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ABSTRACT 

It is shown how to use fractional replication in simulation 

studies. Examples are given. Considerable savings in number of 

runs required can be achieved through the use of fractional repli­

cation ideas. 

1. INTRODUCTION 

Most statisticians will, at one time or another, be involved 

with a simulation study of the behavior of an estimator or statis­

tical procedure. The study will usually be done for several values 

of the parameters involved. For example, for the normal distribu­

tion, the size of the mean ~ and variance a2 separately might be 

of interest to the investigator. If five levels of p and six 

values of a2 are to be studied, a total of 5x6•30 combinations 

would be required. The investigator might be willing to assume 

that the interaction was zero or negligible and only main effects 

for p and a2 were of importance. The following one-third frac-

tion of ten observations could be used as a saturated main effect 

plan: and 



v1a6 where vi is the ith level of vi and aj is the jth level of cr 2 • 

Thus, only one-third of the effort needs to be used to obtain 

information about levels of v and of a 2 as they affect the proce­

dure under study. When many parameters (factors) and several 

levels are involved, the total number of combinations can become 

large. If interactions are nonexistent or negligible, then a sat­

urated main effect plan would be called for and a considerable 

savings in number of points at which simulations were run could be 

achieved. 

To illustrate, Grimes and Federer (1984) were interested in 

simulating results for generalized versions of the Behrens-Fisher 

test. Interest centered on closeness of procedures to the nominal 

level a where a is the stated size of the test. They were inter­

ested in the following four factors: 

(i) 
v 

the value of L c.v. where 
i=1 1 1 

vi is a parameter value for 

treatment i and c. is a contrast coefficient subject to the 
1 

v 
constraint L ci = 0, 

i=1 

(ii) population variances, a~, 

(iii) sample size, and 

(iv) nominal significance levels. 

If each of the above factors were at four levels, a total of 

4~•256 combinations would be required. Instead of a simulation 

at each of the 256 combinations, an orthogonal main effect plan 

with 16 combinations was selected. This one-sixteen fraction may 

be obtained from a complete set of orthogonal latin squares of 

order four or from an orthogonal array with 16 runs (columns), 

five rows, four symbols, and of strength two. Such a set would be 

Combination( Column) 

Factor Level of factor 

A 0000 1111 2222 3333 
B 0123 0123 0123 0123 
c 0123 1032 2301 3210 
D 0123 3210 1032 2301 
E 0123 2301 3210 1032 



The above is for five factors but only four were under study. 

Hence, the sum of squares for factor E can be used as an error sum 

of squares since all levels of factor E were the same. This would 

be true if interactions among the four factors were zero. Other­

wise, the three degrees of freedom for factor E could be used to 

measure lack of fit from a main effect model if an independent 

estimate of the error variance were available. 

It should be noted that ANY fraction and ANY set of parame­

ters in a factorial can be constructed. The D-minimal design (see 

Anderson and Federer, 1973 and 1975), which is one with the mini­

mal nonzero value of the determinant of the information matrix, 

can be constructed for any fraction and any factorial by one ver­

sion of the one-at-a-time plan. For each factor separately, the 

range of values is used and the levels of all other factors are 

.held constant, say at the lowest level. The procedure is illu-

strated for a 2x3x4 factorial where a main effect plan would yield 

the seven combinations 000, 100, 010, 020, 001, 002, 003. One 

further item to note is that if one uses single degree of freedom 

contrasts, each observation adds one degree of freedom as in the 

ANOVA table on the next page for a 2x3x4 factorial given in Table 

1. Any subset in any order of these 24 single degree of freedom 

contrasts may be used, depending upon the goal of the investiga­

tor. One could select parameters A, B1 , B2 , c1 , c2 , c3 , and B1c1 , 

A B1c1 as the parameters and the corresponding observations as the 

fractional replicate plan. The ordering of the parameters is not 

binding on the investigator. 

In simulation studies, it is not clear to the author that a 

D-optimal design is as important as it is in quality control and 

product improvement studies. Hence, it may be that aD-minimal 

design would suffice in simulation studies. It should be noted 

that there can be a considerable difference in variance between a 

D-minimal and a D-optimal design. For example, Anderson and 

Federer (1975) found that for a saturated main effect plan for 11 

factors at two levels each, the ratio of D-maximal to D-minimal 

was 1458. However, if a2 is very small, this large difference may 
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not matter. This idea needs further exploration before reaching a 

conclusion. It is well known that a different random seed should 

be used for each combination. 

TABLE 1 

Source of variation Degrees of 

Mean 1 
A (first factor) 1 
B (second factor) 2 

Bl 1 
Bz 1 

c (third factor) 3 
cl 1 
Cz 1 
c3 1 

A X B 2 
A X BI 1 
A X Bz 1 

AxC 3 
A X cl 1 
A X Cz 1 
A X c3 1 

B X C 6 
BI x c1 1 
Bl x C2 1 
Bl x c3 1 
Bz x c1 1 
Bz x C2 1 
Bz x c3 1 

A X B X c 6 
A X BI x c1 1 
A X BI x c2 1 
A X Bl x c3 1 
A X Bz x c1 1 
A X Bz x c2 1 
A X Bz x c3 1 

freedom 
Added 

combination 

000 
100 

010 
020 

001 
002 
003 

110 
120 

101 
102 
103 

011 
012 
013 
021 
022 
023 

111 
112 
113 
121 
122 
123 

If a replication of the whole set is needed, it is suggested 

that a different main effect plan be used for each complete repli­

cate. For example, in the above 2x3x4 factorial one could use the 

first seven observations for replicate one. Then for replicate 

two, use the seven combinations 123, 023, 113, 103, 122, 121, and 

120 which were obtained by interchanging 0 and 1 for the first 

factor, 0 and 2 for the second factor, and by interchanging 0 and 

3 and 2 and 1 for factor three. This is a fold-over of the origi-



nal design and results in seven different combinations than were 

used for replication one. There are many methods of constructing 

fractional replicates of a complete factorial. Some of these are 

discussed in Raktoe ec al. (1981) and others are discussed in the 

references cited by them. 

Although there is a large literature on fractional replica­

tion, most statisticians contacted by the author have little or no 

interest in the subject, and most have only a prefunctory knowl­

edge of the topic at best. They apparently have failed to realize 

the usefulness of fractional replication in simulation studies, 

and consequently little use has been made of fractional replica­

tion for these studies. 
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