〈p < q〉

[W-ASSUME] assume (v where 〈p < q〉) in e −→ (assume v in e) where 〈p < q〉

Figure 4.7: FLAC evaluation rules for where terms

the evidence represented by the term e must have at least the integrity of the voice of

q, written ∇(q). Since the pc bounds the restrictiveness of the dependencies of e, this

ensures that only information with integrity ∇(q) or higher may influence the evalua-

tion of e. The third premise, Π; pc; pc 
 ∇(p→) < ∇(q→), ensures that principal p has

sufficient integrity to be trusted to enforce q’s confidentiality, q→. This premise means

that q permits data to be relabeled from q→ to p→.5

Assumption terms evaluate to where expressions (rule E-ASSUME). To simplify the

formalization, these expressions are not part of the source language but are generated

by the evaluation rules. The term e where v records that e is evaluated in a context that

includes the delegation v. The rule WHERE gives a typing rule for where terms; though

similar to ASSUME, it requires only that there exist a sufficiently trusted label pc′ such

that subexpression e type-checks. In the proofs in Section 4.6, we choose pc′ using the

typing judgment of the source-level assume that generates the where term.

Figure 4.7 presents evaluation rules for where terms. These terms are simply a book-

5More precisely, it means that the voice of q’s confidentiality, ∇(q→), permits data to be relabeled
from q→ to p→. Recall that∇(Alice→) is just Alice’s integrity projection: Alice←.
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Π; pc ` ` ≤ s

[P-UNIT] Π; pc ` ` ≤ unit [P-PAIR]
Π; pc ` ` ≤ s1 Π; pc ` ` ≤ s2

Π; pc ` ` ≤ (s1 × s2)

[P-FUN]
Π; pc ` ` ≤ s2

Π; pc ` ` ≤ s1
pc′

−−→ s2

[P-TFUN]
Π; pc ` ` ≤ s

Π; pc ` ` ≤ ∀X. s

[P-LBL1]
Π; pc ` ` ≤ s

Π; pc ` ` ≤ `′ says s
[P-LBL2]

Π; pc; pc 
 ` v `′

Π; pc ` ` ≤ `′ says s

Figure 4.8: Type protection levels

keeping mechanism: these evaluation rules simply record and maintain the authorization

evidence used to justify new flows of information that occur during the evaluation of a

FLAC program. The rules are designed to treat where values like the value they enclose.

For instance, applying a where term (rule W-APP) simply moves the value it is applied

to inside the where term. If the where term was wrapping a lambda expression, then

it may now be applied via APP. Otherwise, further reduction steps via W-APP may be

necessary.

4.4 Examples revisited

We can now implement our examples from Section 4.1 in FLAC. Using FLAC ensures

that authority and information flow assumptions are explicit, and that programs using

these abstractions are secure with respect to those assumptions. In this section, we dis-

cuss at a high level how FLAC types help enforce specific end-to-end security properties

for commitment schemes and bearer credentials. Section 4.6 formalizes the semantic se-

curity properties of all well-typed FLAC programs.
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commit :∀X. p→ says X
p←−−→ p says X

commit =
ΛX.λ(x :p→ says X)[p←].
assume 〈⊥← < p←〉 in bind x′ = x in (ηp x′)

receive :∀X. p says X q←−−→ p ∧ q← says X

receive =
ΛX.λ(x :p says X)[q←].
assume 〈p← < q←〉 in bind x′ = x in (ηp∧q← x′)

open :∀X. p ∧ q← says X
∇(p→)−−−−→ p← ∧ q says X

open =
ΛX.λ(x :p ∧ q← says X)[∇(p→)].
assume 〈∇(q→) <∇(p→)〉 in
assume 〈q→ < p→〉 in bind x′ = x in (ηp←∧q x′)

Figure 4.9: FLAC implementations of commitment scheme operations.

4.4.1 Commitment schemes

Figure 4.9 contains the essential operations of a one-round commitment scheme—

commit, receive, and open—implemented in FLAC. Typically, a principal p commits

to a value and sends it to q, who receives it. Later, p opens the value, revealing it to q.

The commit operation takes a value of any type (hence ∀X) with confidentiality p→ and

produces a value with confidentiality and integrity p. In other words, p endorses [98]

the value to have integrity p←.

Attackers should not be able to influence whether principal p commits to a partic-

ular value. The pc constraint on commit ensures that only principal p and principals

trusted with at least p’s integrity, p←, may apply commit to a value.6 Furthermore, if

the programmer omitted this constraint or instead chose ⊥←, say, then commit would

6We make the reasonable assumption that an untrusted programmer cannot modify high-integrity code,
thus the influence of attackers is captured by the pc and the protection levels of values. Enforcing this
assumption is beyond the scope of FLAC, but has been explored in [6].
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be rejected by the type system. Specifically, the assume term would not type-check via

rule ASSUME since the pc does not act for∇(p←) = p←.

Next, principal q accepts a committed value from p using the receive operation.

The receive operation endorses the value with q’s integrity, resulting in a value at

p ∧ q←, the confidentiality of p and the integrity of both p and q.

As with the commit operation, FLAC ensures that receive satisfies important infor-

mation security properties. Other principals, including p, should not be able to influence

which values q receives—otherwise an attacker could use receive to subvert q’s in-

tegrity, using it to endorse arbitrary values. The pc constraint on receive ensures in

this case that only q may apply receive. Furthermore, the type of x requires received

values to have the integrity of p. Errors in either of these constraints would result in a

typing error, either due to ASSUME as before, or due to BINDM, which requires that p

must flow to p ∧ q←.

Additionally, receive accepts committed values with confidentiality at most p→.

This constraint ensures that q does not receive values from p that might depend on q’s

secrets: unopened commitments, for example. In cryptographic protocols, this property

is usually called non-malleability [27], and is important for scenarios in which security

depends on the independence of values. Consider a sealed-bid auction where partic-

ipants submit their bids via commitment protocols. Suppose that q commits a bid b,

protected by label q. Then p could theoretically influence a computation that computes

a value b+ 1 with label p ∧ q→ since that label protects information at q→, but only has

p← integrity. If q received values from p that could depend on q’s secrets, then p could

outbid q by 1 without ever learning the value b.

Finally, open reveals a committed value to q by relabeling a value from p ∧ q←

to p← ∧ q, which is readable by principal q but retains the integrity of both p and q.

Since open accepts a value protected by the integrity of both p and q and returns a value
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with the same integrity, the opened value must have been previously committed by p

and received by q. Since the open operation reveals a value with confidentiality p→, it

should only be invoked by principals that are trusted to speak for p→. Otherwise, q could

open p’s commitments. Hence, the pc label of open is ∇(p→). For p = Alice, say, the

pc label would be Alice←. FLAC ensures these constraints are specified correctly;

otherwise, open’s implementation could not produce a value with label p← ∧ q.

The implementation requires two assume terms. The outer term establishes that

principals speaking for q→ also speak for p→ by creating an integrity relationship be-

tween their voices. With this relationship in place, the inner term may reveal the com-

mitment to q.7

In DCC, functions are not annotated with pc labels and may be applied in any con-

text. So a DCC function analogous to open might have type

dcc_open : ∀X. p ∧ q← says X −→ p← ∧ q says X

However, dcc_open would not be appropriate for a commitment scheme since any prin-

cipal could use it to relabel information from p-confidential (p→) to q-confidential (q→).

To simplify the presentation of our commitment scheme operations, we make the

assumption that q only receives one value. Therefore, p can only open one value, since

only one value has been given the integrity of both p and q. A more general scheme can

be achieved by pairing each committed value with a public identifier that is endorsed

along with the value, but remains public. If q refuses to receive more that one commit-

ment with the same identifier8, p will be unable to open two commitments with the same

value since it cannot create a pair that has the integrity of both p and q, even if p has

multiple committed values (with different identifiers) to choose from. We present the

simpler one-round commitment scheme above since it captures the essential information
7 specifically, it satisfies the ASSUME premise Π; pc; pc 
 ∇(p→) < ∇(q→).
8For cryptographic commitment schemes, the commitment ciphertext itself could act as a public iden-

tifier, and q could rely on cryptographic assumptions that distinct values cannot (with high probability)
have the same identifier instead of explicitly checking whether the identifier has been used before.
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security properties of commitment while avoiding the tedious digression of defining en-

codings for numeric values and numeric comparisons.

The real power of FLAC is that the security guarantees of well-typed FLAC func-

tions like those above are compositional. The FLAC type system ensures the security

of both the functions themselves and the programs that use them. For instance, the code

should be rejected because it would permit q to open p’s commitments:

ΛX.λ(x :p ∧ q← says X)[q←]. assume 〈q < p〉 in open x

FLAC’s guarantees make it possible to state general security properties of all pro-

grams that use the above commitment scheme, even if those programs are malicious.

For example, suppose we have pcp = ∇(p), pcq = ∇(q), and

Γcro = commit, receive, open, x :p→ says s, y :p ∧ q← says s

Intuitively, pcp and pcq are execution contexts under the control of p or q, respectively.

Γcro is a typing context for programs using the commitment scheme.9 The variable

x represents an uncommitted value with p’s confidentiality, whereas y is a committed

value. Since we are interested in properties that hold for all principals p and q, we want

the properties to hold in an empty delegation context: Π = ∅. Below, we omit the

delegation context altogether for brevity.

Using results presented in Section 4.6, we can prove that:

• q cannot receive a value that hasn’t been committed. For any e and s′ such

that Γcro; pcq ` e : p∧ q← says s′, result of e is independent of x; specifically, for

any v1 and v2, if e[x 7→ v1] −→∗ v′1 and e[x 7→ v2] −→∗ v′2, then v′1 = v′2.

• q cannot learn a value that hasn’t been opened. For any e, `, and s′ such that

Γcro; pcq ` e : ` u q→ says s′, then the result of e is independent of x and y.

9For presentation purposes, we have omitted the types of commit, receive, and open in Γcro. Their
types are as defined previously.
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• p cannot open a value that hasn’t been received. For any e such that Γcro; pcp `

e : p← ∧ q says s′, then the result of e is independent of x.

For the first two properties, we consider programs using our commitment scheme

that q might invoke, hence we consider FLAC programs that type-check in the Γcro; pcq

context. In the first property, we are concerned with programs that produce values pro-

tected by policy p ∧ q←. Since such programs produce values with the integrity of p but

are invoked by q, we want to ensure that no program exists that enables q to obtain a

value with p’s integrity that depends on x, which is a value without p’s integrity. The

second property concerns programs that produces values at ` u q→ for any `; these are

values readable by q. Therefore, we want to ensure that no program exists that enables

q to produce such a value that depends on x or y, which are not readable by q.

The final property considers programs that p might invoke to produce values at p←∧

q, thus we consider FLAC programs that type-check in the Γcro; pcp context. Here,

we want to ensure that no program invoked by p can produce a value at p← ∧ q that

depends on x, an unreceived value. Complete proofs of these properties are found in

Appendix B.2.

4.4.2 Bearer credentials

We can also use FLAC to implement bearer credentials, our second example of a dy-

namic authorization mechanism. We represent a bearer credential with authority k in

FLAC as a term with the type

∀X. k→ says X
pc−→ k← says X

which we abbreviate as k→
pc=⇒ k←. These terms act as bearer credentials for a principal k

since they may be used as a proxy for k’s confidentiality and integrity authority. Recall

that k← = k← ∧ ⊥→ and k→ = k→ ∧ ⊥←. Then secrets protected by k→ can be
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declassified to ⊥→, and untrusted data protected by ⊥← can be endorsed to k←. Thus

this term wields the full authority of k, and if pc = ⊥←, the credential may be used in

any context—any “bearer” may use it. From such credentials, more restricted credentials

can be derived. For example, the credential k→
pc=⇒ ⊥→ grants the bearer authority to

declassify k-confidential values, but no authority to endorse values.

We postpone an in-depth discussion of terms with types of the form k→
pc=⇒ k← until

Section 4.5.2, but it is interesting to note that an analogous term in DCC is only well-

typed if k is equivalent to ⊥. This is because the function takes an argument with k→

confidentiality and no integrity, and produces a value with k← integrity and no confiden-

tiality. Suppose L is a security lattice used to type-check DCC programs with suitable

encodings for k’s confidentiality and integrity. If a DCC term has a type analogous to

k→ =⇒ k←, then L must have the property k→ v ⊥ and ⊥ v k←. This means that k

has no confidentiality and no integrity. That FLAC terms may have this type for any

principal k makes it straightforward to implement bearer credentials and demonstrates

a useful application of FLAC’s extra expressiveness.

The pc of a credential k→
pc=⇒ k← acts as a sort of caveat: it restricts the information

flow context in which the credential may be used. We can add more general caveats to

credentials by wrapping them in lambda terms. To add a caveat φ to a credential with

type k→
pc=⇒ k←, we use a wrapper:

λ(x :k→ pc=⇒ k←)[pc].ΛX.λ(y :φ)[pc]. xX

which gives us a term with type

∀X.φ pc−→ k→ says X
pc−→ k← says X

This requires a term with type φ (in whichX may occur) to be applied before the author-

ity of k can be used. Similar wrappers allow us to chain multiple caveats; specifically,
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for caveats φ1 . . . φn, we obtain the type

∀X.φ1
pc−→ . . .

pc−→ φn
pc−→ k→ says X

pc−→ k← says X

which abbreviates to

k→
φ1×···×φn;pc=======⇒ k←

Like any other FLAC terms, credentials may be protected by information flow poli-

cies. So a credential that should only be accessible to Alice might be protected by

the type Alice→ says (k→ φ;pc==⇒ k←). This confidentiality policy ensures the creden-

tial cannot accidentally be leaked to an attacker. A further step might be to constrain

uses of this credential so that only Alice may invoke it to relabel information. If we

require pc = Alice←, this credential may only be used in contexts trusted by Alice:

Alice→ says (k→ φ;Alice←=====⇒ k←).

A subtle point about the way in which we construct caveats is that the caveats are

polymorphic with respect to X , the same type variable the credential ranges over. This

means that each caveat may constrain what types X may be instantiated with. For

instance, suppose isEduc is a predicate for educational films; it holds (has a proof term

with type isEduc X) for types like Bio and Doc, but not RomCom. Adding isEduc X

as a caveat to a credential would mean that the bearer of the credential could use it to

access biographies and documentaries, but could not use it to access romantic comedies.

Since no term of type isEduc RomCom could be applied, the bearer could only satisfy

isEduc by instantiating X with Bio or Doc. Once X is instantiated with Bio or Doc,

the credential cannot be used on a RomCom value. Thus we have two mechanisms for

constraining the use of credentials: information flow policies to constrain propagation,

and caveats to establish prerequisites and constrain the types of data covered by the

credential.

As a more in-depth example of using such credentials, suppose Alice hosts a file

sharing service. For a simpler presentation, we use free variables to refer to these files;
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for instance, x1 : (k1 says ph) is a variable that stores a photo (type ph) protected by

k1. For each such variable x1, Alice has a credential k→1
⊥←==⇒ k←1 , and can give access to

users by providing this credential or deriving a more restricted one. To access x1, Bob

does not need the full authority of Alice or k1—a more restricted credential suffices:

λ(c :k1
Bob←===⇒ Bob→ ∧ k←1 ph)[Bob←].

bind x′1 = c x1 in (ηBob→∧k←1 x′1)

Here, c is a credential k1
Bob←===⇒ Bob→ ∧ k←1 whose polymorphic type has been instanti-

ated with the photo type ph. This credential accepts a photo protected at k1 and returns

a photo protected at Bob→ ∧ k←1 , which Bob is permitted to access.

The advantage of bearer credentials is that access to x1 can be provided to principals

other than k1 in a decentralized way, without changing the policy on x1. For instance,

suppose Alice wants to issue a credential to Bob to access resources protected by k1.

Alice has a credential with type k→1
⊥←==⇒ k←1 , but she wants to ensure that only Bob (or

principals Bob trusts) can use it. In other words, she wants to create a credential of type

k1
Bob←===⇒ k←1 , which needs Bob’s integrity to use.

Alice can create such a credential using a wrapper that derives a more constrained

credential from her original one.

λ(c :k→1
⊥←==⇒ k←1 )[Alice←].

ΛX.λ(y :k1 says X)[Bob←].

bind y′ = y in (c X) (ηk→ y′)

Then Bob can use this credential to access x1 by deriving a credential of type k1
Bob←===⇒

Bob→ ∧ k←1 ph using the function

λ(c :k1
Bob←===⇒ k←1 )[Bob←].

λ(y :k1 says ph)[Bob←].

bind y′ = c ph y in (ηBob→∧k←1 y′)
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which can be applied to obtain a value readable by Bob.

Bob can also use this credential to share photos with friends. For instance, the

function

λ(c :k1
Bob←===⇒ k←1 )[Bob←].

assume 〈Carol← < Bob←〉 in

λ(_ :unit)[Carol←].

bind x′1 = c ph x1 in (ηCarol→∧k←1 x′1)

creates a wrapper around a specific photo x1. Only principals trusted by Carol may

invoke the wrapper, which produces a value of type Carol→ ∧ k←1 says ph, permitting

Carol to access the photo.

The properties of FLAC let us prove many general properties about such bearer-

credential programs; here, we examine three properties. For i ∈ {1..n}, let

Γbc = xi :ki says si, ci :Alice says (k←i
⊥←==⇒ k←i )

where ki is a primitive principal protecting the ith resource of type si, and ci is a creden-

tial for the ith resource and protected by Alice. Assume ki 6∈ {Alice, Friends, p} for

all i where p represents a (potentially malicious) user of Alice’s service, and Friends is

a principal for Alice’s friends, (for example, Friends = (Bob ∨ Carol)). Also, define

pcp = p← and pcA = Alice←.

• p cannot access resources without a credential. For any e, `, and s′ such that

Γbc; pcp ` e : ` u p→ says s′, the value of e is independent of xi for all i.

• p cannot use unrelated credentials to access resources. For any e, `, and s′ such

that

Γbc, cp : (k←1
⊥←==⇒ k←1 ); pcp ` e : ` u p→ says s′

the value e computes is independent of xi for i 6= 1.
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• Alice cannot disclose secrets by issuing credentials. For all i and j 6= 1, define

Γ′bc = xi :ki says si, ci :Alice says (k←j
⊥←==⇒ k←j ),

cF :Friends says (k←1
⊥←==⇒ k←1 )

Then if Γ′bc; pcA ` e : ` u p→ says (k←j
⊥←==⇒ k←j ) for some e, `, and s′, the value

of e is independent of x1.

These properties demonstrate the power of FLAC’s type system. The first two ensure

that credentials really are necessary for p to access protected resources, even indirectly.

In the first, p has no credentials, and the type system ensures that p cannot invoke a

program that produces a value p can read (represented by ` u p→) that depends on any

variable xi. In the second, a credential cp with type k←1
⊥←==⇒ k←1 is accessible to p, but

p cannot use it to access other variables. The third property eliminates covert channels

like the one discussed in Section 4.1.2. It implies that credentials issued by Alice do not

leak information, in this case about Alice’s friends. By implementing bearer credentials

in FLAC, we can demonstrate these three properties with relatively little effort.

4.5 FLAC proof theory

4.5.1 Properties of says

FLAC’s type system constrains how principals apply existing facts to derive new facts.

For instance, a property of says in other authorization logics (for example, Lampson et

al. [49] and Abadi [2]) is that implications that hold for top-level propositions also hold

for propositions of any principal `:

` (s1 −→ s2) −→ (` says s1 −→ ` says s2)

The pc annotations on FLAC function types refine this property. Each implication (in

other words, each function) in FLAC is annotated with an upper bound on the informa-
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tion flow context it may be invoked within. To lift such an implication to operate on

propositions protected at label `, the label `must flow to the pc of the implication. Thus,

for all ` and si,

` (s1
pct`−−→ s2) pc−→ (` says s1

pc−→ ` says s2)

This judgment is a FLAC typing judgment in logical form, where terms have been omit-

ted. We write such judgments with an empty typing context (as above) when the judg-

ment is valid for any Π, Γ, and pc. A judgment in logical form is valid if a proof term

exists for the specified type, proving the type is inhabited. The above type has proof

term

λ(f : (s1
pct`−−→ s2))[pc].

λ(x :` says s1)[pc]. bind x′ = x in (η` f x′)

In order to apply f , we must first bind x, so according to rules BINDM and APP, the

function f must have a label at least as restrictive as pc t `. All theorems of DCC can

be obtained by encoding them as FLAC implications with pc = >→, the highest bound.

Since any principal ` flows to >→, such implications may be applied in any context.

These refinements of DCC’s theorems are crucial for supporting applications like

commitment schemes and bearer credentials. Recall from Sections 4.4.1 and 4.4.2 that

the security of these mechanisms relied in part on restricting the pc to a specific princi-

pal’s integrity. Without such refinements, principal q could open principal p’s commit-

ments using open, or create credentials with p authority: p→
pc=⇒ p←.

Other properties of says common to DCC and other logics (cf. [1] for examples)

are similarly refined by pc bounds. Two examples are: ` s pc−→ ` says s which has proof

term: λ(x :s)[pc]. (η` s) and

` ` says (s1
pct`−−→ s2) pc−→ (` says s1

pc−→ ` says s2)
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with proof term:

λ(f :` says (s1
pct`−−→ s2))[pc]. bind x′ = x in

λ(y :` says s1)[pc]. bind y′ = y in (η` x′ y′)

As in DCC, chains of says are commutative in FLAC:

` `1 says `2 says s
pc−→ `2 says `1 says s

with proof term

λ(x :`1 says `2 says s)[pc].

bind y = x in bind z = y in (η`2 (η`1 z))

In some logics with different interpretations of says (for example, CCD [5]) differently

ordered chains are distinct, but here we find commutativity appealing since it matches

the intuition from information flow control. When principal `1 says that `2 says s, we

should protect s with a policy at least as restrictive as both `1 and `2, specifically, the

principal `1 t `2. Since t is commutative, who said what first is irrelevant.

4.5.2 Dynamic hand-off

Many authorization logics support delegation using a “hand-off” axiom. In DCC, this

axiom is actually a provable theorem:

` (q says (p⇒ q))→ (p⇒ q)

where p⇒ q is shorthand for

∀X. (p says X −→ q says X)

However, p⇒ q is only inhabited if p v q in the security lattice. Thus, DCC can reason

about the consequences of p v q (whether it is true for the lattice or not), but a DCC

program cannot produce a term of type p⇒ q unless p v q.
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FLAC programs, on the other hand, can create new trust relationships from delega-

tion expressions using assume terms. The type analogous to p⇒ q in FLAC is

∀X. (p says X pc−→ q says X)

which we wrote as p
pc=⇒ q in Section 4.4.2. FLAC programs construct terms of this type

from proofs of authority, represented by terms with acts-for types. This feature enables

a more general form of hand-off, which we state formally below.

Proposition 1 (Dynamic hand-off). For all ` and pc′, let pc = `→ ∧∇(p→) ∧ q←

(∇(q→) < ∇(p→)) pc−→ (p v q) pc−→

∀X. (p says X pc′−→ q says X)

Proof term.

λ(pf 1 : (∇(q→) < ∇(p→)))[pc].

λ(pf 2 : (p v q))[pc].

assume pf 1 in assume pf 2 in

ΛX.λ(x :p says X)[pc′]. bind x′ = x in (ηq x′)

The principal pc = `→∧∇(p→)∧q← restricts delegation (hand-off) to contexts with the

integrity of∇(p→)∧ q←. The two arguments are proofs of authority with acts-for types:

a proof of ∇(q→) < ∇(p→) and a proof of p v q. The pc ensures that the proofs have

sufficient integrity to be used in assume terms since it has the integrity of both ∇(p→)

and q←. Note that low-integrity or confidential delegation values must first be bound via

bind before the above term may be applied. Thus the pc would reflect the protection

level of both arguments. Principals `→ and pc′ are unconstrained. As demonstrated in

Section 4.4.2, FLAC programmers may instantiate these principals is a variety of ways

to enforce different properties.
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Dynamic hand-off terms give FLAC programs a level of expressiveness and security

not offered by other authorization logics. Observe that pc′ may be chosen independently

of the other principals. This means that although the pc prevents low-integrity principals

from creating hand-off terms, a high-integrity principal may create a hand-off term and

provide it to an arbitrary principal. Hand-off terms in FLAC, then, are similar to capa-

bilities since even untrusted principals may use them to change the protection level of

values. Unlike in most capability systems, however, the propagation of hand-off terms

can be constrained using information flow policies.

Terms that have types of the form in Proposition 1 illustrate a subtlety of enforcing

information flow in an authorization mechanism. Because these terms relabel informa-

tion from one protection level to another protection level, the transformed information

implicitly depends on the proofs of authorization. FLAC ensures that the information

security of these proofs is protected—like that of all other values—even as the policies

of other information are being modified. Hence, authorization proofs cannot be used as

a side channel to leak information.

4.6 Semantic security properties of FLAC

4.6.1 Delegation invariance

FLAC programs dynamically extend trust relationships, enabling new flows of infor-

mation. Nevertheless, well-typed programs have end-to-end semantic properties that

enforce strong information security. These properties derive primarily from FLAC’s

control of the delegation context. The ASSUME rule ensures that only high-integrity

proofs of authorization can extend the delegation context, and furthermore that such

extensions occur only in high-integrity contexts.

That low-integrity contexts cannot extend the delegation context turns out to be a

76



crucial property. This property allows us to state a useful invariant about the evaluation

of FLAC programs. Recall that assume terms evaluate to where terms in the FLAC

semantics. Thus, FLAC programs typically compute values containing a hierarchy of

nested where terms. The terms record the values whose types were used to extend the

delegation context during type checking.

For a well-typed FLAC program, we can prove that certain trust relationships could

not have been added by the program. Characterizing these relationships requires a con-

cept of the minimal authority required to cause one principal to act for another. Although

similar, this idea is distinct from the voice of a principal. Consider the relationship be-

tween a and a∧ b. The voice of a∧ b,∇(a∧ b), is sufficient integrity to add a delegation

a∧ b to a so that a < a∧ b. Alternatively, having only the integrity of∇(b) is sufficient

to add a delegation a < b, which also results in a < a ∧ b. To precisely characterize

which trust relationships can not be added by program, we need to identify this minimal

integrity ∇(b) given the pair of principals a and a ∧ b. The following definitions are in

service of this goal.

The first definition formalizes the idea that two principals are considered equivalent

in a given context if they act for each other.

Definition 8 (Principal Equivalence). We say that two principals p and q are equivalent

in Π; pc, denoted Π; pc; pc 
 p ≡ q, if

Π; pc; pc 
 p < q and Π; pc; pc 
 q < p.

Next, we define the factorization of two principals in a given context. For two prin-

cipals, p and q, their factorization involves representing q as the conjunction of two

principals qs ∧ qd such that p < qs in the desired context. Note that p need not act for qd.

Definition 9 (Factorization). A (Π; pc)-factorization of an ordered pair of principals

(p, q) is a tuple (p, qs, qd) such that Π; pc; pc 
 q ≡ qs ∧ qd and Π; pc; pc 
 p < qs.

A factorization is static if Π = ∅ (and thus L � p < qs).

77



Finally, the minimal factorization of p and q is a qs and qd such that qs has greater

authority and qd has less authority than any other factorization of p and q in the same

context.

Definition 10 (Minimal Factorization). A (Π; pc)-factorization (p, qs, qd) of (p, q) is

minimal if for any (Π; pc)-factorization (p, q′s, q′d) of (p, q),

Π; pc; pc 
 qs < q′s and Π; pc; pc 
 q′d < qd

The minimal factorization (p, qs, qd) of p and q for a given Π and pc identifies the

authority necessary to cause p to act for q. Because qs is the principal with the greatest

authority such that p < qs and q ≡ qs ∧ qd, then speaking for qd is sufficient authority

to cause p to act for q since adding the delegation p < qd would imply that p < q.

This intuition also matches with the fact that Π; pc; pc 
 p < qd if and only if qd = ⊥,

which is the case if and only if Π; pc; pc 
 p < q. Observe also that minimal (Π; pc)-

factorizations are also trivially unique up to equivalence.

Since the qd component of minimal factorization can be thought of as the “gap” in

authority between two principals, we use qd to define the notion of principal subtraction.

Definition 11 (Principal Subtraction). Let (p, qs, qd) bet the minimal (Π; pc)-

factorization of (p, q). We define q−p in Π; pc to be qd. That is, Π; pc; pc 
 q − p ≡ qd.

Note that q − p is not defined outside of a judgement context.

Lemma 2 proves that minimal factorizations exist for all contexts and principals, so

principal subtract is well defined.

Lemma 2 (Minimal Factorizations Exist). For any context (Π; pc) and principals p, q,

there exists a minimal (Π; pc)-factorization of (p, q).

Proof. Given (p, q), we first let qs = p ∨ q. By definition, Π; pc; pc 
 p < p ∨ q,

and for all factorizations (p, q′s, q′d), Π; pc; pc 
 p < q′s and Π; pc; pc 
 q < q′s, so

Π; pc; pc 
 qs < q′s.
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Now let D = {r ∈ L | Π; pc; pc 
 q ≡ qs ∧ r}. All principals in L can be

represented as a finite set of meets and joins of names in N so q and qs are finite.

Π is also finite, adding only finitely-many dynamic equivalences, so D is finite up to

equivalence. Moreover, q ∈ D trivially, so D is non-empty and thus we can define

qd = ∨
D.

Now let (p, q′s, q′d) be any factorization of (p, q). We must show that Π; pc; pc 


q′d < qd. First we see that Π; pc; pc 
 q ≡ qs ∧ q′d. Π; pc; pc 
 qs < q′s gives us

Π; pc; pc 
 qs ∧ q′d < q and the definitions of qs and q′d as parts of a factorization

of (p, q) give us the other direction. Therefore, by construction, q′d ∈ D, so by the

definition of ∨ and qd, Π; pc; pc 
 q′d < qd. Thus we see that (p, qs, qd) is a minimal

Π; pc-factorization of (p, q).

We can now state precisely which trust relationships may change in a given infor-

mation flow context.

Lemma 3 (Delegation Invariance). Let Π; Γ; pc ` e : s such that e −→ e′ where v.

Then there exist r, t ∈ L and Π′ = Π, 〈rπ < tπ | pc〉 such that Π; Γ; pc ` v : (rπ <

tπ) and Π′; Γ; pc ` e′ : s. Moreover, for all principals p and q if Π; pc; pc 1 pc <

∇(qπ)−∇(pπ), then

Π′; pc; pc 1 pπ < qπ.

Proof. See Appendix B.1.

First, Lemma 3 says that at each step of evaluation, there exists a Π′ such that e′ is

well typed. More importantly, this Π′ has a useful invariant. If pc does not speak for the

authority required to cause qπ to delegate to pπ, then Π and Π′ must agree on the trust

relationship of pπ and qπ.

79



4.6.2 Noninterference

Lemma 3 is critical for our proof of noninterference, a result that states that public

and trusted output of a program cannot depend on restricted (secret or untrustworthy)

information. Our proof of noninterference for FLAC programs relies on a proof of

subject reduction under a bracketed semantics, based on the proof technique of Pottier

and Simonet [70]. This technique is relatively standard, so we omit it here, but complete

proofs are found in Appendix B.1.

In other noninterference results based on bracketed semantics, including [70], non-

interference follows almost directly from the proof of subject reduction. This is because

the subject reduction proof shows that evaluating a term cannot change its type. In

FLAC, however, subject reduction alone is insufficient; evaluation may enable flows

from secret or untrusted inputs to public and trusted types.

To see how, suppose e is a well-typed program according to Π; Γ, x : s; pc ` e : s′.

Furthermore, let H be a principal such that Π; pc ` H ≤ s and Π; pc 0 H ≤ s′. In other

words, x is a “high” variable (more restrictive; secret and untrusted), and e evaluates

to a “low” result (less restrictive; public and trusted). In [70], executions that differ

only in secret or untrusted inputs must evaluate to the same value, since otherwise the

value would not be well typed. In FLAC, however, if the pc has sufficient integrity, then

an assume term could cause Π′; pc ` H ≤ s′ to hold in a delegation context Π′ of a

subterm of e. The key to proving our result relies on using Lemma 3 to constrain the

assumptions that can be added to Π′. Thus noninterference in FLAC is dependent on H

and its relationship to pc and the type s′.

For more precision, Theorem 2 describes noninterference on confidentiality and

integrity separately. It states that for some principal Hπ that flows to s but not

` says bool, if pc cannot cause H← to speak for ∇(H→) for confidentiality, or `←

for integrity, then an execution of e that differs only in the value of s-typed inputs, the
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computed values must be equal.10

Theorem 2 (Noninterference). Let Π; Γ, x :s; pc ` e : ` says bool. If there exists some

H and π such that

1. Π; pc ` Hπ ≤ s

2. Π; pc; pc 1 Hπ v `π

3. (a) if π =→ then Π; pc; pc 1 pc < ∇(H→)−H←

(b) if π =← then Π; pc; pc 1 pc < (`−H)←

then for all v1, v2 with Π; Γ; pc ` vi : s, if e[x 7→ vi] −→∗ v′i, then v′1 = v′2.

Proof. By Lemma 3 and subject reduction on a bracketed semantics. See Appendix B.1

for details.

Condition 1 identifies s as a “high” type—at least as restricted as H . Condition 2

identifies ` says bool as a “low” type, to which information labeled H should not flow.

Conditions 3a and 3b identify pc as having integrity compared to the difference between

H← and the voice H→ or `←. Given these conditions, if e evaluates to v′1 when x = v1

and v′2 when x = v2, then v′1 = v′2.

Noninterference is a key tool for obtaining many of the security properties we seek.

For instance, noninterference is essential for verifying the properties of commitment

schemes discussed in Section 4.4.1. The proofs of these properties are described in

Appendix B.2.

10It is standard for noninterference proofs in languages with higher-order functions to restrict their
results to non-function types (cf. [3, 70, 102]). In this paper, we prove noninterference for boolean
types, encoded as bool = (unit + unit). With an appropriate equivalence relation on terms, this
noninterference result can be lifted to more general types.
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4.6.3 Robust declassification

Using our noninterference result, we obtain a more general semantic security property

for FLAC programs. That property, robust declassification [96], requires disclosures of

secret information to be independent of low-integrity information. Robust declassifica-

tion permits some confidential information to be disclosed to an attacker, but attackers

can influence neither the decision to disclose information nor the choice of what infor-

mation is disclosed. Therefore, robust declassification is a more appropriate security

condition than noninterference when programs are intended to disclose information.

Programs and contexts that meet the requirements of Theorem 2 trivially satisfy

robust declassification since no information is disclosed. In higher-integrity contexts

where the pc speaks for H→ (and thus may influence its trust relationships), FLAC

programs exhibit robust declassification.

Following Myers et al. [64], we extend our set of terms with a “hole” term [•] rep-

resenting portions of a program that are under the control of an attacker. We extend the

type system with the following rule for holes with lambda-free types:

[HOLE]
Π; pc ` H← ≤ t Π; pc; pc 
 H← < ∇(pc)

Π; Γ; pc ` [•] : t

We write e[~•] to denote a program e with holes. Let an attack be a vector ~a of terms

and e[~a] be the program where ai is substituted for •i. An attack ~a is a fair attack [96]

on a well-typed program with holes e[~•] if the program e[~a] is also well typed. Unfair

attacks give the attacker enough power to break security directly, without exploiting

existing declassifications. Fair attacks represent the power of the attacker over low-

integrity portions of the program.

Theorem 3 (Robust declassification). Let e[~•] be a program such that
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1. Π; Γ, x :s,Γ′; pc ` e[~•] : ` says bool

2. Π; pc; pc 1 pc < (`− h)←.

Then for all attacks ~a1 and ~a2 and all inputs v such that Π; Γ, x : s,Γ′; pc ` e[~ai] :

` says bool and Π; Γ; pc ` v : s, if e[~ai][x 7→ v] −→∗ v′i, then v′1 = v′2.

Proof. By Lemma 3 and a generalization of Theorem 2 under attacks. See Appendix B.1

for details.

Our formulation of robust declassification in some sense more general than previous

definitions since it permits some endorsements, albeit restricted to untrusted principals

that cannot influence the trust relationships of `←, the integrity of the result. Previous

definitions of robust declassification [64, 96] forbid endorsement altogether; qualified

robustness [64] permits endorsement but offers only possibilistic security.
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CHAPTER 5

FLAME: FLOW-LIMITED AUTHORIZATION WITH MONADIC EFFECTS.

This chapter presents Flame, a Haskell library for enforcing flow-limited authoriza-

tion based on the Flow-Limited Authorization Calculus. Embedding the FLAC type

system into an existing language requires an expressive type system in the target lan-

guage. In particular, to create flow-safe authorization mechanisms in the style of FLAC,

we need the ability to represent authorizations at the type level based on evidence terms.

While a fully-fledged dependently typed language would provide more than enough ex-

pressiveness, we determined that Haskell’s type system, along with some recent exten-

sions (for example, [68, 95]), would be sufficient for our needs. These extensions make

some dependently typed programming possible. Several of our implementation strate-

gies were inspired by the exploration of dependently typed programming in Haskell by

Lindley and McBride [53].

Flame also expands on the FLAC programming model to make building programs

easier. While FLAC’s type system supports polymorphic types, it does not have type-

level variables that range over principals. This simplifies the formal presentation, but

would require, for instance, a separate definition of the commitment scheme operations

for each pair of principals that wished to use them. Thus, to be at all practical, we want

Flame to support types that are polymorphic in the principals they refer to.

To motivate the kinds of programs we want to secure with Flame, consider the partial

Haskell program in Figure 5.1 that protects a secret phrase with a password. After ob-

taining input from the user, the program calls checkPass to compare it to the password.

If checkPass returns true, the secret is printed, otherwise an error is printed.

Is this program secure? It depends on the specification of checkPass. The expected

implementation is probably the following:

checkPass guess = guess == "mypasswd"

84



secret :: String
secret = "mysecret"

inputPass :: IO String
inputPass = getLine

checkPass :: String -> Bool
checkPass guess =

main :: IO ()

main = do pass <- inputPass

if checkPass guess then
putStrLn secret

else
putStrLn "Incorrect password."

Figure 5.1: A Haskell program that protects a secret phrase with a password. The security of the
program depends on whether returning True from checkPass means that the user is authorized
to see the secret.

So checkPass returning True indicates that the user is authorized to see the secret

phrase. However, another implementation might cause the above program to output the

secret phrase inappropriately:

checkPass guess = guess /= "mypasswd"

Although this example is simplistic, it illustrates a common problem. The

checkPass function is used as an authorization mechanism, but the interface and se-

mantics of that mechanism are implicit. Misunderstanding the interface or semantics

can lead to violations of security. The return value of checkPass is used to encode

authorization as a Boolean value, but nothing prevents the programmer from writing a

program that prints the secret without proper authorization.

A better approach would be to represent the authorization as a first-class value and

prevent the disclosure of secret unless this evidence of authorization is provided.

FLAC provides a core programming model for building such programs; The goal of
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data Prin =

Top

| Bot

| Name String
| Conj Prin Prin

| Disj Prin Prin

| Conf Prin

| Integ Prin

(a) The principal data type for
run-time principals

data KPrin =

KTop

| KBot

| KName Symbol

| KConj KPrin KPrin

| KDisj KPrin KPrin

| KConf KPrin

| KInteg KPrin

| KVoice KPrin

(b) The principal kind for type-
level principals.

Figure 5.2: Flame principals

Flame is to use FLAC as a basis for secure programming in Haskell.

There are several challenges to realizing this goal. First among these challenges is

how FLAC terms and types should be encoded in Haskell. Finding the right encoding in

Haskell for FLAC delegation terms 〈p < q〉 is challenging since the type is dependent

on the value: 〈p < q〉 has type (p < q). Haskell does not directly support dependent

types. Another challenge is building a mechanism for Haskell that enforces the acts-for

constraints the FLAC type system places on secure computation while still permitting

new flows to be enabled via assume. Finally, whereas FLAC is a pure functional lan-

guage, Flame must support effectful Haskell programs that perform input and output,

mutate memory, and leverage foreign function interfaces.

Flame addresses these challenges by using an assortment of pre-existing extensions

to Haskell that allow limited forms of dependently-typed programming. In addition,

Flame provides an extension to the Haskell constraint solver for checking acts-for con-

straints.
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5.1 Run-time and type-level principals

To embed FLAC-style types into Haskell, a first requirement is to represent principals

both at run time and compile time. Figure 5.2a shows Flame’s data type for representing

run-time principals. Primitive principals are represented by a String and created using

the constructor Name. The special principals Top and Bot correspond to > and ⊥,

respectively. Conjunctions (Conj), disjunctions (Disj), and authority projections (Conf

and Integ) are similarly constructed. As in FLAC, we omit ownership projections

(Section 3.2.2) for simplicity.

To represent these principals at the type level, Flame defines a principal kind. In

the same way types classify terms, a kind classifies types. So defining a principal kind

is a way of defining a new class of types just for principals. In Haskell, all terms (the

expressions actually evaluated at run time) must have types in the * kind. This means all

types in other kinds are uninhabited (no term exists with that type) and not represented

at run time. However, types in the * kind may be parameterized by types of other

kinds since these parameters are not represented at run time. Therefore, using types

parameterized by principals in our principal kind allows us to enforce policies at compile

type without incurring run-time overhead.

The principal kind is defined using the DataKinds [95] extension to GHC. DataKinds

creates a kind by “promoting” the constructors in the KPrin data type, shown in Fig-

ure 5.2b. Each data constructor in KPrin becomes a type constructor for types in kind

KPrin. These constructors can be used to construct type-level principals and instantiate

type variables. For example, the following data type

data T (p::KPrin) a

has a type parameter that ranges over the principal kind, letting us construct types like

T KTop Int and T (KConf KBot) String.
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type (>) = KTop

type (⊥) = KBot

type N s = KName s

type C p = KConf p

type I p = KInteg p

type p ∧ q = KConj p q

type p ∨ q = KDisj p q

type (∇) p = KVoice p

type p t q = (C p ∧ C q) ∧ (I p ∨ I q)

type p u q = (C p ∨ C q) ∧ (I p ∧ I q)

type Public = C KBot

type Secret = C KTop

type Trusted = I KTop

type Untrusted = I KBot

type PT = Public ∧ Trusted

type SU = Secret ∧ Untrusted

Figure 5.3: Some useful type synonyms for Flame principals

We also define several type synonyms, presented in Figure 5.3, both for convenience

and to bring Flame’s type-level principal representation as close as possible to FLAC’s.

The primary difference between Prin and KPrin is in the Name and KName con-

structors for primitive principals. KName principals are created using a member of the

Symbol kind, which are the symbols known at compile time. The Name constructor

creates a principal from any string value, and may not be known at compile time. For

instance, string literals are known at compile time, so we can create a type-level princi-

pal KName “Alice” and a run-time principal Name “Alice”. For a string arg provided

on the command-line, however, we can only create Name arg.

This restriction does not mean that type-level principals must always be written in

concrete terms. Like other Haskell types, members of the KPrin kind may be repre-

sented abstractly using type variables. Suppose n is a type variable that ranges over the
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Symbol kind. Then KName n is a type-level principal that is polymorphic in its name n.

Bridging the gap between run time and compile time

Being able to represent principals at the type level is helpful, but not actually sufficient:

in many cases we want to associate a type-level principal with a run-time principal. We

could do this informally by making sure that the dynamic principals in our computations

always correspond to the types we use to label them, but any error that results in a

discrepancy between the run-time principal and the type-level principal would make our

verification mechanism unsound.

For this reason, Flame provides its own mechanism that associates a run-time prin-

cipal with an existentially quantified, type-level principal. Only Flame library code is

permitted to create and manipulate these associations, ensuring that run-time principals

cannot become disassociated from their type-level representation. Following Lindley

and McBride [53], we use the GHC extensions PolyKinds and GADT to define a data

type for existential quantification, and then use this to promote a Prin to an instance of

a special singleton type.

A singleton type is a type that has a unique inhabitant. For instance, the unit type ()

is a singleton type since it has only one inhabitant, also written (). Singleton types are

useful for emulating dependently typed programming since they provide a link between

values and types. By knowing that a function has a unit return type, we know the value

returned must be ().

By generalizing this idea, we can provide a link between run-time and type-level

principals. Figure 5.4 defines SPrin, a generalized algebraic data type (GADT) for

principal singletons, along with additional notation definitions analogous to those for

KPrin. In general, we use the convention that SPrin operations are prepended with an

asterisk *.
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data SPrin :: KPrin -> * where
STop :: SPrin KTop

SBot :: SPrin KBot

SName :: forall (n :: Symbol). Proxy n -> SPrin (KName n)

SConj :: SPrin p -> SPrin q -> SPrin (KConj p q)

SDisj :: SPrin p -> SPrin q -> SPrin (KDisj p q)

SConf :: SPrin p -> SPrin (KConf p)

SInteg :: SPrin p -> SPrin (KInteg p)

SVoice :: SPrin p -> SPrin (KVoice p)

(*→) p = SConf p

(*←) p = SInteg p

(*∇ ) p = SVoice p

(* ∧ ) p q = SConj p q

(* ∨ ) p q = SDisj p q

(* t ) p q = ((p*→) *∧ (q*→)) *∧ ((p*←) * ∨ (q*←))

(* u ) p q = ((p*→) *∨ (q*→)) *∧ ((p*←) * ∧ (q*←))

Figure 5.4: A GADT defining singleton types for each member of KPrin and functions for
notational convenience.

Each principal p in KPrin is uniquely represented by a value of type SPrin p.

Therefore, if we can associate a run-time principal with the appropriate singleton, we

would have a mechanism for reasoning about a value in type-level computations. Writ-

ing a function to make this association is tricky: given a Prin value, what type of SPrin

should the function return? We know that there is some SPrin that represents the Prin,

we just don’t know which one it is at compile time.

The solution is to associate the Prin value with an existentially qualified SPrin. The

data type Ex, defined in Figure 5.5, is a general data type for existential quantification.

Next, the promote function associates a witness of SPrin for each Prin value.

Once we have the existentially quantified SPrin returned by promote, we can al-

ways extract the witness to get the specific SPrin associated with a principal. However,

recall that we also want to ensure that we can easily maintain the association between

the run-time principal and its type-level representation when desired. For this purpose,
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data Ex (p :: k -> *) where
Ex :: p i -> Ex p

promote :: Prin -> Ex SPrin

promote p =

case p of
Top -> Ex STop

Bot -> Ex SBot

(Name str) -> case someSymbolVal str of
SomeSymbol n -> Ex (SName n)

(Conj p q) -> case promote p of
Ex p’ -> case promote q of

Ex q’ -> Ex (SConj p’ q’)

(Disj p q) -> case promote p of
Ex p’ -> case promote q of

Ex q’ -> Ex (SDisj p’ q’)

(Conf p) -> case promote p of Ex p’ -> Ex (SConf p’)

(Integ p) -> case promote p of Ex p’ -> Ex (SInteg p’)

Figure 5.5: Promoting run-time principals to the type level. An SPrin witness is created for each
run-time principal. Client code may extract this witness by pattern matching on the return value.

Flame provides the data type DPrin, which is essentially a Prin and SPrin pair in

which the SPrin is the associated singleton for the Prin value. To ensure DPrin values

cannot be accidentally (or maliciously) constructed with incorrect elements, DPrin val-

ues may only be created using the withPrin function, shown in Figure 5.6. Given a run-

time principal and a function that accepts a polymorphic DPrin parameter, withPrin

extracts the witness p’, pairs it with its run-time value, and provides it to the function.

Flame additionally defines algebraic operators on DPrin values, shown in Figure 5.7

that preserve the associations between the run-time principal and the singleton witness.

5.2 Expressing and solving acts for constraints

Flame uses qualified types to express information flow constraints. A qualified type

C ⇒ τ is a type τ qualified by a context C. The context contains constraints that must
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data DPrin p = UnsafeAssoc { dyn :: Prin, st :: SPrin p }

(<=>) :: Prin -> SPrin p -> DPrin p

p <=> sp = UnsafeAssoc p sp

withPrin :: Prin -> (forall p . DPrin p -> a) -> a

withPrin p f = case promote p of
Ex p’ -> f (p <=> p’)

Figure 5.6: Associating run-time and type-level principals with withPrin.

hold for the term to have type τ . Most Haskell programs use qualified types in some

form. For instance, a function may require its arguments to be member of a particular

type class to ensure that certain operations are defined.

Figure 5.8 illustrates such a function. The constraint Eq a requires that any instan-

tiation of the type variable a be a member of the Eq type class. All members of the Eq

type class define a function == for equality comparisons. By requiring a to be a member

Eq, the compiler can assume that == is defined for any instantiation of a.

Flame defines acts-for constraints, a new type of constraint that may be specified in

the context of a qualified type. These constraints specify the conditions required for a

term to have type τ . to For instance, the qualified type p < q ⇒ τ specifies that a term

has type τ only if principal p acts for q, where p and q are type-level principals.

Acts-for constraints are useful for constraining information flows in a modular way.

For instance, a function with type p < q ⇒ τ → τ ′ may only be applied in a context

where p < q. Therefore, the function may assume p < q holds and permit q’s informa-

tion to flow to p within the function. This means we can use the context C of a qualified

type C ⇒ τ as an analogue of the Π context in the FLAC typing rules.

The acts-for operation < is defined as an empty closed type family, which is an

approach sometimes used (for example, Gundry [36]) to define new type-level constants

that can be processed specially by a GHC compiler plug-in.
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( > ) :: DPrin (>)
( > ) = Top <=> STop

( ⊥ ) :: DPrin (⊥)
( ⊥ ) = Bot <=> SBot

(^→) :: DPrin p -> DPrin (C p)

(^→) p = Conf (dyn p) <=> SConf (st p)

(^←) :: DPrin p -> DPrin (I p)

(^←) p = Integ (dyn p) <=> SInteg (st p)

( ∧ ) :: DPrin p -> DPrin q -> DPrin (p ∧ q)

( ∧ ) p q = Conj (dyn p) (dyn q) <=> SConj (st p) (st q)

( ∨ ) :: DPrin p -> DPrin q -> DPrin (p ∨ q)

( ∨ ) p q = Disj (dyn p) (dyn q) <=> SDisj (st p) (st q)

( t ) :: DPrin p -> DPrin q -> DPrin (p t q)

( t ) p q = (Conj (Conf (Conj (dyn p) (dyn q)))

(Integ (Disj (dyn p) (dyn q))))

<=> ((st p) *t (st q))

( u ) :: DPrin p -> DPrin q -> DPrin (p u q)

( u ) p q = (Conj (Conf (Disj (dyn p) (dyn q)))

(Integ (Conj (dyn p) (dyn q))))

<=> ((st p) *u (st q))

(∇ ) :: DPrin p -> DPrin ((∇) p)

(∇ ) p = voiceOf (dyn p) <=> SVoice (st p)

Figure 5.7: Additional DPrin operations.

f :: Eq a => a -> a -> String
f x y = if x == y then

"Equal"

else
"Not equal"

Figure 5.8: The constraint Eq a requires that a be an instance of the type class Eq, which defines
the operation ==.
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type family (<) (p :: KPrin) (q :: KPrin) :: Constraint where

“Empty” because acts-for constraints are left abstract in the language and handled by a

compiler plug-in (otherwise there would be instances defined after the where keyword),

and “closed” because no other instances of in the type may be defined. That the type

family is empty is not critical. Support in GHC for empty closed type families is rel-

atively recent. For versions that do not support it, is it easy to create a single instance

in the family using one or more axioms of the FLAM algebra. This means that con-

straints using only one of these axioms may be solved without appealing to our plug-in.

Expressing all of the FLAM algebra in this way is not possible, hence the need for a

compiler plug-in.

Flame also supports information flow constraints of the form p v q. As discussed

in Chapter 3, the FLAM principal algebra enables information flow constraints to be

represented as acts-for constraints. Therefore, Flame defines the v operator as a type

synonym for two acts-for constraints:

type (v) (p :: KPrin) (q :: KPrin) = ((C q < C p) , (I p < I q))

In other words, p v q requires that the confidentiality of q acts for the confidentiality of

p, and the integrity of p acts for the integrity of q.

5.2.1 An algorithm for solving actsFor constraints

In this section we describe Flame’s algorithm for finding proofs of acts-for relation-

ships given a set of delegations between FLAM principals. This algorithm can be seen

as a simplified version of the FLAM proof-search algorithm presented in Section 3.5.

This algorithm only considers local delegation sets and assumes all delegations have the

same label. The primary purpose of this simplified algorithm is for checking acts-for

constraints in the Flame constraint solver. The algorithm assumes the set of delegations
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and the desired result have the same label, but can be used as the core component of

a more general search like that in 3.5. Flame provides two almost-identical implemen-

tations of this algorithm: one for solving run-time queries, and one for solving static

constraints.

The goal of our algorithm is to find a proof that a principal p acts for another principal

q, given some set of delegations. The general approach is to build a graph where each

principal is a node and each delegation is an edge from a principal to its superior, the

principal it delegates to. This graph is then used to answer acts-for queries by translating

them to reachability queries on the graph.

The algorithm begins with a set of delegations and a query. When solving static

constraints, these delegations are collected during type inference from the constraint

context of qualified types. For run-time queries, the delegations are provided explicitly

by querying code.

Given a set of delegations, each represented by a pair of principals (Prin, Prin),

the first step is to convert the principals to FLAM normal form. A normalized prin-

cipal has the form p→ ∧ q← where p and q are in “join of meets” form (for example,

(p1 ∨ p2) ∧ (p3 ∨ p4)). The rewriting rules are essentially the same as those used in

the FLAM formalization (see Appendix A.2). Our implementation is also based on the

normalization code found in [8].

The next step is to expand the set of delegations into an equivalent set of simpler

delegations. We split each delegation into a confidentiality delegation and an integrity

delegation. Since the principals in each delegation have been normalized, this transfor-

mation is easy: p→1 ∧ p←2 < q→1 ∧ q←2 becomes p→1 < q→1 and p←2 < q←2 . By keeping

these confidentiality and integrity delegations separate from each other, we can answer

the confidentiality and integrity components of an acts-for query separately.

We want to represent these delegation sets as two graphs where each node corre-

95



sponds to a principal, and an edge exists between nodes p and q if pπ < qπ, where π is

→ for the confidentiality delegation set and← for the integrity delegation set. Ideally,

p and q would always be primitive principals, since this would reduce the size of the

graphs. Unfortunately, some delegations cannot be reduced to this form. For instance,

nπ1 ∧ nπ2 < nπ3 cannot be reduced further; neither can nπ1 < nπ2 ∨ nπ3 .

Instead, we take the approach of simplifying the delegations as much as possible,

and then adding special conjunction or disjunction vertices to the graph as needed. Sim-

plified delegations all have the form n1 ∧ ... ∧ nj < n′1 ∨ ... ∨ n′k. To obtain this form

for a normalized (and split) delegation pπ < qπ, we first distribute the join over p to

convert from join-of-meet form to a meet of joins. In other words, (n1 ∨n2)∧ (n3 ∨n4)

becomes (n1 ∧n3)∨ (n1 ∧n4)∨ (n2 ∧n3)∨ (n2 ∧n4). For each disjunct (n1 ∧ ...∧ nj)

of this meet, we create a new delegation (n1 ∧ ... ∧ nj)π < qπ. Then for each conjunct

(n′1 ∨ ... ∨ n′k) of q (still in join-of-meet form), we create n1 ∧ ... ∧ nj < n′1 ∨ ... ∨ n′k.

Once all delegations are in simplified form, we construct a graph with a vertex for each

principal appearing in a delegation, and an edge for each delegation from the delegating

principal to its superior.

We would like to use this graph to answer acts-for queries like p < q by determining

if p is reachable from q, and therefore one of q’s superiors. However, as its stands,

some of q’s superiors may not be reachable from p. This is because the relationships

between conjunction and disjunction principals and their components is not represented

in the graphs. Figure 5.9 illustrates some of these missing relationships. Principal p ∧ q

by definition acts for both p and q, and principals p and q each act for p ∨ q. These

relationships are based on the structure of the lattice, but are not yet represented in the

graph. Furthermore, suppose p and q each delegate to r. Then the conjunction p ∧ q, by

definition, also delegates to r.

These relationships derive from the structural relationships between principals, but
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p ∨ q
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structural
computed

Figure 5.9: Computed relationships between principals.
Direct delegations imply additional relationships between principals that are structurally
related. Flame’s constraint checker iterates until the set of computed relationships
reaches a fixed point.

also from the delegations between them. For instance, the set of superiors for p ∧ q is

the intersection of the superiors of p and q; the set of inferiors of p∨ q is the intersection

of inferiors of p and q. Computing these relationships from an initial delegation set may

introduce new relationships that require further computation to propagate. For instance,

if r < t (in addition to the relationships in Figure 5.9), then after r < p∧ q is computed,

the graph will still not represent the relationship r < p ∧ q ∧ t. Consequently, we need

to iterate the computation of these relationships until it reaches a fixed point. Since the

set of principals is finite, such a fixed point always exists.

Once a fixed point is reached, we can answer an acts-for query p < q as follows.

First, we normalize the principals and split into confidentiality and integrity queries

p
′π < q

′π where p′ and q′ are normalized and split principals. We handle each of these

queries separately—if both queries are true, then p < q is also true. Each p′ and q′ is

represented as a join of meets of the form (p′i ∨ ... ∨ p′i+j) and (q′k ∨ ... ∨ q′k+l), where

each p′x and q′y are primitive principals. For each (q′k ∨ ... ∨ q′k+l), we need to find some

(p′i ∨ ...∨ p′i+j) such that (p′i ∨ ...∨ p′i+j)π < (q′k ∨ ...∨ q′k+l)π. Such a relationship holds
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if for every disjunct p′x for x ∈ [i, i+ j], there is some disjunct q′y for y ∈ [k, k+ l] such

that p′πx < q
′π
y .

Since p′x and q′y are primitive principals, we can determine if p′πx < q
′π
y using the

graphs we constructed. First, if p′x = > or q′y = ⊥, we are done since >π < qπ for all

q and pπ < ⊥π for all p. Otherwise, let G be the graph representing the confidentiality

delegation set if we are processing the confidentiality query, or the graph for the integrity

delegation set if we are processing the integrity query. If p′x is reachable from q′y in G,

then p′πx < q
′π
y .

5.2.2 Creating new delegations

We have discussed how acts-for constraints are specified and checked, but not how they

are satisfied by client code. Some acts-for constraints are always satisfiable: those that

require no delegations to derive. For instance, the following constraints always hold (for

all p and q) since they derive from the axioms and rules of the FLAM principal algebra:

p < p > < p p < ⊥ p < p→ p < p← p ∧ q < p p < p ∨ q

More interesting relationships require evidence—a delegation. For example, suppose

we have an expression e with the qualified type Alice < Bob ⇒ τ how should the

constraint Alice < Bob be satisfied? FLAC provides lexically-scoped extensions of

the delegation context Π via assume. In FLAC, such a constraint could be satisfied with

an acts-for term and an assume term assume 〈Alice < Bob〉 in e. So we would like a

mechanism that permits us to locally satisfy (within some lexical scope) some or all of

the acts-for constraints in a qualified type based on a term.

It turns out that our desired mechanism is an instance of the configurations problem

as defined by Kiselyov and Shan [44]. The configurations problem is the problem of

supporting multiple run-time configurations safely by ensuring statically that users can-

not accidentally mix them up. In our setting the “configuration” is the principal lattice
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that results from adding new delegations to the delegation context. Central to the secu-

rity of Flame is that it ensure (statically) that programs only contain authorized flows as

specified by this principal lattice.

Following Seipp [79], we use Kmett’s reflection library [47], an implementation

of Kiselyov and Shan’s approach, to define the core mechanism we need to locally

satisfy acts-for constraints. First, we define a type class Pi that represents the delegation

context. This type class has no operations, and is merely a mechanism for collecting

delegations statically:

class Pi del where

Delegation between principals is represented with the AFType data type. AFType

values are constructed from a pair of principal singletons—a superior sup and an inferior

inf—whose parameters are reflected in the type.

data AFType (p :: KPrin) (q :: KPrin) =

AFType { sup :: SPrin p, inf :: SPrin q}

We then define an instance of ReifiableConstraint so that we can represent

membership in Pi as a value. A reifiable constraint is a constraint that can be represented

as a value. This type class is defined by Seipp and Kmett as follows.

class ReifiableConstraint p where
data Def (p :: * -> Constraint) (a :: *) :: *

reifiedIns :: Reifies s (Def p a) :- p (Lift p a s)

The associated data type Def is the type of the values representing these constraints, and

reifiedIns is a proof that, for a constraint p (Lift p a s), it is sufficient to satisfy

the constraint Reifies s (Def p a).

instance ReifiableConstraint Pi where
data Def Pi (AFType p q) = Del { sup_ :: SPrin p, inf_ :: SPrin q}

reifiedIns = Sub Dict
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The data type Def is the type of the values that represent instances of Pi. Constructor

Del lets us construct new delegations given principal singletons representing the supe-

rior and inferior principal. The following notational definitions make using delegations

somewhat more intuitive.

type (:<) p q = Def Pi (AFType p q)

( < ) :: SPrin p -> SPrin q -> (p :< q)

( < ) p q = Del p q

We can now define an unrestricted (and therefore dangerous) version of assume.

This implementation is a just a specialization of Seipp’s using function, also found

in Kmett’s auxiliary reflection library [46]. More details about this function and the

concepts it relies upon may be found in Seipp’s tutorial [79] and in the Functional Pearl

by Kiselyov and Shan’s [44] it is based upon.

unsafeAssume :: forall a p q. (p :< q) -> ((p < q) => a) -> a

unsafeAssume d m = reify d $ \(_ :: Proxy s) ->

let replaceProof :: Reifies s (Def Pi (AFType p q)) :- (p < q)

replaceProof = trans proof reifiedIns

where proof = unsafeCoerceConstraint ::

Pi (Lift Pi (AFType p q) s) :- (p < q)

in m \\ replaceProof

Given a delegation of type (p :< q) and a term with qualified type ((p < q) => a),

unsafeAssume returns a term of type a. In other words, the constrain (p < q) is sat-

isfied using the delegation as evidence. This is done by reifying the delegation d as

an instance of Pi over the term m. The term replaceProof asserts that we can use

this instance to satisfy the constraint (p < q). From reifiedIns, we can safely re-

place Pi (Lift Pi (AFType p q) s) with Reifies s (Def p a), allow the reifi-

cation of d via the reify function from the reflection library. The term proof goes a

step further and declares (via unsafeCoerceConstraint) that replacing the constraint

(p < q) with the constraint Pi (Lift Pi (AFType p q) s. This allows the con-

straint in the qualified type to be satisfied by the reified delegation.
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The usage of the unsafe function unsafeCoerceConstraint is justified since we

are explicitly defining an additional way to satisfy acts-for constraints. Resolving an

acts-for constraint using an instance of Pi is analogous to deriving an acts-for relation-

ship in FLAC using the R-ASSUME rule defined in Section 4.3.

The unsafeAssume function is unsafe for a different reason, though, since it per-

mits acts-for constraints to be satisfied without restriction. This makes it unsafe for

client code to use this function directly. In Section 5.3, we present a safe interface to

unsafeAssume that uses flow-limited authorization to ensure only authorized delega-

tions can enable new flows.

5.3 Enforcing information flow control with acts-for constraints

The Flame library uses acts-for constraints on type-level principals to enforce informa-

tion flow constraints on sensitive computations. The basic approach is to wrap sensitive

information in an abstract data type that includes a level representing the confidential-

ity and integrity of the information. Flame provides operations on these abstract data

types that form monad-like type classes similar to the bind and ηp operations of FLAC

presented in Chapter 4. Any computation that uses the wrapped information must prove

that the constraints are satisfied.

In Haskell, side-effecting computation occurs in the IO monad. The bind and re-

turn operations of the IO monad sequence the IO actions that occur in a Haskell pro-

gram. Because Haskell expressions are evaluated lazily, IO actions are only processed

if they are “used” by the program. For example, consider the following program.

101



name :: String
name = "Alice"

main :: IO ()

main = let sayhi = hPutStr stdout "Hello " in
let sayname = hPutStr stdout name in
do sayhi

sayname

This program binds two IO actions to the variables sayhi and sayname, and then ap-

plies them in sequence to print “Hello Alice”. The function putStr, which prints a

string to stdout, has type String -> IO (). Haskell’s do syntax is sugar for monadic

operations; here, it applies the expressions in sequence.

The two IO actions bound to sayhi and sayname are only executed because they

are composed in the IO computation that is returned by the main function. Suppose we

omitted sayname:

main :: IO ()

main = let sayhi = hPutStr stdout "Hello " in
let sayname = hPutStr stdout name in
sayhi

This program only prints “Hello”, which might surprise those accustomed to eager eval-

uation and non-pure languages. The sayname variable is never used, so the computation

it represents is never evaluated; hence no side effects occur. Using the IO monad for all

side-effecting computation is thus a mechanism for both sequencing the ordering of side

effects and specifying at the type level which computations may have side effects.1

The Lbl abstract data type associates values and pure computations with a label rep-

resenting the confidentiality and integrity of the value or the result of the computation.

data Lbl (l::KPrin) a

The type parameter l has kind KPrin and a is a type variable for the type of the protected

value. There are two primary operations on Lbl: label and bind.
1Haskell does provide “unsafe” functions like unsafePerformIO that permit IO actions without rep-

resenting them in the type. We assume programs using Flame do not use these functions. Safe Haskell [84]
is an approach to enforcing these assumptions.
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label :: a -> Lbl l a

bind :: (l v l’) => Lbl l a -> (a -> Lbl l’ b) -> Lbl l’ b

The label operation creates new labeled values whereas bind is used to perform com-

putations on them. Given a labeled value of type Lbl l a and a function from values of

type a to labeled values of type Lbl l’ b, bind unwraps the labeled value and applies

the function. The constraint (l v l’) indicates that the label of the result must be at

least as restrictive as l.

We can use the above core operations to define another useful operation for labeled

values. The relabel operation takes a value labeled at l and returns a value labeled at

l’, where (l v l’).

relabel :: (l v l’) => Lbl l a -> Lbl l’ a

relabel x = bind x label

The Lbl data type is designed for enforcing information security in pure computa-

tions. For example, consider the labeled factorial function below.

factorial :: Lbl l Int -> Lbl l Int
factorial ln = bind ln $ \n ->

label $ fact n

where fact 0 = 1

fact n = n * fact (n - 1)

This function binds a labeled value ln, then computes the factorial of it using the helper

function fact.

In fact, the above pattern is generalizable to any pure function. This operation is

often called fmap, for “functorial map” since type constructors (in this case Lbl l)

having such operations are functors.

fmap :: (a -> b) -> Lbl l a -> Lbl l b

fmap f ln = bind ln $ \n ->

label $ f n

Lbl operations prevent IO operations from using protected values since IO actions

remain wrapped in the Lbl data type. Flame provides no mechanism for extracting the
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lift :: Lbl l a -> IFC e pc l a

apply :: (pc v pc’) =>
IFC e pc l a

-> (Lbl l a -> IFC e pc’ l’ b)

-> IFC e pc’ l’ b

ebind :: (l v l’, l v pc) =>
Lbl l a

-> (a -> IFC e pc l’ b)

-> IFC e pc’ l’ b

Figure 5.10: Core IFC operations.

IO computation from the Lbl data type, so the side effects will never be executed. The

following program fragment contains an IO action in a labeled computation.

secret :: Lbl Alice String
secret = label "Alice’s secret"

main = IO ()

main = let leak = bind secret $

\s -> label $ hPutStr stdout s in
??? −− no way to use leak to get a value in IO

Whereas the variables sayhi and sayname in the previous examples have type IO (),

the variable leak has type Lbl Alice (IO ()). The Lbl operations provided by Flame

require that any computation that uses leak (via bind) must return a labeled type

Lbl l a, where Alice v l. Consequently, there is no way for main to use leak

to return a value of type IO ().

Most programs, of course, have side effects—including those that process sensitive

information. The Lbl data type and its operations enforce information security for pure

computation, but they do not support these programs. Therefore, most computation in

Flame occurs in IFC, an abstract data type that is similar in spirit to Lbl, but supports

secure computations with side effects.

The type IFC e pc l a associates a label l with the result of a computation of
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type a, similar to the Lbl l a type. IFC also associates a label pc that bounds the con-

fidentiality and integrity of side-effects, for some effect e. Flame provides three core

operations for computing with IFC: lift, ebind, and apply, whose types are pre-

sented in Figure 5.10. The lift operation lifts a (pure) labeled term into the IFC data

type. Whereas Lbl only required a single computation operation for pure computation

(bind), IFC provides both ebind and apply. These two operations separate the con-

cerns of composing effectful computations (apply) and using labeled values in effectful

computation (ebind).

The apply operation corresponds to the FLAC APP rule for function application.

It applies an IFC value to an effectful function on Lbl values. The ebind operation,

for “effectful bind,” enables effectful computation with labeled values. Given a labeled

term of type Lbl l a and a function with effects in e of type a -> IFC e pc l’ b,

ebind returns the result of applying the function to the unlabeled value. The constraints

l v l’ and l v pc ensure that both the label of the result (l’) and the label bounding

side-effects (pc) protect the labeled value.

Using the above operators, we can derive monadic operators similar to those in

FLAC. These operators are presented in Figure 5.11. Flame’s protect function cor-

responds to the monadic unit η operator in FLAC. Given a term of any type, protect

labels the term and lifts it into IFC. The reprotect operation is a function analogous

to the relabel operation on Lbl types. It allows the side-effect label (pc) and the result

label (l) to be relabeled to more restrictive policies.

The use function corresponds to a FLAC bind term. Its constraints implement

FLAC’s BINDM typing rule. Given a protected value of type IFC e pc l a and a

function on a with return type IFC e pc’ l’ b, use returns the result of applying the

function, provided that l v l’ and (pc t l) v pc’.

These operations illustrate the core difference between enforcing information flow
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protect :: a -> IFC e pc l a

protect = lift . label

reprotect :: (l v l’, pc v pc’) => m n pc l a -> m n pc’ l’ a

reprotect x = apply x $ \x’ -> ebind x’ (protect :: a -> m n SU l’ a)

use :: (l v l’, (pc t l) v pc’) =>
IFC e pc l a

-> (a -> IFC e pc’ l’ b)

-> IFC e pc’ l’ b

use x f = apply x $ \x’ -> ebind x’ f

Figure 5.11: Derived IFC operations

control in a pure setting and in an effectful one. In a pure setting, we need only ensure

the result label protects the security of information the computation depends upon. In

an effectful setting, we must ensure that composing effectful computations preserves the

security as well.

The pc bound is used to constrain what effects may occur in an IFC computation.

For example, the Flame provides the following binding for hPutStr:

hPutStr :: (pc v l) => IFCHandle l -> String -> IFC IO pc SU ()

The type IFCHandle l represents a file handle with label l, meaning that information

read from or written to this handle should be protected with confidentiality and integrity

l. The effect parameter e is instantiated with the IO effect since hPutStr outputs a

string. The constraint pc v l establishes this label as an upper bound for the pc of

the IFC type the call to hPutStr occurs within. The result has unit type so, for conve-

nience, the label on the result is given the most restrictive label SU to simplify satisfying

the constraints of the any enclosing computation. Flame provides similar wrappers for

other common functions in the System.IO module. A selection of these is listed in

Appendix C.1.

Examining the implementations of reprotect and use illustrates how the more
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primitive apply and ebind operations are used to manipulate labeled data in Flame.

Although both use and reprotect are based on apply and ebind, use is more re-

strictive than reprotect since it requires both pc and l to flow to pc’. In use, satis-

fying these two constraints is sufficient to satisfy the constraints of apply and ebind

which are used to implement use. Whereas use may invoke an arbitrary function f,

in reprotect, the bound value is immediately passed to protect. This function is

effectively pure since it is typed with pc SU, the most restrictive information flow policy.

Since any label flows to SU, the constraints for reprotect are less restrictive than use.

Perhaps the most significant difference between Lbl and IFC is that IFC provides a

mechanism for extracting the result of an effectful computation from the IFC data type.

The function runIFC takes an IFC term and returns the effectful computation with a

labeled result.

runIFC :: IFC e pc l a -> e (Lbl l a)

Now we can output Alice’s secret to file handle that protects Alice’s information.

type Alice = KName "Alice"

alice :: SName Alice

alice = SName (Proxy :: Proxy "Alice")

sec :: Lbl Alice String
sec = label "Alice’s secret"

stdout :: IFCHandle Alice

stdout = mkStdout alice

main :: IO (Lbl l’ ())

main = runIFC $ ebind sec $ hPutStrLnx alice stdout

The expression hPutStrLnx alice stdout has type String -> IFC IO Alice SU ().

The function hPutStrLnx is just a version of hPutStrLn that allows us to specify the

pc of the computation explicitly.2

2The Flame constraint solver does not currently instantiate type variables to satisfy bounds conditions,
so an explicit label is sometimes necessary to instantiate type variables. Extending the solver to find in-
stantiations of type variables that satisfy all acts-for constraints in a context would remove the necessity of
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5.3.1 Safely enabling new flows

In Section 5.2.2 we presented unsafeAssume, which extends the delegation context

with new delegations, thereby enabling new flows. We now describe how we can use

acts-for constraints and the above abstractions to provide a safer interface to this mech-

anism.

The assume function restricts an extension of the delegation context to protected

computations IFC e pc l a. Furthermore, for an extension (p < q), it requires that

pc speak for q, and that the voice of p’s confidentiality speak for q’s confidentiality.

These constraints correspond to those in ASSUME.

assume :: (pc < (∇) q, (∇) (C p) < (∇) (C q)) =>
(p :< q) -> ((p < q) => IFC e pc l a) -> IFC e pc l a

assume = unsafeAssume

The Flame library exports only this more restrictive version of assume, ensuring that all

new flows are authorized.

5.4 Secure programming with Flame

Monadic operations are use extensively in Haskell programs. To ease the syntactic bur-

den of explicit bind and return operations, Haskell provides syntactic sugar for them in

the form of its “do-syntax”. This syntax enable more concise expression of monadic

computation. Unfortunately, since neither IFC nor Lbl form a Monad instance, this

syntax is not directly available for Flame code.

We can, however, redefine the operations that do-syntax desugars to by using the

extension RebindableSyntax. This approach has some drawbacks since it requires

choosing a single domain to use do-syntax for: either Monad instances or Flame. How-

ever, this choice can be made for each file or even for each do block. We anticipate the

specifying the pc explicitly. We expect that the “greatest lower bounds” algorithm used by Jif’s solver [65]
should be relatively straightforward to port to Flame.
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effects do-syntax is most commonly used for, like IO, will often be wrapped by the IFC

transformer anyway (for example, IFC IO pc l a), making the right choice obvious.

For files that use Flame extensively, we provide the module Flame.Prelude which

exports the following definitions.

return = protect

(>>=) = use

m >> a = apply m $ \_ -> a

With these bindings, the following Flame program

do hPutStrLnx pc stdout "What is your name?"

name <- hGetLinex pc stdin
hPutStrLnx pc stdout "Hello " ++ name

desugars to

apply (hPutStrLnx pc stdout "What is your name?") $ \_ ->

use (hGetLinex pc stdin) $ \name ->

hPutStrLnx pc stdout "Hello " ++ name

Using do-syntax with Flame is more concise, but also makes using Flame more natu-

ral for experienced Haskell programmers. While the types of the rebound operations

are more complex, the operations are analogous to their Monad counterparts and help

leverage the programmers familiarity with Monad to properly use Flame’s abstractions.

Figure 5.12 presents a new version of the password checker from Figure 5.1 written

in Flame. Flame makes explicit the connection between the authorization check per-

formed by checkPass and the disclosure of secret. Instead of encoding authorization

as a Boolean return value, checkPass returns evidence of the authorization in the form

of two delegations which are used to enable the flow from Alice to the user. It is impos-

sible to leak the secret in an unauthorized way since without the delegations returned by

checkPass, the secret may not flow to the user’s console.

The password checker uses a design pattern useful for many situations. The entry

point of the program, shown in Figure 5.13, constructs a principal for the user invok-

ing the program, in this case using a Unix system call to obtain the effective username
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secret :: Lbl Alice String
secret = label "mysecret"

checkPass :: SPrin client

-> String
-> IFC IO (I Alice) (I Alice)

(Maybe (Voice client :< Voice Alice, client :< Alice))

checkPass client guess =

{− Declassify the comparison with the password −}
assume ((bottom*←) < (alice*←)) $

assume ((bottom*→) < (alice*→)) $ do
pwd <- liftx (alice*←) password

protect $

if pwd == guess then
Just $ ((*∇) client < (*∇) alice, client < alice)

else
Nothing

secure_main :: DPrin user

-> IFCHandle (I user)

-> IFCHandle (C user)

-> IFC IO ((C user) ∧ (I Alice)) SU ()

secure_main userprin stdin stdout =

let user = (st userprin) in
let pc = (user*→) *∧ (alice*←) in
do pass <- inputPass user stdin stdout

mdel <- checkPass user pass

case mdel of
Just (vdel,del) ->

{− Use the granted authority to print Alice ’s secret −}
assume vdel $ assume del $ do
secret’ <- liftx pc secret

hPutStrLnx pc stdout secret’

Nothing ->

hPutStrLnx pc stdout "Incorrect password."

Figure 5.12: A Flame version of the password checker example. In this version, checkPass
returns evidence of authorization which is used to enable the flow from Alice to the user.
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main :: IO ()

main = do
username <- getUserName

withPrin (Name username) $ \user ->

let user’ = (st user) in
let stdin = mkStdin (user’*←) in
let stdout = mkStdout (user’*→) in do
_ <- runIFC $ secure_main user stdin stdout
return ()

Figure 5.13: This Flame entry point creates a principal for the user running the program and uses
it to create wrapped IFCHandles for stdin and stdout.

of the current process. This principal is then used to create IFCHandle wrappers for

stdin and stdout. The principal and handles are then passed to a secure entry point

secure_main which characterizes the information flow constraints placed on the pro-

gram.

The precise signature for secure_main is chosen by the developer to characterize

the initial context of the program. In this case, the program is checking the password

on behalf of Alice, so the entry point has Alice’s integrity. Labeling secure_main

with Alice’s integrity is a form of endorsement (from Alice) stating that the password

checker may act on her behalf. A more sophisticated design pattern might use code

signatures [58] or leverage other Unix access control features like setuid bits to en-

sure this endorsement is authorized. Note however, that this implicit endorsement does

not extend to the input to the program. The signature permits an untrusted user to in-

voke secure_main from the command line, but any input the user provides remains

untrusted.

5.4.1 Flow-limited authorization with Macaroons

Macaroons are bearer credentials that generalize token-based mechanisms like session

cookies [10]. A macaroon may have one or more caveats that attenuate the authority
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granted to the bearer. This makes it easy to authorize clients in a decentralized way. For

example, Alice can share a single photo from an online album by placing a caveat on

the macaroon for the album that limits the possessor’s access to the shared photo.

We discussed in Chapter 4 how mechanisms like macaroons can introduce infor-

mation security vulnerabilities when used improperly. Using Flame, we have built an

interface to a popular macaroons library, libmacaroons [32], that prevents these vulner-

abilities using flow-limited authorization. In the process of building this interface, we

also built Haskell bindings for libmacaroons, which are useful on their own.

Figures 5.14 and 5.15 present our Haskell API for libmacaroons. The functions

for creating and manipulating macaroons are shown in Figure 5.14, along with their

specifications. A macaroon contains a location “hint” for the service issuing the mac-

aroon, a key identifier, a list of caveats, and a signature . Macaroon are initially cre-

ated with the create function, which accepts the location, a root key, and the iden-

tifier for that key. Caveats may then be added with the addFirstPartyCaveat and

addThirdPartyCaveat. A first-party caveat is a caveat that is dispatched by the issuer

of the macaroon; a third-party caveat is dispatched by obtaining a macaroon from an-

other service and binding it to the caveated macaroon using the prepareForRequest

function.

The functions for verifying macaroons are shown in Figure 5.15. A service autho-

rizes a request by creating a verifier with createVerifier. The service then adds to

this verifier relevant predicates satisfied by the request using satisfyExact. For exam-

ple, if the request is for a photo with id number 42, the service might add the predicate

“photo_id = 42”.

A macaroon is verified by calling verify with the verifier, the macaroon, a list of

dispatch macaroons (for third-party caveats), and the key associated the key identifier

of the macaroon. This function verifies the macaroon’s signature and checks that all
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{−− Create a new macaroon. −−}
create :: ByteString −−^ location

-> ByteString −−^ key
-> ByteString −−^ key identifier
-> (Macaroon, ReturnCode)

{−− Create a copy of a macaroon −−}
copy :: Macaroon -> (Macaroon, ReturnCode)

{−− Get a user−friendly description of a macaroon. −−}
inspect :: Macaroon -> (String, ReturnCode)

{−− Validate a macaroon’s format −−}
validate :: Macaroon -> Bool
{−− Extract a macaroon’s location string −−}
location :: Macaroon -> ByteString

{−− Extract a macaroon’s key identifier string −−}
identifier :: Macaroon -> ByteString

{−− Extract a macaroon’s signature string −−}
signature :: Macaroon -> ByteString

{−− List a macaroon’s third−party caveats . −−}
thirdPartyCaveats :: Macaroon

-> ([(ByteString, ByteString)], ReturnCode)

{−− Serialize a macaroon −−}
serialize :: Macaroon −−^ Macaroon to serialize

-> MacaroonFormat −−^ Serialization format
-> (ByteString, ReturnCode)

{−− Deserialize a macaroon −−}
deserialize :: ByteString -> (Macaroon, ReturnCode)

{−− Add a first−party caveat . −−}
addFirstPartyCaveat :: Macaroon

-> ByteString −−^ the caveat
-> (Macaroon, ReturnCode)

{−− Add a third−party caveat . −−}
addThirdPartyCaveat :: Macaroon

-> ByteString −−^ location
-> ByteString −−^ key
-> ByteString −−^ key identifier
-> (Macaroon, ReturnCode)

{−− Bind a macaroon to dispatch a third−party caveat . −−}
prepareForRequest :: Macaroon −−^ root macaroon

-> Macaroon −−^ macaroon to bind
-> (Macaroon, ReturnCode)

Figure 5.14: libmacaroons bindings for macaroon creation and manipulation.
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{−− Create a macaroon verifier −−}
verifierCreate :: IO Verifier

{−− Verify a macaroon −−}
verify :: Verifier

-> Macaroon −−^ macaroon to verify
-> ByteString −−^ macaroon key
-> [Macaroon] −−^ dispatch macaroons
-> IO (Bool, ReturnCode)

{−− Satisfy potential caveats with an exact string . −−}
satisfyExact :: Verifier

-> ByteString

-> IO (Bool, ReturnCode)

{−− Satisfy potential caveats with a function . −−}
satisfyGeneral :: Verifier

-> (String -> IO Bool) −−^ a function that checks
−−^ if a caveat is satisfied

-> IO (Bool, ReturnCode)

Figure 5.15: libmacaroons bindings for macaroon verification.

caveats of the macaroon are satisfied. If, for instance, the macaroon has a caveat that

requires “photo_id = 42”, then verify succeeds if the verifier has a predicate that

matches this string. Each first-party caveat of the macaroon must have a predicate that

dispatches it, and each third-party caveat must have a dispatch macaroon that is verified

recursively.

Dispatching caveats by comparing strings is efficient, but some predicates are

not easily expressed by an exact string. For this situation, libmacaroons provides

satisfyGeneral which accepts a function that decides whether a given caveat is ac-

cepted. For example, a macaroon may have a timeout caveat that says it expires after

a certain time, expressed by the string “time < 2016-09-16 16:28”. To dispatch this

caveat, a service might use satisfyGeneral to add a function like checkTime, shown

in Figure 5.16, which compares the current time to the expiration time.3 If the expiration

time has passed, or if the caveat is unrelated to the timeout caveat format, checkTime

3The checkTime function is adapted from a similar python example in the libmacaroons tutorial [32].
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checkTime :: String -> IO Bool
checkTime caveat =

if "time < " ‘isPrefixOf‘ caveat then
case getTime caveat of
Just when -> do
now <- getCurrentTime

return (utctDay now < when)
Nothing -> False

else False
where
getTime = parseTimeM True defaultTimeLocale

"%Y-%m-%d %H:%M" $ drop 7

Figure 5.16: checkTime: A predicate function for dispatching timeout caveats.

returns False. Note that returning False doesn’t mean the macaroon cannot be verified,

only that this function cannot dispatch this caveat. The caveat may still be dispatched

by an exact predicate or a different predicate function.

Securing libmacaroons with Flame

One difference worth noting between the functions in Figures 5.14 and 5.15 is that

the macaroon functions are pure: all macaroons are immutable values. In contrast, a

verifier may be imperatively updated by satisfyExact and satisfyGeneral, hence

the verification functions are in the IO monad.

Flame’s design makes it particularly easy to incorporate pure code with little or no

change. In this case, creating a Flame-enabled library for libmacaroons required creating

bindings for only the macaroon verification functions. The API for these bindings is

presented in Figure 5.17. All of the other libmacaroons bindings can be used by Flame

programs directly.

Note that using the libmacaroons bindings for the functions in Figure 5.17 is not

dangerous. Using the verification functions would generate results in the IO monad

which cannot be extracted from a protected computation. Flame bindings extend the
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verifierCreate :: SPrin pc

-> SPrin l

-> IFC IO pc’ pc’ (IFCVerifier pc l)

verify :: (pc v pc’) =>
IFCVerifier pc’ l

-> Macaroon

-> Lbl l’ ByteString

-> [Macaroon]

-> IFC IO pc l (Bool, ReturnCode)

satisfyExact :: (pc v l) =>
IFCVerifier pc’ l

-> ByteString

-> IFC IO pc l (Bool, ReturnCode)

satisfyGeneral :: (pc v l) =>
IFCVerifier pc’ l

-> (String -> IFC IO pc’ l Bool)
-> IFC IO pc l (Bool, ReturnCode)

Figure 5.17: Flame API for libmacaroons verification functions.

trusted computing base, and so can make principled use of the IFC type’s underlying

constructors to lift the IO actions into the IFC computation type.

Similar to the IFCHandle type used to wrap stdin and stdout in Section 5.4,

Flame wraps the verifier in a type, IFCVerifier, that is used to restrict side effects.

Like IFCHandle, IFCVerifier has a parameter to limit the restrictiveness of the pred-

icates added to the verifier. Because these predicates are used to dispatch caveats during

verification, the result of verification may reveal information about them. The parameter

l is used to bound the information revealed by storing a string with satisfyExact or a

function with satisfyGeneral. It also bounds the information revealed by executing

the functions added with satisfyGeneral.

Note also that satisfyGeneral functions may have side effects. Executing this

code during verification may reveal information about the context that verify is called
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Bob Carol Alice

read-only
"happy bday!"

"happy bday!"

2

1

3

4

5

Figure 5.18: Embargoing secret messages with macaroons. Bob adds caveats to the macaroon
he receives from Carol to give Alice access only on or after her birthday.

within. Hence, pc is used to bound this context, ensuring all predicate verification

functions have side-effects that are safe to execute in this context.

Example: embargoed secret messages

To demonstrate Flame macaroons in action, we’ll expand on our earlier password ex-

ample. In this version, Bob uses Carol to host messages that he shares with his friends.

He wants to post a birthday message for Alice, but allow her to see it only on or after

her birthday.

Figure 5.18 illustrates the intended sequence of messages exchanged between Bob,

Carol, and Alice. In 1 , Carol gives Bob a macaroon for the hosted message. Using this

macaroon in 2 , Bob updates the message to be a birthday message for Alice. Next,

Bob adds a caveat giving Alice read-only access, but not until the date of her birthday.

Bob gives this macaroon to Alice in message 3 . When presented to Carol by Alice in

4 , Carol checks whether the current date is the same as or later than the date in the

caveat. If so, she gives Bob’s birthday message to Alice in message 5 .

There are two secrets of concern here. First is the secret message for Alice hosted

by Carol. Bob and Carol are permitted to read the message, but Alice should only be
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able to read it with the macaroon from Bob, which can only be verified on or after her

birthday. The other secret is Alice’s birthday. The macaroon Bob issues to Alice has a

caveat based on Alice’s birthday, so by presenting that macaroon to Carol, Alice reveals

her birthday to Carol.

Credentials-based systems like Macaroons are designed to protect the first kind of

secret, the message for Alice, by preventing those without appropriate credentials from

accessing the secret. They do not protect the second kind of secret, Alice’s birthday.

The reason is that they do not constrain what information a credential may derive from.

This means that a credential intended for Alice to present to Carol can depend on secret

information (Alice’s birthday) without Alice’s knowledge, creating a covert channel.

We have implemented this example in Flame using IFCHandles to represent com-

munication channels between Alice, Bob, and Carol, and an IFCRef4 to store the up-

datable message. The channels restrict the confidentiality and integrity of messages

exchanged between principals. The complete source is found in Appendix C.2.

For instance, Figure 5.19 illustrates carolUpdateMessage, which implements the

code invoked by message 2 in Figure 5.18. Carol receives a macaroon from a client,

creates a verifier with dispatch predicates, and attempts to verify the macaroon. In-

put from the client is labeled (C (p ∨ Carol) ∧ I p), so it has the integrity of the

client, p. The message has type IFCRef Carol String, which means it is a mutable

reference to a String with Carol’s confidentiality and integrity. Therefore, information

that derives from the client’s input cannot flow to the message unless the macaroon is

verified (line 13) and an assume term delegates Carol’s integrity to the client (line 15).

Figure 5.20 presents bobOutputMacaroon, which creates a new macaroon with

caveats for Alice using the macaroon from Carol. This macaroon is provided to Alice

over an output channel with confidentiality Alice ∨ Bob ∨ Carol since the maca-

4IFCRef is a wrapper for the System.IO mutable reference type IORef. Appendix C.1 lists the API
for working with IFCRef values.
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1 carolUpdateMessage :: SPrin p

2 -> IFCHandle (C (p ∨ Carol) ∧ I p)

3 -> IFCRef Carol String
4 -> IFC IO Carol SU ()

5 carolUpdateMessage p from_p message =

6 do (mac, err) <- inputMac

7 if err /= MacaroonSuccess then do
8 error "Could not deserialize macaroon."

9 else do
10 v <- verifierCreatex pc pc l

11 satisfyExactx pc v "op: update"

12 satisfyGeneralx pc v (checkTimeAfter pc l)

13 (res, _) <- verifyx pc v mac cKey []

14 if res then
15 assume ((p*←) < (carol*←)) $ do
16 msg <- hGetLinex pc from_p

17 writeIFCRefx pc message msg

18 else
19 error "Could not verify macaroon."

20 where pc = carol

21 l = carol

22 inputMac :: IFC IO Carol Carol (Macaroon, ReturnCode)

23 inputMac = assume ((p*←) < (carol*←)) $ do
24 mac <- hGetLinex pc from_p

25 return $ deserialize . pack $ mac

Figure 5.19: Update message. Carol verifies the macaroon before permitting information with
the client’s integrity to flow to the label of the message.

roon is for Alice to present to Carol. It would be insecure for Alice to present a more

restrictively labeled macaroon to Carol. However, because the caveat added by Bob on

line 8 depends on birthday (accessed on line 21), this function may be insecure.

Suppose Alice permits Bob to know her birthday, but not Carol. Then birthday

would represent this in Flame with a labeled value.

birthday :: Lbl (I Alice ∧ C (Alice ∨ Bob)) Day

birthday = label $ fromGregorian 2016 8 20

This label causes the compiler to reject bobOutputMacaroon since it cannot satisfy the

constraint that C (Alice ∨ Bob ∨ Carol) < C (Alice ∨ Bob). If birthday is
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1 bobOutputMacaroon :: IFCHandle (C (Bob ∨ Carol) ∧ I Carol)

2 -> IFCHandle (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

3 -> IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob) SU ()

4 bobOutputMacaroon fromCarol toAlice =

5 do day <- getBirthday

6 (mac, err) <- inputMac

7 let (mac1, MacaroonSuccess) =

8 addFirstPartyCaveat mac (after day)

9 (mac2, MacaroonSuccess) =

10 addFirstPartyCaveat mac1 "op: read"

11 (serialized, MacaroonSuccess) =

12 serialize mac2 MacaroonV1 in
13 hPutStrLnx pc toAlice $ unpack serialized

14 where after day = pack $ "time >= "

15 ++ formatTime

16 defaultTimeLocale "%Y-%m-%d" day

17 pc = ((alice *∨ bob *∨ carol)*→) *∧ (bob*←)

18 getBirthday :: IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

19 (C (Alice ∨ Bob ∨ Carol) ∧ I Bob) Day

20 getBirthday = assume ((alice*←) < (bob*←)) $

21 liftx pc $ relabel birthday

22 inputMac :: IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

23 (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

24 (Macaroon, ReturnCode)

25 inputMac = assume ((carol*←) < (bob*←)) $

26 assume ((*∇) (alice *∨ carol) < (*∇) bob) $

27 assume ((alice *∨ carol) < bob) $ do
28 mac <- hGetLinex bob fromCarol

29 return $ deserialize . pack $ mac

Figure 5.20: A macaroon with caveats for Alice. Bob creates a macaroon with caveats for Alice.
Because of the caveat added on line 8, this function is only secure if Alice permits Carol to know
her birthday.
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instead labeled

birthday :: Lbl (I Alice ∧ C (Alice ∨ Bob ∨ Carol)) Day

birthday = label $ fromGregorian 2016 8 20

then the compiler accepts the implementation of bobOutputMacaroon since all infor-

mation flow constraints are satisfied.
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CHAPTER 6

RELATED WORK

Flow-limited authorization builds upon work on authorization as well as work in

information flow control—previously somewhat disjoint areas of security research. In

this chapter, we highlight some of the most relevant research from these areas.

The connection between delegation and information flow policy downgrades, here

called the delegation loophole, is identified in [39] and further developed in [83]. These

papers also discuss secret trust relationships, and thus have similar threat models to

FLAM. We are not aware of previous work addressing poaching attacks.

Broberg et al. [17] identify classes of flows which specific information flow mod-

els may consider secure or insecure. Delegation loopholes are an example of a time-

transitive flow in their terminology. FLAM considers these flows insecure since they

permit attackers to influence how information is relabeled. FLAM also considers poach-

ing attacks to be unsafe since attackers may obtain information not directly released to

them, which undermines the effectiveness of revocation. These flows are not completely

characterized by the classes presented in [17], but share some characteristics with the

direct-release class of flows.

FLAM’s bounded derivation rules place information flow constraints on which del-

egations may be used to derive judgments. This differs from previous approaches (for

example, Rx roles [83] and Flume capability groups [48]), which give a single informa-

tion flow bound for all trust relationships of a principal. As recognized by Bandhakavi

et al. [9], a single bound is too restrictive since it must also protect delegations made by

other principals. So, when the bound of principal p is more restrictive than the bound of

principal q, either q cannot delegate to p or p’s bound must be downgraded (as in [83]),

even though p might not trust q. RTI [9], like FLAM, overcomes these restrictions by

tracking information flow at the level of delegations and ignoring relationships that ex-
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ceed information flow bounds. However, since relabeling is not robust in RTI, it remains

vulnerable to the delegation loophole and poaching attacks. FLAM’s flows-to relation

is more consistent with decentralized information flow control principles: the authoriza-

tion of a flow depends only on those principals who speak for the policies in question.

Label algebras [61] abstract the structure and semantics of the security policies of

several DIFC systems. It might appear that a clever encoding of FLAM contexts (specif-

ically, pc; `) as label algebra authorities might serve to represent FLAM as a label al-

gebra. However, such an encoding would be too abstract to represent conditions such

as robust authority or even robust downgrading, so delegation loopholes and poaching

attacks cannot be addressed within this framework. For instance, the noninterference

lemma given in [61] for an example language admits non-robust declassification, even

without changes to the trust configuration.

Many models and mechanisms have been suggested for expressive, decentralized

authorization and trust management [4, 12, 13, 30, 31, 37, 50, 51, 78]. Few consider the

information security of the authorization policies or the authorization process. For in-

stance, Birgisson et al. [13] note that, under certain conditions, an attacker could use

malicious credentials to probe for private information such as group membership. Such

an attack is possible in many frameworks.

Some prior approaches have sought to reason about the information security of au-

thorization mechanisms. Becker [11] discusses probing attacks that leak confidential

information to an attacker. Garg and Pfenning [34] present a logic that ensures asser-

tions made by untrusted principals cannot influence the truth of statements made by

other principals. Bryans et al. [18] compare noninterference and opacity as security

conditions for confidential policies.

FLAM ensures queries of the trust configuration satisfy robust authorization, so

probing attacks cannot reveal confidential information. Opacity is a possibilistic notion
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of security, meaning that an authorization decision may depend on secret information,

provided that the same result could derive from public information. Possibilistic secu-

rity conditions are often inadequate in settings with attackers that have (or can acquire)

additional knowledge, perhaps through additional queries.

Some languages and systems for authorization or access control have combined as-

pects of information security and authorization (for example, [9, 39, 59, 60, 83, 91]) in

dynamic settings. However, all of these are susceptible to the security vulnerabilities

discussed in Section 2 that arise from the interaction of information flow and authoriza-

tion.

DCC [2, 3] has been used to model both authorization and information flow, but

not simultaneously. DCC programs are type-checked with respect to a static security

lattice, whereas FLAC programs can introduce new trust relationships during evaluation,

enabling more general applications.

Boudol [14] defines terms that enable or disable flows for a lexical scope, similar to

assume terms, but does not restrict their usage. Rx [83] and RTI [9] use labeled roles

to represent information flow policies. The integrity of a role restricts who may change

policies. However, information flow in these languages is not robust [64]: attackers may

indirectly affect how flows change when authorized principals modify policies.

Some authorization systems use access control policies to protect sensitive creden-

tials. In trust negotiation [92, 93, 100], principals iteratively exchange credentials pro-

tected by access control policies, withholding sensitive credentials until sufficient trust

has been established. Minami and Kotz [59, 60] encrypt authorization proofs based on

access control policies to protect the confidentiality and integrity of authorization re-

sults, though they ignore side-channels. Because access control policies are not compo-

sitional, they are insufficient for controlling the propagation of sensitive credentials: the

rules for disclosure may vary arbitrarily between principals. FLAM unifies principals
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and information flow control policies, which are inherently compositional, and enforces

end-to-end security of trust relationships.

Some type systems proposed for information flow control encode authorized policy

downgrades directly in data types (for example, [16, 66]) or with respect to privileges

granted to code (e.g. [80]). This removes some of the need for an underlying authoriza-

tion mechanism, permitting developers to model trust relations using the type system or

structure of the program. Such type systems are in a sense too low-level to be directly

vulnerable to delegation loopholes or poaching attacks, but the authorization mecha-

nisms they encode may still be vulnerable. FLAM can provide guidance for a way to

obtain robust authorization in these systems.

Previous work has studied information flow control with higher-order functions and

side effects. In the SLam calculus [38], implicit flows due to side effects are controlled

via indirect reader annotations on types. Zdancewic and Myers [97] and Flow Caml [70]

control implicit flows via pc annotations on function types. FLAC also controls side

effects via a pc annotation, but here the side effects are changes in trust relationships

that define which flows are permitted. Tse and Zdancewic [87] also extend DCC with a

program-counter label but for a different purpose: their pc tracks information about the

protection context, permitting more terms to be typed.

DKAL? [42] is an executable specification language for authorization protocols,

simplifying analysis of protocol implementations. FLAC may be used as a specifica-

tion language, but FLAC offers stronger guarantees regarding the information security

of specified protocols. Errors in DKAL? specifications could lead to vulnerabilities. For

instance, DKAL? provides no intrinsic guarantees about confidentiality, which could

lead to authorization side channels or probing attacks. FLAC helps programmers verify

that their specifications are consistent with their assumptions about trust relationships

between principals, and the information flow contexts their specifications will be used
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within. Furthermore, the FLAC type system ensures errors can’t cause information to be

released or corrupted unless they exist in high-integrity contexts and explicitly relabel

the information.

The Jif programming language [62, 65] supports dynamically computed labels

through a simple dependent type system. Jif also supports dynamically changing trust

relationships through operations on principal objects [24]. Because the signatures of

principal operations (for example, to add a new trust relationship) are missing the con-

straints imposed by FLAC, authorization can be used as a covert channel. FLAC shows

how to close these channels in languages like Jif.

Dependently-typed languages are often expressive enough to encode authorization

policies, information flow policies, or both. The F? [82] type system is capable of en-

forcing information flow and authorization policies. Typing rules like those in FLAC

could probably be encoded within its type system, but so could incorrect, insecure rules.

Thus, FLAC contributes a model for encodings that enforce strong information security.

Aura [43] embeds a DCC-based proof language and type system in a dependently-

typed general-purpose functional language. As in DCC, Aura programs may derive new

authorization proofs using existing proof terms and a monadic bind operator. However,

Aura does not track information flow. In Aura, Alice can sign an assertion P about

program state using the say operator, producing a value with type Alice says P . A

malicious principal may be able to influence Alice’s decision to sign an assertion or the

contents of that assertion. For this reason, Aura is ill-suited for reasoning about the

end-to-end information security properties of dynamic authorization mechanisms.

Enforcing information flow control with Haskell’s type classes has been explored in

previous work. Li and Zdancewic [52] first proposed using arrows [41] to enforce infor-

mation flow in Haskell. Subsequent work has mostly focused on monad-based mecha-

nisms. Crary et al. [25] use a monad parameterized by a result label as well as an effect
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label, similar to IFC’s l and pc parameters, respectively. Devriese and Piessens [26] use

an adaptation of Kmett’s parameterized monads [45] to enforce information flow poli-

cies in Haskell. In particular, they decouple the definitions of bind, (>>=) and sequence,

(>>), which is important for precise enforcement of information flow. For example, the

expression m »= f passes the value of m to the function f, whereas m » f discards the

value, processing only the side effects. Thus, the label on the result of f must be at least

as restrictive as m for (>>=), but not for (>>).

SecLib [74] uses a monad to enforce simple information flow policies. Downgrading

is constrained by restricting access to constructors that act a capabilities for declassifi-

cation or endorsement.

LIO [81] is a Haskell library that enforces information flow control dynamically

using a monad that maintains a floating label at run time that is analogous to Flame’s

static pc label. Using sensitive data raises this label, and side-effects are limited to

ensure information security is preserved, similar to the IO API provided by Flame. LIO

is limited to IO effects, but LMonad [69] extends LIO to constrain information flow on

arbitrary monads. HLIO [19] enforces both static and dynamic information flow control,

and uses many of the same techniques as Flame for dependent programming in Haskell.

The formal results presented in LIO [81] and HLIO [19] do not permit policies to be

downgraded. LIO implementations mediate downgrading with capabilities that permit

new flows to be enabled. These systems do not offer a semantic security condition

in the presence of downgrading capabilities. Waye et al. [89] present approaches to

controlling downgrading in DCLabels, a label model often used in LIO. One of these

approaches, robust privileges, is conjectured to enforce a property analogous to robust

declassification and qualified robustness in the DLM. Flame controls downgrading using

flow-limited authorization, modeled formally in FLAC, which enforces noninterference

and robust declassification.
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CHAPTER 7

CONCLUSION

In decentralized and distributed settings, existing mechanisms for both DIFC and

authorization exhibit security vulnerabilities. The core problem is that neither security

mechanism tracks how information flows through the authorization process itself. Con-

sequently, both mechanisms introduce side channels, and DIFC systems are subject to

newly identified delegation loopholes and poaching attacks. When the trust configura-

tion is dynamic and can be affected by partially trusted principals, additional controls

are needed to make relabeling secure.

Flow-limited authorization is a simple, coherent, and powerful way to address a set

of fundamental, interconnected security issues. The Flow-Limited Authorization Model,

or FLAM, unifies principals with information flow policies through a novel principal al-

gebra. It supports integrated reasoning about both authorization and information flow

control so that delegations are trusted only when appropriate and kept secret when nec-

essary; further, authorization side channels are explicitly controlled. A key insight is

that relabeling information flow policies is really a downgrading operation that can be

made secure by preventing untrusted principals from influencing relabeling decisions.

We have formalized FLAM in Coq and proved strong results: FLAM provides robust

authorization, a security condition that bounds an attacker’s influence on authorization

decisions and eliminates side-channels, even when the attacker is able to modify the

trust configuration and make arbitrary queries.

Our FLAM prototype implements the FLAM principal normalization algorithm and

system of inference rules (with the exception of some robustness rules). This prototype

efficiently answers FLAM queries using a specialized caching protocol.

The Flow-Limited Authorization Calculus, or FLAC, builds upon this work, leverag-

ing FLAM as the theoretical framework for an authorization logic and secure program-
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ming model. Existing security models do not account fully for the interactions between

authorization and information flow. The result is that both the implementations and the

uses of authorization mechanisms can lead to insecure information flows that violate

confidentiality or integrity. The security of information flow mechanisms can also be

compromised by dynamic changes in trust.

FLAC integrates these two security paradigms, controlling the interactions between

dynamic authorization and secure information flow. FLAC offers strong guarantees and

can serve as the foundation for building software that implements and uses authorization

securely. Further, FLAC can be used to reason compositionally about secure authoriza-

tion and secure information flow, guiding the design and implementation of future secu-

rity mechanisms. It also enables new DIFC analogues for existing security mechanisms

like role-based access control, bearer credentials, and commitment schemes.

We have instantiated the FLAC model for secure programming in Haskell. Flame

is a library that enforces flow-limited authorization for Haskell programs by modeling

information flow and authorization as monadic effects. We use Flame to integrate di-

verse existing authorization mechanisms into the FLAC model, from password checkers

to bearer credential schemes like Macaroons. Our experience indicates that Haskell pro-

grammers can secure their programs with Flame without significantly deviating from

their familiar design patterns.
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APPENDIX A

FLAM APPENDIX

A.1 FLAM acts-for proof search algorithm

1 function actsForProof(ActsForQuery query, ProofSearchCache cache):

2 input: query - the acts-for relationship being queried

3 cache - initially empty; caches intermediate results obtained during the proof search

4 returns: a ProofSearchResult, containing a result type (PROVED, PRUNED, or FAILED)

5 and some optional data (a proof for PROVED results, or a progress condition for PRUNED

results)

6
7 // Check the cache.

8 if cache has cached result for query: return cached result

9
10 // Cache miss. Put a placeholder result for the query in the cache (to avoid infinite recursion).

11 update(cache, query, PRUNED, query)

12
13 // Search for a proof.

14 ProofSearchResult result ← findActsForProof(query, cache)

15 update(cache, query, result.type, result.data)

16 return result

17
18 function findActsForProof(ActsForQuery query, ProofSearchCache cache):

19 // A boolean formula expressing the conditions for making further progress on this proof, in the

20 // event the search is pruned.

21 ProgressCondition progressCondition ← False

22
23 for each applicable rule instance r:

24 // ⊥ is a special boolean formula that is an identity with respect to both conjunction and

25 // disjunction.

26 ProgressCondition ruleConditions ← ⊥
27 boolean success ← true

28 list subproofs ← []

29
30 for each premise p in r:

31 ProofSearchResult subqueryResult ← actsForProof(p, cache)

32 if subqueryResult.type = PROVED: add subqueryResult.proof to subproofs

33 else:

34 success ← false

35 if subqueryResult.type = PRUNED:

36 ruleConditions ← ruleConditions ∧ subqueryResult.progressCondition

37 else if subqueryResult.type = FAILED:

38 ruleConditions ← ⊥
39 break

40
41 if success:

42 return new ProofSearchResult(type ← PROVED, data ← new Proof(r, subproofs))

43
44 progressCondition ← progressCondition ∨ ruleConditions

45
46 // No proof found.

47 if progressCondition = False:

48 return new ProofSearchResult(type ← FAILED)
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49
50 return new ProofSearchResult(type ← PRUNED, data ← progressCondition)

A.2 Normalization algorithm

We present the normalization algorithm as a set of rewriting rules that show how to

combine normal-form principals to obtain another normal-form principal.

normJ
→ (∗,→) = J→

normJ
→ (∗,←) =⊥

normJ
← (∗,→) =⊥

normJ
← (∗,←) = J←

normJ1
→∧J2

← (∗,→) = J1→

normJ1
→∧J2

← (∗,←) = J2←

normJ (∗,→) = J→

normJ (∗,←) = J←

norm:(P, J→) = normnorm
:(P,J)(∗,→)

norm:(P, J←) = normnorm
:(P,J)(∗,←)

norm:(J→, k) = J→ : k

norm:(J←, k) = J← : k

norm:(J→, T : O) = (J→) : (T : O)

norm:(J←, T : O) = (J←) : (T : O)

norm:(J1→ ∧ J2←, P ) = norm∧(norm:(J1→, P ), norm:(J2←, P ))

norm:(J1 ∧ J2, P ) = norm∧(norm:(J1, P ), norm:(J2, P ))

norm:(P, J1→ ∧ J2←) = norm∧(norm:(P, J1→), norm:(P, J2←))

norm:(P, J1 ∧ J2) = norm∧(norm:(P, J1), norm:(P, J2))

norm:(M1 ∨M2, P ) = norm∨(norm:(M1, P ), norm:(M2, P ))

norm:(P,M1 ∨M2) = norm∨(norm:(P,M1), norm:(P,M2))

norm:(T : O, k) = (T : O) : k

norm:(T1 : O1, T2 : O2) = (T1 : O1) : (T2 : O2)

norm:(k, T : O) = k : (T : O)

norm:(k1, k2) = k1 : k2
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norm∧(J→, k) = norm∧(k, J→) = (J ∧ k)→ ∧ k←

norm∧(J1→, J2→) = (J1 ∧ J2)→

norm∧(J→, J←) = norm∧(J←, J→) = J

norm∧(J1→, J2←) = norm∧(J2←, J1→) = J1→ ∧ J2←

norm∧(J→, T : O) = norm∧(T : O, J→)

= (J ∧ (T : O))→ ∧ (T : O)←

norm∧(J→, J1→ ∧ J2←) = norm∧(J1→ ∧ J2←, J→)

= (J ∧ J1)→ ∧ J2←

norm∧(J1→, J2) = norm∧(J2, J1→) = (J1 ∧ J2)→ ∧ J2←

norm∧(J→,M) = norm∧(M,J→)

= (J ∧M)→ ∧M←

norm∧(J←, k) = norm∧(k, J←) = k→ ∧ (J ∧ k)←

norm∧(J1←, J2←) = (J1 ∧ J2)←

norm∧(J←, T : O) = norm∧(T : O, J←)

= (T : O)→ ∧ (J ∧ (T : O))←

norm∧(J←, J1→ ∧ J2←) = norm∧(J1→ ∧ J2←, J←)

= J1→ ∧ (J ∧ J2)←

norm∧(J1←, J2) = norm∧(J2, J1←) = J2→ ∧ (J1 ∧ J2)←

norm∧(J←,M) = norm∧(M,J←)

=M→ ∧ (J ∧M)←

norm∧(T : O, k) = norm∧(k, T : O) = (T : O) ∧ k

norm∧(T1 : O1, T2 : O2) = (T1 : O1) ∧ (T2 : O2)

norm∧(J1→ ∧ J2→, k) = norm∧(k, J1→ ∧ J2→)

= (J1 ∧ k)→ ∧ (J2 ∧ k)←

norm∧(J, k) = norm∧(k, J) = J ∧ k

norm∧(J1→ ∧ J2→, T : O) = norm∧(T : O, J1→ ∧ J2→)

= (J1 ∧ (T : O))→ ∧ (J2 ∧ (T : O))←

norm∧(J, T : O) = norm∧(T : O, J) = J ∧ (T : O)
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norm∧(J1→ ∧ J2→,M) = norm∧(M,J1→ ∧ J2→)

= (J1 ∧M)→ ∧ (J2 ∧M)←

norm∧(J,M) = norm∧(M,J) = J ∧M

norm∧(M,k) = norm∧(k,M) = M ∧ k

norm∧(M,T : O) = norm∧(T : O,M) = M ∧ (T : O)

norm∧(M1,M2) =M1 ∧M2

norm∨(J→, k) = norm∨(k, J→)

= (norm∨(J, k))→

norm∨(J1→, J2→) = (norm∨(J1, J2))→

norm∨(J1→, J2←) = norm∨(J2←, J1→) = ⊥

norm∨(J→, T : O) = norm∨(T : O, J→)

= (norm∨(J, T : O))→

norm∨(J1→, J2→ ∧ J3←) = norm∨(J2→ ∧ J3←, J1→)

= (norm∨(J1, J2))→

norm∨(J1→, J2) = norm∨(J2, J1→) = (norm∨(J1, J2))→

norm∨(J→,M) = norm∨(M,J→) = (norm∨(J,M))→

norm∨(J←, k) = norm∨(k, J←)

= (norm∨(J, k))←

norm∨(J1←, J2←) = (norm∨(J1, J2))←

norm∨(J←, T : O) = norm∨(T : O, J←)

= (norm∨(J, T : O))←

norm∨(J1←, J2→ ∧ J3←) = norm∨(J2→ ∧ J3←, J1←)

= (norm∨(J1, J3))←

norm∨(J1←, J2) = norm∨(J2, J1←) = (norm∨(J1, J2))←

norm∨(J←,M) = norm∨(M,J←) = (norm∨(J,M))←

norm∨(T : O, k) = norm∨(k, T : O) = (T : O) ∨ k

norm∨(T1 : O1, T2 : O2) = (T1 : O1) ∨ (T2 : O2)

norm∨(J1→ ∧ J2→, k) = norm∨(k, J1→ ∧ J2→)

= (norm∨(J1, k))→ ∧ (norm∨(J2, k))←
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norm∨(J1 ∧ J2, k) = norm∨(k, J1 ∧ J2)

= norm∨(J1, k) ∧ norm∨(J2, k)

norm∨(J1→ ∧ J2→, T : O) = norm∨(T : O, J1→ ∧ J2→)

= (norm∨(J1, T : O))→ ∧ (norm∨(J2, T : O))←

norm∨(J1 ∧ J2, T : O) = norm∨(T : O, J1 ∧ J2)

= norm∨(J1, T : O) ∧ norm∨(J2, T : O)

norm∨(J1→ ∧ J2→, J) = norm∨(J, J1→ ∧ J2→)

= (norm∨(J1, J))→ ∧ (norm∨(J2, J))←

norm∨(J1 ∧ J2, J) = norm∨(J, J1 ∧ J2)

= norm∨(J1, J) ∧ norm∨(J2, J)

norm∨(T : O,M) = norm∨(M,T : O) = (T : O) ∨M

norm∨(T1 : O1, T2 : O2) = (T1 : O1) ∨ (T2 : O2)

norm∨(J1→ ∧ J2→,M) = norm∨(M,J1→ ∧ J2→)

= (norm∨(J1,M))→ ∧ (norm∨(J2,M))←

norm∨(J1 ∧ J2,M) = norm∨(M,J1 ∧ J2)

= norm∨(J1,M) ∧ norm∨(J2,M)

norm∨(M,k) = norm∨(k,M) = M ∨ k

norm∨(M,T : O) = norm∨(T : O,M) = M ∨ (T : O)

norm∨(M1,M2) =M1 ∨M2
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APPENDIX B

FLAC APPENDIX

B.1 Proofs of FLAC noninterference and robustness

Lemma 4 (Soundness). If e −→∗ e′ then bec1 −→ be′c1 and bec2 −→ be′c2.

Proof. By inspection of the rules in Figure 4.5 and Figure B.1.

Lemma 5 (Completeness). If bec1 −→∗ v1 and bec2 −→∗ v2, then there exists some v

such that e −→∗ v.

Proof. Assume bec1 −→∗ v1 and bec2 −→∗ v2. The extended set of rules in Figure B.1

always move brackets out of subterms, and therefore can only be applied a finite num-

ber of times. Therefore, by Lemma 4, if e diverges, either bec1 or bec2 diverge; this

contradicts our assumption.

It remains to be shown that if the evaluation of e gets stuck, either bec1 or bec2

gets stuck. This is easily proven by induction on the structure of e. Therefore, since

we assumed beci −→∗ vi, then e must terminate. Thus, there exists some v such that

e −→∗ v.

Lemma 6 (Substitution). If Π; Γ, x : s′; pc ` e : s and Π; Γ; pc ` v : s′ then Π; Γ; pc `

e[x 7→ v] : s.

Proof. By induction on the derivation of Π; Γ, x :s′; pc ` e : s.

Lemma 7 (Type substitution). If Π; Γ, X; pc ` e : s then Π; Γ; pc ` e[X 7→ s′] : s[X 7→

s′].

Proof. By induction on the derivation of Π; Γ, X; pc ` e : s.

Lemma 8 (Projection). If Π; Γ; pc ` e : s then Π; Γ; pc ` beci : s
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Syntax extensions
v ::= . . .

∣∣ (v | v)
e ::= . . .

∣∣ (e | e)

Typing extensions

[BRACKET]

Π; Γ; pc′ ` e1 : s Π; Γ; pc′ ` e2 : s
Π; pc; pc 
 (H t pc)π v pc′π Π; pc ` Hπ ≤ s

Π; Γ; pc ` (e1 | e2) : s

Evaluation extensions

[B-STEP]
ei −→ e′i ej = e′j {i, j} = {1, 2}

(e1 | e2) −→ (e′1 | e′2)

[B-APP] (v1 | v2) v −→ (v1 bvc1 | v2 bvc2) [B-TAPP] (v1 | v2) s −→ (v1 s | v2 s)

[B-UNPAIR] proji (v1 | v2) −→ (proji v1 | proji v2)

[B-CASE]
case (v1 | v2) of inj1(x). e1 | inj2(x). e2 −→(

case v1 of inj1(x). be1c1 | inj2(x). be2c1∣∣ case v2 of inj1(x). be1c2 | inj2(x). be2c2
)

[B-UNITM] η` (v1 | v2) −→ (η` v1 | η` v2)

[B-BINDM] bind x = (v1 | v2) in e −→ (bind x = v1 in bec1 | bind x = v2 in bec2)

[B-ASSUME] assume (v1 | v2) in e −→ (assume v1 in bec1 | assume v2 in bec2)

Figure B.1: Extensions for bracketed semantics

Proof. By induction on the derivation of Π; Γ; pc ` e : s.

Lemma 9 (Values). If Π; Γ; pc ` v : s, then Π; Γ; pc′ ` v : s for any pc′.

Proof. By induction on the derivation of Π; Γ; pc ` e : s.

Lemma 10 (Robust transitivity). If Π; pc; ` 
 p < q and Π; pc; ` 
 q < r, then

Π; pc; ` 
 p < r.

Proof. This is a consequence of the FLAM’s Principal Factorization Lemma, Lemma 1

in Section 3.4, and verified in Coq.

Lemma 11 (Voices). If Π; pc; ` 
 p < q then Π; pc; ` 
 ∇(p) < ∇(q).
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Proof. By induction on the derivation of Π; pc; ` 
 p < q. L � p < q implies Π; pc; ` 


∇(p) < ∇(q) (verified in Coq), and each 〈p < q | `〉 ∈ Π has Π; pc; ` 
 ∇(p→) <

∇(q→), so 〈p < q | `〉 ∈ Π implies Π; pc; ` 
 ∇(p) < ∇(q). The remaining cases are

trivial.

Lemma 12 (pc reduction). If Π; Γ; pc′ ` e : s and Π; pc; pc 
 pc v pc′, then Π; Γ; pc `

beci : s.

Proof. By induction on the derivation of Π; Γ; pc′ ` e : s and Lemma 10. Note that

BRACKET does not preserve this property, hence the projection of e is necessary.

Theorem 4 (Subject reduction). Suppose Π; Γ; pc ` e : s and beci −→ be′ci. If i ∈

{1, 2} then assume Π; pc; pc 
 H v pc. Then Π; Γ; pc ` e′ : s.

Proof.

Case (E-APP). e is (λ(x : s′)[pc′]. e′) v, so by APP we have Π; Γ; pc ` v : s′ and

Π; pc; pc 
 pc v pc′ and by LAM we have Π; Γ, x : s′; pc′ ` e′ : s. Then by Lemma 9

we have Π; Γ; pc′ ` v : s′, and by Lemma 6 we obtain Π; Γ; pc′ ` e′[x 7→ v] : s.

Case (E-TAPP). e is (ΛX. e) s′ and s is s[X 7→ s′], so by TAPP we have

Π; Γ; pc ` e : ∀X. s. Then by TLAM, we have Π; Γ, X; pc ` e : s and by Lemma 7

we obtain Π; Γ; pc ` e[X 7→ s] : s[X 7→ s′].

Case (E-CASE). e is

(case (inj1 v) of inj1(x). e1 | inj2(x). e2)

By INJ we have Π; Γ; pc ` v : s1, and CASE gives us Π; Γ; pc ` e1 : s. Therefore, by

Lemma 6 we have Π; Γ; pc ` e1[x 7→ v] : s.

Case (E-BINDM). e is bind x = (η` v) in e′ so by BINDM we have Π; Γ; pc ` (η` v) :

` says s′ and Π; Γ; pc t ` ` e′ : s. Rule UNITM and Lemma 9 give us Π; Γ; pc t ` `

v : s′. Therefore, by Lemma 6 we have Π; Γ; pc t ` ` e′[x 7→ v] : s.
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Case (E-ASSUME). e is assume v in e′′ and e′ is e′′ where v, Let Π′ = Π, 〈p < q | pc〉.

By ASSUME we have Π; Γ; pc ` v : (p < q) and Π′; Γ; pc ` e′′ : s. Therefore, by

WHERE (choosing pc′ = pc) we have Π; Γ; pc ` (e′′ where v) : s.

Case (E-EVAL). e is E[e]. By induction, Π; Γ; pc ` e′ : s′. Therefore, Π; Γ; pc ` E[e′] :

s.

Case (W-*). We prove the case for W-APP here. e is (v′′ where v) v′ and e′ is

v′′ v′ where v. By APP and WHERE we have

Π, 〈p < q | pc′〉; Γ; pc′ ` v′′ : s′ pc′′−−→ s

Π; Γ; pc ` v′ : s′ Π; pc; pc 
 pc v pc′′ Π; Γ; pc ` v : (p < q)

Π; pc′; pc′ 
 pc′ v pc Π; pc′; pc′ 
 pc′ < ∇(q)

and Π; pc′; pc′ 
 ∇(p→) < ∇(q→)

From this, we obtain Π, 〈p < q | pc′〉; Γ; pc′ ` v′′v′ : s via APP and Lemma 10. Then

we get Π; Γ; pc ` v′′ v′ where v : s via WHERE. The remaining cases follow similarly

to the case for W-APP, but using the relevant typing rule for the underlying term (e.g.,

UNPAIR, or CASE, et cetera) instead of APP.

Case (B-STEP). e is (e1 | e2). Assume without loss of generality that e1 −→ e′1 and

e2 = e′2. By BRACKET, Π; Γ; pc ` e1 : s. By induction, Π; Γ; pc ` e′1 : s, thus

BRACKET gives us Π; Γ; pc ` (e′1 | e′2) : s.

Case (B-APP). e is (v1 | v2) v. By APP we have Π; Γ; pc ` (v1 | v2) : s′ pc′−→ s and

Π; Γ; pc ` v : s′, and by BRACKET, we have Π; pc ` H ≤ (s′ pc′−→ s). By P-FUN, we

have Π; pc ` H ≤ s. By Lemma 8, we have Π; Γ; pc ` vi : (s′ pc′−→ s). Therefore, by

APP and BRACKET, we have Π; Γ; pc ` (v1 bvc1 | v2 bvc2) : s.

Case (B-TAPP). e is (v1 | v2) s′. By TAPP we have Π; Γ; pc ` (v1 | v2) : ∀X. s, and

by BRACKET, we have Π; pc ` H ≤ (∀X. s). By P-TFUN, we have Π; pc ` H ≤ s.

By Lemma 8, we have Π; Γ; pc ` vi : (∀X. s). Therefore, by TAPP and BRACKET, we

138



have Π; Γ; pc ` (v1 s
′ | v2 s

′) : s.

Case (B-UNPAIR). e is proji (v1 | v2) and e′ is (proji v1 | proji v2). By UNPAIR,

Π; Γ; pc ` proji (v1 | v2) : s, and by BRACKET, we have Π; pc ` H ≤ s. Then

by Lemma 8, we have Π; Γ; pc ` proji vi : s, so UNPAIR and BRACKET give us

Π; Γ; pc ` (proji v1 | proji v2) : s.

Case (B-CASE). e is

(case (v1 | v2) of inj1(x). e1 | inj2(x). e2)

and e′ is

(case v1 of inj1(x). be1c1 | inj2(x). be2c1

| case v2 of inj1(x). be1c2 | inj2(x). be2c2)

By BRACKET, for some pc′ we have Π; Γ; pc′ ` vi : si and Π; pc; pc 
 (H t pc)π v

pc′π. By CASE and Lemma 8, we have Π; pc ` pc′ ≤ s, therefore Lemma 10 gives

us Π; pc ` H ≤ s. We also have Π; Γ; pc ` be1ci : s and Π; Γ; pc ` be2ci : s for

i ∈ {1, 2}. Therefore, by CASE we have Π; Γ; pc ` be′ci : s, and by BRACKET, we

have Π; Γ; pc ` e′ : s.

Case (B-UNITM). s is ` says s, e is η` (v1 | v2), and e′ is (η` v1 | η` v2) By UNITM,

Π; Γ; pc ` (v1 | v2) : s, and by BRACKET, we have Π; pc ` H ≤ s. Then by P-

LBL1, we have Π; pc ` H ≤ ` says s. Therefore UNITM and BRACKET give us

Π; Γ; pc ` (η` v1 | η` v2) : ` says s.

Case (B-BINDM). e is bind x = (v1 | v2) in e′′, and e′ is

(bind x = v1 in be′′c1 | bind x = v2 in be′′c2)

By BINDM and BRACKET, for some pc′ we have Π; Γ; pc′ ` vi : s′ and Π; pc; pc 


(H t pc)π v pc′π. Also, by BINDM and Lemma 10, we have Π; pc ` H ≤ s. Then,
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using Lemma 8, we have Π; Γ; pc ` bind x = vi in be′′ci : s, so BRACKET gives us

Π; Γ; pc ` (bind x = v1 in be′′c1 | bind x = v2 in be′′c2) : s.

Case (B-ASSUME). e is assume (〈p1 < q1〉 | 〈p2 < q2〉) in e′′, and e′ is

(assume v1 in be′′c1 | assume v2 in be′′c2). By ASSUME and BRACKET, for some pc′

we have Π; Γ; pc′ ` vi : (p < q) and Π; pc; pc 
 (H t pc)π v pc′π. By ASSUME and

Lemma 8, we have Π; pc ` pc′ ≤ s, therefore Lemma 10 gives us Π; pc ` H ≤ s. We

also have Π; Γ; pc ` vi : (p < q) and Π, 〈p < q | pc〉; Γ; pc ` be′′ci : s for i ∈ {1, 2}.

Therefore, by ASSUME we have Π; Γ; pc ` assume vi in be′′ci : s, and by BRACKET,

we have Π; Γ; pc ` e′ : s.

We extend the result of Lemma 1 to minimal factorizations.

Lemma 13 (Delegation Factorization). If Π; pc; pc 
 p < q and (p, qs, qd) is the mini-

mal static factorization of (p, q), then Π; pc; pc 
 p < qd and

Π; pc; pc 
 pc < ∇(qd)

Proof. A Coq-verified proof in [7] showed that there is some static factorization

(p, q′s, q′d) such that Π; pc; pc 
 p < q′d and Π; pc; pc 
 pc < ∇(q′d). By the defini-

tion of minimal factorization, L � q′d < qd, so L � ∇(q′d) < ∇(qd), and by transitivity

on static acts-for relationships, Π; pc; pc 
 p < qd and Π; pc; pc 
 pc < ∇(qd).

Lemma 3 (Delegation Invariance). Let Π; Γ; pc ` e : s such that e −→ e′ where v.

Then there exist r, t ∈ L and Π′ = Π, 〈rπ < tπ | pc〉 such that Π; Γ; pc ` v : (rπ < tπ)

and Π′; Γ; β; pc ` e′ : s. Moreover, for all principals p and q if Π; pc; pc 1 pc <

∇(qπ)−∇(pπ), then

Π′; pc; pc 1 pπ < qπ.
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Proof. Let (p, qs, qd) be the minimal (Π; pc)-factorization of (p, q) (so Π; pc; pc 
 qd ≡

q − p). First we note that qd 6= ⊥ and thus Π; pc; pc 1 p < qd. Now assume for

contradiction that Π′; pc; pc 
 p < q.

We claim that Π; pc; pc 
 tπ < qd. Assume for contradiction that this is false.

By transitivity Π′; pc; pc 
 p < qd, and since Π; pc; pc 1 p < qd, any derivation

of this must use R-ASSUME with the delegation 〈rπ < tπ | pc〉. This means that

Π; pc; pc 
 qd ≡ tπ ∧ q′d for some q′d where Π; pc; pc 1 tπ < q′d. Assume without loss

of generality that Π; pc; pc 
 p < q′d. Otherwise the same argument would give us that

Π; pc; pc 
 q′d ≡ tπ ∧ q′′d , so qd = tπ∧q′′d so we can let q′d = q′′d . Since all representations

are finite and with each iteration we remove at least one term from q′d, we can only do

this finitely many times until eventually Π; pc; pc 
 p < q′d (possibly because q′d = ⊥).

However, this means that (p, qs ∧ q′d, tπ) is a valid (Π; pc)-factorization of (p, q). Since

Π; pc; pc 1 tπ < q′d by assumption, it is also the case that Π; pc; pc 1 tπ < tπ ∧ q′d,

which contradicts the assumption that (p, qs, qd) is minimal and thus Π; pc; pc 
 tπ < qd.

If π = →, then by WHERE with pc′ = pc, Π; pc; pc 
 pc < ∇(t→) and by

Lemma 11, Π; pc; pc 
 ∇(t→) < ∇(q→d ). Thus, by transitivity, Π; pc; pc 
 pc <

∇(q→d ) which contradicts our assumption. Similarly, if π = ←, by WHERE with

pc′ = pc, Π; pc; pc 
 pc < t←, so by transitivity, Π; pc; pc 
 pc < q←d which again

contradicts our assumption.

Theorem 2 (Noninterference). Let Π; Γ, x :s; pc ` e : ` says bool. If there exists some

H and π such that

1. Π; pc ` Hπ ≤ s

2. Π; pc; pc 1 Hπ v `π

3. (a) if π =→ then Π; pc; pc 1 pc < ∇(H→)−H←

(b) if π =← then Π; pc; pc 1 pc < (`−H)←
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then for all v1, v2 with Π; Γ; pc ` vi : s, if e[x 7→ vi] −→∗ v′i, then v′1 = v′2.

Proof. To prove this, we employ the bracketed semantics. By Lemma 9 Π; Γ;>→ ` vi :

s and thus, for any H , Π; Γ; pc ` (v1 | v2) : s.

We now examine the term e[x 7→ (v1 | v2)]. By Lemma 6, Π; Γ; pc ` e[x 7→

(v1 | v2)] : ` says bool, and by assumption e[x 7→ vi] −→∗ vi. Thus by Lemma 5

there is some v′ such that e[x 7→ (v1 | v2)Hπ] −→∗ v′, and moreover, by Theorem 4

Π; Γ; pc ` v′ : ` says bool.

We will show that v′1 = v′2 by showing that v′ does not contain a bracket term. First

we note that since Π; pc; pc 1 Hπ v `π, v′ cannot itself be a bracketed term. Similarly,

it cannot be the case that v′ = (η` w) where w is bracketed. The only other option is that

v′ = w where u where w contains a bracket term. We will prove this is not the case by

induction on the number of whereπ clauses.

For the base case with zero clauses, we have already shown this. Now we assume

that v′ = w where u and w is not itself a whereπ clause containing a bracketed term.

There are two cases to consider, depending on π.

Case (π =→). In this case condition 2 means Π; pc; pc 1 `→ < H→. Since Π; pc; pc 1

pc < ∇(H→)−H←, Lemma 3 gives us that there is some Π′ such that Π′; Γ; pc ` u :

` says bool and Π′; pc; pc 1 `→ < H→. Thus w cannot itself be a bracket term (or

(η` w′)), and by the inductive hypothesis it is not a where clause containing a bracket,

thus proving that v′ contains no bracketed terms.

Case (π =←). In this case condition 2 means Π; pc; pc 1 H← < `←. Since Π; pc; pc 1

pc < (`−H)←, Lemma 3 and the same argument as the previous case show that w

contains no bracketed terms.

Thus we have that v′ contains no bracketed terms, so

v′1 = bv′c1 = bv′c2 = v′2.
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To prove FLAC enforces robust declassification, we first prove a stronger property

we call noninterference under attacks. This property demonstrates that attacks by low

integrity principals cannot create interfering flows of information. This result uses the

following property of principal subtraction.

Lemma 14. For all principals p, q, and r,

Π; pc; pc 
 (p− q) ∧ (q − r) < p− r.

Proof. Let pd such that Π; pc; pc 
 pd ≡ (p− q) ∧ (q − r). Now consider the following

expression

Π; pc; pc 
 [pd ∨ p] ∧ (p ∨ r) ≡ p ∨ (pd ∧ r)

≡ p ∨ [(p− q) ∧ (r ∧ (q − r))]

< p ∨ [(p− q) ∧ q]

< p ∨ p

≡ p.

Thus we see that for any (Π; pc)-factorization (r, p∨r, pd) of (r, p), Π; pc; pc 
 pd ∨ p <

pd which means Π; pc; pc 
 pd < pd. In particular, since (p− r) represents the minimal

such factorization, Π; pc; pc 
 (p− q) ∧ (q − r) < p− r.

Lemma 15 (Noninterference under attacks). Let e[~•] be a program such that

1. Π; Γ; pc ` e[~•] : ` says bool

2. For all 〈p < q | pc′〉 ∈ Π, Π; pc; pc 
 pc′ v pc

3. Π; pc; pc 1 Hπ v `π

4. (a) if π =→ then Π; pc; pc 1 pc < ∇(H→)−H←

(b) if π =← then Π; pc; pc 1 pc < (`−H)←
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Then for all attacks ~a1 and ~a2 such that Π; Γ; pc ` e[~ai] : ` says bool, if e[~ai] −→∗ vi,

then v1 = v2.

Proof. Without loss of generality, assume ~ai contains only one term, which we will refer

to as ai. Since ~a1 and ~a2 must have the same, finite number of terms n, if this were not

the case we could construct a sequence of attacks ~b0, . . . , ~bn such that ~bi includes the

first i terms of ~a1 and the rest of the terms from ~a2. As each term must type check

independently by HOLE, each of the ~bjs are valid attacks, each differ from the previous

by at most one term, and ~a1 = ~bn and ~a2 = ~b0. Thus it suffices to show that if at most

one term differs, the attacks still produce the same result.

By HOLE, there is some Π′, Γ′, β′, pc′, and type τ such that

• Π′ ⊇ Π,

• Γ′ ⊇ Γ,

• Π′; pc′; pc′ 
 β′ v β,

• Π′; pc′; pc′ 
 pc v pc′,

• Π′; Γ′; β′; pc′ ` [ai]Hπ : τ ,

• Π′; pc′ ` H← ≤ τ .

Define grd(τ) as the most restrictive principal protected by type τ . Specifically, the

principal p such that ∅; pc ` p ≤ τ and for all principals p′ such that ∅; pc ` p′ ≤ τ ,

we have L � p′ v p.

Let Ĥ = grd(τ)π ∧ Hπ′ where π′ 6= π is the opposite projection. We note that

Π; Γ; pc ` e[ai] : ` says bool and Π; pc; pc 
 Ĥπ v grd(τ)π trivially, and we claim

that Condition 4 holds with Ĥ in place of H . We prove this in two cases.

Case (π = →). First we claim that Π; pc; pc 
 pc < ∇(grd(τ)→)−∇(H→). By

Condition 2 and R-WEAKEN, know that Π; pc; pc 
 pc < ∇(grd(τ)→)−∇(H→) if
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and only if Π; pc′; pc′ 
 pc < ∇(grd(τ)→)−∇(H→). Moreover, since Π′; pc′; pc′ 


H→ < grd(τ)→, finite iterated application of Lemma 3 gives us that Π; pc′; pc′ 
 pc <

∇(grd(τ)→)−∇(H→). Therefore Condition 4, Lemma 14, and the definition of Ĥ

give us

Π; pc; pc 1 pc < ∇(Ĥ→)− Ĥ←.

Case (π =←). By the same argument as above noting that HOLE gives us Π′; pc′; pc′ 


H← < grd(τ)←, Π; pc; pc 
 pc < (H − grd(τ))←. Thus by Lemma 14, Π; pc; pc 1

pc < `← − grd(τ)←.

Therefore, if we let x be a fresh variable in e[~•]Hπ , then we can let e′ = e[x]Hπ ,

and Π; Γ, x : τ ; β; pc ` e′ : ` says bool. If we let wi such that ai −→∗ wi, then

e′[x 7→ wi] −→∗ vi and by Theorem 2, v1 = v2.

Theorem 3 (Robust declassification). Let e[~•] be a program such that

1. Π; Γ, x :s,Γ′; pc ` e[~•] : ` says bool

2. Π; pc; pc 1 pc < (`− h)←.

Then for all attacks ~a1 and ~a2 and all inputs v such that Π; Γ, x : s,Γ′; pc ` e[~ai] :

` says bool and Π; Γ; pc ` v : s, if e[~ai][x 7→ v] −→∗ v′i, then v′1 = v′2.

Proof. Let e′[~•] = e[~•][x 7→ v], and let ~a′i = ~ai[x 7→ v]. By Lemma 6, Π; Γ; pc ` e′[~a′i] :

` says bool. Thus by Lemma 15 v′1 = v′2.

B.2 Commitment scheme verification

To prove the desired properties of commitment schemes for boolean values, let s =

bool and recall:

Γcro = commit, receive, open, x :p→ says s, y :p ∧ q← says s
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• q cannot receive a value that hasn’t been committed. Let H = p→ ∧ q←.

For any e and Γcro; pcq ` e : p ∧ q← says bool, observe that Π; pcq ` H ≤

p→ says bool, Π; pcq; pcq 1 H→ v p→, Π; pcq; pcq 1 H← v (p ∧ q)←, and

Π; pcq; pcq 1 pcq < ∇(H→) ∧ (p ∧ q)←. Therefore, by Theorem 2, if e[x 7→

v1] −→∗ v′1 and e[x 7→ v2] −→∗ v′2, then v′1 ' v′2.

• q cannot learn a value that hasn’t been opened. Let H = p→ ∧ q←. For any

e, `, and Γcro; pcq ` e : ` u q→ says bool, Observe that both Π; pcq ` H ≤

p→ says bool and Π; pcq ` H ≤ p ∧ q→ says bool. Therefore, Theorem 2

applies as above for both x and y. Thus if e[x 7→ v1] −→∗ v′1 and e[x 7→ v2] −→∗

v′2, then v′1 ' v′2. and if e[x 7→ v1] −→∗ v′′1 and e[x 7→ v2] −→∗ v′′2 , then v′′1 ' v′′2 .

• p cannot open a value that hasn’t been received. Let H = p→ ∧ p←. For any e

and Γcro; pcp ` e : p←∧ q says bool, observe that Π; pcp ` H ≤ p→ says bool,

Π; pcp; pcp 1 H→ v q→, Π; pcp; pcp 1 H← v (p ∧ q)←, and Π; pcp; pcp 1

pcp < ∇(H→) ∧ (p ∧ q)←. Therefore, by Theorem 2, if e[x 7→ v1] −→∗ v′1 and

e[x 7→ v2] −→∗ v′2, then v′1 ' v′2.
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APPENDIX C

FLAME APPENDIX

C.1 Flame IO API

data IFCHandle (l::KPrin) = NewHdl { unsafeUnwrap :: System.IO.Handle }

mkStdout :: SPrin out -> IFCHandle out

mkStderr :: SPrin err -> IFCHandle err

mkStdin :: SPrin in_ -> IFCHandle in_

hFlush :: (pc v l) => IFCHandle l -> IFC IO pc SU ()

hPrint :: (Show a, pc v l) => IFCHandle l -> a -> IFC IO pc SU ()

hPutChar :: (pc v l) => IFCHandle l -> Char -> IFC IO pc SU ()

hPutStr :: (pc v l) => IFCHandle l -> String -> IFC IO pc SU ()

hPutStrLn :: (pc v l) => IFCHandle l -> String -> IFC IO pc SU ()

hGetChar :: IFCHandle l -> IFC IO pc l Char

hGetLine :: IFCHandle l -> IFC IO pc l String

data IFCRef (l::KPrin) a = IFCRef { unsafeUnwrap :: Data.IORef a}

newIFCRef :: (pc v l) => SPrin l -> a -> IFC IO pc pc (IFCRef l a)

writeIFCRef :: (pc v l) => IFCRef l a -> a -> IFC IO pc SU ()

readIFCRef :: IFCRef l a -> IFC IO pc (pc t l) a

C.2 Haskell source: embargoed secret messages with macaroons

{−# LANGUAGE TypeOperators, PostfixOperators #−}
{−# LANGUAGE DataKinds #−}
{−# LANGUAGE OverloadedStrings #−}
{−# LANGUAGE RebindableSyntax #−}
{−# OPTIONS_GHC −fplugin Flame.Type.Solver #−}
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import Prelude hiding ( return, (>>=), (>>)

, print, putStr, putStrLn, getLine)
import qualified Prelude as P ( return, (>>=), (>>) )

import Data.List
import Data.Proxy

import Data.String
import Data.Hex

import Data.Maybe
import Flame.Time

import Data.Time as T

import Data.ByteString.Char8 (ByteString, pack, unpack, empty)

import Flame.Prelude
import Flame.Macaroons

import qualified Macaroons as M

import Flame.Data.Principals

import Flame.Type.Principals

import Flame.Type.IFC

import Flame.Type.TCB.IFC

import Flame.IO
import qualified System.IO as SIO

import Data.IORef as SIO

import Flame.IFCRef as Ref

import Data.Functor.Identity

{− Static principals −}
alice = SName (Proxy :: Proxy "Alice")

type Alice = KName "Alice"

bob = SName (Proxy :: Proxy "Bob")

type Bob = KName "Bob"

carol = SName (Proxy :: Proxy "Carol")

type Carol = KName "Carol"

{− Alice ’s birthday (shared with Bob and Carol) −}
birthday :: Lbl (I Alice ∧ C (Alice ∨ Bob ∨ Carol)) Day

birthday = label $ fromGregorian 2016 9 3

{− The macaroon key −}
cKey :: Lbl Carol ByteString

cKey = label "secret"
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cKeyName :: ByteString

cKeyName = "key"

carolLoc = "loc://carol"

carolOutputMacaroon :: IFCHandle ((C (Bob ∨ Carol)) ∧ (I Carol))

-> IFC IO ((C (Bob ∨ Carol)) ∧ (I Carol)) SU ()

carolOutputMacaroon toBobFromCarol =

assume ((*∇) bob < (*∇) carol) $

assume ((bob*→) < (carol*→)) $ do
mac <- liftx (carol*←) carolmac

let (serialized, MacaroonSuccess) = serialize mac MacaroonV1 in
hPutStrLnx pc toBobFromCarol $ unpack serialized

where
pc = ((bob *∨ carol)*→) *∧ (carol*←)

carolmac :: Lbl Carol Macaroon

carolmac = bind cKey $ \key ->

case create carolLoc key cKeyName of
(m, MacaroonSuccess) -> label m

_ -> error "Error creating macaroon"

checkTimeAfter :: SPrin pc -> SPrin l -> String -> IFC IO pc l Bool
checkTimeAfter pc l caveat =

if "time >= " ‘isPrefixOf‘ caveat then
case (parseTimeM True defaultTimeLocale "%Y-%m-%d" $ drop 7 caveat) of
Just when -> do
now <- getCurrentTimex pc

return $ (utctDay now) >= when
Nothing -> protect False

else protect False

carolUpdateMessage :: SPrin p

-> IFCHandle (C (p ∨ Carol) ∧ I p)

-> IFCRef Carol String
-> IFC IO Carol SU ()

carolUpdateMessage p from_p message =

do (mac, err) <- inputMac

if err /= MacaroonSuccess then do
error "Could not deserialize macaroon."

else do
v <- verifierCreatex pc pc l

satisfyExactx pc v "op: update"
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satisfyGeneralx pc v (checkTimeAfter pc l)

(res, _) <- verifyx pc v mac cKey []

if res then
assume ((p*←) < (carol*←)) $ do
msg <- hGetLinex pc from_p

writeIFCRefx pc message msg

else
error "Could not verify macaroon."

where pc = carol

l = carol

inputMac :: IFC IO Carol Carol (Macaroon, ReturnCode)

inputMac = assume ((p*←) < (carol*←)) $ do
mac <- hGetLinex pc from_p

return $ deserialize . pack $ mac

bobOutputMacaroon :: IFCHandle (C (Bob ∨ Carol) ∧ I Carol)

-> IFCHandle (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

-> IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob) SU ()

bobOutputMacaroon fromCarol toAlice =

do day <- getBirthday

(mac, err) <- inputMac

let (mac1, MacaroonSuccess) = addFirstPartyCaveat mac (after day)

(mac2, MacaroonSuccess) = addFirstPartyCaveat mac1 "op: read"

(serialized, MacaroonSuccess) = serialize mac2 MacaroonV1 in
hPutStrLnx pc toAlice $ unpack serialized

where after day = pack $ "time >= "

++ formatTime defaultTimeLocale

"%Y-%m-%d" day

pc = ((alice *∨ bob *∨ carol)*→) *∧ (bob*←)

getBirthday :: IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

(C (Alice ∨ Bob ∨ Carol) ∧ I Bob) Day

getBirthday = assume ((alice*←) < (bob*←)) $

liftx pc $ relabel birthday

inputMac :: IFC IO (C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

(C (Alice ∨ Bob ∨ Carol) ∧ I Bob)

(Macaroon, ReturnCode)

inputMac = assume ((carol*←) < (bob*←)) $

assume ((*∇) (alice *∨ carol) < (*∇) bob) $

assume ((alice *∨ carol) < bob) $ do
mac <- hGetLinex bob fromCarol

return $ deserialize . pack $ mac

carolOutputMessage :: SPrin p
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-> IFCHandle (C (p ∨ Carol) ∧ I p)

-> IFCHandle (C (p ∨ Carol) ∧ I Carol)

-> IFCRef Carol String
-> IFC IO Carol SU ()

carolOutputMessage p from_p to_p message =

do (mac, err) <- inputMac

if err /= MacaroonSuccess then do
error "Could not deserialize macaroon."

else do
v <- verifierCreatex pc pc l

satisfyExactx pc v "op: read"

satisfyGeneralx pc v (checkTimeAfter pc l)

(res, _) <- verifyx pc v mac cKey []

if res then
assume ((*∇) p < (*∇) carol) $

assume (p < carol) $ do
msg <- readIFCRefx carol message

hPutStrLnx carol to_p msg

else
error "Cannot verify macaroon."

where pc = carol

l = carol

inputMac :: IFC IO Carol Carol (Macaroon, ReturnCode)

inputMac = assume ((p*←) < (carol*←)) $ do
mac <- hGetLinex carol from_p

return $ deserialize . pack $ mac

main :: IO (Lbl SU ())

main = do
{− create a protected reference for bob’s message −}
lmsg <- runIFC $ newIFCRefx publicTrusted carol "no message"

let message = unlabelPT lmsg in do
{− carol sends bob a macaroon −}
runIFC $ carolOutputMacaroon toBobFromCarol

{− carol sends bob a macaroon −}
runIFC $ carolUpdateMessage bob fromBobToCarol message

{− bob gets macaroon from carol , creates caveats , and sends alice a macaroon −}
runIFC $ bobOutputMacaroon fromCarolToBob toAliceFromBobForCarol

{− bob gets macaroon from carol , creates caveats , and sends alice a macaroon −}
runIFC $ carolOutputMessage alice fromAliceToCarol toAliceFromCarol message

where
{− Channel: Carol −> Bob −}
toBobFromCarol = mkStdout (((bob *∨ carol)*→) *∧ (carol*←))
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fromCarolToBob = mkStdin (((bob *∨ carol)*→) *∧ (carol*←))

{− Channel: Bob −> Carol −}
toCarolFromBob = mkStdout (((bob *∨ carol)*→) *∧ (bob*←))

fromBobToCarol = mkStdin (((bob *∨ carol)*→) *∧ (bob*←))

{− Channel: Bob −> Alice −}
toAliceFromBobForCarol = mkStdout (((alice *∨ bob *∨ carol)*→) *∧ (bob*←))

{− Channel: Alice −> Carol −}
fromAliceToCarol = mkStdin (((alice *∨ carol)*→) *∧ (alice*←))

{− Channel: Carol −> Alice −}
toAliceFromCarol = mkStdout (((alice *∨ carol)*→) *∧ (carol*←))

(>>) = (P.>>)

(>>=) = (P.>>=)
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