Broadcasts: A Paradigm

for Distributed Programs¥*

Fred B. Schneider

TR 80-440

Department of Computer Science
Cornell University
Ithaca, N.Y. 14853

October 1980

*This research was supported in part by the National Science Foundation
under Grant MCS 76 22360

in Proc. Workshop on Fundamental Issues in Distributed Computing, Fallbrook,
California, December 1980

Broadcasts: A Paradigm for Distributed Programs

Fred B. Schneider
Department of Computer Science
Cornell University
Ithaca, New York 14853

1. Introduction

It has been argued that by distributing a computation over a number
of processors it is possible to comstruct systems that are immune to
various types of hardware failures, have high throughput and exhibit
incremental growth capabilities. Unfortunately, constructing systems
that realize these goals is by no means simple. Often, a particular
task can be decomposed into disjoint communicating processes in many
different ways; some decompositioms will satisfy the above criteria,

while others will not.

Systems with the following characteristics will, in general, exhi-
bit the above properties. First, processes should be loosely coupled in
terms of communications bandwidth and synchronization. Low inter-
process communications bandwidth allows use of a mnetwork for interpro-
cess communication. Furthermore, use of asynchronous communications
protocols seems appropriate because synchronous communications protocols
may decrease the overall throughput of a system due to reduced potential
for parallelism. Secondly, the system should employ Mdecentralized"
control as much as possible. There should be mno entities whose failure
or performance is critical to correct operation of the system. Other-
wise, the fault tolerance and incremental growth capabilities of the
system are threatened, because such entities constitute critical
resources. Their saturation or failure would have catastrophic, system-

wide implications.

Writing programs within this framework is difficult -- perhaps an
order of magnitude more difficult than writing concurrent programs. Due
to delays in message delivery, any state information a process receives
through messages necessarily reflects a past state of the sending pro-
cess. Thus, use of asynchronous protocols means that no single process

can have complete knowledge of the entire state of the system. In

-2 -

addition, prohibiting any sort of centralized control precludes use of a
single arbiter or process to maintain consistent, albeit approximate,
views of system states. Finally, processes must be able to cope with
failures in other processes. Notice that all of these difficulties stem
from the absence of shared memory (which could provide a consistent view
of the system state to all processes) and the presence of more than one
processor (so that failure of a processor does not mean failure of all

processors).

A distributed program comsists of a collection of processes that
communicate solely by use of an asynchronous, buffered communications
petwork. Our investigations have been concerned with distributed pro-
grams that implement distributed control regimes, since that seems to be
the mo;t promising way to support fault tolerance and incremental growth
capabilities. In particular, by using broadcast communication we have
developed (provably correct) distributed programs that realize the above
goals. Also, we have studied some of the problems associated with imple-
menting broadcast communications protocols in computer networks. A fam-
ily of broadcast protocols has been devised that allows for rapid dis-
semination aﬂd-guaranteed delivery of a message to a collection of pro-
cessors despite processor and link failures. In addition, we have
developed solutions to some of the protection problems unique to broad-

cast communication.

2. Using Broadcasts

Synchronization of processes is among the most difficult problems
that must be faced when writing a distributed program. For purposes of
synchronization, execution of a process ca; be viewed as a sequence of
phases. The extent of these phases is dépendent on the particular
application being considered. For example, in the readers/writers prob-
lem, Fhree phases are of interest: reading, writing and computing.
A phase transition occurs when a process ceases executing in one phase
and attempts to begin execution in another phase. A synchronization
mechanism is employed to constrain the phase tranmsitions of a collection

of processes in accordance with some specification.

-3 -

A technique for implementing synchronization mechanisms in distri-
butgd programs, assuming processes can initiate broadcasts and that mes-
sages between a pair of processes are always received in the order sent,
is developed in [S79]. There, in order to make a phase tramsitiom, a
process broadcasts a timestamped phase tramsition message and waits for
a predicate (corresponding to that phase tramsition) on its local state
to become true. The local state information at a process is updated
whenever a message is received by that process. Timestamps are gen-
erated using logical clocks as described in [La78]. Unlike the syn-
chronization scheme developed in [La78], our approach can be employed in
enviromments in which processors may fail, assuming that processor
failures are detected and that a failed processor does not broadcast
messages. Provisions exist in the protocol to cope with processor res-

tarts, as well.

Our technique has been used to solve synchronization problems
directly, to implement new synchronization mechanisms that are well
suited for use in distributed systems, like eventcounts and sequencers
[Re77), and to construct distributed versiomns of existing mechanisms.
For example, we have developed an implementation of a distributed sema-
phore -- a semaphore-like object that does not require shared memory -=
and the conditional synchronous message passing primitives of Communi-
cating Sequential Processes [Ho78] and ADA. In addition, using our
approach, in [S80] we generalize "locking" solutions for the consistency

problem in centralized database systems to distributed database systems.

Detecting distributed termination is another illustration of a pro-
gramming problem for which simple solutions can be obtained by using
broadcasts. The problem is to devise a protocol so that a process can
determine that every process is waiting for‘input from other processes,
thus signifying that a particular computatiom is completed and the next
one can be started by all processes. Several solutions for the problem
have recently appeared in the literature [Ds78] [F80] [L80]. Although
all these solution employ decentralized control, none can tolerate pro-
cess failure. In [LS80] we develop a fault-tolerant distributed temmi-
nation scheme using broadcast communication. Moreover, it is possible

to derive each of the other solutions from our protocol by assuming

-4 -

processor failures do not occur and applying various optimizations.
Thus, although our protocol was first developed in terms of broadcast

communication, programs that do mnot actually use broadcasts can be

derived from it.

3. Implementing Broadcasts

"Multi-destination" network organizations -- contention networks
(such as Ethernet) and ring networks (such as DCS) -- appear to imple-
ment broadcast capability directly in hardware. However, close study
reveals that messages may not always be delivered to all processes in
such networks [Le79]. In other network organizations, a message must be
directed to a single other processor. There, broadcast protocols where
each processor sends the message to onme other processor require time
linear in the number of processors. This usually results in an unaccept-
able delay for completion of a broadcast. On the other hand, broadcast
protocols in which a processor sends the message to more than one other
processor require that, should a processor fail, some other processor
will assume its duties. In [SS80] such a scheme is developed and proved
correct. A broadcast strategy is a formal specification of the manner
in which a message is disseminated among processors in order to effect a
broadcast. Choice of what broadcast strategy to employ in a given
situation depends on what is to be optimized. For example, one strategy
might minimize the length of time it takes for all processors (that have
not failed) to receive the message, while another minimizes the impact
of a processor failure on broadcast completion time. The broadcast pro-
tocol developed in [$S80] will work in conjunction with any "reasonable"
broadcast strategy. Also, we develop a class of "minimum time for
delivery" broadcast strategies that are well suited for use in homogene-
ous local computer networks. These strategies are parameterized with
respect to the speed of the communications network and the speed of the

Processors.

A second problem that must be addressed when using broadcast com-
munication concerns implementing secure inter-process communicatione.
Given a broadcast facility (which might be implemented in hardware),

encryption can be used to allow secure communications between arbitrary

-5 -~

groups of processes. Clearly, if there are N processors, then there are
(potentially) 2?—1 broadcast groups, hence ZN-l separate keys are
required. However, in [DS80] we have shown how only O(N) secret keys
need be stored to generate the required ZN-l broadcast keys. In addi-
tion, the schemes developed support the existence of master keys for
groups. A master key is a key that can be used to decipher any communi-
cation among processes that constitute a subset of the group for which
it is master. This is useful for performance monitoring applications

and hierarchical protection in computer networks.

.‘t'- Future Directions

Our‘ultimate goal is to design a fully decentralized operating sys-
tem -- one with no centralized resources or control. Use of broadcasts
appear to be one technique that can be used in such a venture. Structur-
ing a distributed program around the use of broadcasts can be viewed as
a distributed programming paradigm, much as, say, "divide and conquer"
is a sequential programming paradigm. We have established that reason-
able implementations of broadcasts are feasible in present day computer
networks. We have also shown how the broadcast paradigm can be applied
to selected distribufed programming problems. Clearly, the utility of
this approach will only be understood as it is applied to more problems.
To this end, we are presently studying decentralized resource allocation
schemes (that use broadcasts) and associated deadlock detection stra-

tegies.

References

[ps78] Dijkstra, E.W. and C.S. Scholten. Termination detection for
diffusing computations. EWD 687a.

[Ds80] Denning, D. and F.B. Schneider. The master key problem. Rroc.
1980 Symposium on Security and Privacy, April 1980, Oakland, Calif.

-6 -

[(F80] Francez, N. Distributed termmination. TQPLAS 2, 1 (Jan. 1980),
42=55, ‘

[Ho80] Hoare, C.A.R. Communicating sequential processes. CACM 21, 8
(Aug 1978), 666-677.

[180] Levin, G.M. Proof rules for communicating sequential processes.
Dept. of Computer Sciences Cornell Univ., Ph.D. thesis, 1980.

[La78] Lamport, L. Time, clocks and the ordering of events in a distri-
buted system. CACM 21, 7 (July 1978), 558-565.

[Le79] LelLann, G. An analysis of different approaches to distributed

computing. Proc. First International Conference on Distributed
Computing Systems, Oct. 1979, Huntsville, Alabama, 222-232.

[Ls80] Lermen, C.W. and F.B. Schneider. Distributed termination when
processors can fail. In preparation.

[Ee77] Reed, D.P. and R.K. Kanodia. Synchronization with eventcounts
and sequencers. Proc. 6 Symposium on Qperating Systems Principles,
Nov. 1977, W. Lafayette, Ind., 91-92.

[s79] Schneider, F.B. Synchronization in distributed programs. TR 79-
391, Dept. of Computer Science, Cornell Univ., 1979 (to appear in

IOPLAS).

[s801] Schneider, F.B. Ensuring consistency in a distributed database
system by use of distributed semaphores. Proc. Internatiomal Sympo-
sium on Distributed Data Bases, March 1980, Paris, France, 183-189.

[ss80] Schneider, F.B. and R.D. Schlichting. Fast Reliable Broadcasts.
Technical Report, Dept. of Computer Science, Cornell Univ. Oct.
1980.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif

