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In this study, we use controlled vibration, where we oscillate a rigid cylinder

with a prescribed motion, in a fluid flow, in order to provide insight into as-

pects of vortex-induced vibration. We make extensive measurements of the

fluid forces on a cylinder that oscillates sinusoidally, transverse to a free stream,

at both Re = 4,000 and Re = 12,000, and generate high resolution contour plots of

various fluid forcing quantities in the plane of normalized amplitude and wave-

length. With such resolution, we are able to discover discontinuities in the force

and phase contours, which enable us to clearly identify boundaries separating

different fluid forcing regimes. These boundaries appear remarkably similar to

boundaries separating different vortex formation modes in the Williamson &

Roshko (1988) map of regimes. Wake vorticity measurements (using DPIV) ex-

hibit the 2S, 2P, and P+S modes, as well as a regime where the vortex formation

is not synchronized with the cylinder oscillation. A further new discovery is the

existence of a region where two vortex formation regimes overlap. Associated

with this overlap region, we identify a distinct mode of vortex formation where

two pairs of vortices are shed per cycle of oscillation (similar to the 2P mode)

but the secondary vortex is much weaker, which we have termed ‘2POVERLAP’,

or simply the ‘2PO’ mode. This ‘2PO’ mode is of particular importance, as it is

responsible for generating the peak resonant response of the body.

By examining the energy transfer from fluid to body motion we predict the



response of an elastically mounted cylinder that agrees remarkably well with

measured free vibration responses. We introduce the concept of an “energy

portrait”, which allows us to identify stable and unstable amplitude response

solutions and thus to predict clearly the hysteretic and intermittent switching

mode transitions, both of which correspond with such phenomena measured

from free vibration. In addition to predicting steady state (sinusoidal) behav-

ior, we develop a quasi-steady model which allows us to predict the dynamics

of a freely oscillating cylinder having transient or unsteady behavior. Using

this model, we find a regime of normalized flow velocity where steady state

vortex-induced vibrations cannot occur, and the cylinder can only oscillate with

unsteady motion.

Further studies include the effect of Reynolds number on the critical mass

for an oscillating body, below which a structure will vibrate up to infinite nor-

malized velocity. Finally, we measure the effect of spanwise end conditions on

a free vibration response.
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CHAPTER 1

Introduction

When a bluff body such as a circular cylinder is placed in a fluid flow, a series of

alternately signed vortices may form in the wake, called a Von Kármán vortex

street, which will yield a periodic force on the body. If the body is part of an

elastic structure, the oscillating forces may induce vibration of the structure in a

phenomenon known as vortex-induced vibration. This vibration is a significant

problem in many fields of engineering, leading to fatigue and eventually failure

of various structures such as oil riser tubes, heat exchanger tubes, bridges, and

chimneys. The wide range of problems involving vortex-induced vibration has

led to a large number of experimental and computational studies on the sub-

ject, including several review articles such as Sarpkaya (1979), Bearman (1984),

Parkinson (1989), and more recently Williamson & Govardhan (2004); as well as

several books such as Blevins (1990), Naudascher & Rockwell (1994), and Sumer

& Fredsoe (1997).

In this study, we focus on the most conceptually simple instance of vortex-

induced vibration: the case of a circular cylinder constrained to move only

transverse to a uniform incoming flow. Such a system is often used as a

paradigm for understanding more complicated cases, such as multiple degrees

of freedom, pivoted cylinders, or flexible cables. Our approach is to use con-

trolled vibration, where we prescribe the motion of the cylinder, and measure

the fluid forcing and the wake vortex dynamics over a wide range of oscillat-

ing amplitudes and frequencies. From this data, we can make predictions about

the response of a freely vibrating, elastically mounted cylinder (free vibration

1



case), as well as provide deeper insight into various vortex-induced vibration

phenomena.

This controlled vibration approach has been employed by several prior stud-

ies, for example: Mercier (1973), Sarpkaya (1977), Staubli (1983), Gopalkrishnan

(1993), Hover, Techet & Triantafyllou (1998), Carberry, Sheridan & Rockwell

(2001), Carberry, Sheridan & Rockwell (2005). In this study, we conduct a new

set of controlled vibration force measurements with two main goals: (1) to care-

fully match the experimental conditions between free vibration and controlled

vibration and (2) to obtain much higher resolution of the force data (in terms of

amplitude and frequency of vibration) than in any prior study.

In this dissertation, each chapter forms a self-contained study, and therefore

includes its own detailed Introduction section and Conclusions section. How-

ever, we have found it convenient to place all the references together at the end

of the dissertation.

In Chapter 2, we examine the relationship between controlled vibration and

free vibration by directly comparing force measurements between the two cases.

We show that if the cylinder dynamics as well as all aspects of the experimental

arrangement are carefully matched, controlled vibration can yield fluid forcing

in close agreement with measurements from free vibration.

In Chapter 3, we make extensive measurements of the fluid forcing for a

cylinder undergoing controlled vibration over a wide range of normalized am-

plitude and wavelength at Re = 4,000. This measurements are used to generate

very high resolution contours of various fluid forcing quantities. From these

contours, we identify different fluid forcing regimes and characterize the wake

2



dynamics in each of these regimes using PIV measurements of the wake vortic-

ity.

These very high resolution force contours are used to make predictions re-

garding the response of a freely vibrating cylinder in Chapter 4. We also intro-

duce the concept of an “energy portrait”, which is a plot of the energy transfer

into the body motion, and the energy dissipated by damping, as a function of

normalized amplitude. These energy portraits allow us to predict the existence

of stable and unstable equilibrium solutions, and to show how the vibration

system may exhibit a hysteretic mode transition, or intermittent switching, both

of which correspond with such phenomena measured from free vibration.

We extend our force contours to predict unsteady and transient cylinder dy-

namics in Chapter 5 by introducing a quasi-steady model, which assumes that

our measurements of force for a sinusoidally oscillating cylinder can be applied

to the case where the amplitude or frequency of oscillation is varying.

In Chapter 6, we use our force contours to predict the critical mass phe-

nomena in vortex-induced vibration. As found by Govardhan & Williamson

(2002), if the mass of the oscillating structure falls below a certain critical value,

resonant vibration can persist up to infinite normalized velocity. Using our con-

trolled vibration data as well as some new measurements of the dynamics of a

cylinder oscillating with no restoring force, we determine the effect of Re on the

critical mass ratio.

Finally, in Chapter 7 we explore the effect of spanwise end conditions on

vortex-induced vibrations, both for free vibration and controlled vibration.
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CHAPTER 2

Employing controlled vibrations to predict fluid
forces on a cylinder undergoing vortex-induced

vibration

MORSE, T. L. & WILLIAMSON, C. H. K. (2006)

Published in Journal of Fluids and Structures 22, 877-884.

In the present study, we measure the fluid forces on a vertical cylinder that

is forced to vibrate transversely to a water channel flow, and compare directly

to the forces encountered by freely vibrating cylinders, under conditions where

we carefully match the amplitude, frequency, and Reynolds number (Re) of the

two cases. A key point is that we use precisely the same cylinder and sub-

merged flow configuration for both the free and controlled cases. Where the

free vibration exhibits closely sinusoidal motion, the controlled sinusoidal mo-

tion yields forces in close agreement with the free vibration case. Although this

result might be expected, previous comparisons have not been uniformly close,

which highlights the importance of matching the experimental conditions pre-

cisely, and of accurately measuring the phase between the force and body mo-

tion. For a lightly damped system, which is perhaps the most significant case

to analyze, one typically finds that the maximum response amplitude is quite

unsteady. One might conventionally expect prediction of forces to be difficult in

such cases. However, it is of practical significance that even in this case, a quasi-

steady approximation is effective. This is a significant point because it suggests

that controlled vibration measurements for constant amplitude motion might
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remain applicable to free vibration systems undergoing even transient or inter-

mittent motions.

2.1 Introduction

The problem of vortex-induced vibration is of interest to many fields of engi-

neering. It affects, for example, the dynamics of riser tubes bringing oil from

the seabed to the surface, the flow around heat exchanger tubes, and the design

of civil engineering structures such as bridges and chimneys. An overview of

recent phenomena in vortex-induced vibration can be found in the review by

Williamson & Govardhan (2004).

The case of an elastically mounted rigid cylinder that is confined to move

transversely to the flow is often used as a paradigm for understanding the prob-

lem of vortex-induced vibration in general. Such a system, for low mass and

damping, has been shown to have three branches of response as the normalized

velocity is increased: an initial branch, upper branch, and lower branch, with

a hysteresis between the initial and upper branches, and intermittent switching

between the upper and lower branches (Khalak & Williamson, 1999). A central

question in the study of vortex-induced vibration of an elastically mounted (free

vibration) cylinder is to what extent can results from controlled vibration exper-

iments, where the cylinder is prescribed to have a sinusoidal motion, be applied

to the case where the cylinder oscillates freely under vortex-induced motion.

There have been many studies of controlled vibrations of cylinders. For ex-

ample, Mercier (1973), Sarpkaya (1977), and Carberry et al. (2001, 2005) mea-

sured the forces on a cylinder that is controlled to oscillate with constant ampli-
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tude, over a range of frequencies. Carberry et al. also used DPIV (digital particle

image velocimetry) to examine the wake vortex dynamics. Staubli (1983) and

Gopalkrishnan (1993) made force measurements over a range of amplitudes and

frequencies. However, very few past investigations have focused on direct com-

parisons of fluid forces between the two cases of controlled vibration and free

vibration, using precisely the same experimental arrangements for the submerged

cylinder, except for the recent works of Triantafyllou, Hover and co-workers at

MIT using their Virtual Cable Testing Apparatus in a towing tank Hover et al.

(1998). In the present study, we have carefully matched the experimental ar-

rangement between free and controlled vibration cases, which appears to be im-

portant if one wants to accurately compare predicted and measured responses

for freely vibrating systems.

For an elastically mounted cylinder, when the body oscillation frequency is

synchronized with the periodic vortex mode, the force, F (t), and the response

displacement, y(t), are often approximated by the following representations:

F (t) = F0 sin(2πft + φ) (2.1)

y(t) = A sin(2πft) (2.2)

The phase angle, φ, between the fluid force and the body displacement is crucial

in determining the energy transfer from the fluid to the body, which in this

simplified case, is given by:

E = πAF0 sin φ (2.3)

This energy input is balanced by the energy dissipated due to the structural

damping. Therefore, for free vibration to occur, the phase angle must lie in the

range φ = 0◦ − 180◦. For very low mass-damping, (which leads to the highest
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peak amplitude), the energy dissipated is very low, and thus the phase is close

to 0◦, or close to 180◦. This presents a difficulty in accurately predicting free

vibration at low mass-damping with controlled vibration experiments, because

a small difference in phase angle of just 2-4 degrees can cause the system to

change from positive to negative excitation.

2.2 Experimental Details

The present experiments were conducted in the Cornell-ONR Water Channel,

which has a cross-section of 38.1 cm x 50.8 cm. The turbulence level in the test

section of the water channel was less than 0.9% over the range of velocities (5-30

cm/s) used in this study. A cylinder of diameter 3.81 cm and length 38.1 cm was

suspended vertically in the water channel and forced to oscillate transverse to

the flow using a computer controlled motor attached to a transverse lead screw.

A fixed end plate was placed 2 mm below the bottom of the cylinder (but not

in contact with the cylinder) to encourage two-dimensional vortex shedding,

following the study of Khalak & Williamson (1996). The range of Re in this

study was 2400 - 6800.

A two-axis force balance utilizing LVDTs (linear variable distance transduc-

ers) was used to measure the lift and drag forces on the cylinder. The transverse

displacement of the cylinder was measured using a non-contact (magnetostric-

tive) position transducer. The measured force signals were filtered using a low-

pass filter at 5Hz. The small phase lag due to filtering (typically 3◦ − 4◦) was

carefully measured, and the force signals were systematically adjusted to ac-

count for it. Also, the inertial forces in the transverse direction were subtracted
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from the total measured force. Instantaneous phase information was obtained

through use of the Hilbert transform, where we follow closely the details de-

scribed in Khalak & Williamson (1996).

2.3 Direct comparison to free vibration

In our experiments, we chose to directly match the values of A∗, U∗/f ∗, and

Re at several points in the initial, upper, and lower amplitude branches of the

free vibration response of Govardhan & Williamson (2000), shown in Figure

2.1. (In this study, A∗ = A/D = amplitude/diameter; U∗/f ∗ = U/fD, where

U = free stream velocity, f = oscillation frequency.) The measured transverse

force coefficient for controlled vibrations agrees very well with the free vibration

data in all three response branches. The phase angle also agrees well in all three

branches, but is very close to 0◦ in the initial and upper branches, and very close

to 180◦ in the lower branch. This illustrates the sensitive nature of measuring the

phase angle to predict the correct sign of energy transfer.

We might expect good agreement between sinusoidal controlled vibration

and free vibration in the lower branch, where the free vibration response is close

to sinusoidal. We show, in Figure 2.2, time traces of position, force, and phase,

from free vibration in the lower branch, and the corresponding time traces from

a controlled vibration experiment at the same amplitude and frequency. The

free vibration motion is so periodic that it is difficult to tell which time trace

is controlled and which is free. However, one might ask how successful is

controlled vibration in regions of intermittent switching, where the response

is known to jump between the upper branch and the lower branch (Khalak &
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in the lower branch, U∗/f ∗ = 7.55, for both free vibration (a) and controlled
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Williamson, 1999). This is an important question if we want to be able to ac-

curately predict peak amplitudes (which are especially of interest to practicing

engineers) since the peak amplitude in free vibration occurs where there can

exist intermittent mode switching, for systems of low mass and damping.

We focus on the regime of intermittent switching in Figure 2.3. Our approach

here is to treat the motion as quasi-steady. We matched the amplitude and fre-

quency of the upper branch, and separately matched the amplitude and fre-

quency of the lower branch, using sinusoidal controlled vibrations. The intrigu-

ing result is that even in regions of intermittent switching, where the cylinder is

jumping between modes, sinusoidal controlled vibration reasonably represents
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the force and phase angle of free vibration during periods when the system

resides in one state or the other. This suggests that one might use controlled

vibration results to accurately predict the peak amplitude of a freely vibrating

body, even in the presence of unsteady vibrations.

2.4 Controlled vibration at constant amplitude

In addition to comparing with free vibration results, we also performed con-

trolled vibration experiments to compare directly with the controlled vibration

results of Carberry et al. (2005) for constant values of amplitude. We matched

A∗ = 0.5 = constant, Re = 4,400 and varied (U∗/f ∗), as in their study. In or-

der to relate such a constant amplitude controlled vibration experiment to free

vibration, we plot our chosen amplitude conditions in Figure 2.4 and compare

with a typical free vibration response plot. We find a phase angle below 180◦

for controlled vibration over the regime of (U∗/f ∗) = 5.5 - 9.5, corresponding to

the lower branch, yielding positive energy transfer, which is consistent with the

fact that the free vibration response exists in this regime. It is particularly in-

teresting that the phase exceeds 180◦ at (U∗/f ∗) = 9.5, suggesting a switch from

positive to negative excitation, at a point which is roughly where the free vi-

bration becomes desynchronized and where the amplitude, A∗, falls below 0.5.

We also see a jump in the force and phase at (U∗/f ∗) = 5.6 which corresponds

to where a mode transition is seen in the free vibration response. The sudden

switch to negative energy transfer at this point would suggest that free vibra-

tion would not exist for (U∗/f ∗) < 5.6, which is what one finds for elastically

mounted bodies at this level of amplitude, A∗ = 0.5.

11



0
1
0

2
0

3
0

4
0

5
0

0
1
0

2
0

-101 -202

0
1
0

2
0

-9
00

9
0

1
8
0

2
7
0

y/
D

C
Y φ

t/
T
N

t/
T
N

t/
T
N

C
o
n
tr
o
ll
ed

U
p
p
er
B
ra
n
ch

L
o
w
er
B
ra
n
ch

L
o
w
er
B
ra
n
ch

U
p
p
er
B
ra
n
ch

F
re
e

C
o
n
tr
o
ll
ed

F
re
e

Fi
gu

re
2.

3:
T

he
po

si
ti

on
,f

or
ce

co
ef

fic
ie

nt
,a

nd
ph

as
e

an
gl

e
ti

m
e

tr
ac

es
in

th
e

in
te

rm
it

te
nt

sw
it

ch
in

g
re

gi
on

of
th

e
fr

ee
vi

br
at

io
n

re
sp

on
se

,
U
∗ /

f
∗

=
5.

6.
By

m
at

ch
in

g
th

e
up

pe
r

br
an

ch
fr

ee
re

sp
on

se
co

nd
it

io
ns

w
it

h
si

nu
so

id
al

co
nt

ro
lle

d
vi

br
at

io
n,

w
e

fin
d

re
as

on
ab

le
ag

re
em

en
t

of
th

e
fo

rc
e

an
d

ph
as

e
an

gl
e.

Se
pa

ra
te

m
at

ch
in

g
fo

r
th

e
lo

w
er

br
an

ch
yi

el
ds

si
m

ila
rl

y
go

od
ag

re
em

en
to

ff
or

ce
an

d
ph

as
e.

12



We find excellent agreement in the measurement of the force coefficient be-

tween our data and those of Carberry et al. (2005), in the lower branch of re-

sponse. The fact that Carberry et al. find negative energy transfer over part of

this lower branch regime, where free vibrations are found in previous studies,

could perhaps be related to quite different experimental arrangements. While

in our setup the cylinder was suspended vertically in the water channel and os-

cillated above a fixed end plate, Carberry et al. supported the cylinder horizon-

tally with end plates that moved with the cylinder. It is possible that differences

in experimental arrangements would influence the measurement of force and

phase.

2.5 Conclusions

Our controlled vibrations of a cylinder are arranged to carefully match the am-

plitude, frequency, and Reynolds number of an elastically mounted cylinder at

low mass and damping. Despite the fact that one might naturally expect good

agreement between the forces if the free and controlled vibrations are both close

to sinusoidal, since the body effectively follows almost the same path through

the fluid, previous comparisons have not necessarily been close. We may con-

clude that it is important to carefully match the experimental conditions be-

tween free and controlled vibration, such as in the present study, or in the ex-

periments of Hover et al. (1998), to accurately predict forces applicable to free

vibration. At low mass and damping, the excitation needed to balance the en-

ergy dissipation is small, and so the phase of the fluid force is also small, thus

the precise measurement of phase is very important.
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In cases of very low mass and damping, the peak amplitude response of a

lightly-damped body is quite unsteady; the cylinder is subject to an intermittent

switching between an upper and a lower response amplitude branch, where

close comparison with forced vibration results is more difficult. However, it is

of practical significance that even in this case, a quasi-steady approximation is

effective. For example, if one vibrates the body in a controlled steady state os-

cillation corresponding to the upper branch conditions, the forces compare well

with such measurements taken over intermittent time periods when the free sys-

tem resides in the upper response branch. The same is true of the lower branch

response conditions. This is an important point because it suggests that con-

trolled vibration measurements for constant amplitude motion might remain

applicable, in a quasi-steady manner, to free vibration systems undergoing even

transient motions with unsteady amplitudes. In our further work, it also ap-

pears that this quasi-steady approach will yield insight into the mode jumps

that occur as the freely vibrating system transitions between different response

amplitude branches.

A subject of recent debate has been the relevance of controlled vibration to

accurately predicting free vibration. The present results, with precise matching

of experimental conditions, suggest that controlled vibration, even with strictly

sinusoidal motion, can indeed reasonably predict free vibration responses, at

least over the parameter space so far investigated.
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CHAPTER 3

Fluid forcing, wake modes, and transitions for a
cylinder undergoing controlled oscillations

MORSE, T. L. & WILLIAMSON, C. H. K. (2009)

To appear in Journal of Fluids and Structures.

In this study, we make extensive measurements of the fluid forces on a cylin-

der that is controlled to oscillate transverse to a free stream at Re = 4,000. These

measurements are used to create very high resolution contour plots (consider-

ably higher than in any previous study) of the magnitude of fluid forcing, and its

phase relative to the cylinder motion (as well as other fluid forcing quantities)

in the plane of normalized amplitude and wavelength. Previous contours of

force have been assumed to be continuous in the amplitude-wavelength plane,

despite the fact that jumps in the fluid forcing and vortex formation modes were

known to occur in other studies, including free vibration. In this investiga-

tion, we find clear discontinuities in the force contours, and we are thus able

to identify boundaries separating different fluid forcing regimes. These appear

remarkably similar to boundaries separating different vortex shedding modes

in the Williamson & Roshko (1988) map of regimes. Measurements of vortic-

ity fields confirm the modes of vortex formation in each regime; we find the

2S, 2P, and P+S modes, as well as a regime where the vortex formation is not

synchronized with the cylinder oscillation. A new characteristic, which is only

observable with very high-resolution data, is the existence of a region where

two vortex formation regimes overlap. In the overlap region, we identify a dis-

tinct mode of vortex formation where two pairs of vortices are shed per cycle of

16



oscillation (similar to the 2P mode) but the secondary vortex is much weaker,

which we have termed ‘2POVERLAP’, or simply the ‘2PO’ mode. The wake can

switch intermittently between the 2P and 2PO modes, even as the cylinder is os-

cillating with constant amplitude and frequency. The highest amplitude yield-

ing positive fluid excitation lies inside the overlap region, therefore a study of

the vortex dynamics in this region is essential to understanding the behavior of

a free vibration system at peak amplitude response.

3.1 Introduction

Much of the interest in the flow around a cylindrical body oscillating trans-

versely to a free stream is due to its relevance to vortex-induced vibration,

which occurs when a body is placed in a flow and the fluctuating lift force due

the asymmetric formation of vortices in the wake causes the body to vibrate.

Vortex-induced vibration is an important problem in many fields of engineer-

ing, affecting the dynamics of riser tubes bringing oil from the seabed to the

surface, as well as civil engineering structures such as bridges, chimneys, and

buildings, among other applications. The range of problems caused by vortex-

induced vibration has led to a large number of experimental and computational

studies on the subject, including several review articles, for example: Sarpkaya

(1979), Griffin & Ramberg (1982), Bearman (1984), Parkinson (1989), Williamson

& Govardhan (2004).

In the present study, we are interested in the fluid forcing and wake modes

that arise from controlled vibration, where a cylinder is prescribed to move with

a sinusoidal motion transverse to a free stream. For such a motion, the relevant
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Table 3.1: Non-dimensional groups. In the groups below, U is the free-stream
velocity, λ is the oscillation wavelength, f is the oscillation frequency, D is the
cylinder diameter, L is the submerged cylinder length, ν is the fluid kinematic
viscosity, ρ is the fluid density, and FY is the transverse fluid force.

Normalized wavelength λ∗
λ

D
=

U

fD

Normalized amplitude A∗ A

D

Transverse force coefficient CY
FY

1
2
ρU2DL

Reynolds number Re
ρUD

µ

parameters, in addition to Reynolds number (Re), are the oscillation amplitude

(A), and the oscillation wavelength (λ), or the oscillation frequency (f ), which

in this study we non-dimensionalize as shown in Table 3.1. The normalized

wavelength, λ∗ = λ/D = U/fD is equivalent to the ratio U∗/f ∗ used in free

vibration studies such as Govardhan & Williamson (2000) where U∗ = U/fND,

f ∗ = f/fN with fN being the natural frequency of the structure. The normalized

wavelength may also be multiplied by the Strouhal number (S) to obtain the

ratio of the stationary cylinder shedding frequency (fvo) to the actual oscillation

frequency (f ), i.e. λ∗S = fvo/f . In the present study, the Strouhal number was

found to be 0.207.

The measured transverse force is often approximated by a sinusoidal func-

tion, thus the motion and force is often represented by:

y(t) = A sin (ωt) (3.1)

F (t) = FY 0 sin (ωt + φ) (3.2)
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For certain regions of the parameter space, the fluid forcing exhibits some-

what non-sinusoidal behavior. However, in general, we shall present the com-

ponent of forcing that occurs at the fundamental (body oscillation) frequency,

based on a Fourier series analysis. This is the most relevant component, be-

cause other frequency components will not yield a net contribution to the en-

ergy transfer between the fluid and the body. The transverse force coefficient (at

the fundamental) can be decomposed into two components, one in phase with

velocity, CY sin φ (which yields the “fluid excitation”), and one in phase with

acceleration, CY cos φ (which yields the “effective added mass”). The phase, φ,

between the fluid forcing and cylinder motion is an extremely important param-

eter as it determines whether the fluid adds or removes energy from the system

and thus whether free vibration is possible.

There are several existing classical studies on fluid forcing for a cylinder un-

dergoing controlled vibration. In a pioneering study, Bishop & Hassan (1964)

showed that as the frequency of cylinder oscillation increases, there is a simul-

taneous jump in the magnitude of the fluid force (CY ) and its phase (φ), which

occurs at an oscillation frequency close to the frequency of vortex shedding for

a stationary cylinder. Subsequent controlled vibration studies, such as the mea-

surements of force for particular broadly spaced values of amplitude (which

we shall call “amplitude cuts”) by Mercier (1973), and Sarpkaya (1977) have

also found sharp jumps in the fluid forcing near the natural vortex shedding

frequency for a stationary cylinder. In the present work, one of our objectives

is to identify precisely the location of this jump, and other such force jumps,

throughout the normalized amplitude-wavelength plane using our extremely high-

resolution force data.
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In order to make predictions of the response of an elastically mounted cylin-

der, Staubli (1983) generated contour plots of the lift force magnitude and phase

angle from his controlled vibration force measurements. He compared his pre-

dictions to the free vibration measurements of Feng (1968), and found some

regions of the response where the comparison is successful, and other regions

where the comparison is not close. The most extensive force measurements to

date come from Gopalkrishnan (1993), and Hover et al. (1998) who generated

complete contour plots of the fluid forcing over a wide range of normalized

amplitude and wavelength. The zero fluid excitation curve (CY sin φ = 0) ob-

tained from these contours was shown in Hover et al. (1998) to have generally

good agreement with a free vibration response at very low mass-damping (as

one might expect), however some portions of the response lay in regions where

the force data from controlled vibration predicted negative excitation.

One important question for these controlled vibration studies is to what

extent can their results be applied to the case of a freely vibrating, elastically

mounted cylinder. As mentioned above, and pointed out by Williamson & Go-

vardhan (2004), as well as Carberry et al. (2004), several past controlled vibration

studies have found negative fluid excitation for values of normalized amplitude

and wavelength at which free vibration is known to occur, suggesting that con-

trolled vibration results may not necessarily be used to predict accurately the

free vibration case. However, in Chapter 2 (Morse & Williamson, 2006) we make

direct comparisons between free and controlled vibration and show that if the

experimental conditions are carefully matched, controlled vibration can yield fluid

forces which are in very close agreement with results from free vibration, over

an entire response plot.
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In addition to these force measurements, there have been several studies

focusing on the wake of an oscillating cylinder. Ongoren & Rockwell (1988a)

examined the near wake of an oscillating circular cylinder as well as several

other body geometries and found that there is a switch in timing of the vortex

formation across the phase jump found by Bishop & Hassan (1964). Williamson

& Roshko (1988) conducted an extensive study of the different vortex shedding

modes that exist for an oscillating cylinder, which they defined, for example, as

a ‘2S’ mode indicating two single vortices formed per cycle, a ‘2P’ mode mean-

ing two pair of vortices formed per cycle, and an asymmetric ‘P+S’ mode com-

prising a pair of vortices and a single vortex per cycle. They mapped out where

these modes occur in the plane of normalized amplitude and wavelength as

may be seen later in Figure 3.3(b). Ongoren & Rockwell (1988b) observed pat-

terns similar to the 2S, 2P, and P+S modes for the case of a cylinder oscillating

in-line with the flow.

Carberry et al. (2001) made simultaneous force and wake vorticity mea-

surements in controlled vibration. They showed that the well-known jump in

fluid forcing described above was due to a change in vortex formation pattern

from the 2P to the 2S mode, which is consistent with the free vibration results

of Govardhan & Williamson (2000). This transition was further characterized

with various chosen “amplitude cuts” and Reynolds numbers in Carberry et al.

(2005). They found that at frequencies (f ) near the (stationary cylinder) shed-

ding frequency (fvo), the vortex shedding mode depended on the initial con-

ditions and in fact, for a certain band of frequencies, the wake could make a

one-time transition from one mode to the other, even while the frequency was

held constant. Pottebaum (2003) conducted experiments on heated cylinders os-

cillating in a flow and found that, in certain regimes, the wake could switch in-
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termittently between the 2S and 2P modes. He concluded that this phenomenon

was likely due to temperature induced variations in the fluid viscosity. In the

present study, we will show regions where the wake switches intermittently

between vortex formation modes, in the absence of any temperature variations.

In this work, we conduct controlled vibration experiments over an exten-

sive range of normalized amplitude and wavelength with very high resolution,

much higher than in any previous data set, as shown in Figure 3.1, amounting

to 5,680 experimental runs, each of which comprises 100 cycles of oscillation.

One of the original motivations for the force data presented here was to obtain

very high resolution force contours using precisely the same flow facility and

experimental arrangement as in Govardhan & Williamson (2000, 2006), in or-

der to make accurate predictions of the free vibration response. Comprehensive

analysis and further extensive measurements linking controlled vibration with

free vibration response is presented in Chapter 4 (Morse & Williamson, 2009c).

In the present study, we focus on defining the regimes of vortex shedding and

especially on the transitions between these regimes.

Following a description of the experimental details in §3.2, we show con-

tours of fluid forcing obtained from our high resolution data in §3.3. Boundaries

between vortex shedding modes are determined by looking for abrupt jumps in

the character of the fluid forcing. We also present DPIV measurements of the

vorticity for these different modes. In §3.4 we characterize the mode bound-

aries by looking more closely at time traces of the fluid forcing. This is followed

by the conclusions in §3.5.
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Figure 3.1: Grid resolution of controlled vibration measurements from previous
studies and in the present study. We are able to obtain a very high resolution, as
well as a wide range of the parameters.

3.2 Experimental Details

The present experiments are conducted in the Cornell-ONR Water Channel,

which has a cross-section of 38.1 cm x 50.8 cm. The turbulence level in the test

section of the water channel is less than 0.9%. A cylinder of diameter 3.81 cm

and length 38.1 cm is suspended vertically in the water channel and forced to

oscillate transverse to the flow using a computer-controlled motor attached to

a transverse lead screw, as shown schematically in Figure 3.2. The flow speed

is kept constant to give Re = 4,000. A fixed end plate is placed 2 mm below

the bottom of the cylinder (but not in contact with the cylinder) to encourage

two-dimensional vortex shedding, following the study of Khalak & Williamson

(1996). A total of 5,680 runs, each for 100 cycles of oscillation, are conducted for

approximately 500 hours worth of data. Normalized amplitude, (A∗) is varied

from 0.02 to 1.6 with a resolution of 0.02. Normalized wavelength, (λ∗) is varied

from 2 to 16 with a resolution of 0.2. Such an extensive data set is only possible

because the experiment is conducted in a continuously flowing water channel
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Figure 3.2: Schematic diagram of the experimental arrangement. The cylinder is
suspended vertically in a water channel and is oscillated transverse to the flow
(into the page) using a computer controlled motor and lead screw.

facility, and thus can be automated to run unattended for a large number of

experimental runs.

A two-axis force balance utilizing LVDTs (linear variable distance transduc-

ers) is used to measure the lift and drag forces on the cylinder. The transverse

displacement of the cylinder is measured using a non-contact (magnetostrictive)

position transducer. For each run, the fluid force magnitude and phase angle

(relative to the body motion) at the fundamental (body oscillation) frequency is

calculated using a Fourier series analysis. In most cases, the fluid forcing is quite

sinusoidal and thus the component at the fundamental frequency represents es-

sentially all of the force signal content. In some cases, which are discussed in

§3.4.3 (for example, in the desynchronized regime), the fluid forcing is less si-

nusoidal, and the component at the fundamental may represent only a small
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portion of the total force signal content.

In addition to the extensive force measurements described above, we also

use Digital Particle Image Velocimetry (DPIV) to examine the cylinder wake.

The flow is seeded with 14-micron silver coated glass spheres, which are illu-

minated by a sheet of laser light from a 50 mJ Nd:Yag pulsed laser. Pairs of

particle images are acquired using a Jai CV-M2CL CCD camera (1600 x 1200

pixels), and analyzed using cross-correlation of sub-images. We use a two-step

windowing process (with window shifting) to obtain particle displacements be-

tween image pairs. The viewing area is 26 cm x 34 cm corresponding to 6.75 by

9 diameters. The time between images is adjusted to vary between 10 and 20

ms depending on the cylinder oscillation parameters. Vorticity fields calculated

from the image pairs are phase averaged over approximately 10 to 20 cycles

to remove the smaller weak structures resulting from intermittent small-scale

three-dimensionality in the flow and thus obtain a clear picture of the dynamics

of the principal spanwise vorticity.

3.3 Fluid forcing contours and vortex formation modes

Upon examining our controlled vibration data, we notice that the fluid forcing

shows qualitative abrupt jumps in certain regions as amplitude or frequency

is varied. By following these jumps throughout the normalized amplitude-

wavelength plane, we are able to identify clear boundaries separating regions

of distinct fluid forcing, indicated by the colored regimes in Figure 3.3(a). When

these boundaries are compared to the boundaries separating different vortex

formation modes in the Williamson & Roshko (1988) map in (b), we see a re-
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markable similarity. Thus we expect that the regions we identify, based solely

on the fluid forcing, will correspond with different modes of vortex formation,

similar to those of Williamson & Roshko.

One of the most interesting features of the map of regimes in Figure 3.3 is

the existence of regions where two modes overlap. In these overlap regions,

the fluid forcing switches intermittently between two distinct modes even as

the cylinder is oscillating with constant amplitude and frequency. This phe-

nomenon appears in two places: as an overlap between the 2P region and the

region where the wake is desynchronized (right hand edge of the yellow 2P re-

gion in Figure 3.3), and more importantly, in a region that lies in between the

2P and 2S modes and overlaps them both, which we label ‘2POVERLAP’ or more

simply ‘2PO’. This overlap phenomenon is different from the one-time switch in

forcing found by Carberry et al. (2005) which is related to the hysteresis found

by Bishop & Hassan (1964). It is similar to the switching behavior Pottebaum

(2003) found for his heated cylinders, although in this case no temperature vari-

ation is required. We emphasize here that the discovery of these overlapping

regions is only possible because of the high resolution used in this study.

We now wish to study which vortex formation modes exist in the differ-

ent regimes of Figure 3.3(a). In Figure 3.4 we confirm the existence of the P+S,

2S, and 2P modes in the regions we expect them. We were initially curious

to see what mode of vortex formation exists in the overlap region, lying be-

tween the 2P and 2S modes. Would it resemble one mode or the other, or some-

thing in between? What we find is a variation of the 2P mode, namely the ‘2PO’

mode, where, although there are two pairs of vortices shed per cycle, the sec-

ondary vortex is much weaker and decays rapidly as the vortex pair moves
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downstream, as shown in Figure 3.4(b). This 2PO vortex formation mode is

equivalent to the “intermediate wake state” identified by Carberry, Sheridan &

Rockwell (2003) in one of their “amplitude cuts”, existing for a narrow band of

frequencies. It is also equivalent to the ‘2PUPPER’ mode found by Govardhan &

Williamson (2000) in the same region of the normalized amplitude-wavelength

plane, in their case for the “upper branch” of a free vibration response at very

low mass-damping. (Their ‘2PLOWER’ mode found in the “lower branch” of free

vibration is equivalent to the pure 2P mode described here.)

We note that the identification of a distinct 2PO mode would not be possible

from free vibration experiments since the change in strength of the secondary

vortex is accompanied by a change in amplitude of vibration, and we would

thus interpret the two different modes as simply an amplitude effect changing

the character of only one mode. Here we show that even for constant amplitude

and frequency both the 2P and 2PO modes can exist. From the vorticity field in

Figure 3.4(b) we see that one could easily mistake the 2PO mode for a 2S mode

depending on how well one resolved the small secondary vortex.

Now that we have defined the different regions of vortex formation, we plot

precise, high-resolution contours of key fluid forcing parameters. Here we show

contours of the force in phase with velocity, CY sin φ, and contours of the force

in phase with acceleration, CY cos φ, shown in Figure 3.5. Further contours of

force and phase are included in Appendix A. It is not possible to plot continuous

contours across our complete parameter space (as presented in some previous

studies), due to the existence of overlapping modes and discontinuities, made

evident from the resolution of the present data.

The force in phase with velocity, CY sin φ, represents a normalized “fluid ex-
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Figure 3.4: Vorticity fields for each of the main vortex shedding modes {P+S,
2S, 2P, 2PO}. We observe a switch in timing of the initially shed vortex from the
2S mode to the 2P mode. In all cases the vorticity field is phase-averaged over
20 cycles of oscillation. Contour levels shown are: ωD/U = ±0.4,±0.8,±1.2,
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mode: (A∗ = 0.8, λ∗ = 5.6); 2S mode: (A∗ = 0.5, λ∗ = 5.0); 2P mode: (A∗ =
0.6, λ∗ = 6.4).

citation”, and thus determines in what regions free vibration may occur. From

Figure 3.5 we can see there exist positive excitation regions within the 2S, 2P, and

desynchronized regimes. The P+S regime shows strongly negative fluid excita-

tion, so we would not expect to see such a mode for a freely vibrating cylinder

at this Re, and indeed no such free vibration response modes have been ex-

perimentally observed. The highest amplitude for which there is positive fluid
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excitation is inside the 2PO region, thus a study of the fluid forcing and vortex

dynamics in this region is key to understanding the dynamics of the cylinder at

its peak amplitude of free vibration.

3.4 Characterizing wake mode boundaries and transitions

In the previous section, we identified different regimes of vortex formation in

the normalized amplitude-wavelength plane. Although we used DPIV mea-

surements of vorticity to verify the mode of vortex formation, the boundaries

defining these regimes were determined solely from the fluid forcing. In this section

we focus on time traces of the fluid forcing across these boundaries, to charac-

terize the nature of the transitions. The parameters defining these time traces

are shown in Figure 3.6, distinguished by the encircled numbers.

3.4.1 Mode boundaries with abrupt jumps in fluid forcing

In order to fully characterize the transition from the 2S to the 2P mode, it is nec-

essary at this point to introduce the concept of the “vortex force”. Following the

analysis of Govardhan & Williamson (2000), we decompose the total transverse

fluid force coefficient (CTOT ) into a “potential force” component (CPOT ) given

by the potential added mass force, and a “vortex force” component (CVORT ),

due to the dynamics of vorticity. For sinusoidal body motion, the potential force

coefficient can be calculated to be:

CPOT (t) = 2π3 y(t)/D

(U∗/f ∗)2
(3.3)

Thus we see that the instantaneous potential added mass force, CPOT , is al-
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ways in phase with the cylinder motion, y(t), as one might expect. The vortex

force coefficient can then be found by subtracting the potential force coefficient

from the total force coefficient:

CVORT (t) = CTOT (t)− CPOT (t) (3.4)

As a simplification of the nomenclature, we shall continue to use CY and φ to

denote the magnitude and phase of the total force, and use CV and φV to denote

the magnitude and phase of the vortex force.

The use of the concept of vortex force is useful to understand the transi-

tions between the 2S and 2P modes because its variation more directly reflects
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changes in the vortex formation. The use of vortex force will be necessary to

identify the 2PO regime as described below.

The transition from the 2S to 2P mode of vortex formation at low amplitudes

has been studied before. In the present work, we characterize the transition (see

points 1 and 2 in Figure 3.6) by looking at force time traces at similar values of

normalized amplitude and wavelength on either side of the boundary, shown

in Figure 3.7. The magnitude of the vortex force is quite similar for both the 2S

and 2P modes, however the vortex phase shows almost a 180◦ difference. This

is due to the 180◦ switch in timing of the vortex formation as shown by the vor-

ticity fields in Figure 3.4 and identified by several previous investigations (for

example Gu et al., 1994; Govardhan & Williamson, 2000). When the potential

force, which has a phase of 0◦, is added to the vortex force, the magnitude of

the total force for the 2S mode becomes about four times greater than for the 2P

mode, with a considerable phase jump also remaining.

In contrast to the 2S to 2P transition, for the P+S to 2P mode transition (points

3 and 4 in Figure 3.6), neither the vortex force nor the total force show dramatic

changes in magnitude or phase (although there is a small jump that may be

seen in the contours of Figure A.1 and A.2). Instead, the boundary between

these modes is found by examining the shape of the fluid forcing time trace as

in Figure 3.8. For the P+S mode, the fluid forcing shows a clear asymmetry

which can be further identified in the force spectra with a strong peak at two

times the oscillation frequency (fFORCE/f = 2.0). With a small change in the

normalized wavelength, the peak at 2f essentially vanishes, indicating a switch

to the symmetric 2P mode of vortex formation (see Figure 3.8). This change is

abrupt, yielding a well defined boundary.
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ence in the magnitude of the total force. Time trace locations are points (1) and
(2) in Figure 3.6, 2S mode: (A∗ = 0.36, λ∗ = 5.6); 2P mode: (A∗ = 0.36, λ∗ = 6.0).

3.4.2 Regimes of overlapping wake modes

For the boundaries described above, the transitions are abrupt with one clear

vortex formation mode on either side of the boundary. We also find several re-

gions where two distinct vortex formation modes can exist at a particular point

in the (A∗, λ∗) plane. At these points, the forcing time trace reveals an intermit-
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tent switching in time between two distinct modes. For the case where the 2PO

mode overlaps with the 2S mode (point 5 in Figure 3.6), this switching is most

readily apparent in the vortex phase, as shown in Figure 3.9. The vortex phase

switches between a value near 0◦ and a value near 180◦, corresponding with

a switch in timing of the vortex formation as the wake transitions from the 2S

mode to the 2PO mode. In order to obtain the contours of the fluid forcing, in

Figure 3.5, the force signals were analyzed separately for each mode. We also

point out that if one were to look only at the total force, the different vortex formation

modes could not be identified, highlighting here the importance of using the vortex

force formulation.

As we move through the 2PO region we find a small sliver in the (A∗, λ∗)

plane for which the 2PO mode exists by itself (see Figure 3.3). At slightly higher

wavelength (point 6 in Figure 3.6) there exists an overlap of the 2PO mode and
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a value close to 180◦, corresponding to the 2PO mode. Location is point (5) in
Figure 3.6: (A∗ = 0.8, λ∗ = 5.0).

the standard 2P mode. Time traces of the fluid forcing, in Figure 3.10, show

that the vortex phase is near 180◦ for all times, indicating no significant change

in the timing of shed vortices. The switching becomes apparent when we look

at the phase of the total force. When the wake is shedding vortices in the 2PO

mode, the magnitude of the vortex force is much smaller as compared to the

pure 2P mode. Thus when the potential force (which always has a phase of 0◦)

is added back in, the total phase for the 2PO becomes near 0◦. Note that the
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inclusion of the potential force has no bearing on the sign of energy transfer,

because (CY sin φ) is exactly equivalent to (CV sin φV ).

3.4.3 Wake modes with non-synchronized fluid forcing

In the above sections, we have focused on regions for which the vortex forma-

tion is synchronized with the body motion. We shall now discuss two regimes
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where much of the fluid force is not synchronized with the body vibration. In

one case, we have short wavelength (λ∗ is small), causing a synchronized 2S

mode, but the small vortices coalesce in the near wake, forming large scale

structures: the C(2S) mode in Figure 3.3. In the second case, we have a long

wavelength (λ∗ is large), such that several vortices form in each half cycle of

vibration: the desynchronized vortex formation mode in Figure 3.3.

For short wavelength, λ∗ < 4, and for amplitudes, A∗ < 1, the cylinder sheds

alternately signed small vortices as it oscillates (i.e. the 2S mode), but these

small vortices coalescence into larger-scale structures further downstream. For

this coalescing 2S mode, or ‘C(2S)’ mode in Figure 3.3, we find a significant

component to the fluid forcing at a frequency below the oscillation frequency

as shown in Figure 3.11(a). Since the coalescence does not occur with the same

timing for each cycle of vibration, the phase averaged vorticity field in (b) shows

only weak structures downstream. Williamson & Roshko (1988), using flow

visualization, showed that far downstream this coalescence could, under some

conditions, lead to a vortex street of immense size, much larger than the scale of

the oscillating body.

The boundary separating the C(2S) mode from the pure 2S mode is less dis-

tinct than any other boundary we identified. As the wavelength is increased,

the low frequency forcing becomes smaller and smaller. We define the bound-

ary in Figure 3.3 as the point where the low frequency peak in the force spectra

is no longer discernable.

At the high-wavelength end of the parameter space, beyond the 2P mode

boundary in Figure 3.3, we find a region where the transverse force time traces

and spectra show forcing at a frequency (fFORCE) higher than the oscillation
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Figure 3.11: The coalescing 2S mode of vortex formation: typical time traces,
force spectra, and phase-averaged vorticity field. The dashed line in the force
time trace shows only the component at the lower frequency which appears
due to the coalescence of vortices downstream (the solid line shows the en-
tire force signal). Contour levels shown for the vorticity field are: ωD/U =
±0.4,±0.8,±1.2, ... Location is point (7) in Figure 3.6: (A∗ = 0.2, λ∗ = 3).

frequency (f ), as shown in the time traces of Figure 3.12(a). In this case, we

can think of the cylinder as moving through the fluid along an extended wave-

length, shedding several vortices per half cycle. These vortices will not be syn-

chronized with the motion, thus in the phase-averaged vorticity field of Figure

3.12(b), no strong vorticity is found beyond a few diameters downstream. Note

that even though the vortex shedding is desynchronized, there remains a dis-

tinct component to the fluid forcing at the oscillation frequency which, interest-

ingly, would give rise to free vibration. Finally, for the narrow band of overlap

between the 2P region and the desynchronized region, the fluid forcing switches

intermittently in time between a synchronized single frequency forcing, and the

type of desynchronized forcing shown in Figure 3.12.
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3.5 Conclusions

In this study, we present new measurements of fluid force on a cylinder,

whose controlled vibration is transverse to a flow, in the form of very high-

resolution contour plots within the plane of normalized amplitude and wave-

length (A∗, λ∗). Our principal contour diagrams comprise the force in phase

with velocity (CY sin φ), which is also a normalized fluid excitation, and the force

in phase with acceleration (CY cos φ), related to a normalized effective added

mass. We include further contour plots of magnitude and phase of the total

force (CY , φ) and of the vortex force (CV , φV ) in Appendix A.

In some previous studies, contour plots of fluid excitation in the plane of
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amplitude-wavelength have been assumed to be continuous, even though, on

the basis of free vibration studies, as well as “amplitude cuts” from controlled

vibration studies, we expect that there must exist boundaries where vortex for-

mation, and hence fluid force, would jump. However, our high resolution fluid

excitation contours have made it possible to accurately determine several dis-

tinct boundaries, and to identify regimes in the plane of amplitude-wavelength,

based solely on the force measurements. The contours are clearly not continuous

across the whole range of amplitude-wavelength. Indeed, we find a remarkable

agreement between the shapes of the regimes evaluated from force measure-

ments, and the regimes of vortex formation modes identified from flow visual-

ization found in the Williamson-Roshko (1988) map of regimes. By analyzing

vortex modes in the present controlled vibration study using DPIV, we find the

modes one would expect from comparison with the Williamson-Roshko map,

namely the 2S and 2P modes, as well as the asymmetric P+S mode, which has

been measured for the first time using DPIV in experiment.

The high resolution contour plots have further enabled us discover a new

high-amplitude regime which overlaps the boundary between the 2S and 2P

regimes. Vorticity measurements identify the new vortex formation mode to

be one quite similar to the 2P mode, but where the second vortex of each pair

is much weaker than the first vortex, in what we define as the ‘2POVERLAP’ or

‘2PO’ mode. During an experiment, the vortex formation mode and fluid force

switches intermittently between the 2PO and 2P modes (or between the 2PO and

2S modes), even when the amplitude and frequency are fixed. Our prior under-

standing of such 2PO and 2P modes, which resemble (respectively) the 2P mode

in the upper branch of free response (Govardhan & Williamson, 2000), and the

2P mode of the lower response branch, was that these patterns of vortex for-
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mation were simply the same 2P mode exhibiting somewhat different character

in different parts of the 2P mode regime in the Williamson-Roshko map. How-

ever, it is significant that the 2P and 2PO modes are distinct, both occurring at the

same values of amplitude and wavelength. It was not possible to deduce this

fact, based only on free vibration, because the higher fluid excitation (CY sin φ)

of the 2PO mode would necessarily push the vibration to higher amplitudes than

the 2P mode. An understanding of this overlap regime is significant because it

represents a region of positive fluid excitation that has the highest amplitude,

and is responsible for exhibiting the peak amplitudes possible in free vibration.

In this study, we also characterize the transitions across boundaries of the

flow regimes within the amplitude-wavelength plane, illustrating the some-

times large changes in fluid force or vortex dynamics that can occur for small

increments of amplitude or frequency of the controlled motion. Finally, we find

that even in the desynchronized regime, where the vortex formation frequency

becomes uncoupled to the body vibration frequency, the body may be able to vi-

brate due to the existence of a component of fluid forcing at the body vibration

frequency, yielding positive fluid excitation. This is interesting, as most of the

fluid force is associated with the uncoupled (and higher) vortex formation fre-

quency, yet the wake is sufficiently organized by the body motion in a manner

to yield at least some positive fluid excitation. One might perhaps expect free

vibration to exhibit a quasi-periodic response under these conditions.
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CHAPTER 4

Prediction of vortex-induced vibration response by
employing controlled motion

MORSE, T. L. & WILLIAMSON, C. H. K. (2009)

Submitted to Journal of Fluid Mechanics

In order to predict response and wake modes for elastically mounted cylin-

ders in a fluid flow, we employ controlled vibration experiments, comprising

prescribed transverse vibration of a cylinder in the flow, over a wide regime of

amplitude and frequency. A key to this study is the compilation of high res-

olution contour plots of fluid force, in the plane of normalized amplitude and

wavelength. With such resolution, we are able to discover discontinuities in

the force and phase contours, which enable us to clearly identify boundaries

separating different fluid forcing regimes. These appear remarkably similar to

boundaries separating different vortex formation modes in the Williamson &

Roshko (1988) map of regimes. Vorticity measurements exhibit the 2S, 2P, and

P+S vortex modes, as well as a regime where the vortex formation is not syn-

chronized with the body vibration. By employing such fine resolution data, we

discover a high-amplitude regime where two vortex formation modes overlap.

Associated with this overlap regime, we identify a new distinct mode of vortex

formation comprising two pairs of vortices formed per cycle, where the sec-

ondary vortex in each pair is much weaker than the primary vortex. This vortex

mode, which we define as the 2POVERLAP mode (2PO), is significant because it is

responsible for generating the peak resonant response of the body. We find that
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the wake can switch intermittently between the 2P and 2PO modes, even as the

cylinder is vibrating with constant amplitude and frequency. By examining the

energy transfer from fluid to body motion, we predict a free vibration response

which agrees closely with measurements for an elastically mounted cylinder. In

this work, we introduce the concept of an “energy portrait”, which is a plot of

the energy transfer into the body motion, and the energy dissipated by damp-

ing, as a function of normalized amplitude. Such a plot allows us to identify sta-

ble and unstable amplitude response solutions, dependant on the rate of change

of net energy transfer with amplitude (the sign of dE∗/dA∗). Our energy por-

traits show how the vibration system may exhibit a hysteretic mode transition,

or intermittent mode switching, both of which correspond with such phenom-

ena measured from free vibration. Finally, we define the complete regime in the

amplitude-wavelength plane where free vibration may exist, which requires not

only a periodic component of positive excitation, but also stability of the equi-

librium solutions.

4.1 Introduction

Vortex-induced vibration is an important problem in many fields of engineer-

ing. It affects the dynamics of riser tubes bringing oil from the seabed to the

surface, as well as civil engineering structures such as bridges, chimneys, and

buildings, and is cause for concern in many other practical applications. The

range of problems caused by vortex-induced vibration has led to a large number

of experimental and computational studies on the subject, including several re-

view articles, for example: Sarpkaya (1979), Griffin & Ramberg (1982), Bearman

(1984), Parkinson (1989), and more recently Williamson & Govardhan (2004).
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We focus on one of the most conceptually simple instances of vortex-induced

vibration: the case of an elastically mounted rigid cylinder, constrained to move

transverse to an incoming flow, which is often used as a paradigm for under-

standing more diverse experimental arrangements. For such an arrangement,

previous studies (such as Khalak & Williamson, 1999) have shown that for sys-

tems of low combined mass-damping there exist three branches of response as

the normalized velocity is increased, namely the initial branch, upper branch,

and lower branch. The transition between the initial and upper branch exhibits

a hysteresis, while the transition from the upper to the lower branch shows an

intermittent switching. For systems of high mass-damping, only the initial and

lower branches exist, with a hysteretic mode transition between them (Feng,

1968). Examples of the two-branch and three-branch response may be found

later in this work (see Figure 4.11).

In the present study, we employ controlled vibration of a body in a water

channel flow, where the cylinder is effectively translated with a prescribed si-

nusoidal trajectory relative to the fluid, to provide a deeper understanding of

vortex-induced vibration phenomena for freely vibrating bodies. Initially, we

set out to investigate a number of questions; for example, what is the cause of

the hysteresis between the initial branch and upper branch of response? What

causes intermittent switching between the upper and lower branches? What is

the relationship between the modes of vortex formation and the fluid excita-

tion? What modes of vortex formation can cause vortex-induced vibration? To

what extent can controlled vibration be used to accurately predict the behavior

of a freely vibrating cylinder? We address all of these questions in the present

work, as well as expand upon the new results which will be presented.
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Before addressing the above questions, we shall briefly introduce an equa-

tion of motion generally used to represent the vortex-induced vibration of

a cylinder oscillating in the transverse y-direction (perpendicular to the free

stream) as follows:

mÿ + cẏ + ky = F (t), (4.1)

where m is the total oscillating structural mass, c is the structural damping, and

k is the spring constant. When the body motion is synchronized with the vortex

formation, the cylinder motion, y(t) and fluid forcing, F (t) are typically well

approximated by sinusoidal functions (of course, in controlled vibration, the

motion is precisely sinusoidal):

y(t) = A sin (2πft), (4.2)

F (t) = F1 sin (2πft + φ), (4.3)

where f is the oscillation frequency. The phase angle, φ, between the fluid force

and the body displacement is an important quantity, influencing the energy

transfer from fluid to body motion, and thereby also the response of the body.

In this problem, we select a set of relevant non-dimensional parameters, which

are presented in Table 4.1. In particular, the principal parameters defining the

body motion are the normalised amplitude (A∗), and the frequency ratio (f ∗), in

a flow with normalised velocity U∗.

Equations defining the steady state response amplitude and frequency may

be derived as follows, following the approach of Khalak & Williamson (1999):

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U∗

f ∗

)2

f ∗, (4.4)

f ∗ =

√
m∗ + CA

m∗ + CEA

. (4.5)
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Table 4.1: Non-dimensional groups. In the groups below, U is the free-stream
velocity, λ is the oscillation wavelength, f is the oscillation frequency, fN is the
natural frequency in water, D is the cylinder diameter, L is the submerged cylin-
der length, ν is the fluid kinematic viscosity, ρ is the fluid density, and F is the
transverse fluid force. The added mass, mA, is given by mA = CAmd, where md

is the displaced fluid mass and CA is the potential added-mass coefficient (CA =
1.0 for a circular cylinder).

Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + mA)

Normalized velocity U∗ U

fND

Normalized wavelength λ∗
λ

D
=

U

fD

Normalized amplitude A∗ A

D

Frequency ratio f ∗
f

fN

Transverse force coefficient CY
F

1
2
ρU2DL

Reynolds number Re
ρUD

µ

where CA is the potential added mass coefficient (CA = 1.0 for a circular cylin-

der), and CEA is an “effective” added mass coefficient due to the transverse force

in phase with the body acceleration:

CEA =
1

2π3

CY cos φ

A∗

(
U∗

f ∗

)2

, (4.6)

We refer to equations (4.4) and (4.5) as the “amplitude equation” and the “fre-

quency equation”.

We may also discuss the response equations above in the context of energy
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considerations. The energy transferred from the fluid to the cylinder motion,

over one cycle of oscillation, is given by:

EIN = πAF1 sin φ. (4.7)

Thus, the phase angle, φ, must be between 0◦ and 180◦ to yield positive excita-

tion, and this is a required condition for free vibration to occur. We may note

that for a cylinder with prescribed sinusoidal motion, the fluid forcing may

be close to (but not precisely) sinusoidal. If we represent the fluid forcing as

F (t) = {F1 sin (ωt + φ) + F2 sin (2ωt + φ2) + ...} then the force component we

present in this study is the one corresponding to the fundamental frequency (ω)

given by the magnitude (F1) and the phase (φ). Only this component will make

a net contribution to the energy transfer from fluid to body motion. In essence,

equation (4.7) is valid even for non-sinusoidal forcing. The energy dissipated

by the structural damping is given by:

EOUT = 4π3cAf 2. (4.8)

If the system is oscillating with a constant amplitude and frequency, the energy

into the system must exactly balance the energy out of the system, over one

cycle, which yields:

CY sin φ

︸ ︷︷ ︸
E∗IN

=
4π3A∗ (m∗ + CA) ζ(

U∗
f∗

)2

f ∗
︸ ︷︷ ︸

E∗OUT

, (4.9)

which is equivalent to a simple manipulation of the amplitude equation (4.4)

above. The term CY sin φ is the force coefficient in phase with velocity, which

we define as the “fluid excitation”, and this represents a normalized energy into

the system, E∗
IN , over a cycle. For a free vibration system oscillating at steady

state this must be balanced by the normalized energy out of the system, E∗
OUT ,
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related to the combined mass-damping of the system, and is given by the right-

hand side of equation (4.9). The combined mass-damping, (m∗ + CA)ζ , is a key

parameter in vortex-induced vibration, as indicated by its appearance in the

amplitude equation (4.4).

Our approach, in this study, is to prescribe the relative trajectory of the

cylinder through the fluid to be a sine wave, and to measure the fluid forces

over a wide range of normalized amplitude (A∗) and normalized wavelength

(λ∗). One may note that normalized wavelength is equivalent to the parameter

U∗/f ∗ = U/fD, which is the flow velocity normalized with the actual oscillation

frequency (f ), rather than the natural frequency (fN ). We shall use these force

measurements, along with equation (4.9), to make response predictions for a

freely vibrating cylinder.

In the case of a controlled body, which is translated along a sinusoidal trajec-

tory, Williamson & Roshko (1988) observed a set of different vortex formation

modes, existing within certain regimes in a plot of normalised amplitude and

wavelength of the body motion. Among the vortex formation modes they found

were a ‘2S’ mode representing two single vortices formed per cycle, a ‘2P’ mode

meaning two pair of vortices formed per cycle, and an asymmetric ‘P+S’ mode

comprising a pair of vortices and a single vortex, in each cycle. The Williamson-

Roshko map of regimes is shown, for example, in Figure 4.3(b) later. Ongoren

& Rockwell (1988b) observed some comparable vortex formation modes, in the

case of a body oscillating in-line with the flow.

In the case of free vibration at high mass-damping, Brika & Laneville (1993)

found a two-branch response, observing the 2S mode in their initial branch and

a 2P mode in their lower branch, which corresponded well with the Williamson-
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Roshko map of mode regimes. At low mass-damping, Khalak & Williamson

(1999) were able to superpose their free vibration response branches onto the

map of wake modes, deducing that the initial branch lies in the 2S region, while

the upper and lower branches both lie in the 2P region. These modes were

confirmed in free vibration by Govardhan & Williamson (2000), employing si-

multaneous force and wake vorticity measurements. However, they found that

the 2P mode in the upper branch exhibits a secondary vortex in each vortex pair

that is much weaker than the primary vortex. This is significant to the discovery,

in the present work, of the ‘2PO’ mode.

Several previous controlled vibration studies exist in the literature. Bishop &

Hassan (1964), Mercier (1973), Sarpkaya (1977), and Carberry et al. (2001, 2005)

measured the fluid forcing on a vibrating cylinder, over a range of frequen-

cies, and at selected fixed values of amplitude (which we shall call “amplitude

cuts”). A significant result from these prior studies (see in particular the early

work of Bishop & Hassan, 1964) is the existence of a distinct jump in the phase

and magnitude of the lift force as the frequency is increased through the natural

vortex shedding frequency for a stationary cylinder. In their controlled vibra-

tion studies, Carberry et al. (2001, 2005) show that this jump is associated with

a change from a “low frequency wake state” (equivalent to the 2P mode) to a

“high frequency wake state” (equivalent to the 2S mode). This confirms the ear-

lier suggestion of Williamson & Roshko (1988), and the free vibration studies of

Brika & Laneville (1993) and Govardhan & Williamson (2000) that these jumps

correspond to a change from the 2P to 2S mode, or vice versa. Carberry, Sheri-

dan & Rockwell (2003) also identify an “intermediate wake state”, equivalent to

the upper branch 2P mode found by Govardhan & Williamson (2000).
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Contour plots of lift force have been generated by Staubli (1983), from his

controlled vibration experiments, and he used these contours to make predic-

tions of the response of a free vibration system which he compared with the

free vibration measurements of Feng (1968), at high mass-damping. The pre-

diction was reasonable for lower values of normalized velocity (in what we call

the initial branch), but such comparison was not close for higher U∗ (the lower

branch). The most extensive previous force contour measurements come from

experiments conducted in the MIT Towing Tank Facility; presented in Gopalkr-

ishnan (1993), and in Hover et al. (1998). They compiled force coefficients in

phase with velocity (CY sin φ), and in phase with acceleration (CY cos φ), over a

wide range of normalized amplitude and wavelength. Hover et al. (1998) were

also able to run ingenious virtual free vibration experiments in the same facility,

using their “Virtual Cable Testing Apparatus”. Their zero fluid excitation con-

tour (CY sin φ = 0) yielded reasonable agreement with one of their (virtual) free

vibration responses, at very low mass-damping. However, some portions of the

free vibration response were situated in regions where the force contours from

controlled vibration predicted negative excitation.

One important question, mentioned earlier, is to what extent can measure-

ments from controlled vibration be applied to the case of a freely vibrating, elas-

tically mounted cylinder? Carberry et al. (2004), using constant amplitude ex-

periments, compared forces and wake modes found for controlled vibration,

and for free vibration, finding some similar wake modes and jumps in the force

and its phase. However, they also measured regimes of negative excitation from

controlled vibration (suggesting that free vibration should not occur) under con-

ditions where free vibration has been readily found. They concluded that si-

nusoidal controlled motion “does not simulate all the key components of the
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flow-induced motion.” This seems reasonable based on the results that were

available at the time from different facilities or groups. However, in Chapter 2

(Morse & Williamson, 2006) we made direct comparisons between free and con-

trolled vibration and showed that, if the experimental conditions are matched, con-

trolled vibration can yield fluid forces which are in very close agreement with

results from free vibration, over an entire response plot. It is possible that this

careful matching of conditions is a key point in these studies. In preset work,

we shall present further amplitude response predictions, using our controlled

vibration force contours, which are in close agreement with measured free vi-

bration response, at both high and low mass-damping. This indicates that the

use of controlled vibration is indeed quite reasonable to predict free vibration

response.

In this work, we measure the fluid forcing for a cylinder oscillating un-

der controlled vibration over an extensive range of normalized amplitude and

wavelength, with much higher resolution than in previous data sets, as indi-

cated by Figure 4.1. The use of almost 6,000 runs leads to sufficiently fine reso-

lution to allow a study of distinct fluid forcing regimes, some of which overlap,

and lead to phenomena we shall discuss later in §4.6. Over this wide regime of

amplitude-wavelength, we present selected examples of the vorticity dynamics

associated with certain vortex modes in the wake, using DPIV measurements.

The force measurements are used to predict the behavior of a freely vibrating

cylinder, and to explain the mode transitions which occur between different

branches of response.

Following a description of the experimental details in §4.2, we introduce of

a set of regimes of vortex formation in §4.3, that we have been able to identify
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Figure 4.1: Grid resolution of controlled vibration measurements from previous
studies and in the present study. We are able to obtain a very high resolution, as
well as a wide range of the parameters.

from the fluid forcing measurements. In particular, in this section, we present

the overlap regime associated with the 2PO vortex formation mode, which is

significant because this mode is responsible for yielding a positive excitation

at the highest amplitude, and so would be associated with the peak ampli-

tude response in free vibration. In §4.4, we present contours of fluid forc-

ing obtained from our high resolution data, and explore the relationship be-

tween fluid excitation and vortex formation mode, particularly for our com-

parison between the 2PO and 2P modes. In Chapter 3 (Morse & Williamson,

2009b), we have presented selected force contour plots, as found here, but

we included several other such plots in a more complete set, for reference

{CY , φ, CY sin φ,CY cos φ,CVORT , φVORT}. The last two parameters refer to “vor-

tex force” magnitude and phase. Also, in this earlier publication, we have stud-

ied the force time traces, and force spectra, as one moves across various bound-

aries of the fluid force regimes, to further characterize such regimes.

In §4.5, we use our force contours to accurately predict the response of a
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freely vibrating cylinder, demonstrating good agreement between prediction

and direct free vibration measurements. The introduction of “energy portraits”

in §4.6, illustrating the excitation energy and energy dissipated by damping, as

a function of amplitude, enable us to further understand the existence of hys-

teresis between modes of vibration, as well as intermittent switching between

modes. The energy portraits enable us to clearly illustrate the stability and in-

stability of equilibrium amplitude solutions, predicted from the force contour

data. In §4.7, employing the finely resolved force contours, we have been able

to identify the regime within the amplitude-wavelength plane for which free

vibration is possible, taking into account stability of the possible vibration solu-

tions. This is followed by our conclusions in §4.8.

4.2 Experimental details

The present experiments are conducted in the Cornell-ONR Water Channel,

which has a cross-section of 38.1 cm x 50.8 cm. The turbulence level in the

test section of the water channel is less than 0.9%. We match very closely the

experimental arrangement used in the free vibration study of Govardhan &

Williamson (2000) with our controlled vibration arrangement here. In both cases

a circular cylinder is suspended vertically in the water channel, and oscillated

transverse to an incoming flow, as shown schematically in Figure 4.2. The only

difference is that in the free vibration case, the cylinder is attached to a spring-

mounted carriage running on air bearings, which oscillates freely, transverse

to the flow, due to vortex-induced motion. In the controlled vibration case,

the cylinder is mounted on a transverse lead screw attached to a computer-

controlled motor and it oscillates with a prescribed sinusoidal motion.
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Figure 4.2: Schematic diagram of the experimental arrangement which is closely
matched to the arrangement for free vibration. In both cases the cylinder is
suspended vertically in a water channel and oscillates transverse to the flow
(into the page). For the controlled vibration case we prescribe the motion using
a computer controlled motor and lead screw.

We use a test cylinder of diameter 3.81 cm and length 38.1 cm with the flow

speed kept constant to give a Reynolds number: Re = 4,000. In Appendix B, we

also show results for Re = 12,000, obtained using a larger cylinder of diameter

6 cm and length 42 cm with a higher flow velocity. A fixed end plate is placed

2 mm below the bottom of the cylinder (but not in contact with the cylinder)

to encourage two-dimensional vortex shedding, following the study of Khalak

& Williamson (1996). For each Reynolds number, we carry out a total of 5,680

runs, each for 100 cycles of oscillation, to yield a total of approximately 1000
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hours worth of data. Normalized amplitude, (A∗) is varied from 0.02 to 1.6,

with a resolution of 0.02. Normalized wavelength, (λ∗) is varied from 2 to 16,

with a resolution of 0.2. Such an extensive data set is only possible because the

experiment is conducted in a continuously flowing water channel facility, rather

than a towing tank facility, and thus can be automated to run unattended for a

large number of experimental runs, often overnight.

A two-axis force balance utilizing LVDTs (linear variable differential trans-

ducers) is used to measure the lift and drag forces on the cylinder. The trans-

verse displacement of the cylinder is measured using a non-contact (magne-

tostrictive) position transducer. For each run, the fluid force magnitude (F1)

and phase angle (φ) at the fundamental (body oscillation) frequency is calcu-

lated using a Fourier series analysis. Relevant fluid forcing quantities, such as

CY sin φ and CEA, are obtained using just the force component at the body os-

cillation frequency. In most cases, the fluid forcing is quite sinusoidal and thus

this component represents essentially all of the force signal content.

In addition to the extensive force measurements described above, we use

Digital Particle Image Velocimetry (DPIV) to measure vorticity in the wake of

the vibrating cylinder, for the case of Re = 4,000. The flow is seeded with 14-

micron silver coated glass spheres, which are illuminated by a sheet of laser light

from a 50 mJ Nd:Yag pulsed laser. Pairs of particle images are acquired using

a Jai CV-M2CL CCD camera (1600 x 1200 pixels), and analyzed using cross-

correlation of sub-images. We use a two-step windowing process (with window

shifting) to obtain particle displacements between image pairs. Further details

on our DPIV processing may be found in Govardhan & Williamson (2000). The

viewing area is 26 cm x 34 cm, corresponding to 6.75 by 9 diameters. The time
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between images is adjusted to vary between 10 and 20 ms depending on the

cylinder oscillation parameters. Vorticity fields calculated from the image pairs

are phase averaged over approximately 10 to 20 cycles to remove the small weak

vorticity structures generated by intermittent small-scale three-dimensionality

in the flow, and thus obtain a clear picture of the dynamics of the principal

spanwise vorticity.

4.3 Regimes of fluid forcing and vortex formation modes

Employing our controlled vibration data, we are able to identify conditions

where the fluid forcing shows qualitative abrupt jumps, as amplitude or fre-

quency is varied, similar to the jumps found in the “amplitude cuts” of previ-

ous controlled vibration studies. We follow these jumps throughout the nor-

malized amplitude-wavelength plane, and are able to identify clear boundaries

separating regions of distinct fluid forcing, indicated by the colored regimes in

Figure 4.3(a). These boundaries show a remarkable similarity to the boundaries

separating different vortex formation modes in the Williamson & Roshko (1988)

map, shown in Figure 4.3(b), and which were identified by (fine resolution) flow

visualization observation of the flow patterns. We naturally expect that the re-

gions found here, based solely on the fluid forcing, will correspond with similar

modes of vortex formation found by Williamson & Roshko (1988).

By measuring the wake vorticity at certain locations in the amplitude-

wavelength plane, we confirm the existence of certain modes of vortex forma-

tion, that are labelled for each fluid forcing regime in Figure 4.3. The P+S, 2S

and 2P modes are presented in Figure 4.4(a), (b) and (c). The 2S and 2P modes
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Figure 4.3: Map of vortex shedding regimes. There is a remarkable similarity
between the mode boundaries we identify in the present study from force mea-
surements in (a) and the boundaries identified by Williamson & Roshko (1988)
from flow visualization in (b). Overlapping colors indicate regions where two
vortex shedding modes overlap.
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may be compared with such vortex modes from free vibration in Govardhan

& Williamson (2000). Added to these classical modes, we have been able to

identify a distinct new mode of vortex formation (2PO mode), existing in its

own clearly defined region of the amplitude-wavelength plane, overlapping the

boundary between 2S and 2P regions. Vorticity measurements of this mode re-

veal that, although there are two pairs of vortices shed per cycle of vibration,

the secondary vortex in each pair is much weaker than the primary vortex, and

decays rapidly as the vortex pair moves downstream, as shown in (d). This is

in contrast with the classical 2P mode in (c), where the primary and secondary

vortex in a vortex pair have roughly equal strength (Govardhan & Williamson,

2000). We label this new mode as ‘2POVERLAP’ or simply ‘2PO’. We find signif-

icant overlapping regimes, in Figure 4.3, where the wake can switch intermit-

tently between the 2PO and 2P modes (or between the 2PO and 2S modes), even

if the cylinder is vibrating with steady amplitude and frequency.

The identification of this distinct 2PO mode allows us to clarify the vortex

formation mode for the upper and lower branches in a free vibration response.

Our initial interpretation of the results of Govardhan & Williamson (2000) was

that the 2P mode they found for the upper branch of response, which exhibited

a much smaller secondary vortex (as for the 2PO mode), was the same mode es-

sentially as the 2P mode in the lower amplitude branch, but was simply affected

in its configuration by an increase in amplitude. The present work clearly shows

that the existence of the 2PO mode is not simply an amplitude effect, but instead

it is a mode that is quite distinct from the 2P mode, existing at the same ampli-

tude and wavelength. The concept of an overlap region could not be discov-

ered from free vibration, because the 2P and 2PO modes yield different values

of fluid excitation and thus cannot sustain free vibration at the same amplitude
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Figure 4.4: Vorticity fields for each of the main vortex shedding modes {P+S,
2S, 2P, 2PO}. We observe a switch in timing of the initially shed vortex from the
2S mode to the 2P mode. In all cases the vorticity field is phase-averaged over
20 cycles of oscillation, contour levels shown are: ωD/U = ±0.4,±0.8,±1.2,...
Measurement locations in the amplitude-wavelength plane are as follows: P+S
mode: (A∗ = 1.2, λ∗ = 4.0); 2S mode: (A∗ = 0.5, λ∗ = 5.0); 2P mode: (A∗ =
0.6, λ∗ = 6.4); 2PO mode: (A∗ = 0.8, λ∗ = 5.6).

level. This is further discussed later in §4.6.

In addition to the principal four modes of vortex formation shown in Figure

4.4, namely the set {2S, 2P, 2PO, P+S}, we also find a region where the wake is

not synchronized with the cylinder oscillation, at high normalized wavelength

(the brown shaded region in Figure 4.3); and a region where a 2S mode initially

forms behind the cylinder, but the vortices coalesce downstream, at low normal-
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ized wavelength, called the coalescing 2S mode, or C(2S) in Figure 4.3. Finally,

there is a small band where the desynchronized wake region overlaps with the

2P mode, in which the wake will switch intermittently between these two con-

ditions. The desynchronized wake mode, and the C(2S) mode, are characterized

using detailed force time traces and spectra in Chapter 3 (Morse & Williamson,

2009b).

In this study, the existence of an overlapping mode is significant, because

it is associated with the maximum amplitude where one experiences positive

excitation. It will thus be the mode yielding the peak resonant amplitude in

free vibration. We shall also see that, as a result of the fact that the 2PO mode

overlaps other regimes, the possible mode jumps and interplay between the

modes, can become quite complex, and this will be investigated in §4.6.

4.4 Contours of fluid excitation and effective added mass

Although we may present several useful fluid forcing quantities in a set of con-

tour plots, we choose in this study to focus on the two most relevant quanti-

ties for the prediction of free vibration responses, namely the fluid excitation

(CY sin φ) shown in Figure 4.5, and the effective added mass coefficient (CEA)

shown in Figure 4.6. The fluid excitation primarily affects the amplitude of vi-

bration (A∗), as shown in the amplitude equation (4.4) above. On the other hand,

the effective added mass (CEA) affects primarily the frequency of vibration (f ∗),

as shown in the frequency equation (4.5), and will be of use in predicting re-

sponse in §4.5. We also include here a related plot in Figure 4.7, in the plane

of amplitude-wavelength, of lines for which the normalised velocity (U∗) is a
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constant. We shall use this plot extensively in §4.6 to show how the energy

transfer into the body motion varies as a function of amplitude, for fixed values

of normalised velocity, U∗.

The regions of positive fluid excitation (which is necessary for free vibra-

tion to occur), exist within the 2S, 2P, 2PO, and desynchronized regimes, that are

shown in Figure 4.5. In fact, it is significant that the highest amplitude for which

there is positive fluid excitation lies in a 2PO overlap region. In this region, the

wake may intermittently switch between a 2PO mode of vortex shedding, which

will yield a net positive excitation, and a 2P mode of vortex shedding, yielding

net negative excitation, as shown in the time trace of the instantaneous rate

of energy transfer (i.e. power) in Figure 4.8. This means that, for the condi-

tions shown in Figure 4.8 (A∗ = 0.8, λ∗ = 5.4), free vibration could occur only if

the mode of vortex formation is 2PO. If the mode of vortex formation were to

switch to the 2P mode, the fluid excitation would become negative, and the am-

plitude would drop until the fluid excitation becomes positive for this 2P mode

(A∗ below about 0.56), or until the vortex formation possibly switches back to

the 2PO mode. This switching of vortex formation modes is what leads to the

intermittent switching between the upper branches and lower branches of a free

vibration response, as explained in more detail in §4.6.

In order to more fully understand the difference between the 2PO and 2P vor-

tex formation modes, we shall briefly introduce the concept of a “vortex force”.

Following the analysis of Lighthill (1986) and Govardhan & Williamson (2000),

we decompose the total transverse fluid force coefficient (CTOT ) into a “poten-

tial force” component (CPOT ) given by the potential added mass force, and a

“vortex force” component (CVORT ), due to the dynamics of vorticity. For sinu-
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Figure 4.5: Contours of the force in phase with velocity, CY sin φ (normalized
“fluid excitation”), for Re = 4,000. Boundaries between modes are indicated
by dashed lines. Note that contours overlap in regions where multiple vortex
shedding modes are possible. In (b) we pull away the 2PO mode to more clearly
show the 2P and 2S mode regions underneath. Contour interval is 0.2.
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val is 0.1.

soidal body motion, the potential force coefficient can be calculated to be:

CPOT (t) = 2π3 y(t)/D

(U∗/f ∗)2
(4.10)

Thus we see that the instantaneous potential added mass force CPOT is always

in phase with the cylinder motion, y(t), as one might expect. The vortex force

coefficient can then be found by subtracting the potential force coefficient from

the total force coefficient:

CVORT (t) = CTOT (t)− CPOT (t) (4.11)

So that we may further illustrate the difference between the 2PO and 2P vor-

tex modes, we show force time traces and wake vorticity fields for each mode,
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taken during a single experimental run, shown in Figure 4.9. The timing of vor-

tex shedding is quite similar for the two cases even though the 2PO mode shows

a much weaker secondary vortex. Thus the phase of the vortex force (see time

trace for CVORT in Figure 4.9) is similar for the two cases; however, the magni-

tude of the vortex force is much lower for the 2PO mode than for the 2P mode.

Therefore, when we superpose the potential force (which will be the same for

both modes since the motion is the same) onto the vortex force to yield the total

force (CTOT ), we find almost a 180◦ switch in phase angle for the 2PO mode. The

2PO mode then delivers a positive energy transfer into the body motion, while

the 2P mode generates negative energy transfer.
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(A∗ = 0.80, λ∗ = 5.6). The mode switching is most apparent in the phase angle, φ.
The instantaneous rate of energy transfer, Ė∗, has large fluctuations, but cycle
averages (shown as a thicker line) show that the 2PO yields a net positive fluid
excitation, while the 2P mode yields negative excitation.

For high amplitudes (A∗ = 0.80), as in the example above, the 2P mode of vor-

tex formation yields negative excitation, and thus cannot sustain free vibration.

However, at amplitudes below about 0.6, the fluid excitation for the 2P mode

becomes positive. One might ask how the wake vortex dynamics change to ac-

complish this? As the transverse amplitude is decreased within the 2P region,

the wake becomes narrower, as shown in Figure 4.10. In addition, the timing of
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vortex shedding shifts slightly. Even this small change in timing, as the ampli-

tude (A∗) falls below 0.6, is sufficient to alter the vortex phase to cause a switch

from negative to positive excitation; in essence, there is no dramatic change in

the vortex formation pattern, as energy transfer becomes positive.

4.5 Prediction of a free vibration response

The availability of our high resolution force contours now enables us to pre-

dict the response of a freely vibrating cylinder, using equations (4.4 - 4.5). We

are required to set the system parameters {m∗, ζ, U∗}, and then to solve for the

response parameters {A∗, f ∗}. We have measured the fluid forcing quantities:

{CY sin φ,CEA} as functions of A∗ and λ∗, or equivalently as a function of A∗ and

f ∗, if one fixes the normalised velocity, U∗. Thus we can simply solve numer-

ically for amplitude (A∗) and frequency (f ∗), and build up an entire response

plot at a given m∗ and ζ , as one varies U∗.

A simpler way to understand this process is to combine the frequency equa-

tion (4.5) and amplitude equation (4.4), to give an equation with only the com-

bined mass-damping on the left hand side:

(m∗ + CA)ζ =
CY sin φ

4π3A∗ λ∗2
√

m∗ + CA

m∗ + CEA

, (4.12)

where we have also used U∗/f ∗ = λ∗. Now, for a given mass ratio, we can plot

contours of the conglomeration of non-dimensional variables on right hand side

of equation (4.12). Each contour will then represent a predicted free vibration

response at a particular value of the combined mass-damping, (m∗ + CA)ζ . The

solution for a system at zero-damping will always follow the zero-excitation

68



x/D

-4

-2

0

2

4
(a) A* = 1.2

0 2 4 6 8
-4

-2

0

2

4
A* = 0.5(c)

y/D

y/D

y/D

φ
VORT

= 214
o

(negative excitation)

φ
VORT

= 172
o

(positive excitation)

φ
VORT

= 195
o

(negative excitation)

-4

-2

0

2

4
A* = 0.8(b)

Figure 4.10: Vorticity fields for decreasing amplitude in the 2P region (λ∗ =
8.0). The vortex formation mode does not change, however the timing of vortex
shedding becomes slightly later as amplitude decreases, causing a switch from
negative to positive excitation. Vorticity contour levels shown are: ωD/U =
±0.4,±0.8,±1.2, ...

69



Upper

Lower

Initial

Lower

Initial

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

A*

A*

U*/f*

(a)

(b)

Figure 4.11: Measured and predicted amplitude response for a free vibration
system at low mass-damping, (m∗ + CA)ζ = 0 (a), and high mass-damping,
(m∗ + CA)ζ = 0.340 (b). • measured free vibration response from Govardhan
& Williamson (2006), ◦ predicted response from the present controlled vibration
data. In both cases m∗ = 10.49. Re = 4,000 for the controlled vibration case; Re =
4,000 at peak amplitude for the free vibration case.

contour of CY sin φ = 0. (Note that for a high enough mass ratio, the frequency

ratio, f ∗, will be close to 1, and contours of CEA are not actually needed.)

With this approach, we are readily able to use our controlled vibration data
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to predict the response of a freely vibrating cylinder, in the examples of Fig-

ure 4.11. We find close agreement with measured free vibration amplitude

response (taken from Govardhan & Williamson, 2006), for both high and low

mass-damping. To obtain the complete predicted response plot, we look for

solutions in each of the fluid forcing regimes identified in Figures 4.5 and 4.6.

For the low mass-damping case, where we find a three branch response, the

initial branch lies in the 2S region, the upper branch in the 2PO region, and the

lower branch in the 2P region. For the high mass-damping case, there are two

branches: an initial branch in the 2S region and lower branch in the 2P region.

The 2S-2PO and 2PO-2P overlap regions can lead to some interesting behavior

as we discuss later in §4.6.

The agreement between predicted and measured free vibration response

shown here is much closer than has been found in previous studies, and is only

possible because of the high resolution of our force data, and the careful match-

ing of the experimental arrangement between the controlled and free vibration

cases. The Reynolds number at peak response was also matched to be equal

to 4,000 for the two cases (noting that for the controlled vibration prediction,

Re = 4,000 throughout the response plot). This match of Reynolds number is

important, because the peak amplitude in the upper branch depends on Re, as

explained in Govardhan & Williamson (2006), and discussed briefly below.

In addition to the fluid force contours at Re = 4,000, we have generated com-

plete contour plots at Re = 12,000, and show for brevity only one of these plots

(for excitation energy, CY sin φ), within Appendix B. We have been able to pre-

dict complete curves of peak amplitude versus mass-damping from the two

Reynolds numbers, using the idea of the “modified Griffin” plot put forward in
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Govardhan & Williamson (2006). The agreement with the predictions from the

controlled vibration contour plots with the free vibration data is good. We are

also able to search for the peak amplitude, A∗
PEAK , which is found when one has

zero damping, taken from the point where the curve for zero excitation energy

(CY sin φ = 0) reaches a maximum for each Reynolds number. A comparison of

this predicted peak amplitude, A∗
PEAK , with the extensive compilation of peak

amplitude from free vibration data, shows good agreement.

4.6 Introducing “energy portraits” to understand mode transi-

tions

In the previous section we demonstrated the potential for accurate response pre-

diction, using our contour plots of force. In this section, we study the transitions

that occur between the different response branches, and stability of equilibrium

amplitude solutions, using the concept of an “energy portrait”.

4.6.1 Introduction of the concept of an “energy portrait”

We define an “energy portrait” as a plot of the energy of excitation (E∗
IN ), and

the energy dissipated to structural damping (E∗
OUT ), as a function of amplitude

(A∗), while keeping normalized velocity (U∗) fixed. We use these energy por-

traits to determine the stability of equilibrium amplitude solutions, and to un-

derstand the mode transitions that occur between branches in free vibration. It

is relevant in this section to refer often to Figure 4.5, where we plot normalised

energy of excitation (CY sin φ), and where the fluid force regimes, and shape of
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the contours, are quite key to the energy portraits. (One should note that plots

of fluid force excitation (CY sin φ) as a function of amplitude were presented as

early as Griffin (1980), and as noted by Bearman (1984) in his review, Griffin’s

plot could be used to show that the excitation, after reaching a maximum, de-

creased such that there was no excitation beyond an amplitude of 1.0D - 1.5D.)

This suggested a limiting displacement for free vibrations.

To demonstrate the usefulness of the concept of the energy portraits, we ex-

hibit one possible shape which may occur for fluid excitation contours in the

amplitude-wavelength plane, in Figure 4.12(a). This particular variation of exci-

tation energy would lead to an ‘S’ shaped curve for E∗
IN in the energy portrait of

Figure 4.12(b). The energy lost due to damping, E∗
OUT , will intersect the origin,

and have a slope proportional to the specific value of mass-damping (m∗+CA)ζ .

(One may note that the precise shape of the E∗
OUT curve, as well as the shape of

the U∗ = constant line in the plane of amplitude-wavelength, both depend on

the frequency ratio, f ∗. In general, the U∗ cut will be nearly vertical (in a), and

the E∗
OUT curve will be nearly straight (in b). Both lines become more straight

as one increases the mass ratio, and f ∗ ∼ 1.0).

Steady state response solutions are found where the energy into the system

equals the energy out of the system. In our example of lower damping, in Figure

4.12(b), there is one equilibrium point, and hence one possible free vibration

amplitude. In our example of higher damping, in Figure 4.12(c), there exist

three equilibrium points, in other words three response amplitudes. However,

only two of these response amplitudes are stable. The central equilibrium solution

is unstable: for example, if a perturbation increases the amplitude slightly, the

energy into the system would be greater than the energy out of the system;
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the amplitude would continue to increase, ultimately reaching the upper stable

solution. Stability and instability of equilibrium solutions in the energy portrait

can be defined by the slope of the energy curves, at the equilibrium points, as

follows:

Stable: dE∗/dA∗ < 0,

Unstable: dE∗/dA∗ > 0,

where E∗ is the net energy transfer into body motion: E∗ = E∗
IN − E∗

OUT . Free

vibration would occur at the stable equilibrium points. In our example, there

are two stable free vibration amplitudes, and would correspond to two different

branches of response.

Let us now apply the concept of the “energy portrait” to our controlled vibra-

tion data at Re = 4,000. We consider a typical mass ratio for systems in water, m∗

= 10, for which the constant U∗ lines (or “cuts”), in the amplitude-wavelength

plane, will be nearly vertical. We start with a simple case, a cut in this plane for

which U∗ = 7.0. (This cut may be seen in the amplitude-wavelength plane, in

Figure 4.7). For our chosen values of mass-damping, (m∗ + CA)ζ , in Figure 4.13,

there is only one equilibrium solution (a stable solution). As the mass-damping

increases, the equilibrium amplitude (i.e. the predicted free vibration ampli-

tude) will decrease. At sufficiently high mass-damping, no solution will exist,

in this example.

We shall now employ the energy portrait concept in a more involved case.

Let us consider a cut for which U∗ = 5.1 in the amplitude-wavelength plane,

which we might expect will lead to an initial and upper branch of free vibration.

In this case, the energy into the system follows an ‘S’ curve, as shown in Figure
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4.14, similar to the example in Figure 4.12, discussed above. The two stable

equilibria at low and high amplitude will correspond to the initial branch and

upper branch of free vibration, respectively. Of course, the unstable equilibrium

will not appear in a free vibration response. All three solutions here represent

the 2S mode of vortex formation, so this is an unusual case where both the initial

branch and the upper branch would in fact show a 2S mode of vortex formation.

This unusual case has not been demonstrated in free vibration experiments in

the literature, as yet. We see from the energy portrait that under conditions

of high mass-damping [(m∗ + CA)ζ = 0.15], only one stable equilibrium exists,

corresponding to an initial response branch in free vibration. This is consistent

with experimental measurements from free vibration results where the upper

branch disappears, for sufficiently high mass-damping.
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equilibria correspond to the initial branch and upper branch of a free vibration
response.

From the excitation force contours in Figure 4.5, we note there exists a region

where the 2S and the 2PO regimes overlap, such that the fluid excitation will not

be continuous across this transition. The cut for U∗ = 5.1 passes through this

overlap region (a similar cut, U∗ = 5.0, can be seen in Figure 4.7). Therefore the

energy portrait will show a small range of amplitudes where two possibilities

exist for E∗
IN , depending on the mode of vortex shedding (2S or 2PO). In Figure

4.15, we now include this second branch of excitation energy, corresponding to

the 2Po mode. (E∗
OUT will also be very slightly different for the two modes,

but for simplicity we have kept an average value in this overlap regime.) For

the higher mass-damping chosen here [(m∗ + CA)ζ = 0.09], three solutions are
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mass-damping (a) there are three equilibria (©• ). For moderate mass-damping
(b), there is no stable equilibrium point at the upper branch amplitude. Instead,
the amplitude will vary between about A∗ = 0.74 and A∗ = 0.8.

found as shown earlier in Figure 4.14. For our lowest selected mass-damping

here [(m∗ + CA)ζ = 0], the high amplitude stable solution would exhibit the 2PO

wake mode, in Figure 4.15(a), yielding an upper branch, as observed typically

in free vibration experiments.
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A particularly interesting case occurs if one has an intermediate mass-

damping in Figure 4.15(b), since there is no equilibrium point to give a steady

upper branch amplitude. If the system has a high amplitude above 0.6 or so,

and we have the 2S mode of vortex formation, the energy into the system will

be greater than the energy lost to damping, and the amplitude will increase un-

til the system enters the 2PO regime. The fluid excitation will drop, but it will

now fall below the energy dissipated to damping, causing the amplitude to de-

crease, until the vortex mode jumps back to the 2S mode. In this manner, the

cycle will repeat. Thus the normalized amplitude will fluctuate in an unsteady

manner, remaining between about 0.72 and 0.8. This type of behavior is actually

observed in the free vibration case, where the upper branch often shows oscil-

lations that are less steady than found in the initial or lower branches (Khalak

& Williamson, 1996).

4.6.2 Hysteresis between the Initial ↔ Upper branches

In the free vibration response of Govardhan & Williamson (2006), as shown in

Figure 4.11, there exists a hysteretic mode transition between the initial and up-

per response branches, around U* = 5.5. This hysteresis, for such a low-mass

damping system, can readily be understood, if we employ a set of energy por-

traits over a small range of normalized velocity, as shown in Figure 4.16. For

simplicity we will consider a system with zero damping so that all the equilib-

ria will lie on the horizontal axis. (Also we will take an average of the fluid

excitation in the region where the 2S and 2PO modes overlap, simply to clar-

ify the phenomena, and avoid the small cyclic oscillations we saw in Figure

4.15(b).) Depending on the normalized velocity, there may be one stable equilib-
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Figure 4.16: Energy portraits (a) and amplitude response (b) for the hysteresis
mode transition between the initial and upper branches. E∗

IN curves are shown
for U∗ = 4.70, 4.86, 5.05, 5.20, and 5.30, • stable equilibria, ◦ unstable equilibria.

rium solution, or two stable solutions plus one unstable solution. The location

of all these equilibrium solutions on a free vibration amplitude response plot

are shown in Figure 4.16(b).

We commence with a low velocity U∗ = 4.70, where only one solution ex-

ists, corresponding to the initial branch, shown as point A in Figure 4.16(b). The
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reader should look back and forth between (a) and (b) as we discuss the hystere-

sis, as follows. As we increase U∗ to 4.86 and upwards to 5.05, a second stable

equilibrium point will appear on the upper branch (point G). Nevertheless, the

system will remain on the initial branch (point C). Once the normalized velocity

is increased to 5.20, the initial branch equilibrium will disappear in a saddle-node

bifurcation (point D), and the amplitude will jump to the upper branch (point H).

With further increase in U∗, the solution simply shifts along the upper branch

(to point I and beyond). However, if the normalized velocity is decreased, the

solution will remain on the upper branch, until that equilibrium disappears in

another saddle-node bifurcation at U∗ = 4.86 (point F). The amplitude will then

drop to the initial branch (point B), thus completing the hysteresis loop. In sum-

mary, the progression of points for increasing U∗ is A-B-C-D-jump to H-I. For

decreasing U∗, we have I-H-G-F-drop to B-A.

In the case of a free vibration system with high mass-damping, there are only

two branches of response: an initial branch and a lower branch, as shown also in

Figure 4.11, with a hysteresis mode transition between them. From the contours

presented here, such a hysteresis would not be predicted. However, Bishop &

Hassan (1964) showed from their controlled vibration “amplitude cuts” that the

location of the jump in magnitude and phase of fluid forcing (which we now

know is due to a change in vortex formation mode from 2S to 2P) depended on

whether the frequency of vibration was increasing or decreasing. In our case

we do not dynamically vary the frequency so we can not observe any hysteresis

in the force contours. We expect that the precise location of the 2S-2P boundary

will shift very slightly if the frequency (or wavelength) is dynamically increased

or decreased, and that this shift in the boundary is what causes the hysteresis

between the initial and lower branches of a high mass-damping response.
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4.6.3 Intermittent switching between Upper ↔ Lower branches

In the free vibration of Figure 4.11(a), there exists an intermittent switching be-

tween the upper and lower branches at velocities U∗ ∼ 6. If we look at the

energy portrait for a normalized velocity cut (U∗ = 6.3) passing through the

2PO-2P overlap region, there will be two excitation energy E∗
IN curves, one for

the each mode of vortex shedding, as shown in Figure 4.17. (There will also be

two E∗
OUT curves, because the value of CEA and thus f ∗ is slightly different for

the two modes. This difference is extremely small (less than 1%) so we show an

averaged line for simplicity.)
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For low mass-damping, as indicated in Figure 4.17, if the vortex shedding

mode is 2PO, then there will be one stable equilibrium at the upper branch am-

plitude (around A∗ = 0.8). However, this equilibrium will only persist if the

vortex formation mode continues to be 2PO. If the wake switches to a 2P mode,

the fluid excitation will drop. This will cause the energy into the system to be

less than the energy dissipated by damping, and therefore the amplitude will

decrease until a new stable equilibrium for the 2P mode is reached, correspond-

ing to a lower branch amplitude (around A∗ = 0.5). Later in time, the vortex

formation mode could possibly switch back to 2PO, causing the amplitude to

increase back toward the upper branch amplitude. In this way, the amplitude

could switch intermittently between the upper and lower branches, sometimes

staying at one amplitude or the other for several cycles. This corresponds to

what is actually observed in free vibration systems, for example in Govardhan

& Williamson (2000).

We emphasize that the switching phenomenon described here is fundamen-

tally different from the unsteady behavior which can occur in the 2S-2PO over-

lap region described in §6.1 and shown in Figure 4.15(b). In the 2S-2PO overlap

region the variation in amplitude is much smaller and no steady motion is pos-

sible for either vortex formation mode. In the 2PO-2P overlap region, the dif-

ference in amplitude is quite dramatic (appearing as a jump between an upper

branch and lower branch), and we find steady amplitude motion can occur, so

long as the vortex wake mode remains the same.
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4.7 Defining the regime where free vibration is possible

The evaluation of fluid forcing, throughout the amplitude-wavelength plane,

enables us to determine the regimes where free vibration can occur, of course

under the assumption that such motion is approximately sinusoidal. The clas-

sical understanding, presented in Figure 4.18(a), is that the region of possible

free vibration is the intersection of the positive excitation region, and the syn-

chronized wake region. However, we have found, in this study, that there exist

conditions where, even though fluid excitation is positive and the equations of

motion are satisfied, the equilibrium solutions are unstable. We therefore re-

move the area in the amplitude-wavelength plane, where these solutions are

unstable, to yield our regime of possible free vibration, in Figure 4.18(b).

We may further point out that vortex-induced motion can occur in the desyn-

chronized region, if there is some positive fluid excitation at the oscillation fre-

quency. The fluid forcing in the desynchronized region has a large component

at the (higher) natural vortex shedding frequency, but in fact it also exhibits a

smaller force component at the oscillation frequency, as discussed in more de-

tail in Chapter 3 (Morse & Williamson, 2009b). Thus, one might expect that free

vibration in this region would have distinctly non-sinusoidal motion. However,

since the effect of fluid forcing on vibration amplitude is greatly diminished for

frequencies away from the oscillation frequency, the higher frequency forcing

component can have a negligible effect on the overall body dynamics. There-

fore, in our search for the regime of possible free vibration, we add in the region

of positive excitation within the desynchronised regime, in Figure 4.18(c). Fi-

nally, we may present the overall regime of possible free vibration in (d), which

satisfies the requirements, that, not only the fluid excitation is positive, but also
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Figure 4.18: Map of where free vibration can occur in the amplitude-velocity
plane. (a) Region where the wake is desynchronized from the cylinder mo-
tion and region where the fluid excitation is negative. (b) Region where the
equilibria are unstable. (c) Region where positive excitation exists, even with a
desynchronized wake. (d) Regime of possible free vibration: fluid excitation is
positive, and the solutions to the equation of motion are stable.

the amplitude solutions are stable.
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4.8 Conclusions

In this study, we present new measurements of fluid force on a cylinder that

oscillates under controlled vibration, transverse to a flow. We present these new

results in the form of high resolution force contour plots within the plane of

normalized amplitude and wavelength (A∗, λ∗), for Reynolds numbers: Re =

4,000 and Re = 12,000. We identify distinct boundaries, and fluid force regimes,

in the amplitude-wavelength plane, based solely on the force measurements.

Indeed, we find good agreement between the shapes of the regimes evaluated

from force measurements in the present work, and the regimes of vortex forma-

tion modes identified from flow visualization in the Williamson-Roshko (1988)

map of regimes. By measuring the wake vorticity, we find vortex formation

modes that correspond well with those in the Williamson-Roshko map, namely

the 2S and 2P modes, as well as the asymmetric P+S mode.

The present high resolution contour plots have enabled us to discover a new

high-amplitude regime, in the amplitude-wavelength plane, which overlaps the

boundary between the 2S and 2P regimes. Vorticity measurements identify the

new vortex formation mode to be similar to the 2P mode, but where the second

vortex of each pair is much weaker than the first vortex, in what we define as

the ‘2POVERLAP’ or ‘2PO’ mode. During an experiment, the vortex formation

mode and fluid force can switch intermittently between the 2PO and 2P modes,

even when the amplitude and frequency are kept constant. The switch in vortex

formation mode can cause a large jump in the fluid excitation which would

lead to a jump in amplitude for a free vibration response, as found in direct

measurements on elastically mounted bodies.
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Employing the force contour data, we are able to predict the response of a

freely vibrating cylinder. This prediction agrees well with direct measurements

from free vibration experiments, for the three-branch response of a low mass-

damping system, and for the two-branch response of a system with high mass-

damping. We are also able to accurately recreate the “modified Griffin plot”

of peak amplitude versus mass-damping at both Re = 4,000 and Re = 12,000

(shown in Appendix B), and our data also agrees well with the plot of peak

amplitude as a function of Re, compiled in the recent work of Govardhan &

Williamson (2006).

In order to study the stability of equilibrium amplitude solutions, and to

better understand the mode transitions between solution branches of the free

vibration response, we introduce the concept of an “energy portrait”. We define

such an energy portrait as a plot of the excitation energy into the system and

the energy out of the system dissipated by damping, as a function of amplitude,

as we keep normalised flow velocity constant. The energy portrait allows us

to identify equilibrium points, where there is a balance of energy transfer into

the system (E∗
IN ) and out of the system (E∗

OUT ), and to determine the stability of

these equilibrium points, as follows:

Stable: dE∗/dA∗ < 0

Unstable: dE∗/dA∗ > 0

where E∗ is the net energy (E∗
IN − E∗

OUT ) transferred into the body motion.

In the vicinity of the transition between the initial and upper response

branch found in free vibration, for low mass-damping, the fluid excitation fol-

lows an ‘S’ like shape, leading to multiple equilibria in the energy portrait. We
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are able to explain the existence of hysteresis, found in free vibration, on the

basis of a set of energy portraits, where we identify saddle node bifurcations,

and where we may identify stable and unstable solutions. On the other hand,

the transition from the upper branch to lower branch of free vibration response

involves an intermittent switching between the modes. We may explain this

phenomenon by considering the overlap of two mode regimes in the amplitude-

wavelength plane. The vortex formation is able to switch intermittently as a

function of time, and induces jumps between two stable amplitude solutions,

one corresponding with the 2PO mode, having a higher excitation energy, and

the other corresponding with the 2P mode of vortex formation, with lower exci-

tation energy. In essence, the hysteresis between modes occurs due to the shape

of the fluid excitation contours in the amplitude-wavelength plane, while the

intermittent switching transition occurs because there is an overlap of mode

regimes in this plane.

As a final point, we may clearly define the region in the amplitude-

wavelength plane which would admit free vibration. The requirements for

free vibration have generally been assumed to be a synchronized wake and a

positive fluid excitation. However, through our energy portraits, we identify a

regime for unstable equilibria where steady free vibration is not possible, which

must therefore be removed from the region of possible free vibration. We should

also note that vortex-induced vibration can occur if there is an area of positive

excitation even within the regime of the desynchronised wake. Therefore, our

complete regime for free vibration in the amplitude-wavelength plane satisfies

two principal criteria; namely, the existence of net positive fluid excitation, and

stability of the equilibrium amplitude solutions.
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CHAPTER 5

Steady, unsteady, and transient vortex-induced
vibration predicted using controlled motion data

MORSE, T. L. & WILLIAMSON, C. H. K. (2009)

In preparation for Journal of Fluid Mechanics.

In this study, we represent transient and unsteady dynamics of a cylinder

undergoing vortex-induced vibration, by employing measurements of the fluid

forces for a body controlled to vibrate sinusoidally, transverse to a free stream.

We generate very high-resolution contour plots of fluid force in the plane of

normalized amplitude and wavelength of controlled oscillation. These contours

can be used with an equation of motion to predict the steady state response of an

elastically mounted body. The principal motivation with the present study is

to extend this approach to the case where a freely vibrating cylinder exhibits

transient or unsteady vibration, through the use of a simple quasi-steady model.

In the model, we use equations which define how the amplitude and frequency

will change in time, although the instantaneous forces are taken to be those

measured under steady state conditions (the quasi-steady approximation), em-

ploying our high resolution contour plots.

The resolution of our force contours has enabled us to define accurately

mode regime boundaries in the amplitude-wavelength plane, where there are

jump changes in the fluid force, found here for the first time from controlled

vibration studies. On account of these boundaries, we can define the different

branches of response. In particular, we are able to characterize the nature of
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the transition which occurs between the upper and lower amplitude response

branches. This regime of vibration is of practical significance as it represents

conditions under which peak resonant response is found in these systems. For

higher mass ratios (m∗ > 10), our approach predicts that there will be an in-

termittent switching between branches, as the vortex formation mode switches

between the classical 2P mode, and a “2POVERLAP” mode. Interestingly, for low

mass ratios (m∗ ∼ 1), there exists a whole regime of normalized flow velocities,

where steady state vibration cannot occur. In other words, the classical approach,

using controlled vibration force measurements, is unable to predict free vibra-

tion response. However, if one employs the quasi-steady model, we discover

that the cylinder can indeed oscillate, but only with non-periodic fluctuations

in amplitude and frequency. The character of the amplitude response from the

model is close to what is found in free vibration experiments. For very low mass

ratios (m∗ < 0.36 in this study) this regime of unsteady vibration response will

extend all the way to infinite normalized velocity.

5.1 Introduction

Vortex-induced vibration is important in many practical engineering applica-

tions. This phenomenon can lead to fatigue and failure of such structures as

oil riser tubes, chimneys and bridges, among others. There are a large number

of fundamental studies on the subject, as well as several review articles, for ex-

ample: Sarpkaya (1979), Bearman (1984), Parkinson (1989), and more recently

Williamson & Govardhan (2004). Prior studies have investigated a selection

of different flow configurations, including rigid cylinders moving with multi-

ple degrees of freedom, pivoted cylinders, or flexible cables. In this study, we
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choose to focus on the most conceptually simple case of vortex-induced vibra-

tion, that of an elastically mounted rigid cylinder constrained to move trans-

verse to a flow. Such an arrangement is a paradigm in that it has been found to

yield phenomena that are exhibited in the more complex configurations.

In many previous vortex-induced vibration studies, the focus has been on

the amplitude and frequency response of the body, when it has reached a state

of steady vibration, as a function of the incoming flow velocity. Khalak &

Williamson (1999) showed that for a rigid cylinder with only transverse mo-

tion and having a low combined mass-damping parameter, the amplitude of

vibration exhibits three branches of response as the incoming flow velocity is in-

creased: an initial branch, a high amplitude upper branch, and a lower branch,

which may be seen in Figure 5.1. Over much of the response regime, the mo-

tion of the body is well represented by a sinusoidal function. However, in the

present study, we focus also on the behavior of a cylinder as it exhibits transient

or unsteady dynamics, in the transition regions between the different branches

of response. These transition regions are significant, because the peak ampli-

tude of vibration will often occur in an unsteady intermittent switching region

between the upper and lower response branches, as found by Govardhan &

Williamson (2006) in their recent study of peak amplitude response.

In the case of a controlled body, which is translated along a sinusoidal tra-

jectory, Williamson & Roshko (1988) observed a set of different vortex forma-

tion modes, existing within certain regimes in a plot of normalized amplitude

and wavelength of the body motion. Among the vortex formation modes they

found were a ‘2S’ mode, representing two single vortices formed per cycle, a

‘2P’ mode, meaning two pair of vortices formed per cycle, and an asymmetric
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Figure 5.1: Comparison between steady state predicted response and directly
measured free vibration response (m∗ = 10.49, ζ = 0). • measured free vibra-
tion response from Govardhan & Williamson (2006), Re = 4,000 at peak ampli-
tude. ◦ predicted response from the present controlled vibration data, Re = 4,000
throughout.

‘P+S’ mode, comprising a pair of vortices and a single vortex in each cycle. On-

goren & Rockwell (1988b) observed some comparable vortex formation modes,

in the case of a body oscillating in-line with the flow. The 2S, 2P and P+S modes

are illustrated schematically in Figure 5.2. The regimes of these modes within

the amplitude-wavelength plane are shown later in Figure 5.3, which is in effect

a more accurate representation of the Williamson & Roshko map of regimes, in

this case compiled using force measurements at a single Reynolds number value

throughout the plane, rather than using flow visualization. In Chapter 3 (Morse

& Williamson, 2009b) we identified a new mode of vortex formation, which is

important because it is responsible for peak amplitudes of response in these

flows; namely the 2PO mode, also illustrated in Figure 5.2. This mode comprises

two pairs of vortices in each cycle, but where the second vortex of each pair is
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distinctly smaller than the first vortex. It is defined as the “2POVERLAP” mode

since its regime in the amplitude-wavelength plane overlaps other regimes, as

shown in Figure 5.3 later.

Previous studies have observed different types of behavior for the transition

from the high amplitude upper branch to the lower branch of response. Khalak

& Williamson (1999) observed a range of normalized velocity where the ampli-

tude would switch intermittently between an upper branch and lower branch

level; these response branches are shown in Figure 5.1. In other free vibration

studies, rather than a jump from the upper to lower branch, the amplitude vari-

ation was found to be more continuous (for example Vikestad, 1998; Bearman

& Branković, 2004; Hover et al., 2004).

Govardhan & Williamson (2000) characterized the switching behavior for a

system of moderate mass ratio (m∗ = 8.6), and also for a system of very low

mass ratio (m∗ = 1.2), where m∗ = oscillating mass / mass of fluid displaced.

They found that for higher body mass (m∗ = 8.6), the system would spend

several cycles of vibration on one amplitude level, until there is an intermittent

switch of both vortex mode and amplitude branch, causing the system to vibrate

at a new clearly discernable amplitude level. However, for the m∗ = 1.2 case,

they observed rapid variations in amplitude (and frequency), which led them

to suggest that a similar intermittent switching is present, but that it is possi-

bly faster in this case. In the latter case, two distinct amplitude levels are not

discernable. Therefore, in a response plot of maximum amplitude or mean am-

plitude, the transition from the upper branch to the lower branch would appear

to be a continuous variation in amplitude.

Hover et al. (2004) also looked at the effect of mass ratio on the upper-
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Figure 5.2: Representation of each of the main vortex formation modes: {2S, 2P,
P+S, 2PO}. The 2P and 2PO modes show a similar pattern, with two vortices
shed per cycle of vibration, except that in the 2PO case the secondary vortex is
much weaker than the primary vortex.
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lower transition region. They measured the correlation of fluid forces at op-

posite spanwise ends of a cylinder undergoing free vibration with m∗ = 3.0,

and showed that the correlation is quite high through most of the amplitude

response plot, as one varies flow velocity, except in the region of the upper-

lower branch transition. Employing hot wire measurements along the span,

they showed that the wake is quite three-dimensional in this transition region.

Interestingly, they found that for higher mass ratio (m∗ = 10) the force corre-

lation becomes high throughout the entire response, again suggesting a mass

ratio effect on the nature of the upper-lower transition. Lucor, Foo & Karni-

adakis (2005) computed the flow for a cylinder undergoing transverse vibration

with m∗ = 2.0, and also found that near the transition from the upper to lower

branch there was a drop in the spanwise force correlation, and their computa-

tions showed the wake primary vorticity to be distinctly three-dimensional.

Our goal, in this study, is to gain further understanding of vortex-induced

vibration when the amplitude or frequency varies either in a transient or an un-

steady manner, and we shall study both the cylinder dynamics and the wake

vortex dynamics. We are especially interested in the transition region between

the upper and lower branches of response. Our approach will be to use con-

trolled vibration force measurements, where the cylinder is prescribed to move

with a sinusoidal motion, and we measure the fluid forces that act on the cylin-

der over a wide range of normalized amplitude and frequency. Controlled vi-

bration of a cylinder has been employed by a number of investigators, including

Sarpkaya (1977), Staubli (1983), Gopalkrishnan (1993), Hover et al. (1998), Car-

berry et al. (2005). Staubli and also Hover et al. have utilized their data sets to

predict free vibration response plots.
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In §5.2, we describe the details of our experimental method which has

allowed us to obtain very high-resolution contour plots of fluid forcing in

the plane of normalized amplitude and wavelength. In Chapter 3 (Morse &

Williamson, 2009b), we used these contours to identify a set of regimes of vortex

formation which correspond well with the map of vortex formation modes ob-

tained by Williamson & Roshko (1988) from flow visualization. These contours

were also used to predict steady state behavior of a freely vibrating cylinder.

We include an example comparison between prediction and direct free vibra-

tion measurement here in Figure 5.1, where we find close agreement between

steady state solutions, using an equation of motion for a free vibration system,

described in §5.3.1 and §5.3.2.

In this study, we extend our use of the finely resolved force contours, ob-

tained for purely sinusoidal oscillations, to the case where amplitude or fre-

quency may vary in time. For this purpose, we develop a simple quasi-steady

model, in §5.3.3. In the model, we use equations which define how the ampli-

tude and frequency will change in time. However, for the instantaneous forces,

we use those measured under steady state conditions (the quasi-steady approx-

imation), employing our high-resolution contour plots.

We use this simple model to predict transient behavior, as the system ap-

proaches a final steady state solution, in §5.4. In §5.5, we apply the quasi-steady

model to a system of low mass, and identify a large regime of flow velocities for

which the cylinder cannot vibrate in steady state motion; the model shows that it

may only oscillate with an unsteady behavior. We are thus able to characterize

the nature of the upper branch to lower branch transition at high, moderate,

and low mass ratio, using this approach, in close agreement with what is found
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from direct measurements of free vibration. This is followed by our conclusions

in §5.6.

5.2 Experimental Details

The present experiments are conducted in the Cornell-ONR Water Channel,

which has a cross-section of 38.1 cm x 50.8 cm. The turbulence level in the test

section of the water channel is less than 0.9%. A cylinder of diameter 3.81 cm

and length 38.1 cm is suspended vertically in the water channel and forced to

oscillate transverse to the flow using a computer-controlled motor attached to a

transverse lead screw. The controlled vibration system is automated and may

be run unattended, allowing the acquisition of large sets of data. The flow speed

is kept constant, to yield Re = 4,000 throughout the data set. A fixed end plate

is placed 2 mm below the bottom of the cylinder (but not in contact with the

cylinder) to encourage two-dimensional vortex shedding, following the study

of Khalak & Williamson (1996). We measure fluid forces on the cylinder with a

two-axis force balance utilizing LVDTs (linear variable differential transducers)

over a wide range of normalized amplitude (A∗ = A/D = amplitude/diameter)

and wavelength (λ∗ = λ/D = wavelength/diameter). We vary A∗ from 0.02 to

1.6, with a resolution of 0.02, and vary λ∗ from 2 to 16, with a resolution of 0.2,

yielding a total of 5680 individual runs. For each run, the fluid force magnitude

(F1) and phase angle (φ) at the fundamental (body oscillation) frequency is cal-

culated using a Fourier series analysis. Relevant fluid forcing quantities, which

will be introduced in the next section (for example, CY sin φ and CEA) are ob-

tained using just the force component at the body oscillation frequency, which

in general represents almost the entire force signal content. Since the prescribed
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motion is perfectly sinusoidal, the fundmental is the only frequency component

of the fluid force which makes a net contribution to the energy transfer from

fluid to body motion.

In order to determine vorticity using DPIV (digital particle image velocime-

try), the flow is seeded with 14-micron silver coated glass spheres, which are

illuminated by a sheet of laser light from a 50 mJ Nd:Yag pulsed laser. Pairs

of particle images are acquired using a Jai CV-M2CL CCD camera (1600 x 1200

pixels), and analyzed using cross-correlation of sub-images. We use a two-step

windowing process (with window shifting) to obtain particle displacements be-

tween image pairs. Vorticity fields calculated from the image pairs are phase

averaged over approximately 10 cycles. Further details on the force and PIV

measurements may be found in Chapter 3 (Morse & Williamson, 2009b).

5.3 Equations of motion and introduction of a quasi-steady

model

In order to predict the dynamics of a freely vibrating cylinder from controlled

vibration force measurements (both for steady state and transient behavior), we

need to use the equation of motion for vortex-induced vibration in the trans-

verse (y) direction (normal to the flow):

mÿ + cẏ + ky = F (t), (5.1)

where m is the oscillating mass; c is the structural damping; k is the spring

constant; and F (t) is the fluid force in the transverse direction.
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5.3.1 Steady state equations of motion for free vibration

When the body has reached steady state vibration, and the motion is synchro-

nized with the periodic vortex formation mode, the force and displacement are

generally well predicted by sinusoidal functions:

y(t) = A sin ωt, (5.2)

F (t) = F1 sin (ωt + φ), (5.3)

where ω = 2πf and φ = the phase angle between the fluid force and the body

displacement. The phase angle (φ) is an important quantity, as it determines

the direction of energy transfer between the fluid and the body motion; it must

be between 0 and 180◦ for the fluid excitation to be positive, and hence for free

vibration to occur. Our selected set of non-dimensional parameters in this prob-

lem is presented in Table 5.1. In particular, the principal parameters defining the

body motion are the normalized amplitude (A∗) and the frequency ratio (f ∗), in

a flow of normalized velocity U∗.

If we substitute (5.2) and (5.3) into the equation of motion above (5.1), we

can obtain the “amplitude equation”:

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U∗

f ∗

)2

f ∗, (5.4)

which includes the force coefficient in phase with the body velocity (CY sin φ),

equivalent to a normalized energy transferred from the fluid to the cylinder,

which is also called the fluid excitation. We may similarly obtain the “frequency

equation”:

f ∗ =

√
m∗ + CA

m∗ + CEA

, (5.5)

where CA is the potential flow added-mass coefficient (CA = 1.0 for a circu-

lar cylinder), and CEA is an “effective” added-mass coefficient that includes an
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Table 5.1: Non-dimensional groups. In the groups below, U is the free-stream
velocity, λ is the oscillation wavelength, f is the oscillation frequency, fN is the
natural frequency in water, D is the cylinder diameter, L is the submerged cylin-
der length, ν is the fluid kinematic viscosity, ρ is the fluid density, and FY is the
transverse fluid force. The added mass, mA, is given by mA = CAmd, where md

is the displaced fluid mass and CA is the potential added-mass coefficient (CA =
1.0 for a circular cylinder).

Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + mA)

Normalized velocity U∗ U

fND

Normalized wavelength λ∗
λ

D
=

U

fD

Normalized amplitude A∗ A

D

Frequency ratio f ∗
f

fN

Transverse force coefficient CY
FY

1
2
ρU2DL

Reynolds number Re
ρUD

µ

apparent effect due to the total transverse fluid force in phase with the body

acceleration (CY cos φ):

CEA =
1

2π3

CY cos φ

A∗

(
U∗

f ∗

)2

, (5.6)

The amplitude and frequency equations derived above must hold if the

cylinder is oscillating with steady state (sinusoidal) vibration. Over much of a

free vibration response plot, as in Figure 5.1, the body motion and fluid forcing

are quite sinusoidal and the above equations are sufficient to accurately predict

100



the amplitude and frequency of motion. A principal interest in this study is to

extend free vibration prediction to cases where the amplitude and frequency

vary. In order to make such predictions, we employ a quasi-steady assumption,

described below in §5.3.3.

5.3.2 Contours of fluid forcing

From our high resolution controlled vibration force measurements, we present,

in Figure 5.3, contour plots of the fluid forcing quantities CY sin φ and CEA ,

in a plot of normalized amplitude (A∗) and normalized wavelength (λ∗) which

represent the sinusoidal trajectory for the cylinder relative to the fluid. The

normalized wavelength is equivalent to the flow velocity normalized by the

oscillation frequency (λ∗ = U∗/f ∗ = U/fD). The fluid excitation plot showing

contours of CY sin φ in Figure 5.3(a) was presented first in Chapter 3 (Morse &

Williamson, 2009b).

In certain regions of the parameter space, we find jumps in the character

of the fluid forcing, and thus are able to identify boundaries separating differ-

ent fluid forcing regimes, which correspond to boundaries separating different

vortex shedding modes in the Williamson & Roshko (1988) map of regimes.

Vorticity measurements confirm the modes of vortex formation in each regime,

including the 2S, 2P, and P+S modes, introduced in §5.1, as well as a regime

where the vortex formation is not synchronized with the cylinder oscillation.

We also identify regions where two vortex formation regimes overlap, as

may be seen in the contours of Figure 5.3. In these regions the wake may switch

intermittently between two distinct modes even as the cylinder is vibrating with
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Figure 5.3: Contours of fluid forcing from controlled sinusoidal vibration: (a)
CY sin φ with contour interval of 0.2; and (b) CEA with contour interval of 0.1.
Boundaries between modes are indicated by dashed lines; contours overlap in
regions where multiple vortex shedding modes are possible.
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constant amplitude and frequency, as shown in Chapter 3 (Morse & Williamson,

2009b). In the principal overlap region, we identify a ‘2PO’ (or 2POVERLAP) mode

of vortex formation where two pairs of vortices are shed per cycle of oscilla-

tion (similar to the classical 2P mode) but where the secondary vortex is much

weaker than the primary vortex in each pair, as described briefly in §5.1 (see

the sketch in Figure 5.2d). The existence of an overlapping mode is significant,

because it is associated with the maximum amplitude where positive excita-

tion occurs. It will thus be the mode yielding the peak resonant amplitude in

free vibration. We shall also see that the overlap of the 2PO mode with the 2S

and 2P regimes leads to some interesting unsteady body dynamics, which are

discussed in §5.4 and §5.5. A comprehensive characterization of the different

changes found as one crosses the regime boundaries, shown in Figure 5.3, in-

cluding time traces and spectra for the different forcing regimes, may be found

in Chapter 3 (Morse & Williamson, 2009b).

From the force contours in Figure 5.3, we can predict the steady state (sinu-

soidal) response (amplitude, A∗, and frequency, f ∗) of a freely vibrating cylin-

der for a given set of system parameters {m∗, ζ, U∗}. We simply find the point

(or points) in the amplitude-wavelength plane where both the amplitude equa-

tion (5.4) and frequency equation (5.5) are satisfied. By varying the normalized

velocity (U∗) we can build up an entire response plot. As an introduction to

the present results, we show in Figure 5.1 that the steady state response of a

freely vibrating cylinder can be accurately predicted, reproduced from Chapter

4 (Morse & Williamson, 2009c). The initial branch will have a 2S vortex forma-

tion mode, the upper branch a 2PO mode, and the lower branch a 2P mode.
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5.3.3 Quasi-steady model for free vibration response

In the present work, we would like to extend our prediction of freely vibrating

cylinder dynamics to transient or unsteady behavior. To do this, we will need

to introduce a quasi-steady assumption. Specifically, we assume that as the am-

plitude or frequency of oscillation is varying, the instantaneous fluid forcing

(magnitude and phase) is given by our controlled vibration force contours for

purely sinusoidal motion at the instantaneous value of the amplitude and fre-

quency. Naturally, we expect that this assumption will be more accurate for

slower variations in amplitude or frequency.

Our goal is to implement this quasi-steady assumption in a model that is

both simple and useful. Therefore we will not attempt to determine the cylin-

der dynamics in terms of y(t) but rather we will assume the motion takes on a

sinusoidal form, but with varying amplitude and frequency. Therefore we will

be solving for A∗(τ) and f ∗(τ), where τ = t/T or time/period of oscillation, and

the solution will be advanced in fractions of the oscillation period. We know that

as the system approaches a steady state solution (constant amplitude and fre-

quency) the model should reduce to the steady state amplitude and frequency

equations determined above (5.4),(5.5).

We use the form of the amplitude equation to define an “effective damping”,

ζeff , which includes the structural damping as well as the effect of the fluid ex-

citation, (CY sin φ) as follows:

ζeff = ζ − CY sin φ

4π3 (m∗ + CA) A∗

(
U∗

f ∗

)2

f ∗, (5.7)

Similarly, we define an “effective mass”, m∗
eff , which includes the structural

mass as well as an effective added mass due to the fluid forcing in phase with
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acceleration (CY cos φ) as follows:

m∗
eff = m∗ +

1

2π3

CY cos φ

A∗

(
U∗

f ∗

)2

= m∗ + CEA, (5.8)

We then assume that the system behaves like a simple spring-mass-damper

system except that the mass (m∗
eff ) and the damping (ζeff ) can dynamically vary

depending on the instantaneous amplitude or frequency. The effective damping

will determine if the amplitude increases or decreases as follows:

dA∗

dτ
= (−2πζeff f ∗) A∗, (5.9)

which is the well-known equation for amplitude decay in damped harmonic

vibration. The effective mass will affect the frequency of oscillation as follows:

f =
1

2π

√
k

meff

, (5.10)

We normalize this frequency by the natural frequency in still water (fN ) to yield:

f ∗ =

√
m∗ + CA

m∗
eff

, (5.11)

To implement the model, we first need to define the system parameters:

{m∗, ζ, U∗} and initial values for A∗ and f ∗. Then we look up the values of

(CY sin φ) and CEA from the contours in Figure 5.3. At this point, we use equa-

tion (5.9) to determine the change in amplitude over one time step, and advance

A∗. Similarly, we use equation (5.11) to find the new value of frequency f ∗ at the

end of the time step. We let the time step, ∆τ , be variable so that the amplitude

or frequency does not change by too great an amount (more than say 5%) in one

iteration.

In most cases that we consider, the frequency changes associated with tran-

sient situations will be small. However, one should note that, based on the
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method described above, the frequency would change instantaneously, and

thus the rate of variation in frequency toward the steady state solution would

depend on the value of the time step. To avoid this, we adjust our model by

making the approximation that it will take 1 cycle of oscillation for the frequency

to change, and thus for time steps less than 1 cycle, the frequency will make a

fractional change toward the value given by equation (5.11).

A complication with implementing the model is that at some points in the

amplitude-wavelength plane there are two possibilities for the fluid forcing, as

two modes of vortex formation are possible, shown as overlapping contours in

Figure 5.3. Of course this overlap phenomenon (between the 2S and 2PO modes,

and between the 2PO and 2P modes) is what leads to some of the interesting

behavior observed in vortex-induced vibration systems, such as the intermittent

switching between the upper and lower branches of response, as we explain in

§5.4.2. We will therefore handle the overlap regions in two different ways, as

described in the following sections.

5.4 Transient behavior for moderate and high mass ratio sys-

tems

For a vortex-induced vibration system, the equilibrium solution (i.e. the am-

plitude and frequency for steady state vibration), will be the intersection of the

curves along which the amplitude equation (5.4) is satisfied, and the curve along

which the frequency equation (5.5) is satisfied. The curves will generally not be

continuous, showing jumps when the vortex formation mode changes. In this

section, we use the quasi-steady model to determine how the equilibrium solu-
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tions are approached.

5.4.1 Approaching a lower branch equilibrium

We begin with a simple starting case: a system having moderate mass ratio,

m∗ = 10.0, and very low damping, ζ = 0.001, at normalized velocity, U∗ =

8.0. For this case, there is an equilibrium solution in the lower branch of a free

vibration response, as shown by the bull’s eye in Figure 5.4(a). We choose to

look for solutions in the (A∗, U∗/f ∗) space, since that is the parameter space for

our controlled vibration contours. This is equivalent to the (A∗, f ∗) space since

we are fixing the value of the normalized velocity, U∗.

Employing our quasi-steady model, we give the system arbitrary initial con-

ditions and observe how the system approaches the equilibrium solution. As

can be seen in Figure 5.4(b), for this example, it happens to take longer for a low

amplitude initial condition to reach the equilibrium solution, than for a high

amplitude initial condition. This is because the contour levels of fluid excitation

(CY sin φ) are closer together for the higher amplitude approach to the equilib-

rium solution (there is a steeper gradient of excitation versus amplitude). In

summary, the technique appears to work well in such examples.

5.4.2 Intermittent switching between upper and lower branch equilibria

One of our main goals in developing our quasi-steady model is to predict the

cylinder dynamics in the upper to lower branch transition region of a free vibra-

tion response. In Figure 5.5(a), a system with U∗ = 6.3 will have two equilibrium

solutions, depending on the mode of vortex formation. For the 2PO mode, the
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equilibrium solution will lie in the upper branch; for the pure 2P mode, the

equilibrium solution will lie in the lower branch.

In order to observe the switching behavior, we run the quasi-steady model
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twice. In the first case we give the system the initial conditions corresponding

to the upper branch equilibrium (see bull’s eye for the 2PO mode in Figure 5.5a),

but we use the force contours for the 2P mode. The 2P mode yields negative

fluid excitation at the higher upper branch amplitude, so it cannot sustain free

vibration there; the amplitude must drop to the lower branch level, where the

fluid excitation is positive. We then perform the reverse, selecting the lower

branch initial conditions, but using the 2PO mode forces, and observe how the

amplitude increases to the upper branch. For a freely vibrating cylinder, we

expect the switch in vortex formation mode will happen randomly. Here we

arbitrarily decide when the vortex formation mode switches, and build up an

intermittent switching time trace, shown in Figure 5.5(b), which we compare

to an actual intermittent switching time trace from Govardhan & Williamson

(2000), in Figure 5.5(c). In choosing moments in time where we switch modes,

we are guided by the experimental data in (c), in this particular case.

We are interested in the number of cycles required for the amplitude to make

a transition. We see that a typical experimental drop in amplitude from the up-

per to the lower branch is well represented by our quasi-steady model predic-

tions. However, the experimental rise in amplitude from the lower to upper

branch appears to take a few cycles longer than our predictions. We attribute

this to the stipulation in our model that the vortex formation mode changes in-

stantaneously. For a real system, there may be several cycles of oscillation over

which the vortex formation mode changes from 2P to 2PO, before the system

can start to more rapidly increase amplitude.

We can make an estimate of how fast the vortex formation mode switches,

by observing time traces of the phase angle from our controlled vibration force

110



measurements, in Figure 5.6. The 2P mode will have a phase angle of around

180◦ while the 2PO mode will have a phase angle of around 0◦ (see Chapter 2 for

a detailed description of the force characteristics for each mode). For lower am-

plitudes, the switch in phase takes several cycles of vibration, whereas at higher

amplitudes, the switch occurs nearly instantaneously, as may be observed in

Figure 5.6. Therefore, at low amplitudes, when the vortex formation mode

switches from 2P to 2PO, we expect several additional cycles of oscillation are

required for the vortex formation mode to change. Our model does not include

such an effect.

5.5 Unsteady behavior for very low mass ratio systems

We now turn to another case where the quasi-steady model proves to be quite

revealing: that of a very low mass ratio system. In §5.3, we showed how we

may predict the response of a freely vibrating cylinder at moderate mass ratio,

m∗ = 10. One of the well-known results from previous vortex-induced vibration

studies is that, as the mass ratio decreases, there is a widening of the range of

normalized velocity (U∗) over which vibration occurs (observed originally by

Ramberg & Griffin, 1981). We are in a position to predict this result employing

our controlled vibration data.

5.5.1 The effect of reducing mass ratio on the upper branch to lower branch

transition

At moderate mass ratio, m∗ = 15, (and zero damping) we use our controlled

vibration data to predict the steady state response of a free vibration system. The
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Figure 5.6: Phase switching and vortex formation modes in the 2P–2PO over-
lap regime. (a) The phase between cylinder motion and fluid force, showing
more rapid transitions between modes for the higher amplitude case than for
the lower amplitude case. (b) Vorticity fields for the 2P and 2PO vortex forma-
tion modes, both obtained at A∗ = 0.8, U∗/f ∗ = 5.6. Contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...

regime of response extends up to U∗ ≈ 10, as shown in Figure 5.7(a). Also, there

is a small range of normalized velocity for which two steady state solutions exist

(thus two possible amplitudes of vibration) in the region between the upper and

lower response branches, close to U∗ = 6. In §5.4.2 we indicated how this is

associated with intermittent switching between the branches. As we decrease

mass ratio, we find a certain special value (m∗ = 7.7) where the upper and lower
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branches no longer overlap, and there is one value of amplitude for each value

of normalized velocity, as shown in Figure 5.7(b).

As we decrease mass ratio even further to m∗ = 1.0 (still with zero damping)

we find a further widening of the regime of velocity (U∗) for which vibration

occurs, as shown in Figure 5.8. However, we encounter a seemingly intractable

problem: we find large regimes of velocity (U∗ = 7 to 11 in Figure 5.8) where

there is no steady state solution to the equations of motion, i.e. no points for

which both the amplitude and frequency equations are satisfied. This would seem to

suggest that vortex-induced vibration cannot occur in these regions, in direct
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contradiction with published free vibration results.

In the transition region between the upper and lower branch, free vibration

response is generally not precisely sinusoidal, and exhibits variations in ampli-

tude and frequency, as found by Govardhan & Williamson (2000). This would

suggest that our controlled vibration force measurements, (from purely sinu-
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soidal motion) would not be easily applicable. However, even in this case, we

shall apply, in an approximate manner, our quasi-steady model, to determine

the peak amplitudes.

In running the model, we encounter situations where the solution may reside

within the 2P–2PO overlap region. We then need to determine which mode of

vortex formation the system takes on, as a function of time. Based on what

one finds typically in free vibration experiments, we will assume that there is a

10% chance, within each cycle of motion of the body, that the mode will switch

between 2P and 2PO. Obviously, one has to make some assumption here, and

it is clear that this is a somewhat arbitrary stipulation. However, it turns out

from the model results that the value chosen for the probability of mode switch

has very little influence on the response plot that we construct below, in Figure

5.8(b).

When we run our quasi-steady model, we find that the amplitude and fre-

quency fluctuate, as shown in Figure 5.8(c). Computing the average amplitude

of the top 10% of the peaks, which is the parameter used by Hover et al. (1998)

and Govardhan & Williamson (2006), we find that the predicted amplitude in

this unsteady region fits well with the rest of our predicted response plot, as

shown in Figure 5.8(b).

If we compare our complete predicted response plot (combining the steady

state solutions with the non-steady solutions) with directly measured free vi-

bration response (for very low mass ratios around 1.0) from Govardhan &

Williamson (2000), we find good qualitative agreement, both in the amplitude

response and the frequency response, as shown in Figure 5.9. We note that the

slightly higher amplitudes of the upper branch from the free vibration experi-
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ments are due to the effects of the higher Reynolds number in this case, consis-

tent with the results of Govardhan & Williamson (2006). In summary, the quasi-

steady model appears to compare well with direct free vibration measurements.

The model, employed at very low mass ratios, exhibits a regime of unsteady vi-

bration, which contrasts with the character of intermittent mode jumps between

bistable steady state solutions associated with higher mass ratios.

5.5.2 Regime of unsteady response solutions in the A∗ - U∗ plane

In the example described above, we focused on the case of a system at zero

damping. If we consider higher values of the damping, we may define an entire

region in the (U∗, A∗) plane where no steady state solution is possible, as shown

in Figure 5.10. This map will be unique for each value of the mass ratio. The

extent of the regime without steady solutions will grow as the mass ratio is

reduced.

We may briefly explain how the “void”, where there exist no steady state

solutions, can occur. In the plot of amplitude versus wavelength (A∗ - λ∗), mode

regime boundaries are carefully defined from force measurements. A sketch of a

representative boundary in Figure 5.11(a) indicates that the value of CEA jumps

in value as it crosses the boundary, just as it does for the boundary between

the 2S and 2P modes in Figure 5.3(b). If, on the other hand, one now replots

the boundary in the plane of amplitude versus normalized velocity (A∗ versus

U∗) then one must multiply all λ∗ values (or U∗/f ∗ values) in Figure 5.11(a)

by the relevant normalized frequency (f ∗), to construct the new plot in Figure

5.11(b). (For a given mass ratio, m∗, equation 5.5 will yield this frequency, f ∗).

Our problem arises because the frequency (f ∗) involves CEA, and therefore has
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a jump change in value across the regime boundary. Thus the regime boundary

on the left for the 2S mode in (a) will get pulled to the left by the lower value of

f ∗ on this side, while the 2P boundary in (a) gets pulled to the right by the higher

value of f ∗. In this way, a void appears in between these two mode regimes, 2S

and 2P in Figure 5.11(b), where no steady state solutions are found. As mass

(m∗) becomes smaller so this difference in frequency (f ∗) across the boundary

gets larger, and the void grows, ultimately extending to infinite U∗, if the mass

falls below a “critical” value described in the next section.
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5.5.3 Frequency response at very low mass ratio

We can also study the effect of very low mass ratio on the frequency response.

For our brief discussion here, we focus on a system with zero damping. In the

upper branch, the frequency ratio (f ∗) is typically slightly higher than 1.0, as in

Figure 5.9. In the lower branch, the frequency is typically nearly constant over

a wide range of normalized velocity; the value of this frequency increases, as

mass ratio is diminished, as predicted from equation (5.5). The roughly con-

stant value of f ∗ in the lower branch occurs because CEA is nearly constant

throughout the lower branch, as may be seen in the CEA contours of Figure 5.3.

In between the upper and lower branches, only an unsteady vibration response

exists for low mass ratio, and the frequency is found to increase approximately

linearly with normalized velocity, as we found in Figure 5.9. The effect of mass

ratio on the frequency response is found in Figure 5.12, where one can immedi-
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ately see the similar types of response that we saw earlier in Figure 5.9, except

that the unsteady vibration regime grows dramatically as the mass is reduced

to m∗ = 0.5 and below.

At this point, we should like to describe what happens at very low mass

ratios, m∗ < 1. We first need to introduce the concept of a critical mass. From

the frequency equation (5.5), we see that the effective added mass (CEA) can play

an important role in determining the frequency ratio (f ∗ = f/fN ). Govardhan

& Williamson (2000) found that throughout the lower response branch in free
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vibration, the effective added mass was given approximately by CEA = −0.54,

so that the frequency ratio is given by:

f ∗ =

√
m∗ + CA

m∗ − 0.54
, (5.12)

Therefore as the mass ratio (m∗) is reduced, the frequency ratio (f ∗) in the

lower branch can become large. Furthermore, when the mass ratio falls be-

low a critical value of m∗
crit = 0.54, the lower branch will never be reached, and

ceases to exist. The upper branch will then persist indefinitely, up to infinite

normalized velocity (U∗ → ∞), giving an infinitely wide regime of resonance.

In Chapter 6 (Morse & Williamson, 2009a), we show the influence of Reynolds

number on the value of the critical mass, and for Re = 4,000, its value is m∗
crit =

0.36.

For extremely low mass, below the critical mass ratio, m∗ < 36%, the lower

branch ceases to exist. In this case, the regime of large amplitude vibrations will

extend from the end of the upper branch (U∗ ≈ 7) all the way to infinite nor-

malized velocity. The example in Figure 5.12, for m∗ = 0.30, shows the unsteady

vibration frequency response increasing throughout the range of plotted U∗ at

least up to 40, but in fact this trend will persist to infinite U∗, since m∗ < m∗
crit in

this case.

The present quasi-steady model somewhat changes our interpretation of

what happens when the mass ratio falls below the critical value (36% in this

case). Govardhan & Williamson (2000, 2002) described the critical mass phe-

nomenon as involving an extension of the upper branch to infinite U∗. In fact,

based on the study here, we see that, rather than the upper branch extending

to infinite U∗, it is the unsteady vibration response (which is a state between upper

and lower branches) that is found to extend to infinite normalized velocity.
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5.6 Conclusions

In this study we have defined the fluid forces acting on a cylinder under con-

trolled transverse vibration in a flow. Our high-resolution contour plots have

been discussed before in Chapters 3 and 4 (Morse & Williamson, 2009b,c) where

extensive steady state vibrations have been studied, along with the details of

the vortex formation modes. In this study, we also make use of the accurate de-

termination of mode regime boundaries in the plane of amplitude-wavelength,

which have been defined for the first time in such controlled vibration experi-

ments. (Previous studies show a reasonably smooth variation of forces through-

out the amplitude-wavelength plane.) The definition of the regime boundaries

in our studies has enabled us to predict, for the first time, not only the gen-

eral shape of amplitude response plots, but also to show the existence of all the

principal response branches found in free vibration experiments. However, the

focus in this study is to the development of a quasi-steady approach that can

indicate what happens in cases of transient or unsteady vibration.

Cases of unsteady vibration arise when the response exhibits a transition

between different response branches, which may seem like an unusual situa-

tion, but in fact it is quite common in free vibration systems, and is significant

because these unsteady vibrations represent the conditions giving the peak amplitude

of response in low-mass systems. In essence, we find that significant portions of

the response plot, especially for the low mass ratios, are actually non-periodic.

Such a regime in a response plot, which we refer to as a “void”, surprisingly

does not admit steady state solutions, although we know from free vibration

that large vibrations can exist. The system cannot satisfy both the amplitude

and frequency equations, defined in this study, at the same time. The key to
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understanding this phenomenon of a predicted “void” is observing how the

fluid forces make a distinct jump across the mode regime boundaries in the

amplitude-wavelength plane. In an approximate manner, we attempt here to

represent the system within these voids, using the quasi-steady model, and

the resulting amplitude response predictions are surprisingly similar to what

is found in high-amplitude free vibration experiments for very low mass ratios.

The predicted response frequency variation is almost linearly increasing in the

upper-lower branch transition, but becomes more constant when the response is

firmly in the lower branch, which is also close to what is found in free vibration.

For extremely low mass ratios, below a critical value (m∗ < 0.36 in this case),

the unsteady response regime stretches up to infinite normalized flow velocity,

U∗ → ∞. In other words, the regime without the presence of steady state solu-

tions is the one which extends to infinite flow velocities, rather than the upper

branch steady state solutions, as supposed in Govardhan & Williamson (2002).

Our model can also represent the intermittent switching of modes, for higher

mass ratios, that are found in free vibration. For moderate mass ratios (m∗ of or-

der 10), there exists a range of normalized velocity, U∗ , for which there are two

steady state solutions to the equations of motion (corresponding to the upper

and lower response branches). In this case, the response will switch intermit-

tently between them depending on which vortex formation mode is selected by

the flow (the 2P or 2PO modes).

An unanswered question is what are the wake vortex dynamics in the tran-

sition region at low mass ratio? Of course we do not expect that the entire wake

is switching rapidly between a 2P and 2PO vortex formation mode. Lucor et al.

(2005) found that the wake was quite three dimensional in the upper to lower
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branch transition region, in their case for m∗ = 2.0. What seems plausible is that

the wake shows different vortex dynamics at different points along the cylinder

span in the transition region yielding a net fluid forcing which is in between the

forcing for the 2P and 2PO modes. In contrast, for the intermittent switching be-

havior at higher mass ratio, we suggest that the wake is largely two-dimensional

for much of the time, when the response is seated for long periods on one branch

or the other, between the intermittent mode switching.
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CHAPTER 6

The effect of Reynolds number on the critical mass
phenomenon in vortex-induced vibration

MORSE, T. L. & WILLIAMSON, C. H. K. (2009)

Submitted to Physics of Fluids.

In this study, we investigate the critical mass phenomenon in vortex-induced

vibration over a wide range of Reynolds numbers (Re = 4,000 - 30,000). We con-

sider an elastically mounted cylinder that is able to vibrate transverse to a fluid

flow. If we remove the restoring spring (k = 0), then above a certain critical mass

ratio (m∗ = oscillating body mass / displaced fluid mass), the cylinder will ex-

perience almost no motion, despite its unrestrained freedom to move transverse

to the flow. However, when the mass ratio is decreased below a special critical

value, without altering anything else in the system, we see a catastrophic in-

crease in amplitude, and the body settles into a large amplitude periodic vibra-

tion. This corresponds to a change from a desynchronized wake to a 2P mode

of vortex formation, where two pairs of vortices are formed per cycle of motion.

Since a system with no restoring force represents a case of infinite normalized

velocity (U∗ →∞), the observation of high amplitude motion indicates that the

regime of U∗ giving resonant vibration extends to infinity, for sufficiently small

mass ratio. In this work, we measure the critical mass directly from experi-

ments with no spring stiffness, and we show also how the critical mass may be

accurately predicted from force measurements from controlled vibration exper-

iments, or from free vibration measurements of elastically mounted cylinders.
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Critical mass gradually increases with Reynolds number (Re) from a value of

0.36 to 0.54, over the regime Re = 4,000 - 30,000. The fact that the critical mass

is a function of Reynolds numbers should be expected, because it depends on

the vortex-induced forces, which are influenced by gradual changes in vortex

formation as Re increases. The evaluation of critical mass in this configuration,

and indeed in other diverse vortex-induced vibration (VIV) systems, is impor-

tant because it can predict the regime of normalised velocities that will yield

large amplitude vibration, and which one may wish to avoid in practice. The

fact that critical mass, at moderate Reynolds numbers, in several diverse VIV

systems, including cylinders in one or two degrees of freedom, pivoted bodies,

cantilevers, and tethered spheres, are all within a small range 0.36 - 0.6, remains

an interesting question.

6.1 Introduction

Vortex-induced vibration (VIV) is an important problem in many fields of engi-

neering. One of the most common issues with riser tubes bringing oil to the sur-

face from the seabed, is the tendency for such structures to vibrate due to vortex-

induced motion over the long length of the tube. VIV is also a problem in civil

engineering, affecting dynamics of structures such as bridges, chimneys, and

buildings, among other applications. The range of problems caused by vortex-

induced vibration has led to a large number of experimental and computational

studies on the subject, including several review articles, for example: Bearman

(1984), Sarpkaya (1979), Parkinson (1989), and more recently Williamson & Go-

vardhan (2004). Classically, it has been assumed that resonant large amplitude

vibration will only occur when the frequency of vortex formation for the non-
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oscillating body, and thus the frequency of fluid forcing, is close to the natural

frequency of the structure (fvo ≈ fN ). This occurs when the normalized velocity

(U∗) is about 5, when U∗ = U/fND becomes roughly equal to the inverse of the

Strouhal number 1/S (U = free stream velocity, fN = natural frequency in still

water, D = diameter). In the present study, we shall see that vortex-induced

vibration may occur over an immense regime of frequencies (f ), up to several

hundred times the natural frequency, and indeed as f/fN → ∞. The regime

of normalised velocities over which there is large-amplitude resonant response

may also extend to infinity. This is far from the general view one has of classical

resonance. In this work, we seek to determine how the value of critical mass,

below which the phenomenon of an infinitely wide regime of resonance occurs,

is influenced by Reynolds number.

In this study, we focus on the conceptually simple case of an elastically

mounted cylinder, constrained to move only transverse to a flow. Khalak &

Williamson (1999) showed that for low combined mass-damping, such a system

will have three branches of response when normalized amplitude (A∗ = A/D)

is plotted against normalized velocity (U∗): an initial response branch, an upper

branch, and a lower branch. (An example of the three branch response may be

found later in Figure 6.2.) They found that for a system with a relatively high

mass ratio of 10 (m∗ = oscillating mass/displaced fluid mass), the high ampli-

tude upper branch exists for U∗ between about 4.5 and 5.5, which corresponds

with the vortex formation frequency (fvo) being close to the natural frequency

of the structure, fvo ≈ fN , mentioned above. However, as the mass ratio is de-

creased to m∗ = 1.19, the upper branch persists to U∗ = 10.5, double the expected

regime of U∗ for resonant conditions. Govardhan & Williamson (2000) pushed

mass ratio even lower to 0.52 and found that high amplitude vibration (A∗ ∼ 1)
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persisted to the upper flow speed limits of their flow facility (up to U∗ = 22),

with no signs of diminishing. At this point, the frequency of vibration reaches

four times the natural frequency of the system (f = 4fN ), which is clearly a

departure from classical resonance.

In order to understand why the frequency of large-amplitude vibration can

become so much higher than the natural frequency, it is useful at this point

to introduce an equation of motion for a system undergoing vortex-induced

vibration in the transverse y-direction:

mÿ + cẏ + ky = F (t), (6.1)

where m is the oscillating mass; c is the structural damping; k is the spring

constant; and F (t) is the fluid force in the transverse direction. When the body

oscillation is synchronized with the periodic vortex wake mode, the force and

displacement are generally well approximated by sinusoidal functions:

y(t) = A sin (ωt), (6.2)

F (t) = F1 sin (ωt + φ), (6.3)

where ω = 2πf and φ = the phase angle between the fluid force and the body

displacement. If we substitute (6.2) and (6.3) into the equation of motion (6.1),

following the approach of Khalak & Williamson (1999), we can obtain an “am-

plitude equation”:

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U∗

f ∗

)2

f ∗, (6.4)

and a “frequency equation”:

f ∗ =

√
m∗ + CA

m∗ + CEA

, (6.5)

where CY = the transverse force coefficient = FY /1
2
ρU2DL (ρ = fluid density, L =

submerged length); CA = the potential added mass coefficient (= 1.0 for a circular

128



cylinder); and ζ = the damping ratio = c/2
√

k(m + mA) (mA = the added mass

= CA× the mass of fluid displaced). CEA is the effective added mass coefficient,

related to the force in phase with acceleration as follows:

CEA =
1

2π3

CY cos φ

A∗

(
U∗

f ∗

)2

, (6.6)

From (6.5), we see that the effective added mass (CEA) can play an important

role in determining the frequency ratio (f ∗ = f/fN ). Govardhan & Williamson

(2000) found that throughout the lower response branch in free vibration, the

effective added mass was given approximately by CEA = - 0.54, so that the fre-

quency ratio is given by:

f ∗ =

√
m∗ + CA

m∗ − 0.54
, (6.7)

Therefore as the mass ratio (m∗) is reduced, the frequency ratio (f ∗) in the

lower branch can become large. Furthermore, when the mass ratio falls below a

critical value of m∗
crit = 0.54, the lower branch will never be reached, and ceases

to exist. The upper branch will then persist indefinitely, up to infinite normal-

ized velocity (U∗ →∞), giving an infinitely wide regime of resonance.

To confirm the existence of this regime of resonance, Govardhan &

Williamson (2002), for Re = 22,000, measured the dynamics of a freely vibrat-

ing cylinder operating at infinite normalized velocity, U∗ = U/fND →∞, which

could be achieved by removing the springs from their experimental arrange-

ment, giving the system a natural frequency, fN = 0. They found that if the

mass ratio of the structure fell below a certain critical value, the system would

suddenly exhibit large amplitude vibrations, proving the existence of an infi-

nite regime of resonance. The value they found for m∗
crit was 0.542, which is the

same value predicted from the elastically mounted experiments of Govardhan

129



& Williamson (2000), at the same Reynolds number.

Our motivation for the present study is triggered from some controlled vi-

bration measurements, where we prescribe the motion of the cylinder to be a

sine wave relative to the fluid, defined by a normalised amplitude and wave-

length. (The experiments were actually achieved by transverse vibrations of a

body in the flow of a water channel). Using controlled vibration, we compile

very high resolution fluid force contours, leading to accurate prediction of the

response for a freely vibrating cylinder, as presented in Ref. 8. Such force con-

tours may also be used to predict the critical mass in a VIV system. In the case

of the controlled experiments conducted at Re = 4,000, we found m∗
crit = 0.36.

Initially, this was a disconcerting result for us, since almost all of our previous

experiments yielded the value close to 0.54. It remains a question why we find a

distinctly different value for the critical mass here, from controlled vibration, as

opposed to the value found from free vibration. Could this be a function of the

fact there is some fundamental difference between forced and free vibration ex-

periments? This disparity is the principal trigger for this study, and essentially

we will find that controlled and free vibration experiments are quite consistent;

it is the dependance of the critical mass on Reynolds number that will explain

the differences.

The free vibration experiments from Govardhan & Williamson (2002), were

conducted at Re = 22,000, whereas the controlled vibration was compiled for Re

= 4,000. Reynolds number is known to have a significant effect on the peak am-

plitude of response, as shown by Govardhan & Williamson (2005a) and Klamo,

Leonard & Roshko (2005), and characterized in more detail by Govardhan &

Williamson (2006), so we might therefore expect a possible effect of Reynolds
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number on the deduced value of critical mass.

From numerical simulations at low Reynolds numbers, where the vortex for-

mation is laminar, Govardhan & Williamson (2002) used some of the results

from simulations by Shiels, Leonard & Roshko (2001), to determine a critical

mass of 0.25 at Re = 100. Ryan, Thompson & Hourigan (2005) also used nu-

merical simulations in the laminar regime Re = 50-200, and found critical mass

values in the range, Re = 0.1 - 0.5. In the present study, we focus on a range

of Re from 4,000 to 32,000, where vortex formation is quite different. This is

part of a regime of wake vortex dynamics for a stationary cylinder from Re =

1,000 - 100,000, where the evolving vortices are turbulent, and one finds the drag

and Strouhal number are only slowly varying with Reynolds number. (Roshko,

1993; Williamson, 1996)

In the present study, we have set up our cylinder free to move only trans-

verse to the free stream in a water channel. As described briefly in §6.2, the

cylinder is mounted to a carriage, which is usually restrained by springs. How-

ever, the principal free vibration experiments, in §6.3, are those for which we

have removed the springs, to yield an infinite normalised velocity U∗. Under

these conditions we can vary the mass of the oscillating structure to yield the

critical mass, below which the body will suddenly start to vibrate vigorously.

By varying Reynolds number, we determine its influence on critical mass. Vor-

ticity measurements demonstrate the vortex formation modes responsible for

enabling the body to vibrate at large amplitude, throughout the variation of

Reynolds number studied here. In §6.4, we describe how one may predict the

value of critical mass from either free or controlled vibration data, and deter-

mine its variation with Reynolds number. These results are found to be in good
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agreement with the experiments where we have no restoring force, and where

the normalised velocity is infinite. Conclusions from this work are presented in

§6.5.

6.2 Experimental Details

The present experiments are conducted using a hydroelastic facility, in conjunc-

tion with the Cornell-ONR Water Channel, both of which are described in detail

by Khalak & Williamson (1996, 1999). The hydroelastic facility is comprised of a

vertical cylinder suspended from a carriage, which rides normal to the flow on

air bearings mounted above the water channel, providing very low structural

damping. In the present case no springs are used (k = 0), so the motion of the

body is not restrained transverse to the flow. The cylinder has a diameter of 7

cm and submerged length 44.5 cm. Flow speed is varied from 11.4 cm/s to 38.6

cm/s, yielding Re from 8,000 to 27,000. The water channel has a cross section

of 38.1 cm by 50.8 cm, and the turbulence level in the test section of the water

channel is less than 0.9%. The displacement of the cylinder is measured using a

non-contact magnetostrictive sensor.

In addition to the free vibration experiments, we present force data from

controlled vibration, using the same flow facility. The cylinder is suspended

vertically from a carriage on a transverse lead screw, which is driven by a com-

puter controlled motor to give sinusoidal oscillation. We measure fluid forces on

the body with a two-axis force balance utilizing LVDTs (linear variable distance

transducers) over a wide range of normalized amplitude, A∗, and wavelength,

λ∗ = λ/D, (noting that λ∗ is equivalent to U∗/f ∗ or U/fD). Controlled vibration
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experiments are conducted at Re = 4,000 (using a 3.81 cm diameter and 38.1 cm

length cylinder), and at Re = 12,000 (using a 6 cm diameter and 42 cm length

cylinder). These measurements are conducted at high resolution (intervals of

0.02 for A∗ and 0.2 for U∗/f ∗).

In order to measure velocity and vorticity in the flow, using DPIV, the flow

is seeded with 14-micron silver coated glass spheres, which are illuminated by a

sheet of laser light from a 50 mJ Nd:Yag pulsed laser. Pairs of particle images are

acquired using a Jai CV-M2CL CCD camera (1600 x 1200 pixels), and analyzed

using cross-correlation of sub-images. We use a two-step windowing process

(with window shifting) to obtain particle displacements between image pairs.

6.3 Vortex-induced vibration at infinite normalized velocity

The intention here is to set up a system which represents a body operating at

infinite normalised velocity U∗, and to determine for what value of the mass the

system will suddenly commence large amplitude vibration. As mentioned ear-

lier, this is achieved by having the cylinder free to move transverse to the flow,

on air bearings, and to remove the restraint of springs. Under such conditions,

Govardhan & Williamson (2002) observed a sudden jump in the amplitude of

vibration as the mass ratio was decreased below a critical mass ratio, m∗
crit =

0.542, in their case for Re = 22,000, as shown in Figure 6.1(a). In the present

case, we show from a similar experiment at Re = 12,000, in Figure 6.1(b) the

existence of a sharp jump in amplitude at m∗
crit = 0.505, so already one may de-

termine some effect of Reynolds number. These and other data points (from 5

different Re) for critical mass are plotted in Figure 6.5 later, as the solid symbols,
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Figure 6.1: Existence of a critical mass ratio. We plot amplitude of vibration (A∗)
as mass ratio (m∗) is varied for a system with no restoring force, giving infinite
normalized velocity. (a) Re = 22,000 from Govardhan & Williamson (2002), (b)
Re = 12,000, present results. • : m∗ < m∗

crit; ◦ : m∗ > m∗
crit.

indicating clearly the effect of Reynolds number.

In addition to the jump in amplitude of response, there is also a sudden

change in the oscillation frequency, as the mass ratio is decreased below the

critical value. This may be seen in a plot of amplitude (A∗) versus wavelength

(U∗/f ∗) in Figure 6.2. The response curve in this plot is computed using the

fluid force data from controlled vibrations. In this case, we have a contour of

CY sin φ, which is the coefficient of force in phase with the body’s velocity; it
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Figure 6.2: Locations of the operating point in the normalized amplitude-
velocity plane for Re = 12,000. (—) Zero excitation contour from controlled vi-
bration data. •mass ratios below m∗

crit lie in the upper to lower branch transition
region, ◦ mass ratios above m∗

crit lie in the desynchronized regime.

is the normalised fluid excitation, or energy transfer from fluid to body mo-

tion, which under steady state conditions, must equal the normalised energy

lost to damping per cycle (see equation 6.4). Our response plot in Figure 6.2

comes from the contour of zero excitation (CY sin φ = 0), so this represents the

predicted free vibration response for zero damping. To return to the change in

frequency mentioned above, this is observed in Figure 6.2 where there is a sud-

den change in the value of U∗/f ∗ (from the open symbols to the solid symbols),

as the body commences large amplitude vibration, in a location which we call

the “operating point”. For m∗ < m∗
crit , the operating point falls in a region in

between the upper and lower branches of response. In this region, we find the
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vortex formation mode to be the 2P mode, an example of which is shown in Fig-

ure 6.3(a), representing two vortex pairs formed per cycle of motion, following

the nomenclature of Williamson & Roshko (1988). For m∗ > m∗
crit , the operating

point falls in the region where the wake is desynchronized from the body os-

cillation, an example of which is shown in Figure 6.3(b). The critical mass thus

defines not only a sharp jump in amplitude and frequency, but also a distinct

change in vortex formation mode.

6.4 Influence of Reynolds number on prediction of critical

mass

We would like to determine the critical mass from free vibration plots, and show,

for example, a representative schematic of such a plot in Figure 6.4. In this ex-

ample, we again consider a response in the amplitude-wavelength plane for

zero damping (so that CY sin φ = 0), at Reynolds number of 4,000. We now im-

pose the condition of zero spring stiffness, k = 0, which places us at infinite

normalised velocity, U∗ → ∞, and we have from the frequency equation (6.5)

that:

m∗ = −CEA (6.8)

At the operating point in the amplitude-wavelength plane of Figure 6.4, both

the frequency equation (6.8) and the amplitude equation, which in this case is:

CY sin φ = 0 (6.9)

must be satisfied. Thus for a system with no springs and zero damping, the

operating point, for a given mass m∗ and Reynolds number, will be the inter-
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Figure 6.3: Streamlines and vorticity contours from DPIV for the 2P vortex for-
mation mode (a): A∗ = 0.8, U∗/f ∗ = 5.6 (phase-averaged over 10 cycles of vi-
bration) and for a desynchronized wake (b): A∗ = 0.1, U∗/f ∗ = 8.0 (not phase-
averaged) at Re = 4,000. Streamlines are shown for a frame of reference moving
to the right with the free stream velocity. Vorticity contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...

section of the zero excitation contour (CY sin φ = 0) and the m∗ = −CEA contour,

shown schematically in Figure 6.4.

When we are operating at infinite U∗, we wish to search for the maximum mass

ratio m∗, beyond which the large amplitude motions cease. This will be the critical

mass. Along the amplitude response curves in Figure 6.4, we determine the

measured value of CEA. From equation (6.8), we simply look for the maximum
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Figure 6.4: Schematic diagram showing how the operating point is determined.
The system will oscillate at the point where both the A∗-equation and the f ∗-
equation are satisfied. If no such point exists, the system will not oscillate. (–
– –) indicates the upper to lower transition region, (- - -) indicates the desyn-
chronized regime. We also show values of CEA at various points along the zero
excitation contour.

value of [−CEA], which we write as [−CEA]max . In other words, any mass below

this value would correspond to some point in the response plot having large am-

plitude vibration. We should note that [−CEA] or m∗ increases as U∗ increases,

along the zero excitation contour in Figure 6.4, so we are seeking [−CEA]max or

m∗
crit at the right hand end of the lower branch of response. This corresponds

with the point labelled by the cross.

One further side point to note here is that the experiments at infinite nor-

malised velocity (condition of no springs), in Figure 6.2, yield the large ampli-

tude response between upper and lower response branches (the solid symbols),
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rather than giving such an experimental response at the right hand end of the

lower branch. This happens because, for Re = 12,000, along the lower branch,

the value of CEA changes only a tiny amount, and the experiments were not fine

enough to pick up points intermediate to the solid symbols and the end of the

lower branch.

The results of applying the ideas above to determine critical mass are shown

in Figure 6.5, along with the earlier data found by experiments without springs.

Data using controlled vibration experiments are shown as the open circles, and

data from several previous studies, at very low damping, are shown as the tri-

angles and squares. We use this approach for experimental data, at very low

damping, from Govardhan & Williamson (2000); Hover, Tvedt & Triantafyllou

(2001); Branković & Bearman (2006); and Hover, Techet & Triantafyllou (1998).

We see a good agreement from all the types of data and approaches, yielding a

consistent trend amongst all the data; the critical mass ratio increases gradually

from 0.36 to 0.54, as Re increases from 4,000 to 30,000.

This fact that the critical mass approximately reaches a constant level of 0.54

at around Re = 16,000, explains why so many of our early studies, in a range

of Reynolds numbers from 15,000 - 22,000, yielded a critical mass of 0.54. It

also suggests that our observation that critical mass is 0.36 from the controlled

vibration approach, while being quite different from the value 0.54 in free vi-

bration, is not some intrinsic difference brought on by using these two different

approaches, but rather it is simply an effect of different Reynolds numbers.

Evaluation of the critical mass is also useful to find the regime of velocity,

U∗, over which there is large amplitude response. For a system of low mass-

damping, the right hand end of the lower branch lies at U∗/f ∗ ≈ 9.5. Thus U∗
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Figure 6.5: Critical mass as a function of Re. Values of m∗
crit are obtained from

experiments at infinite normalized velocity: • present results, ¥ from Govard-
han & Williamson (2002). Predictions of the critical mass are found using CEA in
the lower branch from controlled vibration: ◦ present results, and from free vi-
bration: ¤ Govardhan & Williamson (2000), and unpublished data taken at the
same time. We also show data: M Hover et al. (2001), C Branković & Bearman
(2006), B Hover et al. (1998)

for the end of synchronization is governed by:

U∗
end ≈ 9.5

√
m∗ + CA

m∗ −m∗
crit

(6.10)

and is shown for different values of Re in Figure 6.6. To quote typical values,

for moderate Reynolds numbers, Re ∼ 30, 000, one would wish to avoid lightly

damped structures of order m∗ = 1, where one would expect large amplitude

vibration even up to U∗ ∼ 20. Of course lighter structures, of relative density

close to 54%, and for velocities above U∗ = 3, will not be able to escape large

vibrations, at any flow speed.
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Figure 6.6: The regime of normalized velocity (U∗) where a synchronized re-
sponse can occur for Re = 4,000 (a) and Re = 24,000 (b). The end of synchro-
nization will depend on the value of m∗, and on m∗

crit which depends on Re, as
shown in Figure 6.5.

6.5 Conclusions

The discovery that, for moderate structural mass of a vibrating structure, there

exists a critical mass below which a body can resonate over an unlimited regime

of normalised velocities (U∗ →∞), is significant for practical applications. Such

bodies may vibrate at frequencies several hundred times the natural frequency

of the structure in the fluid, and so this phenomenon is clearly quite distinct

from classical resonance, where one expects the vibrating frequency at reso-

nance to be close to the natural frequency. We are interested, in this study, in de-

signing investigations which may quantify both the critical mass for a given VIV

configuration, and in determining the regime of flow speeds giving large am-

plitude vibrations. This work in this study was triggered by the fact that there

appeared to be distinct differences in the predicted critical mass coming from
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the controlled vibration approach to VIV, as compared to results coming from

free vibration experiments. Some conclusions in previous works suggested that

one must expect differences in VIV results to arise because there are intrinsic dif-

ferences between these two approaches. However, we show here that it is the

Reynolds number that influences the value of m∗
crit , rather than the approach.

Indeed, there is a very good agreement between the predictions of critical mass

from controlled vibration, and the direct measurements from free vibration ex-

periments.

Our approaches involve experiments where a cylinder is confined to trans-

verse vibration at extremely low damping, but where the spring restraints are

removed, yielding effectively an infinite normalised velocity. In other words,

if, under these conditions, one finds a mass below which there is a catastrophic

jump to periodic large amplitude motion, then this indicates that the regime of

resonant vibrations has reached infinite normalised flow speed, for masses be-

low that value. In essence, one has found the critical mass. We also determine

this mass from controlled vibration studies, and from experiments of selected

previous studies with very light damping, where one may compute the effective

added mass, and deduce the critical mass. The critical mass is clearly influenced

by Reynolds number, rising from 0.36 at Re = 4,000 to 0.54 at Re = 16,000, and

continuing to be close to 0.54 as Reynolds numbers rise to 30,000. The plateau

beyond Re = 16,000, and the fact that most of our previous experiments (Go-

vardhan & Williamson, 2000, 2002) were for Re greater than this value, explains

why we had assumed 0.54 to be the value to use. Over this regime of Re = 4,000

- 30,000, we have found the vortex formation regime to switch from a desyn-

chronised mode, at higher m∗, to the 2P mode, whereby two vortex pairs are

formed per cycle, for m∗ below the critical mass. By careful exploitation of dif-
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ferent approaches and different studies, we now present the effect of Reynolds

number on the critical mass, over this regime of Re.

The significance in finding this influence of Reynolds number on critical

mass lies in the fact that this parameter defines the regime of velocities that one

might consider avoiding when employing light structures, or those in a marine

environment, where typically m∗ < 10. The evaluation of critical mass in sev-

eral studies, including one degree of freedom vibrating cylinders (Govardhan &

Williamson, 2002), two degree of freedom configurations (Jauvtis & Williamson,

2004), pivoted columns (Flemming & Williamson, 2005), tethered spheres (Go-

vardhan & Williamson, 2005b), have all yielded critical mass between 0.5 - 1.0. It

is obviously of interest to answer a fundamental question which remains: why

must one expect such a value for critical mass in such systems? We are presently

addressing this questions.
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CHAPTER 7

The effect of end conditions on the vortex-induced
vibration of cylinders

MORSE, T. L., GOVARDHAN, R. N. & WILLIAMSON, C. H. K. (2009)

To appear in Journal of Fluids and Structures.

In the present investigation we study the effect of end conditions on the

vortex-induced vibration of an elastically mounted rigid cylinder. This work

was triggered by some initial controlled vibration experiments which showed

that spanwise end conditions can have a large effect on measured fluid forces on

a cylinder, and this suggested that some of the disparity amongst previous free

vibration studies may possibly be attributed to differences in end conditions. In

the principal experiments here, we are concerned with a vertical cylinder pierc-

ing the clean free surface of a water channel, and attached to a carriage system

mounted atop the channel. The upper end of the submerged cylinder is thus the

free surface, while the lower end is manipulated to yield three different condi-

tions, namely: an attached endplate; an unattached endplate fixed to the chan-

nel floor (with a variable gap between cylinder and plate); and a condition of

no endplate at all. Interestingly, we find that the free vibration response for the

attached and unattached endplate cases were nearly identical. One expectation

was that the case without an endplate would lead to a flow around the end of the

body, modifying the vortex dynamics, and thereby reducing the correlation of

the induced fluid forces on the body. Surprisingly, over the entire response plot,

the vibration amplitude is markedly higher in the absence of an endplate, with the ex-

ception of the peak amplitude, which remains nearly unchanged. Unexpectedly,
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the vibrations become much more steady at flow velocities in the vicinity of the

peak response, if the endplate is removed. In a further set of experiments, we

undertake controlled vibration, where we vary the gap between cylinder and

endplate. We discover a large discontinuous jump in the magnitude of fluid

excitation, when the gap exceeds 15% of a diameter. For larger gaps, the fluid

excitation becomes independent of the gap size, effectively equivalent to hav-

ing no plate at all. This study is consistent with some of the disparity between

the character of vibration response plots in previous studies, if one takes into

account the particular end conditions chosen in those studies.

7.1 Introduction

Vortex-induced vibration is an important problem in many fields of engineer-

ing. It affects the dynamics of riser tubes bringing oil from the seabed to the

surface, as well as civil engineering structures such as bridges, chimneys, and

buildings, and is cause for concern in many other practical applications. The

range of problems caused by vortex-induced vibration has led to a large number

of experimental and computational studies on the subject, including several re-

view articles, for example: Sarpkaya (1979), Griffin & Ramberg (1982), Bearman

(1984), Parkinson (1989), and more recently Williamson & Govardhan (2004).

In studies of vortex-induced vibration, the case of an elastically mounted

rigid cylinder, constrained to move transverse to an incoming flow, is often used

as a paradigm for understanding more diverse experimental arrangements. The

present study of the effects of spanwise end conditions on free vibration re-

sponse has actually been triggered by some recent experiments (shown in Chap-
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ter 2 Morse & Williamson, 2006), where we set out to conduct controlled vibra-

tions of a body, and to make accurate comparisons with free vibration stud-

ies, involving measurements of fluid force, and predictions of amplitude. Our

own free-vibration arrangement comprises a vertical cylinder, attached below

an air-bearing carriage system sitting atop a water channel. The lower end of

the submerged portion of the cylinder vibrates transversely above an endplate

that is fixed to the channel floor. (It is noted briefly that we were careful to en-

sure“clean” free surface conditions, removing any dust film that may be present,

and enabling the vortex lines to pass through the surface consistent with vor-

tex formation parallel to the body). At the outset, we were discouraged to find

significant disparity between forces measured from our controlled experiments

versus those measured for free vibration, under the same conditions of ampli-

tude and frequency (see Figure 7.1). It soon became apparent that the key to the

large differences in fluid forces was due to the sensitivity of the flow around the

body to small differences in the gap dimension between cylinder and endplate.

Such effects are clearly seen in the force fluctuations exhibited in Figure 7.1,

showing marked differences for different gap sizes (different values of g∗ = gap

/ diameter). On the other hand, if one ensures precisely the same experimental

arrangements between the free and controlled vibration cases, one not only ob-

serves the fluid forces to be nearly identical, but one also finds highly accurate

response prediction (as shown in Chapter 4, Morse & Williamson, 2009c). On

the basis of these preliminary results, we can therefore expect differences in ex-

perimental end condition arrangements between different researchers to affect

the free vibration response, as well as the fluid forcing from vortex dynamics.

A further interesting fact will emerge from the comparison of force fluctu-

ations in Figure 7.1. Upon inspection of these fluctuations, one would suspect
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y/D (A∗ = 0.60, U∗/f ∗ = 7.55), the free vibration forces in (b) differ substantially
from the controlled vibration forces in (c). We deduce that these differences are
due the sensitivity of the flow to gap size. We define the gap size (g∗) as the gap
between the bottom of the cylinder and an unattached endplate, divided by the
cylinder diameter.

that the more organized periodic forces for the small gap (g∗ = 0.05) would pro-

vide a larger energy transfer from fluid to body motion, than would be found

at the larger gap (g∗ = 0.44), where the forces are less periodic. (One would nat-

urally expect the vortex formation to be disrupted due to the flow around the

ends.) In fact, the converse is true! The larger gap in (c) yields greater energy

transfer, and the system would, if elastically mounted, increase its displacement

amplitude; in essence, the larger gap would yield a larger vibration amplitude.

This counter-intuitive result has been part of the stimulus for this study. One

of the keys to understanding this result, is the fact that increasing the gap also
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modifies the phase between fluid force and body motion (φ) such that the en-

ergy of excitation increases.

We are concerned, in this study, primarily with low values of mass and

damping for a vibrating structure, and therefore focus on experiments con-

ducted in water facilities; namely, water channels and towing tanks. We men-

tion here some of the variety of end conditions employed in previous exper-

iments in water facilities. Research groups in Norway have primarily used

towing tanks, with horizontal cylinders supported by struts from an elastic

structure above the tank, with circular endplates attached to the cylinder ends

(Anand & Torum, 1985; Moe & Overvik, 1982; Vikestad et al., 2000). The group at

MIT (for example, Hover et al., 1998) have also been using a horizontal cylinder

with attached endplates in their towing tank experiments. In their case, they

have developed an ingenious technique involving representation of the mass,

damping and stiffness on a computer, while the fluid force is actually measured

from their cylinder in the tank. This Virtual Cable Testing Apparatus allows them

to run “virtual” free vibration experiments. In the experiments of Sarpkaya

(1995), he has also used a horizontal cylinder suspended by struts, but in his

case the endplates were fixed to the tunnel walls with a small gap separating

them from the cylinder.

Vertical cylinders have also been used, beginning with recent studies by

Khalak & Williamson (1996), who used a vertical cylinder (in a water channel)

that was suspended from a carriage mounted on air bearings. They used an

unattached endplate fixed to the channel floor. Jauvtis & Williamson (2004)

set up a pendulum for two degree-of-freedom experiments, with a cylinder

suspended beneath it in a water channel, again using an unattached endplate,
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whereas Owen, Bearman & Szewczyk (2001) for their pendulum arrangement,

employed endplates fixed to the cylinder. Branković & Bearman (2006) have

also conducted vertical cylinder experiments, but without endplates at all, leav-

ing a small gap between the body and the channel floor (and allowing the pos-

sibility for the channel boundary layer to influence the end conditions). Klamo,

Leonard & Roshko (2006) also used a free end without endplates. In summary,

these experimental arrangements indicate the variety of approaches to treating

the end conditions, and it must be expected that there will also be a variety of re-

sponses, due to the different end conditions, even if all other flow parameters are kept

constant. The expectation of such differences is part of the stimulus of this study.

Much attention has been paid to the effect on free vibration response of vary-

ing experimental parameters such as mass and damping, and more recently,

Reynolds numbers (see Govardhan & Williamson, 2005a, 2006; Klamo et al.,

2005). Reynolds number is defined by Re = UD/ν, where U is free stream veloc-

ity, D is diameter, and ν is the kinematic viscosity. However, the effects of end

conditions on free vibration response have been largely overlooked, and there

has been no systematic study in the literature concerning the effects on response

coming from different types of spanwise end configurations.

In the case of fixed cylinders in a flow, the end boundary conditions can

have an important effect on the flow over both short cylinders (Slaouti & Ger-

rard, 1981), and over long cylinders even hundreds of diameters in length

(Williamson, 1988, 1989, 1996). The vortex dynamics in the laminar regime (Re

< 190), and for moderate Re ∼ 5,000 (Prasad & Williamson, 1997), are affected

by end conditions. It is also well known that the length-diameter ratio (Szepessy

& Bearman, 1992), and the end conditions, can affect the pressure distribution
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(a) Unattached endplate (b) Attached endplate (d) Channel floor(c) Free end

cylinder

end plate

Figure 7.2: Schematic diagram of some typical end conditions: (a) unattached
endplate, with a small gap between the endplate and the bottom of the cylinder
(b) attached endplate, (c) free end, (d) cylinder end close to the channel floor.

along the span (Stansby, 1974). One might suspect that body oscillations would

reduce such effects, because vibration increases correlation lengths and vortex

formation coherence along the span. However, Hover et al. (2004) have mea-

sured the correlation between fluid forces measured at both ends of a cylinder

undergoing vortex-induced motion, and found that it drops significantly for os-

cillation frequencies below the natural vortex shedding frequency. Our present

results will also show that a variation of end conditions has the most effect on re-

sponse when the oscillation frequency is below the natural shedding frequency

(in which case the normalized velocity exceeds the value corresponding to the

peak amplitude response).

In the present work, we will principally be concerned with the effects of

three different end boundary conditions, as illustrated later in Figure 7.2: the

case of an unattached endplate (where we may vary the gap between cylinder

and plate); an attached endplate; and the case of no endplate. As these bound-

ary conditions are modified, we keep all other parameters, such as the cylinder

dimensions, mass, damping and Reynolds number the same. We will also be
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primarily interested in experiments at high amplitude, under conditions of low

mass and damping. In this case, previous studies have shown the existence of

three branches of response (Khalak & Williamson, 1999), as illustrated in Fig-

ure 7.3 (the solid symbols), namely the initial branch (marked by the letter I),

the upper branch (U), and the lower branch (L). There are therefore two mode

transitions in this case. The first transition between the initial-upper branch is

hysteretic, while the second one between the upper-lower branch involves an

intermittent switching of modes. The transitions and their relationship with

vortex dynamics modes and fluid forces were studied in detail by Govard-

han & Williamson (2000). With respect to the present study, we wish to know

how the end boundary conditions might affect the character of these response

branches, their peak amplitudes, their regime of synchronization, and the pos-

sible changes to the mode transitions.

We shall describe the experimental approaches in §7.2. The influence of end

conditions on free vibration response are studied in §7.3, while the effects of end

conditions on forces measured in controlled vibration are included in §7.4. Brief

comparisons with previous investigations, where various different end condi-

tions are employed, are presented in §7.5, followed by the conclusions in §7.6.

7.2 Experimental details

Our free vibration experiments are conducted using a hydroelastic facility de-

scribed in detail in Khalak & Williamson (1996). The cylinder is suspended ver-

tically from a carriage above the test section of the Cornell-ONR Water Channel.

The carriage is attached to shafts which ride through air bearings. This system
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constrains the cylinder to move only transverse to the free stream flow, while

ensuring very low structural damping. Springs of varying stiffness can be at-

tached to the carriage to adjust the system elasticity, and mass can be added to

the carriage to vary the system mass ratio. The test section of the water channel

has a cross section of 38.1 cm x 50.8 cm. The flow speed is varied in the range

10-32 cm/s, and the turbulence level in the test section is measured to be less

than 0.9%. The cylinder diameter is 5.08 cm, and has a submerged depth of 40.6

cm, giving an aspect ratio (L/D) of 8, and a Reynolds number regime, Re = 5,000

- 16,000 over a range of flow speeds. The transverse displacement is measured

using a non-contact (magnetostrictive) position transducer. The reported ampli-

tude is the average of the top 10% of the individual amplitude peaks, evaluated

in the manner described by Hover et al. (1998). In our case, we measure this

amplitude over a complete displacement time trace of several hundred cycles.

For our controlled vibration measurements, we use precisely the same cylin-

der, but in this case it is suspended from a transverse lead screw system, driven

by a computer-controlled motor. A two-axis force balance, utilizing linear vari-

able displacement transducers (LVDTs), was used to measure the lift and drag

forces on the body. The inertial forces due to the oscillating structural mass are

subtracted from the total measured force, to yield the fluid forces on the cylin-

der. Instantaneous phase measurements are obtained through use of the Hilbert

transform (see Khalak & Williamson, 1999).

Our three end condition arrangements were exhibited earlier in Figure 7.2.

For the unattached endplate case, we can vary the gap, such that g∗ = 0.02−0.5,

where the smallest gap corresponds to close to 1 mm. The endplate is rectan-

gular (50.8 cm x 36.8 cm wide) with rounded corners. The attached endplate is
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circular with a diameter of 20.3 cm (four times the cylinder diameter). In the

case without an endplate, the bottom of the cylinder is about 7 cm from the

channel floor.

In this study, we will need to define the energy transfer between fluid and

body motion, and present the relevant non-dimensional groups. We introduce

here an equation of motion often used to represent the vortex-induced vibration

of a cylinder in the transverse y-direction (perpendicular to the free stream) as

follows:

mÿ + cẏ + ky = F (t), (7.1)

where m = system mass; c = structural damping; k = spring stiffness; and F (t)

= fluid force in the transverse direction. When the body motion is synchronized

with the vortex shedding, reasonable approximations to the force and motion

are often given as:

y = A sin (ωt), (7.2)

F (t) = F1 sin (ωt + φ), (7.3)

where ω = 2πf ; f = oscillation frequency. The phase angle (φ), between fluid

force and body displacement, is crucial in determining the energy transfer from

fluid to body motion, and hence in influencing the amplitude of oscillation. We

select a set of relevant non-dimensional parameters in this problem, which are

presented in Table 7.1.

The response amplitude and frequency may be derived in a straightforward

manner, along the lines of Khalak & Williamson (1999), as follows:

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U∗

f ∗

)2

f ∗, (7.4)

f ∗ =

√
m∗ + CA

m∗ + CEA

, (7.5)
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Table 7.1: Non-dimensional groups. In the groups below, U is the free-stream
velocity, f is the oscillation frequency, fN is the natural frequency in water, D is
the cylinder diameter, L is the submerged length, ρ is the fluid density, ν is the
fluid kinematic viscosity, and g is the gap between the endplate and the cylinder.
The added mass, mA is given by mA = CAmd, where md is the displaced fluid
mass and CA is the potential added mass coefficient (CA = 1.0 for a circular
cylinder).

Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

2
√

k(m + mA)

Velocity ratio U∗ U

fND

Amplitude ratio A∗ A

D

Frequency ratio f ∗
f

fN

Transverse force coefficient CY
F

1
2
ρU2DL

Gap ratio g∗
g

D

Reynolds number Re
UD

ν

where CA is the potential flow added mass coefficient (CA = 1.0 for a circular

cylinder), and CEA is an “effective” added mass coefficient that includes an ap-

parent effect due to the total transverse force in phase with body acceleration

(CY cos φ):

CEA =
1

2π3

CY cos φ

A∗

(
U∗

f ∗

)2

, (7.6)

where these non-dimensional groups {A∗, U∗, f ∗, CY ,m∗} are defined in Table

7.1.

The amplitude equation (7.4) above shows the importance of the normalized
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fluid excitation (CY sin φ) in determining the amplitude of vibration. For a sys-

tem in steady state, the fluid excitation is balanced by the energy lost due to

structural damping. Thus CY sin φ will always be positive, and quite small for

a system of low mass-damping. In controlled vibration experiments, the fluid

excitation is often measured for a cylinder moving with a prescribed amplitude

and frequency, and the above equations are used to make predictions about the

free vibration response from these measurements.

7.3 Effect of end conditions on free vibration response

In this work we focus on systems with low mass-damping, with a mass ratio

of m∗ = 9.3, and a mass-damping of (m∗ + CA)ζ = 0.014. We measure the free

vibration response of the system, for varying end conditions, keeping all other

aspects of the experimental arrangement the same.

7.3.1 Comparison between unattached endplate and no endplate

We are interested here in the classic case where there is an unattached endplate

(with g∗ = 0.04), and we shall compare this condition with having no endplate

at all. Employing the endplate, our response shows the typical three branches:

initial, upper, and lower (denoted with I, U, and L in Figure 7.3). Without an

endplate, two points can be made immediately from Figure 7.3. Firstly, the am-

plitude decreases continuously, without clear evidence of an upper and lower

branch. A consistent trend is found for the frequency response, in that the fre-

quency, f ∗ increases gradually, without the characteristic jump in frequency as-

sociated with upper and lower response branches. Secondly, despite these dis-
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Figure 7.3: Response amplitude (A∗) and frequency (f ∗) as a function of the
normalized fluid velocity (U∗). Comparison between the unattached endplate
case, (g∗ = 0.04) (•), and the case without an endplate (◦). By removing the
endplate, the amplitude diminishes continuously from its peak value, without
evidence of a distinct upper and lower branch. m∗ = 9.3, (m∗ + CA)ζ = 0.014,
Re = 5, 000− 16, 000.
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ity ((U∗/f ∗)S). Comparison between the unattached endplate case, (g∗ = 0.04)
(•), and the case without an endplate (◦). The bull’s eyes indicate locations of
displacement time traces shown in Figure 7.5.

tinct changes in the shape of the amplitude and frequency response, the peak

amplitude remains almost precisely the same.

One might note that there is a horizontal shift between the response plots in

Figure 7.3, suggesting that some renormalization in the horizontal axis might

be considered. A useful normalized velocity is given as (U∗/f ∗)S, where

S = fvoD/U = Strouhal Number for the non-oscillating body. This is equivalent

to the parameter which relates the two most basic frequencies in the problem:

fvo/f , where fvo = vortex shedding frequency for the non-oscillating body, and f

= body oscillation frequency. Because of slight differences in the Strouhal num-

ber in the two sets of experiments (see also, Khalak & Williamson, 1996), the

renormalized plot appears to line up reasonably in Figure 7.4, in that the peak
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amplitudes, and the drop off in response at high U∗, occur at quite similar veloc-

ities. However, there is one major deduction to be made from this plot: over the

entire plot, the amplitude level for the case without an endplate is higher, except

right at the peak amplitude, where response is essentially the same. Without an

endplate, one would expect the vortex shedding to be disrupted by the flow

around the end of the span, and for the shedding to be less correlated along

the span, with smaller lift forces, and reduced response. One might therefore

interpret the higher response in Figure 7.4, when the endplate is removed, as

counter-intuitive.

Concerning the upper-lower branch transition, we characterize the response

now by observing briefly some typical time traces of body displacement, in Fig-

ure 7.5. For the unattached endplate, in the upper branch (Figure 7.5a), the

cylinder response shows some significant variation in amplitude, as has typi-

cally been found in previous studies (for example, Khalak & Williamson, 1996).

At higher normalized velocity (U∗/f ∗)S = 1.35, in the regime of upper-to-lower

branch transition, the cylinder response shows an intermittent switching be-

tween a higher, but somewhat unsteady amplitude of the upper branch, and a

lower but more steady amplitude of the lower branch. At still higher normal-

ized velocity (U∗/f ∗)S = 1.60, in the lower branch, the response becomes quite

periodic.

However, by removing the endplate, we were surprised to find that the un-

steady amplitude envelope, normally associated with the upper branch, is re-

placed by a remarkably steady vibration amplitude, shown clearly as (U∗/f ∗)S

is increased through 1.25-1.58. Not only is the amplitude level increased gener-

ally, without the endplate, as we saw earlier, but the vibrations become much
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Figure 7.5: Comparison of displacement time traces between the cylinder with
an unattached endplate, (g∗ = 0.04) (a), and a cylinder with no endplate (b).
The chosen normalized velocities, (U∗/f ∗)S correspond with the bull’s eyes in
Figure 7.4. The intermittent switching between the upper and lower branch
for the unattached endplate case is replaced by a much more periodic vibration
when the endplate is removed.

more steady if the endplate is removed, and the fluid is allowed to flow around

the end.

7.3.2 Comparison between unattached endplate and attached endplate

In this section we investigate the case where the endplate is attached to the end

of the cylinder, since it is a configuration commonly used in previous research

159



attached

endplate

unattached

endplate

I

U

L

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

U*

A*

Figure 7.6: Response amplitude (A∗) as a function of the normalized fluid ve-
locity (U∗). Comparison between the unattached endplate case, (g∗ = 0.04) (•),
and attached endplate case (¤). The responses are nearly identical for the two
cases. Although not shown, the frequency data for the attached endplate case
also agrees remarkably well with the unattached endplate case, shown in Figure
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studies. Our expectation in this case was that there would be distinct differences

compared with the case of the unattached endplate. However, there is a strong

similarity in both amplitude and frequency response, as shown in Figure 7.6.

Furthermore, although not shown here, the time traces of cylinder motion for

the two cases were virtually indistinguishable. To emphasize this agreement,

it is worth mentioning that the two data sets shown in Figure 7.6 were taken

eight years apart; the unattached endplate response was from a set of data taken

in 1998 (along with the data that was eventually published in Govardhan &

Williamson, 2000), while the attached endplate response was taken in 2006.
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Our initial suspicion was that the extra fluid forces on the attached endplate,

moving through the fluid with the cylinder, would have some effect to reduce

the system response, by adding some “effective” damping. However, we de-

duce from the results here that any small forces on the endplate must be in-

significant compared to the forcing due to the vortex shedding, and secondly

that the vortex formation is effectively the same in the presence of an endplate,

whether it is moving with the body or fixed with the respect to the laboratory.

Finally, on a practical note, we prefer to use the unattached endplate, because

changing the test body will not entail each time the addition of a custom end-

plate, whose surface must be scrutinized to be parallel to the fluid flow.

7.4 Study of end conditions through controlled vibration

The whole investigation in this study was actually stimulated by the wish to

extensively measure fluid forces on a body that is controlled to vibrate in a si-

nusoidal transverse vibration, at extremely high resolution. This required very

small increments of amplitude and frequency (Chapter 3 Morse & Williamson,

2009b). Obviously, with such an investment of effort to capture force contour

plots, it was imperative to study very precisely the correct experimental con-

ditions, from the outset. It was important to ensure we used the correct end

boundary conditions for the oscillating cylinder. Our chosen experimental ar-

rangement for the controlled vibrations is exactly the same as used for the free

vibration experiments in §7.3, except the motion was controlled to be strictly si-

nusoidal. We conducted experiments to match the values of A∗, U∗/f ∗, and Re

from the free vibration response (case of an unattached endplate). These partic-

ular points in the initial, upper, and lower branches are shown by the bull’s eye
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Figure 7.7: Time traces of transverse force (CY ) for an unattached endplate (g∗ =
0.04), and for no endplate in the initial and upper branches of response. For both
end conditions the motion of the cylinder (y/D) is controlled to be sinusoidal
with U∗/f ∗ = 6.0, A∗ = 0.34 in the initial branch, and with U∗/f ∗ = 5.8, A∗ =
0.98 in the upper branch.

symbols in Figure 7.6. For each chosen point, we run the controlled vibration

either with an unattached endplate or without an endplate, and compare the

measured forces.

In the initial branch, the fluid forcing is quite similar for both end conditions,

as shown in Figure 7.7. However, as expected, the forces start to exhibit some

differences when one studies the upper branch; the maximum level of trans-

verse force is approximately the same for each end condition, but there is more

intermittency for the unattached endplate case. This is consistent with the free

vibration experiments, where the upper branch is much steadier without an

endplate. Nevertheless, prior to any experiments, one would have suspected

the endplate would bring more periodicity.
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unattached endplate (g∗ = 0.04), and for no endplate. In both cases the mo-
tion of the cylinder (y/D) is controlled to be sinusoidal with U∗/f ∗ = 7.2 and
A∗ = 0.53, corresponding to the lower branch.

In the lower branch, there are considerable differences between the two end

conditions. For the case with an endplate in Figure 7.8, the fluid force amplitude

CY (t) is quite steady. The phase angle, φ is just below 180◦, yielding a small posi-

tive excitation per cycle (CY sin φ) if we were considering free vibration. Without

an endplate, the fluid forcing is much less steady, which would lead to the ex-

pectation that the response amplitude (if one had free vibration) would drop.

However, we find that the phase angle has a mean value of 63◦, even though it

varies considerably, which would yield a much higher fluid excitation (CY sin φ).

In essence, if the cylinder was freely oscillating at the amplitude used here (A∗

= 0.53) and the endplate was removed, the energy into the system would then

be much higher than the energy lost due to damping and the amplitude would

increase. This is consistent with results from the free vibration experiments,
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the fluid forcing is equivalent to the no endplate case. (At all points the motion
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where the absence of an endplate led to higher amplitudes.

In §7.1, for controlled vibrations using an unattached endplate, we showed

from our early study that the fluid forces were significantly influenced by the

gap between the bottom of the cylinder and the endplate (Figure 7.1). Of course,

one expects that with sufficient gap, the system would respond as though there

were no endplate. We study now the effect of varying the endplate gap in the

lower response branch, where the effect of end conditions is most pronounced.

The variation in fluid excitation (CY sin φ) with gap ratio is shown in Figure 7.9.
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For small gap ratios, where the gap is 10-15% of a diameter (g∗ = 0.1 - 0.15), the

excitation is roughly 0.1. However, for larger gaps, where g∗ exceeds 15%, there

is a large jump in the fluid excitation up to roughly 0.4, which corresponds well

with the case without an endplate (included as the bull’s eye in Figure 7.9). This

critical gap ratio (g∗ = 0.15) is a useful result which suggests, for example, that

with a 2.5 cm cylinder an endplate gap greater than 4 mm is the equivalent to

having no endplate at all.

7.5 Comparison with previous investigations employing dif-

ferent end conditions

A summary of the characteristic low mass-damping free vibration responses for

each of the end conditions in this study are presented for clarity in Figure 7.10.

One may compare the present results with free vibration responses taken from

selected previous investigations, in Figure 7.11. Cases where attached endplates

are used (Moe & Overvik, 1982; Owen et al., 2001) exhibit good correspondence

with our cases of unattached and attached endplates, showing three distinct

response branches. On the other hand, Klamo (2007) did not use endplates in his

experimental arrangement. His smallest gap with g∗ = 0.4 should yield similar

results to our case without an endplate, based on the results of our gap study

(Figure 7.9), and indeed the comparison of the character of the response plot

is good. The response plot shows a gradual decrease in amplitude from the

peak, rather than a distinct upper and lower branch. This type of response

can be found in several other previous studies in the literature, and it remains

possible that such responses are influenced by the end conditions, as shown in
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Figure 7.10: A summary of the amplitude responses for each of the end condi-
tions studied here: (a) unattached endplate, (b) attached endplate, (c) no end-
plate.

the present work.

In studies that did not employ endplates, the investigators generally took

care in placing the bottom of the cylinder close to the channel floor (for exam-

ple, Branković & Bearman, 2006). If the gap ratio is small enough (g∗ < 0.15)

we might expect that this end condition will yield a response that is similar to

the case of an unattached endplate, as the two end conditions are quite similar.
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Figure 7.11: Comparison among several previous vortex-induced vibration
studies of the amplitude (A∗) response as a function of normalized velocity (U∗):
(a) Moe & Overvik (1982), (b) Owen et al. (2001), (c) Klamo (2007).

However, the experiment relies on the properties of the boundary layer on the

channel floor which would depend on the channel construction (for example,

the streamwise length of the boundary layer, or the existence of seams joining

sections of the facility). Thus the boundary layer could be quite unsteady, and

would certainly vary from one facility to the next, making comparisons difficult.

167



7.6 Conclusions

In this study, we investigate the effect of end conditions on the transverse

vortex-induced vibration response of a circular cylinder with low mass-

damping. While we are able to vary the conditions at the lower end of a vertical

cylinder in our water channel, all other aspects of the experimental arrangement

are kept constant.

The case of an attached endplate, and the case of an unattached endplate,

show nearly identical free vibration responses, although having an unattached

endplate is simpler to arrange accurately, on a practical basis. However, the con-

dition without an endplate shows significant differences. We expected, prior to

this study, that removing an endplate would lead to increased fluid flow around

the end of the cylinder, a reduction in spanwise vortex shedding correlation and

fluid force correlation, and thereby to a reduced response amplitude. Quite con-

trary to this expectation, the absence of an endplate leads to significantly higher

levels of excitation, leading to higher amplitudes over the entire amplitude re-

sponse plot, except where both sets of data reach the same maximum amplitude.

The increased excitation (CY sin φ) is principally due to a shift in the phase of the

fluid force (relative to body motion). Essentially, the case without an endplate

yields roughly the same peak amplitude response when compared to both cases

with the endplates. The general character of the response is modified if the end-

plate is removed; the response amplitude diminishes continuously as velocity is

increased beyond the value for peak amplitude, and there is no apparent jump

between upper branch and lower branch modes.

Under conditions of controlled vibration, we also study the effect of varying
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the gap between an endplate and the bottom of the cylinder. For gaps larger

than 15% of a diameter, we find a jump increase in the fluid excitation. Un-

der these conditions, the force and response dynamics become equivalent to

removing the endplate altogether. For smaller gaps, g∗ < 15%, one is effectively

investigating the case of an attached or unattached endplate.

The character of response plots, in previous studies, correspond reasonably

well with the character of the different responses found here, if one compares

cases with similar end conditions. There are, of course, other aspects of the

experimental arrangement besides end conditions, such as Reynolds numbers,

turbulence levels, techniques of measurement, more degrees of freedom, and

spanwise variations, that would lead to differences in the response character,

but we suggest that end conditions should be taken into account as influencing

quite significantly the character of a response plot. It is, however, interesting

that the peak amplitude response is not strongly influenced by the end condi-

tions, at least based on the present results.
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APPENDIX A

Additional fluid forcing contours

In §3.3 we showed contours of CY sin φ and CY cos φ. Here we present contour

plots of the total force, CY , and vortex force, CV , in Figure A.1, as well as the

total phase, φ, and vortex phase, φV , in Figure A.2. The different regimes of

vortex shedding are perhaps most easily characterized by the phase angle in

Figure A.2. When transitioning from the 2S mode to the 2PO mode, there is no

strong jump in total phase, however there is a large jump of about 180◦ in the

vortex phase. When transitioning from the 2PO mode to the 2P mode, the large

jump occurs in the total phase, with only a small change in the vortex phase

(since the basic vortex shedding mode is not varying).
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APPENDIX B

The effect of Reynolds number on fluid force
contours and prediction of the modified “Griffin

plot”

A basic question one might ask is how dependant are the fluid forcing contours

in the amplitude-wavelength plane on the value of Reynolds number used for

the plot. We have conducted another complete set of experiments to obtain force

contours at Re = 12,000. We present as an example, in Figure B.1, contours of

the fluid excitation (CY sin φ). Interestingly, the same fluid forcing regimes are

found for the Re = 12,000 case as we found here for Re = 4,000, including the 2PO

mode. The general shape of the fluid excitation contours is also quite similar,

suggesting that the same general conclusions made in the present study remain

valid over a whole range of Reynolds number. One should note that we are not

in a position to observe the P+S regime, because the high amplitude, low wave-

length (high frequency) region of the amplitude-wavelength plot (top left cor-

ner) exceed the limits of our facilities at this Re. The major effect of increased Re

appears to be a vertical stretching of the 2S and 2PO regimes. The zero excitation

contour in the 2PO regime has a distinctly higher amplitude. This means that

one expects a higher peak amplitude response for very small (or zero) damping,

as Reynolds number is increased. On the other hand, the location of the zero ex-

citation contour for the 2P region, in the amplitude-wavelength plane, remains

virtually unchanged as Reynolds number is increased.

It is interesting that, in fact, our controlled vibration contours at Re = 4,000

and 12,000 can also be used to predict the peak amplitude vibration response as
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of our facilities. Contour interval is 0.2

a function of mass-damping, in what is called a “modified Griffin” plot. Such a

plot, which was presented by Govardhan & Williamson (2006), shows the effect

mass-damping, as well as Reynolds number, on the peak amplitude response

in free vibration, and involves a collapse of such extensive data into a single

curve. Here we choose to plot the two Reynolds numbers separately to indicate

the effect of Reynolds number more directly. We can compute these data as

curves in Figure B.2(a), using the approach of §4.5.

For both Reynolds numbers, the controlled vibration contours yield good

agreement with the empirical formula, taking into account mass-damping as

well as Reynolds number, deduced by Govardhan & Williamson:

A∗ = (1− 1.2α + 0.30α2) log (0.41Re0.36). (B.1)
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The predicted peak amplitude is slightly lower than the measured free vi-

bration amplitude for the Re = 4,000 case, but the shape of the trend is well pre-

dicted. The agreement with free vibration peak amplitude data at Re = 12,000

appears to be good. We also find the location, in our amplitude-wavelength

plane, where the excitation energy (CY sin φ) is zero, for both Re=4,000 and

12,000. These values predict the peak response amplitude, which could be

found in free vibration, if the damping is brought to zero. A subsequent inclu-

sion of our data onto the plot of peak response (for zero damping) as a function

of Reynolds number, compiled for free vibration experiments by Govardhan &

Williamson:

A∗
PEAK = log (0.41Re0.36), (B.2)

is shown in Figure B.2(b), indicating good agreement.
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APPENDIX C

Complete vorticity fields for each major vortex
formation mode

In the previous sections we showed several snapshots of the vorticity fields at

particular phases of oscillation to illustrate the different modes of vortex forma-

tion and how they relate to the character of the fluid forcing. For completeness,

here we show complete vorticity fields at four phases of oscillation for each of

the major vortex formation modes at Re = 4,000: {2S, P+S, 2PO, 2P} (Figures C.1

– C.6).
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Figure C.1: Vorticity fields for the 2S mode of vortex formation (A∗ = 0.5, λ∗ =
5.0), phase-averaged over 20 cycles of oscillation. Contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...
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Figure C.2: Vorticity fields for the P+S mode of vortex formation (A∗ = 1.2, λ∗ =
4.0), phase-averaged over 20 cycles of oscillation. Contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...
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Figure C.3: Vorticity fields for the 2POmode of vortex formation in the 2PO-2P
overlap region (A∗ = 0.8, λ∗ = 5.6), phase-averaged over 10 cycles of oscillation.
Contour levels shown are: ωD/U = ±0.4,±0.8,±1.2, ...
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Figure C.4: Vorticity fields for the 2P mode of vortex formation in the 2PO-2P
overlap region (A∗ = 0.8, λ∗ = 5.6), phase-averaged over 10 cycles of oscillation.
Contour levels shown are: ωD/U = ±0.4,±0.8,±1.2, ...
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Figure C.5: Vorticity fields for the 2P mode of vortex formation (A∗ = 0.6, λ∗ =
6.4), phase-averaged over 20 cycles of oscillation. Contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...
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Figure C.6: Vorticity fields for the 2P mode of vortex formation (A∗ = 1.2, λ∗ =
8.0), phase-averaged over 20 cycles of oscillation. Contour levels shown are:
ωD/U = ±0.4,±0.8,±1.2, ...
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APPENDIX D

The effect of fluid forcing at frequencies above the
fundamental oscillation frequency

Our analysis throughout this study has assumed that the fluid force is well rep-

resented by a sinusoidal function. Thus we could extract the component of force

at the fundamental (body oscillation) frequency and use it effectively to predict

a free vibration response.

In most cases, the force is in fact quite sinusoidal. However, in the region

where the wake is desynchronized from the cylinder oscillation, the force is dis-

tinctly not sinusoidal, having one component at the body oscillation frequency,

and a generally larger component at the vortex shedding frequency, as shown

in Figure D.1. At first glance, we would expect that because of the strongly non-

sinusoidal nature of the forcing, the free vibration motion would also not be

sinusoidal in this regime. Thus, we would not expect our sinusoidal controlled

vibration data to be successful in predicting the response.

However, if we look at an actual free vibration time trace at the high normal-

ized velocity end of response, in the desynchronized regime, shown in Figure

D.2, we see that although the fluid forcing includes components at multiple fre-

quencies, the cylinder motion is quite sinusoidal, having only one dominant fre-

quency. Indeed we can see that the large peaks in the force spectra at the higher

frequencies have only a very weak effect on the displacement spectra, yielding

only very small bumps. This phenomena can be understood by looking at the

equation of motion in the correct manner.
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Figure D.1: Time trace (a) and spectrum (b) of the fluid force for a controlled
vibration run at A∗ = 0.3, λ∗ = 9.4. The fluid forcing shows components at the
body oscillation frequency and the vortex shedding frequency

As shown previously in §4.5, by assuming a sinusoidal form of the equation

of motion, we can obtain the amplitude and frequency equations, reproduced

here:

A∗ =
1

4π3

CY sin φ

(m∗ + CA) ζ

(
U∗

f ∗

)2

f ∗, (D.1)

f ∗ =

√
m∗ + CA

m∗ + CEA

, (D.2)

These equations are useful for understanding the relationship between the

structural parameters, the fluid forces, and the body motion. However, if we

want to predict the force time trace or spectra from the displacement time trace

or spectra (or vice versa) the following formulation is more useful:

tan φ =
2 (m∗ + CA) ζf ∗

m∗ (1− f ∗2) + CA

(D.3)

A∗ = CY
U∗2/2π3

√
(2 (m∗ + CA) ζf ∗)2 + (m∗ (1− f ∗2) + CA)2

(D.4)
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Figure D.2: Time trace and spectra of the displacement and fluid force for a
free vibration run in the desynchronized regime, U∗ = 10.54. In (b) we show
the measured displacement spectrum (—) as well as a predicted displacement
spectrum, obtained from the force spectrum and equation (D.4) (- - -), which is
nearly indistinguishable from the measured spectrum.
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Note that these same equations can be found in standard vibrations textbooks,

we have simply non-dimensionalized them appropriately for vortex-induced

vibration.

Since the system obeys a linear equation of motion, the different components

of a multi-frequency response are independent and can be analyzed separately.

Thus, equations (D.3) and (D.4) hold for each component of the force and dis-

placement: {A∗
N , f ∗N , CY N , φN}. As an example, we use equation (D.4) to calcu-

late the displacement spectra from the force spectra for the free vibration run

shown in Figure D.2. We find that this predicted spectra is nearly identical to

the measured spectra, indicating that these equations can be applied success-

fully (i.e. the system behaves linearly and the data was carefully collected).

We also can see from equation (D.4) that the parameter f ∗ has a large effect

on the degree to which fluid forcing is transmitted to the cylinder motion: the

further f ∗ is from 1 (i.e. the further the forcing frequency is from the natural

frequency), the lower the effect on displacement. This is of course a standard

result from basic vibration analysis but it explains why the components of the

fluid forcing at higher frequencies have a strongly reduced effect on the cylinder

motion.

Now we would like to apply a similar analysis to the controlled vibration

data. We will use the controlled vibration run shown in Figure D.1 at A∗ = 0.30,

λ∗ or U∗/f ∗ = 9.40.

The first step is to calculate the structural parameters that would yield a si-

nusoidal free vibration response that is in equilibrium with the the fluid forcing

at the oscillation frequency. If we assume a system with mass ratio, m∗ = 10, we
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find, using equations (D.1) and (D.2) that the damping ratio, ζ must be 0.0052

and the normalized velocity, U∗ must be 10.03. These are the system parameters

which will yield sinusoidal vibration at A∗ = 0.30, U∗/f ∗ = 9.40 (if we take only

the force component at the oscillation frequency).

Now we will add in the effect of the fluid forcing at the higher vortex shed-

ding frequency. To do this we use equations (D.3) and (D.4) to determine the

amplitude and phase of the cylinder displacement due to the component of fluid

forcing at the vortex shedding frequency. If we now add this component of the

cylinder motion to the original sinusoidal motion at A∗ = 0.30, U∗/f ∗ = 9.40,

we obtain the free vibration motion that is in steady state equilibrium with the

fluid forcing.

Of course the fluid forcing shown in Figure D.1 was obtained for purely si-

nusoidal motion. Now that we have added in a second component, can we

expect the motion to yield the same fluid forcing? If we compare the displace-

ment in the two cases, with and without the added component at the vortex

shedding frequency, shown in Figure D.3, we see that they are nearly identical.

Thus adding the vortex shedding frequency component would not be expected

to change the fluid forcing.

We will now try a second example, at m∗ = 0.5. At this mass ratio, for the

fluid forcing shown in Figure D.1 to yield motion at A∗ = 0.30, U∗/f ∗ = 9.40,

we find that the damping ratio, ζ must be 0.364 and the normalized velocity,

U∗ must be 35.3. If we now add the effect at the vortex shedding frequency

using the same procedure described above for m∗ = 10, we find that the higher

frequency force now does have a significant effect on the predicted cylinder

motion, as shown in Figure D.4.
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Figure D.3: Comparison between the cylinder displacement for perfectly sinu-
soidal motion (—) and the cylinder displacement which includes the component
at the vortex shedding frequency (- - -) for m∗ = 10.0
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Figure D.4: Comparison between the cylinder displacement for perfectly sinu-
soidal motion (—) and the cylinder displacement which includes the component
at the vortex shedding frequency (- - -) for m∗ = 0.5
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We conclude that (very very nearly) sinusoidal free vibration can occur when

the wake is desynchronized as long as the contribution to the displacement from

the fluid force at the dominant oscillation frequency is much greater than the

contribution from the fluid force at the vortex shedding frequency, as deter-

mined by the relation given in equation (D.4). This will generally be true for

higher mass ratio, but not for lower mass ratio.
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APPENDIX E

Publications from this work

E.1 Journal Publications
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to predict fluid forces on a cylinder undergoing vortex-induced vibration. J.

Fluids Struct. 22, 877-884.

MORSE, T. L., GOVARDHAN, R. N. & WILLIAMSON, C. H. K. 2009 The effect of

end conditions on the vortex-induced vibration of cylinders. J. Fluids Struct.

To appear.

MORSE, T. L. & WILLIAMSON, C. H. K. 2009 Fluid forcing, wake modes, and

transitions for a cylinder undergoing controlled oscillations. J. Fluids Struct.

To appear.

MORSE, T. L. & WILLIAMSON, C. H. K. 2009 Prediction of vortex-induced vi-

bration response by employing controlled motion. J. Fluid Mech. Submitted.

MORSE, T. L. & WILLIAMSON, C. H. K. 2009 Steady, unsteady, and transient

vortex-induced vibration predicted using controlled motion data. J. Fluid

Mech. In preparation.

MORSE, T. L. & WILLIAMSON, C. H. K. 2009 The effect of Re on the critical

mass phenomenon in vortex-induced vibration. Phys. Fluids Submitted.
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MORSE, T. L. & WILLIAMSON, C. H. K. 2004 Forces on a Cylinder with Periodic

Transverse Motion in a Free Stream. Bull. Am. Phys. Soc. 49
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to predict fluid forces on a freely vibrating cylinder. Proc. 4th Conf. on Bluff

Body Wakes and Vortex-Induced Vibration (BBVIV-4) Santorini, Greece.

MORSE, T. L. & WILLIAMSON, C. H. K. 2005 Predicting the response of a cylin-

der undergoing vortex-induced vibration using controlled vibrations. Bull.

Am. Phys. Soc. 50.

MORSE, T. L. & WILLIAMSON, C. H. K. 2006 Understanding mode transitions

in vortex-induced vibrations of a circular cylinders using controlled vibra-

tion. Bull. Am. Phys. Soc. 51.

MORSE, T. L. & WILLIAMSON, C. H. K. 2007 An investigation of wake mode

transitions and amplitude jumps in vortex-induced vibration using con-
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MORSE, T. L. & WILLIAMSON, C. H. K. 2007 Understanding mode transi-

tions in vortex-induced vibration using controlled vibration. Proc. 5th Conf.

on Bluff Body Wakes and Vortex-Induced Vibration (BBVIV-5) Costa do Sauı́pe,

Brazil.

MORSE, T. L. & WILLIAMSON, C. H. K. 2008 Understanding mode transitions

in vortex-induced vibration using controlled motion. 9th International Con-
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