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As the amount of data involved in scientific research continues to grow, the

need for powerful tools for organizing and analyzing this data grows with it.

Despite considerable progress in this area by the database research community,

the uptake of database technologies within the scientific community has been

slow. Contributing to this limited adoption is a tendency to try to build complex,

monolithic, total solution-systems, for a community that can rarely afford the

resources to tie their existing infrastructures into such a system. This thesis

explores two different directions for creating simpler, smaller, more general-

purpose tools for doing data-processing in a scientific computing environment.

Grey-Box Probabilistic Databases are an attempt to create a general purpose

tool for efficiently integrating database systems with an organization’s existing

model-building pipelines. By providing a pay-as-you-go approach to the trade-

off between efficiency and integration effort, users can choose how much of

their resources to commit as their needs develop.

Dynamic Data Management Systems are a new approach to building data

processing systems. Instead of a monolithic data-processing infrastructure that

typically includes (and has the performance penalties of supporting) function-

ality that the user does not require, a Dynamic Data Management System con-

structs entire data-management systems designed specifically to meet the re-

quirements of the user’s application.
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CHAPTER 1

INTRODUCTION

The incorporation of computers into the scientific process has brought about a

wealth of discoveries. Computers automate, optimize, and parallelize the analy-

sis of vast amounts of data, freeing scientists to focus on interpreting and under-

standing the results of the otherwise time-consuming analytical computations.

Central to the analytical process is the scientist’s ability to express their goals –

typically achieved by writing computer programs (e.g., in languages like C [53],

Python [64] or R [3]).

Fully-featured programming languages allow an extensive, and practically

unlimited range of analytical options. However, the scientist is forced to con-

sider not only their analytical goals, but to understand the wide range of algo-

rithms which can be used to implement those goals and their related tradeoffs.

Even relatively minor inefficiencies in the choice of algorithm can lead to sub-

stantial amounts of wasted time, as computations can last hours, days, or even

weeks.

A primary goal of database research has been the automation of precisely

this sort of algorithm selection process. However, despite considerable progress

in this area, the uptake of database technologies within the scientific commu-

nity has been slow. Contributing to this limited adoption is a tendency by the

database community to follow a monolithic system-building process. By con-

structing systems that take full control of data storage, management and pro-

cessing, the database designer imposes his (ultimately) limited view of how the

data should be be stored and processed onto the user. In a field where the vast

majority of data processing tasks involve corner cases, this tightly-controlled
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approach to data management is of very limited use. Lacking better tools from

the database community, the scientific community has turned to more simplis-

tic, general-purpose systems (e.g. Hadoop [14]/Dryad [44]/MapReduce [26],

PNuts [23]/Bigtable [20]/Cassandra [57], etc.), which ultimately result in less

efficient data processing workflows.

An ideal solution sits between these two design extremes: Such tools provide

simple, generalizable, and most importantly useable functionality for scientific

research – but must also approach data management tasks in a principled way,

making the most efficient use of (potentially limited) computational resources

and the scientist’s time.

This thesis explores several points in the design space of scientific comput-

ing tools: (1) Grey-Box Probabilistic Databases (GB-PDB) and (2) Dynamic Data

Management Systems (DDMS). GB-PDBs allow scientists to leverage existing

database and data management techniques for the efficient analysis of arbitrary

uncertain data (e.g., models custom-designed by a scientist), even in large vol-

umes. DDMS automate the process of generating efficient code for (potentially

complex) data monitoring tasks, especially of high volume data streams.

Concretely, I present three systems, developed over the course of my studies:

PIP [50] is a GB-PDB, which takes imperatively defined models and allows users

to declaratively specify and query cross-model interactions. Jigsaw [52, 51] ex-

tends GB-PDB techniques by adding tools and techniques for parameter explo-

ration and optimization. DBToaster [49] is a compiler for building DDMSs from

SQL queries.
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1.1 Grey-Box Probabilistic Databases

Uncertain data comes in many forms: Statistical models, scientific applications,

and data extraction from unstructured text are all forms of uncertain data. Mea-

surements have error margins while model predictions are often drawn from

well known distributions. Traditional database management systems (DBMS)

are ill-equipped to manage this kind of uncertainty.

Selecting a Shipping Provider. For example, a query may combine a model

predicting per-customer profits with a model for predicting dissatisfied cus-

tomers, perhaps as a result of a corporate decision to use a cheaper, but slower

shipping company. Thus, the user might pose a query over this set of models,

asking for profit loss due to dissatisfied customers.

The user might use a DBMS to store input parameters for these models

(e.g., statistical metrics of historical customer satisfaction and shipping times).

However, arbitrary queries made on the predictions do not translate naturally

into queries on the corresponding model parameters: For example, a user who

wishes to compute an expectation of the profit lost to customers dissatisfied

with delivery times must first obtain a closed form solution by hand – assum-

ing that a closed form solution even exists.

Furthermore, as the query asks for profit loss due to dissatisfied customers,

the database need only consider profit from customers under those conditions

where the customer is dissatisfied (i.e., the underlying model may include a

correlation between ordering patterns and dependence on fast shipping). A

query engine can identify and take advantage of such data-dependencies more

efficiently than a human.
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Enterprise Cluster Provisioning. Enterprises often need to evaluate business

scenarios to assess and manage financial, engineering, and operational risks

arising from uncertain data. Collaborations with a Microsoft Windows Azure

cloud platform analytics team have revealed an increasing need for tools for

developing timely plans for the expansion, deployment, and allocation of re-

sources.

When making these plans, which can involve the allocation of millions of

dollars, accurate and efficient simulation of many different business scenarios

is critical to establish the validity of specific decisions in a timely manner.

Consider an analyst who wants to forecast the risk of running out of process-

ing capacity in a cloud cluster. For that, she needs to combine various predictive

models for CPU core demands and availability. These models are inherently

uncertain due to imprecise predictions of future workload, possible downtime,

delays in deployment, etc. Without effective tools, simulating and evaluating

business scenarios based on uncertain models can be extremely challenging.

1.1.1 Probabilistic Database Systems

Probabilistic database management systems (PDBs) [21, 25, 91, 27, 10, 79, 80,

46, 88] aim at providing better support for querying uncertain data. Queries

in these systems preserve the statistical properties of the data being queried,

transforming the uncertain input data into a distribution over all possible query

results – typically presented to the user as a metric (e.g., an expectation), or sim-

plified representation (e.g., a histogram approximation of the probability den-

sity function, or PDF).
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Probabilistic databases easily lend themselves to use as a sort of model-

building and evaluation environment. Expressing a statistical model in the

declarative language of probabilistic databases makes it more efficient to query

the model’s outputs, and allows the database to automatically generate an effi-

cient evaluation strategy tailored to the query being asked.

The previously mentioned risk-management applications, built on top of a

probabilistic database, could use the database itself to obtain error bounds on

the results of arbitrary queries over its predictions. By encoding the statistical

model for its predictions in the database itself, the risk-management application

could even use the probabilistic database to estimate complex functions over

many correlated variables in its model. In effect, the application could compute

all of its predictions within the probabilistic database in the first place.

Evaluating queries over arbitrary distributions is computationally infeasi-

ble. Even simple queries over normal distributions can require the evaluation

of integrals with no closed-form solution. Consequently, such systems resort to

approximating the correct answer via Monte-Carlo style sampling techniques

when no closed-form solution is available.

1.1.2 Black-Box Distributions

In an attempt to maximize use of closed-form solutions and/or exploit distri-

bution characteristics, the vast majority of PDBs available restrict themselves to

finite discrete distributions or certain well known (e.g., Gaussian, Poisson, etc.)

continuous distributions.
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At the other end of the spectrum is a recent trend towards a pure sampling-

based approach. So-called variable generating, or VG-Functions [46] are user-

provided black-box functions, which define a distribution by providing a means

to generate samples from that distribution. For example, a user could define

the gaussian distribution by providing a VG-Function that implements the Box-

Muller algorithm [15].

Black-box sample generation can be used to integrate virtually any distribu-

tion into a probabilistic database framework.

Moreover, support for user-provided distributions is an extremely useful

feature for the analysts, who derive their baseline models using specialized, ex-

ternal tools such as R [3]. Sparse, incomplete, or noisy data can transform even

conceptually straightforward tasks (e.g., extracting the rate and volatility of de-

mand growth) into daunting challenges that necessitate the use of such external

tools.

Unfortunately, this brute-force approach to statistical analysis is dramati-

cally less efficient than closed-form distribution-specific approaches.

1.1.3 Grey-Box Distributions

Although both efficiency and breadth are desirable characteristics, each user’s

requirements will be different; it can be entirely reasonable to accept inefficiency

in a complex distribution that appears infrequently in user queries, as opposed

to a simpler, far more common distribution.

Grey-Box Distributions (GBDs) provide a middle ground between these two

6



R A B
1 [Normal(µ = 1, σ = 4)]
2 [Normal(µ = −1, σ = 6)]
3 [Normal(µ = 2, σ = 3)]

Figure 1.1: An example relation in PIP.

extremes. At the core of a GBD is a black-box sample generation function –

essentially a VG-Function. This minimal interface ensures: (1) The broadest

range of distributions is supported, and (2) a low barrier for entry for users who

wish to specify their own distributions.

GBDs can be extended for efficiency with optional user-provided and computer-

generated metadata. Using this metadata the PDB engine can improve query

performance by using closed-form solutions, exploiting analytical properties,

or performing more directed sample-generation.

In Chapter 3, I present PIP, a GBD-based probabilistic database built on top

of Postgres[2]. PIP processes queries over probabilistic data symbolically – the

output of a query in PIP is a symbolic representation of the output table’s dis-

tribution. When presenting this distribution to a user as an expectation, PDF,

etc. . . , PIP employs a range of techniques to exploit metadata provided by GBD

authors to avoid or limit sampling requirements.

Example 1.1.1 Consider a table in a PDB such as the one in Figure 1.1.1. In this

example table, column A is an integer and column B contains probabilistic data, here

taking the form of multiple instantiations of the Normal distribution.

Now consider computing the expectation of the following query:
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SELECT SUM(B) FROM R WHERE B > 5

Even this simple query benefits greatly from having metadata about the distribution

being queried. A purely sample-based approach will be forced to discard the majority of

samples generated1 due to the sampled value not fulfilling the query constraint. Thus,

over 5 times as many samples will need to be generated to obtain equally accurate re-

sults.

Knowing that the Normal distribution has an easily-computable cumulative

density function (CDF) allows PIP to avoid generating samples entirely – the

CDF computes the expectation of the distribution exactly. Thus, when the Nor-

mal distribution is encoded as a GBD, the developer can include an optional

function to compute the CDF of a Normal distribution with specified parame-

ters. The query will return a value even without this optional function, but by

providing it the user can make query evaluation more efficient – it is the user’s

decision whether the added efficiency is worth the added effort of providing

PIP with a CDF.

1.1.4 Fingerprints and Canonical Distributions

Although user-provided metadata can be used to great effect, it is sometimes

impractical to ask users to provide certain properties of a distribution. One

such property is the relationship between the distribution and its input param-

eters. For example, the Normal distribution’s parameters can be expressed as

algebraic manipulations of a single canonical parametrization (Normal(µ, σ) =

1About 84% in this example, as the query constraint is precisely 1 standard deviation over
the mean for each row of the example table

8



Normal(0, 1) ∗ σ2 + µ). Such information is useful when processing queries, es-

pecially for queries where the PDB must explore a large parameter space to

optimize for a given goal.

The corporate analyst considering the best time to purchase additional hard-

ware for a computational cluster might use a CPU core availability model that

accepts a set of candidate purchase dates and apply them according to a model

for how long it takes to bring the hardware online. The analyst can then identify

purchase dates that minimize the cloud’s cost of ownership, given a bound on

the risk of overload.

This is essentially a constrained optimization problem, albeit one where each

iteration is an entire PDB subquery – each of which can independently take

minutes or even hours to run. If a single (or a small number of) canonical pa-

rameterization(s) are associated with the CPU core availability model GBD, the

underlying database can choose to sample the distribution only under canonical

parameterizations and re-use the computed statistical metrics across the entire

query.

Note that these sorts of correlations might often be obvious to a human on-

looker. For example, excepting the days immediately after a hardware purchase,

the day-by-day output of a simple CPU core availability model may be built out

of the same distribution. However, forcing function authors to express such

correlations through metadata is undesirable, as it negates the generality and

clean abstraction offered by VG-functions: Data-dependent corner cases, dis-

continuities, and Markovian dependencies can make the metadata describing

the correlations just as, or even more complex than the sample generation func-

tion itself.
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In Chapter 4, I present Jigsaw, a PDB-based simulation framework that auto-

matically extends a GBD by recording information about correlations between

different parameterizations. It does this by using fingerprints of stochastic func-

tions. The fingerprint of a stochastic black box function is a concise and easily-

computable data structure that summarizes its output distribution. Thus, a fin-

gerprint can be used to efficiently determine a sample generation function’s cor-

relation with another such function, or its own instantiations under different

parameter values.

After such correlation has been detected, Jigsaw avoids expensive Monte

Carlo estimation (and the associated function invocations) for a target point

in the parameter space by using outputs for an already-explored, correlated

point. The specific fingerprinting technique used is based loosely on random

testing [38], a well known technique in software engineering: the fingerprint of

a parameterized stochastic function is simply a sequence of its outputs under a

fixed sequence of random inputs (i.e., seed of its pseudorandom number gener-

ator). The use of a fixed set of random seeds ensures a deterministic relationship

between correlated outputs of the stochastic functions.

1.2 Dynamic Data Management Systems

The complexities, volumes, and rates of data used in scientific applications are

growing more rapidly than ever before [40]. Large, rapidly changing datasets

are commonly found in applications analyzing everything from stock-market

transactions, to datacenter networks, to Twitter feeds, to earthquake-monitoring

sensors.
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Unfortunately, modern data management systems have not kept pace with

this growth, treating updates and their impact on datasets and queries as an

afterthought by extending DBMS with triggers and heavyweight views [34, 13,

93, 94], or only handling small, recent sets of records in data stream process-

ing [4, 16, 68, 19].

This state of affairs is unacceptable, if the large-scale data processing chal-

lenges of the future are to be met. A new class of Dynamic Data Management

Systems (DDMS) must be created to support not only stateful, complex data-

processing tasks, but also be able to do so efficiently and incrementally.

The DDMS concept is a complete rethinking of data management techniques:

This idea begins with the user interface, where rather than ad-hoc queries pre-

sented at runtime, persistent, application-specific data-processing tasks are pre-

registered prior to the arrival of data. The complete redesign continues through

to the implementation, where queries are processed as incrementally as possi-

ble, creating a range of possibilities for reducing processing requirements by

increasing memory usage.

1.2.1 Large-Scale Data Analytics – But not as a Batch Job

Large-scale data analytics in the cloud are mostly performed on massively par-

allel processing engines such as map/reduce. These systems are not databases,

as some members of the systems, scientific computing, and large-scale Web ap-

plications communities find important to emphasize. Nevertheless, the database

community can play an important role in making such systems more useful and

effective at posing queries over data.
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Map/reduce-like systems achieve scalability at the cost of response time and

interactivity. However, there is an increasing number of important applications

of large-scale analytics that call for more interactivity or response times per-

mitting online use. Among large Web applications, examples include (social

or other) network monitoring and statistics [70], search with interactive feed-

back [12], interactive recommendations, keeping personalized Web pages at so-

cial networking sites up to date [29], and so forth. Many of these applications

are not yet mission-critical to Web applications companies, but are becoming in-

creasingly necessary for establishing and maintaining a competitive advantage.

Large-scale data analytics is equally present in more classical business appli-

cations such as data warehousing and scientific applications. Take the case of

data warehousing with real-time updates: as data warehouses become increas-

ingly mission-critical to commercial and scientific enterprises, the importance of

up-to-date analyses increases. Traditionally, OLAP systems are not optimized

for frequent updating, and may be considerably out-of-date. A DDMS dramat-

ically improves the freshness of warehoused data.

A DDMS is well-suited for use in large-scale data analytics through its provi-

sion of large dynamic data structures as views, instead of forcing programmers

to re-implement view computations manually on top of key-value stores. It em-

phasizes simple lightweight systems, and not monolithic DBMS engines. Con-

tinually fresh DDMS views may seem at odds with the bulk update processing

dogma of large scale analytics systems, but enable important applications that

require interactivity or event processing.
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1.2.2 Database Monitoring

There is an ever-increasing set of use cases in which aggregate views over large

databases need to be continuously maintained and monitored as the database

evolves. These queries can be thought of as continuous queries on the stream

of updates to a database. However, it is only moderately helpful to view this as

a stream processing scenario since the queries depend on very large state (the

database) rather than a small window of an update stream – such queries cannot

be handled by data stream processing systems.

Examples include policy monitoring (e.g., to comply with regulatory re-

quirements to monitor databases of financial institutions, say to detect money

laundering schemes) [11], network security monitoring, aiming to detect sophis-

ticated attacks that span extended time periods, and online data-driven simula-

tions.

Probabilistic Databases. This last example is of particular interest – query pro-

cessing in a probabilistic database is essentially a data-driven simulation: Each

uncertain datum in the database can be thought of as a stream of random data

selected according to its probability distribution, while the query can be thought

of as a view over the database and these streams. As data streams in, the view

is re-evaluated and statistics on its results are collected.

A similar approach [90] is to use Markov Chain Monte Carlo to repeatedly

draw samples of the entire database (effectively treating it as an extremely high-

dimensional random variable) by altering its state, one variable at a time. The

results of the computation, which are incrementally maintained in a view, are

sampled after each variable is updated.
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The key technical database problem in both instances is to compute the view

for as many samples as possible, as quickly as possible . This is precisely the

kind of workload that DDMS are designed for.

Algorithmic trading with order books. Further examples of database monitor-

ing can be found in certain forms of automated trading.

In recent years, algorithmic trading systems have come to account for a ma-

jority of volume traded at the major US and European financial markets (for

instance, for 73% of all US equity trading volume in the first quarter of 2009

[42]). The success of automated trading systems depends critically on strategy

processing speeds: trading systems that react faster to market events tend to

make money at the cost of slower systems. Unsurprisingly, algorithmic trading

has become a substantial source of business for the IT industry; for instance, it

is the leading vertical among the customer bases for high-speed switch manu-

facturers (e.g., Arista [87]) and data stream processing.

A typical algorithmic trading system is run by mathematicians who develop

trading strategies and by programmers and systems experts who implement

these strategies to perform fast enough, using mainly low-level programming

languages such as C [53]. Developing trading strategies requires a feedback

loop of simulation, back-testing with historical data, and strategy refinement

based on the insights gained. This loop, and the considerable amount of low-

level programming that it causes, is the root of a very costly productivity bot-

tleneck; the number of programmers often exceeds the number of strategy de-

signers by an order of magnitude.

Trading algorithms often perform a considerable amount of data crunching
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that could in principle be implemented as SQL views, but cannot be achieved

by DBMS or data stream processing systems today: DBMS are not able to (1)

update their views at the required rates (for popular stocks, hundreds of or-

ders per second may be executed, even outside burst times) and stream engines

are not able to (2) maintain large enough data state and support suitable query

languages (non-windowed SQL aggregates) on this state. A data management

system fulfilling these two requirements would yield a very substantial pro-

ductivity increase that can be directly monetized – the holy grail of algorithmic

trading.

To understand the need to maintain and query a large data state, note that

many stock exchanges provide a detailed view of the market microstructure

through complete bid and ask limit order books. The bid order book is a table of

purchase offers with their prices and volumes, and correspondingly the ask or-

der book indicates investors’ selling orders. Exchanges execute trades by match-

ing bids and asks by price and favoring earlier timestamps. Investors continu-

ally add, modify or withdraw limit orders, thus one may view order books as

relational tables subject to high update volumes. The availability of order book

data has provided substantial opportunities for automatic algorithmic trading.

Example 1.2.1 To illustrate a specific DDMS application, consider a simple algorith-

mic trading strategy known as Static Order Book Imbalance (SOBI). SOBI computes

a volume-weighted average price (VWAP) over those orders whose volume makes up a

fixed upper k-fraction of the total stock volume in both bid and ask order books. SOBI

then compares the two VWAPs and, based on this, predicts a future price drift (for ex-

ample a bid VWAP larger than an ask VWAP indicates demand exceeds supply, and

prices may rise). For simplicity, VWAP is presented for the bids only:
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SELECT AVG(b2.price * b2.volume) AS bid_vwap

FROM bids b2

WHERE k * (SELECT sum(volume) FROM bids)

> (SELECT sum(volume) FROM bids b1

WHERE b1.price > b2.price);

Focusing on the k-fraction of the order book closest to the current price makes the

SOBI strategy less prone to attacks known as axes (large tactical orders far from the

current price that will thus not be executed but may confuse competing algorithms).

Given continuously maintained views for VWAP queries on bid and ask order books,

an implementation of the SOBI strategy only takes a few lines of code that trigger a buy

or sell order whenever the ratio between the two VWAPs exceeds a certain threshold.

For trading algorithms to be successful, (1) views such as VWAP need to

be maintained and monitored by the algorithms at or close to the trading rate.

However, (2) the views cannot be expressed through time-, row- or punctuation-

based window semantics. This lends weight to the need for DDMS that support

agile views on large, long-lived state.
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CHAPTER 2

RELATED WORK

2.1 Uncertainty in Data

The estimation of probabilities of continuous distributions frequently devolves

into the computation of complex integrals. PIP’s architecture allows it to iden-

tify cases where efficient algorithms exist to obtain a solution. For more complex

problems not covered by these cases, PIP relies on Monte Carlo integration [66],

a conceptually simple technique that allows for the (approximate) numerical

integration of even the most general functions. Conceptually, to compute the

expectation of function q(~x), one simply approximates the integral by taking n

samples ~x1, . . . , ~xn for ~X from their distribution p(~X) and taking the average of

the function evaluated on all n values.

In general, even taking a sample from a complicated PDF is difficult. Con-

straints imposed by queries break traditional Monte Carlo assumptions of nor-

malization on p(~X) and require that the sampling technique account for them

or lose precision. A variety of techniques exist to address this problem, from

straightforward rejection sampling, where constraint-violating samples are re-

peatedly discarded, to more heavy duty Markov-chain Monte Carlo (MCMC, cf.

e.g., [32]) style techniques such as the Metropolis-Hastings algorithm [67, 32].

Conditional tables (c-tables, [43]) are relational tables in which tuples have as-

sociated conditions expressed as boolean expressions over comparisons of ran-

dom variables and constants. C-tables are a natural way to represent the deter-

ministic skeleton of a probabilistic relational database in a succinct and tabular
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form. That is, complete information about uncertain data is encoded using ran-

dom variables, excluding only specifications of the joint probability distribution

of the random variables themselves. This model allows representation of input

databases with nontrivial statistical dependencies that are normally associated

with graphical models – a key component of PIP’s approach.

For discrete probabilistic databases, a canon of systems has been developed

that essentially use c-tables, without referring to them as such. MystiQ [25]

uses c-tables internally for query processing but uses a simpler model for input

databases. Trio [91] uses c-tables with additional syntactic sugar and calls con-

ditions lineage. MayBMS [8] uses a form of c-tables called U-relations that define

how relational algebra representations of queries can encode the corresponding

condition transformations.

ORION [80] is a probabilistic database management system for continuous

distributions that can alternate between sampling and transforming distribu-

tions. However, their representation system is not based on c-tables but essen-

tially on the world-set decompositions of [9], a factorization based approach

related to graphical models. Selection queries in this model may require an

exponential blow-up in the representation size, while selections are efficient in

c-tables.

The MCDB system[46] has promoted an integrated sampling-based approach

to probabilistic databases. Conceptually, MCDB uses a sample-first approach: it

first computes samples of entire databases and then processes queries on these

samples. This is a very general and flexible approach, largely due to its modu-

lar approach to probability distributions via black box sample generators called

VG Functions. Using Tuple-Bundles, a highly compressed representation of the
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sampled database instances, MCDB shares computation across instances where

possible during query evaluation.

More recently, MCDB has been extended with techniques for highly selec-

tive queries [37], but still does not exploit any analytically useful properties of

individual black-box functions.

Jigsaw builds on probabilistic database techniques – specifically those based

on VG-Functions, like MCDB and PIP. By providing functionality for efficiently

examining the output of VG-Functions across different parameters, Jigsaw en-

ables the efficient use of probabilistic databases for parameter optimization and

exploration tasks.

An area of database research related to probabilistic databases involves rep-

resenting continuous functions as tables. Pulse [6], MauveDB [27], and Func-

tionDB [85] allow users to construct functional models within the database.

Queries posed over these models are evaluated symbolically to the extent possi-

ble, substantially improving performance. However, these systems necessitate

a functional representation of the data being modeled, and thus lack the gen-

erality of VG-Functions. However, once Jigsaw has extracted a set of mapping

functionsM for an entire parameter space, symbolic querying techniques such

as these could be applied to improve performance further.

The integration of specialized modeling tools with database systems [92] has

been explored. However, while such tools streamline the process of fitting a

model, they do not focus on model evaluation. One could imagine such a tool

being integrated into the Jigsaw workflow for the construction of VG-Functions

and parameterizations thereof.
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Constrained optimization has also been considered in the context of databases [31],

but with a view towards minimizing IO requirements. Indexes containing data

bounds are used to prune the search space. However, this approach relies on the

continuity of the function being optimized; VG-Functions negate this assump-

tion.

2.2 Stochastic Black-Boxes

Functional representation of stochastic black-boxes is a field that has been ex-

plored extensively. Techniques ranging from simple curve-fitting, wavelets [36],

various space transforms [7], and even simple hat functions [28] have been

proposed as mechanisms for producing functional representations of stochas-

tic black-boxes.

A number of techniques [78, 56] have also been developed for performing

optimization over black-box functions. However, all of these techniques are

developed for uncontrollable black-boxes, typically real-world processes. Con-

sequently, they are limited to a regression-style approach. Conversely, Jigsaw

controls the source of randomness within the function, which allows it to deter-

ministically generate fingerprints.

2.3 Dynamic Data Management Systems

Compared to a classical DBMS, a DDMS differs in its reaction to updates. To

minimize response times, updates must be performed immediately upon ar-
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rival, precluding bulk processing. This determines the programming model:

compared to a DBMS, control flow is reversed, and the DDMS invokes applica-

tion code, not vice versa.

An active DBMS [18] could simulate a DDMS through triggers, but is not

optimized for such workloads, and even if support for state-of-the-art incre-

mental view maintenance is present, performs very poorly. Thus, DDMS differ

from active databases in their being optimized for different workloads. DDMS

are optimized for event processing and monitoring tasks, while active database

systems are optimized to support traditional DBMS functionality such as trans-

actions, which are not necessarily present in DDMS.

Compared to a data stream processing system and particularly an event

processing system (such as Cayuga [16], SASE+ [5]), DDMS have much larger

states, which will usually have to be maintained in secondary storage, and re-

quire drastically different query processing techniques. In a stream processor,

the queries reside in the system while the data streams by. In a DDMS on the

other hand, the data state is maintained in the system while a stream of updates

passes through (much more like an OLTP system).

Moreover, event and stream processors [4, 68, 19] support drastically differ-

ent query languages which are designed to ensure that only very small state

has to be maintained, using windows or constructs from formal language the-

ory [89]. DDMS views are often rather complex and expensive, including large

non-windowed joins and aggregation. In general, a DDMS can be expected to

support standard SQL. The query processing techniques most suitable for such

workloads come from DBMS research – incremental view maintenance in par-

ticular – and update stream research [30] but do not scale to high-frequency
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view maintenance.

The recursive compilation process used in Agile Views bears a close resem-

blance to Automatic Differentiation techniques [73]. Certainly, the notion of

differentiating computer programs has been considered before [48]. This re-

semblance is not coincidental – the calc t representation used by DBToaster

is a ring of sets and the delta operation can be thought of as a form of differ-

entiation applied to sets. However, unlike arithmetic expressions (or computer

programs reducible to arithmetic over functions with hardcoded differentials),

DBToaster relational calculus expressions operate over sets, and incorporate a

notion of information passing (e.g., via the product and definition operators)

that must be accounted for in the delta rules.
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CHAPTER 3

PIP

This chapter describes PIP, a probabilistic database system for continuous probability dis-

tributions. PIP is designed to provide end-users with both flexibility and scalability in terms

of how uncertain data is specified. By offering a range of options for how uncertain data is

defined, PIP allows users to scale the effort they are willing to commit to defining their uncer-

tain data with respect to the amount of performance they require. Furthermore, PIP’s symbolic

representation of uncertainty allows it to defer evaluation of uncertain query results until after

query processing is complete and the expression to be computed is fully known and can thus

be evaluated as efficiently as possible.

PIP was developed in collaboration with my advisor Christoph Koch, and is based on

MayBMS [10, 54], developed by Lyublena Antova, Jiewen Huang, Christoph Koch, and Dan

Olteanu. PIP was originally published at ICDE 2009 [50].

This material is based upon work supported by the National Science Foundation under

Grant IIS-0812272. Any opinions, findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation (NSF).

3.1 C-Tables

A c-table over a set of variables is a relational table1 extended by a column for

holding a local condition for each tuple. A local condition is a Boolean combina-

tion (using “and”, “or”, and “not”) of atomic conditions, which are constructed

from variables and constants using =, <, ≤, ,, >, and ≥. The fields of the remain-

1In the following, a multi-set semantics for tables is used: Tables may contain duplicate
tuples. Set transformations are defined in comprehension notation {| · | · |} with ∈ as an iterator.
Transformations preserve duplicates. ] denotes bag union, which can be thought of as list
concatenation if the multi-sets are represented as unsorted lists.

23



ing data columns may hold domain values or variables.

Given a variable assignment θ that maps each variable to a domain value

and a condition φ, the notation θ(φ) denotes the condition obtained from φ by

replacing each variable X occurring in it by θ(X). Analogously, θ(~t) denotes the

tuple obtained from tuple ~t by replacing all variables using θ.

The semantics of c-tables are defined in terms of possible worlds as follows.

A possible world is identified with a variable assignment θ. A relation R in that

possible world is obtained from its c-table CR as

R := {| θ(~t) | (~t, φ) ∈ CR, θ(φ) is true |}.

That is, for each tuple (~t, φ) of the c-table, where φ is the local condition and

~t is the remainder of the tuple, θ(~t) exists in the world if and only if θ(φ) is

true. Note that each c-table has at least one possible world, but worlds con-

structed from distinct variable assignments do not necessarily represent differ-

ent database instances.

3.1.1 Relational algebra on c-tables

Evaluating relational algebra on c-tables (and without the slightest difference,

on probabilistic c-tables, since probabilities need not be touched at all) is sur-

prisingly straightforward. The evaluation of the operators of relational algebra

on multi-set c-tables is summarized in Figure 3.1. An explicit operator “distinct”

is used to perform duplicate elimination.
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Cσψ(R) = {| (~r, φ ∧ ψ[~r]) | (~r, φ) ∈ CR |}

. . . ψ[~r] denotes ψ with each reference to
a column A of R replaced by ~r.A.

Cπ~A(R) = {| (~r. ~A, φ) | (~r, φ) ∈ CR |}

CR×S = {| (~r, ~s, φ ∧ ψ) | (~r, φ) ∈ CR, (~s, ψ) ∈ CS |}

CR∪S = CR ]CS

Cdistinct(R) = {| (~r,
∨
{φ | (~r, φ) ∈ CR}) | (~r, ·) ∈ CR |}

CR−S = {| (~r, φ ∧ ψ) | (~r, φ) ∈ Cdistinct(R),

if (~r, π) ∈ Cdistinct(S ) then ψ := ¬π
else ψ := true |}

Figure 3.1: Relational algebra on c-tables.

Example 3.1.1 Suppose a database captures customer orders expected for the next quar-

ter, including prices and destinations of shipment. The order prices are uncertain, but

a probability distribution is assumed. The database also stores distributions of shipping

durations for each location. Here are two c-tables defining such a probabilistic database:

COrder Cust ShipTo Price θ

Joe NY X1 true

Bob LA X3 true

COrder Dest Duration θ

NY X2 true

LA X4 true

Here, a suitable specification of the joint distribution p of the random variables X1, . . . , X4

occurring in this database is assumed.

Consider the relational algebra query

πPrice(σShipTo=Dest(σCust=′Joe′(Order) × σDuration≥7(Shipping))).

Evaluating this query in stages:

CσCust=′ Joe′ (Order) = {| ((Joe,NY, X1), true) |}
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CσDuration≥7(Shipping) = {| ((NY, X2), X2 ≥ 7), ((LA, X4), X4 ≥ 7) |}

CσCust=′ Joe′ (Order)×σDuration≥7(Shipping) = {| ((Joe,NY, X1,NY, X2), X2 ≥ 7),

((Joe,NY, X1, LA, X4), X4 ≥ 7) |}

3.1.2 Probabilistic C-Tables and Expectations

A probabilistic c-table [33, 54] is a c-table in which each variable is simply con-

sidered a (discrete or continuous) random variable, and a joint probability dis-

tribution is given for the random variable. As a convention, discrete random

variables are denoted by ~X and continuous random variables by ~Y . Henceforth,

it is always implicitly assumed that discrete random variables have a finite domain.

Assume a suitable function p(~X = ~x, ~Y = ~y) specifying a joint distribution

which is essentially a PDF on the continuous and a probability mass function on

the discrete variables. To clarify this, p is such that the expectation of a function

q can be defined as

E[q] =
∑
~x

∫
y1

· · ·

∫
yn

p(~x, ~y) · q(~x, ~y) d~y ≈
1
n
·

n∑
i=1

q(~xi, ~yi)

given samples (~x1, ~y1), . . . , (~xn, ~yn) from the distribution p.

Events (sets of possible worlds) are specified via Boolean conditions φ that

are true on a possible world (given by assignment) θ iff the condition obtained

by replacing each variable x occurring in φ by θ(x) is true. The characteristic

function χφ of condition (event) φ returns 1 on a variable assignment if it makes

φ true and returns zero otherwise. The probability Pr[φ] of event φ is simply

E[χφ].

26



The expected sum of a function h applied to the tuples of a table R,

SELECT expected_sum(h(*)) FROM R;

can be computed as

E
[∑
~t∈R

h(~t)
]

= E
[ ∑

(t,φ)∈CR

χφ · h(t)
]

=
∑

(t,φ)∈CR

E
[
χφ · (h ◦ t)

]
(the latter by linearity of expectation).

Here t(~x, ~y) denotes the tuple t, where any variable that may occur is replaced

by the value assigned to it in (~x, ~y).

Example 3.1.2 Returning to the earlier example, for CR = {| (x1, x2 ≥ 7) |}, the expected

sum of prices is∑
(t,φ)∈CR

∫
x1

· · ·

∫
x4

p(~x) · χφ(~x) · t(~x).Price d~y =

∫
x1

· · ·

∫
x4

p(~x) · χX2≥7(~x) · x1 d~y.

3.1.3 Counting and Group-By

Expected count aggregates are special cases of expected SUM aggregates where

h is a constant function 1. Grouping by (continuously) uncertain columns is

of doubtful value – the probability of two continuous random variables being

equal approaches zero. Grouping by non-probabilistic columns (i.e., which con-

tain no random variables) poses no difficulty in the c-tables framework: the

above summation simply proceeds within groups of tuples from CR that agree

on the group columns.

In particular, by delaying any sampling process until after the relational al-

gebra part of the query has been evaluated on the c-table representation, we find
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it easy to create as many samples as we need for each group in a goal-directed

fashion. This is a considerable strong point of the c-tables approach used in PIP.

3.2 Design of the PIP System

Representing the uncertain components of a query’s output symbolically as a

c-table makes a variety of integration techniques available for use in evaluating

the statistical characteristics of the expression. Consider an application or task

that incorporates a set of independent input models, establishing correlations

between them exclusively via queries. PIP can detect this lack of dependency,

compute metrics over each model independently, and combine the results after-

wards. Even with relatively straightforward integration techniques, this extra

information (and information similarly obtained through runtime analysis of

the symbolic representations) can be used to substantially improve query per-

formance and/or accuracy.

Accuracy in particular, is relevant in cases where the integral has no closed

form and exact methods are unavailable. This is the case in a surprising range

of practical applications, even when strong simplifying assumptions are made

about the input data.

Even if the input data contains only independent variables sampled from

well-studied distributions (e.g., the normal distribution), it is still possible for

queries to create complex statistical dependencies in their own right. It is well

known, at least in the case of discrete and finite probability distributions, that

relational algebra on block-independent-disjoint tables can construct any finite

probability distribution [74, 43].
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Figure 3.2: The Pip Query Engine Architecture

3.2.1 Symbolic Representation

PIP represents probabilistic data values symbolically, using random variables

defined in terms of parametrized probability distribution classes called grey-

box distributions (GBDs). PIP includes several commonly used distributions as

GBDs (e.g., Normal, Uniform, Exponential, Poisson), and may be extended with

more by end-users. Variables are treated as opaque while they are manipulated

by traditional relational operators. The resulting symbolic representation is a

c-table. As the final stage of the query processing pipeline, special expectation

operators defined within PIP compute expectations and moments of the uncer-

tain data, or sample the data to generate histograms. This process is illustrated

in Figure 3.2.

These expectation operators are invoked with a lossless representation of the

expression to be evaluated. Because the variables have been treated as opaque,

the expectation operator can obtain information about the distribution a vari-

able corresponds to. Similarly, the lossless representation allows on-the-spot

generation of samples if necessary; There is no bias from samples shared be-

tween multiple query runs.
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The primary component of a GBD encoding a distribution p is a sampling

function that generates values sampled from p. GBD authors can (but need

not) provide supplemental information (e.g., functions defining the PDF and

the CDF) about distributions they extend PIP with. This additional information

benefits end-users at query time – PIP uses it to accelerate the sampling process

or potentially sidestep it entirely.

Example 3.2.1 Consider a query that essentially computes the probability of a random

variable sampled from a GBD falling within specified bounds. If the GBD specifies only

a sampling function, then PIP is required to use Monte Carlo simulation to obtain an

approximate result – something that involves hundreds, or even thousands of invoca-

tions of the sample generating function. If the GBD specifies a cumulative distribution

function (CDF), PIP can obtain a precise result with only two invocations of the CDF.

Because the symbolic representation PIP uses is lossless, intermediate query

results or views may be materialized. Expectations of values in these views or

subsequent queries based on them will not be biased by estimation errors in-

troduced by materializing the view. This is especially useful when a significant

fraction of query processing time is devoted to managing deterministic data

(e.g., to obtain parameters for the model’s variables). Not only does this enable

the use of materialized views for commonly used subqueries, but it improves

the efficiency of online sampling: the sampler does not need to evaluate the

entire query from scratch to generate additional samples.

Example 3.2.2 Recall Example 3.1.2. The result of the relational algebra part of the

example query can be easily computed as
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R Price Condition

Y1 Y2 ≥ 7

without looking at p.

This c-table compactly represents all data still relevant after the application of the

relational algebra part of the query, other than p, which remains unchanged. Sampling

from R to compute

SELECT expected_sum(Price) FROM R;

is a much more focused effort.

First, only the random variables relating to Joe must be considered; but determining

that random variable Y2 is relevant while Y4 is not requires executing a query involving

a join. It is far more efficient to perform the query first, before generating samples of

each variable.

Second, assume that delivery times are independent from sales volumes. Then the

query result is approximated by first sampling an Y2 value and only sampling an Y1

value if Y2 ≥ 7. Otherwise, the Y1 value is 0. If Y2 ≥ 7 is relatively rare (e.g., the

average shipping times to NY are very slow, with a low variance), this may reduce the

amount of samples for Y1 that are first computed and then discarded without seeing use

considerably. If CDFs are available, it is of course possible to do even better.

3.2.2 Random Variables

At the core of PIP’s symbolic representation of uncertainty is the random vari-

able. The simplest form of a random variable in PIP consists of a unique iden-
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tifier, a subscript (for multi-variate distributions), a distribution class, and a set

of parameters for the distribution.

For example, [Y ⇒ Normal(µ, σ2)] represents a normally distributed ran-

dom variable X with mean µ and standard deviation σ2. Multivariate distribu-

tions are specified as arrays, like this multivariate normal distribution: [Y[n] ⇒

MVNormal(µ, σ2, n)].

In summary, random variables are declared as a combination of distribu-

tion and a set of parameters for that distribution. The variable is automatically

assigned a unique identifier to ensure that the sampling process generates con-

sistent values for each appearance of the variable across the entire database.

The result of expressions over random variables is stored as an arithmetic

formula tree, where leaves are random variables or constants and nodes are

arithmetic operators. Because such equations themselves describe random vari-

ables, the terms equation and random variable will be used interchangeably.

Also note that although PIP is currently limited to arithmetic operators, it is

possible to use this same technique to support any non-recursive expression.

Example 3.2.3 Equations of random variables can be combined freely with constant

expressions, both in the target clause and where clauses of a select statement. For exam-

ple:

SELECT Y1 * 2 FROM R WHERE Y1 + Y2 < 2 + 4

All target expressions in the select statement with random variables (Y1 * 2 in the

example above), are encoded into the output as an arithmetic formula tree. Where clause
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expressions with random variables (Y1 + Y2 < 2 + 4 above), are encoded into the

output as part of the c-table condition.

C-table conditions are encoded as a boolean formula of atoms, arbitrary in-

equalities of random variable expressions. The independent probability, or con-

fidence of the tuple is the probability of the condition being satisfied.

Conjunctive Conditions. Recall that with the exception of duplicate elimina-

tion and negative relational algebra, queries over c-tables with exclusively con-

junctive conditions produce exclusively conjunctive c-table conditions. Thus it

makes sense to particularly optimize this scenario [8]. In the case of positive

relational algebra with the duplicate elimination operator (i.e., duplicate elimi-

nation is traded against difference), the conditions can still be efficiently main-

tained in DNF, i.e., as a simple disjunction of conjunctions of atomic conditions.

Without loss of generality, the model can be limited to conditions that are

conjunctions of constraint atoms. Generality is maintained by using bag seman-

tics to encode disjunctions; Disjunctive terms are encoded as separate rows, and

the distinct operator is used to coalesce terms. This restriction provides several

benefits. First, constraint validation is simplified; A pairwise comparison of all

atoms in the clause is sufficient to catch the inconsistencies listed above. As an

additional benefit, if all atoms of a clause define convex and contiguous regions

in the space ~x, ~y, these same properties are also shared by their intersection.

33



3.2.3 Condition Inconsistency

Conditions can become inconsistent when contradictory conditions are intro-

duced conjunctively, which may happen in the implementations of the oper-

ators selection, product, and difference. If such tuples are discovered, they may

be freely removed from the c-table.

A condition is consistent if there is a variable assignment that makes the con-

dition true. For general boolean formulas, deciding consistency is computation-

ally hard. But it is not necessary to decide it during the evaluation of relational

algebra operations. Rather, straightforward cases of inconsistency are immedi-

ately removed to clean-up c-tables and reduce their sizes. The later Monte Carlo

simulation phase enforces any remaining inconsistencies.

1. The consistency of conditions not involving variable values is always im-

mediately apparent.

2. Conditions Xi = c1 ∧ Xi = c2 with constants c1 , c2 are always inconsistent.

3. Equality conditions over continuous variables Y j = (·), with the exception

of the identity Y j = Y j, are not inconsistent but can be treated as such (the

probability mass will always be zero). Similarly, conditions Y j , (·), with

the exception of Y j , Y j, can be treated as true and removed or ignored.

With respect to (finite) discrete variables, inconsistency detection may be

further simplified. Rather than storing where clause conditions over discrete

variables symbolically in the c-table condition, the table may be expanded by

enumerating all possible instantiations of each row. Expressed this way, c-

table conditions over variables are limited to equality constraints of the form
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Algorithm 1: consistencyCheck(C)

Require: A set of conditions C.

Ensure: false if the conditions are provably inconsistent, true otherwise.

1: for all Continuous variable group K {See Section 3.3.1} do

2: initialize bounds map S s.t. S [X] = [−∞,∞] ∀X ∈ K

3: repeat

4: for all Expression E ∈ K do

5: if at most 1 variable in E is unbounded then

6: for all X {Use the bounded variables to shrink the variable bounds}

do

7: S [X] ← S [X] ∩ tightenclass(E)(X, E, S ) {A different tighten

method is defined for different classes of expression (e.g., poly-

nomial expressions of degree 1). This step is skipped if no

tighten method is available for this expression.}

8: if ∃X s.t. S [X] = ∅ then

9: return false

10: until fixedpoint of S

11: return true

x1 = constant, expressing the value assigned that each variable in this instance

of the row, and discrete variable columns may be treated as constants for the

purpose of consistency checks. As shown in [8], deterministic database query

optimizers do a satisfactory job of ensuring that constraints over discrete vari-

ables are filtered as soon as possible.

PIP’s approach to consistency checking expressions of continuous variables

involves producing a bounds map, the range of values that each variable being
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Algorithm 2: tightenpoly1(X, E, S )

(An example variable bounds reducer for expressions with polynomial degree

1)

Require: A variable X, expression E, and a bounds map S

Ensure: A tighter bound on variable X if one is possible.

1: Express E in normal form aX + bY + cZ + . . . > 0

2: if a > 0 then

3: return [−(b ·max(S [Y]) + c ·max(S [Z]) + . . .)/a,∞]

4: else if a < 0 then

5: return [−∞,−(b ·max(S [Y]) + c ·max(S [Z]) + . . .)/a]

sampled from can take. The bounds map is progressively tightened until a fixed

point is reached, using each expression to propagate bounds on one variable

through to others in the expression. If the bounds map contains a variable with

an empty range (i.e., there is no value that the variable could possibly take), the

expression is deemed inconsistent. This process is summarized as Algorithm

1, and a simple algorithm for tightening bounds on expressions of polynomial

degree 1 is presented in Algorithm 2.

3.2.4 Grey-Box Distributions

PIP defines variables in terms of distribution classes – until it becomes necessary

to compute metrics over a random variable or expression of random variables,

PIP is agnostic to the details of how a variable is implemented. Isolating variable

use to this single sampling component of the system makes it easy for users to
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extend PIP with additional distribution classes.

Distributions in PIP are defined as a Black-Box sampling function which gen-

erates samples from the distribution (i.e., like a VG-Function [46]), plus a set of

metadata associated with the distribution. The additional information in one

such Grey-Box Distributions (GBDs) allows PIP to compute metrics over vari-

ables and variable expressions with greater efficiency. Concretely, PIP currently

utilizes the following distribition-specific metadata (if it is available):

1. A function for efficiently computing the distribution’s probability density

function (PDF)

2. A function for efficiently computing the distribution’s cumulative density

function (CDF)

3. A function for efficiently computing the inverse cumulative density func-

tion (CDF−1)

Note that this specific selection of metadata has been selected primarily to

demonstrate the potential of PIP’s approach (i.e., symbolic execution and Grey-

Box Distributions). Further distribution-specific values like weighted-sampling,

mean, entropy, and the higher moments can be used by more advanced statis-

tical methods to achieve even better performance. The process of defining a

variable distribution is described further in Section 3.4.

Though PIP abstracts the details of a variable’s distribution from query eval-

uation, it distinguishes between discrete and continuous distributions. As de-

scribed in Section 3.1, existing research into c-tables has demonstrated efficient

ways of querying variables sampled from discrete distributions. PIP employs

similar techniques when it is possible to do so.
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3.3 Sampling and Integration

Query evaluation in PIP occurs in two stages: Query and Sampling. PIP relies

on Postgres’ native engine to evaluate queries; As described in Section 3.1, a

query rewriting pass suffices to translate c-tables relational algebra extensions

into traditional relational algebra. Details on how query rewriting is imple-

mented are provided in Section 3.4.

As the query is being evaluated, special sampling operators in the query are

used to transform random variable expressions into histograms, expectations,

and other statistical metrics. The computation of both metrics and probabilities

reduces to numerical integration in the general case, and the dominant tech-

nique for doing this is Monte Carlo simulation. The approximate computation

of expectation

E[χφ · (h ◦ t)] =
1
n
·

n∑
i=1

p(~yi) · χφ(~yi) · h(t(~yi)) (3.1)

faces a number of difficulties. In particular, samples for which χφ is zero do not

contribute to an expectation. If φ is a very selective condition, most samples do

not contribute to the summation computation of the approximate expectation.

(This is closely related to the most prominent problem in online aggregation

systems [39, 77], and also in [46]).

Example 3.3.1 Consider a row containing the variable

[Y ⇒ Normal(µ = 5, σ2 = 10)]

and the condition predicate (Y > −3) and (Y < 2). The expectation of the variable Y in

the context of this row is not 5, but rather ∼ 0.17 – it is based only on samples of Y that

fall in the range (−3, 2).
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3.3.1 Sampling Techniques

Rejection Sampling One straightforward approach to this problem is to per-

form rejection sampling; sample sets are repeatedly generated until a sufficient

number of viable (satisfying) samples have been obtained.

However, without scaling the number of samples taken based on E[χφ], in-

formation can get very sparse and the approximate expectations will have a

high relative error. Unfortunately, as the probability of satisfying the constraint

drops, the work required to produce a viable sample increases; More efficient

mechanisms are necessary.

Sampling using inverse CDFs As an alternative to generator functions, PIP

can also use the inverse-transform method [59]. If available, the distribution’s

inverse-CDF function is used to translate a uniform-random number in the

range [0, 1] to the variable’s distribution.

This technique makes constrained sampling more efficient. If the uniform-

random input is selected from the range [CDF(a),CDF(b)], the generated value

is guaranteed to fall in the range [a, b]. Even if precise constraints can not be ob-

tained, this technique still reduces the volume of the sampling space, increasing

the probability of getting a useful sample.

In the event that the inverse CDF is available, but the CDF is not, this tech-

nique is still useful. Instead of sampling from the range [CDF(lower),CDF(upper)],

PIP keeps track of the lowest sample value above the upper bound and the high-

est sample value below the lower bound and the corresponding input to the in-

verse CDF. PIP effectively learns the values of the input bounds over the course
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of its normal sampling process.

If precise bounds can be derived from the constraints on a given variable,

this process guarantees that each sample generated will satisfy the constraint.

Even if only weak bounds are available, the process still provides a benefit. By

reducing the size of the sampling area, the probability of selecting a viable sam-

ple is still increased.

Exploiting independence Prior to sampling, PIP subdivides constraint pred-

icates into minimal independent subsets: sets of predicates that do not share

common variables. When determining subset independence, variables gener-

ated by the same multivariate distribution are effectively treated as the same

variable. For example, consider the one row c-table of nullary schema (i.e., there

is only a condition column)

R φ2

(Y1 > 4) ∧ ([Y1 · Y2] > Y3) ∧ (A < 6)

In this case, the atoms (Y1 > 4) and ([Y1 ·Y2] > Y3) form one minimal independent

subset, while (A < 6) forms another.

Because these subsets share no variables, each may be sampled indepen-

dently. Sampling fewer variables at a time reduces the work lost generating

non-satisfying samples, and decreases the frequency with which this happens.

Metropolis A final alternative available to PIP, is the Metropolis algorithm

[67]. Starting from an arbitrary point within the sample space, this algorithm

performs a random walk weighted towards regions with higher probability
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densities. Samples taken at regular intervals during the random walk may be

used as samples of the distribution.

The Metropolis algorithm has an expensive startup cost, as there is a lengthy

2 ‘burn-in’ period while it generates a sufficiently random initial value. Despite

this startup cost, the algorithm typically requires only a relatively small number

of steps between each sample. Consequently, the Metropolis algorithm is ideally

suited for generating large numbers of samples when the CDF is not available

and the probability of sampling a given value is small.

We can estimate the work required for both Metropolis and Naive rejection

sampling.

Wmetropolis = Cburn in + [# samples] ·Csteps per sample

Wnaive =
1

1 − P[re ject]
· [# samples]

By generating a small number of samples for the subgroup, PIP can generate a

rough estimate of P[re ject] and decide which approach is less expensive.

3.3.2 Row-Level Sampling Operators

Evaluating a query on a probabilistic table (or tables) produces as output an-

other probabilistic table. Though the raw probabilistic data has value, the ulti-

mate goal is to compute statistical metrics: expectations, stddev, etc. To achieve

this goal, PIP provides a set of sampling operators: functions that convert prob-

abilistic data into deterministic values.
2PIP uses a fixed size burn-in period. Further extensions to PIP’s metropolis implementation

are possible, but beyond the scope of this dissertation.
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Example 3.3.2 Consider the c-tables

R A φ1

5 (Y1 > 4)

S B φ2

X (Y2 > 2)

The query

SELECT A * B AS C FROM R, S;

produces the result table

T C φ

5 · X (Y1 > 4) ∧ (Y2 > 2)

While debugging a query an end-user might find these query results (that is, results

expressed as a lineage) useful. However, it is of limited use for an end-user to know

that T contains one row with C equal to 5 · Y1 in worlds described by variables Y1 > 4

and Y2 > 2, and is empty in all other worlds – this information essentially restates the

query. Analyzing large volumes of this data requires histograms or statistical metrics of

aggregates (i.e., expectations of sums, etc. . . ).

Sampling operators accept an expression to be evaluated and the c-table con-

dition (as a conjunctive boolean formula of constraints), henceforth referred to

as the row’s context. The sampling operator’s output is a statistical metric (ex-

pectation, standard deviation) or histogram of the expression’s value given the

context.

PIP focuses on sampling operators that follow per-row sampling semantics.

Under these semantics, each row is sampled independently. The metric being

computed is computed only over the volume of probability space defined by
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the expression’s context for each row. For example, in the case of Monte-Carlo

sampling, samples are generated for each row, but only samples satisfying the

row’s context are considered. All other samples are discarded. If the context is

unsatisfiable, a value of NAN will result.

The choice to focus on per-row sampling operators is motivated by efficiency

concerns. If the results table is larger than main memory, the sampling process

can become IO-bound. Per-row sampling operators require only a single pass

(or potentially a second pass if additional precision is required) over the results.

While we do consider table-wide sampling semantics out of necessity for some

aggregates, the development of additional table-wide techniques is beyond the

scope of this dissertation.

Note that the resulting aggregates are still probabilistic data. For example,

the expectation of a given cell is computed in the context of the cell’s row;

The expectation is computed only over those worlds where the row’s condi-

tion holds, as in all other worlds the row does not exist. In order to compute the

probability of satisfying the row’s condition, also referred to as the row’s con-

fidence, we define a confidence operator. If the confidence operator is present,

all conditions applying to the row are removed from the result and the resulting

table is deterministic.

PIP’s sampling process for computing expectations, including all techniques

described in Section 3.3.1 is summarized in Algorithm 3. Despite the limited

number of sampling techniques employed, this algorithm demonstrates the breadth

of state available to the PIP framework at sample-time. Independent group sam-

pling requires set of constraints. CDF sampling requires distribution-specific

knowledge. Metropolis sampling requires similar knowledge, and also employs
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bounds on P[re ject] to make efficiency decisions. All of this information is avail-

able to the expectation operator, making it the ideal place to implement these,

as well as more advanced optimization techniques.

Algorithm 3: expectation(E,C,getP,(ε, δ))

Require: An expression E, a c-table condition C, and confidence bounds (ε, δ).

Ensure: The expectation of expression E, given that the condition C holds; if

getP is true, also compute the probability that condition C holds.

1: target ←
√

2·erf−1(1 − ε); N ← 0; sum← 0; sumsq← 0

2: for all Variable Groups K ∈ C s.t. ∃X ∈ K and X ∈ E do

3: Count[K]← 0; forall X ∈ K : S ampler[X]← Natural end for

4: S ← consistencyCheck(K) {A bounds map (S ) is generated as a side effect}

5: if consistencyCheck failed then ERROR end if

6: for all bounded X with available CDF±1 do S ampler[X] = CDF end for

7: while
(
target ·

∣∣∣( sum
N )2 −

sumsq
N

∣∣∣ + sum
N

)
< (δ · sum) and N < 1/delta do

8: N = N + 1; for all K do sampleK ← {} end for

9: for all Variable Groups K ∈ C s.t. ∃X ∈ K and X ∈ E do

10: if (Count[K]−N)
Count[K] > thresholdmet then S ampler[X ∈ K]← Metropolis end if

11: if S ampler[X ∈ K] = Metropolis then sampleK ← metropolis(K)

12: else repeat sampleK ← {x|x = S ampler[X ∈ K]()}; Count[K]++

13: until sampleK satisfies E’s conditions end if

14: sum← sum + E(∩K{sampleK}); sumsq← sumsq + [E(∩K{sampleK})]2

15: Prob←
∏

K without Metropolis
N

Count[K] ·
∏

X∈K:S ampler[X]=CDF CDF(X.high) − CDF(X.low)

16: if getP then Prob← Prob ·
∏

K with Metropolis probability(K, E) end if

17: return ( sum
N , Prob)
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Algorithm 4: probability(K, E)

Require: A variable group K and an expression E

Ensure: The probability Prob of a random sample from the variables in K satis-

fying E.

1: if K has only one variable, and X ∈ K has an available CDF then

2: return
∑

region∈bounds(X) CDF(region.high) − CDF(region.low)

3: else

4: total← 0; hits← 1

5: repeat

6: total++

7: sample← {x|x = S ample(X)}

8: if sample satisfies E’s conditions then

9: hits++

10: until hits > threshold

11: return hits
total

3.3.3 Aggregate Sampling Operators

Aggregate operators (eg. sum, avg, stddev) applied to c-tables introduce a new

form of complexity into the sampling process: the result of an aggregate oper-

ator applied to a c-table is difficult to represent and sample from. Even if the

values being aggregated is a constant, each row’s context must be evaluated

independently. The result is 2n possible outputs, each with a linear number of

conditions in the number of rows. If the values being aggregated are variable

expressions, the result is an identical number of outputs, each containing data

linear in the size of the table.
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Fortunately, such operators typically appear at the root of a query plan, mak-

ing them an ideal point at which to perform sampling. Aggregates compute ex-

pectations over entire tables, so the probability of a given row’s presence in the

table can be included into the aggregate’s expectation computation.

We begin with the simplest form of aggregate expectation, that of an aggre-

gate that obeys linearity of expectation (E[ f (~y)] = f ( ~E[y])), such as sum(). Such

aggregates are straightforward to implement: per-row expectations of f (~y)χ(~y)

are computed, and aggregated (e.g., summed up). Of note however, is the effect

that the operator has on the variance of the result. In the case of sum(), each

expectation can be viewed as a normally distributed random variable with a

shared, predetermined variance. By the law of large numbers, the sum of a set

of N random variables with equal standard deviation σ has a variance of σ
√

N
. In

other words, when computing the expected sum of N variables, we can reduce

the number of samples taken for each individual element by a factor of 1
√

N
.

If the operator does not obey linearity of expectation (e.g., the max aggre-

gate), the aggregate implementation is more difficult. Any aggregate may still

be implemented naively by evaluating it in parallel on a set of sample worlds

instantiated prior to evaluation. This is a worst-case approach to the problem;

it may be necessary to perform a second pass over the results if an insufficient

number of sample worlds are generated. However, more efficient special case

aggregates, specifically designed to compute expectations are possible.

Example 3.3.3 Consider the max() aggregate. If the target expression is a constant,

this aggregate can be implemented extremely efficiently. Given a table sorted by the

target expression in descending order, PIP estimates the probability that the first element

in the table (the highest value) is present. The aggregate expectation is initialized as the

46



product of this probability and the first element. The second term is maximal only if the

first term is not present; when computing the probability of the second term, we must

compute the probability of all the second term’s constraint atoms being fulfilled while at

least one of the first atom’s terms is not fulfilled. Though the complexity of this process is

exponential in the number of rows, the probability of each successive row being maximal

drops exponentially.

To illustrate this, consider the table (annotated with probabilities)

R A φ P[φ]

5 X ≥ 7 0.7

4 Y ≥ 7 0.8

1 Z ≥ 7 0.3

0 Q ≥ 7 0.6

Based on the probabilities listed above,

E[max(A)] = 5 · 0.7 + 4 · 0.8 + 1 · 0.3 + 0 · 0.6

However, if the desired precision is 0.1, we can stop scanning after the second record

since the maximum any later record can change the result is 1 − (1 − 0.7) ∗ (1 − 0.8) =

0.056.

3.4 Implementation

In order to evaluate the viability of PIP’s c-tables approach to continuous vari-

ables, we have implemented an initial version of PIP as an extension to the Post-

greSQL DBMS. PIP’s extended functionality is provided by a set of user-defined

functions written in C, and is illustrated in Figure 3.3.
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Figure 3.3: The PIP Postgres plugin architecture

3.4.1 Query Rewriting

Much of this added functionality takes advantage of PostgreSQL’s extensibility

features, and can be used “out-of-the-box”. For example, we define the function

CREATE VARIABLE(distribution[,parameters])

which is used to create continuous variables3. Each call allocates a new vari-

able, or a set of jointly distributed variables and initializes it with the specified

parameters. When defining selection targets, operator overloading is used to

make random variables appear as normal variables; arbitrary equations may be

constructed in this way.

Example 3.4.1 Continuous variables may be created inline with the create-variable op-

eration.

SELECT o.order_id, o.item_id,

CREATE_VARIABLE (‘Normal’, p.mean, p.std_dev)

3For discrete distributions, PIP uses the core functionality of [54], including its repair-key
operator
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AS delivery_time

FROM orders o, params p

WHERE o.item_id = p.item_id;

Angle brackets around a random variable are shorthand for the variable’s

expectation. All instances of this are replaced by a call to PIP’s expectation sam-

pling function.

To complete the illusion of working with static data, we have modified Post-

greSQL itself to add support for c-table constructs. Under the modified Post-

greSQL when defining a datatype, it is possible to declare it as a CTYPE; doing

so has the following three effects:

• CTYPE columns (and conjunctions of CTYPE columns) may appear in the

WHERE and HAVING clauses of a SELECT statement. When found, the

CTYPE components of clause are moved to the SELECT’s target clause.

SELECT * FROM inputs WHERE X>Y and Z like ’%foo’

is rewritten to

SELECT *, X>Y FROM inputs WHERE Z like ’%foo’

• SELECT target clauses are rewritten to ensure that all CTYPE columns in

input tables are passed through.

SELECT X,Y FROM inputs

is rewritten to

SELECT X,Y,inputs.phi1,inputs.phi2,... FROM inputs
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There is one exception to this rule – certain functions can be used to make

the data deterministic (e.g., by computing and outputting the confidence

of a particular row and eliminating all columns with uncertain data, or an

aggregate function which performs per-table sampling). Such functions

are explicitly labeled as such when they are first defined, and cause the

CTYPE rewriter to not pass-through CTYPE columns.

• In the case of aggregates, the mechanism by which CTYPE columns may

be passed through is unclear. Thus if the select statement contains an ag-

gregate and one or more input tables have CTYPE columns, the query

causes an error unless the aggregate is labeled as a probability-removing

function.

• UNION operations are rewritten to ensure that the number of CTYPE

columns in their inputs is consistent. If one input table has more CTYPE

columns of a given type than the other, the latter is padded with NULL

constraints.

SELECT * FROM left(X,phi1) UNION right(X,phi2,phi3)

is rewritten to

SELECT * FROM (SELECT *,NULL FROM left) UNION right

Note that these extensions are not required to access PIP’s core functionality;

they exist to allow users to seamlessly use deterministic queries on probabilistic

data as illustrated in Figure 3.4.

PIP takes advantage of this by encoding constraint atoms in a CTYPE datatype;

Overloaded > and < operators return a constraint atom instead of a boolean if
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Rctable A B φ

X ∗ 3 5 X > Y ∧ Y > 3
Y 3 Y < 3 ∨ X < Y

⇓⇓⇓

Rint A (VarExp) B (integer) φ1 (CTYPE) φ2 (CTYPE)
X ∗ 3 5 X > Y Y > 3

Y 3 Y < 3 NULL
Y 3 X < Y NULL

Figure 3.4: Internal representation of C-Tables

a random variable is involved in the inequality, and the user can ignore the dis-

tinction between random variable and constant value (until the final statistical

analysis).

3.4.2 Defining Distributions

PIP’s primary benefit over other c-tables implementations is its ability to admit

variables chosen from arbitrary continuous distributions. These distributions

are specified in terms of general distribution classes, a set of C functions that

describes the distribution. In addition to a small number of functions used to

parse and encode parameter strings, each PIP distribution class defines one or

more of the following functions.

• Generate(Parameters, Seed) uses a pseudorandom number gener-

ator to generate a value sampled from the distribution. The seed value

allows PIP to limit the amount of state it needs to maintain; multiple calls

to Generate with the same seed value produce the same sample, so only

the seed value need be stored.

• PDF(Parameters, x) evaluates the probability density function of the
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distribution at the specified point.

• CDF(Parameters, x) evaluates the cumulative distribution function at

the specified point.

• InverseCDF(Parameters, Value) evaluates the inverse of the cumu-

lative distribution function at the specified point.

PIP requires that all distribution classes define a Generate function. All other

functions are optional, but can be used to improve PIP’s performance if pro-

vided; The supplemental functions need only be included when known meth-

ods exist for evaluating them efficiently.

Future implementations could conceivably generalize the sampling process.

A sample may be generated using any of the four functions: The Metropolis-

Hastings algorithm can sample from an arbitrary PDF, the inverse CDF evalu-

ated on a uniform random value produces a sample, and a binary search may

be used to evaluate the inverse CDF given the CDF.

3.4.3 Sampling Functionality

PIP provides several functions for analyzing the uncertainty encoded in a c-

table. The two core analysis functions are conf() and expectation().

• conf() performs a conjunctive integration to estimate the probability of

a specific row’s condition being true. For tables of purely conjunctive con-

ditions, conf() can be used to compute each row’s confidence.
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• aconf(), a variant of conf(), is used to perform general integration. This

function is an aggregate that computes the joint probability of all equiva-

lent rows in the table, a necessity if disjunctions are in use.

• expectation() computes the expectation of a variable by repeated sam-

pling. If a row is specified when the function is called, the sampling pro-

cess is constrained by the constraint atoms present in the row.

• expected sum(), expected max() are aggregate variants of expecta-

tion. As with expectation() they can be parametrized by a row to specify

constraints.

• expected sum hist(), expected max hist() are similar to the above

aggregates in that they perform sampling. However, instead of outputting

the average of the results, it instead outputs an array of all the generated

samples. This array may be used to generate histograms and similar visu-

alizations.

Aggregates pose a challenge for the query phase of the PIP evaluation pro-

cess. Though it is theoretically possible to create composite variables that rep-

resent aggregates of their inputs, in practice it is infeasible to do so. The size of

such a composite is not just unbounded, but linear in the size of the input table.

A variable symbolically representing an aggregate’s output could easily grow

to an unmanageable level. Instead, PIP limits random variable aggregation to

the sampling phase.
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Figure 3.5: Time to complete a 1000 sample query, accounting for
selectivity-induced loss of accuracy.

3.5 Evaluation

A sample-first probabilistic extension to Postgres has been constructed as a com-

parison point for PIP’s ability to manage continuous random variables. This

extension emulates MCDB’s tuple-bundle concept using Postgres user-defined

datatypes rows. A sampled variable is represented using an array of floats,

while the tuple bundle’s presence in each sampled world is represented using

a densely packed array of booleans. In lieu of an optimizer, test queries were

constructed by hand so as to minimize the lifespan of either array type.

Using Postgres as a basis for both implementations places them on an equal

footing with respect to DBMS optimizations unrelated to probabilistic data. This

makes it possible to focus the comparison solely on new, probabilistic function-
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of queries. Sample-First’s sample-count has been adjusted to
match PIP’s accuracy.

ality added by either system. However, to make the distinction from MCDB

(which is a separate development not based on Postgres) explicit, the Postgres

extension is referred to as Sample-First.

Both the PIP C-Tables and the Sample-First infrastructures were evaluated

against a variety of related queries. Tests were run over a single connection to

a modified instance of PostgreSQL 8.3.4 with default settings running on a 2x4

core 2.0 GHz Intel Xeon with a 4MB cache. Unless otherwise specified, queries

were evaluated over a 1 GB database generated by the TPC-H benchmark, all

sampling processes generate 1000 samples apiece, and results shown are the

average of 10 sequential trials with error bars indicating one standard deviation.

First, PIP’s performance is demonstrated on a simple set of queries ideally
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Figure 3.7: RMS error across the results of 30 trials of (a) a simple group-by
query Q4 with a selectivity of 0.005, and (b) a complex selection
query Q5 with an average selectivity of 0.05.
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suited to the strengths of Sample-First. These two queries (identical to Q1 and

Q2 from [46]) involve parametrizing a table of random values, applying a sim-

ple set of math operations to the values, and finally estimating the sum of a large

aggregate over the table.

The first query computes the rate at which customer purchases have in-

creased over the past two years. The percent increase parametrizes a Poisson

distribution that is used to predict how much more each customer will purchase

in the coming year. Given this predicted increase in purchasing, the query esti-

mates the company’s increased revenue for the coming year.

In the second query, past orders are used to compute the mean and standard

deviation of manufacturing and shipping times. These values parametrize a

pair of Normal distributions that combine to predict delivery dates for each

part ordered today from a Japanese supplier. Finally, the query computes the

maximum of these dates, providing the customer with an estimate of how long

it will take to have all of their parts delivered.

The results of these tests are shown as query Q1 and Q2, respectively, in Fig-

ure 3.6. Note that performance times for PIP are divided into two components:

query and sample, to distinguish between time spent evaluating the determin-

istic components of a query and building the result c-table, and time spent com-

puting expectations and confidences of the results. The results are positive; the

overhead of the added infrastructure is minimal, even on queries where Sample-

First is sufficient. Furthermore, especially in Q2, the sampling process comprises

a relatively small portion of the query; additional samples can be generated

without incurring the nearly 1 minute query time.

57



The third query Q3 in Figure 3.6 combines a simplified form of queries Q1

and Q2. Rather than aggregating, the query compares the delivery times of Q2

to a set of “satisfaction thresholds.” This comparison results in a (probabilistic)

table of dissatisfied customers that is used in conjunction with Q1’s profit ex-

pectations to estimate profit lost to dissatisfied customers. A query of this form

might be run on a regular basis, perhaps even daily. As per this usage pattern,

the component of this query unlikely to change on a daily basis: the expected

shipping time parameters were pre-materialized. Q3 is described in more detail

in the Appendix Section A.

Though PIP and Sample-First both take the same amount of time to gener-

ate 1000 samples under this query, the query’s selectivity causes Sample-First

to disregard a significant fraction of the samples generated; Because Sample-

First instantiates samples at the granularity of an entire, a sample where the

selectivity predicate (based on shipping time) is false does not contribute to the

expectation of the profit lost. Thus, for the same amount of work, Sample-First

generates a less accurate answer.

To illustrate this point further, see Figure 3.7(a). This figure shows the root-

mean-squared (RMS) error, normalized by the correct value in the results of

a query for predicted sales of 5000 parts in the database, given a Poisson dis-

tribution for the increase in sales and a popularity multiplier chosen from an

exponential distribution. As an additional restriction, the query considers only

the extreme scenario where the given product has become extremely popular

(resulting in a selectivity of e−5.29 ≈ 0.005).

RMS error was computed over 30 trials using the algebraically computed

correct value as a mean, and then averaged over all 5000 parts. Note that PIP’s
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error is over two orders of magnitude lower than the sample-first approach for

a comparable number of samples. This corresponds to the selectivity of the

query; as the query becomes more selective, the sample-first error increases.

Furthermore, because CDF sampling is used to restrict the sampling bounds,

the time taken by both approaches to compute the same number of samples is

equivalent.

A similar example is shown in Figure 3.7(b). Here, a model is constructed

for how much product suppliers are likely to be able to produce in the coming

year based on an Exponential distribution, and for how much product the com-

pany expects to sell in the coming year as in Q1. From this model, the expected

underproduction is computed, with a lower bound of 0; the selection criterion

considers only those worlds where demand exceeds supply. For the purposes

of this test, the model was chosen to generate an average selectivity of 0.05.

Though the comparison of 2 random variables necessitates the use of rejection

sampling and increases the time PIP spends generating samples, the decision to

drop a sample is made immediately after generating it; PIP can continue gener-

ating samples until it has a sufficient number, while the Sample-First approach

must rerun the entire query.

Note the relatively large variance in the RMS error of the Sample-First results

these figures, particularly the first one. Here, both the selectivity and the price

for each part vary with the part. Thus, some parts become more important

while others become harder to sample from. In order to get a consistent answer

for the entire query Sample-First must provision enough samples for the worst

case, while PIP can dynamically scale the number of samples required for each

term.

59



Returning to Figure 3.6, Queries Q3 and Q4 have been run with PIP at a fixed

1000 samples. As Sample-First drops all but a relatively small number of sam-

ples corresponding to the selectivity of the query, Sample-First was run with a

correspondingly larger number of samples. For Query Q3, the average selectiv-

ity of 0.1 resulted in Sample-First discarding 90% of its samples. To maintain

comparable accuracies, Sample-First was run at 10,000 samples.

Figure 3.5 expands on this datapoint, showing the results of evaluating Q4,

altered to have varying selectivities. The sample-first tests are run with 1
selectivity

times as many samples as PIP to compensate for the lower error, in accordance

with Figure 3.7(a). Note that selectivity is a factor that a user must be aware

of when constructing a query with sample-first while PIP is able to account for

selectivity automatically, even if rejection sampling is required.

It should also be noted that both of these queries include two distinct, in-

dependent variables involved in the expectation computation. A studious user

may note this fact and hand optimize the query to compute these values inde-

pendently. However, without this optimization, a sample-first approach will

generate one pair of values for each customer for each world. As shown in the

RMS error example, an arbitrarily large number of customer revenue values will

be discarded and the query result will suffer. In this test, customer satisfaction

thresholds were set such that an average of 10% of customers were dissatisfied.

Consequently sample-first discarded an average of 10% of its values. To main-

tain comparable accuracies, the sample-first query was evaluated with 10,000

samples while the PIP query remained at 1000 samples.

As a final test, PIP and the Sample-First implementation were evaluated on

the NSIDC’s Iceberg Sighting Database[81] for the past 4 years. 100 virtual ships
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Figure 3.8: Sample-First error as a fraction of the correct result in a danger-
estimation query on the NSIDC’s Iceberg Sighting Database.
PIP was able to obtain an exact result.

were placed at random locations in the North Atlantic, and each ship’s location

was evaluated for its proximity to potential threats; Each iceberg in the database

was assigned a normally distributed position relative to its last sighting, and an

exponentially decaying danger level based on time since last sighting. Recently

sighted icebergs constituted a high threat, while historic sightings represented

potential new iceberg locations. The query identified icebergs with greater than

a 0.1% chance of being located near the ship and estimated the total threat posed

by all potentially nearby icebergs. The results of this experiment are shown in

Figure 3.5. PIP was able to employ CDF sampling and obtain an exact result

within 10 seconds. By comparison, the Sample-First implementation generating

10,000 samples took over 10 minutes and produced results deviating by as much

as 25% from the correct result on a typical run.
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CHAPTER 4

JIGSAW

This chapter describes Jigsaw, a tool for evaluating and optimizing parameterized what-if

scenarios in the presence of uncertain data. This sort of parameter optimization and exploration,

especially over predictive models is a key component of effective resource allocation in large

corporations, and in many other scenarios. Yet, prior to the publication of Jigsaw, no other

system had explored, or developed efficient techniques to address this extremely important

application of probabilistic databases.

Jigsaw was developed during my internship at Microsoft Research, in collaboration with

Suman Nath from Microsoft Research, as well as Charles Loboz, Slawek Smyl, and Steve Lee

from Microsoft Corporation. Copyrights on Jigsaw are owned by Microsoft. Jigsaw was origi-

nally published at SIGMOD 2011 [52, 51].

4.1 Simulating Business Scenarios

Batch mode execution. Recall the Enterprise Cluster Provisioning example

from Section 1.1. An analyst wishes to use models for CPU core demands and

availability to determine the optimal date and volume for several server pur-

chase orders to keep the risk of running out of available CPU cores below a cer-

tain threshold. The later the purchases occur, the lower the hardware’s upkeep

costs, but the greater the chance that cores will be unavailable when needed.

The question of an ideal purchase date and volume is a simple constrained op-

timization problem.

A Jigsaw user would specify this optimization problem in three stages: (1)

The user defines stochastic models forecasting CPU core availability and de-

mand, (2) The user specifies inter-model interactions to describe the scenario,
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and (3) Jigsaw solves the optimization problem by exploring the parameter

space of purchase dates and volumes.

For step (1), the user defines various stochastic models that Jigsaw uses as

black boxes. These stochastic black boxes are essentially functions that produce

samples1 drawn from the probability distribution that they intend to describe.

This framework allows analysts to easily import externally defined models that

describe a wide variety of processes and system characteristics. In this specific

example, the user writes the following two functions (e.g. based on a model

derived in a statistical modeling application like R):

DemandModel(current week, feature release);

CapacityModel(current week, purchase1, purchase2);

The DemandModel function produces a stochastic CPU core usage demand

forecast for a given week in the future, taking into account expected future user

arrival rates, individual user capacity requirements, and expected user reactions

to planned special offers and system features.

The CapacityModel function outputs a stochastic estimation of the num-

ber of CPU cores available on a given date in the future (given a set of future

purchase dates). It also takes into account the current CPU core availability,

future expected failure rates, and prediction, based on prior purchasing experi-

ences of when new cores will come online after purchase.

For steps (2) and (3), the user writes the SQL-like query in Figure 4.1. The

1Canonical VG-Functions in MCDB produce tables as output. For clarity, I use a simplified
notion of stochastic black-box functions that produce only single values. To make this distinc-
tion explicit, the term black-box function is used. Naive extensions of Jigsaw’s fingerprinting
technique to full VG-functions are trivial (e.g., extend the function with row and column id
parameters) and optimized extensions are relegated to future work.
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-- DEFINITION --
DECLARE PARAMETER @current_week AS RANGE 0 TO 52 STEP BY 1;
DECLARE PARAMETER @purchase1 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @purchase2 AS RANGE 0 TO 52 STEP BY 4;
DECLARE PARAMETER @feature_release AS SET (12,36,44);

SELECT DemandModel(@current_week, @feature_release)
AS demand,

CapacityModel(@current_week, @purchase1, @purchase2)
AS capacity,

CASE WHEN capacity < demand THEN 1 ELSE 0 END
AS overload

INTO results;
-- BATCH MODE --
OPTIMIZE SELECT @feature_release, @purchase1, @purchase2

FROM results
WHERE MAX(EXPECT overload) < 0.01
GROUP BY feature_release, purchase1, purchase2

FOR MAX @purchase1, MAX @purchase2

Figure 4.1: An example Jigsaw query.

core of the scenario is a simple SQL SELECT query that produces an output

result table – in this example, containing capacity, demand, and overload

columns. Note that, as Jigsaw is built around a probabilistic database (PDB) sys-

tem, this results table is specified as a probability distribution over the space of

possible results. Two aspects of the query require further discussion: (a) The

query contains several parameter variables, each prefixed with a @. Parameter

variables, with their bounds and sets of permitted and initial values, are de-

clared as part of the scenario using DECLARE PARAMETER statements and are

equivalent to standard SQL variables from the user’s perspective. (b) The op-

timization goal is expressed with an OPTIMIZE query, which iterates over the

parameter space to find the latest purchase1 and purchase2 that keep the

expected risk of overload (a condition defined as a week when capacity <
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demand) within a threshold.

One possible implementation of the CapacityModel is of interest. This

model is characterized by a sequence of discrete events (e.g., purchases or hard-

ware failures), each affecting the cluster’s capacity, as shown in figure 4.1. Each

event is produced by a separate model, so the database engine itself can com-

pute the cumulative effect of the events with a simple SQL SUM aggregate. Also

consider the CapacityModel expectation viewed in a time-series plot. Though

each purchase has a stable long-term impact on the cluster’s capacity, this plot

is characterized by two distinct structures in the vicinity of each purchase date.

Note that PDB functionality provides a glue layer that allows analysts to de-

fine interactions between models. PDBs allow a clean, hierarchical approach to
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Figure 4.3: Jigsaw’s interactive interface.

model construction. For example, forecasting discontinuities identified by ex-

pert knowledge are notoriously difficult to incorporate into statistical models.

Planned maintenance at a datacenter temporarily reduces the datacenter’s ca-

pacity by a known amount. By defining CapacityModel as a SQL function

that applies the effects of planned maintenance to the baseline model, a clean

separation exists between the underlying process and the expert knowledge.

Interactive mode. Jigsaw can also be used in an interactive online mode. In this

mode, the user modifies various parameter values (e.g., purchase date and vol-

ume) and quickly sees the outcome (e.g., the risk of overload at a given date). As

parameter values are modified, the system continually updates a progressively

refined estimate of the results table for those parameter values. This quickly

gives a rough estimate of the final answer so that the user, not finding the given

parameter values interesting, can abandon the simulation in the middle and try

a different parameter value. This mode is particularly targeted at users who

66



may not have an extensive statistics background. An analyst-developed sce-

nario can be used by an executive (e.g. as part of a management dashboard

tool) to quickly observe the expected outcome of specific financial decisions for

various parameter values.

The interactive mode, with the output shown in Figure 4.3, is expressed with

the following execution query (parameter definition and SELECT portions of the

query are same as in Figure 4.1):

-- INTERACTIVE MODE --

GRAPH OVER @current_week

EXPECT overload WITH bold red,

EXPECT capacity WITH blue y2,

EXPECT_STDDEV demand WITH orange y2;

The query above provides Jigsaw with a parameter to use as the graph’s X-

Axis, and specifies how each column in the results table is to be graphed in the

GUI (Figure 4.3).

4.1.1 Jigsaw Simulation Process

Figure 4.4 shows how a Jigsaw executes an optimization query in the batch

mode. Each random table in the uncertain database is represented on disk by

its schema, together with a set of black-box functions that are used to generate

realizations of uncertain attribute values. When a query is issued, the Parameter

Enumerator module enumerates all feasible parameter values for the black-box

functions involved in the query. This brute force approach is necessary to guar-
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Figure 4.4: Processing optimization queries in Jigsaw

antee that the optimization converges to the global maximum for an arbitrary

black-box function. Note that Jigsaw’s fingerprinting techniques remain appli-

cable to more advanced techniques that use additional information about the

black-box (e.g., gradient-descent, if the black-box is known to be continuous).

For each parameter value, Jigsaw then invokes its PDB subsystem (shown

inside the dotted box). The PDB subsystem (loosely modeled after MCDB) in-

vokes the black-box functions with the current set of parameter values to gen-

erate a set of n ≥ 1 independent and identically distributed (i.i.d.) sampled

instances, sometimes referred to as possible worlds; for parameter valuation Pa,

sample di is referred to as being generated by instance (Pa, i). Recall that in a

PDB, the output of a query is a probability distribution. Evaluating the query

over each sampled possible world generates a set of i.i.d. samples of the results

table’s distribution. These latter samples are then aggregated by the Estimator to

compute one or more characteristics of interest (i.e., mean, standard deviation,

etc.) for the output distribution. The process is repeated for all different param-
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eter values. Finally, the Selector component selects the parameter value, along

with its output distribution, that satisfies the optimization goal.

4.1.2 Jigsaw Architecture

Jigsaw itself is implemented as a wrapper around a commercial database, as

shown in Figure 4.5. Similar to MCDB [46], the wrapper performs Monte Carlo

style world sampling, evaluates deterministic queries over the samples, and ag-

gregates resulting outputs. The use of tuple-bundles and similar optimizations

in MCDB is both orthogonal and complimentary to Jigsaw’s primary function-

ality.

Jigsaw processes a given scenario by iteratively invoking the DBMS’ query

engine. With each iteration, a component of Jigsaw called the guide selects a set

of parameters to generate samples for and produces an instance table. Each in-
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stance is defined by the parameter combination that it represents and an identi-

fier unique among all instances generated for the same parameter combination.

Each instance represents a single sample of the query’s output, generated for a

single parameter combination. Before evaluation, the query is rewritten so that

parameter values are drawn from the instance table, and the each row in the

query’s output is annotated with a pointer to the instance that it belongs to.

After each processing iteration, results are passed to and stored by Jigsaw’s

storage manager; results are applied to future queries in order to avoid instance

evaluation, produce improved estimates, and direct the optimization process.

Finally, an aggregation step is required. Even if the user has not specified

an aggregate as part of the batch-mode post-processing query, the output of a

query over probabilistic data is itself a distribution over possible results. Meta-

data provided as part of the OPTIMIZE or GRAPH statements is used to direct

this aggregation process.

4.1.3 Jigsaw Challenges

The most expensive aspect of Jigsaw’s simulation process is its interaction with

the underlying PDB. This processing overhead is linear in the size of the pa-

rameter space and dominates all other processing tasks performed by Jigsaw.

The primary goal of Jigsaw is to reduce the number of instances on which the

PDB must be invoked. This is achieved by exploiting several observations about

redundancy in computations.

First, outputs of many enterprise-related stochastic functions are strongly
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correlated under various parameter values (examples in Section 4.2). Identify-

ing such correlations can help to avoid exploring large regions of the parameter

space.

Second, in many event-based processes with Markovian dependencies (i.e.

each step in the process depends on the output of the prior step), the Markovian

dependencies are relevant only in the steps near an event. A suitably crafted

non-Markovian estimator function (examples in Section 4.3) may be used to re-

duce simulation required for the other steps.

Finally, in interactive mode execution, a quick estimation of simulation re-

sults for a selected parameter value can often be given based on results from

previously selected parameters; the estimation can then be gradually refined

with more samples.

To exploit the above observations, Jigsaw needs to address the following

challenges.

• How can parameter values that produce the same (or similar) outputs be

efficiently identified and exploited?

• How can correlated Markovian steps be efficiently identified and exploited?

• Can an accurate estimate be obtained for one parameter value in interac-

tive mode by reusing results computed for other parameter values?

The remainder of this chapter discusses how Jigsaw addresses these challenges.
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4.2 Fingerprints

The key concept Jigsaw uses to reduce the number of Monte Carlo evaluations

is fingerprints. A fingerprint of a stochastic black box function is a concise and

easily-computable data structure that summarizes its output distribution. Thus,

a fingerprint can be used to determine a function’s similarity with another func-

tion, or its own instantiations under different parameter values. A concrete ex-

ample of fingerprints is presented in Section 4.2.1.

The outputs of a deterministic function F evaluated on two different values

Pi and P j, are deemed similar (denoted as F(Pi) ∼M F(P j)) if there exists a closed

form mapping functionM that maps from F(Pi) to F(P j).

F(Pi) ∼M F(P j) ≡ F(Pi) =M(F(P j))

Consider a stochastic function F with output X = F(Pi) and probability distri-

bution f (x = X|Pi). F is similar at Pi and P j if a closed form mapping function

exists to map the domain of f (x|Pi) into that of f (x|P j).

F(Pi) ∼M F(P j) ≡ ∀x : f (x|Pi) = f (M(x)|P j)

More generally,M can be thought of as the central element of a family of map-

ping functions that map not only function values but also metrics, aggregates,

and other derived values. Efficient translation between members of this fam-

ily can substantially reduce the sampling requirements of a computation. For

example, consider a scenario where both expectations E[F(Pi)] and E[F(P j)] are

needed, and F(Pi) ∼M F(P j) can be efficiently proven. AnMexpect derived from

M such that E[F(P j)] = Mexpect(E[F(Pi)]), eliminates the need to explicitly com-

pute E[F(P j)].
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Identifying the mapping function for an arbitrary pair of stochastic black-

box functions (F(Pi), F(P j)) is difficult for two reasons: (1) The functions are

black-boxes – interactions with the function are limited to sample generation.

(2) The functions are stochastic. In order to match two distributions, it is first

necessary to approximate the distributions (i.e., by sampling from both, negat-

ing the benefits of having established similarity).

Rather than attempt to map the result distribution, Jigsaw employs a short-

cut. The abstract fingerprint operation (and corresponding mapping func-

tion M f ) efficiently maps parameterized stochastic black-box functions to con-

cise, comparable data structures such that with high probability:

F(Pi) ∼M F(P j) ≡ fingerprint(F(Pi)) =M f (fingerprint(F(P j)))

Fingerprints can be computed for individual stochastic black-box functions,

such as DemandModel in Figure 4.1, or combinations of such functions. Taken

to one extreme, the entire Monte Carlo simulation shown inside the dashed box

in Figure 4.4 can be treated as the stochastic function F. Thus, F(Pi) ∼M F(P j)

implies that expensive Monte Carlo simulations for parameter value P j can be

avoided by accurately estimating the output of Estimator(P j) asMest(Estimator(Pi)).

4.2.1 Computing Fingerprints

Identifying similarities between the outputs of two functions is hard [58] in gen-

eral. Jigsaw uses a probabilistic approach based on the principle of random

testing [38], a well-known software testing technique. For random testing of

a deterministic function F against a hypothesis function H, both functions are
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evaluated on m random inputs and the results are compared. The function F is

declared satisfying the hypothesis H if the outputs of F and H match for all m

random inputs. Random testing has two features in particular, that make it well

suited to Jigsaw’s needs: (1) Random testing is simple and can be used while

treating the functions as black boxes. (2) Random testing has been shown to

be robust for functions with a small number of conditional branches so that a

small number of random inputs can exercise all code paths. In the motivating

cloud infrastructure management context that almost all stochastic functions

are relatively simple and contain at most one or two conditional branches.2 Al-

gorithm 4.2.1 shows an example of such a function. This function produces

a prediction of weekly usage, which is linearly growing, normally distributed

with a discontinuity at the point where current week and f eature are equal. The

function has only one branching condition.

The same principle determines similarities between the outputs of a stochas-

tic black-box function F under two valuations of the same parameters Pi and

P j. However, unlike random testing where the parameters are random and

the function is deterministic, Jigsaw must deal with stochastic functions and

fixed parameters. To make F deterministic, F is extended with a seed param-

eter σ which is used to seed a pseudorandom number generator which re-

places all sources of randomness within F(Pi, σ). In practice, these modifica-

tions are negligible, as randomness is typically obtained from system API calls

(e.g. rand()).

It is crucial for both invocations of F to use the same source of randomness

to make their comparison meaningful. Consider two stochastic functions that

2The functions are kept simple in practice, modeling only one particular aspect of the system
so that they can be trained and validated even with small, noisy data sets.
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Algorithm 5: DemandModel(current week, f eature)

Require: The current week being simulated, and a f eature release date.

Ensure: The demand for the week being simulated.

1: demand = Normal(

µ : 1 ∗ current week,

σ2 : 0.1 ∗ current week

)

2: if current week > f eature then

3: demand += Normal(

µ : 0.2 ∗ (current week − f eature),

σ2 : 0.2 ∗ (current week − f eature)

)

output 0 and 1 with equal probability. When repeatedly evaluated with the

same sequence of random seeds, they can be quickly declared to be equivalent

with a very high probability. On the other hand, using different seeds, equiva-

lence testing is much more difficult. Consider the example stochastic function

in Algorithm 4.2.1. As a sum of two normal distributions, the function’s output

is normally distributed for all inputs. Suppose the function is invoked twice

as DemandModel(1,3) and DemandModel(2,4). Both invocations take the same

code path, and their outputs will be drawn from linearly correlated distribu-

tions. In addition, Using a pseudorandom number generator seeded with the

same value for each invocation ensures that there is not just a correlation, but

a linear mapping from one fingerprint to the other. In contrast, using different

random seeds would hide the one-to-one similarity in their outputs. Figure 4.6

explains this.
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A Concrete Fingerprint. The fingerprint of a parameterized stochastic function

F(Pi), with respect to a vector of m seed values {σk}, is the vector of size m where

the k’th entry of the vector is the output of F(Pi) with σk as the random seed.

More formally,

fingerprint({σk}, F(Pi)) = {θk = F(Pi, σk)|0 ≤ k < m}

Henceforth, this definition of fingerprints will be used implicitly, together

with an implicit global seed set {σk}, randomly generated as part of Jigsaw’s

initialization process and held constant throughout.

Note that using the same set of random seeds for different parameter values

does not affect the correctness of Jigsaw’s Monte Carlo simulations. Referring

to Figure 4.4, since the seeds used by each Monte Carlo Generator are i.i.d. ran-

dom, inputs to the Estimator(Pi) are i.i.d. samples from query result distribution.

Thus, the output of Estimator(Pi) remains statistically correct. Using same set of

seeds for different parameter values introduces correlated error terms into the
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outputs of different Estimators, but the Selector only compares, and never com-

bines, the Estimator’s outputs.

Mapping Functions. For fingerprints as defined above, a fingerprint mapping

function M f can be defined as a simple mapping function M applied to each

element of the fingerprint (in order to identify its similarity with another fin-

gerprint). For example, consider two fingerprints: θ1 = (0, 1.2, 2.3, 1.3, 1.5) and

θ2 = (0.1, 1.3, 2.4, 1.4, 1.6). The mapping function M(x) = x + 0.1 maps θ1 to θ2.

In general, mapping functions should be: (1) easy to parameterize, (2) easy to

validate, (3) easy to compute, (4) easily applied to simple aggregate properties

(e.g., expectation).

Given two fingerprints, Jigsaw can automatically compute a linear function

(i.e., Mα,β(x) = αx + β) that maps one fingerprint to another, if such a mapping

exists (Algorithm 6). Linear mapping functions fulfill the desired characteristics

precisely: (1) The mapping function can be determined from two distinct values

in a pair of fingerprints. (2) The remaining values in the fingerprints can be

used to validate the mapping. (3) Linear functions are incredibly simple, and

(4) can be easily applied to simple aggregate properties such as expectation and

standard deviation.

In general, the notion of similarity between two signatures is application

dependent. Therefore, Jigsaw allows users to provide their own classes of map-

ping functions.

Using Fingerprints. With fingerprints, Jigsaw executes Monte Carlo simula-

tions for different parameter values as follows. Let F denote the entire Monte

Carlo simulation with a parameter value Pi (i.e., the computation inside the
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dashed box in Figure 4.4). Thus, the fingerprint of F(Pi) is essentially the out-

puts of first m simulation rounds with parameter Pi.

During execution, Jigsaw incrementally maintains a set of basis distributions.

Each basis distribution is a tuple (θi, oi), implying that Jigsaw has already com-

puted the output metrics oi for some F(Pi) with fingerprint θi. For a new param-

eter value P j, Jigsaw first computes fingerprint θ j of F(P j) (as part of the first m

rounds of simulation with parameter P j). It then checks for a basis distribution

with fingerprint θk such that θ j ∼M θk. If such a basis distribution exists, Jigsaw

omits the subsequent rounds of simulation for P j and returnsMest(ok) instead.

Retrieving Mapping Functions. When presented with an unknown distribu-

tion, Jigsaw compares each new fingerprint against all the fingerprints in the

basis distribution, identifying a mapping to one of them if it exists. Algorithm 7

shows the process. Jigsaw first uses a suitable indexing scheme (described next)

to prune the search space of candidate basis fingerprints. For each pairing can-

didate, Jigsaw uses the FindMapping function to discover a possible mapping

between the two fingerprints. An instance of the FindMapping function, the

FindLinearMapping function shown in Algorithm 6 searches for mappings

of the form M(x) = αx + β. If a mapping exists between two fingerprints, Jig-

saw uses the mapping to reuse work done for the existing basis distribution. If

no mappable fingerprint can be found, Jigsaw completes the simulation process

and adds the results (i.e., the fingerprint and computed metric(s)) to the set of

basis distributions.
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Algorithm 6: FindLinearMapping(θ1, θ2)

Require: Two fingerprints θ1 and θ2 of size m

Ensure: A linear functionM(x) = αx + β such thatM(θ1[i]) = θ2[i],∀i, and null if

no such function exists

1: α← (θ2[1] − θ2[2])/(θ1[1] − θ1[2])

2: β← θ2[1] − αθ1[1]

3: match← true

4: for i = 3 to m do

5: if αθ1[i] + β , θ2[i] then

6: match← false

7: return (M(x) = αx + β) if match, null otherwise

4.2.2 Indexing Fingerprints

The existence ofM can be computed quickly for any pair of fingerprints. How-

ever, the expected number of times this test must be performed grows linearly

with the number of basis distributions.

Instead of naively scanning every basis distribution, Jigsaw builds an in-

dex over the basis fingerprints. The goal of indexing is to quickly find a set of

candidate basis fingerprints that are similar to a given fingerprint (i.e., where

a mapping exists). The set of fingerprints returned by the index must contain

all similar fingerprints. In addition, it may contain few fingerprints that are

not similar to the given fingerprint; these false positives are later discarded in

Algorithm 7.

Currently Jigsaw supports the following two indexing strategies that reduce
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Algorithm 7: FindMatch(F, Pa)

Require: A stochastic black box function F, and a point in its parameter space

Pa.

Ensure: The pair (basis,M), where basis is a basis distribution (fingerprint

θ, output metrics o), and M is a mapping function such that θ ∼M

fingerprint(F(Pa))

1: θ ← {F(Pa, σi)|i ∈ [0,m)}

2: candidates← CandidateFingerprint(basis, θ)

3: for all basis ∈ candidates do

4: M← FindMapping(basis, θ)

5: ifM , null then

6: return (basis,M)

7: return {[(θ, Estimator(F(Pa))), (M(x) = x)]}

the cost of matching linear mapped fingerprints to a single hash-table lookup

with high probability.

Normalization. The first indexing strategy is to translate the fingerprints to

a(n arbitrarily chosen) normal form such that that two similar fingerprints have

the same normal form (and hence can be retrieved by a hash lookup). Such

normalization requires a class of mapping function that admits a normal form

translation. For example, when using a linear mapping function, a fingerprint’s

normal form can be produced by taking the first two distinct sample values

and identifying the linear translation that maps them to 0 and 1 (or, any two

predefined constants) respectively. If two fingerprints have a linear mapping,

then all, not just the first two, entries of their normal forms will be identical.
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Sorted SID. Normalization requires that the mapping function admit a normal-

ized representation of a fingerprint. In some cases (e.g., a probabilistic map-

ping), no such normal form can be computed easily. In such cases, each sample

value in the fingerprint is assigned an identifier (e.g., its index position in the

fingerprint), using the same identifier ordering across all fingerprints. Jigsaw

then sorts the sample values in a fingerprint, and takes the resulting sequence

of sample identifiers (or, SIDs) as the hash key in the index. As long as the map-

ping function is monotonically increasing, the resultant ordering of SIDs will

be consistent across all mappable distributions. Even if the mapping function

is only monotonic, a similar effect can be achieved by comparing both the SID

sequence and its inverse.

4.3 Markovian Jumps

Jigsaw allows users to specify inter-model dependencies. Consider two mod-

els where the first model predicts the release date of a particular feature of

the cloud service, and the second model predicts demand, given that release

date. Frequently, such dependencies are cyclical: the feature release date might

be driven by demand. For example, sufficiently high demand might convince

management to allocate additional development resources to the feature.

As a consequence of this sort of cyclical dependency, the models and thus the

simulation must be evaluated as a Markovian process, where a model is evalu-

ated in discrete steps and its output for any given step is dependent on the prior

step’s output. The discrete steps are usually small (e.g., a day in the above ex-

ample) so that outputs of other models affecting the model remain static within
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a step. Every step in the process must be simulated, even if the only output of

interest is for one specific step (e.g., user demand in two months).

In the space of cloud logistics, models with this sort of cyclical dependency

often have an interesting characteristic: the Markovian dependency is present

only over certain steps. In the case of the feature release date, as long as the

user demand remains strictly (or at least with high probability) below or above

the threshold value, the feature release date is unaffected. For these periods,

the demand and feature release date model can be treated as non-Markovian,

despite its cyclical dependency. Concretely, Markovian dependencies in this

sort of model are characterized as (1) infrequent, and (2) often closely correlated

(3) discontinuities in (4) an otherwise non-Markovian process. Thus, given the

state of the system at the beginning of one of these non-Markovian regions, it

is possible to create a non-Markovian estimator function for the remainder of the

region.

These infrequent Markovian dependencies occur often in event-based sim-

ulations. Forcing programmers to identify the ranges within which these de-

pendencies occur is undesirable. Instead, Jigsaw can automatically identify

non-Markovian regions in these processes automatically by using fingerprints.

Once a non-Markovian region is identified, the estimator function reproduces

the state of the Markov process at the end of the region – When evaluating the

Markov process, Jigsaw effectively skips over non-Markovian regions.
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4.3.1 Fingerprinting Markov Processes

Consider a model F that needs to be evaluated in a sequence (or a chain) of

discrete steps. Assuming that Markovian dependencies are infrequent, out-

puts of F in many successive steps will not be affected by previous steps. To

jump over such non-Markovian steps and avoid expensive computation, Jigsaw

uses a non-Markovian estimator function E (discussed further in Section 4.3.2),

which predicts the outputs of F at different steps of the chain without consid-

ering the outputs (of F or other models) at previous steps. By comparing the

fingerprints of E and F, Jigsaw can efficiently identify the regions over which E

is a valid approximation.

Recall that each fingerprint of F is a set of its random outputs. Thus, the fin-

gerprint for any step in a Markov process can be used to generate the fingerprint

for the next step. Instead of evaluating the full set of n Monte Carlo simulation

rounds of the Markov chain, Jigsaw evaluate only a fingerprint-sized (m < n) set

and compares it to the fingerprint of an estimator function. If a mapping exists

between the two, the estimator remains viable.

To compute the value of a Markovian black-box function at a particular step

in the chain, Jigsaw does an exponential-skip-length search of the chain until it

finds a point where the estimator ceases to be viable (i.e., it fails to provide a

mappable fingerprint). From that point, it does a binary search to find the last

point in the chain where the estimator is viable, uses the estimator to rebuild the

state of the Markov process, generates the next step, and repeats the process.

This process is made explicit in Algorithm 8.

Consider the previous example of a cyclically dependent user demand and
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Algorithm 8: MarkovJump(Fmkv, initial, target)

Require: A function, Fmkv(prev state) = new state describing a Markov process

and its estimator, respectively. An initial state for the functions. A target

number of steps to return after. A statically defined fingerprint size m.

Ensure: The state of each instance of the Markov process after target steps.

1: state← {initial, initial, . . .}; θ1 ← state[0 . . .m]

2: s← 1; Fest ← Fmkv(θ1)

3: loop

4: for s/2 < i ≤ s do

5: θi ← Fmkv(θi−1)

6: if (s > target) ∧ (Fest ∼M θtarget) then

7: returnM(Fest(state))

8: if Fest(s, state[0 . . .m]) ∼M θs then

9: s← s ∗ 2

10: else

11: (valid,M)← ArgMaxvalid({(valid,M)|valid ∈ [ s
2 , s] ∧ Fest ∼M θvalid})

12: if valid ≤ 1 then state← Fmkv(state); valid ← 1

13: else state←M(Fest(state))

14: target ← target − valid; s← 1;

15: θ1 ← state[0 . . .m]; Fest ← Fmkv(θ1)

feature release date models. An example execution of the Markov Jump algo-

rithm is illustrated in Figure 4.7. Jigsaw begins with an estimator for the Markov

process that assumes the feature has not yet been released (the initial system

state). (4.7.a) It iterates over each step of the Markov process, computing only

the fingerprint and not the full set of instances being generated. At each step,
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Figure 4.7: An example execution of the Markov Jump algorithm.

the fingerprint of the Markov function is compared to that of the estimator. The

number of steps between comparisons grows exponentially until (4.7.b) the al-

gorithm finds a mismatch. (4.7.c) At this point, the algorithm backtracks to the

last matching value with a binary search and uses the estimator to regenerate

the full state of the Markov process. (4.7.d) The Markov process is used to step

the full set of instances until the estimator function once again begins to produce

matching fingerprints.
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4.3.2 Generating Estimator Functions

The user does not need to explicitly provide an estimator function. Simple

cyclical dependencies between models make it possible to extract an estima-

tor function by fixing one model’s output to its value at a given step. Indeed,

any Markov function that models an infrequently discontinuous process can be

made into a viable estimator by reusing state in a similar way.

A function Fmkv defining a Markov process with per-step state Pi generates

the next step’s state: Fmkv(Pi,Q) = Pi+1. We can define a rudimentary estimator

function Fest,i by fixing Fmkv’s input state at one point in time.

Fest,i(Q) = Fmkv(Pi,Q)

Even this rudimentary estimator function can be quite powerful when com-

bined with fingerprints – any uniform changes in state are absorbed by the

mapping function.

For example, consider the Markov jump query illustrated in Figure 4.8. The

special CHAIN parameter type is used to chain the output of one stage of the

Markov computation to the following one – in this case chaining the output of

ReleaseWeekModel to the subsequent DemandModel invocation.

As before, ReleaseWeekModel has a single discontinuity at the point where

DemandModel’s output exceeds a certain threshold. Each step in the Markov

chain corresponds to predictions for one specific week. The interesting output

of this model is demand. An estimator from this value will be constructed by fix-

ing release week (the chain parameter) at its initial value. Until the Markov

process enters the region of the chain (and after it exits) where the discontinuity

is likely to occur, the demand model can be effectively approximated by this
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-- DEFINITION --
DECLARE PARAMETER @current_week

AS RANGE 0 TO 52 STEP BY 1;
DECLARE PARAMETER @release_week

AS CHAIN release_week
FROM @current_week : @current_week - 1
INITIAL VALUE 52;

SELECT ReleaseWeekModel(demand) AS release_week, demand
FROM (SELECT DemandModel(@current_week, @release_week)

AS demand)
INTO results

-- BATCH MODE --
...

Figure 4.8: A Jigsaw query with a Markovian dependency

non-Markovian estimator.

Recall that normal parameters in Jigsaw are specified in terms of sets or se-

quences. Each chain parameter is tightly coupled to a non-Markovian param-

eter, which defines the step identifiers for the process. The FROM field of chain

parameter definition declares this coupling and states how step identifiers are

related. The remaining two fields: INITIAL VALUE and CHAIN specify an ini-

tial value and a query output identifier, respectively. When one step of the query

is evaluated, the parameter takes on the corresponding value.

4.4 Interactive What-ifs

Jigsaw’s heuristic approach to sampling is ideally suited to the task of online

what-if exploration. Moreover, the sort of parameter exploration problems that

Jigsaw addresses also benefit from having a human in the loop—imprecise goal

conditions that are difficult to specify programmatically can often be reached
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easily by a human operator.

A human operator indicates which regions of the parameter space are inter-

esting, and Jigsaw provides progressively more accurate results for that region.

Metadata supplementing the simulation query allows Jigsaw to interpret the

query results and to produce and progressively refine a graphical representa-

tion of the query output for a given set of parameter values.

Unlike its offline counterpart, the goal of online Jigsaw is to rapidly produce

accurate metrics for a small set of points in the parameter space. Fingerprint-

ing is used primarily to improve the accuracy of Jigsaw’s initial guesses; a very

small and quickly generated (e.g., of size 10) fingerprint allows Jigsaw to iden-

tify a matching basis distribution and reuse metrics precomputed for it.

Jigsaw operates in an event loop (shown in Algorithm 9), using a Guide

heuristic to select between the following three categories of processing tasks:

Refinement. Once the initial guess is generated, Jigsaw begins generating fur-

ther samples for points (i.e., parameter values) of interest. In addition to im-

proving the accuracy of the displayed results, the new samples are used to im-

prove the accuracy of the basis distribution’s precomputed metrics.

Validation. Latency also places stringent requirements on the size of finger-

prints. Larger fingerprints produce more accurate estimates, but take longer

to produce. However, in an online setting, Jigsaw constructs the fingerprint

progressively. In addition to generating additional samples for the basis distri-

bution, Jigsaw also reproduces samples for the points of interest that are already

present in the basis distribution. The duplicate samples effectively extend the

point’s fingerprint by validating the existing mapping; if the new points do not
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Algorithm 9: S impli f iedEventLoop(p, S tate)

Require: One point of interest p. A lookup table S tate[] containing, for all

points: a mapping function M, the point’s fingerprint θ, and the point’s

basis distribution.

1: loop

2: (θ, basis,M)← S tate[p]; next ← p; task ← TaskHeuristic(p)

3: if task = refinement then

4: candidate ids← {id|id < basis}

5: else if task = validation then

6: candidate ids← {id|id ∈ basis ∧ id < θ}

7: else if task = exploration then

8: next ← ExploreHeuristic(p) {Find a nearby point}

9: if S tate[next].θ , ∅ then candidate ids← {id|id < S tate[next].basis}

10: else candidate ids← [0, 10) end if

11: sample ids← PickAtRandom(10, candidate ids)

12: values← EvaluateBlackBox(next, sample ids)

13: S tate[next].θ ← S tate[next].θ ∪ values

14: if S tate[next].basis ∼M S tate[next].θ then

15: (S tate[next].basis, S tate[next].M)← FindMatch(S tate[next].θ)

16: else

17: S tate[next].basis← S tate[next].basis ∪M−1(values)

match the values mapped from the basis distribution, Jigsaw finds or creates a

new basis distribution.

Exploration. In addition to the above two processing tasks, Jigsaw heuristically
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Capacity(current date, purchase date 1, purchase date 2). The Capacity black box simulates a
series of purchases. Each purchase increases the capacity of the server cluster after an exponen-
tially distributed delay.
Demand(current date, feature release). The Demand black box simulates a simple linearly
growing gaussian demand model. As of the feature release week, the growth rate is changed.
Overload(current date, purchase date 1, purchase date 2). A black box synthesized from Ca-
pacity and Demand. Demand’s feature release is ignored, and this black box returns 1 if De-
mand is greater than Capacity, and 0 otherwise.
UserSelection(current date). The UserSim black box simulates the per-user requirements of
each of a set of users.
SynthBasis(parameter point). A synthetic black box based on Demand, but with a determinis-
tic number of basis distributions.
MarkovStep(current date, before or after). A simple Markovian process simulating the behav-
ior of Demand with a Markovian dependency introduced between feature release and the prior
date’s demand.

MarkovBranch(prior state). A synthetic black box where at each step, a state counter is incre-
mented by one with a predefined probability. The states diverge at some specified rate.

Figure 4.9: Black boxes used to evaluate Jigsaw

selects points in the parameter space that are likely to be of interest to the user

in the near future (e.g., adjacent points in a discrete parameter space). For each

point explored, Jigsaw either generates a fingerprint (if none exists), or extends

the point’s basis distribution with a small number of additional samples.

For clarity, a distinction has been made between samples produced for fin-

gerprints and those produced for basis distributions. However, in most cases

there is no difference between either process. For any invertible mapping func-

tion, samples are generated directly for the point of interest, and mapped back

to the basis distribution by the inverse of the mapping functionM−1. For exam-

ple, for linear mappingsM(x) = αx + β, the inverseM−1(x) =
x−β
α

.
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4.5 Evaluation

Implementations. The original prototype of Jigsaw is implemented as a C#

PDB layer built on top of Microsoft SQL Server. The black box functions are

implemented as stored procedure written in C#. The C# layer interacts with the

SQL Server query execution engine by simply invoking it on subqueries and

post-processing the results outside DBMS.

However, this implementation is not well-suited for performance evaluation

of Jigsaw, as timing results are polluted by noise from interprocess communi-

cation and SQL interpretation and evaluation overheads. In order to achieve a

more representative comparison, and to streamline the testing process, a second

prototype of Jigsaw query evaluation engine has been constructed entirely in

Ruby (without any commercial DBMS). Queries are implemented as black box

functions in Ruby, and invoked by a driver process. This simple implementa-

tion is representative of how Jigsaw’s functionality can be implemented within

a probabilistic database’s query evaluation engine. These two prototypes are

compared in Section 4.5.1.

Black Box Functions. Experiments use a variety of black boxes described in

Figure 4.9. Though several synthetic black-boxes are used to identify specific

performance characteristics, the Capacity, Demand, Overload, User Selection

and Markov Step black boxes are permutations of actual Jigsaw use cases in real

cloud infrastructure management scenarios. Specific numbers (i.e., the mean

and standard deviation of a normal distribution) have been replaced by ad-hoc

values, but the structure of these models remains intact. In all experiments, the

entire parameter space for a particular black box is explored.
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Experimental Setup. Experiments are performed on a 2.4 GHz Core2 Duo with

4 GB of RAM. Except where stated, experiments assume a need for exactly 1000

sample instances per point in the parameter space, and use a fingerprint size of

10. Results shown are the average of 30 trials.

4.5.1 Comparison of Two Prototypes

Figure 4.10 shows a brief comparison of the relative performance of Jigsaw’s

C# + MS SQL implementation and the lightweight Ruby engine. As shown, for

simple data-independent queries, the Ruby implementation is able to achieve

much better performance, as the dominant cost is that of invoking the black

box, rather than the overheads of repeatedly invoking the query processor. The

one case where the Ruby implementation is not representative of the offline

engine is black boxes that are heavily data dependent, as in the UserSelection

simulation. As might be expected, a database engine’s ability to manage large

datasets is superior to that of Ruby.

The rest of the experiments in this section use less-data dependent black

boxes, and hence the Ruby implementation is used. However, relative perfor-

mance gains demonstrated by the Ruby prototype are roughly similar to those

in the C# + MS SQL implementation.

4.5.2 Baseline Performance

The standalone performance gain of fingerprinting are compared against a naive-

generate everything approach in Figure 4.5.1. The figure shows timing results
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Model Online Speed Offline Speed
Demand 0.1964 s/pc 0.00096 s/pc
Capacity 0.84525 s/pc 0.0028 s/pc
Overload 5.4625 s/pc 0.092825 s/pc
UserSelect 34.4 s/pc 252.454 s/pc

Figure 4.10: User Interface Wrapper vs Core Engine Simulator Timing
comparison. Values are in time per parameter combination.

Figure 4.11: Jigsaw vs fully exploring the parameter space.

for several queries, each evaluated both with and without fingerprinting. The

extremely simplistic Demand model requires only one basis distribution for its

entire∼5000 point parameter space, and can be evaluated almost instantaneously.

Even relatively complex event-based models like Capacity (which has a parame-

ter space of ∼8000 points) and MarkovStep (evaluated over ∼2500 steps) require

only a few basis distributions.
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Figure 4.12: Computation time versus the size of structures in the Capacity
model

Overload is an interesting case: despite being defined as a query over two

two black boxes for which Jigsaw can provide a substantial performance boost

(compare Overload with ∼8000 points and Demand and Capacity’s timing),

the joint query is only computed in half the time. The reason for this is that

the query produces a boolean result: the output of a comparison between two

values, and information about the two original values is lost. Effectively, Jig-

saw is unable to reuse basis values by re-mapping them. This strongly sug-

gests that Jigsaw’s techniques can be further improved by incorporating them

into a database engine with a symbolic execution strategy such as PIP. In such

a system, database operations between random variables (i.e., VG-Function-

generated values) mapped from the same basis distribution are resolved sym-

bolically. For example, consider two random variables X,Y such that X =MX( f (x)) =
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Figure 4.13: Indexing in a static parameter space. Note the range on the y-
axis – from 0.8 to 1.2 times the relative performance of naive
array-scan.

2 · f (x) + 2 andMY( f (x)) = 3 · f (x) + 3. Jigsaw can symbolically produce X + Y =

(MX +MY)( f (x)) = 5 · f (x) + 5. Similarly, given a histogram of f (x), Jigsaw can

efficiently compute the probability that MX( f (x)) > MY( f (x)).

The Capacity model also deserves more discussion. As discussed in Sec-

tion 4.1, the model produces a line with several non-localized discontinuities or

structures – one for each purchase. However, each of the discontinuities is sur-

rounded by a structure spanning a range of dates: each purchase is followed by

a short period during which the simulated hardware has not come online in a(n

exponentially shrinking) fraction of the sample instances. Figure 4.5.1 relates

the number of basis distributions to the size of each structure (the number of

“weeks” that it spans). Note that the relationship between structure size grows
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Figure 4.14: Indexing, growing the parameter space with basis size.

and the number of basis distributions is sub-linear. Jigsaw is able to recognize

individual points in each structure (i.e., four weeks after one purchase, and the

week of the second purchase), and reuse the corresponding basis distribution.

Accuracy. In theory, the principle of using fingerprints can introduce two sources

of errors in a general simulation framework. The first source is the possibility of

selecting an incorrect fingerprint due to insufficient fingerprint length. Signif-

icant error of this sort was not observed in any of the experiments, suggesting

that a fingerprint length of 10 is sufficient for the models considered.

In online mode, Jigsaw continually validates mappings between points in its

parameter space by randomly generating samples from a mapped distribution

that have already been obtained from the mapping – the size of the fingerprint
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Figure 4.15: Performance for a Markov process.

grows over time in online mode. A similar, random check can be instantiated in

Jigsaw’s offline mode, dynamically growing the fingerprint size for all distribu-

tions if any mapping errors are detected.

The second source of possible error is due to correlation of results under dif-

ferent parameter values (since the same random seed is used across parameter

values). However, Jigsaw never combines such correlated results of different

parameters—it only compares them. Hence we do not see such errors in our

results. In other words, outputs of Jigsaw are equivalent to full simulation for

each possible parameter value.
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4.5.3 Indexing

Next, the behavior of the two indexing strategies described in Section 4.2: Nor-

malization, and Sorted SID indexing are considered. In this test, black boxes were

synthesized to generate a specific number of basis distributions. The expec-

tation of each black-box was computed for 1000 different parameter combina-

tions. Figure 4.13 shows the performance of each indexing strategy relative to

performing a naive Array scan for each lookup. The overall results are not sur-

prising: The costs of an array scan begin to dominate the static costs of indexing

as the basis grows past 50 elements.

Both indexing schemes perform substantially better than naive array scan,

with Normalization trailing behind Sorted SID slightly. After a basis size of

about 200 (where full sample generation is required for 20% of the parameter

space) is reached, the cost of sample generation begins to dominate the cost of

basis matching. Indexing continues to asymptotically approach a 10% reduction

in computation time. This is best illustrated in Figure 4.14. Here, the size of the

parameter space (and consequently the total amount of computation) is scaled

relative to the basis size. The basis size is fixed at 10% of the parameter space.

As expected, naive Array scan scales linearly with basis size, while the indexing

strategies scale sub-linearly.

4.5.4 Markovian Jumps

Next, Jigsaw’s performance on Markov processes is analyzed. Markov pro-

cesses consisting of periodic, but infrequent discontinuities are ideal for Jigsaw;

this sort of black box behavior generates frequently overlapping states and ad-
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mits an easy estimator, which simply assumes that the state stays the same. Such

a process has already been illustrated in Figure 4.5.1.

The benefits and limitations of Jigsaw on more complex, diverging mod-

els are also of interest. Figure 4.15 shows Jigsaw’s performance on a black-box

Markovian process synthetically generated to diverge at a predefined rate. In

this figure, the term branching refers to the probability of divergence at each

timestep. The black box was invoked for 128 steps, and Jigsaw attempted to

accelerate evaluation by skipping ahead in the process.

This shows Jigsaw’s applicability to Markovian processes characterized by

periodic discontinuities. Even in its default configuration, Jigsaw is able to im-

prove the efficiency of Markovian processes where as many as one in twenty

steps involves a discontinuity. Indexing strategies designed specifically for Marko-

vian processes (e.g., discard all basis values except the last), can improve this

even further.
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CHAPTER 5

DBTOASTER

This chapter describes DBToaster, a Dynamic Database Management System that supports com-

plex high-rate data monitoring tasks by taking a novel approach to view maintenance referred

to as agile views. Generated as the result of a recursive query compilation process, agile views

can aggressively maintain query state as incrementally as possible – ensuring that they are able

to process complex, stateful queries over extremely rapidly changing data. This sort of auto-

mated construction of efficient monitoring systems finds applications across a broad swath of

fields from network monitoring, to scientific experimentation, to the stock market.

DBToaster is being developed in collaboration with Yanif Ahmad (now at Johns Hopkins)

and my advisor Christoph Koch. Former and more recent collaborators on the DBToaster project

include Anton Mozorov and Aleksandar Vitorovich. Portions of the content presented were

originally presented at CIDR 2011 [49]

The DBToaster project was supported by the US National Science Foundation under grant

IIS-0911036. Any opinions, findings, conclusions or recommendations expressed are those of

the authors and do not necessarily reflect the views of NSF.

5.1 The Architecture of a DDMS

DBToaster is an instantiation of a Dynamic Data Management System (DDMS).

DDMS are a new class of database systems built to support complex, albeit

rarely changing query workloads constructed over frequently changing datasets.

Concretely, the design of a DDMS is based around four criteria:

1. The stored dataset is large and changes frequently.

2. The maintenance of materialized views dominates ad-hoc querying.
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Figure 5.1: Dynamic Data Management System (DDMS) and Application
Interface Architecture

3. Access to the data is primarily by monitoring the views and performing

simple computations on top of them.

Some updates cause events, observable in the views, that trigger subse-

quent computations, but it is rare that the data store is accessed asyn-

chronously by humans or applications.

4. Updates happen primarily through an update stream. Computations trig-

gered by view events usually do not cause updates: there is usually no

feedback loop.

A DDMS is a lightweight system that provides large dynamic data structures to

support declarative views of data. A DDMS is agile, keeping internally main-

tained views fresh in the face of dynamic data. Client applications primarily

interact with a DDMS by registering callbacks for view changes, rather than

by accessing views directly. A DDMS does not necessarily provide additional

DBMS functionality such as persistency, transactions, or recoverability.
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The architecture of a DDMS is illustrated in Figure 5.1. The core component

of a DDMS is its runtime engine. Unlike a traditional database system where the

same engine manages all database instances, each individual DDMS execution

runtime is constructed around a specific set of queries provided by the client

program (e.g., via SQL code embedded inline in the program), each defining an

agile view.

5.1.1 Application Interfaces

The data that is processed by a DDMS arrives at the system in the form of an

update stream of tuple insertions, deletions and modifications. The stream need

not be ordered in any shape or form, and deletions are assumed to apply to tu-

ples that have already been seen at some arbitrary prior point on the stream.

Updates are fully processed on-the-fly, and their effects on agile views are real-

ized in atomic fashion, prior to working on any subsequent update. Depending

on the type of results requested by queries, any results arising from updates will

be directly forwarded to application code as agile views are maintained.

DBToaster provides a wide variety of client interfaces to issue queries and

obtain results from the DDMS, to reflect the diverse needs of applications built

on top of it. Today’s stream processors tend to be black-box systems that run

completely decoupled from the application. Client libraries interact with stream

processors through remote procedure call abstractions, issuing queries and new

data through function calls, and either polling or being notified whenever re-

sults appear on a queue that is associated with a TCP socket connected to the

stream processor.
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In DBToaster, the set of agile views requested by clients, the visible schema,

forms the primary read interface between client programs and the DDMS run-

time. Clients can submit queries for which the DDMS materializes an agile view

through three methods:

1. An embedded language, whose syntax and data model are natural fits to

the host language in which the client application is written. Examples in-

clude embedded SQL, and collection comprehension oriented approaches

such as LINQ, Links, and Ferry [24, 35, 65]. One interesting challenge with

the embedded language approach is that of enabling asynchronous event-

driven programming. Whereas language embeddings are natural for ad-

hoc querying, we have yet to see these approaches for stream processing.

This is the main mode of specifying queries.

2. A continuous query client API, as done with existing stream client li-

braries, which sends a query string to the DDMS server for parsing, com-

pilation, and agile view construction. The query string may be specified

in a standard streaming language similar to StreamSQL or CCL [45]. The

client may specify several ways to receive results, as seen below.

3. An ad-hoc query client API, which issues a one-time query to the DDMS,

and returns the agile view as a data-structure to be used by the remainder

of the client program. This API may be used in both synchronous and

asynchronous modes, as indicated by the type of result requested. The

query is specified in standard SQL.

Given these modes of issuing queries to the DDMS, the DBToaster client

interface supports four methods of receiving results:
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1. Callbacks, which can be specified as handlers as part of the continuous

query API. Callbacks receive a stream of query results, and are the sim-

plest form of result handlers that run to completion on query result events.

2. A DDMS event loop, which multiplexes result streams for multiple queries.

Applications may register callbacks to be executed on any result observed

on the event loop, allowing complex application behavior through dy-

namic registration, observation and processing of results on the event loop.

3. Dynamic data-structures, which are read-only from the application per-

spective. The data-structure appears as a native collection type in the host

language, facilitating natural access for the remainder of the program. Ad-

hoc queries use this method for results by default. Continuous queries

may also use this method in which case the data-structure acts as a proxy

with accessors that pull in any updates from the DDMS when invoked.

4. Promises and futures [63], which provide a push-based proxy data-structure

for the result. A future is an object whose value is not initially known and

is provided at a later time. A program using a query returning a future can

use the future as a native datatype, in essence constructing a client-side

dataflow to be executed whenever the future’s value is bound. In our case,

this occurs whenever query results arrive from the DDMS. Language em-

bedded stream processing can be supported by futures, or program trans-

formations to construct client side dataflow, such as continuation passing

style as found in the programming languages literature [83].
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5.1.2 DDMS Internals

The internals of the runtime engine itself are best viewed through the lens of

a state machine. Compared to similar abstractions for complex event proces-

sors [5, 16], the state is substantially larger. Conceptually, the state represents an

entire relational database and transitions represent changes in the base relations:

events in the update stream.

Compiling transitions. Each transition causes maintenance work for agile views,

and just as with incremental view maintenance this work can be expressed as

queries. Maintenance can be aided by dynamic data structures, that is, addi-

tional agile views making up an auxiliary schema. A DDMS is a long-running

system, operating on a finite number of update streams.

This combination of characteristics naturally suggests compiling and special-

izing the runtime for each transition and associated maintenance performed

by a DDMS. The transition compiler generates lightweight transition programs

that can be invoked by the runtime engine with minimal overhead on the arrival

of events. The compiler is discussed in further detail in Section 5.2.

Storage management and ad-hoc query processing. Given the instantiation of

an auxiliary schema and agile views, a DDMS must intelligently manage mem-

ory utilization, and the memory-disk boundary as needed. The storage man-

ager of a DDMS is responsible for the efficient representation of both the agile

views and any index structures required on these views. Section 5.4 discusses

the issue of indexing, as well as how views are laid out onto disk. Supporting

ad-hoc query processing turns out to be relatively straightforward given that

the core of a DDMS continuously maintains agile views. Ad-hoc queries can be
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rewritten to use agile views in a similar fashion to the materialized view usage

problem in standard query optimization. A key challenge here is how to en-

sure consistency, such that ad-hoc queries do not use inconsistent agile views

as updates stream in and the DDMS performs maintenance. On the other hand,

ad-hoc queries should not block the DDMS’ maintenance process and incur re-

sult delivery latency for continuous queries.

One option here is to maintain a list of undo actions for each ad-hoc query

with respect to agile view maintenance. This design is motivated by the fact

that continuous queries are the dominant mode of usage, and ad-hoc queries

are expected to occur infrequently, thus the concurrency control burden falls on

the executor of ad-hoc queries.

Runtime adaptivity. Significant improvements in just-in-time (JIT) compila-

tion techniques mean that transition programs need not be rigid throughout

the system’s lifetime. A DDMS includes a compiler and optimizer working in

harmony, leveraging update stream statistics to guide the decisions to be made

across the database schema, state and storage.

For example, the compiler may choose to compute one or more views on the

fly, rather than maintaining them in order to keep expected space usage within

predefined bounds. The optimizer’s decisions are made in terms of the space

being used, the cost of applying transitions on updates, as well as information

from a storage manager that aids in physical aspects of handling large states, in-

cluding implementing a variety of layouts and indexes to facilitate processing.
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5.2 Realizing Agile Views

Agile views are database views that are maintained as incrementally as possible.

Despite more than three decades of research into incremental view maintenance

(IVM) techniques [34, 76, 93, 94], agile views have not been realized – one of

the key challenges in handling large dynamic datasets is identifying exploiting

further opportunities for incremental computation during maintenance.

Conceptually, current IVM techniques use delta queries for maintenance.

However, observe that the delta query is itself a relational query that is amenable

to incremental computation. The delta queries can be materialized as auxil-

iary views, and so forth, recursively maintaining both the visible and auxiliary

views.

Furthermore, repeated delta transformations successively simplify queries.

5.2.1 View Maintenance in DBToaster

Given a query q defining a view, IVM yields a pair 〈m,Q′〉, where m is the ma-

terialization of q, and Q′ is a set of delta queries responsible for maintaining m

(one for each relation used in q that may be updated). DBToaster makes the fol-

lowing insight regarding IVM: current IVM algorithms evaluate a delta query

entirely from scratch on every update to any relation in q, using standard query

processing techniques. DBToaster exploits that a delta query q′ from set Q′ can

be incrementally computed using the same principles as for the view query q,

rather than evaluated in full.
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To convey the essence of the concept, IVM takes q, produces 〈m,Q′〉 and per-

forms m += q′(u) at runtime, where u is an update to a relation R and q′ is the

delta query for updates to R in Q′. This is one step of delta (query) compilation.

This is the extent of query transformations applied by IVM for incremental pro-

cessing of updates.

DBToaster applies this concept recursively, transforming queries to higher-

level deltas. DBToaster starts with q, produces 〈m,Q′〉 and then recurs, taking

each q′ to produce 〈m′,Q′′〉 and repeating. Here, each m′ is maintained as m′ += q′′(v),

where v is also an update, (possibly) different from u above, and q′′ is the delta

query from Q′′ for the relation being updated. q′ and q′′ are referred to as first-

and second-level delta queries respectively. DBToaster again recurs for each q′′,

materializing it as m′′, and maintaining it using third-level queries Q′′′, and so

forth.

While delta queries are relational queries, they have certain characteristics

that facilitate recursive delta compilation. First, DBToaster delta queries are pa-

rameterized SQL queries. That is, the query is defined with certain variables in

the query bound outside of the query itself. If a parameter can also be bound

inside the query, it effectively becomes a group-by term – DBToaster materi-

alizes and stores query results for the entire domain of the parameter. If the

parameter is entirely unbound within the query, then the view acts as a sort of

self-maintaining cache – newly encountered parameter values trigger a partial

runtime evaluation of the query, and DBToaster incrementally maintains these

results as if they were group by terms. This concept is discussed further below.

Thus, in particular, higher-level deltas are just (parameterized) SQL queries,

but are not higher-order in the sense of functional programming, as some queries
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in complex-value query languages are [17].

Example 5.2.1 To illustrate parameters, consider one step of delta compilation on the

following query q over a schema R(a int, b int), S(b int, c int):

q = SELECT sum(a*c) FROM R NATURAL JOIN S

For an update u that is an insertion of tuple 〈@a,@b〉 into relation R, the delta for q is:

qR = ∆u(q) = SELECT sum(@a*c) FROM values(@a,@b), S

WHERE S.b = @b

= @a*(SELECT sum(c) FROM S WHERE S.b=@b)

The values (...) clause is PostgreSQL syntax for a singleton relation defined in

the query. Transforming a query into its delta form for an update u on R introduces

parameters in place of R’s attributes. We also apply a rewrite exploiting distributivity

of addition and multiplication to factor out parameter @a from the query.

The second property, key to making recursive delta processing feasible is

that, for a large class of queries, delta queries are structurally strictly simpler

than the queries that the delta queries are taken off.

This can be made precise as follows. Consider SQL queries that are sum-

aggregates over positive relational algebra. Consider positive relational algebra

queries as unions of select-project-join (SPJ) queries. The degree of an SPJ query

is the number of relations joined together in it. The degree of a positive rela-

tional algebra query is the maximum of the degrees of its member SPJ queries

and the degree of an aggregate query is the degree of its positive relational al-

gebra component.
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The rationale for such a formalization – based on viewing queries as poly-

nomials over relation variables – is discussed in detail in [55]. It is proven in

that paper that the delta query of a query of degree k is of degree max(k − 1, 0).

A delta query of degree 0 only depends on the update but not on the database

relations. So DBToaster guarantees that a k-th level delta query q(k) has lower

degree than a (k-1)-th level query q(k−1). Recursive compilation terminates when

all conjuncts have degree zero.

Example 5.2.2 Consider the delta query qR above, which is of degree 1 while q is of

degree 2. Query qR is simpler than q since it does not contain the relation R. This

point is further illustrated by looking at a recursive compilation step on qR. The second

compilation step materializes qR as:

mR = SELECT sum(c) FROM S WHERE S.b=@b

omitting the parameter @a since it is independent of the above view definition query.

DBToaster can incrementally maintain mR with the following delta query on an update

v that is an insertion of tuple 〈@c,@d〉 into relation S :

qRS = ∆v(qR) = SELECT @c FROM values(@c,@d)

The delta query qRS above has degree zero since its conjuncts contain no relations, indeed

the query only consists of parameters. Thus recursive delta compilation terminates after

two rounds on query q.

5.2.2 Agile Views

DBToaster materializes higher-level deltas as agile views for high-frequency up-

date applications with continuous group-by aggregate query workloads. Agile
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Input (parent query) Update Output: auxiliary map, delta query
q = SELECT l.ordkey, o.sprior, +Customer m[][ordkey, sprior] qc = SELECT l.ordkey, o.sprior,

sum(l.extprice) FROM (ck,nm,nk,bal) sum(l.extprice)

Customer c, Orders o, Lineitem l FROM Orders o, Lineitem l

WHERE c.custkey = o.custkey WHERE @ck = o.custkey

AND l.ordkey = o.ordkey AND l.ordkey = o.ordkey

GROUP BY l.ordkey, o.sprior; GROUP BY l.ordkey, o.sprior;

qc: Recursive call, +Lineitem mc[][custkey, ordkey, sprior] qcl = SELECT @ok, o.sprior,@ep*sum(1)

see previous output (ok,ep) FROM Orders o WHERE

@ck = o.custkey AND @ok = o.ordkey

qcl: Recursive call, +Order mcl[][custkey, ordkey, sprior] qclo = SELECT @sp, count()

see previous output (ck2,ok2,sp) WHERE @ck = @ck2 AND @ok = @ok2;

Figure 5.2: Recursive query compilation in DBToaster. For query q, we
produce a sequence of materializations and delta queries for
maintenance: 〈m, q′〉 , 〈m′, q′′〉 , 〈m′′, q′′′〉. This is a partial com-
pilation trace, our algorithm considers all permutations of up-
dates.

views are represented as main memory (associative) map data structures with

two sets of keys (that is a doubly-indexed map m[~x][~y]), where the keys can be

explained in terms of the delta query defining the map.

Recall that delta queries are parameterized SQL queries. The first set of keys

(the input keys) correspond to the parameters, and the second set (the output

keys) to the select-list of the defining query. In the event that a parameter ap-

pears in an equality predicate with a regular attribute, we omit it from the input

keys because we can unify the parameter. Other interesting manipulations of

parameterized queries are discussed in Section 5.4.

Example 5.2.3 Figure 5.2 shows the compilation of a query q:

SELECT l.ordkey, o.sprior, sum(l.extprice)

FROM Customer c, Orders o, Lineitem l

WHERE c.custkey = o.custkey and l.ordkey = o.ordkey

GROUP BY l.ordkey, o.sprior

inspired by TPC-H Query 3, with a simplified schema:
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Customer(custkey,name,nationkey,acctbal)

Lineitem(ordkey,extprice)

Order(custkey,ordkey,sprior)

The first step of delta compilation on q produces a map m. The aggregate for each

group 〈ordkey, sprior〉 can be accessed as m[][ordkey, sprior]. DBToaster can answer

query q by iterating over all entries (groups) in map m, and yielding the associated

aggregate value. The first step also computes a delta query qc by applying standard delta

transformations as defined in existing IVM literature [34, 76, 93, 94]. In summary,

these approaches substitute a base relation in a query with the contents of an update,

and rewrite the query. For example, on an insertion to the Customer relation, this

relation is substituted with an update tuple 〈@ck,@nm,@nk,@bal〉:

SELECT l.ordkey, o.sprior, sum(l.extprice)

FROM values (@ck,@nm,@nk,@bal)

AS c(custkey,name,nationkey,acctbal),

Orders o, Lineitem l

WHERE c.custkey = o.custkey and l.ordkey = o.ordkey

GROUP BY l.ordkey, o.sprior

Above the substitution replaces the Customer relation with a singleton set consisting

of an update tuple with its fields as parameters. The resultant query qc can be simplified

as:
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qc = SELECT l.ordkey, o.sprior,sum(l.extprice)

FROM Orders o, Lineitem l

WHERE @ck = o.custkey

AND l.ordkey = o.ordkey

GROUP BY l.ordkey, o.sprior;

The query rewrite replaces instances of attributes with parameters through variable

substitution, as well as more generally (albeit not seen in this example for simpler ex-

position of the core concept of recursive delta compilation), exploiting unification, and

distributivity properties of joins and sum aggregates to factorize queries [55].

This completes one step of delta compilation. The compilation algorithm also com-

putes deltas to q for insertions to Order or Lineitem (i.e. qo and ql). The full

transition program for all insertions is shown in Figure 5.3, while deletions are sym-

metric.

IVM techniques evaluate qc on every insertion to Customer. To illustrate the

recursive nature of the DBToaster compilation process, consider one possible subsequent

step: compilation of qc to mc, qcl on an insertion to Lineitem (see the second row of

Figure 5.2). At this second step, DBToaster materializes qc with its parameter @ck and

group-by fields as mc[][custkey, ordkey, sprior], and uses this map mc to maintain the

query view m:

on_insert_customer(ck,nm,nk,bal):

m[][ordkey,sprior] += m_c[][ck,ordkey,sprior];

As it turns out, all maps instantiated from simple equijoin aggregate queries such as

TPCH Query 3 have no input keys. Maps with input keys only occur as a result of

inequality predicates and correlated subqueries, for example the VWAP query from Ex-
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on_insert_customer(ck,nm,nk,bal) :
m[][ordkey, sprior] +=

m_c[][ck, ordkey, sprior];
m_l[][ordkey, sprior] +=

m_cl[][ck, ordkey, sprior];
m_o[][ck] += 1;

on_insert_lineitem(ok,ep) :
m[][ok, sprior] += ep * m_l[][ok, sprior];
m_c[][custkey, ok, sprior] +=

ep * m_cl[][custkey, ok, sprior];
m_co[][ok] += ep;

on_insert_order(ck,ok,sp) :
m[][ok, sp] += m_co[][ok] * m_o[][ck];
m_l[][ok, sp] += m_o[][ck];
m_c[][ck, ok, sp] += m_co[][ok];
m_cl[][ck, ok, sp] += 1;

Figure 5.3: Trigger functions generated by DBToaster for the query q, for
all possible insertion orderings. The path taken through the
compilation algorithm is expressed as part of the map name as
seen for mc and mcl in the example walkthrough.

ample 1.2.1.

The above trigger statement in a C-style language fires on insertions to the Customer

relation, and describes the maintenance of m by reading the entry mc[ck, ordkey, sprior]

instead of evaluating qc(ck,Orders, Lineitem). Notice that the trigger arguments do

not contain ordkey or sprior, so where are these variables defined? In DBToaster, this

statement implicitly performs an iteration over the domain of the map being updated.

That is, map m is updated by looping over all 〈ordkey, sprior〉 entries in its domain,

invoking lookups on mc for each entry and the trigger argument ck. Map read and

write locations are often (and for a large class of queries, always) in one-to-one corre-

spondence, allowing for an embarrassingly parallel implementation (see Section 5.5).
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For clarity, the verbose form of the statement is:

on_insert_customer(ck,nm,nk,bal):

for each ordkey,sprior in m:

m[][ordkey,sprior] += m_c[][ck,ordkey,sprior];

Henceforth, the implicit loop form will be used. Furthermore, this statement is never

implemented as a loop, but rather as a single-instruction, multiple-data (SIMD) opera-

tion. Consequently, map data structures must support slicing, or partial-key lookups –

in this example, mc must be able to efficiently produce all tuples 〈ordkey, sprior〉match-

ing a given ck. This is trivially implemented with secondary indexes for each partial

access present in any maintenance statement.

This form of maintenance statement is similar in structure to the concept of marginal-

ization in probability distributions, essentially the map m is a marginalization of map

mc over the attribute ck, for each ck seen on the update stream.

Returning to the delta qcl produced by the second step of compilation, its derivation

and simplification is presented below.

SELECT l.ordkey, o.sprior,

sum(l.extprice)

FROM Orders o, values

(@ok,@ep) as

l(ordkey,extprice)

WHERE @ck = o.custkey

AND l.ordkey = o.ordkey

⇒

SELECT @ok, o.sprior,

@ep*sum(1)

FROM Orders o

WHERE @ck = o.custkey

AND @ok = o.ordkey

Notice that qcl has a parameter @ck in addition to the substituted relation Lineitem.

This parameter originates from the attribute c.custkey in q, highlighting that map
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parameters can be passed through multiple levels of compilation.

The delta qcl is used to maintain the map mc on insertions to Lineitem, and is

materialized in the third step of compilation as mcl[][custkey, ordkey, sprior]. The re-

sulting maintenance code for mc is ( corresponding to Line 8 of the full listing):

on_insert_lineitem(ok,ep) :

m_c[][custkey, ok, sprior] +=

ep * m_cl[][custkey, ok, sprior];

The above statement indicates an iteration over each 〈custkey, sprior〉 pair in the

map mc, for the given value of the trigger argument ok. Again, recall that this corre-

sponds to to a slice access of mcl, of 〈custkey, sprior〉 pairs for a given ok. The third step

of recursion on insertion to Order is the terminal step, as can be seen on inspection of

the delta query qclo:

SELECT o.sprior, count()

FROM values (@ck2,@ok2,@sp)

AS o(custkey,ordkey,sprior)

WHERE @ck = o.custkey

AND @ok = o.ordkey

⇒

SELECT @sp, count()

WHERE @ck = @ck2

AND @ok = @ok2

In the result of the simplification, the delta qclo does not depend on the database since

it contains no relations, only parameters. Thus the map mcl can be maintained entirely

in terms of trigger arguments and map keys alone. Note this delta contains parameter

equalities. These predicates constrain iterations over map domains, for example the

maintenance code for qclo would be rewritten as:
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on_insert_order(ck2,ok2,sp) :

m_cl[][ck, ok, sp] +=

if ck==ck2 && ok==ok2

then 1 else 0;

⇒
m_cl[][ck2, ok2, sp]

+= 1;

where, rather than looping over map mcl’s domain and testing the predicates, only the

map entry corresponding to ck2, ok2 from the trigger arguments are updated.

This process is subsequently repeated for all other possible insertion orderings, as

shown in Figure 5.3. Note that some paths through the compilation produce maps based

on equivalent queries; DBToaster detects these and reuses the same map. Also note

that for this query, the trigger functions for deletions are symmetric with their inser-

tion counterparts. This sort of symmetry appears in all queries without parameterized

subqueries.

5.3 The DBToaster Compiler

DBToaster is built around a relational calculus based on a simplified version

of the one presented in [55]. The key insight of this calculus is that instead of

representing a query as a set of predicates, set of computations, and set of input

sources, it can be represented as a monad [61] – specifically as a composition

of operators which compute the arity of elements in the output set. Relational

operators are thus transformed into ordinary arithmetic operators over arities

(with some caveats described further in [55]): UNION becomes a sum, while

NATURAL JOIN becomes a product.

Note also that this representation is an algebraic ring, which guarantees that

the delta operation (described below) is closed, and produces a simpler expres-
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sion.

The DBToaster relational calculus is summarized in Figure 5.4. Every ex-

pression in this calculus is defined by a schema, which includes a set of named

input variables – defining the parameters to the expression, and a set of out-

put variables – defining the values of individual columns in result tuples. As

before, we write m[iv][ov] to define an expression with a schema consisting of

input variables iv and output variables ov.

Note that although the calculus of [55] expresses both input and output vari-

ables as parameters to the monad defined by the expression – something which

factors deeply into the design of the calculus, it is relevant to note that the ex-

pression will be nonzero for only fixed set of valuations of the output variables –

the monad defines a set. It is thus useful to define the set of tuples produced by

the expression as those valuations of the output variables for which the monad

defined by the expression produces a nonzero arity. The expression itself can

be thought of as an implicit loop over all of the tuples (and their correspond-

ing arities) that it defines. In summary, an expression in DBToaster’s relational

calculus is (in effect) a query parameterized by a set of input variables, which

produces a set of tuples with a schema corresponding to the output variables.

The leaf terms of DBToaster’s relational calculus consist of Values, Relations

and Externals.

Value represent the null relation with a single null tuple of the specified

arity; If the value is a constant, the constant defines the arity. If the value is a

variable, then the variable becomes part of the expression’s schema (as an input

variable) and the null tuple’s arity is equal to the variable’s value.
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A Relation represents the set of tuples contained within one of the base

relations being queried – the leaf term is defined with the relation’s name, and a

set of variables, which define the schema (as output variables) of the term. Note

that the contents of the relation are not returned directly – the monad defined

by the term produces a nonzero output for those output variable valuations that

correspond to tuples in the relation. Another way of looking at it is that, while

the Relation defines a set, in the arithmetic of a DBToaster calculus expression

the term’s value is the arity of a tuple in the set. The contents of the tuple are

made available contextually via the term’s output variables.

Like a Relation, an External represents a set of tuples, save that it is an

internal component of the DBToaster compiler. Over the course of compilation,

components of the query will be materialized into subviews, each defined by

a subquery. An External represents not only the set of tuples described by

this subquery, but also includes metadata describing the way the set should be

accessed, managed, and maintained.

The two mechanisms for combining subexpressions together are Sum and

Product.

Sum corresponds to a union between two or more subexpressions. Although

not strictly necessary, for simplicity, it is considered to be an error if these subex-

pressions have different output variables in their schemas. The subexpressions

may contain different input variables – in which case the schema of the Sum

term contains the union of all input variables present in a subexpression. Ob-

serve that the arity of the union of identical tuples in two (or more) sets is the

Sum of their arities in the sets being unioned. Thus, Sum is effectively a standard

sum. Also note that Sum’s subexpressions are both commutative and associa-
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tive.

Prod corresponds to a natural join between two or more subexpressions.

As before, observe that the arity of the tuple resulting from the natural join of

tuples in two input relations is the product of their arities. Just as in a natural

join, output variables present in multiple subexpression schemas are subject to

an equijoin – the Prod term combines only matching tuples. There are several

elements of Prod terms, however, that are non-obvious. First, information is

passed from left to right – If the schema of an expression contains an input

variable which is present in the schema of an expression to its left as an output

variable, the input variable is unified with the output variable. In effect, the

Prod term can be thought of as a nested loop, where for every tuple defined by

an expression, the expressions to its right are evaluated with some (or none, or

all) of their input parameters filled in. Thus, the Prod term’s schema consists

of all output variables defined in its subterms, and those input variables that

remain un-unified. Note that the Prod term’s subexpressions are associative,

but only sometimes commutative. More on this below. Also note that Sum and

Prod are distributive with each other – calc t effectively describes a ring.

Neg does not correspond directly to an operation in relational calculus, but

is rather the consequence of an interesting aspect of DBToaster (and [55])’s re-

lational calculus. Specifically, the calculus admits the possibility of negative

arities. This sort of anti-tuple also does not correspond to anything in relational

calculus, although note that when combined with Sum, the result is a set sub-

traction. Neg affects only the arity of its subexpression, its schema is unchanged.

Three more operators are needed to round out the functionality of DBToaster’s

relational calculus: Cmparisons, Definitions and AggSums.
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Cmp compares two variables or constant values, defining a null relation with

a (null) tuple of arity 1 if the comparison holds, or an empty null relation (i.e.,

the null tuple of arity 0) if the comparison does not hold. Cmp terms have no out-

put variables, and zero, one or two input variables. Observe that a comparison

may be applied as a filter to an expression (i.e., as an element of a conjunctive

WHERE clause) by multiplying the expression by the comparison.

If Value terms can be thought of as a way to transfer an output variable’s

value into the “arity space”, then Definition terms are the reverse. A Definition

term extends the schema of its subexpression with a new output variable. The

arity of all resultant tuples (i.e., those tuples defined by the subexpression) be-

comes precisely 1, and the new output variable is in effect assigned to the cor-

responding arity of the subexpression. There are two elements of interest here:

First, note that the new variable is a dependent variable. Second, note that cer-

tain forms of Cmp terms can be rewritten into Definition terms (and visa

versa). This is a form of commutativity in Prod.

m1[][y] · m2[][x] · (y = 0) ≡ m2[][x] · (y← x) · m[][y]

Finally, AggSum terms compute aggregate sums. The arity of the term is the

sum of the arities of all tuples defined by the subexpression (observe that only

nonzero terms are relevant, as zero terms do not contribute to the sum). If ap-

propriate, an AggSum term can be defined with one or more group-by variables.

The output schema of the term contains all of the input variables of the subex-

pression, and only output variables specified in the group-by; all remaining

variables are aggregated. Note that this is also the natural way of performing

projections in DBToaster’s relational calculus – as the value of an expression is
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calc t :=
Sum : set of calc t { c1 + c2 + . . .}
Prod : set of calc t { c1 · c2 · . . .}
Neg : calc t { −c}
Cmp : Value, [<,≤,=,. . . ], Value { v1[cmp]v2 }

AggSum : list of var t, calc t {
∑

schema(c)−{vi}
c }

Value : var t or constant
Relation : string, list of var t { R(v1, v2, . . .) }
External : string, list of var t, metadata

Definition : var t, calc t { v← c }

Figure 5.4: The DBToaster relational calculus

the arity of each tuple, projections are equivalent to sum aggregates.

5.3.1 The DBToaster Workflow

I now describe the workflow that DBToaster uses to translate a database speci-

fication into a compiled database engine – whether for use as a standalone pro-

cess, part of a runtime, or for embedding into an application. This workflow is

illustrated in Figure 5.5.

ToaStQL. The input to DBToaster is a database specification – a set of directives

written in ToaStQL, a variant of SQL extended to support streaming data. A

ToaStQL file consists of two types of statements:

• Table Definition statement declare and define an input source, referred

to in DBToaster as a base relation. A table definition consists of a SQL-

like CREATE TABLE statement, followed by a set of options that define

how data is inserted into the table. For example, a base relation might be

defined by a particular file – when the code generated by DBToaster first
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Figure 5.5: The DBToaster compilation workflow

starts up it will “insert” rows into the relation by reading from this file.

Data sources can also include sockets, or function invocations performed

by the application in which the compiled code is embedded. In addition

to the data sources, the table definition statement specifies how to parse

data from its data source (analogous to the Hadoop [14] RecordReader

interface).

• Query statements declare computations using standard SQL SELECT syn-

tax. Depending on how the DBToaster compiler is invoked, the compiler’s

output will be code defining a data structure to store the query results, or

a compiled program that outputs the results of the query, either at the end

of the computation or once the end of all input sources is reached.
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DBToaster Relational Calculus. The first stage of the DBToaster compiler work-

flow is to translate ToaStQL into DBToaster relational calculus. Table definition

statements are extracted and set aside until the final code-generation phase.

Each query statement is parsed and translated into a DBToaster relational calcu-

lus (calc t) expression – Code produced by the compiler will maintain results

for all queries included in the ToaStQL.

Example 5.3.1 Consider the following example database specification in ToaStQL:

CREATE TABLE R(A int, B int)

FROM FILE ’test/data/r.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

CREATE TABLE S(B int, C int)

FROM FILE ’test/data/s.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

CREATE TABLE T(C int, D int)

FROM FILE ’test/data/t.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

SELECT sum(A*D) FROM R,S,T WHERE R.B=S.B AND S.C=T.C;

This specification includes three input sources and one query. Input sources are

specified as tables with three additional fields. The FROM FILE clause indicates that

the table is to be read from a file datasource. The LINE DELIMITED clause indicates

the record delimiter, while the adaptor clause (CSV and its parameters in this example)
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clause indicates that each record is stored as two integers delimited by a comma, and

that all records found in the file are to be treated as insert events (i.e., the query is to be

run as an ordinary database query over the file data).

The query is specified as a simple aggregating SELECT statement, outputting a

single value with no group-by terms. The aggregate operator is Sum, thus the root term

of the parsed calc t expression will be an AggSum with no group-by variables.

Nested within the AggSum term is a Prod of the FROM, target, and WHERE clauses

of the SELECT – in that order. In this example, the result is as follows

AggSum([], R[R_A,R_B] * S[S_B,S_C] * T[T_C,T_D] * R_A *

T_D * (R_B = S_B) * (S_C = T_C))

This expression can be further simplified by unifying the two variables R B and S B

as follows. First, the equality constraint is rewritten into a definition term. Note that

this involves a limited form of commutativity discussed further in Section 5.3.2

AggSum([], R[R_A,R_B] * (S_B <- R_B) * S[S_B,S_C] *

(T_C <- S_C) * T[T_C,T_D] * R_A * T_D)

Finally, the variable in the definition term is replaced within the expression – note

that although this changes the schema of the Prod term, the change is possible be-

cause the AggSum aggregates over both schema elements, leaving the entire expression’s

schema unchanged.

AggSum([], R[R_A,R_B] * S[R_B,S_C] * T[S_C,T_D] *

R_A * T_D)
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Incremental Plan. The second and most detailed stage of the compiler work-

flow is to produce a incremental plan for each query (i.e., each calc t expres-

sion). This incremental plan is a tree, branching along two dimensions.

First, the tree encodes the hierarchy of data structures, or maps output by

DBToaster’s recursive IVM compilation process (as overviewed in Section 5.2.1

and implemented in Section 5.3.3). Each map corresponds to a specific calc t

expression, and the data structure responsble for incrementally maintaining it.

Thus, the incremental plan is similar in function, if not form, to the role of a

query plan in a normal relational database engine.

This hierarchy is constructed out of two alternating layers: (1) Each map is

maintained by one or more invocations – calc t expressions evaluated at run-

time. Each invocation is invoked in response to an event – the insertion or dele-

tion of a tuple from one of the base relations. (2) Each invocation is materialized

with respect to zero or more maps – portions of the invocation materialized into

a map are incrementally maintained, resulting in less work at runtime.

The second “dimension” of the incremental plan is the range of possible ma-

terialization decisions made by the compiler. As part of the compilation process

a different ways of implementing an invocation in terms of maps or base rela-

tions are identified. This includes not only decisions regarding what portions

of the invocation to include, but also the type of data structure used – A map

implemented as a hash table is most efficient for simple key lookups, while one

implemented as a range tree can implement inequality comparisons more effi-

ciently. This decision is discussed further in Section 5.4.

It should be noted that – as will become evident, making materialization de-
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Figure 5.6: The two-layer recursive structure of a DBToaster incremental
plan.

cisions over polynomial calc t expressions (expressions containing Sum terms)

is nontrivial. Hence, at this stage, the invocation will be first rewritten into a

set of monomials (i.e., a Prod of non-Sums). Although these monomials are fac-

torized back into polynomial form, it is possible for various expression simplifi-

cations applied at this stage to change the expression’s schema – consequently,

maps in the incremental plan can include several invocations for a single event.

The incremental plan data structure is presented in Figure 5.3.1. Note that

the incremental plan is an extension to the basic calc t framework – maps,

invocations, and implementations are specified in terms of a defining calc t

expression. The process of compiling a incremental plan is described in further

detail in Section 5.3.3.

The resulting incremental plan is thus not just a single strategy, but a range

of different possible implementations. In general, only a single strategy will be
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implemented into compiled code – this selection task is performed by a mate-

rializing optimizer, applied to the incremental plan after it is generated by the

compiler. In addition to selecting between the different options presented to

it by the compiler, the materializing optimizer eliminates duplicate maps (in

effect, turning the tree into a DAG). Finally, the materializing optimizer can col-

lapse multiple layers of the incremental plan (now DAG), resulting in additional

computation work when evaluating an invocation, but reducing the amount of

storage required – user preferences decide the storage/computation tradeoff.

Note that the materializing optimizer extends the incremental plan, rather

than pruning it. The output of the optimizer is not just a single default mate-

rialization, but a weighted set of options. In addition to providing users with

valuable feedback, this will enable future implementations of DBToaster to re-

structure the engine’s implementation at runtime if it should be beneficial to do

so.

A final aspect of the materializing optimizer that deserves discussion is the

decision to partially materialize a map: A map with input variables in its schema

can generally not be materialized in its entirety – Either the input variables must

be removed (via unification, or by moving them into the invocation), or the map

can be instantiated as a caching map. In this case, the map’s values are main-

tained for a certain subset of known input variables. When the map is accessed

with previously unseen input variables, the map is initialized for these new input

variables, and incrementally maintained henceforth. Note that this initialization

process requires the execution of an invocation.

The materializing optimizer can take this idea still further. It can choose

to instantiate the map only for some values of the output variables as well –
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for example only those variables that match a constraint defined by the output

variables. If it chooses this approach, then, as in the case of variables, the code

produced by DBToaster must first verify whether a map has been initialized for

the particular output variables whenever the map is read from.

Program Sketch. From the default materialization produced by the material-

izing optimizer, DBToaster produces a program sketch. This is a rough outline

of the code to be produced, specified as a set of input sources (taken from the

ToaStQL), a set of maps to materialize, and a compilation of invocations to exe-

cute for each event in order to maintain and initialize the materialized maps.

The program sketch’s events are computed by recursively traversing the de-

fault materialization. During this traversal, all unique maps are recorded (recall

that the default materialization is a DAG). Furthermore, event invocations are

recorded and sorted by event type.

K3. The next stage of compilation is to implement the program sketch by trans-

lating every invocation in every event in the sketch into a set-based functional

language called Kleisly K2, based on [17] (K3). The result is one functional pro-

gram for each event:

• AggSum terms are translated into a function that computes the aggregate

of the set defined by the term’s subexpression.

• Prod terms are translated into the application of mapping functions: two

calc t terms multiplied together results in a translation of the left-hand-

side term. If the right-hand side term has no output variables (i.e., a

Value, Cmp, no-group-by AggSum, or a Neg or Definition of one of

the above) in its schema (or only dependent variables, in the case of a
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Definition term), the generated mapping function multiplies the ari-

ties of the left and right hand sides, and if appropriate extends the schema

of the output set. Note that this sort of term is referred to as a singleton.

If the right hand side is not a singleton, the product is translated into a

nested loop join.

• Sum terms are translated into set addition.

• Relation and External terms are translated into set reads. Note that

when the read occurs, some variables may be defined; reads are performed

by slicing – extracting all values of the map or relation that match a specific,

equality-only selection predicate.

• All remaining terms are translated into mapping functions as described

above in the translation of Prod.

• In addition to the terms of the calc t invocations being compiled, K3 also

encodes several other elements of the program sketch: Most noticeably,

all accesses (both read and write) to maps may require initialization of

the map, if the materializing optimizer has chosen not to fully materialize

the map (as discussed above). K3 explicitly encodes this check as an if

statement prior to reading the map.

The use of a functional representation occurs for two reasons. First, K3

acts as an intermediate representation to facilitate translation between the ex-

tremely abstract DBToaster relational calculus, and the much more concrete

DBToaster’s output languages (C++, OCaml, etc. . . ). Second, and more impor-

tantly, K3 is extremely amenable to various functional, inter-query, and order-

of-operations optimizations that are either difficult or outright impossible to
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express in DBToaster relational calculus. These optimizations are discussed fur-

ther in Section 5.3.4

Compiled Code. Finally, the optimized K3 is translated into a more commonly

used programming language – either OCaml, C++, or Postgres plSQL. The trans-

lation to OCaml is remarkably straightforward – both are functional languages.

When translating into C++, plSQL, or any other imperative language, the K3

code is first translated into an imperative intermediate representation – unlike

K3, where all operations are performed over sets, the intermediate representa-

tion explicitly loops over set elements.

An example of the stages of compilation is illustrated in Appendix B.

5.3.2 Simplifying Calculus Expressions

During various stages of the compilation process, DBToaster performs several

simplifications on the calc t expressions it is working with – This produces

a less complex expression that is semantically equivalent, but in a normalized

form that is easier to work with.

Unification. The input and output variables (both input and output, as well as

their types) of a calculus expression can always be computed from the expres-

sion; external metadata is not required.

Variable unification has an impact on the schema of an expression. Not only

can it potentially remove input and output variables, but it can turn input vari-

ables into output variables (i.e., if an input variable is unified with an output
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variable) 1.

Variable unification itself takes two forms: (1) downward, and (2) upward.

Upward unification is the harder of the two, because it requires knowledge

of input variables. A comparison between two variables x = y can be unified

upwards using one of the following two rules:

• e := m[x][] ∗ (x = y) becomes (x ← y) ∗ m[x][]) iff x is not bound anywhere

to the left of e (i.e., an output variable).

• e := m[y][] ∗ (x = y) becomes (y← x) ∗ m[y][] iff y is not bound anywhere to

the left of e.

It is possible for a variable to be bound at multiple points in an expression

(i.e., it appears in multiple relation terms). The upward unification process re-

quires that the newly bound variable be lifted above all of the variable’s bind-

points.

Downward unification is simpler. An expression of the form:

AggSum ([dom(m[. . .][x, . . .]) − {x}], (x← y) ∗ m[. . .][x, . . .])

is equivalent to m[. . .][y, . . .]. Interestingly, note that this process is somewhat

reversible. Given a variable x with a name not defined in the environment or

domain of expression e (and just to be safe, not used in the expression either),

m′[. . .][. . .] into

AggSum
(
[m′[. . .][. . .]], (x← {anything}) ∗ m′[. . .][. . .]

)
1Of course, this poses some limitations with respect to extracted expressions. The schema of

a map can not be changed after the fact. Even if it is possible to perform further unification on a
delta expression, the schema used to access the map must be further adjusted to match.
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Here, {anything} can in fact be replaced by anything with an empty schema.

In particular, this allows factorization over variable definitions. For example:

AggSum ([dom(m[. . .][x, . . .]) − x], (x← y) ∗ m[. . .][x, . . .]) + m′[. . .][. . .]

AggSum ([dom(m[. . .][x, . . .]) − x], (x← y) ∗ m[. . .][x, . . .])

+AggSum ([dom(m′[. . .][. . .])], (x← y) ∗ m′[. . .][. . .])

AggSum ([dom(m[. . .][x, . . .]) − x], ((x← y) ∗ m[. . .][x, . . .]) + ((x← y) ∗ m′[. . .][. . .]))

AggSum ([dom(m[. . .][x, . . .]) − x], (x← y) ∗ (m[. . .][x, . . .] + m′[. . .][. . .]))

In other words, definition terms can be lifted as far up through summation

terms as we like, as long as there are no variable naming conflicts in the terms

being distributed across. Once a definition term is at the very top, we can per-

form downward unification as desired.

Monomialization. In general, it is easier to work with expressions containing

no Sum terms. The materialization partition process performed by compile invocation

(described below) is a perfect example of this. If one thinks of the entire calc t

expression as a polynomial (i.e., a sum of products), then sumless calc t ex-

pressions are effectively monomials. Monomialization is performed by lifting

Sums to the top of the expression by applying the distributive law. The set of

monomial terms can be expressed with an implicit Sum as a list of monomial

calc t expressions – The compiler algorithms described below in Section 5.3.3

use this representation.

Term Lifting and Merging. Two final simplifications are applied: (1) Neg terms

are pushed down through the product terms so that each Negwraps a singleton,

External, or Relation term, and (2) AggSum terms are pulled up to the top of

each monomial or Definition, and immediately adjacent nested AggSums are
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merged by dropping the inner aggregate. Similarly, immediately nested Prod

terms are merged, as are Sums.

The result of these rewritings is a: (1) Sum of (2) AggSums of (3) Prods of

(4) optional Neg of (5) everything else. The subexpression of each Definition

term is also rewritten into a similar hierarchy.

5.3.3 Compiling Calculus Expressions

The core of the DBToaster compilation process is the construction of a incremen-

tal plan from a calc t expression. Note that a incremental plan can have either

a map or an invocation as its root – In the former case, the query is completely

materialized and incrementally maintained, while in the latter case, portions

of the query may be computed at lookup time (i.e., when the code into which

DBToaster’s output is nested tries to read query results). As a consequence,

DBToaster’s compilation process is constructed as two mutually recursive steps,

either of which can act as an entry point. The compilation process begins by in-

voking either compile invocation or compile map.

Compiling Invocations. The compile invocation function, described in

simplified form in Algorithm 10 translates a calc t expression into a incre-

mental plan rooted at an invocation node. The primary purpose of this function

is to identify a set of different possible materializations of the input expression

– only one heuristic is illustrated in Algorithm 10.

Two challenges present themselves at this stage:

First, different portions of the invocation’s schema may be defined by inde-
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pendent portions of the invocation’s defining expression – It may be possible

to rewrite the expression as a cartesian cross product. Materializing the en-

tire expression as a map results in wasted resources, both in maintaining the

map, as well as the storage requirements of keeping the entire cross product

around. compile invocation identifies such independencies by first sim-

plifying the expression into a set of monomials (as described in Section 5.3.2).

For each monomial, independent subexpressions are identified by performing

a union-merge over the schemas of each term in the monomial. Once the inde-

pendencies have been identified, each independent subexpression is collected

for materialization as a separate map.

Input variables appear in an expression exclusively due to the presence of

a Cmp or Value term. The second challenge of compiling invocations is to de-

cide whether or not to create a map with input variables in its schema – these

terms can be included in the map’s definition or evaluated when the invocation

is evaluated. This materialization decision is dependent on the way in which

the expression will be evaluated – If the domain of values that the input vari-

able(s) take is small, incorporating input variables into the map will allow the

expression to be incrementally maintained in its entirety. However, if the do-

main is large, multiple different copies of the data will need to be incrementally

maintained, and it will become more efficient to evaluate the expression as part

of the invocation. DBToaster allows the user to decide between these two mate-

rialization decisions.

Compiling Maps. The compile map function, described explicitly in Algo-

rithm 11 translates a calc t expression into a incremental plan rooted at a map

node. The primary purpose of this function is to enumerate all deltas of the
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δR(~x)( f + g) → (δR(~x) f ) + (δR(~x)g) (5.1)
δR(~x)( f ∗ g) → ((δR(~x) f ) ∗ g) + ( f ∗ (δR(~x)g)) + ((δR(~x) f ) ∗ (δR(~x)g)) (5.2)
δR(~x)(− f ) → −(δR(~x) f ) (5.3)

δR(~x)(v1φv2) → 0 (5.4)
δR(~x)AggSum([~y], f ) → AggSum([~y], (δR(~x) f )) (5.5)

δR(~x)R(~y) →
∏

i

(yi ← xi) (5.6)

δR(~x)R′(~y){R , R′} → 0 (5.7)
δR(~x)(v← f ) → (v← (f + δR(~x) f )) − (v← f) (5.8)

Figure 5.7: The DBToaster relational calculus delta (δ) rewrite rules (based
on [55]). φ is any comparison operator (=, <, >,,,≤,≥). 0 is the
empty null schema relation.

expression, and then to invoke compute delta (described in Algorithm 12)

to compute it. All events affecting the map are identified and their effect on

the map (in terms of inocation) are stored. Delta computations are relatively

straightforward and drawn virtually directly from [55]. These rules are restated

in Figure 5.7.

Recall that the delta of an expression in DBToaster relational calculus is strictly

simpler – that is, the number of Relation terms appearing in it is reduced (by

one). Note however, that Rule 5.8 does not produce a strictly simpler expres-

sion. Unlike all other terms in DBToaster relational calculus, the delta of a

Definition term is not simpler – the delta contains the original term as well as

the delta. Fortunately, the delta term can be simplified by extracting its subex-

pression and incrementally maintaining it as a new supplemental map. This may

result in runtime evaluation of the subexpression if the subexpression contains

an input parameter.

A challenge faced by compile map itself is the complexity of the updates be-
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ing created. In order to identify independent subexpressions, compile invocation

must first produce a set of monomials – Though this simplifies the task of identi-

fying independent subexpressions, it can create a large number of independent

sum terms. As part of the process of compile map it is desirable to factorize

these polynomial expressions back together as far as possible.

A simple instantiation of the factorization process is shown in Algorithm

13. In this greedy implementation, the goal is to merge terms as extensively as

possible – The algorithm identifies the most common term in the monomials

that it is presented with, and merges together those monomials containing the

term. The algorithm then recurs separately on the set of monomials containing

the term and the set not containing the term.

Factorize uses an intermediate factor tree representation of each mono-

mial:

factor tree = (term:calc t) * (children:factor tree list)

Every node in this tree represents a single calc t. A forest of such trees repre-

sents a sum of terms (a polynomial). Thus, the calc t defined by the node is the

product of the term and the (parenthesized) sum of all of the children.

5.3.4 Optimizing K3

The K3 optimizer repeatedly performs rewrites a K3 expression in the ways

described below, until a fixed point is reached. These optimizations are based

on those in [17].

Function Composition. Functions that are applied consecutively to the output
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Algorithm 10: compile invocation(de f inition, schema)

Require: calc t de f inition, schema t schema

Ensure: calc t implementation, list of map re f erences

1: monomials← simplify(de f inition); impl← Const(0)

2: for all m term ∈ monomials do

3: f actors← match m term with Prod( f actors)

4: groups← ∅; consts← Const(1); comparisons← Const(1)

5: for all f actor ∈ f actors do

6: Find a set {gi} ⊆ groups s.t. {gi} contains all elements of groups that

produce an output variable v < schema that appears (as an input or

output variable) in f actor.

7: if |{gi}| = 0 then

8: if ( f actor matches (i← f )) and ( f includes Rel(∗)) then

9: consts← consts ∗ (i← compile map( f ))

10: else if f actor matches (i← f ) or Value(∗) or Cmp(∗, ∗, ∗) then

11: consts← consts ∗ f actor else groups← groups@ f actor

12: else

13: if ( f actor matches Cmp(v1, ∗, v2)) and

(v1 or v2 matches Value(Const(∗)) or Value(Var(k)) s.t. k ∈ schema)

then

14: comparisons← comparisons ∗ f actor

15: else

16: groups← (groups − {gi})@(g0 ∗ . . . ∗ gn ∗ f actor)

17: impl← impl+
(
consts ∗

(∏
gi∈groups compile map(gi)

)
∗ comparisons

)
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Algorithm 11: compile map(de f inition, schema)

Require: calc t de f inition, schema t schema

Ensure: map map, map list supplements

1: for all R ∈ relations appearing in de f inition do

2: (map.deltas[R], supplementsi)← compute delta(R, de f inition)

3: map.deltas[R]← factorize(map.deltas[R])

4: return (map, concat(supplementsi))

of the prior function are composed into a single operation.

Function composition is equivalent to adjusting the parenthesization of the

calculus expression. The advantage to implementing it in the K3 optimizer is

that it simplifies the translation from calculus to a language closer (slightly at

least) to the bare metal.

A similar effect could be achieved by establishing certain design patterns

(e.g., (a < 0) ∗ (b < 0) is translated into a filter of the conjunction of the two

terms, rather than a two-stage filter), but the simpler way reduces bugs and has

a significant impact when combined with the remaining rewrite rules.

Function Inlining. If the optimizer can assert that a function is defined and

applied only to a single code block, the function application is replaced by an

inlined version of the function (i.e., a copy of the function definition with its pa-

rameter variable(s) replaced by the parameter values used to invoke the func-

tion.

This step could theoretically be avoided; Its primary purpose is to enable

a more intuitive translation from Calculus to K3. Rather than establishing all
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Algorithm 12: compute delta(R, term)

Require: relation R(vari), calc t term

Ensure: calc t delta term, map list supplements

1: match term with

2: | Sum[xi]→ S um[compute delta(xi)]

3: | Prod[x0, xi]→

(d0, supp0)← compute delta(x0)

(drest, supprest)← compute delta(Prod[xi])

delta term← x0 ∗ drest + d0 ∗ Prod[xi] + d0 ∗ drest

supplements← supp0@supprest

4: | Neg(x)→ Neg(compute delta(x))

5: | Cmp( , , )→ (delta term, supplements)← (0, ∅)

6: | AggSum(x)→ AggSum(compute delta(x))

7: | Rel(name, termvari)→

supplements← ∅

delta term← if name = R then
∏

i(termvari ← vari) else 0

8: | External( )→ fail

9: | Definition(v← x)→

(x′, supplements)← compile map(x)

delta term← ((v← (x′ + compute delta(x))) − (v← x′))
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Algorithm 13: factorize(monomials)

Require: A calc t (as above) list monomials

Ensure: A factor tree list f orest, which can be converted into a single polyno-

mial with the merge forest function defined in Algorithm 14

1: count∗ ← 0 {Greedy heuristic: find the most common term}

2: for all m ∈ monomials do

3: for all unique term ∈ m do

4: countterm ← countterm + 1

5: common term← argmaxterm(countterm)

6: if countcommon term ≤ 1 then

7: f orest ← ∅ {No commonality between monomials – return what we have}

8: for all m ∈ monomials do

9: f orest ← f orest ∩ {(term : m, children : ∅)}

10: else

11: in terms ← ∅; out terms ← ∅ {Split the monomials depending on whether

or not they contain the common term}

12: for all m ∈ monomial do

13: if common term ∈ m then in terms← m else out terms← m
common term end if

14: new tree← (term : common term, children : factorize(in terms))

15: f orest ← factorize(out terms) ∩ {new tree}

Algorithm 14: merge forest( f orest)

Require: A factor tree list f orest = termi, childreni

Ensure: polynomial, the calc t representation of f orest

polynomial←
∑

i termi ∗ merge forest(childreni)
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of the bindings from input to output variables by hand, DBToaster generates a

large number of functions (one per product term) and then relies on the opti-

mizer to simplify the generated expression down as far as possible.

If-Lifting. If conditions appearing in the K3 code (i.e., those created by a check

for whether a map is initialized for the values being read) are lifted as high in the

K3 syntax tree as possible. Operations (i.e. Apply, Flatten, Function definition,

etc...) with an IfThenElse node as a child switch places with the IfThenElse

node. The operation is applied to both the IfThenElse node’s Then and the Else

children, and the IfThenElse node becomes the new parent.

This swap is not always possible. In particular, an IfThenElse can not be

lifted so far that a variable in its If clause goes out of scope. The IfThenElse

node is lifted up to the highest possible point in the syntax tree. Having the

conditional this far up (combined with the Inlining and Composition optimiza-

tions) ensures that if statements do not occur in deeply nested loops.

IfThenElse nodes appear exclusively as the result of map accesses with non-

zero initializers. Thus, this optimization has two roles: (1) a parenthesization

optimization akin to what Function Composition does, and (2) un-nesting mul-

tiple levels of initializers.

The parenthesization optimization is the primary effect of if-lifting. In partic-

ular, this occurs when dealing with the cross-product of two maps. For example:

m1[x][y] ∗ m2[z][]

In this expression, both m1 and m2 will need to be initialized, but without some

messy factorization code, the initializer for m2 will be tested for once for each

value of b in m1. If lifting allows the test to be performed only once, effectively
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factorizing the expression.

Un-nesting multiple levels of initializers is of use, as the inner initializers are

likely to be simpler. If the inner initializer depends only on variables declared

outside of the outer initializer (and fewer variables than the outer initializer as

well) it may be possible to lift its initializer further up than the outer initializer,

again reducing the if-clauses in an inner loop. Note however, that in general

DBToaster’s materialization heuristics do not produce initializers dependent on

maps that may themselves need to be initialized.

Block-Lifting.

Like OCaml, K3 includes an imperative-style semicolon operator for defin-

ing code blocks. The K3 semicolon operator accepts a left-hand (terminal) side

operation that evaluates to a non-value (equivalent to OCaml’s unit type), and

a right-hand side operation that defines the operator’s output. The terminal op-

eration is invoked first, and produces only side effects (e.g., by updating map

values).

Like if statements, terminal operations are lifted as far up in the syntax-tree

as possible – As with ifs, it is desirable for this statement to be evaluated as far

up in the loop structure as possible. A terminal expression can not be lifted out

of the scope of a variable it uses, and any if statements that it is lifted past must

be split. For example:

If A Then f (x); B Else C → (If A Then f (x) Else UNIT ); (If A Then B Else C)

If-Factorization. If statements or conditions are eliminated if they can be proven

to be ineffectual. This occurs if the then and else clauses can be shown to be
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equivalent, or if the condition can be shown as always being true or false.

Block-Factorization.

Two if statements with identical conditions, both defined as part of a single

block are merged together. Similarly, functions being applied to the same value

are merged into one function with a single block inside. For example:

Apply(λx. f (x), A); Apply(λx.g(x), A)→ Apply(λx.( f (x); g(x)), A)

K3 Optimizations in DBToaster Relational Calculus. It is possible to view

many of the optimizations used in this stage as simply different “parenthesiza-

tions” of a calc t expression. For example, composing two filter operations

can be thought of as the associative equivalence:

(m[][x, y] · (x > 0)) · (y > 0) = m[][x, y] · ((x > 0) · (y > 0))

However, two things prevent this approach from being more effective: (1) Us-

ing associativity as a way of expressing these sorts of optimization decisions

necessitates an extremely complex infrastructure for generating compiled code

– In general, the product operator can be translated into anything from func-

tion application to a natural join. Performing these sorts of optimizations on

a functional language makes it possible to have two “dumb” translation lay-

ers (calc t to K3 and K3 to output language) and an independent and iso-

lated optimizer, rather than a single translation layer that is intricately linked

into the optimization process. (2) DBToaster relational calculus does not have

a mechanism for expressing cross-expression (i.e, block-level) optimizations –

each calc t represents only a single computation. The K3 optimizer can com-

bine multiple independent loops.
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5.4 Managing Storage in DBToaster

Typical DDMS workloads require large state, necessitating the use of suitable

storage techniques. Compared to traditional DBMS with primarily ad-hoc query

workloads, DDMS have more information to use when constructing a task-

specific storage solution.

With respect to its storage layer, DBToaster’s strategy for obtaining the per-

formance characteristics required of a DDMS is twofold:

1. The DBToaster compiler produces data structures designed specifically for

the compiled DDMS’ target query workload.

2. By analyzing the patterns with which data is accessed, DBToaster con-

structs a data layout strategy (for pages on a disk, servers in a cluster, etc.)

that limits IO overhead.

5.4.1 Data Structures

The simplest abstraction used by DBToaster to represent materialized views is

the multi-key (i.e., multi-dimensional) map. Fundamentally, a multi-key map is

a simple key-value store with structured (i.e., schema-defined) keys and values,

as well as some iteration capabilities.

Though similar to relational tables in this respect, there are two subtle, but

critical differences:

• The map’s value at each point is defined not by the data stored in it, but
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rather as a function (subquery) over the state of the database.

• Unlike a relational table, where absent keys imply NULL values, multi-

key maps are defined for all keys conforming to the map’s schema.

These two differences are closely related. A map’s value must be defined for

all keys, because all updates are specified as deltas. In the absence of prior state,

this value can be derived from lower level maps, or the base relations.

Interestingly, for non-nested queries without inequalities, this value always

begins at zero. So long as a map is maintained incrementally in its entirety,

DBToaster never needs to compute the initial value.

Slicing. Generated code does not typically iterate over the entire map data-

structure. In the common case, statements iterate over keys matching a selection

predicate. Consequently code generated by DBToaster performs map lookups

by slicing – selecting lower-dimensional cuts through the map’s key space. The

code provides a partial key, fixing some dimensions and establishing (implic-

itly) an iterator over the remaining ones.

Example 5.4.1 Recall the code listing in Figure 5.3, and in particular the second state-

ment of the on insert customer trigger.

m[][ordkey, sprior] += m_c[][ck, ordkey, sprior];

This statement is a partial lookup on map m c with only ck defined by the trigger

arguments. The resulting value (which in turn, is used to update m) is equivalent to a

2-key map – the slice taken by fixing ck to the corresponding trigger argument value.
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In addition to exact and partial lookups, DBToaster maps support range

lookups by inequality predicates.

Implementing Maps. In their simplest form, out-of-core maps are implemented

by a simple relational-style key-value store with secondary indices [69].

Inequality predicates, and aggregations including such predicates, are im-

plemented efficiently using maps that store cumulative sums [41]. Maps can

apply compression techniques to address frequently repeating data.

DBToaster customizes the data structures backing each materialized view

based on statement-level information on accesses, applying static compile-time

techniques to construct specialized data structures.

With substantial specialization of data structures as part of compiling tran-

sitions, DBToaster is free to consider a range of runtime issues in data structure

tuning and adaptation, including how to best perform fine-grained operations

such as incremental and partial indexing [82]. The key challenge to be addressed

is how to provide data structures with a low practical update cost (avoiding ex-

pensive index rebalancing and hash-table re-bucketing) while gradually ensur-

ing the lookup requirements of DBToaster’s data structures are retained over

time, amortizing data structure construction with continuous query execution.

5.4.2 Partitioning and Co-clustering

Database partitioning and co-clustering decisions are traditionally made based

on a combination of (a) workload statistics, (b) information on schema and in-

tegrity constraints (such as key-foreign key constraints, a popular basis for co-
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clustering decisions), and (c) a body of expert insights into how databases ex-

ecute queries. Ideally, such decisions should be based on a combination of (a),

(b), and a data flow analysis of the system’s query execution code, instantiated

with the query plan, or view maintenance code. In classical DBMS however,

this is too difficult to be practical.

Fortunately, data flow analysis turns out to be feasible for compiled DDMS

transition programs: in fact, it is rather easy. A transition program statement

reads from several maps and writes to one, prescribing dependencies between

those maps occurring on the right-hand side of the statement (reading), and the

one on the left-hand side (writing). As pointed out in Section 5.2, transition pro-

gram statements admit a perfectly data-parallel implementation: consequently,

a statement never imposes a dependency between two items of the same map

and any horizontal partitioning across the involved maps map keeps updates

strictly local.

Using these data flow dependencies, partitioning and co-clustering deci-

sions can be made by assigning a data statistics-dependent cost to placing de-

pendent data in different partitions and solving a straightforward min-cut style

optimization problem.

DBToaster implements its analysis of data-flow dependencies by abstracting

these dependencies into a messaging graph, such as the one illustrated in Fig-

ure 5.8. A transition function is represented as a bipartite directed hypergraph;

nodes on the left represent portions of the database being read from, nodes on

the right represent a portions being written to, and each hyperedge represents

an independent subtask of the transition function. An example is shown in Fig-

ure 5.8a.
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Figure 5.8: An example of a messaging graph based on Exam-
ple 5.2.1’s query q (a) The messaging graph for the
on insert customer event. (b) The effects of splitting
view m c on ordkey. (c) The effects of splitting m c on
custkey.

For example, consider the transition function that results from an update to

the customer table. One specific subtask of this transition reads m c and writes

to m. Treating each view as a node, this task has one edge with one read node

and one write node.

DBToaster considers database layout in terms of how it partitions data across

a physical medium (i.e., memory, disk pages, or a cluster). Viewed through the

messaging graph, a partitioning is an assignment of all nodes in the graph to one

(or more, in the case of replication) partition. For example, if they were small

enough, m and m c might be placed on one disk page each. Thus, the subtask

requires a read from one page, and an update to a second page – 2 pages in total.

Subdivision of individual views is represented in the messaging graph by

splitting graph nodes. Of particular interest is how the new nodes interact with

the hyperedge(s) connected to the original node. As the split occurs, a node

may stay connected to a hyperedge, the hyperedge may also be split, or in some
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cases, only one node will remain connected (see Figure 5.8b,c). DBToaster can

exploit the limited range of node split/hyperedge interactions to select an effec-

tive partitioning scheme. This distinction is very similar to the different compo-

sition operators of Dryad’s [44] vertex programs – DBToaster can easily assign

the correct composition operator to each vertex in a messaging graph.

Example 5.4.2 When partitioning m c, horizontal partitioning on the value of ordkey

increases the number of nodes connected to the on insert customer task edge,

while using custkey does not provoke an increase. If the data represented by these

nodes is split across multiple disks or servers, the computation must still access all

of them. The roles are reversed for the on insert order task edge. Under the

(minimal) assumption that both types of insert events occur with identical frequency,

DBToaster partitions on both keys to minimize the number of connected nodes. If ad-

ditional information is available about the distribution of event frequencies, DBToaster

can partition accordingly.

Additional knowledge about the dataset enhances the messaging graph pro-

duced by DBToaster. For instance, the ER diagram can be integrated into the

messaging graph – the chain of foreign key dependencies in q is strictly hierar-

chical. DBToaster uses this information and creates partitions along a single axis

with a secondary index to bound the number of partitions accessed by each up-

date subtask, with respect to the total number of partitions generated. Similarly,

this information is used by DBToaster to select a partitioning scheme that places

nodes typically connected by a subtask into a single partition; this is analogous

to co-clustering in a traditional DBMS.
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5.5 DBToaster in the Cloud

Scaling up a DDMS requires not only storing progressively more data, but also

a dramatic increase in computing resources. As alluded to in Section 5.4, DDMS

and their corresponding transition programs are amenable to having their data

distributed across a cluster:

1. The only data structures used by transition programs are maps, which are

amenable to horizontal partitioning.

2. At the granularity of a single update, iterative computations are com-

pletely data-parallel.

3. The effect of a sequence of updates (i.e., executing the corresponding trig-

ger functions) is independent of the order in which the updates are ap-

plied.

Update Processing Consistency and Isolation. In DBToaster, transition func-

tions are created for serial execution – the code of a transition function assumes

that it is operating on a consistent snapshot of the DDMS’s state. The entire

sequence of statements composing the trigger function must be executed atomi-

cally as one operation, to ensure that each statement operates on maps resulting

from fully processing the update stream prior to the update that fired the trig-

ger. Thus the effects of updates should be fully isolated from each other. Similar

issues and requirements have been raised before in the single-site context of

view maintenance with the “state bug” [22].

Our requirement of processing updates in such an order is conservative, in-

deed DBToaster could apply standard serializable order concurrency control
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here to simultaneously process updates that do not interact with each other. En-

suring atomicity is the first of the two core challenges involved in constructing

a distributed DDMS runtime.

The underlying goal is to develop simple techniques that avoid heavyweight

locking and synchronization of entries in massively horizontally partitioned

maps. This goal is achieved by being conservative, and focusing on lightweight

protocols.

5.5.1 Distributed Execution

Each update in DBToaster’s distributed DDMS runtime design employs three

classes of actor:

• source nodes: Nodes hosting maps read by the update’s trigger function

(maps appearing on the right-hand side of the function’s statements).

• computation nodes: The nodes where statements are evaluated.

• destination nodes: Nodes hosting maps written to by the update’s trigger

function (maps appearing on the left-hand side of the function’s state-

ments).

Note that these actors are logical entities; it is not necessary (and in fact, typ-

ically detrimental) for the actors to be on separate physical nodes within the

cluster. Note also that the other extreme is not typically possible; distribution

always introduces some amount of separation; the source nodes for one update

will be the destination nodes for another, and visa versa.
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Introducing a distinction between the different tasks involved in update pro-

cessing makes it possible to better understand the tradeoffs involved in the sec-

ond core challenge: selecting an effective partitioning scheme that intelligently

determines placements of logical entities in order to best utilize plentiful hard-

ware to handle a large update stream and DDMS state.

5.5.2 Execution Models

The issue of atomicity is addressed in DBToaster with two different execution

models:

• A protocol that provides a serial execution environment for transition pro-

grams.

• An eventual consistency protocol that provides the illusion of serial exe-

cution.

Serial Execution. The most straightforward way of achieving atomicity is to en-

sure that trigger functions are evaluated serially. However, requiring all nodes

in the cluster to block on a barrier after every update is not scalable.

A similar effect can be achieved more efficiently by using fine-grained bar-

riers, where each update is processed by first notifying all of the update’s des-

tination nodes of an impending write. Reads at the update’s source nodes are

blocked while writes from prior updates are pending.

Serial execution requires a global ordering of updates as they arrive at the

DDMS. Techniques to achieve this include:
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• Updates arrive only from a single producer (e.g., the cluster is maintaining

a data warehouse that mirrors a single OLTP database).

• A central coordinator generates a global ordering (as in [72]).

• A distributed consensus protocol generates a global ordering (as in [47]).

• A deterministic scheme produces a global ordering. For example, each up-

date producer generates timestamps locally and identical timestamps in a

global view are settled with a deterministic tiebreaker like the producer’s

IP address.

Serial execution also needs a mechanism to provide consistent delivery of

updates from multiple producers. Before completing a read, source nodes must

not only ensure that all prior pending writes have been completed, but also that

all notifications for prior updates have been received.

A simple solution is to channel all updates through a single server. This has

the advantage of also providing a global ordering over all updates. However, a

single-server solution creates a scalability bottleneck. Alternative solutions like

broadcasting updates or periodic commits are possible, but introduce consider-

able synchronization overheads.

Speculative Execution with Deltas. Rather, DBToaster favors the use of spec-

ulative and optimistic processing techniques for it’s runtime’s execution proto-

col. The key insight here is that DBToaster’s computations are all based on in-

cremental processing. Unlike the standard usage of speculative execution, any

work done speculatively need not be thrown away entirely – rather any work

done can be revised through increments or deltas, to arrive at the final desired

outcome.
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In particular, a node can optimistically perform reads virtually immediately;

it need not block on the vague possibility of a potential future write, although it

could potentially be beneficial to block on pending write operations which the

node is already aware of.

Avoiding blocking on potential future writes eliminates significant synchro-

nization overheads, but out-of-order updates can cause the atomicity and de-

sired ordering properties of trigger execution to be lost. DBToaster favor this

point in the design space, since out-of-order events are expected to occur infre-

quently.

Furthermore, such events are likely to interfere with only a handful of prior

updates: for example a write on one map entry followed by an out-of-order read

on a different entry in the same map do not cause a problem. Finally, because

write operations are limited to additive deltas, there is a clear mechanism for

composing out-of-order writes.

Concretely, the effect of atomicity on a trigger program is restored by us-

ing a timestamping mechanism (one of the several options described above) to

establish a canonical order of operations between the updates.

However, without synchronization measures, it is still possible for updates

to arrive out of this newly defined canonical order. Frequently, this will not

be an issue – a write on one map entry followed by an out-of-order read on a

different entry in the same map do not cause a problem. Furthermore, because

write operations are limited to additive deltas, there is a clear mechanism for

composing out-of-order write operations.
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<1> : mC[2] →
192.168.1.37

<4> : mR[6] → 
192.168.1.3

<5> : mC[1] → 
192.168.1.42Read Log: 

<2> : +2 <7> : -1Map mC[1]: 

mC[2]: <2> : +2 <5> : +2 <6> : +2

...mC[...]: 

Write log for mC[1] Read mC[1] at 
timestamp <5>

sent to 192.168.1.42

Wrote increment 
mC[2] by +2 at 
timestamp <6>

...mR[...]: 

...... : 

<3> : md[*,1] · me[2,1] →
192.168.1.82; {data}Operation Log: <8> : md[*,3] · me[5,3] →

192.168.1.29; {data}

Computed md[*,1] · me[2,1] 
at timestamp <3> 

sent results to 192.168.1.82

Figure 5.9: Supplemental data structures used to facilitate speculative ex-
ecution in a distributed DDMS.

5.5.3 Out-of-Order Processing

Two types of out-of-order operations can occur in the speculative execution

model: write-before-read, and read-before-write. We supplement maps with

three additional data structures capturing timestamp information for opera-

tions, as illustrated in Figure 5.9:

• Read Log: Source nodes maintain a record of all read operations per-

formed on their local maps. This information is supplemented with the

identifier the compute node(s) which employ the data being read.

• Operation Log: Compute nodes maintain a record of all compute tasks

which they perform. This information is supplemented with references to

cached copies of all data received as part of this computation.

• Write Log: Destination nodes maintain a record of all write operations

performed – in effect it can reconstruct the state of a map (to the best of its
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knowledge) at any arbitrary timestamp. A compact representation with

this property is a map that stores a log of (timestamp <t>, value) pairs,

rather than individual values.

Out-of-order Reads. In the case of an out-of-order read operation (i.e., one that

arrives after a write operation that logically precedes it), the write log makes it

possible to reconstruct the state of the map at an earlier point in time.

Example 5.5.1 Given the initial state in Figure 5.9, an update that requires a read on

entry mC[2] arrives with timestamp <3>.

The value sent to the computation nodes is not the most recent value of the entry

(mC[2] = 6 for all timestamps after <6>), but rather the sum of all values with lower

timestamps (mC[2] = 2 for timestamps <3>,<4>, and <5>).

Out-of-order Writes. In the case of an out-of-order write operation, the read

log allows us to send a revising update to each computation node affected by the

write – which can then correct its computation by using the operation log.

Example 5.5.2 Given the initial state in Figure 5.9, an update that requires a write on

entry mR[6] arrives with timestamp <3>.

The value will be written as normal (i.e., inserted into the write log for mR[6], in

sorted timestamp order). Additionally, because the read log shows a read on the same

entry with a later timestamp, a corrective update will be sent to the computation node(s)

to which the entries were originally sent to.

Each affected computation node will consult its local operation log, modify the in-

put data accordingly, repeat the computation, and forward the revising update to the
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corresponding destination node(s).

Note that the operation log process could potentially be optimized even fur-

ther by applying the DBToaster compilation algorithm to the computation itself;

the revising update can essentially be thought of as a delta to the output of the

computation.

Garbage Collection. All three data structures grow over time. To prevent un-

bounded memory usage, it is necessary to periodically truncate, or garbage col-

lect the entries in each. This in turn, requires the runtime to periodically iden-

tify a cutoff point, the “last” update for which there are no operations pending

within the cluster. The read history is truncated at this point, and all writes

before this point are coalesced into a single entry. Though this process is slow,

it does not interfere with any node’s normal operations, and can be performed

infrequently, for example once every few seconds.

Hybrid Consistency. While the speculative execution model and its eventually

consistent results are advantageous from a performance and scalability perspec-

tive, there may not be a point at which the state of all maps in the system cor-

responds to a consistent snapshot of a transition programs evaluated over any

prefix of the update stream.

That is, there is no guarantee that the system has actually converged to its

eventually consistent state in the presence of a highly dynamic update stream.

However, a side effect of the garbage collection process is that each garbage

collection run, in effect generates a consistent snapshot of the system. As in

other eventual consistency systems [84], this approach offers a hybrid consis-

tency model, specifically the same infrastructure produces both low-latency
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eventually consistent results, as well as higher-latency consistent snapshots.

5.5.4 Partitioning Schemes

The second challenge associated with distributing a transition program across

the cluster is the distribution of logical nodes (source, computation, and desti-

nation) across physical hardware in the cluster.

In addition to more complex, min-cut based partitioning schemes for the

data, DBToaster considers two simple partitioning heuristics for distributing

computation:

1. data shipping: evaluate program statements where their results will be

stored, at destination nodes, or

2. program shipping: evaluate program statements where their input maps

are stored, at source nodes.

Data-Shipping. Given the one-to-one correspondence between computation

nodes and destination nodes, the simplest partitioning scheme is to perform

computations where the data will be stored – that is, to co-locate the destina-

tion and computation nodes. As part of update evaluation, each source node

transmits all relevant map entries to the destination node. Upon arrival, the

destination node evaluates the statement and stores the result.

Program-Shipping. Though simple, transmitting every relevant map entry with

every update can be wasteful, especially if map entries on the source side don’t

change frequently. An alternative approach is to co-locate all of the source nodes
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and the computation node. When evaluating an update, the computation can be

performed instantaneously, and the only overhead is transmitting the result(s)

to the destination node(s). Program-shipping is particularly effective in queries

where update effects are small (e.g., queries consisting mostly of equijoins on

key columns).

However, program-shipping approach introduces an additional complica-

tion. It is typically not possible to generate a partitioning of the data that en-

sures that for each statement in a trigger program, all the source nodes will be

co-located. In order to achieve a partitioning, data must be replicated; each map

is stored on multiple physical nodes. While replication is typically a desirable

characteristic, storage-constrained infrastructures may need to use a more com-

plex partitioning scheme.

5.6 Evaluation

The DBToaster implementation consists of a compiler and a runtime: The com-

piler produces C++ or OCaml code suitable for standalone use with the runtime

component, or for embedding into another application.

A thorough evaluation of the DBToaster concept was originally performed

by Ahmad and Koch and has not been published. Substantial improvements

and generalizations to DBToaster’s formalisms and compilation process have

been achieved since then. However, the original experiments remain valid for

the outputs produced by DBToaster. These initial results are presented here.

The evaluation was performed on a Dual Intel Xeon 5335 machine with 8
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cores running at 2.0 GHz, and 16 GB of RAM, running Ret Hat Enterprise Linux

4 (Kernel 2.6.18).

DBToaster’s performance was tested on the single threaded C++ code it gen-

erates, compiled with g++ 4.3.2 with optimization level “-O3” and flags for ag-

gressive inlining and loop optimizations. The evaluation compared DBToaster

against equivalent queries run on Postgres 8.3.7, as well as code produced by a

non-incremental version of DBToaster that processes queries all at once, rather

than by using an incrementally maintained agile view.

VWAP. The first comparison point was a parameterized version of the VWAP

query presented in Example 1.2.1. The VWAP query was run over historical

data for the MSFT (Microsoft) ticker symbol from the TotalView-ITCH [1] his-

torical order book, representing the NASDAQ stock exchange over the three

month period from December 2008 to February 2009.

DBToaster’s incremental strategy ensures that query results are updated with

each update. For the non-incremental evaluation strategies that DBToaster was

compared against, the number of times over the simulated three month period

that the query results are refreshed was varied. Figure 5.10 illustrates the trade-

off point for VWAP: The cost of fully re-evaluating the query about 25 times over

the three month period begins to exceed the overheads of incremental mainte-

nance. Figure 5.11 shows this same data and provides a comparison with Post-

gres.

Star Schema Benchmark. The second evaluation point is the Star Schema Bench-

mark [71] (SSB), a denormalized form of the TPC-H [86] benchmark, intended to

be representative of data warehousing workloads. The experiment is based on
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Figure 5.10: Tradeoff between Batch Processing and Incremental Compu-
tation on VWAP

Number of Refreshes DBToaster DBToaster-Nonincremental Postgres
10 414.5 236.0 1712.7
20 414.5 396.8 3156.4
30 414.5 514.4 4580.2
40 414.5 718.0 6070.8
50 414.5 850.3 7520.3

Figure 5.11: Time to complete the VWAP query relative to the number of
requests posed over the dataset

loading a data warehouse – input data taken from the TPC-H benchmark data

generator is first prepared with a data cleaning and transformation query and

immediately analyzed with SSB query 4.1, a join-aggregate query that computes

per-year profit for several nations.

As before, the refresh rate is varied for the non-incremental systems. The

tradeoff point is presented in Figure 5.12 and the full set of results are presented

in Figure 5.13.
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Figure 5.12: Tradeoff between Batch Processing and Incremental Compu-
tation on the star schema benchmark

Number of Refreshes DBToaster DBToaster-Nonincremental Postgres
2 18.72 6.89 348.40
4 18.72 11.02 700.97
6 18.72 15.26 1053.63
8 18.72 19.53 1411.34

12 18.72 28.09 2131.52
16 18.72 36.61 2856.84
20 18.72 45.65 3612.32

Figure 5.13: Time to complete the star schema query relative to the number
of requests posed over the dataset
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CHAPTER 6

CONCLUSIONS

In the words of Jim Gray, “The world of science has changed, and there is

no question about this. The new model is for the data to be captured by in-

struments or generated by simulations before being processed by software and

for the resulting information or knowledge to be stored in computers. Scien-

tists only get to look at their data fairly late in the pipeline. The techniques and

technologies for such data-intensive science are so different that it is worth dis-

tinguishing data-intensive science from computational science as a new, fourth

paradigm for scientific exploration” [40]

As computer scientists, it is our responsibility to step up to this challenge

of providing scientists and researchers with usable and relevant tools for man-

aging, understanding, and analyzing large amounts of data. In my research,

I have addressed two key challenges in this grand undertaking: (1) Providing

tools for dealing with uncertainty in data, and (2) Providing tools for complex

monitoring of large, frequently changing state.

Grey-Box Probabilistic Databases. Probabilistic databases are intended gener-

alize the analysis of probabilistic data. This sort of generalization enables the ap-

plication of traditional database techniques (as well as technologies) to a much

broader range of scientific problems, which in turn improves the efficiency and

feasibility of large scale scientific data analysis of probabilistic data.

The use of stochastic black-box functions to define probability distributions

has been a major step forward for the application of probabilistic databases to

real-world problems. As they allow the integration of virtually any distribution
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into a powerful data-processing framework, these VG-Functions have shown

themselves to be extremely relevant, but not sufficiently efficient to be useful in

a broad range of contexts.

By carefully providing users with the option of removing bits of the opac-

ity associated with these black-box functions, we can turn them into grey-box

functions. The additional understanding about the function’s characteristics

(whether derived from user input, or programmatically from the function it-

self) provides users with a clean and relevant interface for building models over

arbitrary probability distributions, while still retaining enough efficiency to be

useable.

PIP. PIP was the first instantiation of a grey-box probabilistic database. PIP uses

a symbolic representation for data, which completely characterizes the effects of

a query on the uncertainty in the query’s inputs. In this way, it is able to exploit

useful characteristics of the distributions being queried in order to improve per-

formance and accuracy for a wide range of queries – even with a very limited

and simplistic set of statistical tools.

Symbolic representations of uncertainty like C-Tables can be used to make

the computation of expectations and other statistical measures in probabilistic

databases more accurate and more efficient. The availability of the expression

being measured enables a broad range of sampling techniques that rely on this

information and allows more effective selection of the appropriate technique for

a given expression.

Jigsaw. is a powerful tool for evaluating and optimizing parameterized what-if

scenarios. Jigsaw efficiently performs parameter optimization, allows online ex-
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ploration of a scenario’s parameter space at interactive speeds, and rapid eval-

uation of a common class of Markovian processes.

The key to these three processes is a novel “fingerprinting” mechanism which

identifies correlations between similar, yet distinct probability distributions. Fin-

gerprints can be applied to several common tasks that arise in the domain of

cloud service management, and demonstrated that Jigsaw can achieve speedups

of as much as 2 orders of magnitude.

DDMS. I have described a new class of data management system, designed

for monitoring large, frequently changing state: the Dynamic Data Manage-

ment System (DDMS). Related to both stream processors and incremental view

maintenance, a DDMS is neither. Unlike stream processors, a DDMS supports

complex queries with persistent state. Unlike incremental view maintenance in

database systems, a DDMS supports high update rates.

The DBToaster compiler is part of a greater effort towards making DDMS a

reality. By using compilation techniques based on a recursive re-interpretation

of incremental view-maintenance, DBToaster is able to efficiently process ordi-

nary SQL queries incrementally. With not only the volume, but also the rate of

data used in modern scientific applications growing, as data storage becomes

progressively, DBToaster fills a vital niche in promoting research.

Both uncertainty and high-data-rate computations are critical challenges in

the world of science. I believe that these three projects are concrete steps to-

wards realizing Jim Gray’s vision of using computer science to support data-

intensive research, and will form the foundation for a wide array of scientific

tools.
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APPENDIX A

PIP QUERY Q3

create table ‘shipping_params’ as

select

avg (l_shipdate - o_orderdate) as ship_mu,

avg (l_receiptdate - l_shipdate ) as arrv_mu,

stddev(l_shipdate - o_orderdate) as ship_sigma,

stddev(l_receiptdate - l_shipdate ) as arrv_sigma,

l_partkey as p_partkey

from orders,lineitem

where o_orderkey = l_orderkey

group by partkey;

alter table params add constraint "p_partkey_pkey"

primary key (p_partkey);

-- BEGIN QUERY --

create temporary table q3_shipping as

select o_orderkey AS orderkey, o_custkey AS custkey,

CREATE_VARIABLE(‘Normal’,row(ship_mu,ship_sigma))

CREATE_VARIABLE(‘Normal’,row(arrv_mu,arrv_sigma))

from orders,lineitem,shipping_params

where p_partkey = l_partkey;

and o_orderdate = today()

and o_orderkey = l_orderkey;

create temporary table q3_annoyed as

select custkey from q3_shipping where ship > 120

union all
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select custkey from q3_shipping where arrv > 90;

create temporary table q3_order_increase as

select o_orderkey, o_custkey,

CREATE_VARIABLE(‘Poisson’, row(increase)) *

l_extended_price * (1.0 - l_discount) as rev

from (select newc / oldc as increase, custkey

from (select o_custkey as custkey,

sum(o_orderdate.year-1996.0) AS newc,

sum(1997.0-o_orderdate.year) AS oldc

where o_orderdate.year = 1997

or o_orderdate.year = 1996

group by custkey

) as counts

) as increase_per_cust,

orders

where custkey = o_custkey

) as var_increase_per_customer,

(select lineitem.*,

from nation,supplier, lineitem, partsupp

where n_name = ’japan’ and n_nationkey = s_nationkey

and s_suppkey = ps_suppkey

and ps_partkey = l_partkey

and ps_suppkey = l_suppkey

) as items_from_japan;

-- BEGIN SAMPLING --

select avg(confidence),
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Figure A.1: A dataflow diagram of query 3. Dotted lines represent proba-
bilistic data.

expected_sum(rev, q3_annoyed)

from q3_annoyed,

(select o_custkey as custkey, rev

from q3_revenue_gains

) as revenues

where revenues.custkey = q3_annoyed.custkey;

Query 3 is based on [46]’s Q1 and Q2 and represented graphically in Figure

A.1. A prebuilt table of shipping and construction times is used to parametrize

Normal distributions that predict time from order to shipment and time from

shipment to arrival.

Note the use of the CREATE VARIABLE function to create these variables.

This table is compared against arbitrary customer satisfaction thresholds to gen-

erate a probabilistic table containing a customer if the customer was dissatisfied
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with the shipping times (we selected thresholds that left an average of 10% of

customers dissatisfied by at least one event).

Also note that probabilistic variables may be used in WHERE clauses in the

same way as deterministic ones.

Separately, the query computes the expected profit for each customer and

joins it with the table of dissatisfied customers to estimate the amount of profit

lost in the coming year.
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APPENDIX B

A DBTOASTER WORKFLOW EXAMPLE

Recall the simple query defined in ToaStQL in Example 5.3.1:

CREATE TABLE R(A int, B int)

FROM FILE ’test/data/r.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

CREATE TABLE S(B int, C int)

FROM FILE ’test/data/s.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

CREATE TABLE T(C int, D int)

FROM FILE ’test/data/t.dat’ LINE DELIMITED

CSV (delimiter := ’,’, schema := ’int,int’,

eventtype := ’insert’);

SELECT sum(A*D) FROM R,S,T WHERE R.B=S.B AND S.C=T.C;

As in the example, the CREATE TABLE statements are set aside for later use.

Meanwhile, the SELECT query is rewritten into a DBToaster relational calculus

AggSum by multiplying the query’s FROM, target, and WHERE clauses.

AggSum([], R[R_A,R_B] * S[S_B,S_C] * T[T_C,T_D] * R_A * T_D *

(R_B = S_B) * (S_C = T_C))

After a simplification step, this becomes (with variable names substituted

for readability):
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AggSum([], R[A,B] * S[B,C] * T[C,D] * A * D)

Following the process illustrated in Example 5.2.1 and discussed further in

Section 5.3.3, this expression is compiled into an incremental plan, as illustrated

in this diagram:

Q: Sum(R(a,b)*S(b,c)*T(c,d)*a*d)

BasicMap

Q_R: Sum([b],S(b,c)*T(c,d)*d)

BasicMap

ON R(a,b): a*Sum(S(c,d)*d) ON T(c,d): d*Sum(R(a,b)*a)

ON S(b,c): 
Sum([c], T(c,d)*d)

Q_S1: Sum([b],R(a,b)*a)

BasicMap

Q_T: Sum([c],R(a,b)*S(b,c)*a)

BasicMap

ON S(b,c): 
Sum(R(a,b)*a)*Sum(T(c,d)*d)

Q_S2: Sum([c],T(c,d)*d)

BasicMap

ON T(c,d):
Sum([b]S(b,c)*d)

Q_RS: Sum([c],T(c,d)*d)

BasicMap

Q_RT: S(b,c)

BasicMap

Q_TS: Sum([b],R(a,b)*a)

BasicMap

Q_TR: S(b,c)

BasicMap

ON R(a,b)
Sum([c],S(b,c)*a)

ON S(b,c):
Sum([a], R(a,b)*a)

ON R(a,b): aON S(b,c): 1ON S(b,c): 1ON T(c,d): d

ON R(a,b): a ON T(c,d): d

The materializing optimizer runs on this plan. It will notice several identical

maps, namely that QRT ≡ QTR, QS 1 ≡ QTS , and QS 2 ≡ QRS . For each equivalent

pair, one will be replaced by the other. For this query, no further optimizations

are performed.
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The optimized incremental plan will be reduced down to a program sketch

as follows:

TABLES { R: [...], S: [...], T: [...] }

MAPS {

Q[][],

Q_R[][B]

Q_T[][C]

Q_RS[][C]

Q_RT[][B,C]

Q_TS[][B]

}

EVENTS {

+R(A,B)

Q[][] += A * Q_R[][B]

Q_T[][C] += A * Q_RT[][B,C]

Q_TS[][B] += A

+S(B,C)

Q[][] += Q_TS[][B] * Q_RS[][C]

Q_R[][B] += Q_RS[][C]

Q_T[][C] += Q_TS[][B]

Q_RT[][B,C] += 1

+T(C,D)

Q[][] += D * Q_T[][C]

Q_R[][B] += D * Q_RT[][B,C]

Q_SR[][C] += D

}
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For brevity, only the insertion events are shown. Deletion events are im-

plemented as the negation of the above expressions, while update events are

implemented as a deletion followed by an insertion. This program sketch is

translated into K3, an excerpt of which (for insertions of R) is shown below:

ON_insert_R(QUERY_1_1S1R_A,QUERY_1_1S1R_R__B)

PCValueUpdate(SingletonPC("QUERY_1_1"),[],[],

Apply(

Lambda(AVar("current_v",TFloat),

Add(Var("current_v"),

Mult(Var("QUERY_1_1S1R_A"),

Apply(

Lambda(AVar("slice",Collection(TTuple(TFloat ; TFloat))),

IfThenElse(Member(Var("slice"),[Var("QUERY_1_1S1R_R__B");]),

Lookup(Var("slice"),[Var("QUERY_1_1S1R_R__B");]),

Apply(

Lambda(AVar("init_val",TFloat),

Block(

[PCValueUpdate(OutPC("QUERY_1_1R1"),[],

[Var("QUERY_1_1S1R_R__B");],Var("init_val"));

Var("init_val");])),Const(CFloat(0.))))),

OutPC("QUERY_1_1R1"))))),SingletonPC("QUERY_1_1")))

Iterate(

Lambda(ATuple(["QUERY_1_1T_T__C",TFloat;"updated_v",TFloat]),

PCValueUpdate(OutPC("QUERY_1_1T1"),[],[Var("QUERY_1_1T_T__C");],

Var("updated_v"))),

Apply(

Lambda(AVar("current_slice",Collection(TTuple(TFloat ; TFloat))),

Map(

Lambda(ATuple(["QUERY_1_1T_T__C",TFloat;"dv",TFloat]),

IfThenElse(Member(Var("current_slice"),[Var("QUERY_1_1T_T__C");]),

Tuple(Var("QUERY_1_1T_T__C"),

Add(Lookup(Var("current_slice"),[Var("QUERY_1_1T_T__C");]),
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Var("dv"))),

Tuple(Var("QUERY_1_1T_T__C"),Add(Const(CFloat(0.)),Var("dv"))))),

GroupByAggregate(

AssocLambda(ATuple(["QUERY_1_1S1R_R__B",TFloat;

"QUERY_1_1T_T__C",TFloat;"v",TFloat]),

AVar("accv",TFloat),

Add(Var("v"),Var("accv"))),Const(CFloat(0.)),

Lambda(ATuple(["QUERY_1_1S1R_R__B",TFloat;"QUERY_1_1T_T__C",TFloat;

"v",TFloat]),

Tuple(Var("QUERY_1_1T_T__C"))),

Map(

Lambda(ATuple(["QUERY_1_1S1R_R__B",TFloat;"QUERY_1_1T_T__C",TFloat;

"v2",TFloat]),

Tuple(Var("QUERY_1_1S1R_R__B"),Var("QUERY_1_1T_T__C"),

Mult(Var("QUERY_1_1S1R_A"),Var("v2")))),

Apply(

Lambda(AVar("slice",Collection(TTuple(TFloat ; TFloat ; TFloat))),

Slice(Var("slice"),[Var("QUERY_1_1S1R_R__B");])),

OutPC("QUERY_1_1R1T1")))))),OutPC("QUERY_1_1T1")))

PCValueUpdate(OutPC("QUERY_1_1S1"),[],[Var("QUERY_1_1S1R_R__B");],

IfThenElse(Member(OutPC("QUERY_1_1S1"),[Var("QUERY_1_1S1R_R__B");]),

Apply(

Lambda(AVar("current_v",TFloat),

Add(Var("current_v"),Var("QUERY_1_1S1R_A"))),

Lookup(OutPC("QUERY_1_1S1"),[Var("QUERY_1_1S1R_R__B");])),

Add(Var("QUERY_1_1S1R_A"),Const(CFloat(0.)))))

Next, the K3 optimizer iterates over the code.

ON_insert_R(QUERY_1_1S1R_A,QUERY_1_1S1R_R__B)

IfThenElse(Member(OutPC("QUERY_1_1R1"),[Var("QUERY_1_1S1R_R__B");]),

PCValueUpdate(SingletonPC("QUERY_1_1"),[],[],

Apply(
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Lambda(AVar("current_v",TFloat),

Add(Var("current_v"),

Mult(Var("QUERY_1_1S1R_A"),

Lookup(OutPC("QUERY_1_1R1"),[Var("QUERY_1_1S1R_R__B");])))),

SingletonPC("QUERY_1_1"))),

PCValueUpdate(SingletonPC("QUERY_1_1"),[],[],

Apply(

Lambda(AVar("current_v",TFloat),

Add(Var("current_v"),

Mult(Var("QUERY_1_1S1R_A"),

Apply(

Lambda(AVar("init_val",TFloat),

Block(

[PCValueUpdate(OutPC("QUERY_1_1R1"),[],

[Var("QUERY_1_1S1R_R__B");],Var("init_val"));Var("init_val");])),

Const(CFloat(0.)))))),SingletonPC("QUERY_1_1"))))

Iterate(

Lambda(ATuple(["QUERY_1_1T_T__C",TFloat;"updated_v",TFloat]),

PCValueUpdate(OutPC("QUERY_1_1T1"),[],[Var("QUERY_1_1T_T__C");],

Var("updated_v"))),

Map(

Lambda(ATuple(["QUERY_1_1T_T__C",TFloat;"dv",TFloat]),

IfThenElse(Member(OutPC("QUERY_1_1T1"),[Var("QUERY_1_1T_T__C");]),

Tuple(Var("QUERY_1_1T_T__C"),

Add(Lookup(OutPC("QUERY_1_1T1"),[Var("QUERY_1_1T_T__C");]),Var("dv"))),

Tuple(Var("QUERY_1_1T_T__C"),Add(Const(CFloat(0.)),Var("dv"))))),

GroupByAggregate(

AssocLambda(ATuple(["QUERY_1_1S1R_R__B",TFloat;"QUERY_1_1T_T__C",TFloat;

"v2",TFloat]),AVar("accv",TFloat),

Add(Mult(Var("QUERY_1_1S1R_A"),Var("v2")),Var("accv"))),

Const(CFloat(0.)),

Lambda(ATuple(["QUERY_1_1S1R_R__B",TFloat;"QUERY_1_1T_T__C",TFloat;"v2",TFloat]),

Tuple(Var("QUERY_1_1T_T__C"))),
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Slice(OutPC("QUERY_1_1R1T1"),[Var("QUERY_1_1S1R_R__B");]))))

IfThenElse(Member(OutPC("QUERY_1_1S1"),[Var("QUERY_1_1S1R_R__B");]),

PCValueUpdate(OutPC("QUERY_1_1S1"),[],[Var("QUERY_1_1S1R_R__B");],

Apply(

Lambda(AVar("current_v",TFloat),

Add(Var("current_v"),Var("QUERY_1_1S1R_A"))),

Lookup(OutPC("QUERY_1_1S1"),[Var("QUERY_1_1S1R_R__B");]))),

PCValueUpdate(OutPC("QUERY_1_1S1"),[],[Var("QUERY_1_1S1R_R__B");],

Add(Var("QUERY_1_1S1R_A"),Const(CFloat(0.)))))

Finally, the K3 program is compiled directly into OCaml or C++.
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