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Abstract

There are k (> 2) competing normal populations with common known
variance and unkiown means 81992,...,6k. Let 6[13 < ees < eEkJ denote
the ordered values of the {ei}. Nothing is known concerning the
pairing of the {Bi} and the {e[ij}” In the location invariant
identification problem, the differences {efi] - e[l]} are given and
it is desired to select the population associated with efk]' of
particuler interest is the slippage configuration 9[1] = e[k—l] = e[k] - &%
where g% > 0 is given. We restrict attention to procedures that
guarantee that the population with the largest mean is correctly selected
with probzbility at least P% where k—l < P% < 1 is preassigned.
Essentially, this requirement is satisfied by the stopping rule of

Bochhofer, Kiefer and Sobel (Sequential Tdentification and Ranking

Procedures, Univ. of Chicago Press 1968, Chap. 3) independently of the
sampling rule and thus data dependent allocation rules can be considered.

Unlike the case k = 2 (see Robbins and Siegmund (1974) J. Am. Statist.

Assoc., 69, 182-13%), when k > 3, substantial savings in expected total |
sample size can be obtained when adaptive sampling is used instead of

the equal allocation rule ('vector at a time" sampling). Several procedures
are proposed and investigated with respect to this criterion. Also their
performance with regard to the alternative criterion of minimizing

expected number of observations on the inferior populations is studied.

Both thecretical and simulation results are presented. Comparisons are

made with the performance of elimination-type procedures, such as that

of Pauleon (1964), Ann. Math. Statist., 35, 174-180.

Firzlly, for the ranking pioblem where the differences e[i] ~ G[l]



(2 < i < %) are now unknown, it Is shown that, when adaptive sampling
rules are used, the slippage configuration is no longer necessarily least
favorable for the usual indifference zone approach. This poses some

interesting problems for future research.



i. Introduction

Adaptive sampling procedures have been the subject of considerable,
theoretical interest in the methodology of sequential medical trials,
where it is desired to compare k (> 2) treatments. A recent survey
article by Hoel, Sobel and Weiss (1975) provides a comprehensive overview
of the literature. Most authors have concentrated on the two-arired
trial, k = 2, but studies with three or more arms are important. Gent
(1876) describes a situation in which three independent nationwide trials
in7olving aspirin substitutes were begun around the same time. He points
out that, instead of conducting three ceparate 2-armed trials of drug vs.
control, a single b-armed study would have resulted in a considerable
saving in the number of control subjects needed.

However, adaptive sampling might be advantageous in other aveas of
application. In a quality control situation there may be k batches of
items which deteriorate in time (e.g. food, drugs, etc.) and due to
records being lost it is not known which batch is the newest (oldest)
unless sampling is undertaken. Alternatively there may be k apparsntly
identical lots of items but of varying quality and it is desired to pick
the superior one. Ancther application occurs when the observations are
radar measurements on the nose cone, booster and other debris of a
rocket after separation and it is desired to identify the nose cone as
quickly as possible e.g. for guidance or for possible counter-measures
if the nose cone is a warhead and the other objects are decoys. There
have been several papers on the subject of how search radars could be
improved by non-uniform scan controlled by a sequential detector - see

e.g. Edrington and Petersen (1971).
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Consider a k-ary communication chamnel with feedback. The receiver
sequentially prccesses the signal corresponding to one of the k possible
characters until it identifies it with some degree of certainty - the
peceiver then directs the transmitter to send the next chapacter. In
this zpplication (and possibly others), there is a single input process
with k hypotheses. If so, the k populations may be taken as the
output processes of k filters. If the k poazsible signals are
orthogonal and the noise Gaussian, then matched filters would accomplish

the desired transformation. There are further applications to unsupervised

learning and classification techniques -- see Nagy and Tolaba (1972).
An adaptive sequential procedure consists of three parts -- a

sampling rule (also called essignment c» allocation algerithm) for

deciding from which population the next observation is to be taken, a

stopping rule for deciding when sampling should cease, and a terminal

decision rule for selecting a population as "hest'., Robbins and Siegmund

(1974) treat the problem of deciding which of two normally distributed
tpeatments with a common known variance has the larger mean response. They
show how to construct a location invariant stopping rule and terminal
decision rule of sequential probability ratio test type (SPRT) so that

the error probabilities are essentially independent of the (symmetric)
sampling rule used. In particular the SPRT can be constructed to

guarantec that the probability (PCS) of correctly selecting the treatment
with the larger mean is at least p% whepever the difference of the means

s no less than 6%. Here &% > 0 and 1/2 < P% < 1 are preassigned.

fte

They then consider vaprious sampling rules with respect to two measures of
performance, namely (A) expected total number of observations (ASN) and

(B) expected total number of observations on the inferior population (ITN).



Lat the ASN was minimized by pairwise (or vector-at-
a-time VT) sampling. They also show how adaptive sampling rules which
reduce the ITN necessarily cause a considerable increase in ASN. (As
we shall demonstrate later, this result is in sharp contrast with the case
k >3 where the two goals (A), (B) are no longer in direct conflict.)
Subsequently Louis (1975) obtained the optimal allocation rule for
minimizing ASN + y.ITN (for vy > 0) in the continuous time analogue of
this k = 2 problenm.

In this paper, we attempt to attack the k (> 3) treatment problem
in the same spirit as Robbins and Siegmund. Bechhofer, Kiefer and
Sebel (1968) [BKS] treat in great detzil vector-at-a-time (VT) sampling for
selecting the best of k populations for a stopping rule which is a
generalization of the SPRT. However, when k > 3, great savings in ASN
can be made if the sampling rule is allowed to be adaptive (i.e. data~
dependent). As mentioned before, such rules can have the side benefit of
producing a lower expected total number of observations on the k - 1
inferior treatments (ITN). This is intuitively clear; for consider the
normal case with k = 3 and when one population mean is much smaller than
the others. Very early on in experimentation, this population will become
apparent and only two populations will be left in contention. Thus,
compared to VT sampling, we might expect that the ASN can be reduced by
almost half: Coirespondingly larger savings could occur with larger values
of k. In fact, although previous authors have treated small values
of k (usually k =2), there are applications where k may be as
large as 1000. That ASN can be reduced by adaptive sampling is importaﬁt N

since recently Byar et al. (1976) have suggested that it is ASN and o

not ITN which should be the more important criterion for clinical trials.
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In the next section, we describe a k-population location invariznt

(LI) identification problem and propose a stopping/terminal decision rule

with the property that its PCS is independent of the sampling rule used. In
Section 3, we describe some adaptive allocation rules, and also, in Section

L, the elimination-type procedures of Paulson(1964) which can also be viewed

as an adaptive rules. In Section 5, these rules are compared via Monte

Carlo simulation. In Ssction 6, we investigate the ranking problem associated
with the LI identification problem of Section 2. However, unlike the case

X = 2, op the case of k > 2 with VT sampling, we find that the usual
slippage configuration is no longer ‘'least favorable'’ and thus the results

of Section 2 cannot be extended. This is a somewhat surprising result

(at least to the authors). All the above ideas will be made more precise

in the sections that follow.



2. The location invariant (LI) identification problem

Cbservations Xij (1<1i ikg j > 1) are available sequentially
from each of k (> 2) populations Mys Tpser sl The observations
{Xij} are independent with probability density function f{x - Gi)
where ei is a real location parameter. We let 8[1] AEEERREE iﬁ[k-l] §_e£k1
denote the ranked values of the {ei}. We assume that nothing is kaown
a priori concerning the pairings of the {e[i]} and the {ﬁi}c Also we

define T, = Gi - 6[133 and let T[i] = e[i] - 8[13 be the ranked

values of the {Ti}. If the values of the e[i7 apre known (unknown) then we
-

cay we have an identification (ranking) problem. Here we shall consider

the location invariant (LI) identification problem where only the differences

{T[i]} ape known. We shall discuss the construction of adaptive sequential

procedures which guarantee that the probability of correctly selecting

o

(PCS) that population associated with k] is at least P%, where
1

k" < P¥ < 1 is prespecified (we assume Tpy4 is unique 1i.e.

T }. As in Robbins and Siegmund (1974), by invariance we can

k1~ Trx-11

pestrict consideration io procedures based on the maximal invariants

= - A < i ] 1. \g .
Yij Xij yll’ 1<1 <k, j>1 Suipose +hat we have taken nl
obsepvations from 1., and define N = Z n,.
i 701
The 1likelihood function based on the {Yi'} is given by
n, J
o k i
L“(Tl,f25°eong} = f .H .§ f(yij -1yt Ty + z)dz
—w i=1 j=1

where of course Vi1 T 0.
Define L{a) = L*(T[alng[azlgs.-,T[ak]) where o € Sk5 the group of
permutations of k elements. Let Sk-l(i’j) denote the subgroup of

permutations o € S for which oi = §. Define



E L)
i aeSk_l(iak)
% 7 L(a)
meSk

which is the likelihood that Ty T Tr] and I is the "best™
population. (Qi is also the a posteriori probability of this event,
assuming the {Hi} are all equally likely to be the best, a priori.)

Finally, define

The BXS stopping rule (and terminal decision rule) is as follows:

UTerminate sampling the first time that Q > P¥® D

and select that population associated with the ('BKS

largest value of Qio”
Theorem. If PBVS is used for the LI identification problem above
—— IN
then P[CS] > p* for any symmetric sampling rule such that the procedure

terminates almest surely.

Proof. This is essentially contained in BKS (Chap. 3).

Remsrk 1. Scale parameters. The case where f(x‘ei) = f(x/@i} is

analogous and can be handled either by a log transformation or by
considering quotients instead of differences.

For the remainder of this paper we will treat the example in which the
observations {Xij} are normal with means {ei} with known variance Gga
For k = 2, this setup has been recently treated by Robbins and Siegmund

(1974) and Louis (1975). Here it is easy to show that
n,
1 k i

L“(Tlgrza..,,Tk) « eXp - -§»L°§ °§ (%

- % - T, + ;)2}
20° i=1 j=1

ij .s
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£
n,

i k
- - - -} -
vhere =z = I 1 2 i X and ¢ = N7 z n,T,. Note that = and
_ - i=1 5=1 M i=1 * "
© are not invariant under permutations of the subscripts.
We specialize to the &%-slippage configuration (Karlin and Truax,
1960) for which Tr.- = 0 (1 <i<k-1) and T = 8% > 0. VWhile of .
(il - - [x]
interest in its own right (e.g. see some of the examples in Section 1),
this configuration also is the "least favorable' in the associated ranking

problem with VT sampling - see Section 6. Substituting for tp.q» L{a)

simplifies and for ¢ ¢ Sk_.l(igk)3 we have

ng
- 2
L(a) = [ z Z (x , - % ) - 28%z.1
26 2 he1 421 B - *
where
_ n.(N-n.,)
z, =n,(x, -x ) - — $
® 2N
- -1
and X, =Dy z
Let

Zppy <o < E[ denote the ranked values of the {z,}. (Ties
occur with probability zero.)
Then
k=1
1-Q _ s 2
3 - .Z expl-6%(zpy 4 = 2p;37)/0 ]
i=1
and PBKS is equivalent to:
(2.1) "Stop the first time that (1- Q)/qQ £ (1 - P¥)/P* and select
that population associated with 21"

T+ should be noted that for non VT sampling the population associated with

i is no*t necessarily the same as the one associated with . M&% (x, ).
[k1 1<i<k Ui,

We now address the question of sufficient conditions for the

almost sure termination of rule (2.1).



Temma 1. TFor the §%*-slippage LI-identification problem, we suppese

that the sampling rule used is such that:

(2.2) P[ni(N) + o as N+ ® for each 1 <i<kl=1

Then Q -+ 1 as N + « almost surely. It follows that if the stopping
rule (2.1) is used, termination will cccur with probability one.

a.s. for 1< i<k as N + o,

Proof. We first show that ii -+ 8
The sequence {Xij; 3= 1,2,000 is i.i.4d. N(ei,cg). Hence, by the

}
v
»ge numbers, z X

strong law of la ../Jv =9, a.s. as v ~+»» . The
n, (N) 351 17 i

sequence { 12 Xij/v; v = 1,2,..-7 by "stuttering', i.e. repeating
3=1 -

ezch value several times before going on to the next. Hence Xi -+ ei

°

almost surely.

Now, without loss of generality assume Ty T Tri] (L<1ix k).

Then
- -1 k -
z, =n (X - N 1 ongX ) - (N - n, )8%/2N
i=1
Hence
1 , k-1 k-1
— VA e - &% - ¢ ¥
Gt o e = %y - 8%/2 - CLomg¥y /0 my)s
k k i=1 i=1

which by.the argument above converges almost surely to some strictly
positive 1limit as N =+ «. Thus we must have Zk >+ o« a.,s. N> @

Similarly for 1 # k we can write

1 1

G 7 L L AL TR
kil i kil
- ( n, X, / n ) - &/2
gep ¥ ey b

L 2#1
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and the lim sup of the RHS is strictly negative almost surely as N > «.
Thus lim sup Zi = -» a.s., and (1 -Q)/Q~»0 a.s. which proves the
lemma.

Remark 2. If the sampling rule is such that condition (2.2) is not
satisfied then Q may not converge to unity. For example, suppose that,
with non-zero probability, ni(N} +n, < for some i(l1 < i <k - 1)
and n (N) > as N+ o, Then Z, -2, =n ) n.(?(k‘ - X, = 8%/2)/n

k i kj’#k 3 i.

- n, (}—(i - ij - §%/2)/N rpemains finite and Q # 1.

A
2
J

n.
J

X

i



3. Sampling rules

In this section we describe several sampling (allocation) rules
to be used in conjunction with the stopping rule and terminal decision
rule given by (2.1). For convenience, we assume that all rules initially
take one observation from each population.
(i) VI At each stage a block of k observations is taken, one from
each population. In the medical context, within each block, patients
are assigned at random to each of the k treatments. A closely related
pule is the one in which observations are taken singly, one observation
from each population in turn. The ASN of this rule must be smaller than
that of the VT rule yet our experience suggests that the difference
is small. Extensive tables for VI sampling are available (BKS, Chap. 18),
and those results provide a yardstick against which our adaptive
sampling results can be compared.
(ii) RAND Q This is a randomized allocation rule in which the next
observation is taken from 11 with probability Qi 1<1 < k). Recall
that for the LI identification problem Qi can be considered the
posterior probebility that Iy is "best". (Note that the nonrandemized
rule that always samples from the population associated with mix Qi may
not terminate by Remark 2.) For k = 2 and Bernoulli observations, Simon,
Weiss and Hoel (1975) have investigated this rule.
(iii) GRS  Robbins and Siegmund (1974 Sect. 3) proposed a non-randomized
rule fFor k = 2. Here we describe one particular generalizaticn to k > 2.

From the stopping rule (2.1), we note that sampling has certainly terminated

if

e - 2 - DEY /D
(k-1)expl-¢ (ZEk] Z[k—l})/g 1< (1 - P®)/FY
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Zrey T P[k-11 2P

where b = 02 logl(k - 1)P%/(L - P%)]/8%, The GRS rule depends on a

i.a, if

parameter ¢ > b and is as follows: If

Ik 7 P11, P00 T Ge1)
c - N

take the next observation from the population associated with Z[k];
otherwise take a vector of observations from the remaining k -~ 1
populations. Here nesy denotes the sample size associated with Zriqe
For k = 2 +this reduces to the rule of Robbins and Siegmund. For our
simulations, two values of ¢ were chosen, namely ¢/b. = 1 and c¢/b = 1.2;
these were the values used by Robbins and Siegmund.
(iv) Bessler Bessler ( 1960, Section 8) treated this problem with
k = 3, but from a decision theoretic viewpoint in which there are costs
assigned to incorrect terminal decisions and there is a cost ¢ per
observation -- there is no P¥* vreguirement. He obtains asymptotic
properties as ¢ + 0 for his procedure. Because Bessler's stopping rule
does not guarantee error probability requirements we continue to use the
stopping rule (2.1) and consider only Bessler's sampling rule. Let

Xr17. S %07, S X3, denote the ranked values of the {x, , 1 <1< 3}.

°

- - - 2
3 3 - - \ 'S 2
Define C(m) [(x ,)/(X[sj_ x[2j 377. Bessler's allocation

de

[33. = %13

rule is randomized and prescribes thet the next observation be taken
from the population associated with i{i} with probability li (i=1,2,3),

where & = (A, ,A.,A,) maximizes Azksj(xz + As) subject to the

172

constraints Al + AQ + AB = 1 and

3



Bessler tabulates & as a function of C(%}, He also conjectures some
asymptotic optimality properties for the ASN functions. Although we
are not using his stopping rule, we might still hope For low ASN values.
In theory, Bessler's procedure can be generalized to k > 3.

(v) V/%-1:1:1 Randomization. If we can assume that the =t; are in

the &%-slippage configuration, we might consider replacing C(x) by
the quantity C(%) iz estimating, namely C(a). But when T = (0,0,8%),
C(r) =1 and it is easy to show that Al =2, = 1/(2 + V2), Ag = VZ/(2 + ¥2).
Sampling rule {(v) is therefore to sample from the population associated
with 1T§f3 Qi {i.e. with Z[k]) with probability /2/(2 +vY2), and the
other ;§§~éach with probability (2+¢§)~l. These are the same limiting
proportions as those obtained by Bechhofer (1969) in the related fixed
sample size multiple comparisons problem for two experimental treatments
and a control. When k > 3, the analogous rule would be to sample from
the population associated with Z{k] with probability (1 + VQ_:1)~1
and the remaining pcpulations with equal probability.

1f should be noted that rule (iii) (GRS) is the only one that

does not involve any randomization. From the remarks of Byar et al. (1876)

and Bailar (1976), randomization is important in clinical trials.



13

I, Paulson's procedure

Paulson (1964), considered a procedure based on VT sampling but
featuring permanent elimination of non-contending populations. At the
n'th stage of experimentation let In be the set of populations not yet
eliminated (Il consists of all k populations). An observation is

taken from each population in In and the cumulative sample sums

n
{8;,: 1e I} are computed where 8. = ) it if
k=1
+
< max 8. - (a - mnp) , then

Hi is eliminated. Here a > 0 and 0 < X < 8% are specified constants
+ . .
and y = max(y,0). The procedure continues until only one population
remains which is selected as best. A desirable property is that when
A > 0 the number of stages is bounded by [a/A] + 1. Eere [y] denotes
the integer part of y. Note that the stopping rule is different
from (2.1).
02
Paulson proved that if a = —gp— log

§ ~A 1-P
whenever Tryq = Try_qj > ¢%. Paulson originally suggested the choice

k-1

o
EH

, then PCS > P*

of ) = &%/4, whereas Fabian (1974) recommended A = §%/2 since
asymptotically (P* - 1) this choice minimizes the maximum ASN over all
parameter configurations. The unbounded procedure when A = 0 is also
of interest. In fact, Paulson's procedure is conservative in that the
PCS guaranteed is considerably greater than P¥# even in the LF
§%-slippage configuration. TFabian (1974) proposed a modification of
Paulson's procedure whereby this "overprotection’ is reduced and
consequently so is the ASN. This modification consists of replacing

"1 . P%"  in the formula for "a" by a quantity B> 1 - P*, TFor
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i1

y=0, g=(1-P)/[1-(1-P*)/(k-1] for §* /4, B

is the soluticn to the equation

/3];

1 - p% = g1 - g/ (k - nt

finally for A = &%/2, B = 2(1 - P%).

A more detailed comparison via simulation of the BKS (with VT sampling)
and Paulson procedures with regard to PCS. ahd ASN for a wide range of P
values can be foumd in unQublisEed papers of Ramberg (1866), Bechhofer and
Ramberg (1977). The asymptotic relative efficiency of the 2 procedures

has been studied by Perng (1969). Paulson's procedure has been

extended by Hoel and Mazumdar (1968) and Hoel (1971).
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5. Sinulation results for the LI identification problem

A Monte Carlo study was performed in order to compare performances
with regard to ASN, ITN and PC3 of the procedures described in Sections
3,4 for the g*-slippage problem. The values P = 0.9, &% = 0.2, GQ = 1
were chosen along with two values of k, namely k = 3, 10. The
results are displayed in Tables I,II. These values were chosen so that our
results would be directly comparable with those tables in Chap. 18 of
BKS. Ten procedures were considered namely (A) FIXED sample size
(Bechhofer, 1954); (B) VT; (C) RAND Q; (D) GRS with c/b = 1.0;

(E) GRS with ¢/b = 1.2; (F) the BESSLIR sampling rule with stopping

rule (2.1); (G) the vk_1:1:1 allocation rule; (H), (IJ, (J) -Paulson's
procedure with the Fabian modification with A/6% = .5, .25, 0 respectively.
These are abbreviated PF(.5), PF(.25), PF(0).

Tn the tables that follow, the FIXED sample sizes of the non-
sequential single stage procedure were taken from Table I of Bechhofer
(1954)., For k = 10, simulations were only performed for procedures
(B), (C), (8), (I). This was for reasons of economy and because these
seemed the most promising. In any event, Bessler's rule is not easy to
obtain explicitly for k = 10.

The tables display {Nis 1 < i<k} where Ni is the mean number
of observations taken from the population associated with Trige Also
displayed is the average total sample size ASN. The three entries
in each cell ave the estimated mean, its standard error (in parentheses),
and the estimated standard deviation. Also tabulated are the observed
proportion of correct selections and the mean value of Q upon
termination. The latter yields a more precise unbiased estimate of the

PCS for the &%-slippage configuration -- see BKS page 289. Q also gives
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a measure of 'excess'" or "overshoot'.
It can be seen from Tables I,II that the adaptive rules possess
some distinct advantages over VI. For k = 3, the decrease in ASN

is about 6% for k = 3 (Table I) and the savings increase to about

o®

50% for k = 10 (Table II). Also there is the side benefit in that

the ITN can be reduced by about 22% for k = 3 and the savings increases
to 60% for k = 10. Most of the adaptive rules (C) - (G) perform about

the same -- RAND Q seems to do slightly better with regard to ASN, GRS
slightly better -for ITN. Among the PF rules, the results here are
consistent with Paulson's choice of A = §%/4. Of course, +the simulations

are only for P¥* = 0.9, 6%/ = 0.2, but we believe that the results

ape indicative of what happens for other (P%, §%/0) combinations.
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6. The ranking problem.

We now attempt the transition from the LI identificaticn to the
ranking problem where we assume that the ordered values 1[13 are completely
unknown. In the indifference zone formulation of the normal means ranking

problem, we define the preference zone PZ = {igTEk] " Trk-1] > &%} =

{g{e[k] - e{k—l} > §%} and seek procedures that guarantee the requirement
that PCS > P%# wherever Te P%. BKS (Theorem 6.1.1) prove that rule
(2.1) with VT sampling satisfies this requirement. Paulson (1964) showed
that his procedure also meets the requirement. (So does of course the

fixed sample size pule of Bechhofer (1954).) All three procedures

utilize the fact that, for a given set of procedure parameters (P%,6% etc. ),
the infimum of the PCS over all § in PZ 1is achieved in the d&%-slippage
configuration, which is therefore termed "the least-favorable'" (LF)
configuration. Thus for those procedures the ranking problem can be

reduced to an LI identification problem. It might be reasonably conjectured
that any procedure using stopping rule (2.1) and a symmetric sampling rule

that assures temmination w.p. 1 would also guarantee FCS > P# whenever

TE PZ. However our simulations (see Table VII) demonstrate this very

intuitive conjecture to be false. In general there are configurations in

PZ less favoprable than the §%-slippage configuration. This was & rather
surprising result - at least to the authors. A heuristic explanation for
this phencmenon is given in the Appendix.

Monte Carlo simulations were carried out to investigate the
performance of the ten procedures of Tables I,II when presented with
parameter configurations other than 8%-slippage. For k = 3, four
alternate configurations were chosen, for k = 10 one alternate

configuration. These were chosen so that easy comparison could be made
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with Tables 18.5 of BKS. Again P% = 0.9, 6% = 0.2, and 0o = l.b.
The results are presented in Tables III-VII, The format is the same as
that used earlier in Tables I, II.

The FIXED, VT and PF rules do, of course, guarantee the probability
requirement for the ranking problem. It is well known that, under
certain parameter configurations, the sequential procedures lead to
considerably lower ASN's than does the single-stage procedure. As
between VT and PF, overall PF has of course a much lower ITN, and it appears
to have a comparable or lower ASN. Also the overprotection (PCS actually
attained) seems to be greater for the Paulson procedure even with the
Fabian modification. Bachhofer and Ramberg (1977) compare the VT and PF
procedures in much greater detail.

One desirable feature of any ranking procedure is that the ASN
should not be greatly increased by the introduction of extra 'non-contending”
populations with means 6 < < 0. The Paulson procedure does not have this
feature since the continuation region is enlarged as k increases and it
takes longer for the contending populations to be eliminated. On the
other hand, the number of observations on the “"contending' populations
is fairly insensitive for procedures involving the BKS stopping rule.

Concerning the almost sure termination of the adaptive rules, Lemma
1 of Section 2 holds whenever Tkl " Tlk-1] > §%/2. The proof is
unchanged. The simulation results from Table III suggest that this result
should hold even if the restriction is removed. As with any of the
procedures, if one is concerned about a large variance of the sample size,
bounded procedures can be constructed which still enjoy some of the
benefits of adaptive sequential sampling. To do this, define

P' + P" = 1 + P%¥, use the adaptive sequential procedure but with P
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replacing P*, but take no more obsevvations than prescribed by the
fixed sample size rule (Bechhofer 1954) for PCS = PU. This idea was
suggested by BKS (p. 227).

An advantage of the VT and PF rules not enjoyed by the adaptive
rules is that there is a "time-blocking" effect. This might be important

if, for instance, overall quality of treatment improves with time.
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7. Directions of future wescarch.

It is disappointing that, in the ranking problem, the BKS stopping
rule (2.1) does not guarantee the requirement that PCS > P* whenever

> §% independently of the sampling rule when k > 3. Thus

k1 T Ope-1]

the adaptive procedures of Section 3 camnot be regarded as a satisfactory
golution to the general ranking problem. It is possible that the
Sﬁslippage configuraticn is least favorable within a restricted class of
configurations such as perhaps the §-slippage (GLF) configurations where
§ > 8§%/2 is unknown. Alternatively it may be possible to construct
sampling rules (other than VT) for which the §#-slippage configuration
is least favorable. Further investigation is needed into these questions.
In the past, there seems to have been little work done on adaptive
sampling for identification or ranking problems with k > 3. Many of
the arguments used by authors for k = 2 do not seem to carry over
easily. TFor Bernoulli sbservations on k > 3 populations, Sobel and
Weiss (1972) have discussed 'Play-the-Winmer" sampling and inverse
stopping rules -- see also Berry and Young (1977).
For the LI identification problem the potential savings in ITN and
ASN might seem to justify the more complex allocation rules of the
adaptive procedures. Other procedures that might also be of interest,
but were not compared here, are those of Box and Hill (1967) and Blot
and Meeter (1973). No attempt here was made to find optimal sampling rules
for the LI identification prcblem -- it is possible that the approach of

Kiefer and Sacks (1963) might lead to optimal fully sequential procedures.
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APPENDIX

Here we give heuristic arguments concerning some sufficient
conditions in the ranking problem for the non-consistency of the
procedure (2.1) when adaptive sampling rules are employed. - This
gives insight into why the 6&%-slippage configuration is not least
favorable and it is possible for PCS < P¥ for some configurations in

the preference zone.

Recall =z, = n. (X, - X
i i

° s @

- (N - ni)ﬁ*/Q). W.l.0.g. assume
Suppose also N »>.0 with nj >> 0

2
1 <3j<n. Also let n, = max (n.,) and n, >> n For the adaptive

. k°
1<3<k
sampling rules discussed,this situation can occur with positive probability

due to an "unlucky start.” Suppose n, = C.N and on some set Q'
of positive probability C +tends to a limit a where o is bounded
away from 0 and 1. (For the argument that follows all we really
need is that 1im inf C > 0 and 1lim sup C < 1 on some set Q'

Noo Moo
of non-zero probability. There is also a condition analogous to (Al)
if o =1 on some ' of non-zero probability.)

Then by use of the law of the iterated logarithm it is possible to

show that oh QF

(A1) 2z, - 2 vl - a)N(ui - §%/2) - q n,u. + o(l). If the

)
k 57

3
configuration {pi} is such that z, = 7y + as N- «  then

oo
8 s

+

Q~ 1, the procedure will stop but Hi will be incorrectlv selected
as best. From (Al), this happens if

k
(A2) Mu, - (1 - 0)N8®/2 - nyu, * t *,
i / ,z 4

=1
For the 6&-slippage (GLF) configuration this cannot happen since

the expression (A2) tends to =~ « and eventually Z > Zie (Of course,
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for éA= §* (the LI identification problem) we already have the
consistency of the procedure (2.1) for any symmetric sampling rule
that terminates almost surely.)

However, for a general configuration of the {uj}, it is quite
possible for condition (A2) to hold (e.g. for the equally-spaced
configuration with ”j+l - uj =§, 1 ﬁ_j f_k - 13.

The question arises concerning the kind of sampling rules for which
this phenomenon can occur, i.e., roughly speaking, when we can have
n, > > o, for 1 # k and ny > > 0. Unfortunately it occurs
for rules like RAND Q and GRS, which have the feature of being more
likely to sample next from the population with the highest current
value of zj (with the aim of reducing ITN). For these rules, due
to an unlucky start it is quite possible for zZ; > Zy after some
stage of sampling. For such rules this is likely to imply that n, > 0.
Then T, is more likely to be sampled on next and, if (A2) is satisfied, the

difference z; = 2 is likely to be increased, thus perpetuating and

k

worsening the condition.



