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Abstract

Parikh’s Theorem says that the commutative image of every context free lan-
guage is the commutative image of some regular set. Pilling has shown that this
theorem is essentially a statement about least solutions of polynomial inequalities.
We prove the following general theorem of commutative Kleene algebra, of which
Parikh’s and Pilling’s theorems are special cases: Every system of polynomial in-
equalities fi(z1,...,2,) < m;, 1 < i < n, over a commutative Kleene algebra
K has a unique least solution in K™; moreover, the components of the solution
are given by polynomials in the coefficients of the f;. We also give a closed-form
solution in terms of the Jacobian matrix.

1 Introduction

Parikh’s theorem [8] says that every context-free language is “letter-equivalent” to a
regular set; formally, the commutative image of any context-free language is also the
commutative image of some regular set. The commutative image of a string z over
the alphabet {ay,...,a;} is the k-tuple (#a1(x),...,#ar(z)) € N, where #a;(z) is
the number of occurrences of a; in z, and the commutative image of a set A of strings
is the set of all commutative images of strings in A. For example, the context-free
language {a™b" | n > 0} is letter-equivalent to the regular set (ab)*; these two sets
have a common commutative image {(n,n) | n > 0}.

The usual combinatorial proofs of Parikh’s theorem involve an induction on parse
trees of context-free grammars. In this paper we prove the following general theorem
of commutative Kleene algebra, of which Parikh’s theorem is a special case:

Theorem 1.1 Every system of inequalities
fi(xla"'7xn) S Ly ]-SZSTI” (1)

where the f; are polynomials in K[z1,...,zy] over a commutative Kleene algebra K,
has a unique least solution in K™; moreover, the components of the solution are given
by polynomials in the coefficients of the f;.



We might take the statement of Theorem 1.1 as a definition of algebraic closure in
Kleene algebra, in which case the theorem says that any commutative Kleene algebra
is algebraically closed.

Pilling [9] proves this theorem in the special case of the commutative Kleene al-
gebra Reg(NF), the algebra of regular sets of Parikh vectors, and argues that this is
the essential content of Parikh’s theorem. Indeed, context-free grammars are just sys-
tems of set inequalities, and the context-free languages they generate are the minimal
solutions. Using results of [4, Lemma 7.1, p. 35] and [6, Section 2.3, p. 198] one can
generalize Pilling’s argument to any *-continuous Kleene algebra. However, the proof
makes essential use of various infinitary properties such as the continuity of regular
operators and the fact that a* is the supremum of the a™, n > 0.

Kuich [7] also gives a generalization of Parikh’s theorem that holds for any commu-
tative complete semiring. Kuich’s result implies Pilling’s, since Reg(N¥) is embedded
in the commutative complete semiring 2N*, Conversely, since every commutative com-
plete semiring is a commutative Kleene algebra under the usual definition of the *

operator
o = E a”,
n>0

Pilling’s result, if suitably generalized to *-continuous Kleene algebras, would imply
Kuich’s. But again, these proofs depend on the strong infinitary properties of *-
continuous algebras.

Our result is a generalization of these results in that it holds in all commutative
Kleene algebras. The main difference here is that Kleene algebra as defined in [5] has a
finitary algebraic axiomatization consisting of finitely many equations and equational
implications. Thus one might say that we are replacing the analytic arguments of
Pilling and Kuich with algebraic arguments. The fact that we cannot argue combina-
torially in the model Reg(N*) or use the infinitary properties of *-continuous algebras
makes the proof more difficult, but also makes the result considerably stronger.

The situation is analogous to the fundamental theorem of algebra, which states
that the complex numbers C are algebraically closed. The most common proof of this
theorem, originally due to Gauss, depends on the analytic structure of C and uses
second-order arguments (see e.g. [11]). However, one can give a first-order, purely
algebraic proof of the more general result that if R is any real closed field (such as R
or A, the real algebraic numbers), then R[i] is algebraically closed (see e.g. [10]). Like
the fundamental theorem of algebra, our result also deals with solutions of polynomial
systems, and our proof replaces arguments referring to the analytic or second-order
structure of Reg(N*), embodied in the *-continuity axiom, with first-order equational
arguments referring only to the finitary algebraic structure of commutative Kleene
algebras.

Our development involves the definition of differential operators 6% on commutative
Kleene algebras of polynomials and a version of Taylor’s theorem:

flx+d) = f(z)+ f(zx+d)-d.

Differential operators allow us to define the Jacobian matriz of a system of inequalities,
which we use to give a closed form solution.



In Section 2 we review the definitions of Kleene algebra and commutative Kleene
algebra. In Section 3 we discuss polynomials over a commutative Kleene algebra, define
differential operators on a commutative Kleene algebra of polynomials, and develop
some basic properties, culminating in a version of Taylor’s theorem. In Section 4 we
prove Theorem 1.1. In Section 5 we give a closed form solution in terms of the Jacobian
matrix of a system of inequalities.

2 Commutative Kleene Algebra

Kleene algebra is the algebra of regular expressions [3, 1]. The axiomatization we adopt
here is from [5]. A Kleene algebra is an algebraic structure (K, +, -, *, 0, 1) that is
an idempotent semiring under +, -, 0, 1 satisfying

*

1+pp* = p (2)
1+p'p = p* (3)
g+pr<r — pg<r (4)
g+rp<r — g <r (5)

where < refers to the natural partial order on K:

def
p<qg & ptg=gq.

The operation + gives the supremum with respect to the natural order <. Instead of
(4) and (5), we might take the equivalent axioms

pr<r — p*rgr (6)
rp<r — rp*<r. (7)

These axioms say essentially that * behaves like the Kleene asterate operator of formal
language theory or the reflexive transitive closure operator of relational algebra.

A Kleene algebra is *-continuous if it satisfies the additional infinitary axiom

pg*r = suppq"r,
n>0
where the supremum on the right-hand side is with respect to the natural order <.
A Kleene algebra or *-continuous Kleene algebra is commutative if it satisfies the
additional axiom pq = ¢p.

Kleene algebras play a prominent role in dynamic logic and other program logics.
Standard models include the family of regular sets over a finite alphabet; the family of
binary relations on a set; and the family of n x n matrices over another Kleene algebra.
Other more unusual interpretations include the min,+ algebra used in shortest path
algorithms and models consisting of convex polyhedra used in computational geometry
[2]. All naturally occurring models are *-continuous.

The following are some typical identities of Kleene algebra:

P*9)*p* = (p+9)" (8)
plgp)* = (pg)*p (9)
P = (p)*(1+p). (10)



All the operators are monotone with respect to <. In other words, if p < ¢, then
pr<gqr,rp<rq,p+r <q+r,and p* < ¢* for any .

The following is a theorem of commutative Kleene algebra that does not hold in
Kleene algebra in general:

p+9* = p*". (11)

Using this, one can prove a normal form theorem that says that every expression is
equivalent to a sum y; + « -+ + y,, where each y; is a product of atomic symbols and
expressions of the form (a; - - - a;)*, where the a; are atomic symbols. For example,

(((ab)*c)* + d)* = d* + (ab)*c*ed*.

This normal form was observed by Pilling [9] in the context of Reg(N¥), but using (11)
it is easily shown to hold in all commutative Kleene algebras.

The equational theory of Kleene algebras and *-continuous Kleene algebras coincide
[5], but their Horn theories do not; indeed, the Horn theory of *-continuous Kleene
algebras is [11-complete [6].

See [5] for a more thorough introduction to Kleene algebra.

3 Polynomials and Differential Operators

3.1 Polynomials over a commutative Kleene algebra

If K is a commutative Kleene algebra, we denote by K[x| the commutative Kleene
algebra of polynomials in indeterminates x over K. These are very much like polyno-
mials over a ring or field. We can think of a polynomial as a regular expression over K
and x reduced modulo the axioms of commutative Kleene algebra and the diagram of
K (the set of ground identities that hold in K). Typical examples of polynomials are

(az + by)*
1+ (az™b*)* + bz + cy
a+ zy(bzy)*,

where z,y are indeterminates and a,b,c € K.

Formally, K[x] is defined to be the direct sum (coproduct) of K with the free
commutative Kleene algebra on generators x in the category of commutative Kleene
algebras. The most significant property of polynomials is that any pair of maps h,h’,
where h : K — L is a Kleene algebra homomorphism and h' : x — L is a set function,
extend simultaneously and uniquely to a Kleene algebra homomorphism h:K [x] — L.
When h is the identity on K, the map B is just polynomial evaluation; intuitively,
applying T can be regarded as substituting the values h/(z) for the indeterminates
z € x and then evaluating the resulting expression.

Ifx=u=x,...,2, and a = aq,...,a,, we write f(a) or f(x) |x—=a for the value of f
evaluated at z; — a;, 1 <1 < n.



3.2 Differential Operators

A map D : K — K on a commutative Kleene algebra K is called a differential operator
if for all z,y € K,

D(z+y) = Dz+ Dy
D(zy) = zDy+yDzx
= z*Dz

| (12)
D0 = D1 = 0.

For example, in Reg(N¥), for every 1 < i < k, the map
A = A{(a1,...,0i-1,0; = L0541, ap) | (a1, .., ak) € A, a; > 0}
is a differential operator.

Theorem 3.1 Any differential operator D : K — K and set function D : x — K have
a unique joint extension to a differential operator D : K[x] — K|[x].

Proof. The given maps D can be extended by induction to D : K[x] — K|[x] using
(12); but we must take care that the extended D is well-defined on equivalence classes
modulo the axioms of commutative Kleene algebra and the diagram of K. That the
extended D respects the diagram of K follows from the fact that the given D : K — K
is a differential operator on K. To prove that D respects the commutative Kleene
algebra axioms requires a case for each axiom. We argue the cases a* = 1 + aa™ and
ab < b — a™b < b explicitly.

For the case a* = 1 + aa™,

D(1+4aa*) = D1+ D(aa™)
= 0+aD(a™) +a*Da
= aa*Da+a*Da
= a*Da

= D(a").

For the case ab < b — a™b < b, suppose ab < b. By the induction hypothesis,
D(ab) < Db, and we wish to show that D(a*b) < Db. From D(ab) < Db we have
that aDb + bDa < Db, thus by (6) we have that a* Db < Db, and by (4) we have that
a*bDa < Db. Therefore

D(a*b) = a*Db+bD(a™)
= a*Db+ ba*Da
Db.

IN

O

In particular, for x € x, we define a certain differential operator a% : K[x] = K[x]
as follows. The value of 6% applied to f € K[x] is denoted % or %(x). We define a%



to be the unique differential operator such that % =1, % =0 for y € x — {z}, and

% =0fora€ K.

For univariate polynomials f,e € K[z], we sometimes write f' for % and %(e) or
f'(e) for the result of evaluating the polynomial % at z — e.

Note that 6%( f(e)) and %(e) are different in general. The former refers to8 the

result of evaluating f(z) at = ~ e first, then applying the differential operator 4 to
el

f(e); whereas the latter refers to the result of applying the differential operator -

to f(z) first, then evaluating the resulting polynomial %(x) at £ + e. These two
expressions are related by the chain rule:

Theorem 3.2 (chain rule) For f,e € K[z],

or in more conventional notation,

fle@) = fle()) - €(@).

Proof. This is a straightforward induction on the structure of f. We argue the
cases f = gh and f = g* explicitly.

(g(e)h(e)) = g

We also have the following version of Taylor’s theorem.

Theorem 3.3 (Taylor’s theorem in commutative Kleene algebra) For f,d €
Kz,

fla+d) = f(z)+f(z+d)-d
In particular, evaluating at x — 0,

fld) = £0)+f(d)-d



Proof. This is again a straightforward induction on the structure of f. As before,
we argue the cases f = gh and f = g™ explicitly. For the case f = gh,

gh(x +d) = g(x+d)h(z+d)

g(z + d)h(z) + g(z + d)W' (z + d)d
= g(x)h(z) + ¢'(z + d)h(z)d + g(z + d)I (z + d)d,

and by symmetry,
gh(z +d) = g(x)h(z)+ ¢ (z +d)h(z + d)d + g(z)h'(z + d)d,
therefore by monotonicity,

gh(z +d) = g(z)h(z) + ¢'(z + d)h(z)d + g(z + d)h' (z + d)d
+ ¢'(z + d)h(z + d)d + g(z)h'(z + d)d
g(z)h(z) + g(z + d)h'(z + d)d + ¢'(z + d)h(z + d)d
= gh(z) + (gh)'(z + d)d.

For the case f = g*,

gl +d)* = (9(z) + 4 (z + d)d)*
= g(z)*(¢'(z +d)d)* by (11)
= g(@)* +9()*d (z + d)d(d'(z + d)d)*
= g(@)" +¢'(z + d)dg(x)* (¢'(z + d)d)*
= g(z)* + ¢ (z +d)dg(z +d)*
= g(z)* +g(z +d)*¢ (z + d)d
= g(2)* + (¢™) (z + d)d.

O

We often wish to differentiate simultaneously with respect to a sequence of inde-

terminates y = y1,...,yx- We define an operator ai that when applied to an element
f € K[x] produces a row vector of length k whose i*" component is %. More generally,
8 apphed to a column vector consisting of m elements f1,..., f,, € K[x]| produces an
m x k matrix whose i, j*" element is g?jf
By iterating Theorem 3.3, one can show that for f € K[x] and e = e1,...,ep,
a a
fle) = f(0,...,0) + ZL(e)er + - + 2L (e)en
= [(0)+ %(e) e,

where - denotes dot product of vectors. The same holds for a column vector f =
fis-++, fm of elements of K[x]; here ‘g—i(x) is an m x n matrix whose 7, ' element is
ofi
Bz and

fle) = f(0)+ &(e)-e, (13)



where in this case - denotes matrix-vector multiplication. The m X n matrix ‘g—)f((x) is

called the Jacobian of f.
We also have the following vector-vector and matrix-vector versions of the chain
rule, Theorem 3.2:

Ffe) = ghEe%+--+3lEe% = ) 5
5 (f(e) = Fl(e)- 5

The proof of these propositions is a straightforward generalization of the proof of
Theorem 3.2.

4 A Generalization of Parikh’s Theorem

In this section we prove Theorem 1.1. We first prove the result for n = 1, then extend
it to arbitrary n.

Theorem 4.1 Let K be a commutative Kleene algebra and let f(z) € K[z]. The
unique least solution of the inequality f(z) < x is

F1(fF(0)* - £(0). (14)
Moreover, this holds uniformly over all homomorphic images of K.

For example, the context-free language A = {a"b™ | n > 0} is generated by the
grammar S — aSbh | ¢, which translates to the one-dimensional system azb+ 1 < z.
Letting f(z) = azb+ 1, we get f'(z) = ab and f(0) = 1, thus (14) gives (ab)*. This is
a regular expression describing a regular set letter-equivalent to A.

Proof. First we argue that (14) is a solution to f(z) < z. It follows by a straight-
forward inductive argument that for any polynomial h(x),

ac<bc — h(a)c < h(b)c. (15)
Applying this with b = f(0), ¢ = f/(b)*, and a = be,

fla) f(be)

f(0) + f'(bc)bc by Theorem 3.3
b+ f'(bc)bc

b+ f'(b)bc

b+ f'(b)f'(b)*b
f'(b)*b by Kleene algebra,

= a.

IN

by (15)

Now we show that (14) is the least solution. Suppose y is any solution; thus
f(y) <y. We wish to show that

FFO)*F0) < v



By (4), it suffices to show

FO)+1(f0)y < v
But by monotonicity, f(0) < f(y) <y, and

FO)+ f(f(0))-y < f(0)+f'(y)-y by monotonicity
= fly) by Theorem 3.3
< v

The expression (14) gives the least solution of f(z) < z uniformly over all homo-
morphic images of K because the axioms of Kleene algebra used in the proof hold
universally under any interpretation. O

The uniformity condition of Theorem 4.1 may seem obvious, but it is actually a
rather subtle point. The issue is that equations are preserved under homomorphisms,
but in general Horn formulas (equational implications) are not. The homomorphic
image h(e) of a solution e of an inequality f(z) < z is a solution of the homomorphic
image of the inequality, because the inequality is equivalent to an equation f(z)+z = x;
but that h(e) is the least solution does not follow from the fact that e is least, since
this property requires a Horn formula.

Proof of Theorem 1.1. We iterate the one-dimensional solution as follows. Consider
the two-dimensional system

flz,y) < =z
9(z,y) < v

Viewing K|[z,y] as K|z|[y], first compute the least solution to the one-dimensional
system ¢(z,y) < y in KJz]; call it hA(z). Then compute the least solution a of
f(z,h(z)) <z in K.

We claim that (a, h(a)) is the desired least solution to (16) in K2. Surely f(a, h(a)) <
a by the one-dimensional argument. Moreover, by the uniformity observation, we also
have g(a,h(a)) < h(a), since it is the image of g(x, h(z)) < h(x) under the evaluation
homomorphism z +— a.

To show (a,h(a)) is the least solution, suppose (b, c) is any other solution. Then
f(b,e) < b and g(b,c) < c. Using the uniformity observation with the evaluation
morphism z — b, we have that h(b) is the least solution of g(b,y) < y. Then h(b) <
c. But by monotonicity, f(b,h(d)) < f(b,c) < b. Since a is the least solution to
f(z,h(z)) < z, we have that ¢ < b. Again by monotonicity, h(a) < h(b) < ¢. Thus
(@, h(a)) < (b,c).

By iterating this process inductively, we can obtain the existence of a solution to
any n X n system. O

(16)

5 A Closed Form Solution

The iterated construction of the previous section does not give a symmetric closed-form
expression for any dimension greater than one. In this section we provide a symmetric
closed-form solution.



Let K be a commutative Kleene algebra and consider an n X n system
flx) < x (17)

where x = z1,...,7, and f = f(x) = f1(x),..., fn(x) € K[x]. Let % be the Jacobian
of the system (17) as defined in Section 3.2. Define

ay & £(0)
def
a1 =  S(ap)*ay.

Theorem 5.1 For sufficiently large finite N, the n-vector ay is the least solution to
(17). Moreover, this solution is uniform over all homomorphic images of K.

Below we will derive an explicit single-exponential bound on N as a function of n.

Proof. We will prove the first statement of the theorem; the uniformity property
will follow by the same considerations as in the proof of Theorem 4.1. The proof
proceeds by induction on 7. The basis n = 1 was given in Theorem 4.1.

Now suppose n > 2. Partition n as m+ (n—m) where 1 < m < n. For an n-vector
b =by,...,b,, write

I R U
def
bg = bm—|—1""abna
and for an n X n matrix M, write

for the upper left m x m, upper right m x (n —m), lower left (n —m) x m, and lower
right (n —m) x (n — m) submatrices of M, respectively. To simplify notation, define

MR R
zd:ef)ﬁ, hdéffg.

In this notation, we can rewrite (17) as

gly,z) <y
h(y.) < z (%)
Also,
og _ ofH og _ orH
dy —  oOx oz ~— Ox
on _ ofid oh _ oftW
dy ~—  Ox 7 0z ~—  0x °
Now define

def
c(y) = h(y,0)

def
cri(y) = BB(y,ci(y))*erly)

10



By the induction hypthesis, there exists a P such that cp(y) is the least solution to
the system

h(y,z) < z
uniformly in y. Define

~ def

Ey) = sgly.cr(y)
def ~

by = g(0)
def e

ben = GE(by) by

Again by the induction hypthesis, there exists an M such that by is the least solution
to the system

gly) < v
By the uniformity of the solutions, we have that

g(ba,cp(by)) < by
h(bpr,cp(by)) < cp(bu),

and bps,cp(bys) is the least solution to (17). Moreover, this is the least solution
uniformly over all homomorphic images.
Our task now is to show that for sufficiently large IV,

u

bM = a?v, CP(bM) = ay- (19)

The inequalities > follow from the fact that if u is any solution to (17), then a; < u
for all k. This can be shown by induction on k. Certainly

ag = f(0) < f(u) < wu,

and by (13),

from which it follows that

Ap1 =

VANVAN

Now we establish a series of inequalities from which the forward inequalities < of
(19) will follow. First,

Q

ar < L(ap)*ay = a1,

thus a; < aj, 7 < j, and similarly for b; and c;.

11



Now we show that

glay) < ap, h(ay) < ag, (20)
By (13),
glay) = g(0) + 3&(ap)ay
= 07+ Z(ay)®a;
= a5+(3—§ ar)a)”

(
< (ap + 2 (ar)*ay)”

= Ay

The second inequality of (20) follows from a similar argument.
Now we show by induction on j that

i) < ¥, (21)

For the basis,

co(a) = h(al,0)

IA A

b 2
]
Tz

For the induction step,

,c;(ad)*c;(a)

u
J

IN

S;|Q> Q;|® Q>|QJ
o]
ES

°j+1(a%)

[m ]

,a

/\?
>

*_
k1) Akt

= ON[E N[

—~

* i
aj1kt1) A5 gt

IA
@

(aj+k+1)EH)*aE+k+1

e e

®|m Q>|m Q:|

* Ol
ajikr1)") Aj k41

I S

(
x 8k 1) @y 1)

IA
[ a]

a-+k+2.

~

Now we show by induction on k that when m = n — 1, that is, for |z| =1,

PLy) < B, Ey.a). (22)

The corresponding result for m < n — 1 would require some specialized notation even
to state. The proof for m = n — 1 is considerably simpler, so we henceforth restrict
ourselves to that case.

First we note that

fafy) = £(h(y,0) = 2(y,0). (23)



Then

MEEY) = &R, o)

= ()& (G crd)) + 5y cr(y)* 52 (y)

= )R ¥) S (B y, ) + 5y e ()  F2(y)

= Py, k() k()& (v, cr(y)) + 2 (v, cr(y)* G (y)

< B(y,cr(y) & (B ek (¥)er () + By er(y) G2 ()

< By, ce(¥)* by, cr(y)) + 32, cr(y))* G2 (y)

= Py, cr(¥) (3R (y,ck(¥) + (¥, k() 52 X)) + 2 (v, e () 5 (y)

= Py, (R, () + FEG)), (24)
so it suffices to show

Try) < S(y.cu(y) By, cr(y))-

For k = 0, this is immediate from (23).

induction hypothesis.
Now we show by induction on k that
by <

For the basis,

IN Il

ININ DA

For k£ > 0, this follows from (24) and the

a%k+1)(P+2) : (25)

13



For the induction step,

byt = %(bk)*bk
= ZEy.cr))*Y ly=by
= (E(y,cr(y) + E . cr()FE2E)Y ly=b,
= (S—ﬁ(bk,cP(bk)) + %(bkacP(bk))&_;(bk))*bk
< (§E(bg,cp(by)) + 5E (b, cp(by)) G2 (br, cp-1(bk))* 52 (by, cp—1(by))) “by
< (5E(br,cp(br)) + 38 (bk, cp(br)) 52 (br, cp(bg))* 92 (bg, cp (b)) “by
= (88 by, ep(be) + 2L (b, p (by) P (by, cp(by)) M 2 (b, e (bg) ) by
< g_,f((bkacP(bk))*Ebk
< B (nyprayr P @0 aypsn)) ey pae)
= g_i(a%k+1)(P+2)’a?k+2)(P+2)71)* Ak 11)(P+2)
< A (@pprypio-1) Ty pin 1
< (%(a(k+2)(P+2)71)*a(k+2)(P+2)fl)E
= a%k+2)<P+2)-

It follows from (21) and (25) that

by

IN

w
A(M+1)(P+2))
cp(by) < a?M+2)(P+2)—1'

Taking m = n — 1, Theorem 4.1 says that P = 1 suffices. Thus the N in the
statement of the theorem is bounded by (M + 2)(P +2) —1 = 3M + 5. This gives the
following recurrence for N as a function of n:

N(1) =1
N(n+1) = 3N(n)+5
with solution N(n) = (7-3" —5)/2. O
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