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ABSTRACT

This thesis presents a wire routing methodology that produces custom-quality re-

sults. We use a gridless tile-based approach that extends previous works in four

main ways. First, it captures all the intricacies of modern design rules, e.g. the

difference between contact-to-contact spacing and contact-to-wire spacing. Sec-

ond, it implements a robust cost model that includes: i) horizontal wire costs, ii)

vertical wire costs, iii) via costs, and iv) jog costs. Third, a design-rule correct

route is always guaranteed even if the search for the least-cost path is terminated

early. Fourth, route ordering is dynamically updated based upon the routability

of nodes. The resulting router is shown to route 1.5-11x faster than the Cadence

Chip Assembly Router while consuming 6-8x less memory with 5-15% less wiring

overhead.
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Chapter 1

Introduction

1.1 Motivation

Designing VLSI systems is an increasingly daunting task. Current technologies can

accommodate hundreds of millions of transistors in an IC. Design automation is

often used to manage this complexity. Unfortunately, synthesized designs usually

perform a few times worse than custom designs across all metrics. However, some

recent research has shown that mixing both custom design styles and automated

design styles yields promising results[3, 14]. Consequently, we believe that layout

automation tools should be versatile enough to allow designer interaction.

Recently the AVLSI group at Cornell University designed and fabricated an

asynchronous sensor network microprocessor called SNAP[5]. A breakdown of the

time spent in each stage of the design cycle is shown in Figure 1.1. Approximately

60% of the total time to design and fabricate this processor was spent doing physical

layout. It has been estimated that routing non-critical wires accounted for nearly

90% of time to complete the physical layout. Obviously, minimizing the time spent

routing non-critical wires will result in the largest reduction in our design cycle.

Hence we aim to automate wire routing with this work.

Traditionally, there are two main approaches to routing[13, 6]: uniform-grid

and gridless. The uniform-grid approach is simpler, but usually makes some as-

sumptions about the placement of the geometry it routes. These assumptions can

be minimized by using a fine grid, however this leads to an increased memory

overhead and longer routing times. On the other hand, the gridless approach is

compact and makes no assumptions about placement of geometry. In order for a

1
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Figure 1.1: The design cycle for the SNAP microprocessor.

router to allow interaction it must be able to operate on any arbitrary, design-rule

correct layout. This requirement suggests using a gridless-style router. However,

capturing all the intricacies of modern design rules makes using a gridless router

challenging. We will present a methodology to meet these challenges.

1.2 Related Work

Gridless routers have been extensively studied in the past. The Magic VLSI editor

[12] has an interactive router based on its corner-stitched tile structure [11, 2].

Hamachi improved on the Magic router by adding the notion of preferred directions

for routing and avoiding hazard areas [7]. Lunow later presented a Magic router

that assigns a preferred direction per metal layer and uses protection frames to aid

in avoiding obstacles [9]. Arnold et al [1] developed the IRoute router which uses

contours (bloated tiles) to prevent design-rule errors.
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The main influence for this work is the CONTOUR router developed by Dion

et al [4]. CONTOUR incorporates many of the ideas of the previous works and pro-

vides a novel path searching mechanism for finding possible routes. CONTOUR

uses space tiles in the layout to store possible paths between the two nodes being

routed. Non-minimal cost routes are pruned off based on a cost model that assigns

costs for horizontal and vertical movements. An exhaustive search is time con-

suming, so the search may be terminated when a route is found that falls within

a user-defined threshold of the minimal cost route (an approximation based upon

the distance between the two nodes).

1.3 Core Contributions

Although CONTOUR is quite robust it has some limitations. First, design rule

correctness within the current route is only guaranteed when choosing a minimum

cost path. Non-minimum cost paths, possibly containing design rule violations,

are permitted since an exhaustive search is very time consuming. Second, there is

no facility to account for the difference between: i) wire-to-wire spacing, ii) wire-

to-contact spacing, and iii) contact-to-contact spacing. Third, routing wires and

contacts with different widths will result in spacing violations, known as notches,

within the route itself (regardless of choosing the least cost path). Fourth, the

current cost model doesn’t factor in jog or via costs, which have a profound effect

on the resulting layout. Fifth, no method for choosing the order in which to route

nodes is provided.

Our routing methodology guarantees that routes will always be design rule

correct even if non-minimum cost paths are allowed. This is achieved through

a clever technique that enforces spacing rules across different parts of the route
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found during the path search. In addition, since enforcing spacing rules limits the

total number of possible paths, waiting for the least cost path is more feasible. We

account for spacing rules related to contacts by explictly modeling oxide layers,

which provides a convenient place to store contours related to these rules. Addi-

tionally, we provide a method to account for jog and via costs in our improved

cost model. We also show how to postprocess geometry so that we can eliminate

notches when routing wires and contacts with different widths. Finally, we present

a method to route the harder to route nodes first, thus increasing the routability

of the circuit.

1.4 Organization of Thesis

In the next chapter, we will discuss the corner stitching data structure, the CON-

TOUR router, and the limitations of the CONTOUR router. Chapter Three

presents the data structures that provide the framework for our router. Chap-

ter Four covers our novel node-to-node routing methodology as well as our method

to maximize the routability of a circuit by routing the more difficult nodes first.

Chapter Five compares this router with the Cadence Chip Area Router. Chapter

Six concludes this thesis.



Chapter 2

Preliminaries

The final phase of integrated circuit design involves creating a schematic with the

exact physical placement of transistors and their connecting wires. IC Manufac-

turers extract masks from this schematic that are used to transfer base materials

onto semiconductor wafers. There are many different types of fabrication tech-

nologies and each has its own set of rules for the placement of materials in the

schematic. These rules, known as design rules, ensure that devices created during

the fabrication process function correctly. This schematic of circuit geometry is

referred to as the layout of a circuit.

Circuit designers employ the use of layout editors to create layout and check

that it is absent of design rule violations. Creating layout is composed of three

main steps: i) create transistor stacks, ii) place transistor stacks, and iii) create

connections (wires) between stacks. Out of these three steps, creating connections

between stacks is the most complex and time consuming. While the materials used

in transistors stacks reside on one layer (in most models), there are upwards of six

metal layers used for wires in modern fabrication technologies. The process of

connecting two nodes entails running wires, through one or metals layers, between

them. Contacts (vias) are metal squares used to connect wires on different metal

layers. The process of creating wires between nodes is known as routing.

To aid in the discussion of our work, we provide a review of the corner-stitching

data structure[11] and the CONTOUR router [4].

5
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2.1 Corner-Stitched Data Structure

Corner-stitching is an efficient data structure for representing layout geometry and

is the backbone of the Magic VLSI design tool[12]. Planes of corner-stitched tiles

are used to store geometry for the various materials of an IC. The two major

advantages of this data structure are: i) its compact representation, and ii) its

ability to find neighboring tiles quickly.

2.1.1 The Corner-Stitched Tile

Figure 2.1: A corner stitched tile.

The corner-stitched tile, shown in Figure 2.1, contains four corner pointers to

neighboring tiles, the x,y coordinates of its bottom-left corner, and a material type.

The upper bounds of the tile can be obtained by requesting the lower bounds of

the north and east neighbors. The power of this structure lies in its ability to

find its neighbors efficiently. For example, we can find the neighbors bordering the

left side of the tile by following the tr pointer, then following the subsequent lb

pointers.
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Figure 2.2: An example of a horizontal tile plane.

2.1.2 Tile Planes

A minimal tile structure is enforced by using the minimal number of horizontal tiles

to represent the geometry, which is shown in Figure 2.2. Alternatively, the minimal

number of vertical tiles can be used, shown in Figure 2.3. The aforementioned tile

plane figures each contain eight space tiles, four metal tiles and one contact tile.

Tiles are added and removed thorough a series of splits and merges that update

its corner points and those of its neighbors. The last recently used tile is stored

for each layer and is used as a starting point for various algorithms. This tile is

referred to as the layer’s hint tile.

Contact tiles are an abstraction that represents the metal materials that it

connects and the via between these metals. The size of the contacts is a factor

of the via size, spacing, and metal border. Usually, contact tiles reside on the

bottom of the two layers that it connects. Magic uses similar abstractions to save

the designer from explicitly drawing wells and selects.
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Figure 2.3: An example of a vertical tile plane.

2.2 The CONTOUR Router

CONTOUR uses a centerline routing algorithm based on a method that is a hybrid

of maze routing[10] and line searching[8]. The solution for the centerline of the

route is found and bloated to meet width requirements. The CONTOUR routing

algorithm is composed of five basic steps: i) preprocess geometry, ii) find initial

paths, iii) propagate paths, iv) postprocess geometry, and v) draw resulting route.

We will omit discussion on postprocessing geometry and route drawing for the sake

of brevity.

2.2.1 Preprocessing Geometry

CONTOUR preprocesses geometry to create contour tiles that surround existing

material tiles. The purpose of these contour tiles is to designate areas of the

geometry that cannot be used for routing. The contour tiles reserve enough area
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Figure 2.4: Adding contours to material tiles.

so that spacing rules will not be violated after the centerline path is bloated to

meet width requirements. The centerline is bloated by bwidth−1

2
c on its north and

east sides and by dwidth−1

2
e on its south and west sides, where width is the width of

the metal being routed. In order to reserve enough space, the material tiles need

contours that exceed their north and east walls by dwidth−1

2
+ spacinge and their

south and west walls by bwidth−1

2
+ spacingc, as shown in Figure 2.4.

2.2.2 Finding Initial Paths

Before the search for routes can begin, the initial paths of each terminal must be

located. These paths can either be a wire connecting to the terminal or a contact

connecting to the terminal. Initial wire paths are found by following method: i)
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Figure 2.5: An example of initial wire paths.

copy terminal geometry to a temporary tile plane and shrink it by width
2

, ii) explore

the area within width+spacing in the original plane, and iii) if this area is a space

tile and overlaps the shrunken geometry in one dimension it is an initial wire path.

An example of initial wire paths is shown in Figure 2.5. We will avoid a discussion

of initial contact paths and just note that CONTOUR requires contacts to be

smaller than or equal in size to the terminal geometry.

2.2.3 Propagating Paths

To implement the CONTOUR routing algorithm some extensions to the corner-

stitching data structures are needed, as well as some additional data structures.

First, a new material type representing a contour is needed. Tiles must be extended
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to contain the head of two different linked lists. These two lists are: i) the paths

leading from one terminal to each space tile, and ii) the paths leading from the

other terminal to each space tile. Two priority queues, one for each terminal, are

needed to keep track of the propagation paths. Paths in these queues are sorted

so that paths that have the potential to form the least-cost route have higher

priorities.

Finally, we have the key to this algorithm, the path data structure. The path

data structure is composed of the following six items: i) a tile pointer, ii) minimal

cost rectangle, iii) source cost, iv) destination cost, v) back pointer, and vi) next

pointer. The tile pointer is merely a pointer to the tile in which the path resides.

The minimal-cost rectangle is essentially the bounds of the path. This rectangle is

composed of a group of unit squares that share the same cost and often it will be a

single unit square. The source cost is the cost to get to the path’s rectangle from its

starting terminal based on horizontal and vertical movement costs. The destination

cost is the Manhatten distance from the path’s rectangle to the opposite terminal.

The back pointer is a pointer to the ancestor path that spawned the current path.

The next pointer is a pointer to the next path in the tile’s linked list of paths.

Now that the data structures are explained, we can detail the path propagation

algorithm. After initial paths are found, they are inserted into the tiles’ linked lists

of paths and also inserted into the priority queue cooresponding to their terminal.

The path with least possible cost route, simply the sum of source and destination

costs, is removed from each queue and propagated. Propagation entails finding

all neighboring space tiles, creating least costs paths to these tiles, and inserting

these new paths into the priority queues. A possible solution is formed when the

linked list of paths leading to a space tile from the other terminal is non-empty.
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Figure 2.6: Path propagation between two nodes.

The least-cost solution is recorded and path propagation is terminate when either:

i) the priority queues are empty, ii) the current best solution is cheaper than the

least-cost routes of the head of each queue, or iii) the current best solution is within

a user-defined threshold. An example of path propagation is shown in Figure 2.6.

2.3 Limitations of CONTOUR

The basic route-finding algorithms of CONTOUR are sound. However in current

technologies the results are poor. These poor quality results are outlined in this

section.
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Figure 2.7: Two possible paths with the same cost. Path A has four turns, but

Path B has only one.

2.3.1 Excessive Jogs

The cost model used in CONTOUR only includes a cost for horizontal and vertical

movements. This will often results in excessive jogs since paths with the same cost

can have a different number of jogs. Figure 2.7 shows an example of two paths

with the same cost, however one path has four turns and the other has only one.

In this example, the path with the larger number of turns would be found first and

chosen as the solution.
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Figure 2.8: A wire spacing violation. Figure 2.9: A contact spacing viola-

tion.

2.3.2 Design Rule Violations

Routes created by CONTOUR may have spacing violations with other parts of the

same route. Wire spacing violations are possible when the path search is termi-

nated early. There is no mechanism to prevent CONTOUR from choosing paths

that create in U-shaped structures similar to the one in Figure 2.8. Contact spac-

ing violations are always possible and are often a minimum cost path depending

on the horizontal and vertical costs of the two layers involved. An example of a

contact spacing violation is depicted in Figure 2.9.

2.3.3 Notches

Using CONTOUR to route wires and contacts with different widths will result in

notches. Notches are spacing violations within a wire that can be corrected by

filling them with metal. There are two types of notches: i) contact-to-contact as

in Figure 2.10, and ii) contact-to-elbow as in Figure 2.11.
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Figure 2.10: A contact-to-contact

notch.

Figure 2.11: A contact-to-elbow

notch.

Figure 2.12: An example of a loop between closely placed nodes.

2.3.4 Loops

A side-effect of creating contours around terminal tiles are loops. Nodes of a

net may be placed closely together prior to routing, as in Figure 2.12. If the

nodes are width + 2 ∗ spacing distance or less apart their contours will merge into

a larger contour. This larger contour will prevent the router from creating the

direct connection between the two nodes. In the best case, the result is a wire

loop which is obviously suboptimal. However, this limitation frequently causes

routing between such two nodes to fail completely. This occurs because a good

transistor stack placement will often result in transistors of the same type with the

same inputs at minimum distances from one another. Since transistors in a stack
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are placed as closely together as possible to minimize leakage current, the direct

connection between such nodes is often the only possible connection.



Chapter 3

The Router Framework

This chapter outlines the underlying framework of the router. Some changes to

the original data structures are needed to resolve the limitations of CONTOUR.

In addition, the router must be configurable so that it can easily be applied to

future technologies.

3.1 Data Structures

The data structures used in the original CONTOUR router need to be modified to

resolve some of its limitations. Changes are made primarily to the corner-stitched

tile, the tile planes, and the path structure.

3.1.1 3D Tiles

The corner-stitched tile data structure is extended by adding the following: i) a

pointer to the tile above the northwest corner, in the tile plane above, ii) a pointer

to the tile below the northwest corner, in the tile plane below, iii) an integer tag

representing the route that the tile belongs to, and iv) a byte of status bits.

The two new pointers allow the tile to access its neighbors in the plane above

and below quickly. In CONTOUR, the hint tiles in the adjacent planes are used

for this purpose. The hint tile is used as an access point into the adjacent tile plane

and then the plane is traversed until neighboring tiles are found. The performance

of this algorithm greatly depends on the placement of the hint tile. Since the

hint tile is the last recently used tile of a plane, its placement is usually optimal.

However, since paths from each terminal are processed sequentially during path

17
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Figure 3.1: The 3D corner-stitched tile.

propagation the hint tile will often be poorly placed if the terminals are a significant

distance apart. The addition of the new tile pointers allow for more direct access

to neighboring tiles in adjacent planes without relying on the placement of the hint

tiles.

The route tag is an integral part of the overall route management. Routing a

circuit often entails undoing, ripping-up, previous routes and trying them again

in a different order. Normally the entire electrically connected node needs to be

removed since there isn’t any way to distinguish between the different routes in the

node. This can be a rather large step back if the node contains many individual

connections. By tagging the tiles with the ID of their route we have a way to

remove a single route without having to remove the whole node.

The tile’s status bits provide an efficient way to mark the tiles during different

types of processing. The status bits contain five generic tags and three specific

tags: i) start terminal tag, ii) end terminal tag, and iii) connected tag. The start

and end terminal tags are necessary for the new geometry preprocessing stage

described in the next chapter. The connected tag is used to signify that a tile is

already part of the set connected tiles (useful for finding a unique set).
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3.1.2 Explicit Oxide Layers

Figure 3.2: An example of explicitly representing oxide layers as tile planes.

The tile planes traditionally represent the active and metal layers in a given

technology. In addition, we will explicitly represent the oxide layers as tile planes

as shown in Figure 3.2. Contacts can now be stored on oxide layers rather than

on one of its composite metal layers. More importantly, this allows us to use the

oxide layer to make contours that enforce contact spacing rules. Also, if metal tiles

and contact tiles are stored on the same layer it would be difficult to manage the

route tags. For example, a contact tile of a new route may overwrite a metal tile

of a previous route and erase the metal tile’s route tag.

3.1.3 Extensions to Path Structure

The path structure is extended in two ways: i) a path now keeps track of its

current heading, and ii) a path is now a node in two doubly-linked lists. A path’s

heading is simply its neighbor relation to the previous path. For instance, if a path

propagates to a east-neighboring space tile then this new path has an east heading.

The possible headings are north, east, south, west, up, and down. The up and down

headings specify movement between tile planes. Headings will play a key role in



20

calculating jog and via costs, implementing spacing rules during propagation, and

route drawing.

Paths are now nodes in two doubly-linked lists: i) the tile’s linked list of paths,

and ii) the propagation priority queue of one of the two terminals (now imple-

mented as a linked list). The doubly-linked lists allow redundant paths, paths

that have cheaper alternative paths, to be deleted during propagation. The child

paths of these redundant paths are recursively deleted since they will have cheaper

solutions and since their back pointers are invalid.

3.2 New Tile Types

New tile types are needed to allow for more complex behaviors such as applying

different propagation rules or altering the cost model. These new tile types are

described in this section.

3.2.1 Terminal Tiles

Terminal tiles can be one of two types: i) horizontal, and ii) vertical. Terminal

tiles restrict path propagation so that propagation may only occur in the axis

cooresponding to terminal tile’s nomen. An example of path propagation in a

horizontal terminal tile is shown in Figure 3.3. Terminal tiles are used to enforce

spacing rules with respect to each terminal of a particular route. This will be

explained further in the following chapter.
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Figure 3.3: Path propagation through a horizontal terminal tile.

3.2.2 Boundaries

Soft boundary tiles and hard boundary tiles are useful in creating artificial bounds

in layout. Soft boundary tiles contain a cost multiplier that modify the cost when

propagating through them. Hard boundary tiles disallow path propagation com-

pletely. The combination of these two tiles provides a straight forward way for the

router to avoid certain areas of the design or minimize the use of certain area of the

design. These boundaries are specified via the directives discussed in Appendix B.

3.3 Framework Configuration

Layout geometries are read in from Magic[12] design files. The layers and materials

are configured through the router’s technology file, described in Appendix A.

3.3.1 Layers

The router generates metal and oxide layers depending on the number of metal

layers specified in the technology file. This is shown in Table 3.1. The first two
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layers are the active and active oxide layer. The following layers are metal layers

and their oxide layers. The only exception is the top metal layer which doesn’t

have an oxide layer since it doesn’t require contacts.

Table 3.1: Framework layers.

Layer Default Material

Active Polysilicon

Active Oxide Poly Contact

Metali Metali

Metali Oxide Metali+1 Contact

3.3.2 Materials

Active and active oxide layers required more than one material type. The active

layer needs both diffusion and polysilicon types. The active oxide requires diffusion

contacts, substrate contacts, and the polysilicon contacts. Metal layers and metal

oxide layers need only a single material, metal and contact respectively. These

materials are listed in Table 3.2.
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Table 3.2: Framework materials.

Material Layer

P-Diffusion Active

N-Diffusion Active

Polysilicon Active

P-Diffusion Contact Active Oxide

N-Diffusion Contact Active Oxide

P-Substrate Contact Active Oxide

N-Substrate Contact Active Oxide

Polysilicon Contact Active Oxide

Metali Metali

Metali+1 Contact Metali Oxide



Chapter 4

Proposed Routing Methodology

This chapter presents our routing methodology. There are two main components

to successfully routing a circuit: i) efficient and robust node-to-node routing, and

ii) smart ordering of the node pairs to be routed.

4.1 Node-to-Node Routing

In this section we present a methodology that overcomes the shortcomings men-

tioned in the previous section. Specifically, we extend the CONTOUR path-finding

algorithm to incorporate a robust cost model and to always generate design-rule

correct routes. In addition, we provide some techniques to help make waiting for

the absolute least-cost route more feasible.

The major stages of the routing algorithm are shown in Figure 4.1. The al-

gorithm begins by first choosing a pair of nodes to route. The geometry is then

preprocessed to ensure that contours are drawn around the nodes that aren’t being

routed. Initial paths for each node of the route are located and inserted into the

path heaps. Paths are propagated from each priority queue until a minimum cost

path is found or both priority queues are empty. If a valid path is found, it is

extracted from the layout. The geometry is returned to it’s initial state and the

route is drawn if one was found.

4.1.1 Preprocessing Geometry

All of the initial layout geometry is contoured when it is first read from a file. These

contours are created in a similar fashion as the original CONTOUR algorithm.

24



25

Figure 4.1: The major stages of the routing algorithm.

However, in our method we account for contact-to-contact spacing on the oxide

layers, wire-to-wire spacing on the metal layers, and wire-to-contact spacing on

both layers. Therefore, each material tile will receive three contours each: i) a

contour on the current layer, ii) a contour on the layer above, and iii) a contour

on the layer below. These contours are all width−1

2
+ spacing units large, however

the width and spacing for each material on each layer may be different.

If there are contours around the two nodes being routed there will be resulting
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wire loops as outlined in Section 2.3.4. Therefore, the first step in preprocessing

the geometry is to remove contours from the pair of nodes. This can be achieved

in a two stage process. First, delete all contours within width−1

2
+ spacing units

of each node’s tiles. Note that this will likely also delete contours that belong to

some of the nodes not being routed. Second, recreate contours for nodes that lie

within width−1

2
+ spacing +1 of the routing nodes. This will restore contours which

have been wrongfully deleted from the nodes that aren’t being routed.

Figure 4.2: The minimum spacing of a wire to itself is 2 ∗ spacing + width units.

As justification for the next step of the preprocessing stage, we will examine

Figure 4.2. An important observation we can make about a wire is that tiles

around a bend must be at least 2 ∗ spacing + width units apart from one another.

Anything less than a distance of 2 ∗ spacing + width units would imply that the

wire contains an unnecessary bend, since nothing else could fit between the two

segments of the wire. We can enforce this spacing using horizontal and vertical

terminal tiles, first mentioned in Section 3.2.1.

Horizontal terminal tiles are found by bloating metal tiles horizontally by 2 ∗

spacing + width + width−1

2
(the distance to the centerline of the next valid metal)

and copying them to a temporary tile plane. Now we shrink these tiles vertically
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Figure 4.3: Geometry of a terminal after preprocessing.

by width+1

2
, which allows turns to occur at the edges where they are legal. Finally

the temporary tiles are copied back to the original layout as horizontal terminal

tiles. Vertical terminal tiles are formed in a symmetric fashion, with the additional

caveat that regions where both types of terminal tiles overlap become contours.

An example is shown in Figure 4.3.

4.1.2 Finding Initial Paths

Intra-planar candidate initial paths can be found by locating edges on metal planes

with metal on one side and space on the other. These paths start at the edge and

extend one unit into the space tile. Their direction is simply the direction of

the space tile from the edge. These paths must be be shrunk by width−1

2
in the
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plane perpendicular to its heading. This will ensure that later bloating of these

paths will result in lines that do not extend past the initial geometry. Finding

inter-planar candidate initial paths requires using a temporary tile plane. This

procedure entails copy metal tiles from one layer to a temporary tile plane, and

shrink (or bloat if negative) these tiles by width − (1 + bloat), where bloat is the

amount to bloat the centerline to form a contact, and width is the width of the

contact. This will ensure that a contact overlaps the metal by at least a width

amount. The entire process needs to be repeated for both contacts heading upward

and contacts heading downward.

Figure 4.4: Finding initial paths.

We now apply the candidate initial paths and only keep them if: i) they overlap

space tiles, or ii) they overlap terminal tiles and are heading in the same direction

as the terminal tile. The result is shown in Figure 4.4. Note, up and down initial

paths are not stored on the oxide layer, but are moved directly to the metal tile

planes. This choice was made to restrict paths from ever being on the oxide layers,
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whether initially or through propagation, with the exception of special case paths

that may connect the two terminals of a route through a single contact.

4.1.3 Path Propagation

Path propagation upward and downward now has to cross check space tiles in

the adjacent oxides planes with space tiles in metal planes two layers away. This

is a simple extension to the existing algorithm and is illustrated in the following

example of upward path propagation. First, find all neighboring space tiles in the

oxide layer above the current tile (we may assume that we are in a metal plane

since paths are prohibited from the oxide layers). For each neighboring space tile

in oxide layer, we find the neighboring space tiles above, in the next metal layer,

and compose a unique list of space tiles in this metal layer (a space tile in the

metal plane may be an upper neighbor to more than one tile in the oxide plane).

We propagate only a single path to each of the space tiles in the metal plane by

choosing the shortest propagation through the oxide space tiles to the metal space

tiles. Choosing a single path to each unique metal space tile prevents a blow-up

of unnecessary paths.

Path propagation also needs to ensure that new paths won’t create spacing

violations with other parts of the route if it is used in the solution. To enforce

these spacing rules we need to determine what line segments would be added to

the centerline by the new path. There may be up to two line segments added to

the centerline depending on if a jog is needed or not. Figure 4.5 depicts an example

of a path that requires two line segments.

The new centerline segments are bloated in all directions except the direction

from which it comes from. These segments are bloated by 2∗width−1+2∗spacing
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Figure 4.5: Centerline segments created by a new path are bloated to check for

spacing violations with centerline segments created by previous paths.

using the same reasoning as in the terminal tile sizing except this time we’re

checking the spacing between two centerlines(which haven’t been bloated to their

full width). After bloating the centerlines, we follow the path’s back pointer and

check these bloated centerlines against unbloated centerlines formed by ancestor

paths. If any overlap occurs then the new path is illegal. Note that even though

the two bloated centerlines of this example overlap, the design is still fine. A

similar, yet simpler, process is used to determine if a path that creates a contact is

legal. When a possible solution is formed, each centerline of both path sets must

be check against one another.

In the original CONTOUR, path propagation terminates early only if the cost

of the current best route is within some user-defined threshold of the minimum pos-

sible cost route (the cost of the route if there aren’t any obstacles). Unfortunately,

the least-cost path may be a few times greater than the estimated minimum-cost

route (especially with the new cost model introduced in the next section). Instead,

we will use the length of the lull between solutions as a termination point. Typi-
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cally, when a solution is found a series of slightly different, but cheaper, solutions

will replace it. By waiting for this activity to wind down we may get a solution

that is minimal, at least locally, to other recent solutions.

4.1.4 Cost Model

Our cost model calculates source costs and destination costs differently from the

previous approach. The source cost now includes via and jog costs. Via costs are

relatively straight forward to implement, however, jog costs can be a bit tricky. A

single path propagation may have up to two jogs as shown in Figure 4.6. If the

current and next path are aligned, then a single jog occurs as long as the current

path’s heading is different than the next path’s heading, as shown in the bottom

image of Figure 4.6. If the current and next path are unaligned, as in the top image

of Figure 4.6, then one jog occurs if the two paths’ headings are different, and two

jogs occur if they are the same. This algorithm needs to be modified slightly when

considering the jogs in the solution tile.

In the original CONTOUR algorithm, the destination cost is simply the Man-

hattan distance to the bounding box of the opposite terminal. This measure may

be grossly inaccurate if the terminal is many layers away, or if the terminal forms

a large L-shaped region. Instead, we make more accurate approximations of the

destination cost by finding the minimum cost from the current path to each of the

initial paths of the opposite terminal. This yields a much more accurate estimate

of destination cost, and it rules out blocked portions of the opposite terminal since

they don’t have initial paths. Overall, this allows for a wiser order in which the

paths propagate.
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Figure 4.6: Two examples of new paths that may create jogs. The new path in the

top image will create 1 or 2 jogs. The new path in the bottom image will create

no jogs or 1 jog.

4.1.5 Route Drawing

An unwanted side-effect of routing contacts and wires at different widths are

notches. As shown in Figure 2.10 and Figure 2.11, notches may form between

two different contacts or a contact and an elbow. The two spacing rules that are

violated here is wire-to-wire spacing and wire-to-contact spacing. In our imple-

mentation, this is accurately depicted since a contact is decomposed into the wires

on the two layers it connects and a via on the oxide layer between them (all the

same size as the original contact). The wire-to-wire spacing can be easily fixed by

bloating the metal tiles by spacing−1

2
and then shrinking them by the same amount.

This essentially fills notches as large as spacing − 1 (technically anything larger

isn’t a notch). The wire-to-contact spacing violation requires a bit more processing

to remedy.

To illustrate this, consider the case where poly-to-poly spacing is three and

poly-to-contact spacing is four. A bloat by 4−1

2
shorts any two adjacent poly
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Figure 4.7: An example of metal fill for contact-to-wire notches.

lines with minimum spacing. Instead, we need to perform the following series of

operations on a temporary tile plane. First, bloat the metal tiles by contact spacing−1

2

using a different material (the contour material will work fine), and then shrink

by the same amount. Now search an area extending out from the contact bounds

by contact spacing. Finally, any contour material found in this area can be safely

copied into layout as metal.

4.2 Route Management

When no solution for a route can be found, the only course is to rip up previous

routes and try again. If the route ordering is poor then long cycles of ripping-up

and rerouting may ensue. This may greatly delay finding a solution for a set of

routes, or even worse, prevent a solution from ever being found.

As previously mentioned, the tile structure has been augmented to allow a route

tag for each tile. This tag allows us to do something unique, rip up partial nets.

Usually one must rip up an entire net, since there is no way to distinguish one part

of a net from another. This can be a rather large step backwards, especially if the
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net is a global signal. It should be noted that pre-existing geometry has a route

tag of zero and can never be removed.

4.2.1 Route Ordering

Route ordering is maintained through the use of the following: i) a sorted list of

possible routes, ii) an index into the list of possible routes, and iii) a stack of finished

routes. All the node-to-node pairs of each net inserted into the list of possible

routes are sorted (the sorting algorithm is discussed in the next subsection), as

shown in Figure 4.8A. The index is initially set to zero and we try to find a route

between the first node pair.

If a route between two nodes is found, the following occurs: i) the route is

drawn using the current route tag, ii) the node pair is pushed onto the finished

route stack along with the current index and route tag, iii) all node pairs in the

possible route list containing the routed nodes are removed, iv) a new node is

created and all new node pairs are inserted into the possible route list, v) the

index is set to zero and the route tag is incremented, and vi) the possible route

list is sorted. An example of this is depicted in Figure 4.8B and 4.8C.

If a node pair fails to route, and both nodes occur further down in the list,

then the index increments and the next node pair is attempted. If a node pair

fails, and it is the last occurrence of at least one node, then the following occurs:

i) pop the last finished route, ii) delete the tiles marked with the route tag of the

last finished route, iii) remove the node and node pairs created by the last finished

route, iv) reintroduce the old nodes and their node pairs, v) set the index to the

index of the last route and increment, vi) decrement the route tag, and vii) sort

the list of possible routes.
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Figure 4.8: Route Ordering. A: All possible routes added to list and sorted. B:

a0 <=> a1 is unroutable so the next pair, a0 <=> a2 is attempted. C: a0 <=> a2

routes, nodes a0 and a2 are removed and replace with a3.

The algorithm terminates when either all nodes are routed or the list of finished

routes is empty and the last occurrence of a node in a node pair fails to route. This

algorithm walks through all possible route orderings in the order set forth by the

sorting algorithm, as shown in Figure 4.9.

4.2.2 Sorting Algorithm

Creating a route may completely block off a node and make it unroutable. Due to

this fact it is desirable to first route those nodes that are harder to route, since they

have a higher probability of being blocked off. The challenge here is to accurately

determine the routability of a node. We can make the following observation: node

routability is closely related to the combined area of a node’s initial paths.

Finding the initial paths of each node after completing a route can be expen-

sive since there may be many nodes and finding initial paths requires removing

contours. However, we can exploit two facts to make this reasonably cheap. One,

adding or removing a route will only affect the routability of surrounding nodes.
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Figure 4.9: Routes are ordered so that harder to route nodes at attempted first.

More precisely, only nodes within width + 2 ∗ spacing units (one more than the

size of two contours) of the added/removed route may experience a change in their

routability. Two, we can approximate the total area of the initial paths by ex-

ploring the region just outside of a node’s contours, specifically the area within

width−1

2
+ spacing + 1 units of the nodes. This is shown in Figure 4.10.

Figure 4.10: Routability is determined by searching the area just outside of a

node’s contour for space tiles.



Chapter 5

Results

We have implemented this tile-based gridless router in the C++ programming

language using just over 10,000 lines of code. A technology file is used to specify

the number of layers, the various costs associated with each layer, and the design

rules. The router reads and writes geometry using the same format as the Magic

VLSI layout editor[12]. Nets can be specified by placing labels on the geometry.

This is quite convenient since Magic contains libraries to generate transistor stacks

with labeled nodes. Additional layout directives, such as a constraining box for the

generated routes or high cost areas, may be specified using labels with the Magic

attribute tag.

5.1 Benchmark Circuits

Thirty benchmark circuits were randomly generated for the purpose of compar-

ison. These circuits are composed of labeled squares of metal randomly placed

throughout chip area across all metal layers. These bits of metal are minimum

size and guarantee at least minimum spacing with respect to the other bits of

metal. A good figure of merit for the complexity of these benchmark circuits is

Node Density:

Node Density =
Nets ∗ Nodes per Net

Metal Layers ∗ Area per Layer

The benchmark circuits have fixed area, metal layers and nodes per net. The

area for each circuit is 1, 000λ x 1, 000λ. This area is chosen since it is large

enough to justify using a router, while small enough to still be consider detail

37
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routing and not global routing. Three metal layers are used for the benchmark

circuits, which is a typical number of routing layers for a circuit (higher metal layers

are often reserved for global signals). Each circuit has five nodes per net, which is

approximately average for non-power signals in a given circuit. The Node Density

is varied from .011 to .020 by varying the total number of nets, which is shown

in Table 5.1. Three of each type of circuit and their results are averaged for

comparison. Note that varying the other parameters doesn’t significantly change

the following results.

Table 5.1: Benchmark circuits.

Node Density # of Nets Total Wires

.011 66 264

.012 72 288

.013 78 312

.014 84 336

.015 90 360

.016 96 384

.017 102 408

.018 108 432

.019 114 456

.020 120 480

5.2 Comparison With Cadence Chip Assembly Router

Cadence is a suite of IC development tools, considered to be the industry standard.

It encompasses many tools for design synthesis, including a custom design router
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which is the counterpart to the router proposed in this paper. The Cadence Chip

Assembly Router V11.2.41 is used for comparison. Specifically, the detail router

with ”same net checking” turned on (this prevents notches) and 25 pass limit is

used (which results in thousands of rip-ups). Our router is configured to stop

trying to route after 1, 000 rip-ups. All comparisons were done on a Intel Pentium

4 CPU 3.20GHz with 1GB of RAM.

Both routers are configured to only route on the first three metal layers using

same rules as the TSMC (Taiwan Semiconductor Manufacturing Company) 180nm

logic process. The following preferred directions for metal layers were used: i)

metal-one is horizontal, ii) metal-two is vertical, and iii) metal-three is horizontal.

Our router was able to route all but one circuit, while the Cadence router failed to

route two circuits. All of the circuits that failed to route were from the set with a

node density of .02. These were treated as outliers and not averaged in with their

set.

5.2.1 Run Time

The graph in Figure 5.1 shows the average run times for each set of circuits for our

router and the Cadence router. The run times for the Cadence router seems to rise

exponentially with node density, while run times of our router rise only linearly.

As wires become more dense, the Cadence router goes through many rip-up and

reroute cycles, while our router performs few rip-ups. Our router is 1.7 − 5 times

faster than the Cadence router for a node density of .011− .019. At a node density

of .02 our router is nearly 11 times faster, however, these circuits are particularly

dense and hard to route.
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Figure 5.1: Run time for our router versus Cadence.

5.2.2 Memory Usage

The graph of Figure 5.2 depicts the average memory usage for each set for both

routers. The Cadence router consumes approximately 6 − 8 times more memory

than our router. This seems to suggest that the Cadence router uses a uniform-grid

representation for layout geometries. As theorized by the author, using a uniform-

grid representation to apply intricate rule sets incurs a large memory overhead,

since a fine grid is required. The gridless representation is clearly superior in

minimizing memory usage.
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Figure 5.2: Memory usage for our router versus Cadence.

5.2.3 Total Wire Length

Figure 5.3 shows a graph of the total wire length for each set of circuits for both

routers. Our router uses roughly 5− 20% less total wire length than Cadence. As

node density increases the percentage of wire length saved by our router decreases.

This makes sense since higher node densities reduce the total possible solutions

for routing a given circuit. Fewer higher cost solutions will be valid, and thus the

remaining valid solutions will have similar costs.

5.3 Quality of Layout

Figure 5.4 shows the metal-one layer of a benchmark circuit with a node density of

.018, while Figure 5.5 shows the cooresponding metal-two layer. The wires on the
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Figure 5.3: Wire overhead for our router versus Cadence.

metal-one layer are mostly horizontal, which was the preferred direction. Similarly,

the wires on the metal-two layer are mostly vertical. Vertical wires on metal-one

mostly occur in areas where wires on metal-two are closely packed, which shows

that unpreferred directions are only used when necessary. Both layers exhibit a

minimal number of jogs and are quite dense.
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Figure 5.4: Metal-One geometry for a

benchmark circuit with node density

of .018.

Figure 5.5: Metal-Two geometry for

a benchmark circuit with node den-

sity of .018.



Chapter 6

Conclusions

6.1 Conclusions

We have presented a tile-based gridless router that produces custom-quality re-

sults. Unlike previous gridless routers, this router can exploit modern design rules,

operate on arbitrary geometry, and always produce design-rule correct layout. We

have shown that early termination of the path finding algorithm will always pro-

duce a design-rule correct route. We also described a technique to manage routes

so that: i) a single node-to-node connection in a net can be ripped up, and ii) the

hardest nodes to route are always routed first. The resulting router can outperform

the Cadence Chip Assembly Router. Comparisons with 30 different benchmark cir-

cuits show our router to be 1.5-11x faster while consuming 6-8x less memory with

5-15% less wiring overhead.
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Appendix A

The Technology File

As discussed in Section 3.3, the router builds layers and materials based upon the

settings specified in the technology file. To reduce the complexity of the technology

file format, the router assumes that the process has a single active layer and an

arbitrary number of metal layers. The materials and contacts associated with these

layers are generated as well. The user only needs to define the number of metal

layers and the width and spacing of the materials and contacts. The spacing

that is defined is the minimum spacing between the current material and default

material for its layer.

The technology file is composed of an implicit parameter section followed by sec-

tions defined with blocks. The blocked sections are: i) layers block, ii) materials

block, iii)contacts block, and iv) translations block. Each of the blocked sections

begins with the name of the block (all lowercase) and ends with end.

A.1 Parameters

There are currently only two required parameters that must appear first in the

technology file. They are tech and metals. The tech parameter is just the name

of the technology and should match the technology specified in the cooresponding

Magic files. The metals parameter specifies the number of metal layers in the

technology.

tech technology name

metals number of metal layers

45
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A.2 Layers Block

The layers block assigns a cost to the layer, a preferred direction to the layer, and

turns the layer on/off. Costs can either be cheap, normal, or expensive. Preferred

layers can be horizontal, vertical, or neither.

layers

layer name [cheap—normal—expensive] [horizontal—vertical—neither] [on—off]

end

A.3 Materials Block

The materials block contains a set of blocks cooresponding to each generated

material type. These nested blocks begin with the material’s name and end with

end. Inside each material block one must specify each of the following: i) width,

ii)spacing, iii) upspacing, and iv) downspacing. The width is the minimum width

of the material. The three types of spacing refer to the material’s minimum spacing

to the routing material on the current layer, the layer directly above, and the layer

directly below. Since metal layers are sandwiched between oxide layers, upspacing

and downspacing refer to spacing to the upward contact and downward contact

respectively.

materials

material name

width minimum width

spacing spacing to routing material

upspacing spacing to routing material above

downspacing spacing to routing material below
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end

end

A.4 Contacts Block

The contacts block is similar to the materials block except that this block defines

materials on the oxide layers. The upspacing and downspacing keywords refer to

spacing to the routing metal on adjacent layers.

contacts

material name

width minimum width

spacing spacing to routing material

upspacing spacing to routing material above

downspacing spacing to routing material below

end

end

A.5 Translations Block

Materials that appear in the Magic file may often need to be translated into zero or

more materials that the router understands. The trans block defines this mapping.

trans

material name to material 1 to material 2 ...

end
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