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Abstract

The PRL ("pearl") system is an enviromment providing computer assistance
in the construction of formal proofs and programs in a particular formal
theory, called the object theory. Certain proofs can in fact be considered as
programs. The system embodies knowledge about programs in the form of rules
of inference and in the form of facts stored in its library. Ultimately PRL
may be regarded as an intelligent system for formal comstructive problem solv-

ing in a large domain of mathematics.

The PRL system is evolving in stages. Since our report "The Definition
of Micro-PRL" in October 1981, we have had the experience of designing, build-
ing and using a complete core version of the system (called )‘PRL).1 We have
also studied more deeply the theoretical issues raised in that report. We are
now prepared to extend the core system closer to the "ultimate" PRL system
envisioned earlier. This document describes the mathematical theory of types
which is the object theory of that extension (called APRL) and it is more or

less self-contained. The type theory is defined in stages, starting from a

1The existing APRL system consists of 33,000 lines of Franz Lisp code running
under Berkeley 4.lc Unix on a VAX 780 plus a few thousand lines (3) of C code
and about 15,000 lines of Franz Lisp to support ML. The implementation was
accomplished principally by J.L. Bates, F. Corrado, J. Sasaki, J. Cremer with
assistance from R. Harper, S. Allen, R. Stansifer, R. Constable and A.
Demers. Certain decision procedures were taken from PL/CV2 [8] and from G.
Nelson's thesis [17]. Improvements and extensions were made by M. Bromley
and T. Knoblock based on the initial experience of J.L. Bates, R. Constable
and N.P. Mendler using the system.

='Research supported in part by NSF grants MCS81-04018, MCS80-03349.



constructive theory of integers and lists ("™PRL). The development is a main

feature of the paper.
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I. Imtroductiom

1. Refinement Logics

The acronym PRL, for Program Refinement Logic or Proof Refinement Logic,
denotes a computer system to help users derive constructive proofs of asser-
tions. These assertions are of an extremely general sort (they are character-
ized precisely in section II.l1). The derivations can be stored in a library,
and certain forms of proof can be executed, in particular proofs of assertioms
of the following form: "for all x of type A we can find a y of type B satis-
fying Q." These proofs define functions from type A into B, and it is natural
to think of them as programs. Thus PRL is a program development system. PRL
is also an example of a simple intelligent system because it embodies
knowledge of program structure and can accumulate knowledge about programming

and mathematics in its library.

PRL encourages proof development in a refinement style - a goal is decom-
posed into subgoals. The proof is refined layer by layer; thus the name,
"refinement logic" coined in [2]. Nevertheless, it is inevitable that other
kinds of proof are possible, especially those built by assembling results from

the library.
2. Programs As Constructive Proofs

Essential to the conception that programs are executable proofs is the
notion that proofs are constructive. In PRL this is assured because the
underlying language of the system has a computational semantics. Nonconstruc-
tive modes of thought can be represented in the language, but the defining
semantics is computational. Indeed the resulting language is sufficiently

expressive that virtually all sequential programming problems can be described



in it. Those with nonconstructive proofs have no interesting execution.

To formulate a computational semantics for such an expressive language,
we rely on the principles of constructive mathematics as they are formulated
in the context of the predicate calculus. At a formal level this amounts to
imposing Heyting's interpretation [22] of Brouwer's semantics [8] in Frege's
predicate calculus [17]. 1In sections IV and V we will provide another seman-
tic explanation of the system based on Per Martin-Lof's theory of types
[26,27], but initially we will explain our concepts in terms of the predicate
calculus and a constructive version of Frege's semantics.

3. Semantics of Comstructive Logic

According to Brouwer [8], a proposition is specified by telling how to
prove it. Thus propositions have proofs not truth values. The meaning of
compound propositions is given in terms of rules for proving them from proofs
of the components. We list the forms of compound propositions below with
their intuitive meanings. This serves to introduce our logical notatiomn. We
assume that the concept of a term, in particular a variable x, occurring in a
formula is clear. (It is in fact defined in II.l.) To know A&B we must know A
and know B, so a proof of A&B will be a pair consisting of a proof of A and a
proof of B. To know A|B (read as "A or B") we must either know A or know B.
To know A=>B we must provide a method which transforms a proof of A into a
proof of B. To know some x:A.B we must produce an object a of type A and a
proof that B holds with a substituted for x in B, written as B(a/x). Finally,
to know all x:A.B we must have a method of producing for any object a of type

A a proof of B(a/x).

The rules of logic given in section II, based on Heyting's [22] analysis

of Brouwer, can be seen to be correct under this computational interpretation.



We will in section IV provide a so called "extract-form" of the rules which
makes the computational meaning explicit. These extract-forms show for exam-
ple how to build from a proof of A=B a computable function Ax.b which takes
proofs of A to proofs of B. In section IV the computational meaning of formu-
las is made explicit in the type structure of the logic using the so called

propositions-as-types principle.
4. Iype Structure

The APRL logic [4] is built around exactly two types, int, the integers,
and list, lists of integers. These types are not adequate to express all the
computational problems of interest to us. Indeed we strive to express all the
types needed to do computational mathematics. In particular, we need these
type constructors from modern programming languages (such as Algol 68 [38] and
ML [19]): Cartesian product of two types A and B, written A#B, disjoint union,
written as A|B, the list of objects from A, written A list, and the function
space (or exponentiation), writtem A+B. In the case of A+B we mean the type

of computable total functions from A to B.

In addition we want the following types common to mathematics, infinite
union, (or dependent product) written as x:A#B and infinite product (or depen-
dent function space) written as x:A+B, and the set of all A such that B, writ-
ten {x:A|B}. (We can in fact define #, = and | from these infinitary opera-

tors.)

We want to treat types as objects of computation, passing them as inputs
to functions as a means of permitting polymorphic operations. To this end, we
would like to treat the concept of type itself as a type. However, without
restriction such a concept is paradoxical. So following Bertrand Russell

[33], we introduce a layered concept of type, written type(i). This induces a



layering structure on propositions as well. Propositions of level i are in

the class prop(i).

With these basic types we can define various notions of recursive data
type, so they are not explicitly added to the underlying type structure. We

could indeed define the list constructor in this way.

With each type A we introduce a proposition defining equality on A, writ-

ten = In order for the user to provide explicitly defined equivalence rela-

A.
tions on a type A, we provide the concept of a gquotient type, writtem A//E
where A is a type and E an equivalence relation. On this type the defined

equality is the binary relation E.

5. Formulas and Judgements

The atomic formulas of this theory are the equalities a I\ b where A is a
type and the assertions a < b. In order for equality formulas to be well-
formed, it must be that A is a type and that a and b are of type A. Because
the theory allows the computation of types and because terms do not carry
their types, there is no algorithm to decide whether these type constraints
are met. Therefore, it is necessary to provide proofs which establish the
well-formedness of types and formulas. The question then is how to express

these constraints.

The fact that a is of type A is expressed by the type judgement a € A.
For the present we do not take this to be an assertion that a belongs to a
type, but it is a form of judgement which must precede assertions such as
a =, b. Later in section IV.7 we shall see how to reduce this judgement to an

A

assertion.



In order to make the type judgement a € A, we must also be able to judge

that A is a type, say of level i, which we write as A € type(i). (This is a
higher type judgement.)

To judge that an atomic formula a =, b is well-formed written (a A b) €

prop(i), we need to judge

It is also necessary that we know that compound formulas are well-formed. For
example to prove (A|B) we must either prove A or B, and we must know that each

1

component is well-formed.' For compound formulas we also use the notation A €
prop(i) to mean that A is a proposition whose type components are of level i.
This is another form of judgement, say a formation judgement. For example, we
make the judgement that (some x:A.B) € prop(i) provided that A € type(i) and B
€ prop(i) under the condition that x is of type A. To show the bindings of

variables, we use declarations of the form x:A. The collection of these

declarations forms an enviromment (much as in APRL).

6. Deductive Apparatus

Since Frege [17] it has been common to organize the deductive structure
of a logic around assertions that a formula A is provable. Frege wrote F A to
mean that A is true or provable. Assertion is another form of judgement. For
typographical and video display reasons we write this judgement as >> A. We

are also interested in hypothetical assertions, these are denoted by syntactic

objects called (after Gentzen [18]) sequents. They have the shape AlseecsA

1One can consider a logic without the property that all subformulas of a
well-formed formula are well-formed. Such a logic has certain advantages,
but we have not pursued them in this report.



>> A where Ai are called hypotheses. They are either formulas or declara-
tions. This sequent means that the judgement A is made from Al""’An' In
other words, given proofs of the propositions among Al""’An we claim that we

can build a proof of A. We allow more generally hypothetical Jjudgements

Al""’An >> J where J is any "epsilon" form of judgement, e.g. t € T.

The pattern of deduction in PRL is that the user states a goal, a formula
or judgement to be proved under certain assumptions and in a certain environ-
ment, and then issues a command to the system telling how the proof should
prdceed. The command is either a primitive rule or an entire proof method
(see section VI). The system responds by decomposing the goal into subgoals
based on this command. The user then considers the subgoals, proceeding

iteratively until the proof attempt succeeds or is abandoned.

To accommodate this top-down form of reasoning, the rules are presented
in the refinement style [2] shown below where H, the hypothesis list, is a
sequence of formulas and declarations, and T, the conclusion, is a formula or

a judgement.

H >>T
n n

This pattern means that to know the sequent H >> T, called the goal, it is
sufficient to know all of the I-Ii >> Ti’ the subgoals. If a rule has no

subgoals (n=0) as in H >> 0 € int, then it is axiomatic.

The rules will display level tags which are positive integers or letters
written to the right of the conclusion, as in H >> A&B i where i is a level

letter. These tags are used in the treatment of higher level and higher order



logic (sections II.4, II.7). In a type judgement a € A i the tag indicates
that A € type(i) is being claimed, and in an assertion A&B i the tag indicates
that A&B € prop(i) is being claimed. The formulas and declarations of the
hypothesis list all have levels associated with them as well, but they are not
displayed in the rule, instead they are mentioned in provisos as necessary.

The level tags can be ignored for the APRL subtheory.

This top down approach to proof is also used to establish that a formula
is well-formed, and the process of showing well-formedness can proceed simul-
taﬂeously with the proof of truth. This means that the user can state goals
which are not a priori known to be well-formed. These goals need only be
readable, that is they must satisfy certain context free constraints which

allow them to be decomposed based on an abstract syntactic structure.

The logic is designed to guarantee that if a goal A is provable, then we

know that it is in fact well-formed. (See [21] for a proof of this fact.)

The top-down checking of well-formedness is applied not only to formulas

but to terms of the logic as well.

Z. Organization of the Rules

First we present all the rules of the APRL core logic which include the
predicate calculus, equality, arithmetic, and 1list theory. These rules
include level numbers and well-formedness conditions (marked with *), which
were not needed in APRL, but otherwise they are the same as the APRL version.
It would be sensible to include here the rules for void and atoms, but they

are not in fact types of APRL so they are introduced later.

Next we present rules for the new type constructors. It is significant

that these rules can also be presented in the introduction and elimination



format. In addition to these two forms, there are also rules for type forma-
tion and rules for equality of objects in types as well as equality among

types.

The presentation is organized to introduce features of the logic in order
of their similarity to the well-known concepts from first order logic, say
[24] and set theory. So we start with the predicate calculus over the types
integer and list of integers. Then we introduce higher types such as carte-
sian products, disjoint unions and functions spaces. Then sets and quotients
apﬁear. Then we consider higher order logic and the notion of universes. In
section III we show how the logic can be simplified and yet made more powerful
by adopting the propositions-as-types principle. We also show how to reduce
all the diverse forms of judgement either to assertion or to type judgements.
This leads to two compact versions of the logic from which the highly irredun-

dant version given first can be derived - by inverting the reduction steps.

II. LOGICAL RULES

l. Syntactic Issues

The rules that follow will define the concept of a well-formed formula, a
well-formed expression, and the concept of a provable formula. As a prelim-
inary notion we need the concept of a readable formula and a readable expres-
sion. These are character strings which have the surface structure of a for-
mula or an expression. They are defined by a simple context free grammar

given here. The words "form", "exp", and "id"™ are the names of syntactic

categories.



form ::= exp =exp exp
exp < exp
all id:exp.form

some id:exp.form

<+ form

form & form R means & is right associative
form | form R

form = form R

(form)

exp ::= void
f(exp) f = any, hd, tl, lin, rin, FIX, DOM, Dom
exp(exp) L, application is left associative
atoms
'character list'
int
*n n a decimal numeral
n
exp Op exp L op = +,=9%,/
ind exp do <n1+id.id.exp.nl+exp,...,>np+id.id.exp od
exp list
exp .exp R
lind exp do 0+exps...sn*ids...sid.exp od
id:exp#exp R
exp#exp R
<exps,exp>
$exp over id,id.exp$
id sexp-rexp R
exp-*exp R
Aid.exp
exp lexp R
if exp left id.exp right id.exp fi
exp//exp L means // is left associative
{id:exp |form}
type(id)
prop(id)
type(n)
prop(n)
least id >= exp where exp =,
well id:exp.exp int
sup(exp,exp)
tind exp do id,id,id.exp od

exp

The precedence of operators is as follows - the unary operators come

first, then application, then
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In {x:A|B|C} the precedence yields {x:A[(B|C)}.

In the following constructs id is a binding occurrence of a variable and
the operator name is a binding operator. The exp term or the form term is the
scope of the operator. An occurrence of id in the scope is bound. It is

bound by the innermost binding operator in whose scope it lies.

construct operator
id :T+exp function space
id:T#exp product

Aid.exp abstraction
{id:T|form} set formation

least id>=t.exp =int © least number operator
all id:T.form all quantifier

some id:T.form some quantifier

well id:T.exp well-formed trees

In addition in the constructs ind_do_od, 1lind_do_od, tind_do_od
if_left_right_fi, $_over_$ the subexpressions of the form id,...,id.exp indi-
cate binding of the id's in exp. These are also binding occurrences and exp

is the scope.

An occurrence of an identifier, say x, in a formula is considered free
iff it is not bound. A term t is said to be free for a free identifier x in a

term or formula F iff no free identifier of t becomes bound in F(t/x).
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2. The Form of Sequents

The rules will require a mechanism for indicating the types of free vari-
ables. Just as in [4] we use declarations of the form x:A to indicate that x
is a variable of type A. In [4] the list of such declarations is called the
environment. We write these declarations in the hypothesis list of a sequent.
We also agree to label the assumption formulas in a hypothesis list so that we
can refer to them by label (another more critical reason will appear in sec-

tion IV.3). If F is a formula we write x:F as a labeled formula.

We consider sequents of the form
xlelg XZ:AZ’ o o o .xn:An >> A
where the Ai are readable formulas or expressions. If Ai has a free
occurrence of variable x, then if x:Aj occurs to the left of Ai we say that Aj

is the type of x.

In the rules below we assume that H is a list of readable declarations
and labeled formulas and that A,B,T are readable. We use X,y,z as variables

(identifiers).

These rules will make sense only when the assumptions are semnsible.
Assumptions are gensible when they are readable and in addition, when all free
variables of an expression Ai are declared before (to the left of) the expres-
sion, say x:Aj, j<i and there is a deduction of Aj € type(k) for some k from
the hypotheses to the left of x:Aj. Any complete deduction starting from no

assumptions is guaranteed to generate only sensible assumptions.
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3. APRL Logic (First Order Arithmetic)

PREDICATE CALCULUS
OBJECT FORMATION (TERMS)
INTEGERS

TYPE

Tl. H >> int € type(i)

INTEGER DECLARATION (VARIABLES)

T3. H, x:int, H' >> x € int

LISTS

TYPE

T8. H >> A list € type(i)
H >> A € type(i)

LIST DECLARATIONS

Tl10. H, x:A list, H' >> x € A list

PROPOSITION FORMATION (FORMULAS)

ATOMIC
Fl. H >> false € prop(i)

F2. H> a = be prop(i)

H >> A”e type(i)
H > ae€eA
H> beA

CONSTANTS

T2. H >>n € int
where n is a signed decimal constant

T4—T7 .

H > aopbeint op = +,%,-,/

H >> a € int
H >> b € int

H >> +b=0 if op=/

CONSTANTS

T9. H >> [a,s...5a ] € A list

Til.

T12.

T13.

H>>a. e A
i

or n=0

OPERATIONS

H >> hd(a) € A
H >> a € A list

H >> tl(a) € A list
H >> a € A list

H >> a.b €/A list
H > aeA
H > b e A list



F3. H >> a<b € prop(i)
H >> a € int
H >> b € int

COMPOUND
H >> A op B € prop(i)

H >> A € prop(i)
H >> B € prop(i)

F4-F5 .

F6. H >> A = B € prop(i)
H >> A € prop(i)
H, A >> B € prop(i)

some

F7-F8. H >> {all} x:A.B e prop(i)

H >> A € type(i)
H, x:A >> B € prop(i)

LOGICAL RULES

INTRODUCTION
AND
Ll. H >> A&B i by intro
H>> A1
H>Bi

OR

L3. H >> (A|B) i by intro 1
H> A1
* H >> B € prop(i)

H >> (A|B) i by intro 2
H>Bi1
* H >> A € prop(i)

IMPLIES

L5. H >> (A=B) i by intro
H, x:A >> B
* H >> A € prop(i)
(x:A of level i)

13

op = & |

ELIMINATION

L2. H, x:(A&B), H' >> T i by elim x
H, xl:A. X, 3B, H' >>T i

L4. H, x:(AIB), H' >> T i by elim x
H, x:A, H' >> T i
H, y:B, H' >> T i

L6. H, f:(A=>B), H' >> T i by elim f
H, f:(A=>B), H' >> A k
H, f:(A=B), H', y:B >> T i
where f£:(A=B) and y:B
are of level k.



ALL

L7. H >> all x:A.B i by intro
H, x:tA>> B i
* H >> A € type(i)

SOME

L9. H >> some x:A.B i by intro a
H>aeAi
H >> B(a/x) i
* H, xtA >> B € prop
(x:A of level i)

HYPOTHESIS

L1l1. H, x:A, H' >> A i by hyp x

provided x:A is of level j, j2i

CONSEQUENCE
L13. H >> T i by seq A

H >> A j new
H, A>T 1

In all elimination rules,
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L8. H, f:(all x:A.B), H' >> T i by elim a
H, f:(all x:A.B), H' >>a € A k
H, f:(all x:A.B), H', y:B(a/x) >> T i
where f:(all x:A.B) and y:B(a/x)
are of level k.

L10. H, p:(some x:A.B), H' >> T i by elim p
H’ x:A' Y:B, H' >> T i

FALSE (ELIMINATION)

L12. H, z:false, H' >> T i by elim z

if the formula on which elimination is per-

formed, say A|B, is of level k, then the subterms in the subgoals, say A or B,

are also of level k. In rules such as L5, L9, when subexpressions of the

goal, say A=>B, are added to the hypothesis list, say x:A, they are assigned

the level of the goal, say i.

Equality
El. H > a =a b i by sym a=, b 1iby sym
H>> b= ai HA>> b=, a i
A A
E2. H >> a :A b 1 by trans on c
H > a =) € i
H > ¢ \ b i
E3. H > a € A i by equal types B
H > A =type(i) B
H > b e€eB i



15

E4. H >> a o\ b i by equal types B
H>> A= voe(i) B
H >> a = yg
B
ES. H > tl(a/X) =T(a/x) tz(b/x) 1 by Subst a’b.A in x.tl’ X.t2, x.T
H>a=,b> ] new
H, x:A >> t1 =1 t2
E6. H >> B(a/x) € prop(i) by family A over x.B
H> ael j new
H, x:A >> B € prop(i) i
(x:A of level j)
ARITHMETIC1
Al. H >>a = b by arith [i op jl

* H >>"a € int
* H >> b € int

when conclusion follows in the theory of
restricted arithmetic (see [13])

A2. H >> (a =, . b) | «(a =, b) by arith
*x H >> 3"¢ int in
* H >> b € int

A3. H >> a<b by arith [i op j]
* H >> a € int
* H >> b € int
same proviso as above

A4, H >> (a<b) | ~(a<b) by arith
* H >> a € int
* H >> b € int

A5. H >> false by arith
same proviso as above

1The first five rules are repeated at the place they would occur in the TYPES
rules following the pattern established for the new types not occurring in
APRL. Likewise for the first LIST rule.
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A6. H >> all x:int.T i by ind -kl(d.u)k2
* H >> (all x:int.T) € prop(1)
H, x:int, z:x<d, v:T(x+k,/x) > T i
H > T(d/x) i

H > T(u/x) i
H, x:int, z:u<x, v:T(x-kllx) >>T i
provided dsu, 0<k.s(u-d)+1 j=1,2
and provided the new assumptions are assigned level i.

LISTS

Lil'e H >> a =, . b i by equality
*u >»>PLIE% 15t i

* H > be A list i

provided that a=b follows by the equality
decision procedure (see [28])

Li2. H >> all x:A list.T i by ind x;. * * * .X_ .a
* H >> (all x:Alist.T) € prop(1)

H >> T([1/x) i
H, x, :A, a:A list, u:T(a/x) >> T(xl.a/x) i

Hy X,3A, *  « oX_:A, a:A list, u:T(a/x) >> T(xl. o« o e .xn.a/x) i
provided the new assumptions are of level i

4. Higher Order Arithmetic

In this section the type structure is enriched to include the empty type,
void, the type of atoms, and constructors for building dependent cartesian
products, x:A#B, disjoint unions, A|B, and dependent function spaces, x:A-B.
When B does not depend on x in x:A#B and in x:A+B, then the ordinary cartesian
product, A#B, and function space A+B result as in int#int+int. The subtheory
of these well-known operators is familiar under the name higher order arith-
metic. An interesting fact about such a theory is that the methods of type
checking used in APRL can be extended to this theory. It is also interesting

that the category of recursive function definitions needed in APRL are
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replaced in form of the elimination rule on the types int and A list and the

function space introduction rule.

EQUALITY (continued)

E7. H >> b(a/x) € B(a/x) i by spec of x.b in A over x.B
H> aeAl j new
H, xtA >>b € B i
(x:A of level j)

E8. H >> Tl(a/x) =type(i) T2(b/x) by subst a,b,A in x.T;» x.T,
H>>a=_b> ] new
Hy x:4 >>T) “type(i) Ty

VOID

1. Formation
H >> void € type(i)

2. Introduction
none

3. Elimination
H, z:void, H' >> any(z) € A

4. Equality
H >> any(e) =) any(e') i new
* H >> A € type(i)

H>e = ..e'!
void

ATOMS

1. Formation
H >> atoms € type(i)

2. Introduction
H >> 'a...' € atoms

3. Elimination
none
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4. Equality
H > (a = b) | ~(a = b) by equality
* H >> 8@ 8toms atoms
* H >> b € atoms

H >> 'a...' = tom 'b...' by equality
* H >> 'a...'"2e%8oms (decision procedure)
* H >> 'b.,..' € atoms

5. Computation
none

6. Disequality
H >> +('a...' = 'b...') by equality
* H > 'a...'"2E%foms
* H >> 'b...' € atoms

INTEGERS
l. Formation

H >> int € type(i) (repeated)
2. Introduction

H >> n € int (repeated)

where n is a signed decimal constant

H > a op b € int Op = +y%,—,/
H >> a € int
H >> b € int

H >> -~ b=0 if op =/

3. Elimination
H, x:int >> ind x do <d+u,v.t,, détd.....h+th.>h*u.v.tpod

e T i new Dby elim
H, x:int, x<d, v:T(x+k/x) >> t (x+k/u) € T i
H, x:int, >> td e T(d/x) i
H, x:int, >> t, € T(h/x) i
i

H, x:int, h<x, v:T(x-k/x) >> t_(x-k/u) € T
where 1<ks<(h-d)+1 and P
new hypotheses are of level i



19

4. Equality

H > a= . bby arith [i op j] (repeated)
* H >>"a € int

*H >> b € int

H> (a=. _b) | «(a=., _b) by arith (repeated)
* H >> 3" int int
* H > b € int

H >> ind e do <d-u,v.t .....>h*u,v.th od = (e/x) i new by indeq on x.T
ind e' do <d+u.v.%' seees>hru,v.t' oz
b ' 1 h
H>>e= 8
. 3 'Y : ' .
H, u:int, u<d, v:T(u/x) >> t; T(u/x) t' i

H, u:int, h<u, v:T(u/x) >> t

“T(u/x)
new hypotheses are of level 1 u/x P

5. Computation

H, w:e<d,H' >> ind e do <d*u,v.t,,..e.s>h>u,v.t, od =T(e/x)
tl(e+k1/u.ind(e+kl)5o_pd/v) i new by equality over x.T

* H, wie<d, H' >> T(e+k,/x) € type(i)
* H, H', u:int, ziu<d, v:T(u/x) >> t
. call these hypotheses IH
* H, H', u:int, z:h<u, v:T(u/x) >> ty € T(u+k,/x) i
H >> ind d do <d»u,v.t,, d*t., ... 0od = t(d/u) 1 new
1 d by qugf{§; over x.T
* H >> T(c/x) € type(i)
IH

1 € T(u-kllx) i

H, w:h<e,H' >> ind e do <d+u,v.t .....>h-*u.v.th od “r(e/
th(e-kzlu.ind(e-kz)ﬁo_od/v) i new by eéuafity over x.T

* H, wth<e, H' >> T(e/x) € type(i)
IH

6. Order
H >> a<b € prop(i)
H >> a € int
H >> b € int
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H >> a<b by arith [i op j]
* H >> a € int
* H >> b € int

H >> (a<b) | =<(a<b) by arith
* H >> a € int
* H >> Db € int

LISTS

1. Formation

H >> A list € type(i) (repeated)
H >> A € type(i)

2. Introduction
: H >> [al.....a ] € A 1list  (repeated)
H >> a, € A or n=0

H >> hd(a) € A (repeated)
H >> a € A list

H >> tl(a) € A list (repeated)
H >> a € A list

H >> a.b €.A list (repeated)
H > a e A
H > b e A list

3. Elimination
H, x:A list >> lind x do 0 = t seecesD™X 503X » yot_od € T i new
0 1 n n .
by elim
H> t, e T([1/x) i
H, xlzg. y:A list >> t

1€ T(xl.y/x) i

Hy X;2AsecesX_2A, y:A list >> t_ € T(x,+ + + ¢ +x .y/x) i
n . n 1 n

new hypotheses are of level i

4, Equality (see Lil)
type H >> A list B list by equality

H >> A = type(i)

type(i)
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elim H >> lind e do O*to....n*xl....,xn.y.tn od =r
lind e' do 0->t'0....n-*'xl.....xn.y.t'n o?
by A list eq over x.T 1 new

: 1 1

g :: i list € i
. (£ = ' :
H, x,:A, ¥ TRz gt 9> t) 1 1(x, .y/%) t) i

H, x1

new hypotheses are of level i

. e . i = '
oA’o'-!xn'A’ Y'A list >> tn T(xlo cee 'Xn-Y/x) tn

5. Computation
H >> llnd [] dO 0 -> to’oon’n-»}.(l’ooo!xn’y-tn.od :T([]/x) to
i new by equality on x.T
* H >> T([1/x) € type(i)
*H > t) € T([1/x) i

A’.uo’x A. yoA 1lst >> tnET(Xl'...'Xn-Y/X) i
new kypotheses are of level i

UNION
1. Formation
H >> (AIB) € type(i) formation
H >> A € type(i)
H >> B € type(i)

2. Introduction

H >> rin(b) € (A|B) new i  intro
* H >> A € type(i)
H> beB
H >> lin(a) € (A[B) new i intro
* H >> B € type(i)
H > ae€eA i

3. Elimination
H, d:(A|B), H' >> if d left u.t, right u.t, fi
. . 1 2
€ T newi elim d
H, u:A, H'(lin(u)/d) >> t, € T(lin(u)/d) i
H, v:B, H'(rin(v)/d) >> t, € T(rin(v)/d) i

where A,B have the same level as (A|B), say k.
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Notice that d:(A|B) is replaced causing
replacements in H'. Also note the use of
u,v in hyp and in bindings Uetys V.t,.

4. Equality
H >t =, t' e type(i) by union type
*H >>t e (A[B) i
* H >>t' € (A[|B) i

H >> lin(a) =(AlB lin(a') new i by equality
*H >> B € type%i)

H > a=, a' i
A

likewise for rin

5> i . . . . . ' et . et .
H> if d }eft u.t, right v tz fi T(d/z) if 4' left u.t 1 right v.t 2 fi
new i by unioneq over zZ.T

using (A|B)
H > = J
d (A|B) d new k

tl
1

1
ths

e

H’ u:A >> t = .
H, v:B >> e _T(1lin(u)/2)

2 "T(rin(v)/z)

e

5. Computation
H >> if lin(a) left u.t, right v.t, fi *r(1in(a)/z) tl(a/u) new i

by equality over z.T using A|B new i

* H >> (A|B) € U(k) new k

H > aeA k
H, u:A >> t, € T(lin(u)/z) i
H, viB >> t, € T(rin(v)/z) i

Note global convention on the
level of hypotheses.

PRODUCT

1. Formation
H >> x:A # B € type(i) by formation
H >> A € type(i)
H, x:A >> B € type(i)

2. Introduction
H >> <a,b> e(x:A#B) i new by intro
* H, x:A >> B € type(i)
H> aeA i
H >> b € B(a/x) i



3. Elimination

4., Equality
type

intro

5. Computation

FUNCTIONS

1. Formation

2. Introduction

3. Elimination
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H, p:(x:A#B), H' >> $p over X,y.t$ € T i new by elim

H

H, x:A, y:B, H'(<x,y>/p) >>t € T (<x,y>/p) i
where A,B have same level as x:A#B, say k.

> x3 = . : i
; >§ ﬁ#f type(i) x:C#D by equality
“type(i
H, A = yp.( %. X:A >> B = .y D
type(i) type(i)
>> <a,b> = (x:A#B) <c.§> i new by equality
* H, x:A >> B € type(i)
H > a=,c i
H >> b =B(a/x) d i

>> $p over u,v.t$ “1(p/z) $p' over u',v'.t'$ 1i new
by equality on x:A#B over z.T

*H >> T € type(i)

*H >> p =(x:A#B) P' k new

H. u:A. veB >> t =
< >
where A,B are 1eve'f(ku'v /2)

t'(u/u',v/v'") i

>> $<a,b> over x,y.t$ =I(<a,b>/z) t(a/x,b/y) x:A#B

prodcomp over z.T i new
* H, B:(x:A#B) >> T € type(i)
* H >> x:A#B € U(k)

*H > aeA k k new
* H >> b € B(a/x) k k new
>> (x:A+B) € type(i) by formation

* H >> A € type(i)
* H, x:A >> B € type(i)

>> Ax.b € x:A+*B new i by intro
* H >> A € type(i)
H, x:A >> b € B i

H, f:(x:A+B), H' >> t(£f(a)/y) € T(£f(a)/y)

by elim on f over y.T, y.t
H, f:(x:A+B), H' >> a € A k
H, f:(x:A+B), H', y:B(a/x) >>t € T i
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Note: The generality of the elim rule is dictated by the extract
form, otherwise a more appropriate rule would be
H, f:(x:A+*B), H' >> f(a) € B(a/x) by elim £
H > ae€A

4, Equality

H > (f = f') e type(i) by equality

X:A-B .
* H >> f € (x:A>B) i
* H >> £' € (x:A+B) i
. - . . .
intro H >> Ax.b x1A+B Ax.b' new i by equality
elim * H >> x:A+B € type(i)
H, x:A >> D =B b! i
H ;>>£(;)==B(alx) g(b) niw i by equality over x:A»B
(x:+B) & )
H > a i b i

5. Computation
H >> (Ax.b)(a) “B(a/x) b(a/x) i new by \ red on

H >> Ax.b € (x:A+B) i X sA-+B
H > aeA i

5. Sets and Quotients

The concept of a set is clearly important in computational mathematics.
But the set concept can sometimes be considered a circumlocution in proposi-
tions, for example instead of saying all x:{i:int|P(i)}.R(x) one can say
allx.int.P(x)=>R(x). However the notion of a subset type has arisen in pro-
gramming language notations. For instance we might want to express the notion
that function f takes prime numbers as inputs. We can assign to the type
{x:int |prime(x)}+A. For this reason we introduce the set constructor (for a

deeper analysis of this constructor see [9]).

It is also useful to have a mechanism for defining new equality operators
on types. For example, one might wish to treat pairs of integers as rational
numbers by introducing the equality <a,b> = <c,d> iff a*d = b*c. This is
accomplished using the quotient constructor; examples of its use appear in

section III.4 and III.5.



QUOTIENTS

1. Formation

2. Introduction

3. ' Elimination

4, Equality

5. Computation
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H >> (A/E) € type(i) by formation
H >> A € type(i)
H, x:A,y:A >> E(x)(y) € prop(i)
H, x:A >> E(x)(x)
H, x:A,y:A,u:E(x)(y) >> E(y)(x)
H, x:A,y:A,z:A,u:E(x)(y),w:E(y)(2z) >> E(x)(z)
new hypotheses are of level i

H >> a € A/E new i by intro
* H >> (A/E) € type(i)
H > aeA

H, u:A/E, H' >> t € T i new by /elim
* H, u:A/E, H' >> T € type(i)
H, u:A, H', x:A, H'(x/u), v:E(u)(x) >>
t = t(x/u) i
new hypotheses are of level i

H >> A/E = B/F
* H >> A;%pg(é;pe(i)
* H >> B/F € type(i)
H > A B
H, u:(A = .y B)s X:A,y:A >>
typelila)(y) = Fx)(y) i

“type(i)

x:A, y:A are of level i, the other hypothesis
is of level k>i

= ! i
H > a AJE 2 € pfop(l)
* H >> A/E € type(i)
* H >> a € (A/E) i

*H >> a' € (A/E) i

H > a =?/E a' % new

* H >> A/E € type(i)
H> aeA i
H > a' € A i

H >> E(a)(a')

Note, when * is not used, the provisos on

the thm H >> A/E € type(i) must be added to
the list of provisions.

none

e e e e
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SETS

1. Formation
H >> {x:A|B} € type(i) by formation
H >> A € type(i)

H, x:A >> B € type(i) i
2. Introduction
H >> a € {x:A|B} i new by intro
* H >> {x:A|B} € type(i)
H> aeA i
H >> B(a/x) i
3. Elimination
H, u:{x:AIB}, H' >> t € T i new by elim

* H, us:{x:A|B}, H'" >> T € type(i)
H, u:A, y:B, H' >> t € T
provided y new
y does not occur in t

4. Equality

= ' i
H>> a =g .aypy 2" €typeli) by eq
* H >> {x:A|B} € type(i)
* H >> a € {x:A|B} i
* H >> a' € {x:A|B} i
H> as=, a' i
5. Computation
none

6. Universes

One way of achieving sufficient flexibility im a rigidly typed language
is to permit so-called polymorphic operations (see [19]). This can be accom-
plished by allowing types to be objects; then they can be passed as arguments
to functions, and such functions are thus parameterized with respect to type.
If types are objects, then functions can be of the sort f:type-*type, and one
must ask whether type € type or whether type itself belongs to a higher kind
of classification, say type € large type. One is either led to examine
reflexive notions of type, as in [34], or a hierarchical notion as in [33].

We have adopted a hierarchical account based on [33].
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UNIVERSES
H >> A € type(])
H >> A € type(i) provided i<j
1. Formation
H >> type(i) e type(j) provided i<j
H >> (a o\ b) e type(j)
* H >> A € type(i) provided i<j
*H >> a €A
*H >>beA
2. Introduction

3.

These rules are distributed among the specific types
Elimination

H. u:type(i). H' >> case(i)(u. tl’t .t3’ X.y.t 'y x.f.tS. x.fot » x.f.t7.
XsY Y, tgs k.tg. Xse,21,22,23, axf.ax2.8x3.t10. u.tll) € T new j by elim u

0. H, u:stype(i), H' >> T, € type(i)

1. H, -, H'int/u >> T(int/u) t) € T(int/u)
- ] 1
2. H, -, H atom/u T(atom/u) ty) € T(int/u)
- :
3. H, -, H false/u >> T(false/u) ty € T(int/u)

4, H, x:type(i), y:type(i), H'((x|y)/u) >> T(xly/u) t, € T(int/u)

5. H, x:type(i), f:x-»type(i), H'(z:x*f(z)/u) > T xsf(z)/u) b5 € T(int/u)

6. H, x:type(i), f:x>type(i), H'(z:x#f(z)/u) > T . x#i(z)/u) b6 € T(int/u)

7. Hy xitype(i), frootype(i)s B'(r o165y 1/u) > T(tamlf(2)}/) b7 © TCERE/W)

8. H, x:type(i), y, X, y,2x, H', _ > T, _ t, € T(int/u)
1 2 (yl-xyzlu) (yl—xyz/u) 8

P3e B - Bligehyzey P Ny te LT

10. H, x:type(i), e:x»x»type(i),
zl:x, z2:x, z3:x, axl:e(zl)(zl), ax2:e(zl)(z2)+e(z2)(zl),
ax3:e(zl)(z2)#e(z2)(z3)+e(z1)(z3),
H'((x/e)/u) » Ty o € ((x/e)/u)

11. H, u:type(i), H' >>t.. € T

11
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4, Equality

H >> type(i) = .y type(i) H > (a=,b)= .y(a' = b')
provided i<jtype(J) Ho> A2 Kngﬁ(l) B

H, A=B >5VBeil/ s

H, A=B >> b A b!'

5. Computation
(omitted)

1. Higher Order Logic

There is an important class of argument which we cannot express in the
logic as it stands now, namely proofs of expressions which are abstracted with
respect to propositions or to propositional functions. for instance, we can-

not say "for all propositions p and q, -wplq implies p=>q."

The syntax of the judgement part of the logic suggests that there is a
type of propositions, e.g. when we write (x =int x) € prop(l), the expression
prop(l) plays the role of a type. If we allowed declarations of the form

p:prop, q:prop then we could express the propositional concept mentioned as

p:props q:prop >> (=plq) = (p=>q).

If we treat prop(i) as a type, then we obtain a version of higher order
logic because we éan quantify over propositions and propositional functions.
But in order to understand such an idea we must be clear about the mathemati-
cal status of propositions as objects. Unlike in the systems of Frege [17]
and Russell [33] a proposition does not denote a truth value, either true or
false. Thus before we can completely understand higher order logic we must
examine the semantics of propositions. As a start we can take propositions as
objects by taking prop(i) as a type. To do this we need to specify equality

on propositions. Here are the rules.
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propositions are objects of type prop(i)

H >> prop(i) € type(J)
provided 1i<j

equalities are propositions

H >> (a =, a') € prop(i)
H > ae€A
H >> a' € A
H >> A € type(i)

equality of atomic propositions

H > (a=, a') = .y (b =
H >> A éu(i) gprop(i) B
H, A= 00 (i) B>>a= b
H, A =PTOP}L) g 55 a0 2

prop(i)

inequalities are propositions
H >> a<b € prop(i)

H >> a € int
H >> b € int

equality of inequalities

B >> (a<b) = rop(i
H > a=, TP

H >> b =0t pe
int

) (a'<b')

compound propositions are objects
(see FORMATION RULES)

equality of compound propositions

H> AopB = .y A' op B!
H >> Ap= prop(§) P
g >> B =ProP(i) g,
prop(i)

>> tA.B = .
H quant x:A R?OP(l)

0, x:A, KVReC1) T av 55 g

(repeated)

b')

(repeated)

op = & [,=

=prop(i)

quant y:A'.B' for quant

B'(x/y)

all, some
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8. Summary

This concludes the major stages of evolution of the logic. In the next
section we consider a formal semantics of this logic and discuss the
propositions-as-types principle which will allow dramatic simplification of

the logic and which will add a powerful new rule.

I1II. Examples

This section consists of five examples which illustrate various aspects
of ihe theory. The first two examples are very elementary and serve to illus-
trate the proof structure. The third example illustrates the value of a rich
theory even for problems which can be solved well in a first order theory.

The last two examples illustrate the development of mathematics.

l. A Propositional Calculus Proof

We can express the usual propositional arguments in an abstract form.

For example

>> all p,qsriprop(k).(p=>q=>r) = (p=>q) = (p=>r) i by intro

(1) 1. psqsr:prop(k) >> (p=>q=>r) = (p=>q) = (p=>r) i by intro

(1) 1. , 2. p=>q=r >> (p=>q) = (p=>r) i by intro

(1y 1. ., 2. » 3. p=>q >> p=r i by intro

(1) 1. 2. +3. S4.p>»>r i by elim 3
(1) 1,2,3,4 >> p i hyp 4

[any k<i]
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(2) 1,2,3,4, 5. q >>r i by elim 2
(1) >> p i hyp
[any k<i]
(2) 1,2,3,4,5, 6. q=>r >>r i by elim 6
(1) 1,2.3,4:5:6 >> q i hyp
[any k<il]
(2) 1,2,3,4,5,6, 7. © >>r i hyp

[any k<il

We have numbered the subgoals as (1), (2). With these numbers we can
give the tree-address of any rule application. For example, the first appli-
cation of hyp is at node 1l.l1.1.1.1 and elim 2 is at 1l.1.1.1.2. Also as is
obvious, we abbreviate the hypotheses by number after their first occurrence.
This allows us to list all hypotheses at each node. A similar kind of abbre-

viation underlies the implementation.

Notice that level numbers play a trivial role here. This is a proof

scheme valid at every level i>k. It can be instantiated at any level prop(k).

2. A Precidate Calculus Proof
1. A:type , 2. B:A#A-+prop >> some y:A all x:A.B(<x,y>) =

all x:A.some y:A.B(<x,y>) by intro

(1) 1. s 2. » 3. some y:A.all x:A.B(<x,y>) >> all x:A.some y:A.B(<x,y>)

by intro
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(1) 1. ,2. 5 3. , 4. x:A >> some y:A.B(<x,y>)

by elim 3

(1) 1. s 2. » 3. y:A , 4. all x:A.B(<x,y>) , 5. x:A >> some y:A.B(<x,y>)

elim 4, x

(1) 1,2,3,4,5 >>x € A hyp 5
(2) 1’2’3’4.5. 6. B(<X9y>) >> some y:AoB(<x.y>) by intro X

(1) 1,2,3,4,5,6 >> B(<x,y>) hyp 6

Here we have suppressed level numbers and let prop abbreviate prop(k).

3. Maximum Segment Sums

The VPRL language not only allows us to define concepts that are ineffa-
ble in APRL, but permits a more succinct and general treatment of ideas that
can be expressed in APRL. For example, in the paper "Proofs as Programs" [4],
we solve the following problem:

given an integer sequence of length n, say [a(l),...,a(n)], write a pro-

q
gram to find the sum, 2 a(i), that is maximum among all such sums.
i=p
We called a consecutive subsequence, [a(p), a(p+l),...,a(p+q)], a segment and

we called this the maximum segment sum problem. We solved this problem in

APRL by proving the following assertion

all a:list.some(M,L):int.
some(a,b,s):int.all(p,q):int.

b q
(1spsqslen(a) => M = 3 a(i) & M 2 3 a(j) &
iza j=p
len(a) len(a)
L= 3 a(i) &L 2 > a(j))

i=s j=p
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The inductive proof of this assertion given in [4] provides a linear time
algorithm for finding M; the other values L, a, b, s are auxiliary, used to

define M and compute it efficiently.

In VPRL we can analyze the problem in a more general way, achieving at
the same time a more compact and algebraic proof. We start with the concept

of the maximum of a "two dimensional"™ (i.e. two argument) function.
(1) Define pos = {n:int|n2l}

(2). Define maxl:pos # (pos+int) -+ int by extracting from
V£:(pos+int).Vn:pos.zh:int.z|j:pos.

(Vi:pos.(l<i<n = f(i)<m) & 1<jsn & m = £(j)))

(3) Define max2:pos # pos # (pos # pos -+ int) -+ int by the rule
max2(n,m,f) = maxl(n,Ax.maxl(m,Ay.£f(x,y)))

(or we could define max2 as well by extractiom).

Now we notice that the two dimensional maximum can be computed in a dif-

ferent order.

(4) Lemma: max2(n+l,m+l,f) =
max(maxl(m+l,Ay.£(n+l,y)),
max2(n,Ax.maxl(m+1,\y.£(x,y)))).
We can then try to express max2(n+l, m+l, f) in terms of max(n,m,f) in

order to understand how we might compute max2(n+l, m+l, f) iteratively. To

this end we prove

(5) Lemma: max2(n,Ax.maxl(m+l,\y.£f(x,y))) =
max(maxl(n,Ax.maxl(m,\y.f(x,y)))»
maxl(n,A\x.f(x,m+1))).

We can now view max2(n+l, m+l, f) as max(Sl. max(Sz,S3)). where S2 is

max2(n, m, f).
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y
When f(x,y) = 3 a(i), then these laws about maxl and max2 take a simpler
i=x

form, and when we consider the form of the maximum segment sum problem we

y
notice that we are computing the special form max2(n,n,Ax,y. 2 a(i)). In this

i=x
n+l

cases S, that is maxl(n+l,\y.f(n_l,y)), is just 3 a(i) = a(n+l). So the
i=n+l

problem reduces to

(6) max2(n+l,n+l,f) =
max(a(n+l),
max(max2(n,n,f),maxl(n,Ax.f(x,n+1))))

When we analyze the term S, i.e. maxl(n,A\x.f(x,n+1)), we see that it is
the maximum sum of segments that include a(n+l). Notice that the maximum is
unchanged if we replace maxl(n,\x.f(x,n+1)) by maxl(n+l,Ax.f(x,n+l)). We sim-
ply cover the term f(n+l,n+l) twice. It will be convenient to use this term
as S, because we can describe its computation iteratively. Following the

3

notation in [4], let Ln+1 = maxl(n+l,\x.f(x,n+l)), and let Mn+1 =

max2(n+l,n+1,f).

(7) ™ = max(a(n+l), max(Mn.I‘ )).

n+l n+l
If we can compute Ln+1 in terms of Ln’ then we will have an iterative
solution to the problem. But this is an easy computation from the definition,

namely

n+l
(8) maxl(n+l,Ax. 3 a(i))

1=X

max(a(n+l),

v B

maxl(n,A\x. 3 a(i)) + a(n+l))

1=X

= max(a(n+l), L+ a(n+l))

Using this form we get
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(9) M, = max(a(n+l), ML + a(n+l)).

From the above equation we can write a very simple inductive proof of the
following characterization of the maximum segment sum problem.

Theorem: all a:int list.some m:int. y
(m = max2(len(a),len(a),Ax,y. 3 a(i))).

1=X

Proof: (by induction on a).
Base case: a=[], take m as any integer.
Induction case:

y
assume a = k.b and M = max2(len(b),len(b),Ax,y. 3 b(i))
len(b) i=x
and L = maxl(len(b),Ax. 2 b(i)), then

take m = max(k,M,L+k) anéjgbe the above algebraic analysis.
QED
This proof is impossible in APRL because we cannot define maxl, max2
since they take functions as arguments. We could mimic this proof by treating
equations (2)-(7) as specific facts about a function of the form
max2(n,m,a,X,y)s but such a course is discouraging because the facts actually
being proved cannot be expressed. One is then led to seek a more direct proof

which avoids some of the lines that encode useful general lemmas.

We see from this example that the richness of the language determines the

way we analyze a problem at the level of formal detail.

4. Ratiopal Numbers

Let us consider how the rational numbers, rat, can be defined as a type
in this theory. First we define the legitimate fractions, e.g. those without

zero denominators.

Fr = int # {z:int|-<z=0}

Now on Fr we define equality of fractions, namely <a,b> = <c,d> iff a*d =

b*c. For a precise definition we would like simple notation for the selection
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functions from pairs. To this end define:

lof(x) = $x over u,v.u$

20f(x) = $x over u,v.v$

Then we know lof(<a,b>) = $<a,b> over u,v.u$ = a.

Next define equality on fractions as

eq(x,y) == (lof(x) * 20f(y) = 20f(x) * lof(y))
We must then prove these simple propositions
1. all x:Fr.(eq(x,x))
2. all x:Fr.all y:Fr.(eq(x,y) = eq(y,x))
3. all x:Fr.all y:Fr.all z:Fr.(eq(x,y) & eq(y,z) = eq(x,2))

It is interesting to note that we can trivially prove these properties infor-
mally by appealing to the symmetry properties of the expression lof(x) *
20f(y) = lof(y) * 20f(x). This is, of course, metamathematical reasoming. It

is also easy to give purely arithmetic proofs.

Finally we can take the rationals, rat, to be
rat = Fr/A\x.Ay.eq(x,y)
Notice that =rat denotes the equality relation on rationals. It is interest-

ing to note that although <2,4> = <1,2>, when we print the rational <2,4>,

rat
we will see <2,4>., So just as school children must be careful to reduce frac-
tions if they want compact answers, so must we. To do this we can build a
function

reduce:Fr > Fr
which divides out the gcd of numeration and denomination. We can prove that
reduce maps rat to rat and indeed reduce(x) =rat X° If we want to see reduced

output, then we must print reduce(x); even though this equals x in rat, it
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does not equal x in Fr, and it is Fr that we "see".

Using reduce one can define "the numerator and denominator™ of a ratiomal

as follows

lof(reduce(x))
20f(reduce(x))

num(x)
denom(x)

These are maps rat - int

5. Real Numbers

Let us define a very interesting type, the real numbers. Following
Bishop [6] we take them to be the cauchy convergent sequences of rationals.
First define the cauchy condition on sequences of rationals. Recall that nat

= {z:int |-z<0}.

cauchy(f) = all n:nat.all m:nat.
(1£(n)-£f(m) | < <l,n>+<1,m>)

where |x| is the absolute value of a rational and <l,n>+<l,m> is the rational

sum of the fractions 1/n and 1/m.

Now define the cauchy convergent sequences as

cseq = {f:nat + rat | cauchy(f)}.

To define the real numbers we must agree on the definition of equality.
We choose this, again following Bishop:

realeq(x,y) = all n:nat.([x(n)-y(n)| < <2,n>).

We must verify that this is an equivalence relation. This requires real
work which is not shown here. Then the reals are defined as
real = cseq/Ax.\y.realeq(x,y).

Notice that = is the equality relation on reals.

eal
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It is interesting to define the division operation on integers into reals
and the embedding operations of nat + rat and rat -+ real. Suppose these are

named as

/:int # {z:int |4z=0} -+ real
rl:rat -+ real

Then we can prove:

all a:int.all b:{z:int |+z=0}.(a/b = rl(<a,b>))

eal
This establishes the relationship between the <a,b> and a/b forms of rational

numbers. We can think of a/b as the real number form of "the fractiom a/b."

Operations on real are defined first on the cauchy sequences and then
extended to real by the rules for quotient types. For example here is how +
is defined.

for x,y:cseq (x+y)(n) = x(2%n)+y(2#%n).

We must then show that

if x = x' and y =
real
then x+y =

\
ey real y
eal Xy

This proposition allows us to treat + as a map real#real -+ real.

The reader interested in developing calculus and analysis along these

lines should consult the books of Bishop [6] and Bridges [7].

IV. SEMANTICS

l. Goals

So far the meaning of formulas in this logic has been given only infor-
mally in terms of intuitive operations on proofs. We can recognize that the

rules of inference preserve the constructive meaning of the logical operatiomns
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as described in I.3. The semantic explanations of I.3 rely om our intuitive
grasp of the concept of a rule or method and on our intuitive grasp of the
notion of proof or evidence. We understand these ideas well enough to confirm
that the rules of II are indeed rules of evidence or rules of comnstructive

truth.

We are now interested in giving a more rigorous and mathematical account
of meaning. We would like to have a mathematical semantics for this theory
similar in its precision to Tarski's account of classical semantics [37].
Such an account would not only play an analogous role to Tarski's and give
rise to a model theory of constructive logic, but it would also provide the
theoretical blueprint for implementing the logic. To implement it is to build
a computer program which will carry out the operations which define the logic.
This is the critical element missing from classical semantics which leaves it

inert.

2. Analysis of Informal Comstructive Semantics

According to the constructive meaning of A=>B, a proof of this statement
implicitly exhibits a rule which will take proofs of A into proofs of B. In
this theory we take rules to be given by functions, denoted by A expressions.

We might then expect to associate to this proof a A expression which codifies

the rule.

If for each inference rule we can find a mathematical object which codi-
fies its meaning, then perhaps we can give a precise mathematical meaning to
the logical operations. This can in fact be done. To explain how, we add
semantic information to the rule. The new information shows explicitly what

mathematical object is associated with the rule of inference.
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Here is the augmented form of the implication introduction rule. It is

called the extract-form.

H >> A=>B i EXT \x.b
H, x:A>> B i EXT b
* H >> A € prop(i)

The EXT clauses are to be read bottom-up. Thus the rule says that if the term
b is extracted from the proof of the subgoal B from hypotheses H, x:A; then

the term Ax.b is extracted from the implication introduction step.

This isolated example suggests a pattern of analysis. We might be able
to explain for each inference rule how to put together the semantic informa-
tion from the subgoals into semantic information for the goals. We could then
inductively assign meaning to the entire proof. However, this example does
not suggest what to do at the basis of induction, i.e. what semantic informa-
tion do we assign to axioms such as 0 =int 0. Let us leave this question
aside for the moment and press our investigation where it is yielding informa-
tion. Me will try to assign meaning to inference rules under the assumption
that we can assign it to the subgoals. So we assume that we know what it

means to build a term t which denotes a proof of proposition T.

3. Meaning of the Inference Rules

Here are all of the predicate calculus rules in their extract forms (with

level and well-formedness information suppressed)

AND
H >> A&B by intro EXT <a,b>
H >> A EXT a
H >> B EXT b

H, x:(A&B),H' >> T by elim EXT $x over xl.xz.t$
H, xle. x2:B. H' >> T EXT ¢t
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OR
H >> (A[B) by intro 1 EXT 1lin(a)
H > A EXT a
H >> (A[B) by intro 2 EXT rin(b)
H >> B EXT b
H, x:(A[B), H' >> T by elim EXT if x left u.t; right v.t, fi
H, u:A, H'(lin(u)/x) >> T EXT t
H, v:B, H'(rin(v)/x) >> T EXT t,
IMPLIES
H >> A=>B by intro EXT Ax.b
H, x:A >> B EXT b
-H, f:(A=>B), H' >> T by elim EXT t(f(a)/y)
H, f:(A=>B), H' >> A EXT a
H, f:(x:A=>B), H', y:B >> T EXT t
FALSE
H, z:false, H' >> T by elim EXT any(z)
ALL
H >> all x:A.B by intro EXT Ax.b
H, x:A >> B EXT b
H, f:(all x:A.B), H' >> T by elim a EXT t(f(a)/y)
H, f:(all x:A.B), H' >> a € A
H. f:(all x:A.B). H'g y:B(a/x) >> T EXT t
SOME
H >> some x:A.B by intro a EXT <a,b>
H >> B(a/x) EXT b
H, p:(some x:A.B), H' >> T by elim EXT $p over X,y.t$
H, x:A, y:B, H' >> T EXT t
CONSEQUENCE

H > T by seq A EXT t(a/x)
H > A EXT a
Hy, x:A >> T EXT t
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4. Analogy Between Propositions and Iypes

The truly remarkable feature of these extract forms is that the extracted
terms in all cases are terms from the type theory. We can see intuitively
that these are the correct terms to extract; that is, the computational mean-
ing of the term as given by the type theory rules is congruent to the intui-
tive operational meaning of the inference rule. For example, if we know that
b is a term which denotes a proof of B from H, x:A, then Ax.b denotes a proof

of A=B because Ax.b is a rule for computing proofs of B from proofs of A.

The above observation suggests that the logical operation of implication
corresponds to the type constructor +. The correspondence extends as the

reader can easily verify to the following:

Logical Operation Iype Comstructor

& #
[ |

= ->

false void

some x:A.B x :A#B

all x:A.B X :A->B

Table 1

This correspondence suggests that compound propositions are very much
like types in their computational meaning. If there were a way to extend this
correspondence to all atomic propositions as well, then we could in fact iden-
tify propositions with types, which in some real sense correspond to mathemat-
ical objects which codify their proofs. We would then have a method of
attacking the open issue of how to assign mathematical meaning to the atomic
propositions thereby discharging the open assumption in this semantic

analysis.
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5. Meaning of Atomic Propositions

If we try to extend the interpretation of propositions-as-types to the
atomic propositions, then we must in some way construe false, a A b and a<b
as types. We want the correspondence to be that the proposition denotes the

type of its proofs. This works well for false which can be identified with

the void type as we observed above. But what happens to a A b?

Consider the atomic proposition 1 =int 1. How are we to prove this? One

proof is to take it as an axiom. So we might create an element called ax and

assign it to the type 1 =int 1. What about the type 0 =int 1? This should

not have any canonical proofs. In fact, 0 =int 1 should be an empty type.

Should it be the void type? Do we think of 0 =, 1l and 1 =, 2 as the same
int int

propositions? Certainly they are not denoted by the same formulas, but they
might express the same idea. As types they have the same extemnsion, thus in a
set theoretic setting they would be equal. But consider the extensionally

equal proposition Ax.x = AMx.l. This is another proposition with no

“int-+int
canonical proofs. But our understanding of this requires different knowledge

than our understanding of 0 =, 1.
int

We can see the kind of knowledge required for equality if we comnsider how
we might define n “int © from the single atomic proposition 0 =int 0 and an
inductive definition of the positive and negative numbers. Such a definition
for positive numbers might be that (n-1) =int (m-1). This is quite a dif-
ferent idea than that behind the equality of two functions. Therefore if we
take seriously the notion that propositions are understood by grasping how to
prove them, then these must be distinct propositioms. This suggests that 0
=int 1 and 1 =int 2 are also different. Consequently, equality of proposi-

tions and types is not extensional. This in fact accords with our account of
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types.

If we accept a =a b as a type, then we must decide what its canonical
elements will be. At first sight it seems that we might need to enumerate all
possible ways of proving equalities and consider the normal forms of these
proofs. At this point one might argue that the meaning of an equality propo-
sition can be simplified considerably without affecting the meaning of com-
pound propositions. We might argue that the essential information about
a =, b in terms of subsequent use is simply that it holds. This is indeed the
position that Martin-Lof [26,27] arrived at and it is a position that we
independently confirmed to be useful in our earlier work on constructive logic
[2,11,13]. It is the position taken in this theory. We introduce a single

new element ax which represents all of the useful information of any true

equality statement.

This device of forcing a A a' to be a type is somewhat artificial at
first glance. We manufacture new elements called ax whose only purpose is to
inhabit types which were themselves manufactured to correspond exactly to pro-
positions. However unnatural this correspondence may at first seem at the
atomic level, it does permit a very powerful unification of the logic and type
theory, and it leads to a complete solution of the problem of assigning
mathematical meaning to propositions. We can express the propositions-as-
types correspondence with a few simple additional rules. First we replace the
prop(i) notion by the universe type(i). We also identify false with void. We

replace the judgement A € prop(i) by the assertion A = A (e.g. by

type(i)
A € type(i)).
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6. Propositions-As-Types Rules
inhabitation yields truth

H > a=, a'
H >> ax € (a =a a')
truth yields inhabitation

H >> ax € (a A a')
H >> (a =a a')

In addition to these rules we use the logical operations as abbreviations
for the type constructors according to the above table. We can also take the

well-formedness judgement A € prop(i) to correspond to the proposition

A Sy(y) A

1. Reduction of Judgements

The form of the logic can be made more conventional if judgements of the
form a € A could be construed as assertions. This is quite possible if we
take a € A to mean a =, a- By reading all of the above rules of the form a €
A as a =), @ we can see that only one form of judgement is necessary, namely
the judgement of truth. While this reduction is possible, it does not greatly
simplify the logic. In fact, it has the undesirable affect of allowing absurd

assumptions to spread into the deduction of well-formedness. It becomes

entirely possible to conclude z:false >> 2 € prop(i).
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V. FORMAL TYPE THEORETIC SEMANTICS

l. Forms of Judgement

Once we have recognized that propositions can be treated as types, it is
possible to imagine presenting a type theory which in a sense subsumes logic.
Another way to say this is in terms of the categories of judgement used in
section II. The rules are there stated in terms of the judgement that an
assertion is true, say H >> A and in terms of the judgement that a term is of
a certain type, either H >> A € prop(i) or H >> a € A. We know how to reduce
both forms of judgement to assertion, namely treat a € A as a’=A a and reduce

prop(i) to universe type(i) so that A € prop(i) becomes A =u(i) A.

The propositions-as-types principle also allows us to reduce in the other
way, namely assertion can be construed as a type judgement. To assert A with
proof a is to judge that a € A. Per Martin-Lof [26,27] has created a type

theory based on judgements of these four forms:

is a type

and B are equal types

is of type A

and b are equal elements of A

o e >

He symbolizes these as A type, A=B, a€A, a=beA respectively.

The theory presented in section II can be understood as a type theory
based on fewer judgements, namely on a € A with the "A type" being reduced to

A € type(i), with A=B reduced to A = B and a=beA reduced to ax € (a =

“type(i) A

b) where a =, b is a type.
The logic presented to the user can be seen as a presentation of this
type theory in which the term a in the judgement a € A can be suppressed. A

careful derivation of the logic from the type theory can be found in [21]. We
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present the complete logic in its type theoretic form in Appendix A.

VI. PROOF TACTICS
l. General

As in the APRL system, a great deal of the expressive power of VPRL comes
from a formalization of the metatheory in the programming language ML [19].
The mechanism of interaction is the same in both theories, but the details of

the syntactic types are different.

The rich type structure of VPRL suggests that the metamathematics can be
modeled naturally in a programming language which is essentially a fragment of

PRL itself. A method of doing this is discussed in [12].

2. TIype Checking Tactics and Conservative Mode

The standard way of proving theorems in mathematics is to state only
well-formed formulas as candidates for theoremhood. The well-formedness argu-
ment takes place in the metatheory. In order to mimic this mode of operation
in VPRL, we build proof tactics which take readable formulas as input and
attempt to establish that they are well-formed. In most cases, such proofs
are straightforward. The result of such a tactic is a proof of the judgement

F € type(i) (or what is the same, F F). This judgement is recorded

=type(i)

in the library by storing the entry as

t or as t

PROP(i) TYPE(i)
rather than as

t

FORM

Once it is known that a goal is a well-formed formula, then all of the

subgoals marked by * in the rules can be ignored.
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APPENDIX A

The following table is a translation between the notation used in the »-PRL imple-
mentation and the logic of the appendix.

For. .. Read. ..
U; ty(v)
decidd(e; z.t1; y.2) if e left z.t; right y.t; fi

spread(e; z, y.t2) $eoverz,y.t$



VOID

.

Form“'a'tion

H > void € Uy () by void form [k<!]

Introduction

(None)

Elimination
H >> libet(e) € T(e), (k) by void elim over T,
H > e € void ()
H,z:votd () > T € U (1)
Equality

H >> libet(e) = libet(¢’) € T(e), (k) by libet eq over T;
H > e=¢ € void (i)
H,z:void() > T € U (i)

Computation
(None)
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NATURAL NUMBERS

Formation
H> NeU(d byNform [k<i]

Introduction
H > 0e N() by N intro

H > on € N() byN intro
H>»ne Nk

Elimination

H > ind(n; t;; z,y.t2) € T(n) (k) by induction over T;
H>»ne N
H > t; € T(0).(k
H,z: N (i), y: T k) > tz € T(0z), (k)
tH,zz N0 >TeU()

Equality

H>»on=on'"€ N byoeq
H>»n=n'e N(¥

H > ind(n; t; 7, y.t2) = ind(n'; t|; z, y.t)) € T(n): (k) by ind eq over T,
H>»n=n'€eN(@)
H > t; =t} € T(0), (¥
H,z:N@),y: T k) > t; =t} € T(0z). (k)
t1H,z2 N > T e U ()

Computation

H >» ind(0;t); z,y.t2) = t; € T(0); (¥ by ind red over T;
H,z: N (i) > ind(z; t;; z,y.t2) € T (k)

H > ind(on; t; z, y.t2) = t2(n,ind(n; t1; z,y.t2))zy € T(on): (k) by ind red over T,
H>»oneN(
H,z: N () > ind(z; t1; z,y.t2) € T (k)
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UNION

Formation

H > A|B €U, by unionform [k<i]
H>»AecU®
H>» Be U

Introduction

H > inl(a) € A| B(k) by union intro
H>a€ Ak
H>»BeU(®

H > inr(b) € A| B(k) by union intro
H>»be Bk
H>»AcU W

Elimination

H >> decide(e; z.t;; y.t2) € T(e), (k) by union elim in A| B over T,
H>»ecA|B#
H,z: A() > t; € T(snl(z)); (k)
H,y:B() > t2 € T(inr(y)), (k)

Equality

H>»A|B=A|B €U,() by unioneq [k<i]
H>»A=AcU®
H>»B=PBcU,®

H > inl(a) = inl(a’) € A| B(k) by inl eq
H»a=ad €Al
H>»BeU,®

H > inl(b) = inl(¥) € A| B(k) by inl eq
H>»b=VeBk
H>»AcU
H > decide(e; z.t1; y.to) = decide(¢; z.t}; y.th) € T(e), (k) by decide eqin A|B over T,
H>»e=¢e€A|B()
H,z: A() > t; = t| € T(inl(z)), (k)
H,y:B® > to = t, € T(inr(y)); ®
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Computation
H > decide(inl(a); z.t1; y.t2) = ti(a); € T(inl(a)); (¥} by decide red in A| B over T,
H > ini(a) € A| B(3)
H,z: A| B() > decide(z; z.t; y.t2) € T (k)
H > decide(inr(b); z.t;; y.t2) = t2(b), € T(inr(b)); (k) by decide red in A| B over T,
H > inr(b) € A| B
H,z: A| B() > decide(z; z.t1; y.t2) € T (k)
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PRODUCT

Formation

H > z:A# B € U, () by product form [k<i]
H>»AcU W)
H,z: A(k) » Be Uy ()

Introduction

H > (a b) € z:A# B(k) by product intro
H» ac A
H > b € B(a). (k)
H,z: Ay > B e U ()

Elimination

H > spread(p; z,y.t) € T(p). (k) by product elim in z:A # B over T;
H>»peczA#B@
H,z:A(),y:B() > te T((z y)): (*

Equality

H>»zA#B=zA #B €U,(l) byproducteq [k<i]
H>A=AecUW)
H,z:Ak) > B=B € U; ()

H> (ab) = (d' V) € z:A# B(k) by pair eq
H>»a=ad €Al
H » b=V € B(a). (¥
H,z. A(k) > Be U, (h

H > spread(e; 7, y.t) = spread(¢; z,y.t'") € T(e), (k) by spread eqin z:A # B over T,
H>»e=dez:A# B({)
H z:A®y:BO >t=1*t e T((z y)); ¥

Computation

H > spread((a b); z,y.t) = t(a, b)zy € T({a b)): (k) by spread red in z:A # B over T;
H> (ab)ezA#B®
H, z:(z:A# B)() > spread(z; z,y.t) € T (k)

r'
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FUNCTION

Formation

H > z:A— Be Ui() by arrow form [k<i]
H>»AecU®
H,z:Ax) >» Be U,

Introduction

H > \z.b € z.A— B(k) by arrow intro
H,z: A(k) > b€ B(k)
H>»AcU

Elimination

" H>> f(a) € B(a): (k) by arrow elim
H>» fez:A— Bk
H>»ac Ak

Equality

H»1z:A—-B=1A - B €U, () byarroweq [k<I]
H>» A=A U
H,z:A(k)>>B=B'€Uk(')

H > \z.b =\z.t/ € z.A— B(k) by lambda eq
H,z: Ay > b=1V € B(¥
H>»AecU®

H > f(a) = f'(a’) € B(a): (k) by application eq in z:A— B
H>» f=f€ez:A— B
H>»a=4d €A

Computation

H > (\z.b)(a) = b(a); € B(a)-(¥) by lambda red in :A — B
H > \z.b€ z:A— Bk
H>»ac A
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QUOTIENT
Formation
H > A/E € U, () by quotient form [k<l] .
H>»AcU W)
H>»EeA—-A-U()

H,z: A(k) > e; € E(z)(z) (k)
H,z: A(k), y: A(K), u: E(z)(y) (k) > e2 € E(y)(z) (k)
H,z: A(k), y: A k), u: E(z)(y) (¥, z: A k), v: E(y)(2) (k) > e3 € E(z)(2) (k)

Introduction

H > a€ A/E(k) by quotient intro
H > a€ Ak
H > A/E e U

Elimination

H > t(e); € T(e): (k) by quotient elim in A/E over t; in T,
H>»ec A/E()
H,z:A) > teTH
H,z: A(i), y: AW, z: E(z)(y) () > t = t(y): € T (¥)
H,z.AJE) > T €U

EquaEty
H > A/E =A'/|E' € Uy() by quotient eq [k<I]
H>»A=A U
H>» A/E €U,
H> A/E €U
H,zzA=A €U, z: AK), y: AK) > e € E(z)(y) — E'(z)(y) *
H,zA=A €U0, z: AR, y: Ak) > ¢ € E'(z)(y) — E(z)(y) ¥

H > a=d € A/E(k) by quotient member eq
H>acA/E (¥
H>» ad € AJE(¥
H > e € E(a)(a") (k)

Computation
(None)
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SET

Formation

H > {z:A| B} € Up () by set form [k<i]
H>»AcU )
H,z. Ak > B e U ()

Introduction

H > a € {z: A| B} (k) by set intro
H>»ac Ak
H > b € B(a). (k)
H,z:A(k) > Be U (0

Elimination

H ‘55 t(a); € T(a): (¥ by set elim in {z: A| B} over t; in T,
H>»a€c{z:A|B}{®
H,z:A(),y:B() > te€ T(¥ [y new,; no free y in ¢]

Equality

H>» (z:A|B}={z:A |B'} €Uy () by set eq
H>» A=A €U,
H,z: A(k) > B= B € U, (0

H > a=a € {z:A| B} (k) by set element eq
H > a€{z:A| B}k
H > d €{z:A|B} ¥
H>a=2d € Ak

Computation
(None)
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UNIVERSES

Form:tion
H>U; e U;(k) by universe form [i<j<k]

Introduction
(All formation rules are unsverse introduction rules.)

H > AcU;(k) by cumulativity [j <] [i<k]
H>AeU;(0

Elimination

H > case;(u; ty;...; u.tio) € T(u); (k) by universe elim on u
H > ueU;\)
H > t; € T(void), (k)
H > t; € T(N); (k)
H,v:U; 1), w:U; () > t3 € T(v | w); (k)
H,v:U; 1), f:v = U; G) > t4 € T(z:v # f(z))s (k)
H,v:U; (1), f:v = U; G) > ts € T(z:v — f(z))s (k)
H,v:U; 0, f:v—oU; ) > tg € T({z:v| f(z)})s (B
H,v:U;(),e:v = v = U (), * > t; € T(v/e); (k)
H,v:U; ), z1:v,22:v > tg € T(zy = 23 € v), (k)
H >ty € T(U;), (k) [for each 1< < 1]
H,z:U;G) > t10 € T (k)

insert at *:
21 v (i), z0: v (5), 23: v (3),
a1: e(z1)(z1) (9,
az: e(21)(22) — e(22)(21) ),
a3: e(21)(22) # e(22)(23) — ¢(21)(23) ()

Equality

H > case;(u;...) = case;(u;...) € T(u),(k) by case eq over T,
H>u=14d €U

Computation

H > casei(void; t;;...) = t; € T(void), (k) by case red in U; over T;
H,z:U; (5) 3> caseyz;...) € T (k)
H >» void € U; (h)
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EQUALITY TYPE

Formation
H > (a =a' € A) € U;(k) by equality form [i<k]
H>»acA®
H > d € AW
tH > AUk
Introduction
H > az € (a = o' € A)(k) by equality intro
H>»a=ad €A
Elimination
" H > a=ad €A by equality elim
H > e€(a=ad €Ak
Equality

H>»(@@=bcA)=(d =V €A)eU) byequality type eq [k<i]
H>»a=ad €A
H>»b=Vec A
H>» A=A €U,

Computation
(None)
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GENERAL RULES

Equality

H > b(a); = V/(a'): € B(a): (¥} by substitution b for ¥, in B, over A
H>»a=ad €Al
Hz A > b=V € Bk

H»a=a € A(k) by symmetry [Open derivative]
H>»d =ac A

H » a = a" € A(k) by transitivity via ' [Open derivative]
H>»a=ad €A
H>»d =a"€ A

H > a=>bec A(i) by equaltypes B
H>» A=BeU;¥
H>»a=>bc Bk

Families
H > b(a); € B(a). (k) by specialization of b, in A over B,
H>»acAW
H,z:A() > be B¥
Miscellaneous

H > a € A(k) by equality restriction [Open derivative|
H>»a=d €AW

H > A€ U;(k) by inhabitation [i<k]
H>»a=4d €A

H >» a € A(k) by universe cumulativity [k<i]
H>»ac AW

Hy,z: A(),H; >» z € A()) by hypothesis
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SUBTYPE PRINCIPLES

Equality type

H > a € A(k) by eq type elim using o’
H>»(a=d €A)ecU®

H > a' € A(k) by eq type elim using a
H>»(a=d €A)eU

H > Ac U, by eqtype elim using a,a’ [Open derivative]
H>» (a=d €A)eU

Union, product, function, and set

H > AcU;() by subtype

: H> A|BeU) or,
H>»B|AcU) or,
H>»zA#BeU() or,
H>»A—-BeU() or,
H>» {z:A|B} € Up (0

H,z: A>» B € Ui () by subtype
H>»zA#Be U or,
H>»A—-BeUi() or,
H>» {z:A|B} € Uy 0

Quotient

H>»> Ac Ui by subtype
H>» A/E €U,

H>»EcA—A—-Ui(l) by subtype
H>» A/E €U ()
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