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Abstract 

In order to maximize control of heterogeneity within complete blocks, an experimenter could use 

incomplete blocks of size k = 2 or 3. In certain situations, incomplete blocks of this nature would 

eliminate the need for such spatial types of analyses as nearest neighbor. The intrablock efficiency 

factors for such designs are relatively low. However, with recovery of interblock information, Federer 

and Speed (1987) have presented measures of design efficiency factors which demonstrate that 

efficiency factors approach unity for certain ratios of the intrablock and interblock variance 

components. Hence with recovery of interblock information, even incomplete block designs with k = 

2 or 3 have relatively high efficiency factors. The reduction in the intrablock error variance over the 

complete block error variance in many situations will provide designs with high efficiency. 

A simple procedure for constructing incomplete blocks of sizes 2 and 3 is presented. It is shown 

how to obtain additional zero-one association confounding arrangements when v = 4t, t an integer, 

and for v = pk, k < p. It is indicated how to do the statistical analysis for these designs. 

1. Introduction 

Several simple construction procedures for incomplete block designs (IBDs) are available in the 

literature. Patterson et al. (1976, 1985) presented a class of IBDs denoted as alpha designs. Jarrett 

and Hall (1978) gave a procedure for constructing cyclic IBDs. Khare and Federer (1981) developed a 

procedure for constructing IBDs using "diagonalizing and variety cutting" to obtain designs for any 
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number of treatments. For equal block sizes, v = pk with p blocks of k::::;: p treatments in each of the 

r replicates. For example, if an IBD for v = 18 and k = 3, 5 replicates can be obtained where pairs of 

treatments either occur together once in a block or they do not. The five first blocks of this design 

would be {1, 7, 13}, {1, 8, 15}, {1, 9, 17}, {1, 10, 14} and {1, 11, 16}. When pis prime, p such 

replicates are possible. Khare and Federer (1981) also describe a procedure for p a prime power. 

Recently, Nguyen (1993) and Nguyen and Williams (1993) have discussed algorithms for constructing 

IBDs, row-column designs, and resolvable row-column designs. In addition, Nguyen (personal 

communication) has developed software, GENDEX, for constructing these designs, either in a 

randomized or non-randomized form. The program was found to be user-friendly. 

The Khare-Federer procedure and GENDEX software have been found useful for setting up golf 

foursomes where players play with different individuals in each outing. Several experiment designs 

with block sizes of four have been constructed for agricultural researchers. 

2. Even Number of Treatments 

In order to construct an experiment design with incomplete blocks of size k = 2, for v even 

number of treatments, proceed as follows. First, construct the incomplete blocks for complete block 

las 

Complete block 1 

Incomplete block number 

1 £ ~ 1 - v/2-1 v/2 

1 2 3 4 v/2-1 v/2 

v/2+ 1 v/2+2 v/2+3 v/2+4 v-1 v 

For the incomplete blocks for complete block 2, simply move the second treatment numbers in an 

incomplete block one position to the left in a cyclical fashion as follows 

Complete block 2 

Incomplete block number 

1 £ ~ 1 - v/2-1 v/2 

1 2 3 4 v/2-1 v/2 

v/2+2 v/2+3 v/2+4 v/2+5 v v/2+ 1 
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Proceeding in this fashion, the remaining of the v /2 incomplete block arrangements may be obtained 

as 

Complete block 3 

Incomplete block number 

1 .2. ;i 1 - v/2-1 v/2 

1 2 3 4 v/2-1 v/2 

v/2+3 v/2+4 v/2+5 v/2+6 v/2+1 v/2+2 

Complete block v /2 

Incomplete block number 

1 .2. ;i 1 - v/2-1 v/2 

1 2 3 4 v/2-1 v/2 

v v/2+1 v/2+2 v/2+3 v-2 v-1 

The above procedure leads to incomplete block designs with binary associations in that a particular 

treatment either occurs with another treatment in an incomplete block or it does not, i.e., a zero-one 

occurrence. For example, treatment 1 occurs with treatments v/2+1 to v in incomplete blocks of the 

above v /2 complete blocks and does not occur with treatments 2, 3, · · ·, v /2 in any incomplete block. 

3. Number of Treatments Equal to 4t 

When v = 4t, it is possible to construct v/2 + v/4 = 3v/4 confounding arrangements such that 

there is a binary zero-one association scheme among the treatments. v /2 arrangements are obtained 

as above, and then v/4 arrangements are obtained by using the above procedure on the first v/2 

treatments and on the last v/2 treatments v/2+1, · · ·, v. The procedure is illustrated with a specific 

example, i.e., v = 12 to obtain 6 + 3 arrangements. 

Complete block 1 Complete block 2 Complete block 3 

Incomplete block number Incomplete block number Incomplete block number 

1 .2. ;i 1 Q §. 1 .2. ;i 1 Q §. 1 .2. ;i 1 Q §. 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

7 8 9 10 11 12 8 9 10 11 12 7 9 10 11 12 7 8 
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Complete block 4 Complete block 5 Complete block 6 

Incomplete block number Incomplete block number Incomplete block number 

1 ~ Q 1 Q ~ 1 z Q 1 Q ~ 1 z Q 1 Q ~ 

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

10 11 12 7 8 9 11 12 7 8 9 10 12 7 8 9 10 11 

Complete block 7 Complete block 8 Complete block 9 

Incomplete block number Incomplete block number Incomplete block number 

1 ~ ;! 1 Q ~ 1 ~ ;! 1 Q ~ 1 ~ ;! 1 Q ~ 

1 2 3 7 8 9 1 2 3 7 8 9 1 2 3 7 8 9 

4 5 6 10 11 12 5 6 4 11 12 10 6 4 5 12 11 10 

4. Arrangements for Other Multiples of v 

Extending the ideas in the above section, it is possible to obtain v /2 + v /4 + v /8 = 7v /8 zero­

one association arrangements when v =St. When v = 2n, the above procedure results in 2n-1 

confounding arrangements leading to a balanced incomplete block design wherein every pair of 

treatments occurs A= 1 times. 

When v = 3t, for example, incomplete blocks of size k = 3 may be obtained as an extension of the 

above ideas. To illustrate, let v = 15. Then, five zero-one confounding arrangements may be 

obtained as follows: 

Complete block 1 Complete block 2 Complete block 3 

Incomplete block number Incomplete block number Incomplete block number 

1 ~ Q 1 Q 1 z Q 1 Q 1 z Q 1 Q 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

6 7 8 9 10 7 8 9 10 6 8 9 10 6 7 

11 12 13 14 15 13 14 15 11 12 15 11 12 13 14 

Complete block 4 Complete block 5 

Incomplete block number Incomplete block number 

1 ~ ;! 1 Q 1 ~ ;! 1 Q 

1 2 3 4 5 1 2 3 4 5 

9 10 6 7 8 10 6 7 8 9 

12 13 14 15 11 14 15 11 12 13 
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Note that treatment 1, for example, occurs once with 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 but does 

not occur with treatments 2, 3, 4, and 5 in the incomplete blocks of size k = 3. The same type of 

association occurs for every treatment. For v = 3t, there are t arrangements of the above form 

possible. Obviously the above procedure may be used for v = pk, k < p, to obtain p confounding 

arrangements with zero-one association schemes. 

5. Efficiency Factors 

An intrablock efficiency factor is defined as (e.g., Yates, 1937; Raghavarao, 1971): 

e = (1-1/k) I (1-1/v) = v(k-1) lk(v-1). 

An intrablock variance of a difference between two intrablock treatment effects IS 2o-~ Ire. For 

interblock contrasts the variance of a difference between two treatment effects is 

2 (a-~ + ko-p) I r( 1- e) , 

where r is the number of arrangements, a-~ is the intrablock error component of variance, and a-fi is 

the interblock error component of variance. The average variance of a difference between two means 

recovering interblock information is 

2o-H (1 + k1) 1 (1 +ke-y)} 1 r • 

where 1 = a-fi I O"~. One minus the ratio of the above error variance to the error vanance of a 

randomized complete block design gives the increase m efficiency of the incomplete block design 

relative to a randomized complete block design. 

Federer and Speed (1987) give efficiency factors for an incomplete block design as 

and 

They consider that there is little to choose between the two and suggest that e1 be the factor used. 

When 1 = oo, e1 becomes the intrablock efficiency factor e; when 1 = 0, e1 = 1. 
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6. Statistical Analysis 

Several computer software programs are available for analyzing results from IBDs with recovery 

of interblock information. One such package is GAUSS. A program on GAUSS is given in the 

appendix for v = pk treatments in r complete blocks (replicates) and p incomplete blocks of size k 

illustrated for a specific example of v = 6, k = 2, p = 3, and r = 3. If there are no missing 

observations, it is convenient to use Y ghi- y g .. as the responses in the Yrv x 1 vector of observations. 

This removes the mean and replicate effect from the linear model 

yghi =JJ.+Pg+figh+ri+tghi (1) 

where J1. is common mean effect, Pg is the effect of replicate g, ,8 gh is the hth block effect in replicate 

g, Ti is the ith treatment effect, and tghi is a random error effect. Then 

y h"- Yg = ,8 h + T· + ( h" gi .. g l gi (2) 

In the latter form, we have the simple matrix equations 

[ : ]=[ : ] (3) 

N~ xrp rlv 

where lx is the identity matrix, N is the block by treatment incidence matrix, B is an rp x 1 vector of 

block totals (Y gh.- kYg.J, Tis a v x 1 vector of treatment totals (Y .. i- ry ... ), fJ is an rp x 1 vector 

of block effects, and T is a v x 1 vector of treatment effects. The intrablock solutions for block and 

treatment effects are: 

(4) 

and 

r = [r lv- N'N/k + Jvfk) -l (T- N'B/k) (5) 

where Jv is a v x v matrix of ones, and Jrp could be of several forms, e.g. Ir* Jk where * means 

Kronecker product, Ir is the r x r identity matrix, and Jk is a k x k matrix of ones. For Z a p x p 
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matrix if zeros, Jrp could be of the form: 

z Jk Jk Jk 

Jk z Jk Jk 
(6) 

Jk Jk Jk z 

For p = k, (kirk- NN' /r + Jrk/r) -l becomes a diagonal matrix. The various sums of squares in the 

analysis of variance (ANOV A) for the above linear model are given in table 1. 

To recover interblock information simply replace klrp by Irp(k + u~ju~) where the intrablock 

error mean square E/fe is taken as the estimate u~ and u~ is the variance component for blocks where 

the expected value of BS/r(p- 1) is u~ + (r~1) ku~. Then, the treatment effects with recovery 

interblock information are: 

(7) 

Table 1. ANOV A for an IBD with v treatments in r replicates composed of p blocks of size k. 

Source of variation 

Total 

Correlation for mean 

Replicates = R 

Treatments (ignoring blocks) 

RCB error 

Blocks (eliminating treatments) 

Intrablock error 

d.f. 

rv 

r-1 

v-1 

(r-1)(v-1) 

r(p -1) 

fe 

Treatments (eliminating block) v -1 

fe = (r- 1)(v -1)- r(p -1) 

sum of squares 

Y'Y 

1Y~. jrv 

2: Y~ .. jv- Y~. jrv = RS 

I'T' 

subtraction 

P'(P- NT/r) = BS 

subtraction = E 

mean square 

RS/(r- 1) 

T'T/(v- 1) 

BS/r(p -1) 

E/fe 
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and the variance-covariance matrix is 

(8) 

As can be seen from the GAUSS program for v = 6, k = 2, p = 3, and r = 3, the sums of squares 

in the ANOV A and the values for (7) and (8) are readily obtained. 
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APPENDIX 
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v = bk treatments in b incompete blocks of size k with r replicates.@ 
v = 6; k = 2; r = 3; b = 3; format 2,1; 
let Y[18,1] = -3 1 -3 1 0 4 3 3 0 0 -3 -3 0 2 -2 0 -1 1; 
let N[9,6] = 
1 0 0 
0 1 0 
0 0 1 
1 0 0 
0 1 0 
0 0 1 
1 0 0 
0 1 0 
0 0 1 
1 1 1 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

1 o ·o 
0 1 0 
0 0 1 
0 1 0 
0 0 1 
1 0 0 
0 0 1 
1 0 0 
0 1 0; 
0 0 0 
1 1 1 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
1 1 1 
0 0 0 
0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
000.000 
0 0 0 0 0 0 
1 0 0 0 0 0 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 1 

let H[4,15]= 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 1 1 1 1; 
1 0 0 0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 1 
0 0 0 
1 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 1 
0 0 0 
1 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 1 
0 0 0 

1 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 1 
0 0 0 
0 1 0 
0 0 0 
0 0 1 
0 0 0 
1 0 0 
0 0 0 
0 0 1 
0 0 0 
1 0 0 
0 0 0 
0 1 0; 

let X[18, 15]= 

"The block and treatment totals are X'*Y =tot"; 
tot= X'*Y;tot';G = x:H;sol = inv(G'*G)*X'Y; sol'; 
Irb = eye(9);Iv = eye(6); Jv = ones(6,6);let J0[9,9] = 
0 0 0 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 
0 0 0 1 1 1 1 1 1 
1 1 1 0 0 0 1 1 1 
1 1 1 0 0 0 1 1 1 
1 1 1 0 0 0 1 1 1 
1 1 1 1 1 1 0 0 0 
1 1 1 1 1 1 0 0 0 
1 1 1 1 1 1 0 0 0; 
let B[9,1] = -2 -2 4 6 0 -6 2 -2 0; 
let T[6,1] = 0 -5 -4 -2 5 6; 
~0 = inv(k*Irb - N*N'/r + JO/r);bl = BO*(B- N*T/r); 

Block solutions are bl =";bl'; 
"Intrablock treatment solutions are tr ="; 



tr = inv(r*Iv- N'*N/k + Jv/k)*(T- N'*B/k);tr'; 
."Block eliminating treatment sum of squares = Bss"; 
Bss = bl'*(B- N~T/r);Bss; 
"Treatment ignoring block effects T'T/r is";T'*T/r; 
"Total sum of squares Y'Y is";Y'*Y; 
"The intrablock error mean square E and the blocks variance 
component bvar = Bss/k(r-1)(b-1) - rE/k(r- 1) are ";E = 3;E; 
bvar = Bss/8 - 3*E/4;bvar; 
"Treatment effects with recovery of interblock information= tree"; 
tree= inv(r*Iv- N'*N/(k + E/bvar) + Jv/k)*(T- N'*B/(k + E/bvar));trec'; 
"Variance-covariance matrix for tree is"; 
varcov = E*inv(r*Iv- N'N/(k + E/bvar) + Jv/k);varcov; 

Ins L=69 C=1 File=D:\GAUSS\EXPMS623 
Executing: D:\GAUSS\EXPMS623 
The block and treatment totals are X'*Y = tot 
-2.0 -2.0 4.0 6.0 o.o -6.0 2.0 -2.0 0.0 0.0 -5.0 -4.0 -2.0 5.0 6.0 
-1.0 -1.0 2.0 3.0 3.1E-016 -3.0 1.0 -1.0 -8.3E-017 -1.0 -1.0 -1.0 1.0 1.0 1.0 
Block solutions are bl = 
-1.0 -1.0 2.0 3.0 -9.2E-018 -3.0 1.0 -1.0 -4.6E-017 
Intrablock treatment solutions are tr = 
-1.0 -1.0 -1.0 1.0 1.0 1.0 
Block eliminating treatment sum of squares = Bss 
34.7 
Treatment ignoring block effects T'T/r is 
35.3 
Total sum of squares Y'Y is 
82.0 
The intrablock error mean square E and the blocks variance 
component bvar = Bss/k(r-1)(b-1) - rE/k(r- 1) are 
3.0 
2.1 
Treatment effects with recovery of interblock information = tree 
-0.4 -1.4 -1.2 0.0 1.4 1.6 
Variance-covariance matrix for tree is 

1.2 -0.2 -0.2 -0.0 -0.0 -0.0 
-0.2 1.2 -0.2 -0.0 -0.0 -0.0 
-0.2 -0.2 1.2 -0.0 -0.0 -0.0 
-0.0 -0.0 -0.0 1.2 -0.2 -0.2 
-0.0 -0.0 -0.0 -0.2 1.2 -0.2 
-0.0 -0.0 -0.0 -0.2 -0.2 1.2 


