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ABSTRACT

Sugar beet main roots (MR) break during lifting causing a considerable loss of saleable product in

the field. These losses are caused by stresses developed into the MR during lifting. In this work an

analysis of the strength of beet secondary roots and rootlets as well as the tensile, compressive, shear

and bending strength of MR parts is presented. The main root is composed, from the strength point of

view, of two materials: (1) The parenchyma which is more abundant in the inner parts. It is relatively

weak in tension (mean strength 2.1 MPa, range 0.65-4.29 MPa) but stronger in compression (mean

strength 3.05 MPa range 2.50-4.00 MPa ) and (2) The vascular tissue, which forms several rings

within the  parenchyma. The rings are denser in the outer parts of the root especially near the

epidermis. The vascular tissue is stronger in tension than the parenchyma (mean strength in tension of

outer parts of root  2.8 MPa range 1.4 -4.46 MPa). It was found that secondary roots and rootlets

required an average force of 39.6 N to break sections of 15 mm in diameter. The main mean root

shear strength was 0.60 MPa when the shearing load  was applied at the plane normal to the plane

including the root grooves and 0.68 MPa at the plane including the root grooves.  When the main root

was subject to bending the maximum strength in tension or compression of the outer layers depends

on the dimensions of the breaking section. Two exponential relationships and one inverse were fitted

to the data, which can be used in modelling sugar beet lifting. The exponential formulae gave a better

and more realistic approximation of the root strength.

Keywords: Sugar beet, root strength, root lifting, harvesting losses, root breakages, root-metal

friction
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 INTRODUCTION

Sugar beet is, in most European countries, harvested by lifting the root from the soil

after removing the tops and the leaves. During this process main roots (MR) may break

leaving a part in the soil. These losses are called «dug losses» and they cause a  5% loss  of

saleable roots in Britain (Davies 1976) or a range from 5.4 to 13.8% in Greece (Gemtos et

al. 1998).  Work by von Hulst (1957), Gemtos (1980) and Miller (1984) suggested that

bending stresses developed during lifting could cause root fracture. According to the model

proposed by  Gemtos (1980), for pronged lifting shares, the MR is squeezed between the

prongs and pushed to move through the soil. The soil reacts to the MR movement by a force

whose limit is the soil strength. Due to a wedge action developed between prongs and the

MR, and the beet sliding on the inclined pronged shares, an upward force is developed

tending to uproot the beet. The MR is resisting uprooting by the force required to break the

tap and secondary roots and the adhesion force between root and soil. The forces on the MR

cause the development of stresses, which under certain conditions can cause root breakages

and dug losses.  A study of the physical properties of the beet root, namely its strength

properties as well as the properties of the interface between root and the metal parts of the

lifting mechanism is needed to understand the functioning of the lifting mechanism, and to

assess the risk of breaking under a given force combination.

Reported  work on sugar beet strength is limited.  Von Hulst et al (1957) tested

sections from different parts of the MR of 1 cm2 cross-section area in tension. They

concluded that the sugar beet MR is composed of different materials from the periphery to

the centre with strength varying from  4 MPa at the outer parts of the root to 1.6 MPa at

the middle. Maslikov and Bleednov (1971) have measured the compressive strength of the

MR at different water contents and at two directions along and across the groove. Yield
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strength  was 1.96-2.45 MPa with  small effect from water content. Strain was more

affected by the water content of the root. Ostrovski et al. (1970) have studied the cutting

process of sugar beet in the factory. They inferred from the literature that the modulus of

elasticity  of fresh beet was 6.5-14  MPa and for highly wilted beet 1.8  MPa.  They stated

also that the modulus of elasticity varied little when subject to tension, compaction and

bending. Alizadeh and Segerlind (1997) have measured the modulus of elasticity (mean

11.6 MPa), the Poisson ratio ( 0.35) and the normal stress at failure (2.54 MPa). They found

an increase of the modulus of elasticity during the harvesting season.

From the analysis of the forces acting on the beet MR during lifting presented in

Gemtos (1980), the friction coefficients of root skin and polished mild steel are needed for

the assessment of the forces developed. From that analysis two additive actions take place in

order to form the lifting force which will overcome the anchoring force as well as the weight

of the root and result in the proper lifting of the sugar beet:

(1) The action due to the pitch of the prongs results in a simple sliding of the root on metal

surfaces. In this case the coefficient of friction (coefficient of sliding friction FRsl)

between the two surfaces can be found experimentally by sliding pieces of root ‘skin’ on

metal surface. The coefficient of friction will then be calculated by dividing the maximum

pulling force by the normal load. The maximum pulling force is used because in the

present work the action takes place before the actual movement of the root, until the

anchoring force is overcome. The value of the static coefficient of sliding friction must

therefore be known.

(2) In the wedge-like action of the prongs on the MR, due to the squeezing of the MR,

pushed by the soil reaction, between the prongs, the friction coefficient is different

(friction coefficient due to wedge action FRw). It is highly possible that some local

curvature on the MR surface will be formed such that the friction will not be simply a
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resistance in sliding but also will include the force needed to overcome the unevenness of

the root and deformation of its surface.

Klapp (1964) has suggested that in actual conditions the MR slides on the prongs,

producing a certain line of contact, and therefore only one coefficient of friction should be

used. That is true when, after uprooting, the MR slides backwards relative to the prongs and

upwards relative to the soil surface.  But before the anchoring force is overcome, the two

actions take place at the same time and it seems most likely that two types of friction take

effect. Measurements of friction between beet root and different materials have been carried

out in USSR and reported by Burmistrova et al (1956). They measured the static coefficient

of friction for roots without cleaning the soil, as they came out after lifting. The normal

loads used were: the root own weight, 29.4 N, 58.9 N, 117.7 N. The values  found are

shown in Table 1.

As it can be seen from the table, the static coefficient of friction decreased with

increasing loads. Klapp (1964) reported that in a previous work in Germany (he did not give

the reference) the coefficient of friction between roots and a metal surface was measured

and found equal to 0.7. But as Klapp pointed out, a coefficient of friction as high as that

would make the lifting of beet roots difficult if not impossible. Klapp has estimated by

indirect calculation that the friction coefficient should be of the order of 0.2. Other

information about beet-metal coefficients of friction was not found in the literature. Several

workers have made measurements of coefficients of friction between different agricultural

products and metal surfaces for specific purposes. Mohsenin (1970) gave a summary of

different values of static coefficient of friction.  Bickert and Buelow (1966) found that the

coefficient of friction for barley and corn sliding on metal increased with increasing moisture

content. In the same work it was found that the coefficient of friction of corn on metal

increased as the experiment progressed as a result of wax and other materials which were
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deposited on the metal surface. Richter (1954) found that the coefficient of friction between

metal and chopped hay, straw and silage decreased as the experiments progressed up to a

constant value due to polishing of the metal. He gave the following values for the static

coefficient of friction, for chopped hay and straw 0.35 with a range of 0.17-0.42; for silage

0.80 range 0.52-0.82. Mohsenin (1965) measured the coefficient of friction between the skin

of potatoes to cause skinning. He found that the coefficient of friction varied with the period

with range 0.42 - 0.82. From the references on the work on coefficients of friction between

agricultural products and metal a big variation is apparent. The data on sugar beet MR metal

coefficients are inadequate.

A series of experiments were designed and performed to find the strength of the root

in tension, compression, shear and bending and to define its structure from strength point of

view and are reported here. Additionally the strength of the secondary roots and tails in

tension was measured to give an estimation of the root anchoring force and the root-metal

friction properties are presented. The results of the experiments are presented in this paper.

MATERIALS AND METHODS

The beet roots used in the present work were taken from a plot of the crop especially

established for two consecutive years. All crop husbandry (tillage, sowing time, fertilization,

and plant protection) followed the local farmers’ practices. Sugar beet samples were taken

from September till November (the harvesting period) of each year and tested within three

days from uprooting such that no considerable dehydration could affect any of the studied

properties. This was important for the investigation of the causes of MR breakages during

lifting compared to the problem of MR processing in the sugar factory. The characteristics

of the roots were measured as soon as the roots were taken in the laboratory, after removing

the leaves, cleaned by running water and dried. The following parameters were measured:
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1. MR maximum diameter and the diameter at soil level   In two directions: that in the row

of beet and normal to the row.

2. The MR root  overall length

3. The MR weight

4. The MR volume

5. The inclination of the MR sides

The MR specific weight was estimated. The characteristics of the MR used are shown in

Table 2.

For the application of the  stresses a Housfield  Tensometer, type w, was used. For

the tensile tests a clamping device was constructed and strips of emery paper were used, to

increase friction and so decrease the normal load needed for gripping the specimen both in

the measurements of the strength of secondary roots and tails and in the parts of beet MR.

In order to test the hypothesis that the vascular tissue has different strength

properties  compared to the parenchyma, it was attempted to separate and test specimens

from each plant part in tension. That proved impossible with the existing facilities, as,

although the vascular tissue seemed to be cylindrical and formed a continuous tube, there

were changes in direction and discontinuities which made the separation difficult. On the

other hand, it was difficult to avoid producing cracks during the separation and which were

difficult to   detect and would  decrease the strength,  producing inconsistent results. Instead

segments taken from the outer parts and others from the central parts of the MR were

prepared and tested. The former had more than two rings of vascular tissue in sections of

about 7 mm thickness  while in the latter there was no more than one in sections of 10 mm

thickness. In this way the strength of the segments of the outer parts of the root would be

nearer to the strength of the vascular tissue and those of the inner parts nearer to the

parenchymatic one.
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The specimens of the outer material had to be cut parallel to the vascular tissue

within the limitations of the MR morphology which resulted in high variation of the

dimensions. The skin of the root was then pulled off and the inside material (parenchyma)

was scratched off till the first bundle. The specimens were as thick as the dense vascular

rings in the direction normal to the surface. In the other direction they were as wide as the

curvature of the material permitted which resulted in specimens of relatively small cross-

sectional area. Due to the curvature of the rings the material had a difficult shape to estimate

the area of its cross-section. The middle part of the specimen was therefore cut as

rectangularily as possible. That reduced the cross-section area of the middle of the specimen

relatively to the sides and so it was weaker (Figure 1). In that way failure at the sides, where

a concentration of stress occurred due to gripping, was avoided. This process had a high

propensity to cause cracks on the specimen surface. That happened some times and the

specimens were broken at very low stress. These values were rejected.

For the specimens of the inner parts of the MR a thick initial piece was cut having

three annual rings with thick parenchymatic tissue between them. Then in the middle of the

length, the two side-rings were scratched off carefully leaving the parenchymatic material

with the middle ring. That was not always achieved due to the curvature, the discontinuities

and dislocations of the rings. The parenchymatic tissue was much more easily cracked than

the outer where a crack could be stopped by a vascular ring. The attempt to leave as much

parenchymatic material with the ring for testing explains the larger cross-sectional area of

the inner specimens.

Due to the changing dimensions of the specimens the cross section could not be

measured before fracture. Instead the dimensions of the pieces were measured after fracture,

near the broken section in such a way that the damaged tissue was avoided and the average
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was used. Although some error was introduced in the estimation of the cross-section

dimensions it should be rather small.

For the compression experiment, the Hounsfield tensometer was used with the plates

for compression. Specimens were cut from inner and outer parts of the root. The difficulty

of isolating different specimens was present again. The testing of the outer layers presented

much more difficulties since the specimen should be parallel to the surface of the root, which

usually was not parallel to the inner rings. Sometimes that made the specimen to consist of

half rings, which weaken it. The thickness of the dense rings section was usually 10 mm-15

mm while the specimens cut were 27.5 mm in diameter. Specimens of smaller diameter

could not be used because their length would have to be very small in order to avoid failure

by bending. Additionally with very short specimens it would be difficult to observe the

failure pattern. The specimens were cut by a cylinder for rubber cutting and were 27.5 mm

in diameter and 32 mm in length.

In order to assess the strength of the sugar beet MR in shear loading a device was

constructed which permitted two plates 50 mm x 20 mm to move towards each other using

the mechanism of the Hounsfield tensometer and leaving a space of 10 mm between them.

The maximum load at failure was recorded. Tests were limited to sections up to 50 mm in

diameter at the middle of the MR which is the probable area of breakages from shear. Fifty-

seven measurements were made 28 in the plane normal to that including the grooves and 29

in the plane including the grooves.

The combination of the forces during lifting suggests that the breakages occur due to

bending of the root (Gemtos 1980). In order to find out the strength of the MR in bending,

experiments were carried out. After several trials, in order to avoid the difficulty of

clamping, the MR were built in plaster of Paris that was secured by a simple clamp on a

bench.  Instead of applying a single force at the end of the root, which produced an
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increasing moment along the MR length, a couple was applied. So the moment of bending

was constant throughout the length of the MR between the point of couple application and

the clamped section. During bending a stress concentration could develop only at the plaster

of Paris surface or in its body and so the roots were expected to break at the plaster surface

or further in. That would possibly reveal any relationship between bending moment and

cross-section area at breaking. On the other hand, any breaking which occurred well outside

the plaster would indicate a weaker part of the MR. If that were the rule, it would mean that

the MR breakage is a random phenomenon depending on random discontinuities in the MR

body. In this case the only useful result would be the finding of limits of moment application

under which the possibility of root breakage is at a minimum.

Two parallel prongs welded normally on a plate applied the couple (Figure 2). On

the other side of the plate a copper tube was connected which on the other side had a handle

parallel to the plate. The tube was secured on a base bearing so that only rotation of the tube

was possible and no lateral movement. The base, could be moved horizontally or vertically

before the securing such that the tube was parallel to the ground and normal to the axis of

the MR. The torque was produced manually. The copper tube was strain-gauged in order to

measure torque by using a couple of wire strain gauges forming an angle of 90° between

them and 450 to the axis of the tube (Doebelin 1983 p 385). The signals, after amplification,

were recorded in a Ultra Violet (U V) recorder. The system was calibrated by applying

different loads on the prongs after securing the tube from any movement or bending. The

moment was calculated from the known load and arm. The system was linear and the scale

of the U V recorder was regulated to measure torque up to 50  Nm.

For the estimation of the friction coefficients the following laws of friction were

assumed to hold:
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1. The magnitude of frictional force is proportional to the normal load between the two

surfaces.

2. It depends on the roughness of the surfaces and the material they are made of.

3. It is independent of the area of contact and of sliding speed.

Those laws hold only within certain limits as proved by different recent works but in the

present study the effect of factors like speed, temperature, normal load were not studied.

Two pieces of root skin were pressed against the two sides of a polished mild steel

strip. A normal load was provided and measured by a tensometer (Hounsfield Type W).

Two cylindrical sections of beet (15 mm in diameter and 30 mm long) were cut without

damaging the skin of the root. The pieces were located in two small tubes that were fixed to

the two plates of the tensometer. The steel strip was placed between the beet sections, to

which the normal load was applied. The force required to move the steel strip was measured

by a strain gauged plate and recorded by the U V recorder. The coefficient of friction was

calculated by:

FRsl=f/2N                                                           [1]

where: f is the pulling force and N is the normal load that applied to the two sides of the

strip.

The normal load was around 736-891 N with maximum 1472 N. Higher loads caused

fracture of the root pieces usually in the surface layer which could not be perfectly flat. Care

was taken for the roots to be fresh (maximum three days from uprooting), well cleaned and

dry. Several polished mild steel pieces were used. After each measurement they were

cleaned with hot water and left to dry before the next use. The repeated use of the same

piece of metal without cleaning would result in the build-up of a layer of root juice and other

material from the root skin which could alter the frictional force. On the other hand the
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movement of prongs between consequent beet roots through the soil should clean them from

any material taken from the root and polish them due to the abrasive action of the soil.

In order to measure the friction coefficient due to wedge action of the pronged

shares, two rods of 3 cm in diameter were pushed at the two sides of a beet root. The

weight of the root and the value of the two forces were measured at the time the root

started moving upwards. The root perimeter was drawn before the squeezing and  the slope

of the root at the points of contact was measured. The coefficient of friction was estimated

by the equation (see appendix I):

FRw
  = (2*Q*tan(α/2) – P/cos2(α/2))/2*Q                           [2]

where: FRw is the coefficient of static friction due to wedge action, Q is the squeezing

normal load , α is the angle the sides of the root formed at the point of contact, and P is the

root weight.

The two rods were secured on the two plates of the mechanism for compression tests

of the Hounsfield tensometer. The same mechanism was used for the application and

measurement of the squeezing forces.

RESULTS AND DISCUSSION

Strength of Tails and Small Secondary Roots in Tension

Altogether 49 measurements were made. The average force was 39.6 N (standard

deviation=46.9) with broken section area of 15.0 mm2   (standard deviation =20.11 ).  The

maximum force was 236 N for area of 99.0 mm2  (14 x 9). The relationship between force

and cross-section area at breaking is shown in Table 3. The relationship is linear with high

correlation coefficient. When the stress is related to the broken section area the linear
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relationship is very poor (R2=0.22), shown in Table 3. In Figure 3 the scatter diagram of

stress with broken section area shows that the relationship was not linear. The fitting of an

exponential and one 1/Area function are given in Table 3. The exponential curve had the

best fitting (R2= 0.52). This relationship indicates that the smaller the cross-sectional area

the higher the tensile strength of the root. An explanation of the results was that sugar beet

main root is composed of 8 to 9 rings of vascular tissue and in between parenchymatic tissue

(Gill  and Vear 1968). The rings are equally and widely spaced at the centre of the root and

are denser at the sides. The number of rings remains about the same at different cross-

sectional areas of root. So, the smaller the cross-section of the root the greater part of it, is

occupied by vascular material and the thinner parts of the root are mainly composed of

vascular tissue. In the light of the results of the present experiment the vascular tissue should

be stronger in tension than the parenchymatic tissue.

Strength of Parts of the Root in Tension

Fifty-three measurements were made 25 for the outer parts and 28 for the inner parts

of the MR. The means, the standard deviations and the range of the maximum stress before

fracture are given in Table 4. The length of the specimen and the cross section area at breaking

were different each time. A comparison of the maximum stress for failure shows that the

tensile strength of the specimen of the outer layers of the MR was higher than the inner ones

(significant difference at P=0.05) (Table 4). Although the above values do not represent the

exact strength of the materials, they show that vascular tissue is stronger than parenchymatic

tissue. They can also be used in the case of the consideration of the root as a  composite beam.

Von Hulst et al. 1956 found that the main root strength was varying from 4 to 1.6 MPa from

the outer to the inner parts  which is in agreement with the present findings.

From the linear part of the stress-strain diagrams of the above mentioned experiments

the modulus of elasticity was around 7.5 MPa.  In a work referred by Ostrovskii et al. (1970)
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the modulus of elasticity for freshly cut sugar beet root was found to vary between 6.5 and 14

MPa  while Alezadeh and Segerlind (1997) found a range 7.4-15.3 MPa,  which include the

found value.

Strength of MR in Compression

The mean, the standard deviation and the range of the stress for failure for the two

parts of the root are shown in Table 4. The comparison of the  two values through a t - test

shows that  there was no statistically significant difference between them. Differences were

rather unlikely to be revealed by the experiments because as mentioned previously, the

specimens from the outer parts of the root consisted of half by inner material. Although the

difference is not significant the strength of the inner material in compression was higher than

the outer. From the stress-strain diagram it was found that the slope of the inner part of the

curve (presenting the modulus of elasticity) corresponds to a value  about 10 MPa .

The curves for the inner part are linear while the ones for the outer parts have a  curved part

at the end. It was also observed that the specimens of the inner parts of the root failed in a

diagonal plane (about 450, Figure 4) like a brittle material while the specimens of the outer

parts failed by buckling of the vascular fibres (Figure 5). For specimens of mixed material

(most of the outer part specimens), the part of parenchymatic tissue failed by  forming a

diagonal plane which stopped at the area of dense rings where a buckling of the fibres was

observed .

A comparison of the values of the compressive and tensile strength from Table 4

shows that the inner material is stronger in compression than in tension while for the outer

tissues there is no significant difference between compressive and tensile strength.

Strength of Root in Shear

The means and standard deviations of the shear strength for the force applied at two

directions, at a plane normal to that including the grooves and at a plane including the grooves
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are shown in Table 5 as well as the relationships of the stress and the area of section. From the

results in the Table 5 it was shown that the breaking cross-sectional area could explain a very

small part of the variation of the MR strength in shear. An explanation is that the beet MR has

in the outer part dense vascular tissue which caused the initial resistance to shearing. Once this

layer was cut, the shearing plate moved through the beet with lower resistance and the total

section had a low influence to the strength. The comparison of the average stress in relation to

the mean area at breaking for the application of forces normal and to the plain including the

grooves, while the stress is about equal (non significant difference at p= 0.05 ) the area in the

case of the plane of the grooves is larger than in the  plane normal to grooves.

Strength of Root in Bending

Twenty-three measurements were made with the moment applied in the plane

including the grooves and 21 in the plane normal to that including grooves. In 21 cases in

the first group and 20 in the second, the roots were broken in a diagonal plane of which at

least half were inside the body of the plaster (Figure 6). Fracture on the tension side

(downward) was well inside the plaster while on the compression side was usually at the

surface of the plaster. In two cases in the first group and one in the second the breaking

sections were outside the plaster body and in a plane rather normal to the axis of the root

(Figure 7). The torque recorded in these cases was very small relatively to the broken

section. When the three measurements were excluded the following relationships were found

between torque (T) and the area of the  broken section (A):

a) bending couple applied at the plane of the grooves.

T=7.3 + 0.01A  R2 = 0.44  Tmean = 21.7 Nm, S.D.=7.6, Amean=1434 mm2

b) Bending couple application at the plane normal to grooves.

T= 5.2 + 0.01A  R2 = 0.58  Tmean=20.4 Nm,  S.D. = 8.8, Amean= 1459 mm2
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The strength of the MR in bending is the same at the  two directions (non significant

difference at p= 0.05). A further analysis of the data, assuming that the theory of a simple

beam can be applied, gave the relationships between the stress at the outer layers of the MR

at breaking and the  dimensions of the breaking sections shown in Tables 6 and 7. In Figures

8 and 9 the scatter diagrams of stress developed at the outer parts of the broken sections vs

the area of broken section are shown. The average stress was 2.71 MPa  and 3.60 MPa for

the two cases studied. Those values are of the same order as those in the experiment on

tensile strength of the MR. For the present study, due to the assumption that the cross-

sections of the MR are circles for the approximation of the shape, the most appropriate

relationships for further use in the modelling of lifting are those with the area of the broken

section. The relationship which gave a good agreement with the experimental data was an

exponential relationship. In order to test if the function gave the most reasonable results for

practical use, the values of maximum stress at the outer layer of roots were calculated for

areas of cross sections with diameters between 20 mm and 50 mm using the found formulae.

The results show that the exponential formula gave reasonable approximation of the root

strength.

Friction coefficient

From 32 measurements made, the mean static coefficient of sliding friction (FRsl)

found was 0.110 (standard deviation = 0.033) with range 0.057 and 0.170. This coefficient

of friction is rather small compared to the U S S R measurements. But considering the much

higher normal loads it appears to be of the correct order of magnitude.

From 33 measurements in which the root moved upwards, the mean coefficient of friction

due to the wedge action (FRw) found was 0.28  (standard deviation = 0.097) with a range

0.16 to 0.62. In 4 cases, the MR did  not move upwards but crushed at normal loads of

1717, 1864, 2011 and 2256 N. In two of those cases the MR were doubles with the sides of
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the root nearly parallel and in the fourth a local cavity prevented the sliding of the root. In

most cases the coefficient of friction depended upon the local slope of the MR sides at the

point of contact which was different from the average slope of the MR between soil level

and 10 cm depth. That  meant that the use of the average slope of the  MR sides in the

estimation of the upward force due to wedge action of the MR was not absolutely  correct.

But, in field conditions, due to the inclination of the tines to the horizontal and some

movement of the root due to the sliding of the root on the prongs, the average slope should

have a greater effect. It is also possible that small cavities on the MR surface are filled by

soil. Nevertheless, the local slope of the root sides is completely random and cannot be

estimated. So that the average slope is the only measurable slope which can be used in

modelling root lifting.

 CONCLUSIONS

From the experimental results presented, it can be concluded that:

1. Root tails and secondary root breaking force depends on the broken area section.

2. Sugar beet MR is composed, from strength point of view, of two materials:

a) The parenchyma which is more abundant in the inner parts and it is relatively weak in

tension (mean strength 2.1 MPa, range 0.65-4.29 MPa) but stronger in compression (mean

3.05 MPa range 2.50-4.00 MPa ).

b) The vascular tissue which forms several rings within the  parenchyma. The rings are denser

in the outer parts of the MR especially near the epidermis. The vascular tissue is stronger in

tension than the parenchyma (mean strength in tension of outer parts of root  2.8 MPa range

1.4 -4.46 MPa).

3. When the MR is subject to bending the maximum strength in tension or compression of the

outer layers depends on the dimensions of the breaking section. From the curve fitting models,
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the exponential models show a better agreement with the data of the real conditions and it is

anticipated that  they can be used for modelling sugar beet lifting.

4. In some cases random weakness of the beet MR can cause fracture at very low stress.

5.  During the lifting of sugar beet two types of friction are involved. The first is due to MR

simply sliding on the metal surface of prongs. This coefficient of friction has a mean value

of 0.110 with range 0.057 to 0.170. The second is due to the shape of the MR which

results in a wedge-like action when the root is squeezed between the prongs. The later

coefficient of friction was found to have a mean 0.280 with range 0.160 to 0.620.

6.  Due to random unevenness of the MR surface, the upward movement of the root can be

prevented. That happened in 4  out of 37 cases in these experiments..

Appendix I



18

Analysis of the development of the friction coefficient due to wedge action of
the root during lifting.

    N          U
          α/2     

Q Q

             FRW       α/2

           P

Appendix, Figure 1. Forces acting on the beet root during the wedge action of the
shares

The prongs squeeze the root by the two opposite forces Q. The force Q is
analyzed in two components the N normal to the root surface and U the upward
force to causing the uprooting force. Additionally, a friction force FRW is
developed resisting the upward movement of the root. This friction force is due to
the wedge action taking place during lifting. Force P is the force resisting the
uprooting of the beet and is formed by the root anchoring and the root weight.
During the investigation of the root friction coefficient due to the wedge action this
force is equal to thew root weight.  From the Appendix, Figure 1, the following
equations can be derived:

                                           P =  2*(U-FRW)*cos α/2                                         (1)

                                           U = Q sin α/2                                                        (2)

                                           FRW = FRw*Q*cos α/2                                           (3)

Using equations (2) and (3) in equation (1) :

                                            P=2*( Q sin α/2 - FRw*Q*cos α/2)* cos α/2                (4)

and

                                            FRw  = (2*Q*tan α/2 –(P/cos2 α/2))/2*Q                      (5)
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Table 1. Friction coefficient of beet root and metals from Burmistrova et al (1956).

Applied force N: Own weight 29.4 58.9 117.7

Machined steel 0.54 0.37 0.37 0.32

Sheet steel 0.63 0.44 0.43 0.37

Table 2.  Beet MR used for the experiments characteristics for the two years.

Characteristic Mean Standard deviation
Diameter at soil level, mm 75.87 16.69

Maximum MR diameter,  mm 83.01 16.23

MR length, mm 322.59 56.96

Angle at  plane normal to line,  o 27.69 7.14

Angle at line plane,  o 27.54 8.10

Volume,  cm3 564.34 264.23

Net mass,  Kg 0.62 0.32

Specific mass of MR Kg/m3 1100 170



22

Table 3.  Strength of secondary beet roots and  rootlets  in tension

Dependent
variable

Dependent
Variable

mean

Independent
Variable

Independen
t variable

mean
Equation R2

Force 39.55 N Section area

at failure

mm2

14.93 Y=7.865 +2.12X 0.82

Stress 4.41 MPa Section area

at failure

mm2

Y=0.36-0.12X 0.22

Stress Section area

at failure

mm2

Y=1.81e-0.31X 0.52

Table 4.  Strength of beetroot Parts In Tension and Compression.

Statistics
Inner Parts

of Root
Tensile

Strength
MPa

Outer Parts of
Root Tensile

Strength
MPa

Inner Parts
of Root

Compression
Stress
MPa

Outer Parts of
Root

Compression
Stress
 MPa

Mean x 2.1 2.8 3.05 2.77

Standard Deviation 0.91 1.00 0.49 0.37

Observations 28 25 13 15

Range 0.65-4.29 1.4-4.46 2.50-4.00 2.10-3.30

t values calculated t calc 2.62 t calc 1.65

t values theoretical for p=0.025 , n=51 t= 2.01,  and n=26, t=2.056
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Table 5.  Shear strength of beet root and the relationships of shear stress and breaking
area

Shearing normal to grooves shearing 27 observations

Dependent Variable Independent Variable Equation R2

Shear Stress

x =0.69MPa

SD=0.13

Area at breaking

x =538.68 mm2

SD=234.72

Y=0.84-0.00026A 0.22

      Shearing to grooves side 28 observations

Dependent Variable Independent Variable Equation R2

5hear Stress

S x =0.68 MPa

SD=0. 13

Area at breaking

x =923.79 mm2

SD=391.82

Y=0.80-0.00013A 0.15

Table 6. Results of bending experiment with couple applied in grooves plane.
Relationships of maximum stress at the outer layer  (20 observations).

Dependent
Variable

Independent Variable Equation R2

Stress

Mean

3.60 MPa

Breaking section axis at  couple plane Y

mean 38.1mm

Y=12.47-0.23x 0.81

Stress Breaking section area

Mean 1434 mm2

Y=7.00-0.0024x 0.38

Stress Breaking section axis normal to couple

plane  mean 49.4 mm

Y=10.88-0.15x 0.61



24

Stress Breaking section area Y=16.65*e-0.11x 0.49

Table 7. Results of bending experiment with couple applied in the normal to grooves
plane. Relationships  of maximum stress at the outer layer  (20 observations).

Dependent
Variable

Independent Variable Equation R2

Stress

Mean 2.71MPa

Breaking section axis at couple plane

Mean 47.8 mm2

Y=7.31-0.096x 0.74

Stress Breaking section area

Mean 1459 mm2

Y=4.86-0.0015x 0.62

Stress Breaking section axis normal to couple

plane  Mean 37.2 mm

Y=5.99-0.088x 0.52

Stress Breaking section area Y=18.37e-0.15 0.76

Stress Breaking section area Y=27.93X-0.83 0.63
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Figure 1. Sugar beet specimen tested in tension

           Beet root       Bearing     Strain gauges       Moment applying           
        handle

Plaster of Paris mold                 Vice                      Aligning rod

Figure 2. Draft of the equipment setting for the bending experiment



26

Figure 3. Strength of root and rootlets of sugar beet. Stress vs breaking area in
tensile tests

Figure 4. Specimen  from the inner part of the root failing in a diagonal plan.
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Figure 5. Specimen from the outer part of the root failing by buckling.

Figure 6. Beet root failing in bending within the plaster of Paris.
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Figure 7. Beet root failing in bending outside the plaster of Paris.

Figure 8. Stress vs area at breaking. Moment applied at grooves plane.
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Figure 9. Stress vs area at breaking in bending experiments. Moment applied
in normal to the grooves plane.
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