SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 857

August 1989
(Revised June 1990)

THE EFFECTS OF DEGENERACY
AND NULL AND UNBOUNDED VARIABLES
ON VARIANTS OF KARMARKAR’S
LINEAR PROGRAMMING ALGORITHM

By

Michael J. Toddx*

+*Research supported in part by NSF grants ECS-8602534 and DMS-8904406 and ONR contract
N00014-87-K0212. The computation was carried out in the Cornell Computational Optimization
Laboratory with support from NSF grant DMS-8706133.

ABSTRACT

We examine the effects of primal and dual degeneracy and the presence of null and unbounded
variables on the computational performance of two variants of Karmarkar’s primal projective
algorithm for linear programming. The methods are applied to randomly generated problems with
prescribed degrees of these features. The most striking effect is the poor performance of the algorithms

when unbounded variables (variables that can be unbounded in any optimal solution) are present.

Key words: linear programming, interior-point methods, computational testing, random linear

programming problems

1. Introduction

Interior-point methods have been much investigated since Karmarkar’s seminal paper [8].
Several computational studies {1, 9, 10] have confirmed that the number of iterations is quite low,
while the CPU time required is generally less than that for the well-known MINOS code [11] (which
implements the simplex method for linear programming); the advantage of interior-point approaches
seems to increase with problem size. However, certain features of linear programming problems appear
to cause difficulties for interior-point methods. Degeneracies lead to ill-conditioning in the linear
systems that must be solved at each iteration, with the condition number increasing as one approaches
the optimum. The presence of null variables (variables that are zero in every feasible solution) also can
cause difficulties; clearly the original problem has no interior and modifications must be made.
Finally, the polynomial-time convergence theory demands that the set of optimal solutions be bounded.
While this can be arranged by reformulating problems with integer data, it is preferable to treat
problems in their original form, and also problems with real data. Thus the presence of unbounded
variables (variables that are unbounded on the set of optimal solutions) is also of interest. (Unbounded

variables turn out to be the dual of null variables - see [14].)

The aim of this paper is to investigate the effect of these features of linear programming
problems on the computational behavior of primal projective interior-point methods. We use two
algorithms: the standard-form projective variant of Anstreicher [2], Gay [5], Gonzaga [7], Jensen and
Steger [12] and Ye and Kojima [15], with an artificial variable with high cost added to achieve
feasibility; and the combined phase I - phase II projective algorithm of Anstreicher [3] as modified by
Todd [13], which seeks feasibility and optimality simultaneously without needing an explicit cost for
the artificial variable. These algorithms are sketched in section 2. The algorithm of de Ghellinck and
Vial [4] is also closely related; when presented with a feasible solution it coincides with the methods in
[2,5,7,12,15] (which then need no artificial variable), and in general it seeks feasibility and optimality

simultaneously as in [3].

no

The problems are generated randomly using probabilistic models from [14]. They always have
optimal solutions, and the degree of primal and dual degeneracy at the optimum can be precisely
controlled. In addition, the second model allows the introduction of null and/or unbounded variables.

The models are described in section 3.

Section 4 presents the results of numerical testing of the algorithms on problems of size 50x100
up to 300x600. (Since the problems are completely dense, the latter must be regarded as reasonably
large.) The results confirm the slow growth of the number of iterations with the size of problem. None
of sparsity, primal, or dual degeneracy had a very large effect on the number of iterations, although the
presence of both primal and dual degeneracy had a noticeable detrimental influence. Null variables,
also, had a relatively small effect. However, the presence of unbounded variables has a very great
effect, and we were obliged to relax our convergence criterion significantly in order to solve a reasonable
fraction of the problems. Alternatively, giving the algorithms the optimal value of the problems as
their initial lower bound rendered the problems innocuous. Note that both algorithms are driven by
seeking reductions in a suitable potential function. In problems with unbounded variables, the
potential function can be driven to minus infinity either by approaching optimality or by holding the
objective function bounded above and all variables bounded away from zero and increasing the

unbounded variables without limit. In some cases the algorithms exercise the latter option.

2. The algorithms

Both algorithms are designed to solve problems in standard form

minimize ¢ x
(P) subject to Ax = b,

x > 0,

where A is mxn, and both introduce a homogenizing variable ¢ and an artificial variable 7. Let

= (XT, o, T)

A = [A, -b,b- Ae]
¢T= (7,0,0

dT = (07,1,0), and

ET= (07,0,1),

where e denotes a vector of ones of appropriate dimension.

The standard-form variant of [2,5,7,12,15], with a high cost v associated with the artificial

variable 7, will be called algorithm A. It solves the problem

minimize (& + v€)T%

(Py) subject to A% =0,
dTx = 1,
X >0,

0

and generates a sequence {f(k} of strictly positive feasible solutions with X° = e and a sequence

{zk} of lower bounds to the optimal value of (P,). Given the kth iterate %X and the kth lower

k

bound 2", we proceed as follows.

k

First let Xk = diag(ik) be the diagonal matrix with the components of X% down its

diagonal, and define

Then, in terms of the scaled variables X = Xi{li, (P5) becomes

minimize <

b4
(ISA) subject to A% =0,
dTx = 1,
X > 0,

and the current iterate xk becomes X = e. For any vector ¥, let p denote its projection into the

null space of A. If (< - za)p > 0 for some z, it is easy to see that z is a valid lower bound for
(PA) and hence (P,); indeed, it is part of a feasible dual solution. Hence zk_{h1 =7 =
max{zk, max{z: Tp - zap > 0}} is a new valid lower bound. We then update X to

Xy =e- B(c - Za)p for some @ > 0, normalize it so that d'% = 1, and then scale back to the

original space to get

Here {8 is chosen to (approximately) minimize the potential function

(€ -zd)Tx
X

f(x;c-2d):=Y tn
j J

In fact, we use a monotonic variation due to Anstreicher [2], which ensures that

€+ u%)Tik-H < (@ + VE)Tik. The algorithm is terminated when the duality gap and the artificial

variable are sufficiently small.

The second method, a modification [13] of Anstreicher’s combined phase I-phase IT method [3],

will be called algorithm B. It handles the artificial variable 7 more directly by solving the problem

minimize é

b3
(Pgp) subject to Az =0,
dTx =1,
£'x =0,
% >0,

generating a sequence {ik} of strictly positive iterates satisfying all constraints except €% = 0

Y

with x0 = e, and a sequence {zk} of lower bounds.

Given ik, define the scaled data as above, except that € = Xké (there is no explicit high

cost v on the artificial variable). Then zk+1 =7 is set to the maximum of zX and the optimal

value of the relaxed scaled problem

minimize 'c'gi
subject to agi = 1,
&px =0,
x>0

Again, this lower bound corresponds to a feasible dual solution. The search direction g in the
transformed space is found by solving a direction-finding subproblem, which is equivalent to
minimizing the angle between e and e + g subject to (€ - "z'a)g(e +g) <0 and Eg(e +g) <0
(The resulting g is proportional to that which would arise from algorithm A with an implicit
iteration-dependent value for the high artificial cost v, related to the Lagrange multipliers in the
direction finding subproblem.) The constraint A(e + g) = 0 is automatically satisfied, and if e + g

were nonnegative, it would be (after normalizing) optimal in the scaled problem, since it would achieve

the lower bound zk+1 and feasibility. Usually, e + g # 0, and so a search is made in the direction

g to minimize f(-;¢-2d) or f(-; £). Again, a slight modification is made to ensure monotonicity.

The stopping criterion is as in algorithm A.

The probabilistic models discussed in the next section produce well-scaled problems, so it is
appropriate to use X = e as an initial starting solution. The optimal value is usually at most 5m, so
we chose the cost v of the artificial variable in algorithm A as 1019, Both algorithms can

automatically produce lower bounds. However, we only used this capability in algorithm B. (When

zk+1 Zk+1

=-c0, use d instead of T - d in the direction-finding subproblem.) In algorithm A, we

0

initialized with z° = -105. This has a very attractive consequence. When the artificial variable 7 is

010, the lower bound is effectively zero,

large (of order 1) so that the objective function is of order 1
appropriate for reducing 7. When 7 is so small that its effect on the objective function is minimal,

the lower bound, at -105, is suitably negative for well-scaled problems with optimal value at least an

order of magnitude smaller in absolute value.

3. Probabilistic models

Both models generate an mxn matrix A, nonnegative n-vectors X and § with §7§ = 0,
and an m-vector §, and then set b = Ax and ¢ = ATy + §. Thus, by complementary slackness, x
is optimal in (P) and §, with slack vector §, in its dual. The models differ primarily in the form of
A. We can control the degree of primal and dual degeneracy at the optimal solution by specifying how
many components of X or & are positive. This scheme usually produces degeneracy only at the
optimal solutions [14], but interior-point methods started well in the interior of the feasible region are

expected only to approach the boundary closely near the optimal vertex (or points in the optimal face).

Model 1 has no null or unbounded variables. For a dense problem, we choose each entry of A
independently from a standard Gaussian distribution. (If we desired a sparse problem with density
approximately «, we could generate a dense matrix A as above and then set entries of A
independently to zero with probability 1- «, and repeat the process if the result has any zero rows or
columns. This random sparsity appears very different from the structured sparsity of real problems,

but is chosen for lack of any convincing alternative. We made some runs with « = .2, but the results

seemed comparable to those with « = 1, and we concluded that this form of sparsity has little or no
effect on the algorithms.) Besides m and n, two other parameters my and my, with 0 < my <
m < my <1, determine the distribution. We set the first m; components of X positive, and the
last n - m, components of § positive, with the rest zero. The positive components are chosen
independently as absolute values of standard Gaussian random variables. The algorithms used are
independent of § (where ¢ = ATy + 8), except for a very mild dependence in the termination

criterion. We choose each component of § independently from a standard Gaussian distribution.

We generated 10 replications from each setting of the parameters. We considered 20 settings

of the parameters. The pair (m,n) was one of the pairs (50, 100), (100, 200), (150, 300), (200, 400) or
(300, 600). For each (m,n) we took mj either m (primal nondegenerate) or % m (primal

degenerate) and m, either m (dual nondegenerate) or %m (dual degenerate).

Model 2 has null and/or unbounded variables. Assume first we wish to have both null and
unbounded variables, and that n = 100k (again, n will be 100, 200, 300, 400 or 600 in our tests).

Then the first 25k variables will be unbounded and the last 25k null. Let the entries of

be independently drawn from a Gaussian distribution, where ‘K‘l and K?’ are (m-1) x 25k, and A2

(m-1) x 50k. Let

so that the rows of ;\j are projected orthogonal to the vector e of ones, here of dimension 25k.

Then Ale = 0, and similarly A3e = 0. Finally, let

Now let % be generated as above, except that its positive components will be either the 2nd through
(50k)th (primal almost nondegenerate) or the (12k-+1)st through (37k)th (primal degenerate).
Similarly, the positive components of § are either its (50k+1)st through (n - 1)st, or its (63k-+1)st
through (88k)th. This choice is so that there is some overlap between positive variables in an optimal
basis and unbounded variables, and similarly in the dual. We choose ¥ = 0 so that the optimal value
is zero. An optimal basis consists of the 2nd through (50k)th column of A and its last column. (We

need one of the last columns to avoid a zero row in the basis matrix.)

Note that the first entry of b = AX is zero, so the first constraint forces the last 25k
components of any feasible solution to be zero; hence these are null variables. Also, the first 25k
components of ¢ are zero, while Ale = 0, so that adding a constant to all of the first components of
any feasible solution x leaves it feasible with the same objective function value. Hence the first 25k

variables are unbounded variables; they are unbounded in the set of optimal solutions.

If we want null but not unbounded variables we proceed as above but use j-Txl instead of Al‘
If we want unbounded but not null variables, we proceed as above but generating matrices with m,
not m-1 rows, use K3 instead of A3, and omit the row of 0’s and 1’s in A. In all cases we

generate ¥ and § as above.

For model 2 we chose (m,n) asin model 1. Sometimes we generated all combinations of

primal and dual degeneracy, but often we only considered the (almost) nondegenerate problems.

Theoretical properties of these two models are discussed further in {14].

4. The results

Here we describe the results of our computational testing of algorithms A and B on models
1 and 2. Both methods were coded in FORTRAN using double precision. The projections at each
iteration were performed by obtaining a QR factorization of the scaled matrix AT and using the
orthogonal matrix Q (see, e.g., [6]). Most of the ill-conditioning is caused by different scales for
different rows of AT. We therefore ordered the rows to correspond to decreasing components of gk,

Furthermore, the result of each iteration was projected again in order to help preserve accuracy.

Successful termination took place when

~T-k k
max{l()*r, e GK } <

max{1, [¢TzX[}

where € > 0 is the objective function tolerance. (Recall that 7 is the artificial variable.) We also
terminated (unsuccessfully) if the potential function could not be reduced during an iteration or if
accuracy was lost: for some i

1k 1ok
Ax®). Tk _k AX®),
max{.95 1A% 107, e } = .95 LG > ¢

max !’ max{1,]c"x¥|} max [&e]~
All runs were made on a Sun SPARCstation 1.

For model 1 we set ¢ to 10'7. Almost all the problems were successfully solved by both
algorithms; for a very few, we could only achieve accuracy 105, The average number of iterations
required (recall that ten problems were generated and solved for each setting of the parameters) is
given in Table 1. The results indicate a curious effect of degeneracy. Dual degeneracy alone appears to
help both algorithms, while primal degeneracy had a slightly negative effect on algorithm A and a
positive one on algorithm B; but their combined effect is strongly detrimental. We therefore performed
a regression to determine a least-squares fit to the data, including an interaction term for primal and

dual degeneracy.

10

Results for Model 1

Average Average
no. of no. of
iterations iterations
m n pd dd Algorithm A Algorithm B
50 100 0 0 23.6 22.7
50 100 1 0 23.7 21.0
50 100 0 1 20.4 21.9
50 100 1 1 24.5 24.5
100 200 0 0 24.5 25.3
100 200 1 0 244 21.8
100 200 0 1 23.3 24.3
100 200 1 1 31.7 30.6
150 300 0 0 26.5 27.8
150 300 1 0 27.5 22.7
150 300 0 1 21.6 22.2
150 300 1 1 32.9 29.2
200 400 0 0 28.5 28.0
200 400 1 0 28.7 23.8
200 400 0 1 23.6 23.8
200 400 1 1 38.5 32.3
300 600 0 0 29.8 28.4
300 600 1 0 30.9 27.3
300 600 0 1 24.8 26.5
300 600 1 1 40.8 36.4

pd is 1 if primal degenerate, 0 otherwise
dd is 1 if dual degenerate, 0 otherwise

Table 1

For algorithm A, including all regressors, the fit is

it = 21.18 + .0337m + .46pd - 3.84dd + 10.48pdd
(1.32) (.0056) (1.36) (1.36) (1.93)

where the standard error is shown below each estimate, “it” is the average number of iterations and

pdd = pd.dd is 1 iff both primal and dual degeneracy are present. The p-values for the hypotheses

i1

that the parameters are zero are .01% for the intercept, (the coefficient of) m, and pdd, 1.3% for dd,

and 74.03% for pd. If we omit the least significant regressor pd, we get the fit

it = 21.41 + .0337m - 4.07dd + 10.94 pdd
(1.09) (.0054) (L.15) (1.32)

with p-values .01% for the intercept, m and pdd and .27% for dd. The value of R2 decreased

from .873 with all regressors to .872, so the fit remains very good.

For algorithm B, the fit with all regressors is

it = 22.26 + .0261m - 3.12pd - 2.70dd + 9.98pdd.
(.94) (.0040) (.98) (.98) (1.38)

The p-values for the hypotheses that the parameters are zero are .01% for the intercept, (the coefficient

of) m and pdd, .6% for pd, and 1.4% for dd. The value of R? is .883, so again the fit is very good.

Overall, the results show a mild increase in the number of iterations with dimension (about 3
extra iterations with an increase of 100 in the number of rows, although it would be dangerous to
extrapolate far) and a reasonable decrease when dual degeneracy is present (the optimal solution set is
larger, and easier to approach from the interior). Algorithm B deals with primal degeneracy alone
better, perhaps because it treats infeasibilities and optimality more symmetrically. However, why
primal degeneracy should help algorithm B is a mystery, as is the strongly detrimental effect of the

simultaneous presence of both degeneracies.

As we remarked in Section 2, Algorithm 2 can be viewed as making an implicit choice for the
cost v of the artificial variable at each iteration. This choice is determined adaptively, and is usually
much smaller than the fixed value 1010 chosen in algorithm A. For example, in the 200x400
problems, the equivalent value for v ranged from 0 to 620, except for fewer than 2% of the iterations,

when it was effectively infinite.

12

Now we turn to model 2 and examine first problems with both null and unbounded variables.
Here it was found almost impossible to solve the problems with € = 10'7. The unbounded variables
became very large, the linear systems became very ill-conditioned, and the algorithms terminated with
inaccurate solutions or with an inability to reduce the potential function. We therefore relaxed ¢ to
92x10°2. In this case algorithm B performed adequately, solving 29 {out of 40) of the 50x100 problems,
27 of the 100x200 problems, 19 of the 150x300 problems, 17 of the 200x400 problems, and 10 of the
300x600 problems. However, algorithm A had great difficulty. We applied it to just the
nondegenerate problems, on which it solved 4 (out of 10) of the 50x100 problems but none of the

larger problems. The data are given in Table 2.

In order to determine the source of the difficulty, more runs were made. Here I shall give the
results only for the nondegenerate problems. If unbounded variables were present but no null variables,
the situation was similar. Algorithm A solved 4 of the 50x100 problems, 4 of the 100x200, and none
of the larger problems. Algorithm B solved 9 of the smallest problems, 1 of the 100x200, 5 of the
150x300, 6 of the 200x400 problems and 2 of the 300x600. All these results were again with
€= 2><10"2. Suppose next that there are null variables but no unbounded variables. Then neither algo-
rithm had difficulties, even with ¢ = 10‘7. The average number of iterations was 36.5, 38.4, 39.6, 40.6
and 42.2 for algorithm A, and 22.0, 22.9, 24.5, 25.6 and 26.6 for algorithm B, all averaged over the ten
nondegenerate problems of each size from 50x 100 up to 300x600 respectively. Thus, as with primal
degeneracy, algorithm B copes much better with null variables. However, null variables create no hard
problems for either method; the presence of unbounded variables is very detrimental to both methods,

whether or not null variables are introduced. Algorithm B has a significant advantage in robustness.

Incidentally, the results for model 2 should be taken with a large grain of salt. Just changing
the optimizer option (the runs quoted used Sun’s f77 compiler with optimization option 03) made
significant differences in the results, although the overall pattern was similar. The most sensitive part

of the codes appears to be the generation of the lower bounds in the presence of ill-conditioning.

13

Algorithm A Algorithm B

No. of Average Average No. of Average Average

problems no. of no. of problems no. of no. of

solved iterations iterations solved iterations iterations
m n pd dd (out of 10} (successful) (all) (out of 10) (successful) (all)

50 100 0 0 4 44.0 46.2 9 27.1 27.5

50 100 1 0 - - - 10 26.9 26.9

50 100 0 1 - - - 4 26.5 29.6

50 100 1 1 - - - 6 27.5 28.7
100 200 0 O 0 - 42.8 5 28.2 29.8
100 200 1 0 - - - 9 28.1 29.4
100 200 0 1 - - - 8 28.4 29.0
100 200 1 1 - - - 5 28.0 29.6
150 300 0 O 0 - 45.9 2 30.5 31.7
150 300 1 O - - - 5 29.6 31.7
150 300 0 1 - - - 8 29.7 30.1
156 300 1 1 - - - 4 29.0 30.6
200 400 0 O 0 - 45.8 6 30.8 31.6
200 400 1 O - - - 1 31.0 32.5
200 400 0 1 - - - 6 30.0 30.9
200 400 1 1 - - - 4 31.0 30.9
300 600 0 O 0 - 44.1 1 31.0 30.7
300 600 1 0 - - - 3 31.0 34.2
300 600 0 1 - - - 4 30.5 30.9
300 600 1 0 - - - 2 30.5 31.2

Table 2

Finally, it was noticed that all the problems with unbounded variables had great difficulty in
obtaining lower bounds. Kurt Anstreicher (private communication) has pointed out that this is to be
expected; such problems have duals whose feasible regions have no interiors, and obtaining or updating
lower bounds requires feasible dual solutions. However, as the unbounded variables increase, they force
the dual solutions considered toward the appropriate affine subspace, so that with an appropriate small

tolerance for dual feasibility, lower bounds can be found and updated; this accounts for our modest

14

success in solving these problems. Frequently, the unbounded variables had increased so far before a

0107 with a comparable condition number for

finite lower bound was generated (typically, to around 1
the upper triangular matrix R) that it was very hard for the algorithms to recover and/or maintain
accuracy. Hence we resolved the problems with both null and unbounded variables where we set the

0

initial lower bound z~ to the optimal value, which was zero for all these problems. This alleviated all
the difficulties, and all problems were successfully solved with ¢ = 10'7. The average number of
iterations was 32.7, 33.9, 35.0, 35.5 and 36.7 for algorithm A, and 17.3, 18.1, 19.4, 20.7 and 20.9 for
algorithm B, all averaged again over the ten nondegenerate problems of each size from 50x100 to

300x600 respectively. We see again a significant advantage for algorithm B here, but also the value of

having a good (here perfect) lower bound for the objective function value.

We also used our code to try the algorithms of Anstreicher [3], on which algorithm B was
based. The original choice of direction in [3] turned out to be very poor. All ten nondegenerate

3 to 10'4, and the

50x100 problems generated by model 1 were solved, but only to an accuracy of 10~
average number of iterations was 103.1. When the size was increased to 100x200, two problems
reached the iteration limit of 199 and eight were solved to a similar accuracy; the average number of
iterations grew to 155.1. None of the nondegenerate 50x 100 problems generated by model 2 with null
and unbounded variables were solved; all hit the iteration limit of 199. However, when we
implemented the improved direction described at the end of section 4 of [3] when appropriate (this is
similar to one case of the direction choice in algorithm B) the method improved to be roughly
comparable to algorithm B. For the nondegenerate problems generated by model 1, the average
number of iterations required was 22.7, 28.0, 32.0, 31.7 and 30.5 for the five sizes of problem
(compared to 22.7, 25.3, 27.8, 28.0 and 28.4 for algorithm B). For the nondegenerate problems
generated by model 2 with null and unbounded variables, the algorithm successfully solved 9 of the 10

50x100, 6 of the 100x200 problems, 3 of the 150x300, 4 of the 200x400 problems and 1 of the

300x600 problems. The number of iterations required ranged from 25 to 35. Overall, the expanded

15

logic in the direction-finding technique in algorithm B appears to be worthwhile, particularly for larger

problems.

Acknowledgement

I would like to thank Jorge Vera and Amy Riordan with help in coding the algorithms and in

analyzing the results.

16

References

1. I Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga, “An implementation of Karmarkar’s
algorithm for linear programming,” Mathematical Programming, 44 (1989).

2. K.M. Anstreicher, “A monotonic projective algorithm for fractional linear programming,”
Algorithmica, 1 (1986), pp. 483-498.

3. K.M. Anstreicher, “A combined phase I - phase II projective algorithm for linear programming,”
Mathematical Programming, 43 (1989), pp. 209-223.

4. G. de Ghellinck and J.-Ph. Vial, “A polynomial Newton method for linear programming,”
Algorithmica, 1 (1986), pp. 425-453.

5. D.M. Gay, “A variant of Karmarkar’s linear programming algorithm for problems in standard
form,” Mathematical Programming, 37 (1987), pp. 81-90.

6. G.H. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.

7. C.C. Gonzaga, “Conical projection algorithms for linear programming,” Mathematical
Programming, 43 (1989), pp. 151-173.

8. N.K. Karmarkar, “A new polynomial time algorithm for linear programming,” Combinatorica, 4
(1987), pp. 373-395.

9. K.A. McShane, C.L. Monma, and D. Shanno, “An implementation of a primal-dual interior point
method for linear programming,” ORSA Journal on Computing, 1 (1989), pp. 70-83.

10. C.L. Monma and A. Morton, “Computational experience with a dual affine variant of
Karmarkar’s method for linear programming,” Operations Research Letters, 6 (1987),
pp. 261-267.

11. B.A. Murtagh and M.A. Saunders, “MINOS 5.1 Users Guide,” Technical Report SOL83-20R,
Department of Operations Research, Stanford University, Stanford, CA, 1987.

12. A. Steger, “An extension of Karmarkar’s algorithm for bounded linear programming problems,”
M.S. Thesis, SUNY at Stonybrook, New York, 1985.

13. M.J. Todd, “On Anstreicher’s combined phase I-phase II projective algorithm for linear
programming,” Technical Report 776, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY, 1989, to appear in Mathematical Programming.

14. M.J. Todd, “Probabilistic models for linear programming,” Technical Report 836, School of
Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, 1989, to appear
in Mathermatics of Operations Research.

15. Y. Ye and M. Kojima, “Recovering optimal dual solutions in Karmarkar’s polynomial algorithm

for linear programming,” Mathematical Programming, 39 (1987), pp. 305-317.

