*
SYNCHRONIZATION IN DISTRIBUTED PROGRAMS

Fred B. Schneider

TR 79-391
September 1979
Revised: April 1981

Department of Computer Science
Upson Hall

Cornell University

Ithaca, New York 14853

*
This research is supported in part by NSF grant MCS-76-22360

. *
Synchronization in Distributed Programs

.Fred B, Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853

Revised: April 24, 1981

STRACT

A technique for solving synchronization problems in distributed programs is
described. Use of this technique in environments in which processes may
fail is discussed. The techrnique czn be used to solve synchronizaticn prob-
lems directly, tc implement new synchronization mechanisms (which are
presumably well suited for use in distributed programs), and to construct
distributed versions of existing synchronization mechanisms. Use of the
technique is illustrated with implementations of distributed semaphores and
a conditional message passing facility.

Notation

The following notational conventions are employed throughout this report.

vV x : : B(x)) means Mall x in range R(x) satisfy B(x)".
(3 x : R(x) : B(x)) means "there exists an x in range R(x)
that satisfies B(x)".
: B(x)) means "the number of x in range R(x)
that satisfy B(x)".

.
©
~
]
~

(N x:

¢

* . . . i
This research is supported in part by NSF grant MCS-76-22360.

1. Intreduction

Computer networks and distributed computétion have recently attracted a good
deal of attention. This is due, in pari. to the availability of low-cost processors
which make the construction of such networks viable. In additionm,.by distributing a
computation over a number of processors, it is possible to construct a system thaﬁ
is immune to various types of failures, has high throughput and exhibits incremental

growth capabilities.

Often, a particular task can be decomposed into disjoint (i.e. mo shared
memory) communicating processes in many different ways. The particular decomposition
used will dictate the extent to which thesé goals are reaiized. For example, tightly
coupling processes by using synchronous communications protocols may decrease the
overall throughput of the system because the potential for parallelism is reduced.
For this reason, the use of asynchronous communication protocols seems sensible.
Such protocols allow a process to continue ~executing while a message 1is being
delivered on its behalf. This tendé to insulate the performance of processes from
each other and from thg pommunications network. Unfortunately, a consequence of
this approach is that no siﬁgle process c¢an have complete knowledge of the entire
state of the system because, any state information a process obtains from messages
reflects a past state of the sending processes, not the current state. This makes

the design and analysis of distributed programs very difficult,

In this paper, one aspect of the construction of distributed programs is
addressed -- synchronization. In particulg;, we describe a method for implementing
synchronization in distributed programs. The method is develoéed in section.z. In
section 3 it is used to construct a distributed semaphore, a semaphore-like mechan-

ism that does not require shared memory, and to implement a comditional synchronous

message-passing mechanism. Communicating Scquential Processes [H78) and Ada [DOD79]

-]

both use such a message-passing mechanism., In section 4 the method is extended for
use in environments in which processes may fail. Some issues regarding implementa-
tion are discussed in section 5, while section 6 discusses the validity of our

assumptions and contrasts this work with other, related work.
2. Distributed Synchronjzatjon

2.1l. The Environment
A distributed prooram is a collection of concurrently executing processes that
* . .
do not share any memory . Processes communicate using a buffered asynchronous com-

munications network. We assume that a process can broadcast a message to all other

processes, and that the following will hold:

Reliable Broadcast Property:
Any broadcast will be received by all running processes.

Transmission Ordering Property: ,
Messages that originate at a given process are received by other processes

in the order sent.

Construction of networks that exhibit these properties with high probability is

currently within the state of the art, as is shown in section 6.l.

2.2. Ihgzm_c_e_s_i.l__xx.f_‘nto ace

Processes communicate by exchanging messages. Iﬁcluded as part of every mes-
sage is a timestamp, the time that the message was broadcast according to a system-
wide valid clock. A yalid clock is a mapping from events to integers that defines a
total ordering on events that is comsistent with potential causality. Let c(E) be

the time event E occurs according to valid clock c. Then, for any distinct events E

— . -

*
These processes may or may not execute on physically disjoint processors.

-2-

and F, either c(E)<c(F) or c(F)<c(E). Furthermore, if event E might be responsible
for causing event F, it is required that c(E)<c(F) -- the time that E occurs is less
than the time that F occurs. A method for implementing valid clocks in distributed

programs without using centralized control is described in [L78al.

In the following, we also postulate a global observer that can determine with
great precision the "actual” time an event occurs. This will simplify the character=
_iéation of the state of a process. Neither the existence of such an observer nor
the ability to determine such Mactual" times is required to implement the protocols

described in this paper.

Associated with each process is a message queue: the timestamp-ordered sequence

. . % .
of messages broadcast and received by that process . At time t, the message queue

MQP at process P consisting of the ordered sequence of messages my m, ¢ M, is
dehoted by ’

MQP[t] = ml m2 L4 mn.
Let ts(m) denote the value of the timestamp in message m. By definition, messages

in a message queue are ordered by timestamp, and so

ts(ml) < ts(mz) < eee < ts(mn).

We assume that processes satisfy:

Acknovwledoment Requirement: .
Upon reccipt of any message that is not amn acknowledgment message, an ack-
nowledgme: : message is broadcast.

At time (. message m, is fully acknowledged at process P, denoted by
fap(mi)[tj, if me is in MQP[t] and acknowledgmenf messages for m. have been received

from every other process in the system by that time. A process can easily determinc

if a particular message is fully acknowledged by inspecting its message queues.

* -
For the time being, assume message qucues have unbounded length. In section 5.
representation of message queues in a bounded amount of storage 1is discussed.

-3

Although messages are stored in a message queue in ascendingiorder of times-
tamp, a communications network might not deliver them in that order. Consequently,
upon receipt a message may bg inserted .into the middle of a message queué. Ihe fol-
lowing characterizes the portion of the message queue at a process that is not sub-

ject to change due to continuing system activity.

Lemma: (Message Queue Stability)
If message m' is received by P at time t, then

faP(m)[t] = ts(m) <ts(m').

Proof: Suppose message m' is broadcast by process Q and received by P after faP(m)
becomes true. At that time, an acknowledgment message for m must have been received
from every process. Let a be the acknovwledgment message received from Q. Q must
have broadcast a after receiving m, thus-ts(m) < ts(a). From the transmission ord-
ering assumption it follows that Q broadcast m' after a. Since timestamps generated

by Q are consistent with causality:
ts(m) <ts(a) <ts(m').

QoEoDo

Lemm_' (Message Queue Contents)
Let MQplt] = py py e+ p, and MQQ[t] = qpqy *** qye Then,

faP(pa)[t] A faQ(qb)[t] = (Vi: 1<i<min(a,b): pi=qi).
Proof: Since faP(pa)[t], no message with timestamp less than tsA(pa) will Dbe
received by process P, and similarly for q and Q. This follows from the previous
lemma. The reliable broadcast property guaranteces that every message n' where

ts(m') < min(ts(pa).ts(qb)) |

has been received by both P and Q. Therefore, the lemma follows from the reliable
broadcast property and the use of a valid clock to generate timestamps, since such

timcstamps must be uniquely ordered.

Q.EQD‘

2.3. Synchronization

For purposes of synchroniz;tion, process executibn can be viewed as a sequence
of ﬁhﬁigi. The extent of each pﬁase is dependent on the particulaf application being
considered. A phase gzansitigg occurs when execution of one phase ceases and execu-
tion of another is attempted. A synchronization mechanism is employed to constrain
the phase transitions of a collection of processes in accordance with some specifi-
.cation. For example, the readers/writeré problem'concerns synchronizing a number of
processes that access a shared data base. A process can be in one of three phases
-- read.'write.or compute -- subject to the restrictions that at most one process
shoula be in a write phase at any time and that a process should only be in a read

phase provided no other process is in a write phase.

In synchronization mechanisms that use sharéd memory, information about the
phase in which each process is executing is encoded in a set of variables accessible
to al} procésses. A process evaluates a phase transition predicate on these shared
variables to determine whether to proceed with a phase transition, and updates them
vhen the phase transition has occurred. This approach can be viewed as an optimiza-
tion of the following scheme. A queue is defined that is accessible to all
processes. Whenever a process completes a phase transition, it appends to the end
of this queue an entry containing its name-and the name ofAthe phaée just entered.
Using such a queue, a process can determine fhe relevant aspects of the execution
history of each process, and consequently can ascertain whether to proceed with a

phase transition by evaluating a predicate on this queue.

This can be adapted for use in distributed programs by maintaining a copy of

the qucue at each process. To change phases, a process first broadcasts a phase

transition message indicating the phase to which transition is desired and then
waits until a phase transition predicate is true om its message queue, That is,
Phase Transjition Protocol:
In order to perform a phase transition,
1. broadcast a phase transition message,
ii. wait until the corresponding phase transition predicate is true.

The operation of a synchronization mechanism should not be .contingent on
assumptions about relative execution speeds of processes or message transmission
delays. TFor this reason, phase transition predicates should be monotonic with
respect to time; adding a message to the message queue should never falsify the
predicate. Otherwise, a phase transition attempt might occur prematurely, or might

be delayed indefinitely, due to the timing of the receipt of messages.

Synchronization problems.for which monotonic phase transition predicates cannot
be constructed invariably involve assumptions about timing. This is illustrated in
the following. Consider a distributed program that consists of two processes P and
Q. Execution of P alternétes between phase OK and NOTOK. P may enter these phases
aF will, so the phase transigion predicates are: ‘

OKP = true and I_JOTOKP = true.
Note that both of these phase transition predicates are monotonic. Execution of Q
occasionally involves an attempt to enter phase OKTOO. Suppose transition to OKTOO
is permitted only if P is executing in OK. Then, formulation of a phase transition
predicate OKTOOQ that is monotonic and satisfies the cbnstraints of the problem is
impossible; for Q cannot ascertain the phase ip which P is actually executing
vithout making assumptions about the time it takes P's phase transition messages to
Teach Q and the length of time P will remain in thaf phase. Thus, this synchroniza-

tion problem is time dependent, although this is not apparent from the original

specification.

7/

B R T e)

By choosing appropriate phase transition predicates, various types of synchron-
jzation can be implemented. In general, a phase transition predicate IP(m)[t] to
regulate entry by process P into phase ‘T at time t after broadcasting phase transi-
tion message m, must satisfy the following:

Rl: It is a function of the local message queue and the message broadcast to
enter the phase,

R2: It is total.

R3: It is monotonic with respect to the length of the message queue.

3. Examples :

The use of phase transition predicates to implement synchronization mechanisms
is now illustrated. First, a distributed version of a semaphore is presented.
Next, implementation of a conditional synchronous message-passing £facility is

presented.

3.1l. Distributed Semaphores

A distributed semaphore is a diétributed synchronization mechanism that behaves
in much the same way as a semaphore [D68]. Two operationms are defined on distri-‘
buted semaphores -- P and V. Execution of a P operation consists of making a transi-
tion to a P-phase and similarly, for a V operation tramnsition to a V-phase is

attempted.

For our purposes, the following will be a convenient definition of a semaphore.
A semaphore is a synchronization mechanism that ensures that for every completed P-
phase transition, a unique V-phase transition has been made by some process. Notice
that the semantics of the synchronization have not been defined in terms of a
"value" (- ; : .

ue usually a non-negative integer) and how P and V operations affect _that

value. However, implementations in which a semaphore does have a value =-- for

-7~

instance, the usual implementation in terms of shared memory -- will satisfy this

definition,.

The following functions will be useful for formulating the phase transition

predicates for distributed semaphores.

atmpt(T,m) = m is a T-phase entry message

VQ#(m)[t] = (Nm': m' in MQQ[t]: ts(m') <ts(m) A atmpt(V,m?))

PQ#(m)[t] = (Na': n' in MQQ[t]: ts(m') s ts(m) A atmpt(P,m'))

A process should never be delayed when it atfempts to enter a V-phase. There-
- fore, V-phaseQ(m)[t], the phase transition predicate for process Q to enter a V-
phase at time t.after broadcasting phase transition message m is:

| V—phaseQ(m)[t] = true.

A constant predicate is total and monotonic, so Rl - R3 are satisfied.

A process attempting transition to a P-phase should be delayed until a suffi-
cient number of V transitions have been made.'Let m be the phase transition message
broadcast by Q in order to enter thié P-phase., Then, PQ#(m)[t] is the ﬁumber of P-
phase transition attempts of.which Q is aware at time t that were made by processes
prior to this attempt by Q*. From our dgfinition of a semaphore, the following
should hold in order to enter a P-phase at time t:

(3 u': m' in MQQ[t]: Pq#(m)[t] SV #(m")t])

Q

Since both m and m' appear in MQQ, the predicate is total. Unfortunately, the
predicate is not monotonic. It would be if PQ#(m)[t] were constant with respect to
t, since V. #(m')[t] monotonically increases with time. From the message queue sta-

Q

bility lemma:

"Prior to" according to the times generated by our valid clock. The ordering

implied by these can differ from.the actual order im which concurrent transitions
were attempted.

[PRI

- ': ': , = t

faQ(m)[t] (W t': tst PQ#(m)[t] PQ#(m)[t i)

The following predicate, then, satisfies Rl - R3 and is therefore a valid phase
transition predicate for entry to a P-phase at time t.

P-pbaseQ(m)[t] = faQ(m)[t] A(dn': m' in MQQ[t]: Pq#(m)[t] < VQ#(m')[t]).

In this implementation, V-phase tramsitions are associated with P-phase transi-
tions in a first-come, first-served manner. The‘result is a semaphore implementa-
_tion in which processes are awakened in that order. Implementatidn of other deter-
ministic scheduling disciplines is also possible. For example, to implement a last-
come, first-served semaphore, V-phaseQ(m)[t] remains unchanged and P-phaseQ(m)[t] is
altered as follows. A process should be permitted to enter a P-phase at time t if a
sufficient number of V's have'been done at the time when the P-phase transition is

attempted:

b1(m)[t] = PQ#(m)[t] < Vd#(m)[t].

or, if by using a last-come,® first-served matching the P-phase transition message m

is matched with some previously ummatched V-phase transition message m':

b2(m)[t] = (3 m': m' in MQQ[t] A ts(m) € ts(m') A atmpt(V,m"):

PQ#(m,m')[t]+l = VQ#(m.m')[t])

where:

Pq#(m,m')[t] = PQ#(m')[tJ - Pq#(m)[t]

VQ#(m')[t] - VQ#(m)[t].

]

VQ#(m’m')[t]

Clearly, both predicates bl and b2 are total. ~ From the message queue stability
lemma it follows that bl is monotonic after time t if faQ(m)[t]‘and b2 is monotonic
after time t if faQ(m')[t]. Since the u. »n of two monotonic predicates is itsclf
monotonic, the following is a valid pha e tramsition predicate for making a P-phase

transition at time t.

P~phaseP(m)[t] = (faQ(m)[t] AP #(m)[tlfin#(m)[t])

Q
v(3n': faQ(m')[t] A ts(m) <ts(m') A atmpt(V,m'):

Pg(mm)[e141 = V#(m,m')Le])

3.2. Synchronous Message-Passing Primitives

In a synchronous message passing schéme, the sending process or the receiving
process is delayed unéil both are ready to perform the message transfer. Thus, an
input (receive) or output (send) statement is a synchronization point for processes
that communicate. Interest in this approach stems from the ease in writing programs
using such primitives. Synchronous message-passing primitives are integral to many
Tecent programming language proposals -- Communicating Sequential Processes (CsP)
[B78] and Ada [DOD79] are notable examples. In the following, the notation of CSP

is used.

Interprocess communication is accom?lished by using ingu; commands, which have
the form <source>?<target variable>, and gﬁ;gu; commands, which have the form
<destination>!<expression>, where <source> and <destination> are process names. In
the'sequel. input commands and output commands will be collectively referred to as

communication statements. An input command and an output command correspond if:

(1) the input command names as its <source> the process containing the output com-

mand;

(2) the output command names as its <destination> the process containing the input

command; and

(3) the type of the <target variable> in the input command matches the type of the

value denoted by <expression> in the output command.

-10-

Communication occurs between processes only when each process is ready to execute

corresponding communication statements. At thdt time, the value denoted by <expres-

gion> is assigned to <target variable>.

A communication statement can appear either in a command list or in the guard
of a guarded command G + C. The guard G may be either a Boolean expression option-
ally followed by a communication statement, OT the keyword otherwise; C is a command
1ist. Guarded commands may be combined to form alternative commands. The syntax of

‘ .
the alternative command is as follows. .
G, +c, 06,+¢,0... ODe, +cC.]

A guard is enabled if its Boolean expression evaluates to true; it is ready if

attempted execution of its communication statement (if present) would not cause

delay (i.e., some other process can execute a corresponding communication state-
ment). The guard otheryise is enabled and ready only if no other guard iﬁ the
alternative command is enabled and ready. Execution of the alternative command is
as follows. The guards Gl- .G2 seees G are evaluated. Then, one that is both
enabled and ready is selected; the communication statement (if any) in it is exe-

cuted, and then the corresponding command list is executed.

A process executing an alternative command with guard otherwise cannot be
delayed. If none of the guards is : ~rwise, then execution of the alternative com-

mand is delayed until one of the en:iled guards becomes ready.

The use of an alternative command to allow communication between processes P

and Q is illustrated in the following.

P :: [Qlvaluel » ... Q :: [Plvalue2 + ...
0Q?pvar =+ «..] O P?quar —+ ...]
The effect of cxecuting these two alternative commands is to assign either valuel to

qQvar or value2 to pvar. An implementation must not allow P and Q to become

-11-

deadlocked. This could occur if the communication statement in the guard chosen by
P did not correspond to the communication statement in the guaéd chosen by Q. This.
is possible here because both guards in each alternative command can be ready and
enabled. Such deadlocks can be avoided if each process is able to determine the

guard selections made by other processes.

We now proceed with the development of such a conditional communications facil-
ity. Whenever execution of a communication statement (or an alternative command that
contains a communication statement in oné or more guards) is begun in ﬁrocess P, a
phase transition is attempted. The phase transition messége consists of a set of
tribles that indicates the communications P is waiting for. This set, called Comg,

is computed based on the state of P as follows.

ComP["<source>?<var>"] = {(<source>, P, type of <var>)}

ComP["<dest>!<expr>"] = {(P, <dest>, type of <expr>)}

G = "B;I0" A B then ComP[IO]
Com,[7G + €] =/ G = Motheryise™ then {(0, 0, otherwise)}

otherwise { }.

, _ n
" LN] " = . C-
Com,["[c, + ¢, D6, ~cC, 0 De - C_n] 1= i:IComP[Gl +c.]
A phase transition message is formed by listing the triples in ComP.in some previ-

’
ously defined lexicographic order.

.

" Two phase transition messages match if there exists a triple common to both.

In addition, a phase transition message matches itself if it contains (0,0, other=

th .th

wisc). Let m. and mj be the i and j phase transition messages in some message

queue. Formally,

-]12~

er BNt 8 —

match(m,, mj) =(i#]j vA'(H k: kem; A kemj))
v (i= jA (4 x: kemi:‘ k-= (0,0,otheryise)))

.

For every communication that actually occurs, two phase transition messages will be
broadcast -- one by the process that is executing the output command and the other
by the process that is executing the input command., Two messages match if they
describe corresponding communication statements., Consequently, a pairing of phase
transition messages can be defined that is isomorphic to the actual communications.

Based on this, it is easy to construct a phase transition predicate.

A process attempting communication is delayed until it determines the unpaired

phase transition message with smallest timestamp in its message queue that matches

the phase transition message it broadcast. The presence of an otherwise guard com-

plicates this somewhat., If P broadcasts phase transition message m in an attempt to
execute an alternative command that has an otherwise guard and no matching phase
transition message with timestamp smaller than ts(m) can be received, P should be
allowed to complete the phase transition in order to execute the otherwise alterna-
tive. In that case, m is paired with itself. The following predicate achieves

thiSo

b3(m)[t] = (3 m; mi,in MQP[t]: pairedP(m,mi)[t])
where:
PairedP(ma.mb)[t] = match(ma, mb) A
(Vi: i<b: ﬂpairedp(ma,mi)[t]) A

(Vis i<a: -1pairedP(mi,mb)[t])
b

len(X) = (Nm : m in X)

It is simple to prove that:

(1)' pairedP(ma,mb)[t] ¢='pairedP(mb.ma)[tJ

(2) i#jA pairedp(ma.mi)[t] = ﬂpairedf(ma,mj)[t].

Thus, pairedP is sufficient for our purposes. Note that b3(m) is total provided m
is in MQp- Fﬁrthermore. b3(m) is monotonic after no phase transition message cah be
received with a smaller timestamp than was found on any message involved in the
pairing. This‘can be ensured by exploiting message queue stability to arrive at the

following phase transition predicate:

CP(m)[t] = faP(m)[t] A (3 m.:m, in MQP[t]: faP(mi)[t] A pairedP(m,mi)[t]).

After the phase transition is completed by both participating processes, the
. actual message exchange m;y take place. When executing an alternative command, the
guard that has been selected can be determined by finding the lexicographically
smallest matching triple in the paired phase transition messages. That way the two
processes will each execute an alternative that contains a communication statement
corresponding to the choice of the other. This, then, is a strictly deterministic
implementation. Use of such a deterministic matching scheme allows each process to

select the same guard to execute, independentlye.

The mechanism defined here differs from that of CSP in two regards. First,
output commands may be-placed in guards. Hoare [H78] and Bernmstein [B80] discuss the
desirability of this. Such a facility was not originally included in CSP to sim-
plify implementation. Secohdly. an othervisc guard has been added, which is similar '

to a feature in the Ada SELECT statement.

Lastly, note that distributed deadlock detection is easily accomplished. Con-
sider a sct of processes where each is attempting a phase transition. If each of
the phase transition messages is unmatched, and each contains triples that name only

other processes in the set, then the processes must be deadlocked.

=14~

a4 Led 2 w—

" Distributed programs should be designed'to continue functioning despite the
failure of one or more processes. A process can malfunction in many ways. Only
those failure modes that directly affect the operation of our distributed synchroni-
zation technique will be considefed here. These include failures where a process
can no longer satisfy. the acknowledgment requirement -- perhaps because it has
stopped executing -- and failures that cause a process to broadcast erroneous phase
transition messages. In addition, we will take the conservative view that if a pro-
cess fails, the contents of its message queue might be damaged or lost. Therefore,

it will be necessary to restore its message queue when it restarts.

Failures in which a process no longer satisfies the acknowledgment requirement
have the following effect. Recall that the message queue stability property implied
by fully acknowledged mes;;ges is useful when constructlng phase transition predi-
cates that are monotonice. I; the acknowledgment requirement is not satisfied, phase'

transition messages will not become fully acknowledged. As a result, phase transi-

tion attempts might be blocked unnecessarily.

The second failure mode of concern, the generation of erroneous phase transi-
tion messages, has the obvious consequences. Notably, phase transitions that are
possible will be denied, because the state of a message queue will not necessarily

reflect reality.

4.1. Process Bchavior and Failure Detection

It is convenient to make the following assumptions about the behavior of

processes (and the manifestations of failures).

Process Behavior Assumption:

(i) Processes fail by ceasing to execute. A process that has stopped exe-

-15-

cutlng does not broadcast phase transition messages or acknowledgment mes-
sages.

(ii) If a process fails, the contents of its message queue are lost.

(iii) A process P that has been repaired can start broadcasting phase tran-
sition messages again only .after executing a special restart protocol. To
initiate this, P first broadcasts a <restart--P:id> message, where id is a
unique identifier over all restart messages broadcast by P. During execu-
tion of the restart protocol, P broadcasts acknowledgment messages in ac-
cordance with the acknowledgment requirement.

- Consequently, all malfunctions appear as failures to satisfy the acknowledgment

requirement. The ease of constructing systems in which this is possible is dis-

cussed in section 6.l.

It is also appropriaté. in light of‘possible process failures, to reconsider
the réllable broadcast property of the communications network. Rather than require
that the network buffer messages that are destined for a failed process, we w111
permit it to discard any message it attempts to deliver to that process. ThlS
should cause no additional»difficulty since, according to (ii) above, a process
1oses.tbe éntire contents of its message queue upon failing anyway; the protocol
employed to restore a message queue can be used to obtain messages that were not

delivered during the period of failure.

In accordance with the process behavior assumption, at any time t a process P
can be in one of three states: it could have stopped, denoted by FAILED(P)[t], it
could be executing the restart protocol, denoted by RESTART(P)[t], or it could be
executing normally, denoted by RUNNING(P)[t]. And so the process behavior assump-

tion can be restated as:

FAILED(P)[t] = at time t, P does not broadcast any message.

—

TR L I e

RESTART(P)[t] = at time t, P does not broadcast any phase transition
message, but does broadcast acknowledgment messages in
accordance with the acknowledgment requirement.

RUNNING(P)[t] => at time t, P can broadcast phase transition messages
and broadcasts acknowledgment messages in accordance
with the acknowledgment requirement.

The effects of process failures must be detected if they are to be circum-

_ yented. Therefore, we assume that the communications network provides a facility

for each process P to determine the status of other processes and messages destined
for P that were broadcast by these processes. We model this facility with the
statement:

probeP(Q,f)
which has the following operational semaﬁtics: probeP(Q.f) invoked at time t; ter-
minates at time to after all messages from Q that were undelivered as of some time
t,, t. <t <St., are delivered to P. Variable f is set so that:

R’ ‘1R ¢
£f = FAILED(Q)[t]

The following predicate is used to describe the outcome of an invocation of

probeP(Q,f):

PROBEP(Q,f)[tI.tR.tC] = Process P invoked probeP(Q.f) at time toe
Execution completed at time te and for some tp,

f = FAILED(Q)[tRi

The details of implementing such a facility are dependent on the nature of the
communications network in use. The definition does, however, suggest the following
implementation. . A Ytime-out™ scheme is used to detect process failures. When pro-
cess P executes probeP(Q.f) a message is sent to Q. If Q is running when it

receives that message, it responds accordingly. As required above, any messages

-17-

destined to P from Q will be received by P prior to that response, due to the mes-
sage ordering property. If no response is received by P’ from Q after (say) Ito

seconds, then P can conclude that Q has probably failed.

The success of such a scheme is due to the process behavior assumption above --
failures always cause the offending processor to be stopped. The probability of
detecting a failure when none has occurred can be made arbitrarily small by using a
large value for Ito‘ In practice, knowledge about process execution speeds and the

maximum message delivery delay in a given network can be used to bound Ito'

It is not a good practice to make stipulations about time delays and execution
speeds when discussing a synchronization mechanism. The results in the earlier sec-
) Q
tions of this paper did not require such assertions. However, here we are concerned
with avoiding the situation where some process does not make a phase transition

because another process will not (cannot) broadcast an acknowledgment message in a

timely manner. So, the notion of time creeps in.
4.2. Protocols fo Handle Failures

4.2.1. The Restart Prgtggol.

Process P that has failed and is then restarted must execute a restart protocol
before broadcasting any phase transition messages. The restart protocol consists of
a local part executed by P and a remote part, which is executed by some other run-
ning process Q (say). Q causes P to receive every message that has ever been broad-
cast, To accomplish this, Q sends to P eveéy message that is in HQQ at the time exe-
cution of the remote part commences and any messages subsequently.received by Q that
might not be received by P (because they were delivered to P before it restarted).

In addition to restoring MQp» P will update its local clock so that any timestamps

it subsequently generates satisfy the valid clock requirement of section 2.

N es e e r—

To facilitate description of the restart protocol, some useful functions are

defined. cutoverQ(P.R.id)[t] is the timestamp on the first message broadcast by R
that P received after broadcasting <restart--P:id> for which at time t Q has

received an acknowledgment broadcast by P. That is,

ts(m), where m is the message with smallest timestamp

such that as of time t:

j. <restart--P:id> is the restart message from P most

recently received by Q.
cutover, (P,R,1d)[t] ii. P received and acknowledged m after
Q broadcasting <restart--P:id>.
iii. R broadcast m.
iv. Q received the acknowledgment broadcast by P for m.

oo otherwise.

- Also define:

the timestamp on the last message broadcast by R that
has been received by Q as of time t.

highestQ(R)[t]

0 if no such message has been received.

org(m) = the process that broadcast m.

Then, the restart protocol for process P is as follows.

Restart Protocol

Local Part
Suppose P has broadcast <restart--P:id>, where id is a unique identifier

that distinguishes among all restart messages broadcast by P. P executes
the following.,

1. Wait for remote completion.

Delay until receipt of a <rcmote completion--P:id> message. During this
time, P must satisfy the acknowledgment requirement for every message m
that is received directly from org(m). Messages relayed to P need not be
acknowledged. All messages P receives are stored in MQP. provided they are

. *
not duplicates of messages already stored there .

2. Wait for local completion.
After receipt of a <remote completion--P:id> message, ignore any messages
relayed through other processes. Execute the following:

forall processes P!
probeP(P’,f);

end;
Broadcast <restart completion--P:id>

Remote Part : :
Upon receipt of <restart--P:id> by any process Q at time to (say), the

following is executed:

1. Relay messages to P.
For each message m that is received by Q, if at time t:

ts(m) < cutoverQ(P,org(m),id)[t]
then m is sent to P.. |
2. Signal Completion.

Send a <remote completion--P:id> message to P when at some time t, tO:St, the
following is true.

(V m: m in MQQ[t] A ts(m) <cutoverQ(P,org(m),id)[t]: Q has‘relayed m to P)
A (V P': P' a process: highestQ(P‘)[t]EzcutoverQ(P,P',id)[t]

\ (BtI,t ot st St_St_St. <t: PROBE (P',f)[tI,t ,tC])).

R"°CC 01 R C - Q R

The correctness of this scheme is proved below. We first show that execution of

the restart protocol reconstructs the message queue at a restarting process.

Lemma: (Message Queue Reconstruction)
At the time P receives a <remote completion--P:id> message, every phase transi-
tion message that has been broadcast is either in MQp or in the communications

network and will be delivered to P.

* . .
Two messages with the same timestamp must be duplicates because timestamps are
generated by a valid clock.

Proof: Suppose process P receives a <remote completion--P:id> message from Q at time
t e From the restart protocol description, it follows that at some time t, tSt_.,

the following was true at Q:.

(V m: m in MQQ[t] A ts(m) <cutoverQ(P,org(m).id)[t]: Q has relayed m to P)
A (V P': P! a process: highestQ(P')[t] 2'cutoverQ(P,P',id)[t]

1 d . '
v (HtI,tR.tC.‘tOStIStRS to <t PROBEQ(P ,f)[tI,tR,tC]))

where tg is the time Q received the <restart--P:id> message. Consider those mes-

sages that originate at some process P'.

Case 1: Suppose highestQ(P')[t]2cutoverQ(P.P',id)[t]. According to the transmis-
sion order property and the consistency of timestamps with causality, P_will receive
directly from P' every message m' where

‘ts(m') 2 cutoverQ(P,P' »id)[t].
Let cutoverQ(P,P',id)[t]=ts°(m). Due to the reliable broadcast property, Q must
eventually»receive m, Assume this happens at time t e Due to the transmission ord-

ering property, Q has received all messages m' that originated at P', where

(e1)le_7.

ts(m') < highest o

Q

Since highestQ(P')[trm]2cutoverQ(P.P',id)[t], Q has received all messages m' that

originated at P' where |
ts(m')ScutoverQ(P,P',id)[t].

Moreover, all such messages m'! must have been relayed to P, according to the precon-

dition for sending the <remote completion--P:id> message at time t.

Case 2: Suppose highestQ(P')[t] <cutoverQ(P.P'.id)[t]. Then the following must be
true: |
Ll) ['
(atl,tR.tC. tgStyStpSto<ts PROBEQ(P E)tpatpst D).

Due to the definition of probeq. any phase transition message broadcast by Pt after

-2] -

t, will be received directly by P, since it commenced its restart before t,, tO:;tR.

R

Similarly, any message broadcast by P! beforé tp is received at Q by tee Hence,
every message m'.that Q received from P' will be relayed to P according to step 1 of
the remote part, since to<t and:
(Vm': o' in MQQ[t] A ts(m')SIﬁghestQ(P')[t] <cutoverQ(P,P'.id)[tJ:
Q has relayed m' to P)
Q.E.D.

This lemma does not prove that a <remote completion--P:id> message will actually be
sent. Only that if it is, the process executing the local part of the protocol will
receive a copy of every message that has been broadcast. Withgut additional stipula-
tions about process behavior, there is no guarantee that some process will actually
complete the remote part of the restart protocol and send the remote completion‘mes-
sage. For example, processes might always fail immediately before seﬁding the remote
éompletion message, and consequently, the festart protocol would never terminate.
However, this is not as troublesome as it might seem. A system in which processes
fail and restart with high frequency would be able to accomplish very little, any-
way. Thus, a protocol that termina;es when processes fail and restart infrequently,
should be acceptable.

Our restart protocol for process P (say) will terminate provided there exists
some process Q (say) that, after receipt of a <restart--P:id> message, executes

without failing long enough to:
(a8) invoke probeQ(P',f) for every process P' and then
(b) send the contents of MQQ to P.

The time required to execute the remote part of the restart protocol is reduced if P
receives and acknowledges phase transition messages while it is restarting. Q

needn't invoke probe, for processes that have broadcast phase transition messages

Q

-22=

Y T

that P acknowledged after broadcasting <restart--P:id>.

4.2.2. Message Queue Stability

Recall that acknowledgments are used to facilitate detection of message queue
stability, not to signify that a particular phase transition .message has been
received. Unfortunately, when processes fail they can no longer broadcast ack-
nowledgments. Thus, to counter the disruptive effects of prbcess failure on our syn-~
' chronizétion technique, a scheme is required that allows a process to determine the
stable portion of its message queue, even thougﬁ acknowledgments are not received

from all processes.

Receipt of message n' from process Q consititutes an implicit acknoyledgment by
Q for any message m broadcast by any process where ts(m) < ts(m') -- even if Q has
not yet received m. This is because @ will not subsequently broadcast a message
with timestamp less than ts(m'), due to the consistency of timestamps with causal-.
ity. The fpllowing predicate therefore defines whether P has received an implicit
acknowledgment from Q for message m at time t:

impackP(Q,m)[t] =m in'MQP[t] A (3 m': m' in MQP[t]: org(m')iQ A ts(m) <ts(m'))

Acknowledgments are really just a from of implicit acknowledgment. Thus, if
processes make phase transiﬁion attempfs with suffi?ient frequency then the ack-
nowledgment requirement can be relaxed -- phase transition messages will serve as an
implicit acknowledgments. Then, a process.would need to broadcast acknowledgment
messages only while executing the restart protocol or while it was delayed in making
a phase transition. When such implicit acknowledgments are used, the delay until a
phase transition message becomes fully acknowledged is dependent (in part) on the
frequency with which other processes broadcast rssages that serve as implicit ack-

nowledgments., Clearly, there is‘a trade-off t.:ween the time-delay for a phaée

transition and the amount of network capacity consumed by explicit acknowledgment
messages. Happily, we note that if there is little network capacity to devote to
explicit acknowledgments, it is probably because processes are making phage transi-
tions with high frequency -- ideai circumstances for the use of implicit acknowledg-

ments.

A consequence of the process behavior assumption is that a process that has
~ failed does not broadcést phase transition messages until completion of its restart
protocol. Thué, failed processes cannot p@ssibly'destroy message qﬁeue‘stability.
In light of this, the definition of fully acknoyledgced can be extended to account

for process failures,
faP(m)[t] = (V P': P' a process: impackP(P',m)[t] v
(Ftps tpator £y StpSt <timin MLt] A
PROBEP(P'.true)[tI, tR: tC]))

This predicate is monotonic with respect to t (time), as one would ekpect it to be.
In effect, it allows acknowledgmentg to be "forged" on behalf of failed processes
when message queue stability is not threatened. Below, we prove that the message
queue stability property associated witb~fuliy acknowledged messages is not des-
troyed by this. (This lemma is slightly weaker than the corresponding one in section
2. There, message queue stability with respect to all messages, including ack-
novledgments is proved. The weaker form of the property shown here suffices for our
purposes because phase transition predicates are defined in terms of the phase tran-

sition messages in a message queue -- not the acknowledgment messages.)

Lorma: (Message Queue Stability with Failure)
If m' is received by P at time t and is not ignored because it was relayed and

received after a <remote complction--P:id> message, then

T

faP(m)[t] A RUNNING(P)[t] = ts(m) <ts(m'). -
Proof: P must receive m' directly from org(m') due to the hypothesis of the lemma.
If fap(m)[t], then by definition:

impackp(org(m'),m)[t] v (g tps t? Ly SEpSEL <L
m in MQP[tI] A PROBEP(org(m'),true)[tI,tR,tC])

If impackP(org(m'),m)[t] then the lemma follows from the consistency of times-
tamps with causality at 6rg(m') and the transmission ordering property, since m' is

received directly from org(m').
¥

Otherwise:

sttt .St <t <t:min MQP[tI] A PROBEP(org(m'),true)[tI.tR,tC]).

(3t tps tor tyStpst,

m' must have been broadcast after tp. Otherwise, from the definition of
PROBEp, n' would have been received by P before tg which would contradict t,<t,

given that m' is received by P at time t.

Therefore, due to the process behavior assumption, org(m') must have broadcast
m! after completing the restart protocol executed following its failure before tpe

Let t_ . be the time org(m') completes that restart protocol, and let t be the

sC

time org(m') receives m. Since m' is received by P only after it is broadcast:

< <
tR tresc t.

To complete the proof we now show that t <t .. which implies ts(m) <ts(m') due

to the consistency of timestamps with causality at org(m'). Two cases must be con-

SiderEdo

Case 1: Suppose m was relayed to org(m') by some process Q executing the remote

part of the restart protocol. Let thm be the time Q sends m to org(m'), and thc

be the time org(m') receives the <remote completion--org(m'):id> message. Due to

1}h? transmission ordering property and the definition of the restart protocol all

-25_

messages relayed by Q will be received before the <remote completion-~-org(m'):id>

1 < <
« Since th t » We get trm t

message broadcast by Q. Thus, tm < tQ c resc

re resc’

Case 2: Suppose org(m') received m directly from org(m). Let tres be the time
: ' <
org(m') begins its restart protocol. Since m in MQP[tI] and t St St o thc' m

was broadcast before t. . By hypothesis, m was received directly from org(m).

Qrc

Thus, m is received by org(m') after tres® Consequently, from the semantics of the

invocation of probe ,>(org(m),f) in step 2 of the restart protocol, t_ <t ...

org(m
Q.E.D.

Lastly, we show that all messages become fully acknowledged.

Lerma: (Acknowledgment Generation)
m in MQQ[t'] = (Jt:t'st: faQ(m)[t] v FAILED(Q)[t])
provided every restarting process either completes execution of the restart

protocol, or fails,

Proof: If Q fails after receiving m then the lemma trivially follows. Suppose Q

does not fail. We show:

(V P': P' a process: impackp(P',m)[t] V .
3 H 3 (A 4
(3t tpe tgi tpStpSto<timin Mot] PROBEL(P*,true)[t , tp, t 1))
To do so, we show that there exists a time t such that for each process P! at least
one of these disjuncts is true. If P' does not fail before broadcasting an ack-
nowledgment for m, as required by the acknowledgment requirement, then there exists

. . . .
a time t_ . such that 1mpackP(P ’m)[tack]' Moreover,

ck
(Vers t g st": impackp(P',m)[t*])

If P' fails before broadcasting an acknowledgment for m then two cases must be

considered.

Case 1: " P' has not suc;essfully restarted by time t. Messages are never deleted
from a message queue., Thus, | | |
m inAMQQ[t'] A t'st =mn in HQQ[t]
Moreover, by executing probeQ(P',f) after t', Q can establish:
PROBEQ(P',true)[tI, tgs -

for t'StIStRS to<te. Thus, the part of the lemma concerning P' follows.

Qégg 2: P! has successfully restarted by time t. From the Message Queue Reconstruc=
tion Lemma andvthe hypothesis of the lemma, we know that P' will eventually receive
m. If P' receives m before completing the restart protocol, then the first phase
transition message broadcast by P' will constitute an implicit acknowledgment for m.
. If P! receives m after completing the restart protocol then P' will broadcast an

acknowledgment for m, in accordance with-the acknowledgment requirement. In either

case the lemma follows.

¢ Q.E.D.

4.3. Avoiding Redundant Fork During Restarts

In the protocols described in the last section, there could be wasteful dupli-
cation because the remote part of the restart protocol might be executed in parallel
by a number of processes. One execution would be sufficient. This can be avoided by
stipulating:

Failure Monitoring Requirement:
For every process P, if FAILED(P), then eventually the failure will be no-

ticed by some other process.
Then, only processes monitoring P would execute the remote part of the restart pro-
tocol for P when necessary. Redundant work is avoided by minimizing the number of
processes that are monitoring cach process. A simple scheme to accomplish this is

outlined below.

-27 -

Associated with eaeh process P is a set of processes that P is monitoring at
time t, mon(P)[t]. Let S be the set of all processes in the system. Previously:
(VP: P a process A RUNNING(P)[t]: mon(P)[t]=5)
However, according to the failure monitoring requirement, the following is suffi-

cient:

S = u mon(P)[t]
PeS A RUNNING(P)[t]

Thus, P periodically checks the status of all processes in mon(P). If, P! € mon(P)
and P' has failed, then P adds mon(P') to mon(P). And, if P' is subsequently res-
tarted, then mon(P) is partitioned into mon(P') -- the processes that P' will com=

mence monitoring -- and the remaining processes. .
5. Implementation Considerations

5.1« Message Queues

Synchronization mechanisms that could be implemented in terms of a finite
amount of shared memory accessible to all processes never require unbounded size
message queues. This is because, given a collection of phase tfansition predicatés,
a finite state machine can be constructed where the state of the machine always
embodies all of the information nécessary to determine the value of a phase transi-
tion predicate. Then, instead of storing the entire message queue at each process
P, the following is saved: ‘

i. Sp = the current state of the finite state machine at P,

ii. sfam. - the state of the machine at the time the last phase transition message
broagcast by P becomes fully acknowledged.

111, tP

lve Qp - a bounded message qucue containing the messages that have been rececived
by P but are not yet part of a fully acknowledged prefix.

~ the timestamp on the most recent fully acknovledged message at P.

A state transition function D is defined so that a new state S' can be determined
when the portion of the message queue encoded in the current sgéte S is extended by
the addition of message m. Thus,
S' = D(S,m)

Upon receipt of a message m, if ts(m) > tp then m is stored in QP in ascending order
by timestamp. If ts(m) < tp then m is ignored -- it is a duplicate of a message
already received. WheAéver a message m in QP becomes fully acknowledged, tp is set
to t;(m) and D is used to extend the portion of the message queue encoded in s, by
processing each message m', ts(m') < ts(m), in ascending order by timestamp. Fhase
transition predicates can be written so that omnly sp and sfamp are required for

their evaluation. Application of this technique to develop an implementation of the

FCFS distributed semaphore of section 3.1 appears in [s8o].

Integral to the success of this scheme is that phase transition predicates be
monotonic with respect to message queue length. This allows phase transition predi-
cates to be evaluated on any sufficiently long portion of the message queue. Thus,

the current state of the machine can always be used.

The actual bound on the size of Qp depends on both the number of processes in
the system and how long it takes for messages to become fully acknowledged relative
to the rate that processes attempt phase transitions. This depends on the buffering

capacity of the communication network.

" Use of such an encoding scheme reduces both the amount of storage required for
storing a message queue and the time and the volume of communications required in

step 1 of the restart protocol.

5.2. Cormuni on

In a system with N processes, N broadcasts are involved in a phase transition
-- 1 phase transition message and N-1 acknowledgment messages. A disciplined use of
distributed synchronization mechanisms can reduce this communications volume sub-

stantially, as is shown in the following.

Once a set of phase transition predicates has been defined, any number of
instances of the synchronization mechanism implemented by those pfediqates can be
defined by parameterizing the predicates and phase transition messages with respect
to the instance name. In that case, a separate message queue MQ(P,i) can be defined
for each instance i of the mechanism at each process P.that performs operations
(phase transitionsd on that instance. Only phase transition messages and ack-
nowledgment messages regarding instance‘i need be stored im MQ(P,i)' Therefore,
only those processes that actually attempt bhase transitions on instance i must
broadcast acknowledgment messages for phase transition messages about instance i in
order for message queue staBility fof MQ(P,i) to be ensured. As long as every pro-
cess does not make phase transitions on an instance, fewer than'N-l acknowledgmént
messages will be required fo; a phase transition to complete. Notice that recovery
from process failure becomes more complicéted; no single process will necessarily
save all messages that have been broadcast. Thus, more than one running process may

be needed to reconstruct the message queues at the failed process.

This technique can be exploited by structuring a distributed system as a
hierarchical collection of subsystems. Synchronization of the highest level subsys=
tems is accomplished by wusing some collection of synchronization mechanism
instances., _Synéhronization within each of the subsystems is performed by other
instances, etc., In this way, the number of processes that use a particular instance

of a synchronization mechanism is kept small, In fact, for-systems structured in

=30~

L T e

this way; the communications network could consist of a collection of broadcast
channels, where each channel is associated with one or more synchronization mechan-
jsm instances. In that case, 2 process need monitor only those channels that

correspond to instances of mechanisms on which it performs operations.
6. Discussion

' 6.l. The Assumptions Revisited

Certain assumptions about the communications network and the failure modes of
processors have been made. Here, we briefly examine the degree to which these

assumptions can be satisfied in ""'real' systems.

Two propefties of the communications network were postulated. The message ord-
ering property requires that all messages sent by a given #rocess be received by
other processes in the order sent. This is fairly simple to implement. Each message
is assigﬁed a sequence number formed by concatenating a unique process name with the
value of a counter that is updated‘by that process every time a message is broad-
cast. These sequence numbers can be used to govern the order in which messages ar

delivered to processese.

Implementing a communications network in which the reliable broadcast property
holds is somewhat more difficult. So called "broadcast networks™ -- contention net-
vorks such as Ethernet [MB76] and ring networks like DCS [FFHHLLR73] -- would appear
to implement reliable broadcasts, but actually don't. In these networks, each pro-
cessor monitors a '"bus™ and copies messaées with certain address codes into its
memory. Unfortunately, there is no guarantee that a proceséof will remove every
such message. For example, the processor's message buffer space might be full, the

processor might not be monitoring the bus at the time the message is transmitted,

or, in a contention network, an undetected collision could affect receipt of the

message by only that processor.

In point-to-point networks, sending a message to a single destination is an
atomic action -- either it happens or it doesn't -- but sending a message to more
than one destination is not. Therefore, to effect a broadcast, protocols are
required in which a processor failure causes another processor to assume its duties.
Previously, such protocols were thought always to require time delays linear in the
.nﬁmber of processors inyolved [E77]. However, in [SS81] we show how to implement
reliable broadcasts where a 0(log(N)) time is required to complete a,broadcast to N

processors (unless there are processor failures, in which case the delay becomes at

M
(%]

worst linear). Postulating the existence of a fast reliable broadcast facility

therefore quite reasonable, since processor failures should be rare.

The process behavior assumption plgces restrictions on the failure modes of
processes. In particular, we assume that if a process fails, it is stopped. Systeﬁs
for which such an assumptionoholds must be capable of detecting any and all errors
(malfunctions). Then, when a failure is detected, the processor can be turned off
or ignored. Unfortunately, it is mot possible to conmstruct such a system with a fin-
ite amount of hardware . Thus, we must settle for systems that exhibit the process
behavior assumption with high pfobability. Such systems can be constructed by
redundant encoding of information. For example, by including redundant inférmation
in phase transition messages it becomes increasingly unlikely that a process could
broadcast a valid phase transition message while malfunctioning; the redundant
information allows processes to determine that the message is not a real phase tran-
sition. Similarly, by replicating unreliable hardware it is possible to comstruct
processors that'opefate correctly with high probability, or don't operate at all.

The amount of replication needed for this is quantified in [LPs80].

" .
Sed quis custodict ipso custodes? (But who is to guard the guards themselves?)

-32=

—cn

Lastly, since we have not described protocols to allow addition and deletion of
pzocesses‘co\the system while it is running, it is tempting to believe that it is
not possible using our protocols. .This is not true, as is shown in the following.
A process P can be removed from the system if it first broadcasts a "delete P™ mes-
sage. After receipt of such a message, processes would no longer require ack-
nowledgments from P in order for a message to become fully acknowledged. Similarly,
a process Q can be added to the system if it first broadcasts an "add Q"™ message.
After receipt of such a message, acknowledgments from Q would be required for a mes-
sage to become fully acknowledged. In addition, Q must then complete the restart

protocol before broadcasting any phase transition messages.

6.2. Applications of the Technique

The technique developed in this paper is useful for solving global synchroniza=
tion problems in distributed systeﬁs. Such problems often arice wﬁen an invariant
relation must be preserved that involves the states of several physically distri-
buted processes. The consistency broblem in distributed database systems 1is an
example of such a.problem. Implementing synchronization and communications primi-
tives in a distributed system is another place where global synchronization could be

necessarye.

To date, our techniques have been used in a oumber of contexts. Andrews uses
distributed semaphores in a distributed implementation of the Bankerés Algorithm for
deadlock detection [AS0]. 1In [S80], we describe how distributed semaphores can be
used to generalize Mlocking™ solutions for the consistency problem in centralized
data base systems for use in distributed data base systems. In fact, many of the
proposals for concurrency control mechanisms in distributed data base systems can be
viewed as optimizations of implementations obtained in this manncer. Unfortunatelys

many of these proposals (including ours) do not adequately handle failure and

=33~

recovery —— which should be developed in conjunction with a synchronization mechan-
ism. More recently, in [SS81], we develop a locking primitive that is well suited
for implementing a fault-tolerant distributed storage system by using the techniques

described in this paper.

A second contribution of this work is the identification of monotomicity as a
way to control interference in distributed programs. Interference occurs in a
paiallel program when execution of one process invalidates assertions required by
other concurrently executing processes. If an assertion is monotonic, then once it
je true it remains true, hence it is not interfered with. In this work, we were
concerned with construéting monotonic phase transition predicates, and did this by
_using acknowledgment messages to ensure message queue stability. But, the use of
monotonicity appears to have application in a wide range of contexts, and other
techniques can be used to construct monotonic assertiomns as well. For example; in
[LS80] we use monotonicity to develop fault tolerant protoccls for the distributed
termination problem [F80], and Lampson [L80] has shown how monctonicity can be used
as the basis for a voting-based fault tolerant distributed commit protocol for

replicated data.

f.3. Related Work

Our approach is based on a scheme for totally ordering events in a distributed
program. Each process makes synchronization decisions by independently simulating a
finite state machine [L78a), which is constructed from the phase transition predi-
cates that cha;acterize the desired synchronization. Such phase tramsition predi-
cates can be derived from a global invariant by using the wp predicate transformer

[D76], or can be obtained by other means.

Integral to any synchronization techmique intended for use in distributed pro-
grams should be the ability to deal with‘failures. The approach descriped in this
paper requires a reliable broadcast facility and the ability to detect process
failures. This allows acknowledgments to be forged when necessary, thereby ensuring
that the stable prefix of a message queue will continually increase in length. 1In
[L78b] a different approach is explored. There, in order to maintain the message
queue stability property, undelivered messages that have becowe too "old™ are
ignored. Consequently, the ability to detect failures is mnot required; although
protocols to synchronize local clocks that could malfunction are necessary. A vot-
ing scheme is used to ensure that all simulations of the fiinite state machine accept
or that all reject a given message. Therefore, a reliable broadcast facility is not
necessary. Instead, a sufficiently large poftion of the system must be functioning
at all times, and conditions about the rate that failures and restarts occur must be
satisfied. Lastly, Lamport's work is oriented towards constructing arbitrary finite
state machines, in contrast to ours which is concerned only with finite state
machines that implement synchronization mechanisms. Nevertheless, our techniques
for handling failures and restarts will work for the more general case. Given an
arbitrary finite state machine, instead of defining monotonic phase tramsition
predicates which take as argument a phase transition message, functions of the
current machine state that take as argument a "user request™ message are defined.
The analog of monotonicity is that, for a given argument, the value of such a func-

tion remains invariant once it becomes defined.

Other approaches to synchronization problems in distributed programs, such as
the use of tokens [LL78] or sequencers [RK77] have not completely addressed these
fault tolerance issues. In these approaches, a process appeals to a designated

arbitrator (process) for synchronization decisions. Although the responsibility for

aribitration might migrafe from one process to another, the existence of such_a éen-
tral authority, however temporary, constitutes a potential bottleneck. Moreover,
ghould the process serving as the central authority fail, a new arbitrator must be
selected and must gather state information from all other processes in the system.

Both are non trivial problems.

Recently, [BKZ79] have developed a s&nchronization approach basgd on use of a
sﬁared broadcast channel. That work can be derived from our distributed semaphore
implementation, although our implementation requires considerably. fewer message
broadcasts. In [RA81] a lower bound for the number of messages that must be
exchanged to implement mutual exclusion in a distributed system is proved. We hap-
pily note that their solution can be viewed as an optimization of a distributed

semaphore based solution to the critical section problem.

Other implementations of the non-deterministic message passing mechanism in CSP
are described in [578] [S79] [B80]. Each uses a different mechanism to allow

processes to compute independently an ordering on the triples in our "Com® set.

Z. nclusions

To date, numerous language proposals ﬁave appeared that include message passing
facilities with which process synchronization can be implemented. We have pursued a
Mlower level™ appgoach for two reasons. First, high level mechanisms often involve
nontrivial implementations. The implementation of the non-deterministic message
passing faciliﬁy in Communicating Sequential Processes without é reliable broadcast
network is an .illustration of this. Secondly, as yet there does not appear to be
any overwhelming evidence to favor one proposal over the others. Therefore, we have
developed a technique that can be used to solve synchronization problems directly,

to implement new synchronization mechanisms (that are pfesumably well suited for use

jn distributed programs), and to construct distributed versions of existing mechan-
jsms. The appeal of this last alternati?e stems frdm the fact that it now becomes
possible to use many of the technidueq developed in the context of concurrent pro-
gramning in distributed programs. However, until recently, synch;onization mechan-
ismé have not included provisions for allowing a programmer to deal with process
failures. (A noteworthy exception to this is the work of [R79].) Such a facility is

important for the mechanism to be useful in distributed programs.

Acknoyledzments

Many people have been kind enough to make helpful comments on earlier drafts of
this paper, including Greg Andrews, Jim Archer, Alan Demers, K. Ekanadham, Paul Har-
ter, Carl Hauser, Dave Reed, Rick Schlichting, Dave Wright and especially Bowen
Alpern, David Gries, Leslie Lamport and Gary Levin. The encouragement and comments
of Tony Hoare are also gratefully acknowledged. Lastly, the comments of the
referees were most helpful.

Bﬁf gerences

[A80] .
Andrews, G.R. On-the-fly Deadlock Prevention, Technical Report, Department of

Computer Science, University of Arizona, June 1980.

[B80]

Bernstein, A.J. Comments on the Paper Communicating Sequential Processes,
TOPIAS 2,2 (April 80), 234-238.

[BRZ79]
Banino, J.S., C. Kaiser, and H. Zimmermann. Synchronization for Distributed

Systems Using a Single Broadcast Channel, Proceedings of First International
Conference on Distributed Computing Systems, Oct. 1979, 330-338.

[p68]
Dijkstra, E.W. Cooperating Sequential .Processes, in Programming Languages, F.
Genuys (Ed.), Academic Press, New York 1968.
[p76] ‘
Dijkstra, E.W. A Discipline of Programming, Prentice Hall, 1976, New Jersey.
[pop79]
Department of Defense. Preliminary Ada Reference Manual, SIGPIAN Notices 14, 6

Part A (Junec 1979).

[E77]

Ellis, C.A. Consistency and Correctness of Duplicate Database Systems, .

Proccedings of the Sixth Symposium on Operating Systems Principles, Purdue
University, Nov. 1977, 67-84. '
[FFHHLLR73]
Farber, D., J. Feldman, F. Heinrich, M. Hopwood, K. Larson, D. Loomis and L.
Rowe. The Distributed Computing System, in Proceedings of CompCon 13, Feb.
1973, 31-34. .
{r80]
Francez, N. Distributed Termination, TQPLAS 2, 1 (Jan. 1980), 42-55.
[m78]
Boare, C.A.R. Communicating Sequential Processes, CACM 21,8 (August 1978), 666
- 677. .
[178a]

Lamport, L. Time, Clocks and the Ordering of Events 1n a Distributed System,
cacM 21,7 (July 1978), 558 - 565.

[L78b] -
Lamport, L. The Implementation of Reliable Distributed Multiprocess Systems,

(1801
Lampson, B.W. Replicated Commit, Technical Note, ZXerox Palo Alto Research

Center, Nov. 1980.

{1sp8o]
Lamport, L., R. Shostak and M. Pease. The Byzantine Generals Problem, Techni-
" cal Report, Computer Science Laboratory, SRI International, March 1980.

[Lr78]
Le Lann, G. Algorithms for Distributed Datasharing Systems Which Use Tickets,
in Proccedings 3rd Berkeley Workshop on Distributed Data Management and Com=
puter Netyorks, Aug. 1378, 259 - 272.

[1s80] :

Lerman, C.W., F.B. Schneider. Detecting Distributed Termination When Processors
Can Fail, Technical Report TR 80-449, Department of Computer Science, Cornell
University, Dec. 1960.

[1876] |
Metcalf, R.M. and D.R. Boggs. Ethernet: Distributed Packet Switching for Local
Computer Networks, CACM 19,7 (July 1976), 395 - 403.

[RK77]
Reed, D.P., and R. Kanodia. Synchronization with Eventcounts and Sequencers,
CACM 22,2 (Feb. 1979), 115-123.

[R79]
Reed, D.P. Implementing Atomic Actions on Decentralized Data, in Preprints for
The Seventh Sympesium on Operating Systems Principles, Dec. 1979, 66-74.

[RAB1]

Ricart, G., and A.K. Agrawala. An Optimal Algorithm for Mutual Exclusion in
Computer Networks, CACH 24,1 (Jan. 1981), 9-17.

[580] | |
Schneider, F.B. Ensuring Consistency in a Distributed Database System by Use

of Distributed Semaphores, in Procccdings of International Symposium on Distri-
buted Data Bases, Paris, France, March 1980, 183-189. ‘

[ss81] S : :

Schneider, F.B. and R.D. Schlichting. Towards Fault-Tolerant Process Control
Software, To appear Proc. FICS-11, June 198l.

[ss8l] 4
Schneider, F.B. and R.D. Schlichting. Fast Reliable Broadcasts, in prepara-
tion. v

[s78]

Schwarz, J.S. Distributed Synchronization of Communicating Sequential
Processes, Technical Report, Department of Artificial Intelligence, University

of Edinburgh, Oct 1978.
[s79]

Silberschatz, A. Communication and Synchronization in Distributed Systems,
JEEE Transactions on Software Engineering SE-5,6 (Nov. 1979), 542-546.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif

