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Abstract. We present a novel leak detection algorithm. To prove the absence of
a memory leak, the algorithm assumes its presence and runs a backward heap
analysis to disprove this assumption. We have implemented this approach in a
memory leak analysis tool and used it to analyze several routines that manipulate
linked lists and trees. Because of the reverse nature of the algorithm, the analysis
can locally reason about the absence of memory leaks. We have also used the
tool as a scalable, but unsound leak detector for C programs. The tool has found
several bugs in larger programs from the SPEC2000 suite.

1 Introduction

Low-level programming languages such as C and C++ provide manual memory man-
agement and require explicit deallocation of program structures by programmers. As a
result, memory leaks represent a standard cause of errors in such languages. Memory
leaks are difficult to identify, as the only symptom is a slow increase in memory con-
sumption. For long-running applications, this eventually causes to the system running
out of memory. In recent years, a number of static memory leak analysis and verification
techniques have been developed [1–5].

This paper presents a new static memory leak detection analysis that reasons about
the absence of errors by disproving their presence. To show that an assignment in the
program is leak-free, the analysis assumes the opposite – that the assignment causes the
program to lose the last reference to a heap cell, called the error cell. Then, the algo-
rithm performs a backward dataflow analysis, trying to contradict the feasibility of the
error cell. If each backward path leads to a contradiction, then the original assumption
was wrong. Otherwise, if there is a backward path that validates the feasibility of the
error cell, the analysis reports a program trace that leads to the error. The memory leak
analysis by contradiction approach has several appealing properties:

– It can be used to reason about the presence or absence of leaks in incomplete pro-
grams. It can determine that program fragments are leak-free regardless of their
input heap, or identify the inputs under which the program fragment may leak;

– It can be used in interactive tools in a demand-driven fashion, where programmers
query particular statements in the program, asking about the possibility of memory
leaks at those points.
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To the best of our knowledge, existing approaches to memory leak analysis and detec-
tion cannot give such guarantees, or be used in such a way.

We have implemented the proposed algorithm in a prototype analysis tool and used
it to analyze memory leaks in standard library functions that manipulate recursive heap
structures. The tool can show that most of these programs do not leak memory, regard-
less of their inputs, or leak only for malformed inputs. We have also used the tool to
find errors in larger programs from the SPEC2000 benchmarks suite. In this setting, the
tool analyzes each program assignment, and uses a cutoff to limit the amount of back-
ward exploration per assignment. The tool has found several memory leaks in these
programs.

The rest of the paper is organized as follows. Section 2 presents the scope of this
paper. Section 3 illustrates the main idea with a simple example. We show the reverse
heap analysis algorithm in Section 4. Experimental results are presented in Section 5.
Finally, we discuss related work in Section 6, and conclude in Section 7.

2 Leak Classification and Analysis Scope

The notion of a memory leak is closely related to the notion of lifetime of heap cells: a
cell is being leaked if the program or the run-time system doesn’t reclaim its memory
when the lifetime has ended. However, there are different ways of defining lifetime.
These can be classified into three main categories, based on the following heap cell
properties:

1. Referencing: the lifetime of a cell ends when it there are no references to that
cell (excluding references from dead cells). This notion is used, for instance, by
reference-counting garbage collectors.

2. Reachability: the lifetime of a cell ends when it is no longer reachable from program
variables. This notion is used by tracing and copying garbage collectors.

3. Liveness: the lifetime of a cell ends after the last access to that cell. This is the most
precise notion of lifetime.

The above three classes are increasingly stronger notions of lifetime; they correspond
to three classes of leaks. A system that targets a given class of leaks cannot make guar-
antees about leaks in the stronger classes. For instance, reference counting approaches
do not detect unreachable heap cycles; and reachability-based approaches do not detect
cells that are still reachable, but no longer needed (sometimes referred to as “Java mem-
ory leaks”). The scope of this work is the analysis of referencing leaks. As some of the
existing static analyses [6, 4], our technique does not detect unreachable cycles.

The analysis is sound for the imperative language described in Section 4 (essentially
a subset of C without pointer arithmetic, unions, and casts), provided that the underlying
points-to information is sound. We use our implemented tool in two settings:

– Verification. We use the tool to verify the absence of referencing leaks for algo-
rithms written in our language.

– Bug-finding. We also use our implementation as a scalable error-detection tool that
targets all of the C language. In this setting, the tool makes several unsound assump-
tions. Despite of being unsound, the tool is useful at identifying potential errors,
with a relatively low number of false warnings.



1 typedef struct list {
2 int data;
3 struct list *next;
4 } List;
5
6 List *reverse(List *x) {
7 List *y, *t;
8 y = NULL;
9 while (x != NULL) {
10 t = x->next;
11 x->next = y;
12 y = x;
13 x = t;
14 }
15 return y;
16 }

Fig. 1. Example program.

3 Example

Figure 1 shows a function that performs in-place list reversal. The function takes a
linked list x as argument, and returns the reversed list pointed to by y. The function is
written using C syntax, but assumes type-safety.

Suppose we want to prove that the assignment y = x at line 12 cannot cause a
memory leak. For this, assume by absurd that a leak occurs at this point. That is, assume
that the execution of y = x causes the program to loose the last reference to a valid
allocated cell at this point, the error cell. We describe this cell using a dataflow fact
{y} indicating that y is the sole reference to the cell in question. Starting with this fact,
we analyze program statements backward, looking for a contradiction. In this case, the
contradiction shows up right away, at the predecessor statement x->next = y at line
11. No program state before line 11 can make it possible to have a heap cell referenced
only by y at the next program point. This is because:

– either y did not reference the cell in question before line 11, in which case it won’t
reference it after the assignment;

– or y did reference the cell in question, in which case there will be two distinct
references to the cell after the assignment, one from y and one from x->next.
These represent different memory locations because of the type-safety assumption.
Hence, y is not the only reference to the cell after line 11;

Each of the two cases yields a contradiction. Hence, the initial assumption is invalid
and the assignment y = x cannot cause a memory leak.

Similar analyses can be performed for each of the assignments in this program. The
analysis of assignments x->next = y at line 11, and x = t at line 13 is the same as
above. The analysis of t = x->next at line 10 requires exploring multiple backward
paths, one that wraps around the loop and yields a contradiction at x = t, and one that



goes out of the loop and yields a contradiction at the procedure entry point where t’s
scope begins. Finally, the analysis of y = NULL at line 8 is contradicted right away, as
the scope of y begins at that point.

Additionally, the analysis must check that local variables do not leak memory when
they go out of scope at the end of the procedure. The analysis models the return state-
ment return y as a sequence: “ret = y; y = NULL; t = NULL;”, where
ret is a special return variable. Assignment y = NULL is contradicted by ret = y;
and t = NULL is contradicted by x = t at line 13, and y = NULL at line 8. The
assignment to ret needs not be checked.

Hence, the analysis concludes that reverse is leak-free. Not only the analysis has
quickly contradicted each assignment, mostly using one single backward step per as-
signment, but the analysis has actually determined that reverse doesn’t leak memory
regardless of its input heap.

In contrast, forward heap analyses (such as [4] or [7]) cannot determine this fact
because they would need to exhaustively enumerate all possible heaps at the entry of
reverse. Without knowledge about all variables and program structures that might
point into the list passed to reverse, enumerating all heaps is not feasible.

4 Backward Memory Leak Analysis

We present the memory leak analysis using a core imperative language consisting of
statements and expressions with the following syntax:

Statements s ∈ St s ::= ∗e0 ← e1 | ∗ e← malloc | free(e) | cond(e0 ≡ e1)
return e | enter | ∗ e0 ← p(e1, ..., ek)

Expressions e ∈ E e ::= n | a | ∗ e | e.f | e0 ⊕ e1

where n ∈ Z ranges over numeric constants (NULL being represented as constant 0),
a ∈ A ranges over symbolic addresses, f ∈ F over structure fields, p ∈ P over
procedures, ⊕ over arithmetic operators, and ≡ over the comparison operators = and
6=. The special statement enter describes the beginning of scope for local variables.
The entry node of each procedure is the enter statement, and the exit node is the
return statement. The condition statement cond(e0 ≡ e1) ensures that the program
execution proceeds only if the condition succeeds. Condition statements can be used to
model if statements and while statements as non-deterministic branches in the control-
flow graph, followed by the appropriate cond statements on each of the branches.

Expressions are represented using a small set of primitives. Symbolic addresses a
are the addresses of variables (globals, locals, and parameters). We denote by ax the
symbolic address of variable x. The syntax for expressions doesn’t contain variables
because variables can be expressed as dereferences of their symbolic addresses. For
instance, ax models the C expression &x; ∗ax models C expression x; (∗ax).f models
&(x->f); and ∗((∗ax).f) models x->f. With this representation, each memory read
is explicit in the form of a dereference ∗e; and each assignment has the form ∗e ← e′,
making the memory write ∗e explicit. The set Mem(e) denotes the subexpressions of e



that represent memory locations. This set is defined recursively as follows:

Mem(n) = Mem(a) = ∅
Mem(∗e) = {∗e} ∪Mem(e)

Mem(e.f) = Mem(e)
Mem(e0 ⊕ e1) = Mem(e0) ∪Mem(e1)

To simplify the rest of the presentation, we define expression contexts E as expres-
sions with holes [·]:

E ::= E .f | ∗ E | E ⊕ e | e⊕ E | [·]

If E is an expression context and e is an expression, then E [e] is the expression obtained
by filling the hole of the context E with expression e.

The core language is a subset of C that supports heap structures and pointers to vari-
ables or to heap cells. The execution of the program disallows casts between numeric
constants and pointers. All structures have the same set of non-overlapping fields, so
that an update to a structure field does not affect the values of other fields. Essentially,
unions and unsafe pointer casts are not allowed. The language semantics are defined
in Appendix A using evaluation relations for expressions and statements. The relation
(e, σ) → v indicates that the evaluation of expression e in store σ yields value v; and
the relation (s, σ) → σ′ indicates that the evaluation of statement s in store σ yields a
new store σ′.

4.1 Aliasing and Disjointness

To resolve pointer aliasing, the leak analysis assumes that an underlying analysis pro-
vides: 1) a partitioning of the memory into regions (i.e. different regions model disjoint
sets of memory locations); and 2) points-to information between regions. We assume
a flow-insensitive points-to interface consisting of a set Rgn of regions, and a function
pt(e) that returns the set of regions that expression e may point into.

Flow-insensitive points-to analyses such as [8, 9] can be used to provide the region
partitioning and the points-to information, but they require the availability of the entire
program. For incomplete programs, the following approaches can be used: 1) type-
based points-to information for type-safe languages, with one region for each type and
points-to relations according to type declarations; and 2) address-taken points-to infor-
mation, with one region for each memory location whose address has not been stored
in the program, and one region for everything else.

The analysis uses the points-to information to resolve alias queries. An expression
e is disjoint from a region set rs, written e# rs, if updates in any of the regions in rs do
not affect value of e. The analysis answers such queries using the points-to information:

e# rs iff ∀(∗e′) ∈ Mem(e) . pt(e′) ∩ rs = ∅

For expression contexts, E [e]# rs means that all of the sub-expressions of E [e] other
than e are disjoint from regions in rs: E [e]# rs if and only if ∀(∗e′) ∈ Mem(E [e]) −
{e} . pt(e′) ∩ rs = ∅.



ImplicitMiss(e, (S, H, M)) = (e = n) ∨ (e = a) ∨ (e = E [∗n]) ∨ (e = E [n.f ])∨
(e = ∗e′ ∧ (S ∩ pt(e′) = ∅))

Miss(e, (S, H, M)) = e ∈M ∨ ImplicitMiss(e, (S, H, M))

Infeasible(S,H,M) = ∃e ∈ H . Miss(e, (S, H, M))

Cleanup(S, H, M) = (S, H, M ′), where:
M ′ = {e | e ∈M ∧ ¬ImplicitMiss(e, (S, H, M))}

Fig. 2. Helper functions used by the analysis.

4.2 Error Cell Abstraction

The analysis starts from the potential error point, a program assignment, assuming that
the assignment has overwritten the last reference to the error cell. The analysis models
this cell using a triple of the form (S, H,M), where:

– S ⊆ Rgn is the conservative set of regions that might hold pointers to the error cell;
– H is a set of expressions that point to the error cell; and
– M is a set of expressions that do not reference the cell.

We refer to H as the hit set, and to M as the miss set, similarly to [4]. The partial
ordering for this abstraction is such that (S1,H1,M1) v (S2,H2,M2) if and only
if S1 ⊆ S2, H1 ⊇ H2, and M1 ⊇ M2. The join operation is defined accordingly:
(S1,H1,M1) t (S2,H2,M2) = (S1 ∪ S2,H1 ∩H2,M1 ∩M2). Two elements of the
dataflow lattice have special meaning: the top element > indicates that the error cell is
always feasible; and the bottom element ⊥ indicates a contradiction, i.e., that the error
cell is not feasible.

Figure 2 shows several helper functions that the analysis uses to reasons about
dataflow triples. The function ImplicitMiss helps the analysis identify new miss ex-
pressions, to which we refer as implicit miss expressions. These include:

– Numeric constants n. Addresses manufactured from numeric constants cannot ref-
erence the cell, because casting integers into pointers is not allowed;

– Symbolic addresses a. Leaks can occur only for heap cells, which cannot be refer-
enced by symbolic addresses;

– Invalid expressions E [∗n] and E [n.f ]. These include null pointer dereferences and
null field accesses. Evaluating such expressions would cause run-time errors, so
they are not valid references to the error cell;

– Lvalue expressions that represent regions outside of the region set S. If S∩pt(e) =
∅, then ∗e is an implicit miss expression.

The function Infeasible identifies infeasible dataflow facts: a dataflow fact d is in-
feasible if there is an expression that hits and misses the error cell. Such facts represent
impossible states of the error cell; they are equivalent to the bottom value ⊥, and corre-
spond to contradictions in our framework.



To keep the dataflow facts as small as possible and avoid redundancy in the abstrac-
tion, the analysis uses a function Cleanup to remove implicit miss expressions from
dataflow triples. This function always yields an abstraction higher up in our lattice (i.e.,
more conservative dataflow information). Hence, using Cleanup after applying a trans-
fer function does not affect the correctness of the analysis.

4.3 Intra-Procedural Analysis

For each abstraction (S, H,M) that describes the error cell after a statement, the analy-
sis computes an abstraction (S′,H ′,M ′) that describes the known facts about the error
cell before the statement. Hence, the analysis computes an over-approximation of the
state before each statement (as opposed to weakest preconditions, which are under-
approximations). We refer to the state after the statement as the post-state, and the state
before the statement as the pre-state.

The overall analysis uses a worklist algorithm to perform the backward dataflow
computation. The analysis is initiated at assignment and a few other program points,
as discussed later in Section 4.5. Then, the information is propagated backward. When
the analysis reaches a contradiction (⊥) on all backward paths, the error is disproved.
When the abstraction of the error cell is >, or when the analysis reaches the entry point
of a program fragment, the analysis reports a potential violation. The analysis of each
statement is presented below.

Analysis assignments: ∗e0 ← e1. Given a dataflow triple (S, H,M) that describes the
post-state of the error cell, the analysis computes a new dataflow fact that describes the
pre-state of the cell. The transfer function for assignments is:

[[∗e0 ← e1]](S, H,M) =
{
⊥ if Infeasible(S′,H ′,M ′)
Cleanup(S′,H ′,M ′) otherwise

where H ′,M ′ are derived using the rules in Figure 3
S′ = S ∪ pt(e0)

The region set S always grows since the post-state gives no information about the old
value of the written location. The analysis must conservatively assume that ∗e0 might
reference the cell in the pre-state (we discuss how to improve this in Section 4.8).

To keep the analysis rules succinct, we write e+ and e− for e ∈ H and e ∈ M
(hit/miss expressions in the post-state); and +e and −e for e ∈ H ′ and e ∈M ′ (hit/miss
expressions in the pre-state). We also write e−− to denote that Miss(e, (S, H,M)). The
set w is the set of regions potentially written by the assignment: w = pt(e0). Hence, an
expression has the same value before and after the statement if it is disjoint from w.

The inference rules in Figure 3 are used to derive hit and miss expressions in the
pre-state. If the premises hold in the post-state, then the conclusion holds in the pre-
state. Each rule is implemented by iterating over expressions in H and M , matching
them against the rightmost expression in the premise. If the rule applies (i.e., all other
premises hold), then the expression in the conclusion is added to H ′ or M ′. Our im-
plementation also checks for contradictions as new expressions are generated in the
pre-state, returning ⊥ as soon as the first contradiction occurs.
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Fig. 3. Analysis rules for an assignment ∗e0 ← e1. The sign sgn is either + or −. The set
w = pt(e0) is the conservative set of written regions.

The first four rules filter out existing expressions from H and M if the assignment
might invalidate them. Clearly, each expression disjoint from w will maintain its hit or
miss status (rule [FILTER1]). The other filtering rules are less obvious. They attempt to
preserve expressions that fail this simple test. Consider rule [FILTER2]. If expression e1

is disjoint from w and e1 misses in the post-state, then it also misses it in the pre-state.
Hence, the assignment writes a value that doesn’t reference the cell. Therefore, each
expression ∗e that hits the cell in the post-state must necessarily be a location different
than the one written by the assignment, provided that its address e is not affected by
the assignment. Therefore, if all these premises are met, ∗e has the same value in the
pre-state, so it will hit the error cell before the statement. Rule [FILTER3] is symmetric.
Rule [FILTER4] indicates that the RHS expression e1 can be preserved if its address
is not changed by the assignment. The reason is that, if e1 happens to be written, it is
updated with its old value.

Rule [SUBST1] derives new hit and miss expressions in the pre-state by substitution.
If e0 # w, then ∗e0 in the post-state has the same value as e1 in the pre-state. Hence,
if an expression e = E [∗e0] hits (misses) in the post-state, we can substitute e1 for
∗e0 to derive an expression E [e1] that hits (misses) in the pre-state. For this to be safe,
the expression E [∗e0] must be disjoint from w. The last rule, [SUBST2] is similar to
substitution, but for implicit misses and for a simple context E = [·].

Example. Consider a triple ({ry}, {∗ay}, {}) describing the error cell in the post-state.
Here, ay is the symbolic address of variable y, and ry is the region that contains y. Let
x ← y be the assignment to analyze, represented in our formulation as ∗ax ← ∗ay .
Assume that variables x and y belong to different regions, so all necessary disjointness
conditions are met. By rule [SUBST2] we get −(∗ay), because ∗ax is an implicit miss
in the post-state. By rule [FILTER1], +(∗ay) also holds. Hence, a contradiction occurs.

Analysis of allocations: ∗e0 ← malloc. The analysis tries to determine if the error
cell has been allocated at this site. First, if (∗e0)+ and some expression unaliased to ∗e0

also references the cell, then a contradiction occurs. Second, if there is evidence that the
error cell has not been allocated at this site, it proceeds past this statement, treating the
allocation as a nullification ∗e0 ← 0. Note that the nullification automatically causes



a contradiction when a field of ∗e0 hits the error cell in the post-state. Otherwise, if
none of the above conditions are met, the analysis conservatively stops and returns >,
signaling that the leak might be feasible and the error cell might be allocated at this site.
The transfer function is defined as follows:

[[∗e0 ← malloc]](d) =

⊥ if UnaliasedHit ∧ (∗e0 ∈ H ∧ e0 # w)
[[∗e0 ← 0]](d) if UnaliasedHit ∨ (Miss(∗e0, d) ∧ e0 # w)
> otherwise

where d = (S, H,M), w = pt(e0), and UnaliasedHit = ∃(∗e) ∈ H : pt(e) ∩ w = ∅.
Here, ⊥ indicates a contradiction, and > indicates a potential leak for a cell allocated
at this site.

Analysis of deallocations: free(e). When the analysis reaches a deallocation free(e),
a contradiction occurs if e references the error cell. In other words, losing the last ref-
erence of a cell that has been freed is not an error. Otherwise, the analysis learns that e
misses in the pre-state and keeps the rest of the state unchanged. The algorithm is:

[[free(e)]](S, H,M) =

⊥ if e ∈ H
(S, H,M) if Miss(e, (S, H,M))
(S, H,M ∪ {e}) otherwise

Analysis of conditions: cond(e0 ≡ e1). For conditions, the analysis knows that the
(in)equality has succeeded in the post-state. It uses this information to derive new hit
and miss expressions in the pre-state, as indicated by the following rules:

cond(e0 = e1) cond(e0 6= e1)

e+
0

+e1

e+
1

+e0

e−−0
−e1

e−−1
−e0

e+
0

−e1

e+
1

−e0

If H ′ and M ′ are the new hit and miss expressions derived using the above rules,
M ′′ = M ∪M ′, and H ′′ = H ∪H ′, then the transfer function for conditions is:

[[cond(e0 ≡ e1)]](S, H,M) =
{
⊥ if Infeasible(S, H ′′,M ′′)
Cleanup(S, H ′′,M ′′) otherwise

4.4 Inter-Procedural Analysis
The inter-procedural analysis follows the general structure of the worklist inter-procedural
analysis algorithm proposed by Sharir and Pnueli [10]. Information is propagated from
the points after procedure calls to the corresponding procedure exit points, and from
procedure entry points to the corresponding points before the call. The analysis uses
backward procedure summaries to cache previous analysis results. The entire inter-
procedural worklist algorithm is presented in Appendix B.

The analysis uses two functions, Map and Unmap, to account for the necessary
changes in the analysis information when crossing procedure boundaries, such as as-
signments of actuals to formals, or to model the scopes of local variables. The anal-
ysis uses Map when moving from the caller into the callee space, and uses Unmap
when moving back into the caller space. The mapping process is performed right be-
fore return, and the unmapping right after enter. Each pair is discussed below.
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Fig. 4. Analysis for Map and return(e).

Analysis for Map and return(e). For simplicity, consider a procedure p with one for-
mal parameter formal and one local variable local. Let ret be a special variable
that models the return value. Variables local, formal, and ret are represented in
this section using C-style notation instead of the normalized representation for expres-
sions. Consider a call-site that invokes p with an actual argument eact.

The call-site mapping process and the analysis of the return of p are described in
Figure 4. The execution proceeds from top to bottom, and the analysis works in the
reverse order. We explain the actions in this diagram in the execution order. Each node
return(e) is modeled as a sequence that assigns the returned expression to ret,
and then nullifies all local and formal variables, showing that they go out of scope.
The transfer function of return is the composition of the transfer functions of these
assignments, in reverse order.

The mapping function Map takes place at the point right before a call site ∗e0 ←
p(eact). The mapping process assigns the return variable ret to expression ∗e0 and
then nullifies the return variable. The mapping process also removes from H and M all
the expressions that involve locals or parameters of the caller, keeping only information
relevant to the callee. This is shown by the Remove Info step right before the analysis
moves into the callee’s space.

Analysis for Unmap and enter. When the analysis reaches the entry of a procedure,
it moves back to the caller space, to the point right before the call. The analysis of
the enter statement and the unmapping process are described in Figure 5. We use a
special operation scope(s) to indicate that symbol s enters its scope. For the analysis,
which is reversed, scope(s) indicates that s goes out of scope. The transfer function
of scope(s) has two possible outcomes: it yields a contradiction if s occurs in one of
the hit expressions; otherwise, it removes all hit and miss expressions that refer to s.
The analysis of enter is modeled using a scope operation for each of its locals.

The unmap process accounts for the assignments of actuals to formals and for restor-
ing part of the information that Map has filtered out. One complication that arises for
recursive functions is that expression eact in the caller might refer to variable formal.
A direct assignment formal ← eact would then talk about two different instances of
the same variable formal, the one of the caller and the one of the callee. This prob-
lem can be solved using a shadow variable to perform the assignment in two steps.
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In execution order, first assign the actual to the shadow, then move to the callee space
and assign the shadow to the formal. In between the two shadow assignments, the for-
mal enters its scope (and goes out of scope for the analysis). The analysis also restores
expressions that Map has filtered out, provided that they cannot be modified by the
callee. For instance, local variables whose addresses have not been taken can be safely
restored. In general, restoring expressions requires knowledge about the locations being
modified by the callee, i.e., MOD information.

4.5 Leak Probing Points

The last piece that completes the analysis is defining the initialization points. The anal-
ysis issues one query for each assignment, to determine if the assignment might leak
memory. We refer to each leak query as a leak probe. For each assignment ∗e0 ← e1

the analysis builds a dataflow triple (pt(e0), {∗e0}, {e1}) to describe an error cell ref-
erenced by e0, but not by e1. In many cases, e1 is an implicit miss and can be omitted
from the miss set. The analysis then asks whether this triple might hold at the point
right before the assignment.

In addition to assignments, the analysis issues leak probes at the following points:

1. Allocations: each ∗e0 ← malloc is probed as ∗e0 ← 0.
2. Deallocations: for each free(e), the analysis issues probes that correspond to a

sequence of assignments ∗(e.f) ← 0, for each field f of e. This checks for leaks
caused by freeing a cell that holds the last reference to another cell.

3. Locals and formals: at return points, it issues a probe for each local variable and
formal parameter. These correspond to the nullifications (R2) and (R3) in Figure 4.
The assignment to ret needs not be checked.

4. Assigned returns: for each call ∗e0 ← p(...), it issues a probe that corresponds to
the assignment (M2) in Figure 4. Note that this probe will immediately propagate
into the callee.

5. Leaked returns: Although in our language return values are always assigned, in C
function calls are not required to do so. In that case, the assignment (M2) is missing
and the returned value might be leaked. The analysis uses a probe that corresponds
to the nullification of ret (M3), to check for leaked returns.



4.6 Formal Framework and Soundness

This section summarizes the soundness result for the transfer functions in our analysis.
This result states that the abstract semantics of statements are sound with respect to the
concrete execution of the program, provided that the points-to information is sound.
The definitions below define the notion of soundness for the points-to information, and
describe the abstraction function. Then, the soundness theorem is stated. In these defi-
nitions, L denotes the set of all memory addresses, including symbolic addresses a ∈ A
and heap addresses.

Definition 1 (Points-to Soundness). Let Rgn be the finite set of memory regions. A
points-to abstraction pt : E → 2Rgn is a sound approximation of a concrete store σ,
with witness mapping µ : L → Rgn from locations to regions, written σ |=µ pt, if:
∀e ∈ E . (e, σ)→ l ∧ l ∈ L ⇒ µ(l) ∈ pt(e).

Definition 2 (Abstraction Function). Let σ be a store, l ∈ L − A a heap location
in σ, l ∈ dom(σ), and µ a mapping from locations to regions. A dataflow fact d is a
conservative approximation of l in σ with respect to µ, written (l, σ) |=µ d, if d = >,
or d = (S, H,M) and:

1. ∀e ∈ H . (e, σ)→ l
2. ∀e ∈M . (e, σ)→ l⇒ l′ 6= l
3. ∀l′ ∈ L . σ(l′) = l⇒ µ(l′) ∈ S

Definition 3 (Dataflow Validity). Let s be a statement, d and d′ two dataflow facts,
and pt the points-to information. The triple {d} s {d′} is valid relative to pt, written
|=pt {d} s {d′}, if for any pre- and post-stores for which pt is sound, and for any
location that is approximated by d′ in the post-store, the location is then approximated
by d in the pre-store: ∀l, σ, σ′, µ . ( σ′ |=µ pt ∧ σ |=µ pt ∧ (l, σ′) |=µ d′ ∧ (s, σ)→
σ′ ) ⇒ (l, σ) |=µ d.

From this definition, it follows that {>} s {d′} is valid for any d′. Also, ⊥ can never
approximate the error cell: ∀l, σ, µ . (l, σ) 6|=µ ⊥. Therefore, {⊥} s {d′} is never valid.

Theorem 1 (Transfer Function Soundness). For any assignment, malloc, free, or
condition statement s, if d′ is a dataflow fact after s, and pt is the points-to infor-
mation, then the dataflow fact d = [[s]](d′) that the transfer function computes before s
is sound relative to the points-to information pt: |=pt { [[s]](d′) } s { d′ }.

Appendix C provides the proof of the above theorem.

4.7 Termination

The leak detection analysis is guaranteed to terminate, because of three reasons. First,
region sets are bounded by the finite set Rgn. Second, hit and miss expressions can only
shrink during the analysis. Although the set of expressions in unbounded, these sets
have finite size when a node is reached for the first time; after that, they only decrease.
Third, the transfer functions are monotonic. It is easy to see that larger hit and miss sets
will cause the inference rules to derive more facts in the pre-state.



4.8 Extensions

We propose several extensions that improve the precision of the basic analysis:

– Diminish the region set increase via points-to information. As mentioned earlier,
the region set S grows during the analysis because the state after an assignment
doesn’t give information about the old value of the location being written. The
analysis conservatively assumes that the old value hit the error cell in the pre-state.
This is overly conservative, especially in the case of assignments of integers or
other non-pointer values. The analysis can use points-to information to avoid this.
If ∗e0 is the LHS of the assignment being probed, and ∗e is the LHS of the cur-
rently analyzed assignment, the analysis can determine that −(∗e) if ∗e and ∗e0 are
unaliased: pt(e0) ∩ pt(e) = ∅. In this case, pt(e0) is not added to S.

– Enable region set removal via strong updates. A second improvement is to augment
the abstraction so that the analysis also removes regions from S. For this, we tag
each region in S with a program expression ∗e, or with a top value. An expression
tag shows that the region contains at most one reference to the cell, and that ref-
erence, if present, is ∗e. Top indicates imprecision. When the analysis identifies a
region r that contains at most one reference ∗e, and the analysis rules imply −(∗e),
then it can safely remove r from S in the pre-state.

– Separated abstraction: We propose a variation of the analysis where the analy-
sis computes more than one triple (S, H,M) per program point. Two triples are
merged only if their subset of regions that contain the hit expressions S ∩ H is
the same. Otherwise, the triples are maintained separated. Because of less frequent
merges, the analysis becomes more precise.

5 Experiments

We have implemented the algorithms presented in this paper in an analysis system de-
veloped in our group, CRYSTAL. All of the C constructs are translated into an interme-
diate representation that is very similar to the normalized representation from Section 4.
Therefore, the implementation closely follows the formal presentation; at the same time,
it handles the complexity of C. The leak detector uses the extensions discussed in the
previous section. The results were collected on a 3Ghz Pentium 4 machine running Red
Hat Enterprise Linux 4.

Heap manipulation benchmarks. We have tested our leak analyzer on several small
heap manipulation routines. For these experiments, we only consider programs writ-
ten in the type-safe subset of C from Section 4. The benchmarks include iterative and
recursive versions of standard linked list operations (insert, delete, reverse, merge) for
singly-linked and doubly-linked lists; two versions of the Deutsch-Schorr-Waite pointer
reversal algorithm, for lists and for trees; and AVL tree manipulations. The singly-linked
list manipulations are a representative subset of those from [1] and [11]. The doubly-
linked list implementations are part of the Gnome’s GLib library 1.

1 ftp://ftp.gtk.org/pub/gtk



Program Probes Trace Length Abstractions
Total Warn / Leak Median Max per point

si-create 5 0 / 0 2 6 1.0
si-delete 11 0 / 0 10 29 1.4
si-insert 13 1 / 0 2 130 1.8
si-reverse 9 0 / 0 1 6 1.0
si-rotate 6 1 / 1 2 10 1.1
si-merge 16 0 / 0 12 200 1.7
sr-append 11 0 / 0 2 57 2.0
sr-insert 11 2 / 0 13 114 2.7
sr-reverse 11 0 / 0 1 82 1.6
sr-rev-leak 13 1 / 1 1 95 2.8
di-delete 9 2 / 2 6 89 2.7
di-prepend 7 1 / 1 7 15 1.1
di-reverse 7 0 / 0 1 12 1.2
di-merge 19 0 / 0 1 24 1.2
avl-rotate 6 0 / 0 1 2 1.0
avl-balance 6 1 / 0 22 803 1.3
avl-insert 31 2 / 0 2 1627 3.9
dsw-list 14 0 / 0 2 91 2.1
dsw-tree 18 1 / 0 15 1367 8.6

Fig. 6. Experiments on recursive structure manipulations.

We have experimented with each procedure in isolation, or with small groups of
procedures when some of them called others. Warnings were reported when the analysis
reached the entry of a procedure that is never called. Recursive functions have been
wrapped into non-recursive functions. We use a type-based points-to region partitioning
and points-to analysis. All of the programs were analyzed in less than one second.

Figure 6 shows analysis statistics and results for the small benchmarks. The mean-
ing of the two-letter prefix is as follows: s means “singly” and d means “doubly”; i
means “iterative” and r means “recursive”. The first group of columns presents the to-
tal number of probes, the number of warned probes, and the number of actual errors.
The analysis assumes any possible inputs, including malformed inputs. The tool has
determined that no leaks occur for about half of the programs. It has found the mem-
ory leak in the buggy version of the recursive list reversal program sr-rev-leak
from [11]. Some procedures leak memory if the inputs are malformed: si-rotate
leaks when its second argument doesn’t point to the last element, as the function ex-
pects; and di-delete and di-prepend leak if the input doesn’t satisfy the doubly-
linked list invariant. We consider these warnings legitimate. The remaining ones are
false positives and are due to imprecision in the analysis.

The last three columns show analysis statistics: the median and maximum length of
reverse traces (measured as applications of transfer functions), and the average number
of abstraction triples per program point. The trace statistics indicate that for most of
the probes contradictions show up quickly, but there are a few probes that require sig-



Benchmark Size Time Probes
KLOC (sec) Total Aband. Warn Bugs

ammp 13.2 6.95s 1550 123 24 20
art 1.2 1.20s 32 16 1 1
bzip2 4.6 3.36s 108 62 2 1
crafty 19.4 27.71s 1493 1174 0 0
equake 1.5 1.50s 55 12 0 0
gap 59.4 108.66s 13517 6685 1 0
gzip 7.7 5.11s 489 173 3 1
mcf 1.9 4.21s 392 64 0 0
mesa 50.2 34.50s 5037 956 2 2
parser 10.9 19.36s 2859 1021 0 0
perlbmk 61.8 340.07s 25151 15801 1 1
twolf 19.7 20.29s 2526 1105 0 0
vortex 52.6 304.59s 9448 7421 26 0
vpr 16.9 15.14s 1216 530 0 0

Fig. 7. Experiments on the SPEC2000 benchmarks.

nificantly more work, especially for complex pointer manipulations. The last column
shows that the analysis usually creates few (around 2) abstractions per program point.

Larger benchmarks. We have also experimented with this tool on larger programs from
the SPEC200 benchmark suite2. To make the tool useful for larger programs, we use
several heuristics that cut down the amount of backward exploration: there is a limit on
the number of transfer functions per probe (currently 500), and a limit on the size of
the region set S (currently 50). When the analysis reaches these limits, it abandons the
probe. The analysis also limits the amount of inter-procedural exploration by ignoring
callees more than one level deep, but allows tracking the error cell back into the callers.
The tool uses type-based points-to information, which is unsound for type-unsafe C
programs. Other sources of unsoundness include ignoring library functions other than
memory allocators; and the unsound treatment of arrays, where the analysis does not
probe assignments of array elements. The analysis cannot reason about array index
dependencies, so array element probes would otherwise lead to false warnings.

Figure 7 shows the results. The first column shows the sizes of these programs and
the second column the analysis times. The remaining columns show the analysis results:
the number of probes explored; the number of probes abandoned because of the cut-off;
the number of probes warned; and the number of actual bugs found. Warned probes are
those for which the analysis reaches a validating allocation site for the error cell.

Most of the leaks found (e.g., in ammp and perlbmk) are situations where the
application doesn’t free memory upon returning on error handlers. Interestingly, this
happens even for out-of-memory error handlers: the application allocates several buffers
and if allocation fails for one, none of the others are freed. In art a function actually
forgets to deallocate a local buffer on the normal return path. The main reasons for false

2 We omit gcc because all warnings referred to data allocated via alloca.



warnings are the imprecision of the type-based region approximation; the use of pointer
arithmetic; and the fact that programs such as vortex use complex, custom memory
management.

Overall, we again find that the length distribution of backward traces is uneven. In
most of the cases, the analysis can quickly identify a contradiction, within just a few
lines of code. However, a few points generate very long backward traces, along which
the analyses loses precision, and therefore becomes unlikely to produce meaningful
results. The cutoff helps eliminate such cases from our reports.

6 Related Work

Manevich et al. [12] propose a backward flow analysis with the goal of tracing back
null pointer errors, and disprove such errors. Although our analysis is similar in spirit to
theirs, the analysis of memory leaks in heap structures is a more challenging problem
than that of distinguishing between null and non-null values.

A related line of research has explored demand-driven inter-procedural analyses and
frameworks [13–16]. Given a dataflow fact d at a program point p, a demand-driven flow
analysis explores backward program paths starting from p with the goal of determining
whether d is part of the forward dataflow solution at p. Our backward analysis is, in
fact, a demand-driven analysis, although we are not interested in an answer to a forward
analysis (since we don’t have one), but rather with respect to the program semantics.
Furthermore, to the best of our knowledge, the analysis in this paper is the first reverse,
demand-driven heap analysis.

Several static leak detection analyses have been recently proposed. Heine and Lam [3]
use a notion of pointer ownership to describe those variables responsible for freeing
heap cells, and formulate the analysis as an ownership constraint system. In our previ-
ous work [4], we used a shape analysis with local reasoning about single heap cells to
detect memory leaks and accesses through dangling pointers. Xie and Aiken [5] reduce
the problem of memory leak detection to a Boolean satisfiability problem, and then use
a SAT-solver to identify potential errors. Their analysis is path- and context-sensitive,
but uses unsound techniques to handle recursion and loops. Dor et al. [1] use TVLA,
a shape analysis tool based on 3-valued logic, to prove the absence of memory leaks
and other memory errors in several list manipulation programs. Their analysis verifies
these programs successfully, but is intra-procedural and cannot be applied to recursive
and multi-procedure programs. Of these analyses, [3, 4] target referencing leaks; and
[1, 5] target reachability leaks. We are not aware of analyses that can detect liveness
memory leaks. Compared to our work, the above approaches cannot answer memory
leak queries in a demand-driven fashion; and cannot reason about the absence of errors
for incomplete programs.

Shape analyses [17, 7, 4] have been proposed with the goal of being able to distin-
guish, for instance, between cyclic and acyclic heap structures. These are all forward,
exhaustive analyses. In contrast, the heap analysis in this paper is a reverse, demand-
driven heap analysis.

The leak detection analysis in this paper uses an abstraction similar to the one that
we developed in our previous work on shape analysis [4], where the algorithm analyzes



a single heap cell at a time. This is a good match to memory leak detection by contra-
diction, because the analysis needs to reason about one single cell, the error cell. There
two main differences between these analyses. First, the leak analysis in this paper is not
aimed at computing shapes or precise reference counts. Therefore, the analysis uses a
simpler abstraction (without reference counts), and doesn’t require bifurcation. Second,
the analysis is backwards. Analyzing the state of a heap cell in the reverse direction is
non-trivial and less intuitive than the forward analysis.

Finally, dynamic memory leak detector tools such as Purify [18] or SWAT [19]
instrument the program to detect errors at run-time. Dynamic tools will miss errors that
do not happen in that run; in particular, they will miss errors that only occur in rarely
executed code fragments.

7 Conclusions

We have presented a new approach to memory leak detection where errors are disproved
by contradicting their presence. To determine whether a memory leak can occur at a
program point, the analysis uses a reverse inter-procedural flow analysis to disprove
its negation. We have used this approach to analyze a set of complex list manipulation
routines in isolation. We have also used this approach in an error-detection tool and
found several memory leaks in the SPEC benchmarks.
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A Language Semantics

The language semantics are defined using the following domains:

Numeric constants n ∈ Z
Symbolic addresses a ∈ A
Heap cell addresses c ∈ C
Structure fields f ∈ F

Locations l ∈ L = A + (C × F )
Values v ∈ V = Z + L
Stores σ ∈ Σ = L ⇀ V

The following rules define the evaluation of expressions and statements:

(n, σ)→ n (a, σ)→ a

(e, σ)→ l
l ∈ dom(σ)

(∗e, σ)→ σ(l)

(e, σ)→ (c, f1)
c ∈ C

(e.f, σ)→ (c, f)

(e0, σ)→ v0 (e1, σ)→ v1

v0, v1 ∈ Z v = v0 ⊕ v1

(e0 ⊕ e1, σ)→ v

(e0, σ)→ l (e1, σ)→ v l ∈ dom(σ)

(∗e0 ← e1, σ)→ σ[l 7→ v]

(e0, σ)→ v0 (e1, σ)→ v1 v0 ≡ v1

(cond(e0 ≡ e1), σ)→ σ

(e0, σ)→ l l ∈ dom(σ) c fresh
σ′ = σ[l 7→ (c, f1)] ∪ {(c, f) 7→ 0}f∈F

(∗e0 ← malloc, σ)→ σ′

(e, σ)→ (c, f1) (c, f1) ∈ dom(σ)
σ′ = σ − {(c, f) 7→ }f∈F

(free(e), σ)→ σ′



B Demand-Driven Inter-Procedural Analysis Algorithm

Figure 8 shows the entire inter-procedural demand-driven dataflow analysis-by-contradiction al-
gorithm. Each procedure in the program is represented using a control-flow graph whose nodes
n ∈ N are program statements. For each CFG node n, pred(n) represents the predecessors of
n in the graph. Node np

e is the entry node of procedure p, and node np
x is the exit (i.e., return)

node. Given a dataflow fact d0 that describes the error cell and a control-flow graph node n0, the
algorithm returns “Success” if it can determine that a leak cannot occur at point n0; otherwise,
it returns “Potential Leak”.

Separable Abstractions. The algorithm is formulated to work with separable dataflow ab-
stractions. A separable abstraction is a map D = Di → Ds, where Di is a finite set called
the index domain, and (Ds,t,v,⊥,>) is a lattice called the secondary domain. Dataflow facts
d ∈ Di → Ds are represented using association lists, and components with bottom secondary
values are omitted. For instance, d = {(i, s)} stands for λi′ . if (i′ = i) then s else ⊥. The
ordering over D is the pointwise ordering of functions. For a lattice element d ∈ D, each pair
(i, d(i)) is called a component of the abstraction d. Transfer functions are expressed component-
wise: [[n]]• : (Di ×Ds)→ D. A standard (non-separable) dataflow abstraction is represented as
a separable abstraction with one single component. The basic leak analysis uses a non-separable
abstraction; and one of the extensions in Section 4.8 uses a separable abstraction to avoid merging
dataflow facts and improve the analysis precision.

Worklist Algorithm. The analysis uses a worklist algorithm. Each worklist element is a single
component (not an entire abstraction) and each procedure context c is an index from Di. There
is an additional context none, explained below. The set C = Di ∪ {none} denotes all possible
contexts. The backward propagation stores dataflow facts in the result function R : N → C →
D. For a node n and a context c, the value of R(n)(c) ∈ D is the dataflow fact computed after
node n in a context c of the enclosing procedure.

The analysis uses reverse summaries for procedures. The procedure summary for a context
c maps a single component with index i = c at procedure exit to a corresponding dataflow fact
d at procedure entry. Dataflow facts whose birth-points occur inside of a function are given the
special context none. Procedure summaries are not stored in a separate data structure; instead,
they are implicitly captured in R: the summary or procedure p for a context c is R(np

e)(c).
When the analysis reaches a procedure entry point, it propagates the information to all of the

callers that have requested a result for the current context c. For this, the algorithm uses a call-site
map S : P → C → (N × C). When the analysis of a component reaches the entry of p with
context c, it propagates the component to the points indicated by S(p)(c). This contains pairs
(n′, c′) of target points and target contexts at those points. The call site map is set up every time a
procedure call is encountered (line 16), and used when reaching procedure entries (line 23). For
facts with context none (born inside procedures), S contains all possible call sites, as indicated
by the initialization at lines 6-7.

The analysis uses two functions, Map and Unmap, to account for the necessary changes in the
analysis information when crossing procedure boundaries. Function Map is used when moving
from the caller into the callee space; function Unmap is used for moving back into the caller
space. Map and Unmap each take two arguments: the dataflow fact d to process, and the call-site
n where the mapping or unmapping takes place.



LEAKANALYSISBYCONTRADICTION(d0 ∈ D, n0 ∈ N)
1 for each n ∈ N, c ∈ C, i ∈ Di

2 R(n)(c)(i)← ⊥
3 for each p ∈ P
4 S(p)(none)← Callsites(p)× {none}
5
6 W ← ∅
7 INSERT(d0, none, n0)
8
9 while W 6= ∅

10 remove (n, c, i) from W
11 s← R(n)(c)(i)
12 switch n
13 case call p :
14 c′ ← i
15 INSERT(Map({ (i, s) }, n), c′, np

x)
16 S(p)(c′)← S(p)(c′) ∪ { (n, c) }
17 if ( R(np

e)(c′) 6= ⊥ )
18 then for each n′ ∈ pred(n)
19 INSERT(Unmap(R(np

e)(c′), n), c, n′)
20
21 case np

e :
22 if (Callsites(p) = ∅)
23 then return “Potential Leak′′

24 for each (n′, c′) ∈ S(p)(c)
25 for each n′′ ∈ pred(n′)
26 INSERT(Unmap({ (i, s) }, n′), c′, n′′)
27
28 case default :
29 d← [[n]]•(i, s)
30 if (d = >)
31 then return “Potential Leak′′

32 for each n′ ∈ pred(n)
33 INSERT(d, c, n′)
34
35 return “Success′′(NoLeak)

INSERT(d ∈ D, c ∈ C, n ∈ N)
36 for each i ∈ Di

37 R(n)(c)(i)← R(n)(c)(i) t d(i)
38 if R(n)(c)(i) has changed
39 then W ←W ∪ { (n, c, i) }

Fig. 8. Inter-Procedural Demand Analysis by Contradiction



C Soundness Proof

Lemma 1 (Implicit Miss Expressions). Let d = (S, H, M) be a dataflow fact, pt the points-to
information, and e an expression such that ImplicitMiss(e) holds. If l, σ, and µ are such that
l ∈ L−A, σ |=µ pt, (l, σ) |=µ d and (e, σ)→ v, then v 6= l.

Proof. Let l, σ, and µ with the above properties. By the definition of ImplicitMiss, we must
consider the following cases.

– Case e = n. Then v = n, so v 6= l.
– Case e = a. Then v = a, so v 6= l because l 6∈ A.
– Case e = E [∗n]. It is not possible to evaluate e, because the sub-expression ∗n cannot

be evaluated using the semantic rules. Hence, the premise (e, σ) → v is false, and the
implication is trivially true.

– Case e = E [n.f ]. Similar to the case above, since the sub-expression n.f cannot be evaluated
using the semantic rules.

– e = ∗e′ ∧ S ∩ pt(e′) = ∅. Assume v = l. The evaluation (e, σ)→ v implies (e′, σ)→ l′

and σ(l′) = v = l. The abstraction (l, σ) |=µ d implies (by condition 3) that µ(l′) ∈ S.
Therefore, µ(l′) 6∈ pt(e′), which contradicts the fact that (e′, σ)→ l′ and σ |=µ pt. Hence
v 6= l.

�

Lemma 2 (Miss Expressions). Let d = (S, H, M) be a dataflow fact, pt the points-to infor-
mation, and e an expression such that Miss(e) holds. If l, σ, and µ are such that l ∈ L − A,
σ |=µ pt, (l, σ) |=µ d and (e, σ)→ v, then v 6= l.

Proof. If e ∈ M , the result follows immediately from the relation (l, σ) |=µ d. Otherwise, if
ImplicitMiss(e), the result follows from Lemma 1 (Implicit Miss Expressions). �

Lemma 3 (Disjointness). Let e be an expression, pt the points-to information, and w a set of
regions. Let σ,σ′, and µ such that σ |=µ pt, σ′ |=µ pt, and σ(l) = σ′(l) for all l ∈ dom(σ) ∩
dom(σ′) such that µ(l) 6∈ w. If e#w and (e, σ′)→ v, then (e, σ)→ v.

Proof. By induction on the structure of e. Let σ, σ′, µ with the above properties. Assume e#w
and take a value v such that (e, σ′)→ v. We want to show that (e, σ)→ v.

– Case e = n or e = a. The evaluation of e does not depend upon the store, so the implication
is trivial.

– Case e = e′.f . From the evaluation rule for field accesses we get v = (c, f) and (e′, σ′)→
(c, f1) for some c ∈ C. By the definition of disjointness, e#w implies e′#w. Using the in-
duction hypothesis for e′, we get (e′, σ)→ (c, f1). By the evaluation rule for field accesses,
(e′.f, σ)→ (c, f). Hence, (e, σ)→ v.

– Case e = ∗e′. From the evaluation rule for dereferences we get v = σ′(l) and (e′, σ′) → l
for some l ∈ L. By the definition of disjointness, e#w implies e′#w. Using the induction
hypothesis for e′, we get (e′, σ)→ l. Hence, (e, σ)→ σ(l).
By the definition of disjointness, e#w implies pt(e′) ∩ w = ∅. Because σ |=µ pt, the
evaluation (e′, σ) → l implies that µ(l) ∈ pt(e′). Therefore, µ(l) 6∈ w. By the hypothesis,
σ(l) = σ′(l). Therefore, σ(l) = v, and (e, σ)→ v.

– Case e = e0 ⊕ e1. From the evaluation rule for arithmetic operations we get v = v0 ⊕ v1,
(e0, σ

′) → v0, and (e1, σ
′) → v1 for some v0, v1 ∈ Z. By the definition of disjoint-

ness, e#w implies e0#w and e1#w. Using the induction hypothesis for e0 and e1, we
get (e0, σ) → v0 and (e1, σ) → v1. By the evaluation rule for arithmetic expressions,
(e, σ)→ v.



�

Lemma 4 (Assignment Disjointness). Let e be an expression, pt the points-to information, and
s : ∗e0 = e1 and assignment. Let σ, σ′, and µ such that σ |=µ pt, σ′ |=µ pt, (s, σ) → σ′. If
e#pt(e0) and (e, σ′)→ v then (e, σ)→ v.

Proof. Let w = pt(e0). We show that σ′(l′) = σ(l′) for all l′ such that µ(l′) 6∈ w. Let l′ such
that µ(l′) 6∈ w. Let l0 ∈ L such that (e0, σ) → l0. Because σ |=µ pt, we get µ(l0) ∈ pt(e0) =
w. Because µ(l′) 6∈ w, it must be the case that l′ 6= l0. By the semantics of assignments, this
implies that σ′(l′) = σ(l′). The proof now follows from Lemma 3 (Disjointness). �

Lemma 5 (Substitution). Let s : ∗e0 ← e1 be an assignment, and pt the points-to information.
Let σ,σ′, and µ such that σ |=µ pt, σ′ |=µ pt, and (s, σ) → σ′. Let w = pt(e0). If E [∗e0]#w
and (E [∗e0], σ

′)→ v then (E [e1], σ)→ v.

Proof. By induction on the structure of the expression context E .

– Case E = [·]. We need to prove that if e0#w and (∗e0, σ
′) → v then (e1, σ) → v. By

the semantics of dereferences, (e0, σ
′) → l and σ′(l) = v. Because e0#w, by Lemma 4

(Assignment Disjointness), (e0, σ) → l. By the semantics of assignments, σ′ = σ[l 7→ v′],
where v′ is the value of e1 in the pre-store: (e1, σ) → v′. Since σ′(l) = v and σ′(l) = v′,
it means that v = v′. Therefore, (e1, σ)→ v.

– Case E = E ′.f . By hypothesis, E [∗e0]#w and (E [∗e0], σ
′)→ v. Therefore, (E ′[∗e0], σ

′)→
(c, f1) and v = (c, f) for some c ∈ C. By definition of disjointness for contexts, E [∗e0]#w
implies E ′[∗e0]#w. By induction hypothesis, (E ′[e1], σ) → (c, f1). By the semantics of
field expressions, (E [e1], σ

′)→ v.

– Case E = E ′⊕e. By hypothesis, E [∗e0]#w and (E [∗e0], σ
′)→ v. Therefore, (E ′[∗e0], σ

′)→
v0, (e, σ′) → v1 and v = v0 ⊕ v1. By definition of disjointness for contexts, E [∗e0]#w
implies E ′[∗e0]#w and e#w. By induction hypothesis, (E ′[e1], σ) → v0. Also, because
e#w, by Lemma 4 (Assignment Disjointness), (e, σ)→ v1. By the semantics of arithmetic
expressions, (E [e1], σ)→ v.

– Case E = e⊕ E ′. This case is similar to the case above.

– Case E = ∗E ′. By hypothesis, E [∗e0]#w and (E [∗e0], σ
′) → v. Here, E [∗e0] = ∗E ′[∗e0].

Therefore, (E ′[∗e0], σ
′) → l and σ′(l) = v for some l ∈ L. By definition of disjointness

for contexts, E [∗e0]#w implies E ′[∗e0]#w. By induction hypothesis, (E ′[e1], σ) → l. By
the semantics of dereferences, (E [e1], σ)→ σ(l). To prove that (E [e1], σ)→ v, we need to
show that σ(l) = σ′(l).
Assume by absurd that σ(l) 6= σ′(l). Then, location l has been written by the assignment,
so (e0, σ) → l. Because σ |=µ pt, it means that µ(l) ∈ pt(e0) = w. On the other other
hand, (E ′[∗e0], σ

′) → l, so because σ′ |=µ pt, it means that µ(l) ∈ pt(E ′[∗e0]). Hence
pt(E ′[∗e0]) ∩ w 6= ∅, which contradicts the fact that E ′[∗e0]#w. Hence, the assumption
was incorrect. This completes the proof for this case.

�

Lemma 6 (Inference Rules). Let d = (S, H, M) be a dataflow fact, pt the points-to informa-
tion, and s : ∗e0 ← e1 an assignment. Let H ′ and M ′ be the hit and miss sets computed using
the inference rules from Figure 3. If l, σ, σ′, and µ are such that l ∈ L−A, σ′ |=µ pt, σ |=µ pt,
(l, σ′) |=µ d, and (s, σ)→ σ′, then:



– ∀e ∈ H ′ . (e, σ)→ l.
– ∀e ∈M ′ . (e, σ)→ v and v 6= l.

Proof. For each of the rules in Figure 3, we show that the expressions generated in the pre-
state satisfy the above two conditions. Let l, σ, σ′, and µ satsifying the conditions above. Let
w = pt(e0).

– Rule [FILTER1]. Let e such that e#w and (e, σ′)→ v. If e ∈ H , then v = l; and if e ∈M ,
then v 6= l. From Lemma 4 (Assignment Disjointness), it follows that (e, σ)→ v.

– Rule [FILTER2]. Let e such that e#w and ∗e ∈ H . Also assume that Miss(e1) and e1#w.
We want to show that (∗e, σ)→ l.
Because ∗e ∈ H , we have (∗e, σ′) → l. Hence, (e, σ′) → l′ and σ′(l′) = l for some
l′ ∈ L. From Lemma 4 (Assignment Disjointness), we get that (e, σ)→ l′.
Assume by absurd that σ(l′) 6= l. Since σ′(l′) = l, it means that l′ = l0, where l0 is
the location being updated: (e0, σ) → l0. Furthermore, the value written into σ′(l0) is the
value of e1 in the pre-store: (e1, σ) → l. Now, since e1#w, by Lemma 4 (Assignment
Disjointness) we have that (e1, σ

′) → l. Because Miss(e1), Lemma 2 (Miss Expression)
implies l 6= l, a contradiction.
Hence, σ(l′) = l. Therefore (∗e, σ)→ l.

– Rule [FILTER3]. The proof is similar to the case above.

– Rule [FILTER4]. Assume that e1 = ∗e, e#w, and (e1, σ
′) → v. Hence, if e1 ∈ H , then

v = l; and if e1 ∈M , then v 6= l. We must show that (e1, σ)→ v.
By the semantics of assignments, (e, σ′) → l′ and σ′(l′) = v, for some l′ ∈ L. Because
e#w, using Lemma 4 (Assignment Disjointness), we have (e, σ)→ l′.
Let l0 such that (e0, σ) → l0. There are two subcases. Subcase 1: l0 6= l′, i.e., the value of
location l′ has not been updated. Then, σ(l′) = v. Therefore, (∗e, σ) → v or (e1, σ) → v.
Subcase 2: l0 = l′, i.e., the value of location l′ has been updated. The written value is
v (because σ′(l′) = v), and this value must be the value of e1 in the pre-state. Hence
(e1, σ)→ v.
In both subcases we get (e1, σ)→ v.

– Rule [SUBST1]. Let e = E [∗e0] such that e#w and (e, σ′)→ v. If e ∈ H , then v = l; and
if e ∈M , then v 6= l. From Lemma 5 (Substitution), (E [e1], σ)→ v.

– Rule [SUBST2]. Assume that e0#w and Miss(∗e0), (S, H, M). By Lemma 2 (Miss Expres-
sions), (∗e0, σ

′)→ v and v 6= l. By Lemma 5 (Substitution) for E = [·], (e1, σ)→ v 6= l.

�

Lemma 7 (Infeasibility). Let s be an assignment, d and d′ dataflow facts, and pt is the points-to
information. If |=pt {d} s {d′} and Infeasible(d), then |=pt {⊥} s {d′}.

Proof. Let σ, σ′, µ such that: 1) σ′ |=µ pt, 2) σ |=µ pt, 3) (l, σ′) |=µ d′, and 4) (s, σ) → σ′.
Because |=pt {d} s {d′}, it means that (l, σ) |=µ d. Because Infeasible(d), it means that there
are no values of σ, σ′, and µ such that conditions 1-4 hold. Hence, any implication based on these
assumptions is vacuously true; using any dataflow fact in the pre-state is sound. In particular,
using ⊥ is sound: |=pt {⊥} s {d′}.

�



Lemma 8 (Cleanup). Let s be an assignment, d and d′ dataflow facts, and pt is the points-to
information. If |=pt {d} s {d′}, then |=pt {Cleanup(d)} s {d′}.

Proof. The result holds because Cleanup(d) v d, and because of safety of over-approximations:
∀l, σ, µ, d0, d1 . (l, σ) |=µ d0 ∧ d0 v d1 ⇒ (l, σ) |=µ d0. These facts follow immediately
from the definition of Cleanup and from the definition of the abstraction function.

�

Lemma 9 (Assignment Transfer Function). If s : ∗e0 ← e1 is an assignment, d is the dataflow
information after s, and pt is the points-to information, then |=pt {[[s]](d)} s {d}.

Proof. Let d = (S, H, M). Let S′ = S ∪ pt(e0), and let H ′ and M ′ be the hit and miss sets
computed using the inference rules in Figure 3.

We want to prove that |=pt {(S′, H ′, M ′)} s {d}. Let l, σ, σ′, µ such that σ′ |=µ pt,
σ |=µ pt, (l, σ′) |=µ d, and (s, σ) → σ′. We must show that (l, σ′) |=µ (S′, H ′, M ′). More
precisely, we must show conditions 1-3 from the definition of the abstraction function.

Conditions 1-2 require that the hit and miss sets H ′ and M ′ computed using the inference
rules are sound approximations of l. By Lemma 7 (Inference Rules), conditions 1 and 2 hold.

We show that condition 3 holds for S′. Let l′ ∈ L such that σ(l′) = l. We must show that
µ(l′) ∈ S′. There are two cases. Case 1: σ(l′) = σ′(l′). Hence, σ′(l′) = l. By the hypothesis,
(l, σ′) |=µ (S, H, M), so µ(l′) ∈ S. Since S ⊆ S′, µ(l′) ∈ S′. Case 2: σ(l′) 6= σ′(l′). Then
location l′ has been updated by the assignment. Hence, l′ is the value of e0 in the pre-state:
(e0, σ)→ l′. Because σ |=µ pt, it means that µ(l′) ∈ pt(e0). Hence, µ(l′) ∈ S′. In both cases,
µ(l′) ∈ S′, so condition 3 is met.

Therefore (l, σ′) |=µ (S′, H ′, M ′). Hence: |=pt {(S′, H ′, M ′)} s {d}. The final result
of the transfer function for assignments is then sound because of Lemma 7 (Infesibility) and
Lemma 8 (Cleanup). �

Lemma 10 (Malloc Transfer Function). If s : ∗e0 ← malloc is an allocation statement, d is
a dataflow information after s, and pt is the points-to information, then |=pt {[[s]](d)} s {d}.

Proof. Let d = (S, H, M). Let l, σ, σ′, µ such that 1) σ′ |=µ pt, 2) σ |=µ pt, 3) (l, σ′) |=µ d,
and 4) (s, σ)→ σ′. Let w = pt(e0). Following the transfer function for assignments, we analyze
the following cases:

– Case 1: (∗e0) ∈ H , e0#w, and there exists e such that (∗e) ∈ H , pt(e)∩w = ∅. Because
(∗e0) ∈ H , it means that (e0, σ

′)→ l0 and σ′(l0) = l, for some l0 ∈ L. Because (e) ∈ H ,
it means that, (e, σ′) → l1 and σ′(l1) = l, for some l1 ∈ L. Furthermore, µ(l0) ∈ pt(e0)
and µ(l1) ∈ pt(e), so pt(e) ∩ w = ∅ implies µ(l0) 6= µ(l1). Therefore, l0 6= l1.
Because (e0, σ

′) → l0 and e0#w, by Lemma 4 (Assignment Disjointness) we infer that
(e0, σ)→ l0. Hence, l0 is the memory location that has been updated by this statement. By
the semantics of allocation statements, σ′(l0) = (c, f1), where c ∈ C is fresh. Since c is
fresh and the assignment updates a single memory location, it means that l0 is the only loca-
tion where σ′ has value (c, f1). Since σ′(l1) = σ′(l0) and l0 6= l1, we get a contradiction.
Hence, there are no l, σ, σ′, µ such that assumptions 1-4 hold in this case. Any implication
based on these assumptions is vacuously true. Therefore, can safely use ⊥ in the pre-state:
|=pt {⊥} s {d}.

– Case 2.1: Miss(∗e0) and e0#w. Then (e0, σ
′) → l0 and σ′(l0) 6= l, for some l0 ∈ L.

Because (e0, σ
′) → l0 and e0#w, by Lemma 4 (Assignment Disjointness) we infer that

(e0, σ) → l0. Therefore, l0 is the location being updated: σ′(l0) = (c, f1), where c ∈ C is
fresh. Hence, the newly allocated cell is not the error cell: l 6= (c, f1).



Consider another store σ′′ such that (∗e0 ← 0, σ) → σ′′. In other words, σ′′ is the result
of performing a nullification instead of an allocation. Stores σ′′ and σ′ are the same for all
locations, except at l0, where σ′′ has value 0; and at (c, f1), where σ′′ is not defined. The
error cell l is present in both stores: l ∈ dom(σ′) ∩ dom(σ′′).
According to the semantics of allocation statements, the fields of the new cell are all nullified.
Hence, expressions that evaluate to addresses other than the new cell will proceed identically
in the two stores: (e, σ′)→ l′ 6= (c, f) iff (e, σ′′)→ l′.
Therefore, all points-to relations in σ′′ are also present in σ′, and since σ′ |=µ pt, it means
that σ′′ |=µ pt. Also, since the error cell is not the new cell l 6= (c, f1), all expressions
that hit (or miss) the cell in σ′ will also hit (or miss) in σ′′. Finally, the locations that
hold references to the error cell are the same in σ′ and σ′′ because l 6= (c, f1). Therefore,
(l, σ′′) |=µ (S, H, M).
Now because σ′′ |=µ pt and (l, σ′′) |=µ (S, H, M), by the soundness of assignment state-
ment we get (l, σ) `µ [[∗e0 ← 0]](S, H, M). Hence, |=pt {[[∗e0 ← 0]](S, H, M)} s {d}.

– Case 2.2: There exists e such that (∗e) ∈ H and pt(e) ∩ w = ∅. Then (e, σ′) → l′ and
σ′(l′) = l, for some l′ ∈ L. By the soundness of pt, we have µ(l′) ∈ pt(e).
Let l0 such that (e0, σ) → l0. Then µ(l0) ∈ pt(e0). Because pt(e) ∩ w = ∅, we get
l0 6= l′. But l0 is the location being written by the statement. According to the semantics of
allocations, location l0 is updated with the address of the allocated cell: σ′(l0) = (c, f1);
and l0 is the only location that holds the value in σ′. Therefore, because l′ 6= l0, we get
σ′(l′) 6= σ′(l0). But σ′(l′) = l and σ′(l0) = (c, f1). So the error cell is not the newly
allocated cell: l 6= (c, f1). The rest of the proof is then the same as in the case above.

– Otherwise, the result is >. This is always a safe approximation: |=pt {>} s {d}.

�

Lemma 11 (Free Transfer Function). If s : free(e) is a deallocation statement, d is the
dataflow fact after s, and pt is the points-to information, then |=pt {[[s]](d)} s {d}.

Proof. Let d = (S, H, M). Let l, σ, σ′, µ such that 1) σ′ |=µ pt, 2) σ |=µ pt, 3) (l, σ′) |=µ d,
and 4) (s, σ)→ σ′. We have three cases:

– Case 1: e ∈ H . Then (e, σ′) → l. Since deallocations just remove a cell from the heap,
but leave all other locations unchanged, it means that the evaluation of e yields the same
value in the pre-store: (e, σ) → l. By the semantics of free l = (c, f1) where c ∈ C is the
deallocated cell. Hence, e is a dangling reference in the post-store: l 6∈ dom(σ′). As a result,
assumption (l, σ′) |=µ d is invalid, and any pre-state is sound: |=pt {⊥} s {d}.

– Case 2: Miss(e, d). According to the semantics of deallocations dom(σ′) ⊆ dom(σ) and all
memory locations in dom(σ′) have the same values in σ as they have in σ′. Hence, d is also
a sound abstraction before the deallocation: |=pt {d} s {d}.

– Case 3: Otherwise, the same argument as in Case 2 applies here. In addition, e ∈ M ′.
Otherwise, if (e, σ) → l, then l = (c, f1) where c ∈ C is the freed cell. This would
contradict the assumption that (l, σ′) |=µ d, since (c, f1) 6∈ dom(σ′). Hence, e ∈ M ′ and
|=pt {(S, H, M ∪ {e})} s {d}.

�



Lemma 12 (Condition Transfer Function). If s : cond(e0 ≡ e1) is a condition statement, d′

is the dataflow fact after s, and pt is the points-to information, then |=pt {[[s]](d′)} s {d′}.

Proof. The semantics of condition statements shows that conditions don’t change the state of the
store. Hence, d is automatically a sound abstraction before s. We just need to prove that the newly
added expressions in H ′ (or M ′) indeed hit (or miss) the error cell. This is straightforward, since
evaluation of expressions in the pre-store and in the post-store proceed identically.

Let l, σ, µ such that σ′ |=µ pt, σ |=µ pt, (l, σ′) |=µ d, and (s, σ) → σ′. By the semantics
of conditions, σ′ = σ.

Let statement s be cond(e0 = e1). Let e0 ∈ M . Then (e0, σ) → l. By the semantics of
conditions, e0 and e1 must evaluate to the same value, so (e1, σ) → l, therefore it is safe to add
e1 to the miss set M ′. This proves the correctness of the first rule. The proof for all other rules is
similar. �

Theorem 2 (Transfer Function Soundness). If s is a statement, d′ is a dataflow fact after this
statement, and pt is the points-to information, then the dataflow fact d = [[s]](d′) that the transfer
function computes before s is sound relative to the points-to information pt:

|=pt { [[s]](d′) } s { d′ }

Proof. The proof is provided by Lemma 9 (Assignment Transfer Function), Lemma 10 (Malloc
Transfer Function), Lemma 11 (Free Transfer Function), and Lemma 12 (Condition Transfer
Function). �


