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The concepts of locally, pseudo-globally and globally connected block 

designs were introduced by Eccleston and Hedayat (1972). In that paper we 

were mainly concerned with the characterizations of these designs. In the 

present paper we shall expand the theory of connected designs by exploring two 

optimality properties of these designs. Our optimality criteria are in terms 

of eigen values of the corresponding information matrices. Before proceeding 

further let us review a general description of optimum designs. 

The three most used and well known optimality criteria, A, D and E optim­

ality, are defined in section 2. Rather than use one of the popular criteria 

we use one suggested by Shah which we call S optimality. The criterion is: 

minimize the trace of the information matrix squares, for those designs with 

identical trace of the information matrix. A further optimality criterion 

(M,S) optimality is introduced. It is essentially a mixture of Shah's and the 

popular criteria. 

S optimality and (M,S) optimality will be our optimality criteria in this 

paper. Using these optimality criteria, we have been able to derive some new 

results which we hope to be of interest to the users and researchers in the 

field of optimum design theory. Tb be specific, let BD{v,b~ri),(ku)} denote a 

block design on a set of v treatments with b blocks of size k 1 u = 1,2,···,b . u 
and treatment i is replicated ri times. Then we have shown that for the family 

of connected block designs BD{v1b 1 (ri),k} with (i) less thank- 1 treatments 

having replication equal to one and binary (01 1) the S-optimum design is pseudo­

globally connected; (ii) the S-optimum design is globally connected if ri > 1 

and the designs are binary; and (iii) at least one treatment with replication 

greater than b, then the (M,S)-optimum design is pseudo-globally connected. In 

the final part of this paper we mention some unsolved problems in this area. 
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1. Introduction and Summary. The concepts of locally, pseudo-globally and 

globally connected block designs were introduced by Eccleston and Hedayat (1972). 

In that paper we were mainly concerned with the characterizations of these 

designs. In the present paper we shall expand the theory of connected designs 

by exploring two optimality properties of these designs. Our optimality criteria 

are in terms of eigen values of the corresponding information matrices. Before 

proceeding further let us review a general description of optimum designs. 

The theory of optimum experiment and treatment designs is essentially the 

use of a well defined criterion to determine which in a specified class of 

legitimate or competing designs is the best. So far, almost all contributions 

to this field have been related to the optimality of non-randomized designs. 

This paper is also formulated in this framework. The first formal treatment of 

this subject was given about five decades ago by Smith (1918). It was revived 

after a 30-year pause by Wald (1943), Mood (1946), Elfving (1952), Chernoff 

(1953), Ehrenfeld (1955), Kiefer (1958,,1959), Kiefer and Wolfowitz (1959) and 

others. A voluminous literature has developed around the problem of finding 

optimal designs. The newly published book, Theory of Optimum Experiments, by 

V. V. Fedorov (1972) is a clear indication that this branch of statistics is 

grovling fast and has attracted many leading mathematicians and statisticians 

around the world. 
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Kiefer (1958) discusses the three most used and well known optimality 

criteria, namely A, D and E optimality. These optimality criteria involve 

functions of the non-zero eigen values of the information matrix of the design. 

Let (A., i=l,2,•••} denote the set of non-zero eigenvalues. of the information 
1 

matrix. Then A, D and E optimality are defined as follows: 

! Optimality. This is equivalent to minimizing the average 

variance of all elementary treatment contrasts. The corresponding design is 

referred to as A-optimum. 

-1 Q Optimality. Minimize n A.. • This is equivalent to minimizing the generalized 
i 1 

variance or maximizing the TI A.. The corresponding design is called D-optimum. 
i l 

E Optimality. Minimize max A:1• This is equivalent to maximizing min A... The 
- i 1 i 1 

design which has this property is called E-optimum. 

These optimality criteria are not in general related to each other and need 

not agree in comparing the given designs. Kiefer (1958) shows that under certain 

conditions on the optimum design, D optimality implies A and E optimality but 

not vice versa. Also, it is easy to see that if the A-optimum block design is 

symmetric then it is also D and E-optimum. Where by a symmetric block design 

we mean a design whose £ matrix has fixed diagonal and fixed off-diagonal entries, 

or equivalently the non-zero eigenvalues of £ are all equal. 

Kiefer and others have pointed out many mathematical properties of D opti-

mality. But we believe that the choice of an optimality criterion in a parti-

cular experiment is the experimenter's perogative. However, one point should 

be kept in mind, which is that the experimenter should be open to compromise 

because often the search for the optimum design involves the solution of an 
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horrendous mathematical problem which is intractable with the present mathe-

matical machineries. Thus if the exact optimum design, with respect to a given 

criterion, cannot be obtained the experimenter should be willing either to 

change his optimality criterion or be satisfied with an approximately optimum 

design. 

The axioms of rational behavior dictate that if the competing designs all 

enjoy the given optimality criterion then the experimenter should not select his 

design among the available ones in an arbitrary fashion. But rather, he should 

consider a new criterion in the process of selection. This idea, together with 

some other reasons, has led Shah (1960) to introduce an optimality criterion 

which will be called hereafter S optimality. 

§. Optimality. Minimize ~ A~ if the trace of information matrices of the compet­
i ~ 

ing designs are identical. The corresponding optimum design will be referred 

to as S-optimum. 

Note that smaller values of ~ A~ will in general tend to give smaller 
~ 

\-1 -1 values of ~ Ai and TI Ai • Shah (1960) has given other mathematical utilities 

of this criterion. 

We shall here introduce an optimality criterion which is a useful and 

somewhat hybrid of the preceding optimality criteria. The corresponding opti-

mization is carried in two stages and is formally defined as follows: 

(M,S) Qp_!.imality. First, form a subclass of designs whose information matrices 

have maximum trace. Then, select a design from this subclass such that its 

square of the information matrix has minimum trace. The resulting design is 

called the (M,S)-optimum design. 
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S optimality and (M,S) optimality will be our optimality criteria in this 

paper. Using these optimality criteria, we have been able to derive some new 

results which we hope to be of interest to the users and researchers in the 

field of optimum design theory. To be specific, let BD(v,b,(ri),(ku)} denote 

a block design on a set of v treatments with b blocks of size k, u = l 12,···,b 
u 

and treatment i is replicated r. times. Then we have shown that for the family 
~ 

of connected block designs BD(v)b,(ri),k} with (i) less thank- 1 treatments 

having replication equal to one and binary (0,1) the S-optimum design is pseudo­

globally connected; (ii) the S-·optimum design is globally connected if ri > 1 

and the designs are binary; and (iii) at least one treatment with replication 

greater than b, then the (M,S}-optimum design is pseudo-globally connected. In 

the final part of this paper we mention some unsolved problems in this area. 

2. Qptimality. Let b. denote the family of all connected designs with para­

meter set {v,b,(r.),(k )}. Let also 1:>.1 c b. denote the set of those designs in 
~ u 

6 which are pseudo-globally connected. Note that the cardinality of 61 ranges 

from zero to the cardinality of b. depending on the given set of parameters. 

Definition 2.1. Let D1 and D2 be two designs in a. Then we say n1 is S-better 

than D2 if D1 has a smaller trace of C squared than n2• 

Consider a situation where the connected designs in 6 are binary with 

n. = 0 or 1 and proper, i.e., ku = k. These designs constitute most of the 
~u 

well known classical designs. Then we have the following lemma. 

bemma 2ol. Corresponding ~£ any design in ~ = A - 61 there is ! pseudo­

globally con.."'lec_ted ,9;~sign in 61 which is S-better if ~ ~ k - 1 of the 

r. 's are equal to one. 
~ -- ---- - -··-
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Before giving a proof of this lemma let us recall the following theorem 

of Eccleston and Hedayat (1972 ). 

Thee!~~ 2ol. ~£lock design D will be pseudo-globally connected if and only 

if C!:J D J:E locally connected, (g) Every block of D contains at least two 

treatm£:D.ts that appear in more !.f:~.E; ~block, (]) Any treatment, i say, that 

_contej.~ (!_) ~ treatment that ai'i'~ in ~ blocks containing i, and two not 
' : . ' . ~:. .. ·.. - . 

£~~:.ta:=~~~~l]§.. i.;··c;r .. Tii) two trea1?._:?.:;_'1ts each appearing in ~ ~ containing i, 

anc. ~ :e_lock E":.ot cont.aini_ng i. 

Pr·?of ~! Le~ 2.1. Let D € ~2 • Then by the conditions imposed on A the design 

D satisfies conditions (1) and (2) of theorem 2.1. Therefore, condition (3) 

must be violated by one or more treatments in D. We shall devise an algorithm 

which involves the rearrangement of the experimental units in Din a mannersuchthat 

the resulting design D is pseudo-globally connected and is S-better than D. 

Suppose treatment i fails to satisfy condition (3) of theorem 2.1 but since 

the design is locally connected there exists a treatment t that 

(a) belongs to only one block containing i and at least one not containing i, or 

(b) belongs to at least one block containing i and only one not containing i. 

The design can be divided into two parts, T. the set of blocks which contain 
l. 

i, and D - T. the set of blocks which do not contain i. We discuss (a) only, 
l. 

but an analogous proof holds for (b). For the designs we are considering there 

exists a replicate of treatment z € B E T., r > 1, z f ~and a replicate of r J. z 

tree.~::-me:;t -o ·.:: B.._ E D - T., r. > 1, p f & which can be interchanged to yield a 
- v l. p 

design in. w:1ich treatment i satisfies condition (3). Such a z and p always 

exist since there are less than k - 1 treatments with r1 = 1. Whether or not 
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the interchange yields a smaller trace of g2 depends on the change in the 

elements of g, in particular, the elements of the row corresponding to treat-

ment t. The possibilities are as follows: 

( i) Suppose t € Br and l € Bt. ·· The elements of ~ that are changed are as 

follows (recall that all diagonal elements are fixed for all designs of this 

lemma). 

Before interchange 

c . 
z~ 

c 
zm 

c pw 

c (=0) zw 

c (:::0) 
pro 

> 

;:::. 

> 

> 

All other elements of C are unchanged. 

change can be written as 

(2.1) tr C2 = 
m 

After the interchange 

After interchange 

c . + 1 
z~ k 

c 

c 

zm 

pw 

1 
k 

1 
k 

+1 where mE B 
k r 

m /:: l, m /:: z, ro/:: i 

+1 
k 

where w E Bt 

w I= t, w I= p 

for all w of which there are k-3 

for all m of which there are k-2 • 

Thus trace of c2 before the inter-

+ Remainder • 
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(2.2) 

m w m w 

+ Remainder 

The remainder term is the same for both equations (2.1) and (2.2); therefore, 

their difference is 

(2. 3) (2.1) - (2.2) = -2c ! - ~ - 2 \' c ! - 2 (k-3) 
zi k k L zm k k2 

m 

We know that c ~ 0 for m fo n; therefore, -c ~ 0. Since rnn rnn 

and 

1 -c > -zi k 

1 
-czm ~ k for all m 

2 c -I 1 
:pw k 

w 

Therefore (2.3) > 0. Thus the design is S-better after the interchange. 
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(ii) Suppose .t f.~. Br and ~ e Bt, then 
-· 
Before interchange After interchange 

c 
p~ 

-1 
c (= -) z.e k 

----,:> 

> 

1 
c J, + k p_, 

1 
c - k zJ. 

All other elements of~ are as in (i). Thus the difference between the trace 

of ~2 before and after interchange is the same as in (i) except for the cpJ.. and 

c terms. z,e Therefore, before interchange 

(2.4) tr C2 = c2 + 
pi. 

c2 
z~ 

+ [(2.1) - c2 
pi, 

- c2 ] 
zt 

and after interchange 

(2. 5) 

From (i) we have 

2c ~ 4 
(2.4) - (2.5) > ~. - k2 

l If cpi. =-k then (2.4)- (2.5) may not be greater than zero. But recall that .t 

belongs to only one block in T., namely B , and since r > 1 there exists a 
2 r z 

replicate of z E B and J. € B which can be used for the interchange rather than s s 

z € Br. The interchange between z E Bs and p E Bt is equivalent to (i). 

(iii) Suppose J, f. Br and 1- f. Bt. This is analogous to (i) and the design after 

the interchange is S-better. 
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( i v) .suppose .. J e. Er and .e J. Bt' then 

Before interchange After interchange 

> 

All other elements of C are as in (i ). As in (ii) we have that before the inter-

change 

(2. 6) 

and after the interchange 

(2. 7) 

From (i) we have 

2c J 
(2.6) - (2.7) > ~ 

We know that cpJ ~ ~1; thus (2.6) - (2.7) may not be greater than zero. But 

recall that t belongs to.only one block inTi' namely Br' and since rz > l there 

exists a replicate of z e B € T., s p r, which can be used for the interchange. 
s l. 

T.he interchange is now between z e B6 and p e Bt with .e ft Bs and A fi Bt which is 

equivalent to (ii). 

If now there exists another treatment, q say, that fails to satisfy condi­

tion (3) it can be corrected so that the interchange fori is not negative. 

Reversing the interchange between z and p is the only way to negate the correc­

tion for i. Let treatment m be to treatment q as & was to treatment i, .e I m 
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otherwise the correction for i would be sufficient for q (see example 2.1). 

Suppose the correction for q reverses the interchange between z and p. This 

implies 

or 

(a 1 ) either q E Br E Tq and Bt € D - Tq or q € Bt E Tq and Br E D - Tq 

but t E Br and Bt; therefore q does not fail condition (3 ). This is 

a contradiction. 

(b I) q, · i and p E B € T and z E Bt E D - T • r q q Then all blocks containing 

z must belong to D - T , but z and i belong to the same block at 
q 

least once and similarly if Br E D - Tq and Bt E Tq. This implies 

that q satisfies condition (3),which is a contradiction. 

So, in general, any treatments which fail condition (3) of theorem 2.1 can 

be corrected to yield a pseudo-globally connected design which is S-better. This 

completes the proof. 

From lemma 2.1 we have the following theorem. 

Theorem 2.2. Within the family of connected designs BD{v,b,(rJ.. ),k} with n. = 0 
-- J.U 

.2!:. 1 the S-optimal design is ;pseudo-globally connected if there ~ ~ than 

k - 1 treatments with ri = l. 

If ~l contains a globally connected design then we have the following lemma 

and theorem. 

Lemma 2.2. Corresponding to an.,y design in A2 = 6 - A1 there is ~ globally ~­

nected design which is S-better if ~ ri > 1 and k ~ 3. 

The ;proof is analogous to that of lemma 2.1. 
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Theorem~· Within the family of connected designs BD[v,b,(r.),k} with n.u = 0 
__;;;;..__...;;;;-- -- -- ~ -- ~ 

£!:_. 1 the S-optimal design is globally connected if all rj > l and k ~ 3. 

Instead of ri > 1 and k ~ 3 it is sufficient if all ri ~ 2 for lemma 2.2 and 

theorem 2.3 to be true. 

Example~· Let D be the following locally connected design in BD(9,6,(2,2,3, 

1,2,6,2,2,1),3}. 

trace of c = 12 and trace C2 = 24 

Treatments 1, 2, 7 and 8 fail to satisfy condition (3) of theorem 2.1. In the 

notation of the proof of lemma 2.1 for treatments 1 and 2, t = 3 and for treat-

ments 7 and 8, t = 6. Therefore, a correction for treatments 1 and 7 will be 

sufficient for treatments 2 and 8 respectively. By interchanging 2 E B2 with 

5 E B3 and 8 E B5 with 3 E B4 results in 

trace of c = 12 and trace c2 = 68/3 

is globally connected and S-better. 
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r_r the· c'ond.i.tion of lemma 2.1 and theorem 2. 2 is relaxed so as to include 

designs with_ more than k . .;.. T treatments with ri = 1 then the lemma and theorem 

no longer hold in general. A counterexample which is too lengthy to present here 

can be found in Eccleston (1972), 

Recall that the procedure for determining the (M1 S) optimal design is to 

first· find the class of designs with maximum trace of g and then within that 

class determine those with minimum trace of C squared. Let /:::. 1 A1 and 11.2 be as 

defined in the first paragraph of this section; then we have 

Lemma 2.3. Any design in A2 can be transformed into!:. design in A1 with the 

same trace of c. --
Proof. For design BD{v,b,(r. ),(k )} to be locally but not pseudo-globally con­

~ u 

nected either or both conditions (2) and (3) of theorem 2.1 fail to be satisfied. 

Each can be corrected by an interchange(s) as described in lemma 2.1. Suppose 

z E Br and p E Bt are interchanged to correct either condition (2) or (3). The 

only diagonal elements of c_ affected by the interchange are c and c • Block zz pp 

c becomes zz 
1 1 

c -- +-
zz kt kr 

and 

c becomes c - Jl + JL 
PP PP kr kt 

Therefore, the trace of g after interchange remains invariant. The same argument 

follows no matter how many interchanges are performed. 
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Theorem 2 .• 4 ••.. ~ the family of connected designs BD[ v, b, (r i) ,k} the (M, S) . 

optimal designis ;pseudo-globally connec't~d if there exists at least~ ri ~b. 

Proof. Suppose treatment i is such that r. ~ b; obviously max trace of C 
~ 

= E max c .. where c .. = r. -En~ /k. Maximizing c .. is equivalent to minimizing 
i ~~ ~~ ~ u ~u ~~ 

n. for all u. Since r. ;;:: b this implies that all n. should be as close to 
~u ~ ~u 

equal as possible and a replicate of treatment i occur in every block, i.e., 

/n. - n. ,I ~ 1 for all u, u' and n. :z: 1 for all u. The above results for 
~u ~u . ~u 

treatment i imply that condition (3) of theorem 2.1 is satisfied. Now if con-

dition (2) is not satisfied by B , say, then every treatment in B except i s s 

occurs in no other block of the design. Clearly an interchange similar to that 

of lemma 241 can be performed to yield a pseudo-globally connected design which 

is S-better. Therefore the (M,S) optimal design will be pseudo-globally connected. 

Corollary 2.1. For the family of connected designs BD{v,b,(ri),k} the (M,S) 

optimal design is globally connected if there exists two r. :z: b or one r. :z: 2b. 
--~ ---~ 

3. Concluding Remarks. Results analogous to lemma 2.1 and theorem 2.2 for 

nonproper designs have not been proved as yet. The (M,S) optimality of the 

family of connected nonproper designs remains unsolved. Perhaps some method of 

generating pseudo-globally connected designs other than that used here may yield 

better optimality results. However, apart from the intuitive feeling that one 

should chose as the optimal design the one with a C matrix "as close as possible" 

to the unattainable ~ matrix with equal diagonal and equal off-diagonal entries, 

virtually nothing is known about the optimality of nonproper designs under any 

criterion. Thus, there remains a vast and challanging area of optimum design 

theory open to research • 
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