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paradoxes o f gam e theory. In recent years, game 
theory, as a method of analysis, has spread from its origins 
in economics to many other disciplines such as sociology, 
politics and, more recently, law (Baird, Gertner and Picker
1994). With the rise of this method have emerged some 
intriguing paradoxes which have both cast shadows on the 
foundations of rational behaviour models and strengthened 
the foundations by compelling us to reconsider and hone 
some of the standard axioms.

From the time of the Greeks, Zeno and Eubulides, in 
the fourth and fifth centuries b c , paradoxes, by appealing 
simultaneously to our senses of fun and philosophic 
wonder, have been a major instigator of scientific quests. 
This is quite evident in game theory, where paradoxes have 
typically arisen when the conclusions about human behav­
iour arrived at through the use of formal analysis have 
conflicted with our intuitive (and even reasoned) view of 
the matter. To the extent that people do not have identical 
intuitions, there can always be open questions about what 
constitutes a paradox. However, in game theory a set of 
problems that have arisen from the use of the ‘backward 
induction argument’ is widely accepted as deeply paradoxi­
cal.

Even though many of these paradoxes remain unsolved, 
they have enriched our understanding of strategic inter­
actions between agents. Indeed some important works on 
entry-deterrence and collusion in industry -  topics of 
interest to those dealing with antitrust legislation -  have 
been inspired by the effort to grapple with the problem of 
backward induction in the Prisoner’s Dilemma and related 
games (Selten 1978; Kreps, Milgrom, Roberts and Wilson 
1982). Such analysis has also thrown light on financial 
economics and bubbles (Morris and Shin 1995) and related 
paradoxes have helped us pose questions of importance in

ethics (Basu 1994b). Moreover, there are paradoxical 
results in game theory (e.g. Gale and Stewart 1953) which 
have opened up debates in mathematics: for instance, the 
possibility of a set theory without the axiom of choice.

THE BACKWARD-INDUCTION CONUNDRUM. An early 
encounter of economists with the problems of backward 
induction occurred when considering finitely-repeated 
plays of the Prisoner’s Dilemma game (Luce and Raiffa 
1957). Let us here diverge from that tradition and intro­
duce the problem by analysing the less well-known game of 
Centipede due to Rosenthal (1981).

In the Centipede two players play alternately for up to 
100 periods. It is easiest to think of it as a game in which 
player A has a parcel to start with. In period 1 person A 
can either keep the parcel (play K) or pass it to the other 
player (play P). If he chooses P then it is player B’s move 
who can keep it or pass it. If she passes it, it is A’s move 
again and he can keep it or pass it. The game is terminated 
as soon as someone chooses to keep the parcel or if it is 
passed 100 times. Each act of passing the parcel yields 2 
dollars for each player. An act of keeping the parcel yields 
3 dollars to the keeper. This game (with its hundred legs) 
is described in Figure 1.

For every pair of numbers in the above game tree the 
top number is A’s payoff and the bottom number B’s 
payoff. The game begins at node x, with A’s move. II A 
chooses K, the game ends with A collecting a total of 3 and 
B collecting 0, as shown. If A passes, we reach node .v2, 
where B has to move. If B chooses K, the game ends and A 
gets a total of 2 and B a total of 5 (2 for the one pass and 3 
for the keep). If B chooses P, it is A’s move; if A chooses K 
the game ends with A collecting 7 and B collecting 4.

How will rational players play this game? I f  node .v,IX) is 
reached, clearly it is rational for B to choose K instead of P 
(she gets S201 instead of $200). Since A can see this, at 
node .vw A will clearly choose K. That way he gets $199. II 
he had chosen P, then (given B’s anticipated move in the

a p b p a p  . . .  b p a p b p
---------------<
X1 X2 X3 X 98 X99 X,00

K K K K K K

200
200

194
197

199 198
196 201

3
0

2
5

7
4

Figure 1



last period) he would get 198. It follows, by a similar rea­
soning, that if node x,m were reaehed, it would be rational 
for 13 to play K. And this argument unfolds inexorably 
backwards and takes us all the way to the prediction that in 
period 1 player A will choose K, collect S3 and bring the 
game to an end. This is the so-called ‘backward-induction’ 
argument — an instrument of immense power (Aumann
1995) hut also the cause of much philosophical dispute 
(Pettit and Sugden 1989).

The end result of the backward induction argument 
assaults our commonsense and intuition. Surely most rea­
sonable people would play ‘cooperatively’ by choosing P, at 
least in the early games, expect the other player to do the 
same and earn considerably more than 3. But at the same 
time the backward-induction argument seems quite sound. 
It is this conflict which constitutes the paradox.

To the question w hy people may in reality play coopera­
tively in the early games, we can give a variety of answers. 
Players may he altruistic and give some weight to others’ 
payoffs. A player may he rational hut not know that the 
other player is rational or not know that the other player 
knows that he is rational. Incorporating such assumptions 
have enriched game theory and the study of law and econo­
mics of industry, but they do not solve the paradox. This is 
because there is a sense in us w hich suggests that, if players 
are ruthlessly selfish, know that they are rational, know 
that they know that they are rational and so on, even then 
they will choose to ignore the backward-induction argu­
ment and play P, at least in the early games, and expect 
their opponent to do the same. A large number of papers 
(e.g. Binmore 1987; Bicchieri 1989; Reny 1993) have con­
sidered problems of this kind and tried to explain how- 
players will actually play such games. But open questions 
have continued to plague the field. Basu (1990) takes a dif­
ferent line and argues that games such as the Centipede are 
unso/vahle. That is, any prediction of how such a game w ill 
he played will he inconsistent with some elementary 
axioms of rationality. It is important to appreciate that to 
say that a game has no solution is not the same as saying 
that ‘anything can happen’. The latter is tantamount to 
saying that the solution consists of all possible outcomes. 
The theorem in Basu (1990), on the other hand, says that 
such a prediction is as wrong as the prediction that A will 
choose K in period 1.

Papers which have tried to solve this paradox have often 
exploited the extensive-form structure of the above game, 
that is, the fact that these games — Centipede or the 
Repeated Prisoner’s Dilemma — are played over time. This 
is what allows players to ‘throw surprises’ b\ deviating 
from the path of backward induction (Binmore and Bran- 
denburger 1990). Thus if in the Centipede, in the first 
move A chooses P, in effect A is giving a message to B that 
her hack ward-induction reasoning is demonstrably false. 
This can induce B to play cooperatively.

It is however possible to argue that the paradox runs 
deeper and can arise even in a single-shot game through a 
kind of introspective backward induction. 'Phis problem, 
with related discussions in Ahreu and Matsushima (1992) 
and Gla/.er and Rosenthal (1992), is captured by the Trav­
eller’s Dilemma game (Basu 1994a; see also Zambrano
1996) .

t h e  t r a v e l l e r ’s  d i l e m m a . Two travellers returning 
home from a remote island where they bought identical 
antiques discover that the airline has managed to damage 
these. The airline manager, on the grounds that he has no 
way of confirming the price of these antiques, offers the 
travellers the follow ing compensation scheme.

Each of the two travellers has to write down on a piece 
of paper the cost of the antique. This can he any integer 
between 2 units of money and 100 units. Denote the 
number chosen by traveller i by //,. If both write the same 
number, that is, //, = >/,, then it is reasonable to assume 
that they are telling the truth (so reasons the manager) and 
so each of these travellers will he paid », (or n2) units of 
money.

If traveller i writes a larger number than the other (i.c., 
n, > n;), then assume that j  is being honest and i is lying. 
In that case the manager will treat the lower number, that 
is, //;, as the real cost and will pay traveller i the sunt of 
n, —2 and pay j  the sum of >/; + 2. Traveller i is paid 2 
units less as penalty for lying and j  is paid 2 units more as 
reward for honesty.

Given that each traveller or player wants to maximize 
his payoff (or compensation) what outcome should one 
expect to see in the above game? In other words, which 
pair of strategies, (/?,, //,), will he chosen by the players? In 
a manner reminiscent of Keynes’s elegant metaphor of the 
beauty contest (1936, chapter 12, section v), in this game 
the true value of the antique turns out to he irrelevant.

At first sight it appears that both players can get 100 by 
simply writing 100. But each player soon realizes that if the 
other player adheres to this plan then he can get 101 units 
of money by writing 99 (and even if the other player writes 
something other than 100, this player can never do worse 
by writing 99 instead of 100). So he should write 99. Of 
course, both players will do this, which means that each 
player will in fact get 99 units. But if both were planning to 
write 99, then each player will reason that he can do better 
by writing 98; and so on. There is no stopping until they 
get to the strategy pair (2, 2), that is, each player writes 2. 
Hence, they will end up getting two units of money each. 
Indeed all standard solution concepts -  Nash, strict Nash, 
rational inability — predict the unique outcome (2, 2). Yet it 
seems unlikely that two individuals, no matter how rational 
they are, w ill play (2, 2). Of course, altruism, reciprocity 
and such elements of reality can explain why people will 
play large numbers. But the paradox occurs because it 
seems that they should and will play large numbers even if 
they decide to play selfishly.

What we need to grapple with is the fact that human 
beings are equipped with a higher order rationality which 
urges us, in contexts such as the Traveller’s Dilemma or 
the Centipede, to reject formal reasoning and choose a 
large number; and assures us that the other player will do 
the same. But this is an argument that has proved hard to 
formalize and so we must move on, leaving this as an open- 
ended research problem.

KNOWLEDGE AND COMMON KNOWLEDGE. One assumption 
that is quite ubiquitous in game theory is that rationality is 
‘common knowledge’ among the players. What this means 
is that the players are rational, each player knows that all
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players are rational, each player knows that all players 
know that all player are rational and so on. Game theorists 
and economists have usually been quite cavalier about this 
assumption, invoking it at will. The emergence of para­
doxes of the kind discussed above have made some analysts 
wonder if the common knowledge assumption is not at the 
root of some of these paradoxes.

Indeed it is somewhat reminiscent of the way in which 
in early set theory it used to be implicitly assumed that 
there is a universal set which contains everything; and it 
was only with the appearance of paradoxes such as the 
celebrated ‘Russell paradox’ that it became clear that this 
seemingly innocuous assumption was a hornet’s nest of 
inconsistencies.

Hence, starting with the work of the philosopher David 
Lewis (1969), there has now been much formal investiga­
tion into the algebra of knowledge and common knowledge 
(Fagin, Halpern, Moses and Vardi 1995). While these 
investigations have not really ‘solved’ the paradoxes of 
backward induction, they have both deepened our under­
standing of the relation between rationality and knowledge 
and drawn our attention to some new paradoxes, some of 
which will be discussed in the next section. But before 
going on to that it is useful to illustrate the somewhat mys­
terious nature of knowledge with Littlewood’s (1953) story 
of the ladies in the train, with dirt on their faces, laughing 
at one another, each unaware that she has dirt on her face.

A more sterilized version of that story has it that a class has 
thirty red-haired students. Assume that no one can see the 
colour of his own hair but of course knows that others have 
red hair. This school has a rule that, if a person knows that he 
has red hair, he should not come to school. One morning the 
teacher announces in class that at least one student has red 
hair. At one level this gives no information and so should 
have no effect on any one’s behaviour. But in this case after 
thirty (school) days no student returns to school.

To understand this first consider a class with only two 
students. After an announcement by the teacher that at 
least one person has red hair, in two days’ time neither 
student will return to school. This is because when on the 
day following the announcement student i sees that j  has 
come to school, i will realize that i must have red hair 
because, otherwise, hearing the teacher’s announcement j  
would have realized that j has red hair and so / would not 
have come to school. Hence, by the second day each person 
knows that each person has red hair. To get to the class 
with 30 students we have to proceed by induction. Basi­
cally what happens is that the depth of knowledge 
(I know that you know that 1 . . .) keeps increasing with 
each passing day.

THE E-MAIL GAME. Rubinstein’s (1989) celebrated example 
of the electronic mail game highlights a paradoxical nature 
of knowledge of different levels of depth and also demon­
strates the sharply different implications of assuming- 
common knowledge and assuming nearly common knowl­
edge. This is related to the work of Gray (1978) and 
Halpern and Moses (1990).

Two friends, 1 and 2, plan to go to a bistro (B) or an 
amphitheatre (A) near l ’s home. The amphitheatre is their 
preferred destination if and only if the weather is sunny (.s’). 
If it is rainy (/•), they would rather go to the bistro.

If the weather is sunny, the game is Gs; and, if it is rainy, 
the game is G, with payoffs as illustrated in Figure 2.

It is assumed that p < \  and L > M > 1. Note that in 
game Gs, for both players, A is a dominant strategy. That 
is, no matter what the other player does each person is 
better off going to the amphitheatre. In game G,., on the 
other hand, (B, B) is the best outcome hut choosing B is 
not a risk-free decision on the part of an individual, 
because if the other agent chooses A, then the individual 
will get -  L.

Let us now assume that the weather condition is known 
only to player 1 who then communicates this to 2 by the 
following technology. If and only if it is rainy a message 
goes from 1’s computer to 2’s computer. From then 
onwards the two computers are programmed so that when­
ever a computer receives a message it automatically sends 
out a message (of acknowledgment). However, computers 
are not infallible so every time a message goes out there is a 
small probability, e, that the message never reaches the 
other player’s machine. So to sum up, if the weather is 
sunny, neither computer sends out a message because the 
process of sending messages never gets started. If the 
weather is rainy, (the machine of) player 1 sends at least 
one message with probability 1, he sends at least two mes­
sages with probability (1 —e)2 and so on, and player 2 sends 
at least one message with probability 1— e, at least two mes­
sages with probability (1 —e)’ and so on. After the machines 
stop sending messages, each player checks how many mes­
sages were sent from his machine and chooses between 
going to A and B.

Suppose both machines send 10 messages. Then clearly 
it is rainy, both players know it is rainy and 1 knows that 2 
knows that it is rainy; both players know that; both players 
know that both players know that and so on, up to ten 
times. The question is: After receiving those ten messages 
how will the players play? It can be shown that the only 
rational way to play is for both to choose A and earn zero!

The argument builds on induction by first considering 
the case when both players receive zero messages then

A B A B

A M, M 1, - L A 0 , 0 1, - L

B -L ,  1 0 , 0 B -L ,  1 M, M

Gs (Probability 1 -p)

Figure 2

Gr (Probability p).



considering cases with one more message at a time. The 
interested reader is referred to Rubinstein (1989) for a 
proof. Hut one can see the essence of this argument by con­
sidering the same story but with M  set equal to one. This is 
a less interesting game because A is now a dominant strat­
egy also in G,; but (B, B) is still the best outcome in game 
G, and so we would expect both players to choose B if they 
know that it is rainy. It is easy to see that no matter how 
many messages go back and forth, it is rational for both 
players to play only A. It is true that (A, A) is a perfect 
equilibrium (in the sense of game theory), which (B, B) is 
not, but in this game that is not the reason why A is always 
played.

To see this, suppose both players’ machines send zero 
messages. Then player 1 knows it is sunny and plays A. 
And player 2 thinks that either it is sunny or l ’s message 
got lost. Hence, he believes there is a positive probability 
that 1 will play A. But then it is best for 2 to play A 
(remember we are now assuming M  = 1).

Next consider the case in which l ’s machine sends one 
message. This means that either the message from 1 fails to 
reach 2 or 2’s message (i.e. 2’s acknowledgement of l ’s 
message) fails to reach 1, because if neither of these hap­
pened then l ’s machine would have sent more than one 
message. It follows that 1 will know that either 2’s machine 
sent zero messages or one message. If the former happens, 
we know from the above paragraph that 2 will play A. 
Since 1 knows this, 1 will play A.

Now consider 2’s machine sends one message. Then 2 
will know that either l ’s machine sent one message or two 
messages. And we can continue to reason in this fashion.

If state /• (rainy) were common knowledge, it is a Nash 
equilibrium for both to choose B and earn M  each. But 
anything short of common knowledge, as we just saw, 
destroys this outcome. Both may know /•, know that they 
know r and so on a hundred times, but the only rational 
play will be (A, A).

Once again, as with the backward induction paradox, 
one is left with the feeling that if I am in a situation where 
my machine sends out 100 messages, I will choose to ignore 
all this line reasoning and play B and expect player 2 (who 
would have sent 99 or 100 messages) to do the same. But 
until this ‘idea’ is formalized the paradox must be treated 
as an unresolved one.

IMPERFECT r e c a l l . Another paradox dealing with knowl­
edge and information, though of a very different genre 
from the E-mail game, is Piccione and Rubinstein’s (1996) 
paradox of absent-mindedness. Ever since the 1950s it has 
been a staple assumption that players in a game have 
perfect recall -  that is, at every stage of the game each 
player remembers what the player did and what the player 
knew in earlier stages. Piccione and Rubinstein have 
demonstrated that abandoning perfect recall is not just 
inconvenient but it may give rise to paradoxes.

Consider a one-player game in which a person sitting in 
a bar is contemplating driving back home. For that he has 
to take the second exit. Reaching home gives him a payoff 
of 4. The second-best option (payoff 1) is to take no exit 
and to reach a motel at the end of the road. The worst 
option is to take the first exit and reach a bad area (payoff

Figure .1

0). The trouble is, he is absent-minded and when be sees 
an exit he can never remember whether he has already 
gone past an exit or not. In other words, in the game 
described in Figure 3, he cannot tell the difference between 
nodes d , and d2. Formally, dA and d2 belong to the same 
information set.

Given this handicap, he realizes in the bar that all he can 
decide is whether or not to take an exit when he sees it; and 
it is clear that his best strategy is not to take the exit. That 
way he will get a payoff of 1, instead of 0.

Now let us suppose that, having made that decision, he 
sets out. Soon he sees an exit. Given his own decision at 
the bar, he knows that this may be exit 1 or 2. Both are 
equally likely since he will go past both. So if he takes the 
exist his expected payoff is 2. That being greater than 1, he 
should take the exit. Nothing that he did not expect has 
happened since he was at the bar, hut there seems to he 
reason for him to change his decision.

The paradox has generated a lot of controversy, which it 
is perhaps too early to assess properly. What the paradox 
seems to me to call into question is the status of informa­
tion sets as primitives. If a person can remember his choice 
of strategy and has perfect powers of deduction this may be 
inconsistent with the assumption that the person is absent- 
minded. Also, once perfect recall is dropped as an 
assumption there may arise a case for dropping the 
assumption that information can he characterized as a 
partition.

To see this, return to the game in Figure 3 and suppose 
that the terminal node where the payoff is zero now gives a 
payoff of 5. In this modified game, his decision in the bar 
will clearly he to take the exit when he sees one. Hence, if 
he remembers this then at dx he will know that he is at d] 
and at d2 he will ‘know’ (or think he knows) that he is at dv 
This implies a representation of knowledge which violates 
the standard axiom which asserts that, if a person knows an 
event, then that event must have occurred.



Paradoxical results such as these merely highlight the 
fact that we still have a great distance to go in understand­
ing the relation between rational behaviour and knowledge.

K aushik Basu

See also COMMON KNOWLEDGE; c o n v e n t io n s ; GAME THEORY 
AND STATES OF THE WORLD; PRISONERS’ DILEMMA.
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