Fresh: A Higher-Order
Language with Umification
and Multiple Results

Gert Smolka
Prakash Panangaden
TR 85-685
May 1985

Department of Computer Science
Cornell University
Ithaca. New York 14853

Fresh: A Higher-Order Language with
Unification and Multiple Results

Gert Smolka and Prakash Panangaden
Cornell University

May 1985

Abstract

This paper presents Fresh, a language that integrates logic programming
features into higher-order functional programming. The language incorporates
unification, multiple results and a collection construct. Many examples illustrate
that these extensions of functional programming are useful. We define an
operational semantics along the lines of Plotkin’s structural approach. The
semantics is of intrinsic interest since it covers backtracking and the collection
construct. To illustrate the conceptual similarities and differences between
functional and logic programming, we begin with a purely functional core language
and add first unification and then backtracking. With each addition we discuss the
enhanced eloquence of the language and the concomitant modifications to the

semantics.

1 Introduction

This paper presents Fresh, a language that integrates logic programming
features into higher-order functional programming. This language represents an
attempt to explore the connections between functional and logic programming, the
two major applicative programming styles that have developed over the last twenty
years. Our presentation of Fresh will focus on two themes: Fresh as a practical
programming language and Fresh as a laboratory for exploring the semantic ideas
that are needed to describe the combination of reduction, unification and
backtracking.

. The starting point in our discussion is FM, a higher-order functional language
tailored for the extensions to come. FM departs from other functional languages by
employing a failure-based evaluation strategy and by incorporating unrestricted
pattern matching. In FM, pattern matching serves as the sole computational
mechanism for binding variables and for decomposing and comparing objects. The
first step from FM to Fresh is the generalization of matching to unification.
Variables can now be bound to nonground terms, and unification may refine such
incomplete values by binding the variables contained in them. These delayed
bindings make it possible to build objects incrementally by imposing constraints as
information becomes available. The second extension of FM is the incorporation of
multiple results and backtracking. The list of all results of an expression can be
computed with a collection construct. The combination of backtracking and
collection provides an attractive alternative to recursion. These features give Fresh
expressive data base capabilities.

We define an operational semantics for Fresh following Plotkin’s structural
approach [26]. The semantics is of intrinsic interest because it covers backtracking
and the collection construct. The meaning of each construct is defined by a set of
proof rules, which justify instances of the reduction relation. A proof for a reduction
is a tree whose structure follows closely the structure of the expression being
reduced. The result of an expression is computed by constructing the proof tree that
justifies the reduction to the result. The semantics is compositional, a property
frequently cited for preferring a denotational definition.

Fresh subsumes Horn logic with equality under a depth-first search strategy.
Thus a first-order subset of Fresh could be characterized in model theoretic terms.
However, full Fresh does not have model-theoretic semantics, since it contains
negation as failure [3, 20], collection and higher-order functions. We feel that these
features are crucial for a practical programming language. The major difficulties
with the logic programming approach are negation and the incorporation of control.
So far, logic programming languages do not include a general form of negation, and
we are not aware of any research in progress that may change this situation.
Furthermore, the integration of control constructs necessarily leads to a language
that cannot be described in model theoretic terms. Eqlog [9], a recent logic language
based on Horn logic with equality, has a clean model theoretic semantics, but
includes neither negation nor control constructs. Prolog [3] is no more a logic
programming language than Fresh is. In fact, Fresh is an attempt to overcome
Prolog’s ad hoc features like the cut or the call predicate and to integrate Prolog’s

useful computational innovations smoothly into a functional framework.

The presentation begins with an informal description of FM, the functional
core language of Fresh. To make the comparison between functional programming
and Fresh more perspicuous, we then give a formal account of matching and FM’s
semantics. This also provides a familiar and simple base to introduce our style of
semantics. The next two sections discuss the incorporation of unification and
backtracking into FM. Many examples illustrate how Fresh relates to Prolog and
why the integration of these features is useful. These informal discussions are
followed by two technical sections, which give a rigorous account of unification and
Fresh’s semantics. Finally, we discuss related research and future directions.

2 A Functional Language Based on Matching

In this section we shall discuss a functional language, called FM, based on
matching. This language will serve as the starting point in our discussion of the
relation between functional and logic programming. The point in presenting FM is
to establish a familiar base that can be naturally extended to subsume logic
programming. FM contains nearly all constructs of the full language, Fresh. Fresh
is obtained by generalizing matching to unification and adding constructs that
introduce and eliminate multiple results.

Modern functional languages, like KRC [33], HOPE [2] and Standard ML [22],
offer matching constructs as a means to decompose data objects. However, these
languages employ matching in a rather restricted form; for instance, patterns
cannot contain the same variable twice. Consequently, this stripped down form of
matching does not provide for the comparison of data objects. Since decomposition
and comparison often interact, these restrictions deprive the programmer of a
significant part of matching’s expressive power. There are two reasons for these
restrictions. First, since general matching is an operation that can fail, a smooth
integration into a language whose evaluation strategy does not account for failure is
impossible. Second, general matching requires equality on all objects, a property
that is not naturally satisfied by higher-order objects.

Since we are aiming at a language that incorporates unification, which is a
generalisation of matching, FM should overcome these problems. Equality for all
objects is obtained by hiding functions behind names, called designators.
Abstractions now become reducible expressions. They reduce to a new designator
that is bound to the function defined by the abstraction. Although this change is for
the most part invisible, it provides the unusual feature that function names can be
compared with other objects. The failure problem is addressed by incorporating
failure as a general concept. Consequently, the reduction of an expression either
succeeds with a result or fails without a result. This binary character of reduction
renders traditional boolean expressions obsolete; the conditional now tests for
success or failure. It turns out that the proper integration of matching and failure
not only prepares the ground for the addition of unification and multiple results, but
also increases the eloquence and compactness of the functional language. Matching
now becomes the basic computational construct that binds variables and compares

and decomposes data objects. Patterns in FM can contain the same variable more

than once and can also contain variables that are bound in an outer context.

Matching and unification are operations that solve equations between terms.
Matching is a restricted form of unification and solves equations where one side is a
ground term. Consequently, all data objects in FM are ground terms, while patterns
are terms that can contain variables.

2.1 Terms and Matching

Terms are tree-structured objects built from atoms, designators and variables.
Atoms are primitive objects that include identifiers starting with a lower case letter
(e.g., maria, apple, x or y), numbers (e.g., 612), or special symbols (e.g., (), %, + or -).
Designators serve as function names and are written as bold-face identifiers or
symbols, for instance, append or +. Functional objects are hidden behind designators
since matching and unification are first-order operations, which require equality for
terms. Variables are identifiers starting with a capital letter, for instance, X, Y or
Person. A term is either an atom, a designator, a variable, or a pair (s, t) that consists
of two terms s and ¢. A term is ground if it contains no variables.

Matching and unification solve equations between terms with respect to
variables and syntactic equality. Matching is a restricted form of unification that
solves equations where one side is a ground term. For instance, the equation

(X, (Y, (red, X)) = ((apple, green), (fun, (red, (apple, green))))
has the solution X = (apple, green) and Y = fun. The equation
(X, (Y, (red, X))) = ((apple, green), (fun, (red, (apple, yellow))))

has no solution. Thus an attempt to solve it will fail. The left-hand side of a
matching equation is called the pattern and the right-hand side is called the
argument of the equation. We say that the pattern is matched against the argument.
If the match succeeds it produces a set of variable bindings, which is the unique
solution of the equation. If we replace all variables in the pattern by their values,
that is, by the ground terms the variables are bound to in the solution, we obtain a
term that is equal to the argument.

To obtain a palatable syntax for terms, the comma is treated as a right-
associative infix operator. Thus (1, 2, 3, 4) is a syntactical variant of (1, (2, (3, 4))).
Furthermore, redundant parentheses are possible; for instance, (((1))) is a syntactical
variant of the atom 1. These syntactical refinements do not affect matching or other
semantic operations, but are just a notational convenience that is invisible at the

semantic level.

We call the terms defined above binary terms to distinguish them from other
terms. Binary terms are simpler than Prolog’s first-order terms. However, first-
order terms can be expressed as binary terms and their usual syntax can be
recovered by a simple abbreviation rule. A labeled term is a term (%, s, t) where % is
the atom % and s is either an atom or a variable. Syntactically, such a term can be
written as s(¢). Thus

plus(times(X, Y), F(Z, 6))

is a syntactical variant of the term
(%, plus, (%, times, X, Y), %,F,Z,6) ,

which, when deprived of all syntactical sugar, becomes
(%, (plus, ((%, (times, (X, Y))), (%, (F,(Z,6))))) .

An input processor for FM would translate the first variant into the third variant,
which is the unique semantic form. An output processor would retranslate into the
refined form. Semantically, labeled terms are just a subset of all terms and do not
feature any special properties. The reader may check that matching first-order
terms in binary representation is equivalent to matching first-order terms directly,
provided that every function symbol is always used with the same number of
arguments. This holds as well for unification. One advantage of the binary
representation is that we can now solve equations like

F(A) = plus(4, 7).

where the variable F matches the function symbol and A matches the argument tuple
of the coded first-order term plus(4, 7); the solution is F=plus and A= (4, 7).

Another important subclass of terms are lists. A list is either the atom () (the
empty list) or a term (s,) where [is a list. For instance, (1, 2, 3, () is a list with three

elements.

Although binary terms are similar to Lisp’s S-expressions, we shall now see
that their integration into FM is quite different.

2.2 Expressions and Reduction

Figure 1 defines FM’s abstract syntax. Note that, for instance, A denotes the
set of all atoms and that a, b, ¢ are metavariables that range over atoms. Whenever
the reader encounters in the following the symbols a, b and ¢ it is understood that
they denote an atom. The same holds for the metavariables for designators,
variables, terms and expressions. Note that every term is an expression.

The execution of expressions is called reduction. The reduction of an
expression either succeeds or fails; if it succeeds it produces a result, which is a

ground term. A successful reduction also produces a function environment, which

Atoms: a,b,c € A
Designators: d € D
Variables: x,y,z € V

Terms: s,t,u,v €T

s u= ald|x]| (s, 0

Expressions: e,f,g,h € E

e = a atom
d designator
x variable
(e.f) pair
sse—>f, g conditional let-clause
she abstraction
f el application

Figure 1 FM’s abstract syntax.

binds the designators in the result. Besides the two regular outcomes of reduction,
the reduction of certain expressions may not terminate. In contrast to other
functional languages, run-time errors cannot occur in FM. Situations that do not
allow a successful continuation of reduction produce a failure. For instance, the
application of something that is not a function to an argument will simply fail. Of
course, a type discipline for FM would statically enforce that such conditions cannot

occur.

An expression is canonical if it reduces to itself. The canonical expressions of
FM are exactly the ground terms. Atoms and designators reduce to themselves. A
pair (e, f) reduces to (u, v) if e reduces to u and freduces to v.

Reduction takes place in the presence of two environments. The term
environment binds variables to ground terms and is augmented by solving matching
equations. The function environment binds designators to functions and is
augmented by the reduction of abstractions, which creates new functions. Section 4
gives statically verifiable conditions that ensure that all variables and designators
are bound when they are reduced.

A variable reduces to its value, that is, the ground term to which it is bound in
the term environment. Thus a term always reduces to a ground term, which is
obtained by replacing all variables by their values.

As mentioned before, a pair (e, f) reduces to (u, v) if e reduces to u and freduces
to v. If one of the components fails the reduction of the entire pair fails.

A conditional let-clause has form s=e— f; g (read “if s matches e then felse g”)
where s is the pattern, s=e is the condition part, fis the then-part and g is the else-
part. Note that the metavariables indicate that e, f and g can be arbitrary
expressions and s can be any term. The reduction of a conditional let-clause begins
with the reduction of e. If e succeeds with the result u, the solution of the equation
s=u under the current term environment is attempted. If the equation is solvable its
solution yields an augmented term environment, under which the then-part is
reduced. If the then-par{: fails, the conditional let-clause fails; otherwise its result is
the result of the then-part. The else-part is only reduced if the reduction of the
condition part fails; that is, either e fails or the match between the pattern and the

result of e fails. If the else-part fails the conditional let-clause fails; otherwise, the
result of the else-part is the result of the conditional let-clause.

When we discuss functions we will define an expression fail(] that always fails.
This expression is helpful for defining other useful extensions. A simple let-clause
can now be defined as

sze—f is s=ze— [fail[].

With that we can express Lisp’s car and cdr operation, which yield the head and the
tail of a list:

(H,T) =L - H car operation
HT=L->T cdr operation

The variable L is supposed to be bound to a list. If L is bound to the empty list the
expression fails. Thisis in contrast to Lisp, where the application of car or cdr to the
empty list results in a run-time error. Note that, in FM, a cons operation (cons e [)

just becomes the pair (e,).

Another useful syntactic extension is the wildcard symbol _ that stands for a
variable that occurs only once. With that a conditional can be defined as

e—>f g is _=e—>fg.
A match with the wildcard symbol always succeeds. The presence of failure makes
the conditional independent of distinguished boolean values. If the condition
succeeds the then-part determines the result; if the condition fails the else-part is
reduced. The boolean connectives are now easily defined. Conjunction becomes

pairing, for instance, (e, f) » g, h. Conditional disjunction (also called alternation)

becomes
e f is xze-x f

where x is a new variable. Negation can be defined as
—e is e — fail[]; true

where true is the atom true. Equality could be defined as

e=f is xz=e— (x=f- true)

10

where x is a new variable. Note that the inner pattern is a variable that is bound by
the outer pattern.

Let us study reduction in more detail. For now we are not concerned with
functions, so reduction operates on configurations p{e} where p is the term

environment and e is the expression to be reduced. We start with the configuration
{X=1-1=(1,1,2,0) > X, X,R) =L > R}

whose term environment is empty. The conditional arrow — binds right-associative;

thus the expression above is parsed as
X=1-(L=(1,1,2,0) = ((X,X,R) =L = R)).

The innermost let-clause checks whether the first two elements of the list L are equal
to X and, if so, returns the rest of the list. Thus the entire expression reduces to the
list (2,).

Formally, the expression is reduced by first reducing the condition part X=1of
the outer let-clause. Since 1 reduces to 1, the equation yields a new variable binding.

Thus reduction continues with the configuration
x=1{L=(1,1,2,0) = (X,X,R) =L - R}.

By proceeding as before ((1, 1,2, () is a ground term and reduces to itself), we obtain
the configuration

X=1 L=(1,1,2,0) {(X,X,R)=L > R}.

This time the right-hand side of the condition part is the variable L, which reduces to
its value (1, 1,2,)). Thus the next step is to solve the matching problem

X=1 L=(1,120 {XXR=(1,120},

which consists of the environment and an equation. First, the equation is split into
three equations, yielding

X=1 L=(1,1,2,0) {X=1 X=1 R=(2,0)}.

Now the left-hand side of the first equation X =1 is replaced by its value under the
environment, yielding

X=1 L=(1,1,2,0) {1=1 X=1 R=Q2,0}.

11

Since 1=1 is a tautology it can be discarded. Analogously, the second equation is
discarded, yielding

X=1 L=(1,1,2,0) {R=(2,0)}.

Since the left-hand side of the remaining equation is a variable that is not bound in
the environment, the equation defines a new binding that is included into the

environment, yielding the augmented environment
X=1 L=(1,1,2,0) R=(2,()

as the solution of the matching problem. Thus the reduction of the innermost let-
clause continues with the then-part, that is, with the configuration

X=1 L=(1,1,2,0) R=(2,0) {R},

which reduces to the value of R. Thus the entire expression reduces to (2, ().

We complete the informal account of FM’s semantic with the description of
abstraction and application, which create and apply functions. As in other
functional languages, functions have always exactly one argument and their global
variables are bound statically, that is, when the function is created rather than when
the function is applied. One argument is sufficient since pairs provide implicitly for
multiple arguments.

An abstraction has form sye where the pattern s can be any term and the body e
can be any expression. As a special case we have the form x»e that is similar to Ax.e
in the lambda calculus. In contrast to the lambda calculus, however, abstractions
are not canonical in FM. Furthermore, variables in the pattern of an abstraction can
be bound in the outer context, as, for instance, in X»(X»body). An abstraction reduces
to a new designator, which is then bound to the closure of the abstraction under the
current term environment. The closure represents the created function and consists
of the abstraction together with all bindings that exist so far for variables that occur
in the abstraction. For instance, the closure of the abstraction (X,Y) »Y will contain
the binding X =1 if the current term environment binds X to 1 and does not bind V.
This closure is equivalent to a closure that contains the abstraction (1,Y) »Y and no
bindings.

An application has form f[e] where f and e are expressions. It is reduced by
first reducing the pair (f, e). If the pair does not reduce to a pair (d, u) where d is a

12

designator, the application fails. Otherwise, let the designator be bound to the
closure (p, s»g). Then the matching equation s=u between the abstraction pattern
and the reduced argument is solved under the closure environment p. If the equation
is unsolvable the application fails. Otherwise, the abstraction body g is reduced
under the augmented closure environment and yields the result of the application.
As an example, consider the reduction of the application ((X,Y)»Y)[L] under the
environment X=1and L=(1, 2, (). Then the pair ((X,Y »Y), L) reduces to (d, (1, 2,())) where
d is a new designator that is bound to a closure with the environment X=1 and the

s(e) is (%,s, e) labeled term (s €AUV)
_ is anew variable wildcard
fail(] is (1 1)[2] expression that always fails
e—>f g iIs _=e->f;g conditional
—e 1s e — fail[]; true negation
e—>f is e— f; fail[] if-clause
s=e—>f Is s=e— f;fail[] let-clause
fee is e— f; fail[] where-clause
fes=e is s=e— f;fail[] where-clause with matching
e;f is x=e »>x;f alternation (x1is new)
S1» er;; IS x»(S7=x — ep; clausal definition (xisnew)
s2» e2;; (s2=x — e2;
Sn; eén (SﬁEx - €n
faill]) ...))
Operator Precedence: ;; | » | = ; « | . | =~ |l = | flel s(e)
right-associative: ;; » -» ; - =
left-associative: fle] «

Figure 2 Syntactic extensions.

13

abstraction (X,Y) »Y. Since the matching problem x=1{(X,Y)=(1, 2, () } reduces to the
environment X =1and Y =(2, (), the application ((X,Y) »Y) [L] reduces to (2, ()).

The expression that always fails can be defined as
fail(] is (1 1[2].

Note that without functions failure is not possible since the else-part of the
conditional let-clause catches a possible failure of its condition part.

Figure 2 summerizes the syntactic extensions used in this paper. Since FM is
a sublanguage of Fresh, all syntax and semantic discussed so far is valid for Fresh as
well. As it will become clear in the following examples, clausal definition (see figure
9) is the intended style for function definitions. The conditional let-clause rather
than a regular conditional was included as the base construct so that the clausal
definition construct can be defined. The reader may convince himself that
conditional, abstraction and application are not strong enough to express the clausal

definition construct.

As we know from the lambda calculus, abstraction and application alone
suffice for the definition of recursive functions. However, to have a convenient
facility for the definition of recursive functions, FM supports top-level function

declarations. A function declaration has the form
d of spe. (read “d of sise”)

where d is a designator and spe is an abstraction. A program is a sequence of
function definitions followed by an expression that has to be reduced under this

function environment.
2.3 Examples

We begin with some examples of functions acting on lists. Recall that a list is
either the atom () (the empty list) or a pair whose right component is a list. The types
that appear in the function declarations are comments and have no semantic
significance. List concatenation can be defined as

14

append: list(T) x list(T) - list(T) of
0,.LyL;;
(H,T), L» H, append[T,L].

The comma binds tighter than the abstraction operator (see figure 2); thus the
second clause of append is parsed as ((H,T), L) » (H, append(T,L]) . Technically, append has
like any other function just one argument. The type indicates that the argument
must be a pair of two lists. A membership function is

member: Txlist(T) » {true} of
X, (X, T)» true;;
X, (H, T) » member[X, T].

This function takes a term and a list and returns true if the term is in the list and
fails otherwise. Note how the test for membership is essentially being carried out by
matching with a pattern containing two occurrences of X; the first clause of member
can only succeed if the first element of the list is equal to the “first argument” of
member. A typical higher-order function is

map: (S » T) » list(S) » list(T) of
FroC O»0;;
H, T » F[H], mapl[F][T]).

which maps a list by applying a function to each element. Note that map fails if its
argument function fails for one element of the list. Thus map can also be used to test
that all elements of a list have a certain property. The function

islist: term » {true} of
() » true;;
H,T » islist[T].

succeeds with the atom true if its argument is a list. The function

succeeds: term - {true} of

X » true.
succeeds for every argument with true. The function

comp: (R->S)x(S>T) > (R->T) of
F,G » X » F[G[X]].

15

builds the composition of two functions. Thus the expression comp[succeeds, maplislist]]
reduces to a function that succeeds with the atom true if and only if its argument is a
list of lists. The next function

powerlist: [ist(T) —» list(list(T)) of
0»0,0:
H,T » append[P, map[LyH,L][P]] & P= powerlist[T].

constructs the list of all sublists of a list. We shall see a declarative version of this
function when we introduce backtracking. The next function takes a function and a
list and returns the result of applying the function to the first member of the list on
which the function succeeds.

get: (S>T) > list(S) > T of
F» H, T»F[H]; get(F][T].

If s is a term the expression get[s»s] reduces to a function that, when applied to a list,
yields the first element that matches the pattern s. For instance, get[(X,2)» (X,2)]
yields a function that retrieves the first element that is a pair whose right

component is the atom 2. The function

getvalue: list(identifierx T) x identifier » T of

L, I »get[1,VyV]IL]L

gets a value from an association list. Note that the pattern of the inner abstraction
contains the variable I, which is bound by the pattern of the outer abstraction. The
last example is a function for the symbolic differentiation of arithmetic expressions:

d: unknown - arithmeticExpression - arithmeticExpression of
Ur»(X+Y » dlUIX] + dlU][Y] ;;
X =Y » d[U][X] - d[U][Y] ;;
XxY » d[U][X]*Y + X+d[UI[Y] ;;
X/Y » (d[U]I[X]*Y = X*d[U][Y])/Y*Y ;;
u »1
C »O0)

Note that the pattern of the second last clause is the variable U, which is bound by
the outer pattern to the unknown with respect to which the derivative is computed.
The fancy syntax is obtained by declaring the atoms +, -, *, / as infix operators
with the appropriate precedence. Then, for instance, X + Y is a syntactical variant of
the labeled term + (X, Y), which in turn is an abbreviation for (%, (+, (X, Y))).

16

As the examples above illustrate, the existence of designators makes no
difference to the programming style. Designators were introduced since matching
and unification are first-order operations based on syntactical equality. By hiding
functions behind designators and treating designators like atoms, matching and
unification can cover all objects. Consequently, FM offers the unusual feature that
function names can be compared with any term. The suppression of this extra-
capability at the computational level would lead to numerous dynamic error
conditions. Moreover, the formulation of the algebraic properties of matching and
unification would become rather awkward. On the other hand, a type discipline
could easily ensure that designators are not compared with other objects.

The next two sections present a formal account of matching and FM’s
semantics. This prepares the ground for the formal semantics of Fresh and will
illustrate the semantic differences between the functional and unification-based
language. The reader may skip these formal sections and first read the informal
description of the full language, which appears in sections 5 and 6.

3 Matching

This section gives a formal account of substitutions, equations and matching.
Substitutions serve as term environments in the formal semantics of FM and Fresh.
Equations arise during the reduction of conditional let-clauses and applications.
Section 7 will continue this section with the discussion of unification.

Recall the definition of terms given in figure 1:

Atoms: a,b,c € A

Designators: d € D

Variables: x,y,z € V

Terms: s,t,u,v €T s o= al|d]|x]| (s, 0

V(s) denotes the set of all variables that occur in the term s.

17

A substitution is a function 6: T — T such that 6a=a for all atoms a, 6d=d for
all designators d, and 6O(s,t)=(0s,6¢) for all pairs (s,¢), where Bs denotes the
application of 6 to the term s. We write w0 for the composition of two substitutions 6
and y. As always, application and composition are compatible, that is, (Oy)s=0(ys)
holds for all substitutions 6 and y and all terms s. It is easy to verify that two
substitutions are equal if they are equal for all variables. The identity on T is called
empty substitution and is denoted by €.

An equation is an expression s =t whose left-hand side s and right-hand side t
are terms. An equation system is a bag of equations. We use bags rather than sets to
avoid that an implementation has to check for duplicates. A substitution 6 is a
solution for an equation system E if 6s=0t¢ for all equations s=¢ in E.

The domain of a substitution 6 is D(0) := { x €V | Ox=x }. A substitution is
finite if its domain is finite. A finite substitution 6 can be represented by the finite
equation system { x=6x | x €D(0) }. In the following we will freely switch between
viewing a substitution as an equation system and viewing it as a mapping from
terms to terms. Furthermore, we will only consider finite substitutions; so in the
following, “substitution” always stands for finite substitution. A ground
substitution is a substitution which maps all variables of its domain to ground terms.
Note that a ground substitution is a solved equation system, that is, the solution of 6
viewed as an equation system is 6.

A matching problem is a pair p{M} where p is a ground substitution and M is a
finite equation system whose right-hand sides are ground terms. A solution of a
matching problem p{M} is a substitution 6 that solves M and p (that is, p viewed as
an equation system) and satisfies D(6) = D(p)UV (M), where V(M) is the set of all
variables that occur in the equations of M. It is easy to show that a matching
problem has at most one solution and that a solution is a ground substitution. If 6
solves both M and p then 0 solves the instantiated equation system pM. Note that
the converse does not hold.

Matching is the process of computing the solution of a matching problem. An
indeterministic algorithm for solving matching problems is best specified by
matching rules, which reduce a matching problem p{M} by growing the solved part p

18

‘and shrinking the unsolved part M. Note that p already solves p. The failure symbol
O is the normal form for unsolvable matching problems.

(Taut) p{s=s, M} ,—» p{M} iff s is an atom or a designator
(Subst) p{x=u, M} ., p{px=u, M} iffx€D(p)

(Bind) p{x=zu, M} .—» {x=ulp{M} iff x €D(p)

(Split) p{(s,.t)y=(u, v), M} ,— p{s=ut=v, M}

(Fail) p{M} .- O iff none of the rules above applies and M3#¢

The expression p{s=u, M} denotes the matching problem p{M'} where M'is
obtained from M by adding the equation s=u. Furthermore, {x=u}p is the
composition of the substitutions {x=u} and p. The following proposition is easy to
prove and states that the matching rules are sound.

Proposition 3.1. Let p{M} ,— p'{M'}. Then a substitution 8 solves p{M } if
and only if 6 solves p'{M'}.

The symbol ,—»* denotes the reflexive and transitive closure of ,— and
p{M} ,~*p'isan abbreviation for p{M} ,,—* p'{@}. For the the next theorem we need
some notations and a theorem from Huet [14]. Let — be a binary relation and let »*
be its reflexive and transitive closure. Then — is locally confluent if for all x, y, zsuch
that x—»y and x—z there exists a u such that y»* u and z—»* u. Furthermore, - is
confluentif for all x, y, z such that x—*y and x—*z there exists a u such that y»*u and
z—*u. Finally, —» is noetherian if there are no infinite sequences x;—»>x2—>x3—> - - -
Huet proves that a noetherian relation is confluent if it is locally confluent.

Theorem 3.2. The reduction ,,— isconfluent and noetherian. Furthermore,
p{M} ,—*p'if an only if p' is the solution of p{M}; and p{M} ,—~* O if and only if
p{M} has no solution.

Proof. The matching reduction is noetherian since each rule decreases either
the number of variable occurrences or the sum of the depths of the equations in the
unsolved part of the matching problem. Since the reduction is noetherian it is
confluent if it is locally confluent. The local confluence of ,,— is easy to verify. The
remaining two claims follow by induction from proposition 3.1.]

19

Theorem 3.2 tells us that the matching rules in fact specify an algorithm for
solving matching problems. Given a matching problem, such an algorithm just
applies matching rules as long as they are applicable. Since ,,— is noetherian such
an algorithm will always terminate. And since ,— is confluent it will always

compute the same solution.

4 Reduction Tree Semantics of FM

In this section we shall formalize the informal description of FM and obtain a
compact and easy to understand specification of FM’s semantics. Recall that the
reduction of an expression takes place in the presence of a term environment that
binds variables and a function environment that binds designators. Thus reduction
starts with a configuration & p {e} where & is the function environment, p is the term
environment and e is the expression to be executed. As we already know, the
reduction of such a configuration either fails or produces a result together with a
function environment that binds the occurring designators. Thus we can write the

proposition
6p{e} - O

to express that the reduction of § p{e}fails; analogously, the proposition
Sp{e} —» 8'{u}

says that the reduction of §p{e} succeeds with the result u and the function
environment §'. The final function environment §' is necessary since u can contain
designators that are not bound by the initial function environment 8, because the
reduction of abstractions creates new designators and functions.

The propositions §p{e} - O and 8p{e} — 8 {u}are called reductions. To
specify the semantics of FM now means to say when a reduction is valid, that is, to
say when the configuration on the right is indeed the result of executing the
configuration on the left. This will be accomplished by proof rules, which allow us to
prove that a certain reduction is valid. For instance, the proofrule

Sp{a} —» 8{a}

20

specifies the reduction of atoms by saying that a reduction §p{a} > §{a}isalways
valid. The proofrule

Spf{e N} - O

Spl{e} - O
Sp{f} - F

says that a pair reduces to failure if its left component reduces to failure and its right
component has a valid reduction. There will be further proof rules for pairs that
handle the other cases. The pair rule suggests that proofs for the validity of
reductions will have a tree structure that follows the structure of the expression
being reduced.

The proof rules are called reduction rules and the proofs are called reduction
trees. The proof theoretic reading of the rules is complemented by an operational
reading. Under the operational reading the rules specify an abstract interpreter
that starts with a configuration 8 p {e } and computes a result F such that §p{e} —
F is a valid reduction. Operationally, a reduction tree is a valid computation. To
understand the rules, the declarative or proof theoretic reading is superior since it is
less detailed than the operational reading. The operational details are obvious once
the declarative meaning of the rules is understood.

Reduction tree semantics is compositional since the tree for a particular
reduction is obtained by combining the trees for its components. Lack of
compositionality has been the standard reason for preferring a denotational

description over an operational description.

We begin with the formalization of environments, configurations and
reductions. A term environment is a substitution. A closure (p, spe) consists of a
term environment p and an abstraction spe. A function environment § is a mapping
from a finite set of designators into the set of closures, where D(8) denotes the
domain of 8. An initial configuration 8 p{e} consists of a function environment §, a
term environment p, and an expression e. A final configuration is either the failure
configuration [or a pair 6§ {u} where § is a function environment and and u is a
term. A reduction has the form I —» F where [is an initial configuration and F'is a
final configuration.

21

A reduction rule consists of a conclusion (the reduction above the line), none,
one or several premises (the reductions beneath the line) and possibly an application
condition (at the right-hand side of the rule). The conclusion is valid if all premises
are valid and the application condition is satisfied.

Atoms, Designators and Variables

6pf{a} - 8{a} Sp{d} - 8{d} 6p{x} - &{px}

The rules express the fact that atoms and designators reduce to themselves
while variables are replaced by their values. These rules justify leaves of reduction
trees.

Pairs

Sp{te./H} —» 88U {(u v} iff D"HNDE") C D(B)

6p{e} — &'{u}
Sp{ft - & {v}

Sp{efH} - O 8p{e.NH} - O
8p{e} - O Sp{e} » F
Sp{ft - F Sp{ft - O

The condition D(8')ND(8") C D(8) enforces that newly introduced designators
are distinct. Note that an existing designator or variable binding is never changed.
Thus the condition is sufficient to ensure that the union §'U8" is well-defined. The
failure rules require that both components have valid reductions. Operationally,
this means that the reduction of a pair terminates if and only if the reduction of both
components terminates.

22

Conditional Let-Clause

Sp{sse—figt - F iff p{s=zu} .~ p

Sp{e} - &{u}
8p'{f} - F

Sp{sze—>fg} - F

Sp{e} - O
Sp{g} - F

Sp{sze—>fg} - F iff p{s=u} .~* O

Sp{e} —» &8{u}
Sp{g} = F

Abstraction

Sp{sre} — 8lde(p,sre)l{d} where d €D(8) and p'=p|v(sye)

An abstraction reduces to a new designator, which is bound to the closure of
the abstraction under the initial term environment. The closure environment p' is
the restriction of the initial environment to the variables occurring in the
abstraction. 8[d«(p', spe)] is obtained from 8§ by adding the new binding d < (p', spe).

Application
8p{flel]} » F iff p'{s=zu} .~ p"
Sp{(fe} - 8{dw} where (p', spg) = 8'(d)

8p"{g} - F

23

§p{fle} - O
Sp{(fe} - O

Sp{flel} - O iff visnotadesignator
Sp{(fat - 8{wuw}

Sp{flel} - O iff p'{s=u} .~* 0O
Sp{(feo} - &{dw} where (p', spg) = 8'(d)

The third rule covers the case where the first component of an application does
not reduce to a function. Other functional languages handle this situation with a
run-time error. In FM such an application simply fails. A type discipline for FM
would statically enforce conditions that prevent such situations from occurring.
Below we shall give statically verifiable conditions that ensure that all designators
and variables are bound when they are reduced. For that reason there is no rule that
handles unbound designators.

We now complete the semantic account of FM by defining reduction trees. An
instance of a rule is a tuple (R, Ry, ..., R,) where n=0and R and Ry,..., R,are
instances (under the same interpretation) of the conclusion and the premises (in top-
down order) of the rule such that the conditions at the right-hand side of the rule are

satisfied. Note that the conclusion R and the premises Ry, ..., R, are reductions.
A reduction tree for a reduction R is an expression (R, Tj, ..., Ty) such that
Ty, ..., T, are reduction trees for Ry, ..., R, wheren=0and (R,R;,...,R,)isan

instance of a rule. A reduction tree for an initial configuration I is a reduction tree

for some reduction I - F.

The next theorem formulates the fact that the reduction rules are
deterministic, that is, a reduction has at most one reduction tree up to designator
renaming.

Theorem 4.1. All reduction trees for an initial configuration are equal up to
consistent designator renaming.

24

Proof. By induction on the depth of reduction trees.]

Besides being deterministic, the reduction rules have the additional property
that all designators and variables are bound when they are reduced, provided the
initial configuration is “closed” under its environments. We begin the formalization
of this property by defining free variables of expressions. Variables are bound by
patterns of abstractions and conditional let-clauses. The set FV(e) of variables that

are free in the expression e is defined inductively:
FV(a)= @ FV(d) = o
FV(x) = {x} FV(e.) = FV(e)UFV(f)
FV(sze—f. g)=FV(e) U(FV(f)—-V(s)) UFV(g)
FV(spe) = FV(e)—V(s) FV(flel) = FV(f)UFV(e)

An expression is closed if it has no free variables. Note that this notion of closed
expressions is different from the lambda calculus. In the lambda calculus the
meaning or reduction of a closed expression is completely independent of the context
in which it occurs. This property does not hold for FM since we allowed patterns to
contain variables that are bound in an outer context. For instance, although the
abstraction X»X is closed, its meaning depends on the environment as the expression
(X»X»X)[4] illustrates.

A term environment p is closed under a function environment § if for all
x €D(p) all designators occurring in px are bound by §, that is, are in D(§). A
function environment § is consistent if for all d€ D(8) where 8(d)=(p, s»e) the closure
environment p is a ground substitution closed under §, the abstraction body e is
closed under &, and FV(spe)CTD(p)C V(she).

An initial configuration 8 p{e} is consistentif

e § isconsistent and p is a ground substitution closed under 8.

® e isclosed under §, that is, e contains only designators bound by 8.
® e isclosed under p, that is, all free variables of e are bound by p.

A final configuration 8{u} is consistent if § is consistent and u is a ground term closed
under 8. A reduction 8p{e} > & {u} is consistentif 8p{e} and & {u} are

25

consistent and the final function environment is an extension of the initial function
environment, thatis, § = §|p(s). Furthermore, a failure reduction §p{e} —»] is
consistent if its initial configuration is consistent. The following theorem is easily
proven by structural induction on reduction trees.

Theorem 4.2. Every reduction in every reduction tree for a consistent initial
configuration is consistent.

We say that the reduction of a consistent initial configuration I
e failsif [- has a reduction tree.

® succeeds with result u and function environment §' if the reduction
[-8'{u} hasareduction tree.

® does not terminate if there exists no final configuration F such that the
reduction [- F' has a reduction tree.

We know by theorem 4.1 that every consistent initial configuration has exactly one
of these properties. Nonexistence of a reduction tree is equivalent to a
nonterminating computation since the rules are complete for consistent
configurations, that is, an interpreter cannot reach a configuration to which no rule
is applicable. The rules are incomplete for inconsistent configurations since there
are no rules that handle unbound designators or variables.

The given semantics is essentially proof theoretic rather than denotational or
purely operational. Asin denotational semantics, all expressions that appear in the
initial configurations of a reduction tree are contained in the static program. This is
in contrast to the lambda calculus where the B-rule instantiates the bodies of
abstractions. Moreover, the rules are “effective” and yield an abstract interpreter.
The tree structure suggests several possibilities for parallelism. The most important
one is the parallel execution of the components of a pair. The only communication
overhead involved is that the component reductions must introduce distinct
designators.

26

5 Generalizing Matching to Unification

Functional languages are based on a rigid pattern of information flow.
Variables become bound when they are introduced and their values cannot be
updated or refined. Functions cannot change their argument and convey all output
through their result. In this section we generalize FM by extending the role of
variables. Unbound variables are now treated as first-class objects and can be part of
canonical objects. As in FM, variable bindings are created by solving equations
between patterns and canonical objects. Since canonical objects can now contain
variables, matching is generalized to unification, which solves equations containing
variables on both sides. Bindings created for variables in the canonical side are
called delayed bindings. Since such variables can occur in the values of other
variables, a delayed binding may refine or narrow already existing bindings. The
application of a function now not only produces a result, but can also refine the
environment by producing delayed bindings. The value of a variable can now be
built incrementally by beginning with a skeleton and binding contained variables

later as information becomes available.

This model of variables underlies Prolog, the first unification-based language.
Such variables are often called “logical variables” since they appeared with logic
programming. This paper tries to illustrate that in a functional framework there are
virtually no applications of “logical variables” that exhibit significant advantages
over a purely functional formulation and that are compatible with the logic
programming paradigm. However, if we abandon the logic programming paradigm
and use free variables as first-class objects, then in fact many interesting
applications become possible.

“Logical variables” and unification do not come free. Delayed variable
bindings are side effects and complicate reasoning about programs. We shall discuss
transparency, a property that, if satisfied, allows a declarative understanding of
delayed variable bindings. Roughly, the result of a transparent expression remains
unchanged if the produced delayed bindings are supplied a priori. Nontransparency
arises because free variables become first-class objects and one can test for properties
that are metalinguistic in functional languages.

27

FU is a conservative extension of FM; the result of a consistent FM-program
remains unchanged under FU’s semantics. FU has the same syntax as FM.
However, in FU a conditional suffices as base construct since delayed bindings make
the definition of a conditional let-clause possible. Thus the bare syntax of FU is:

exz=ald |x|(ef)]|sf|flelle-fg.

The only construct that produces variable bindings is application. All bindings are
obtained as solutions of equations between patterns and reduced arguments. The

main semantic innovations are:

e Unbound variables reduce to themselves. Thus FU’s canonical objects are
terms that can contain variables. In particular, functions can be applied to

nonground terms and can produce nonground results.

e Equations between patterns and arguments are solved by unification. Thus
an application can bind variables contained in the argument. These delayed
bindings are propagated to the context of an application. Thus a successful
reduction not only produces a result but also refines the term environment.
Refinement means that new bindings are added, which can apply to variables
in the values of existing bindings.

The new features are best illustrated with the example of open unification, a
function defined by

unif : term x term > term of

X, X» X.

In FM, unif is equality, that is, unif[e, f] succeeds with ground term u if and only if
both e and freduce to u. In FU, the results of e and fcan be nonground terms u and v,
and unif [e, f] succeeds with a most general instance of u and v together with the
bindings that form a most general solution of u=v. Let us consider the reduction of
unif[(1,X), Y] under the environment Y =(zZ,U) in detail. The argument reduces to the
nonground term ((1, X), (z, U)). To avoid variable clashes, the reduced argument is
applied to a variant of the closure where all variables are renamed to new ones. In
general, this renaming is also necessary if the argument and the closure do not share
variables, since variables of the closure may become part of the result or the refined
environment and are then exported to the outer context. In our example, let the
renamed closure be (V,V» V). Then the next step is to solve the equation
(v, V) = ((1,X), (Z,U)) .

28

A most general solution is {V=(1,U), X=U, Z=1}. Obviously, infinitely many other
solutions can be obtained by binding U to some term. A second most general solution
is {v=(1,X), U=X, Z=1}. In general, a solvable equation system has always a most
general solution and there are only finitely many most general solutions. As in the
example, most general solutions differ only in the direction they bind variables to
variables. Unification is a nondeterministic algorithm that computes one of the
most general solutions. This indeterminacy has no significant impact on the
language; results are unique up to designator and variable renaming.

To continue the example, we have now to reduce the body V of the renamed
closure under an environment that binds v to (1,U). Thus the result of the application
is (1, U). But the reduction also refines the term environment by including the
delayed bindings produced for variables in the reduced argument. Formally, we
have the valid reduction (the function environments are not shown)

Y =(z,U) {unif[(1,X),Y]} - Y=(1,U) X=U Z=1{(1,U)}.

Note that the reduction refines or narrows the value of Y. It is easy to verify that the
application has the same result if we supply the delayed bindings for X and zZ a priori,
that is, the reduction

Y=(1,U) X=U Z=1 {unif[(1,X), Y]} - Y=(1,U) X=U z=1{(1,U)}.

is valid as well. In general, an expression is called transparent, if it reduces to the
same result if the refined environment or any further refinement of it is supplied a

priori .

A conditional e— f; gis reduced by first reducing e. If e succeeds the then-part
f is reduced under the augmented environments produced by the reduction of e.
Otherwise, the else-part is reduced under the initial environments. The expression

unif(s,e] - f; g

is a generalization of FM’s conditional let-clause. In the following we will abbreviate
unif[e, f]1 to e=f and use all syntactic extensions defined for FM. If we interpret all
conditional let-clauses in a consistent FM-program as above, the resulting FU
program is equivalent and produces the same result.

We complete the informal account of FU’s semantics by describing the
reduction of pairs. As in FM, a pair is reduced by reducing the components

29

independently. If one or both components fail, the pair fails. Otherwise, each
component yields a result and a refined term environment. Since the components
may have produced delayed bindings for the same variables, a simple union of the
two refined environments will not work. Since environments are (solved) equation
systems, we build their union and take the solution of this equation system as the
refined term environment of the entire pair. If the union of the component
environments is unsolvable the reduction of the pair fails. Here are some examples
for valid reductions (the function environments are not shown):

{(X§1,X52)} - 0
{x=1,Y=2} - x=1v=2{(1,2)}
C{xX=(1,Y), X=@,8) } - x=(1,2) Y=4 2=1{((1,4), (1,4)}

Let us consider the last example in detail. The first component X =(1, Y) produces the
result (1,Y) and the refined environment x=(1,). The second component X =(Z, 4)
produces the result (z, 4) and the refined environment X =(z, 4). Thus the union of the
component environments is {X=(1,Y), X=(z,4)} and has the solution {X=(1,2),Y =4,
z=1}. The new bindings Y=4 and Z=1 are applied to the results of the components
and yield ((1,4), (1, 4)) as the result of the pair.

Pairs offer a clear possibility for parallelism. Sequentialization can be
accomplished with an if-clause e — f.

Once a closure is created, it is separated from the context and is not affected by
new variable bindings. For instance, the expression

X=1, Y=(X»rtrue) — Y[2]

succeeds with the atom true and the bindings X=1 and Y=d where d is a new
designator bound to the closure X»true. The closure contains no binding for X since
such a binding does not exist in the context where the closure is created. Thus the
above expression is nontransparent with respect to X; the expression
(1=1,Y=(1rtrue)) - Y[2] fails.

Free variables are first-class objects in FU. The following function succeeds
with the atom true if and only if its argument is a free variable.

var of X » == ((—=X=1), (-X=2)).

30

Recall that negation as failure -e is defined as e— fail[]; true. Since a failure
reduction does not produce bindings, a double negation — —e succeeds if and only if e
succeeds, but discards all bindings that the reduction of ¢ may have produced. A
second, quite different possibility to define a variable test is:

var of X » (Yytrue) [(Xptrue)[1], (X»true)[2]]

This works since the variables in a closure become renamed when the closure is

applied. We can go further and define equality for free variables:
eqvar of X,Y» var[X],var[Y] — —=(X=1, Y=2).

For instance, eqvar(X, Y] reduces to true if X and Y are free. On the other hand,
X=Y — eqvar[X, Y] will fail since before the test X gets bound to Y or vice versa.
However, the pair (X=Y, eqvar(X,Y]) will succeed since the components of a pair are
reduced independently.

The existence of a variable test allows for nontransparent first-order
expressions, for instance, (var[X], X=1). Furthermore, FU is necessarily
nontransparent with respect to variables that become bound to higher-order objects.
For instance, the expression X =(Y»Y) reduces to result d and binding X=d where d is
a new designator, but d=(Y»Y) fails since an abstraction always reduces to a new
designator.

5.1 The Dictionary Example

This classical example for the use of incomplete data structures appeared first
in Warren [36]. The task is to construct a dictionary of pairs (key, value) that is
organized as a binary search tree with respect to a linear order on the set of keys.
The basic idea is to represent empty subdictionaries as free variables, so that new
entries can be inserted by binding an empty subdictionary rather than by
constructing a new dictionary. The type of our dictionary is

dict(K,V) = ?({emptydict} + K x V xdict(K,V) xdict(K,V))

where K and Vv are type variables representing the key and the value type. A
dictionary is now either a free variable (defined by the ?-operator), the atom emptydict
or a tuple consisting of a key, a value, and a left and right subdictionary. Aslong as
the dictionary is not complete all empty subdictionaries are represented as free
variables. After all entries are made a dictionary can be closed by binding all empty

31

subdictionaries to the atom emptydict. The following predicate defines membership
for a closed dictionary:

contains: (KxK- {true}) » dict(K,V)xKx?V » {true} of
LTH» ((K,V,L,R), K, V » true;;
(K, V, L,R), NK, NV » contains [LT][(LT[NK,K] = L;R), NK, NV]).

The first argument LT supplies the order according to which the dictionary is
organized.

The contains predicate can retrieve values from a closed dictionary. The
application contains [It] [D, K,V] , where It is the order, D is bound to a closed dictionary,
K is bound to a key and V is a free variable, succeeds if and only if D contains an entry
for the key K. In this case the variable v gets bound to the corresponding value.
However, the most interesting thing about contains is that it can be used to insert a
new entry into an open dictionary (that is, all empty subdictionaries are variables).
When applied to an open dictionary, contains tries to refine (that is, instantiate) the
dictionary such that it contains the new entry. This insertion operation fails if the
dictionary already contains an entry for the key in question, but with a different
value. Thus contains can built a dictionary beginning with a variable. The next
predicate refines a dictionary such that it is closed:

closed: dict(K,V) -» {true} of
emptydict » true;;
(K, V, L, R) » closed [L], closed [R] — true.

We can now built a dictionary, close it and retrieve information from it. For

instance, the expression

contains [It] [D, b, 1] — contains [It] [D, a, 2] — contains [It] [D, ¢, 3] — closed [D]

— contains [It] [D,a, V] —» V
yields the result 2 and binds D to
(b, 1, (a, 2, emptydict, emptydict), (c, 3, emptydict, emptydict)).

This expression is transparent; if the binding for D is supplied a priori, the
expression reduces to the same result.

What do we do if retrieval is necessary before the dictionary is complete? If we
check with contains for a key that is not in an open dictionary, a new entry is made,

32

and that is probably not what we want. If we assume that no value in the dictionary

is a variable, the following function implements retrieval on open dictionaries:

get: (Kx K- {true}) » dict(K,V)xK » V of
LT » D, K» contains [LT] [D, K, V] = —wvar[V] — V.

This function cannot be expressed in a logic programming language since it tests for
a metalogical property. Furthermore, get and contains are higher-order since they
take the key order as argument. So far, higher-order logic programming languages

have not been developped.
5.2 Polymorphic Type Inference

Since polymorphic type inference [7] employs unification as a basic operation,
it should yield a prime example for FU’s expressive power. This is in fact the case,
but only if we employ some nontransparent features. Let us consider a simple
functional language with pairs, abstractions, applications and conditionals

expn = identifier|(expn, expn)|abs(identifier, expn) |

app(expn, expn) | cond(expn, expn, expn)
and the type structure
type = identifier|variable| prod(type, type)| fun(type, type)

where variable stands for FU-variables. The nonground term fun(T, T) is an example
for a polymorphic type. The function

typeof: assignment - base x expression - type of
Ay (B, abs(LLE) » fun(S,typeof[A][((I,S), B), E]);;
B, app(F.E) » T « typeof[A][B, F] = fun(typeof[Al[B, E], T);;
B, cond(C,E,F) » typeof[A][B, E] = typeof[A][B, F] « bool = typeof[Al[B, Cl];;
B, (E,F) » prod(typeof[A][B, E], typeof[Al[B, F]);;
B, I » getvalue[B, I]; A[l]).

infers the type of an expression under a type assignment and a base. The assignment
assigns types to defined functions, that is, it is a function from identifiers to types.
The base assigns types to identifiers that are introduced by abstractions and is
represented as a list of pairs of identifiers and types. The last clause of typeof
accesses the base and the assignment. The base is given priority since its identifiers

33

correspond to inner scopes. The function getvalue is defined in section 2. If the base B
contains no binding for the identifier | getvalue fails and the assignment is tried.
Since the assignment is a function it can be accessed by application. If the
assignment contains no binding for the identifier the entire type inference fails.

In the following examples for typeof we assume the following binding for the
type assignment:

A = (id» fun(T, T);; eqg» fun(prod(T, T), bool))

The reader may think of id as the identity function and of eq as the equality function.
The application

typeof [A] [(), appl(id, id)]

yields as expected the result fun(x, X) for the self-application app(id, id). Note that X is
a new variable. It will now become clear why we separated the type bindings into the
assignment and the base. Since the assignment is a function the variables in its
abstraction become renamed upon application. Hence, every access of the
assignment provides a type with new type variables. This allows the inference of the
correct type for the self-application.

Each clause of typeof corresponds directly to a type rule. This succinctness is
possible since FU can solve equations that contain function applications. An
examples that occurs in typeof is fun(typeof[A][B, E], T) = typeof[A, B][F]; this equation is
solved for T and for all variables that occur in the base B. Most of the computational
work is done by unification; new bindings for type variables are propagated as side
effects. For instance, the application

typeof [A] [((x, int), (y,Y), (z,list), (v,V),()),
cond(appl(eq, (x,y)), z, V)]

yields the result list as the type of the expression and the variable bindings Y = int
and V=list for the types of the identifiers y and v in the base. Note that typeof is
transparent with respect to “type variables” in the base. The application

typeof [A] [((x, int), (y, real), (z, list), (v, V), (),
cond(appl(eq, (x,y)), z,v)]

fails since the expression is not well-typed under the given base.

34

To build a complete type checker we must be able to decide whether a type is
an instance of another type. Since types are terms it suffices if we can decide this
question for terms. We say that a term s subsumes a term ¢ if there exists a
substitution 0 such that s=6¢. A subsumption test can be defined as follows:

subsumes: term x term > {true} of

S,T» = (L=vars[T] - S=T — map[Vrvar[V]][L]).

vars: term - list(term) of
X »var[X] — X (;
X=S,T — append][vars|[S], vars[T]];
0.

The ‘function vars computes a list that contains all variables that occur in its
argument. If S subsumes T than S and T can be unified without binding a variable of T
to anything but a variable. Thus the application of map in subsumes succeeds if no
variable in T was bound to a nonvariable. The double negation makes sure that
subsumes does not bind variables contained in its arguments. It is clear that subsumes
is not a transparent function. Since it tests for a metalogical property it cannot be
written in a logic programming language. To formulate polymorphic type checking
in a logic programming language, we were forced to represent type variables as
ground terms and were thus deprived of the advantages of the built-in unification. It
is questionable whether a formulation in, say, Horn logic would have any
advantages over a functional formulation in FM.

To continue the type checking example, let us assume that programs consist of
a sequence of function definitions followed by an expression:

program = fundef(identifier, type, abs(identifier, expn)), program | expn.

The type checker takes a type assignment and a program and succeeds with the most
general type of the result if the program is well-typed. The type assignment specifies
the built-in functions and their types.

welltyped: assignment x program - type of

A, P » welltyped1] fullassignment [A, P}, P].

35

fullassignment: assignment x program - assignment of
A, (fundef(F, T,E),P) » —A[F] — fullassignment[(F»T;; X»A[X]), P];;
A E » A

welltyped1: assignment x program - type of
A, (fundef(F, T,E),P) » subsumes[T, typeof [A][(), E]] — welltyped1[A,P];;
A, E » typeof [A] [(), E]

In the first pass through the program the checker collects all defined functions and
their types and makes sure that their names do not conflict with each other or the
built-in functions. The second pass checks that all defined functions satisfy their
declared types and finally computes the most general type of the expression to be
executed. Note that the type checker handles recursive function definitions and that
the order of the function definitions isirrelevant.

The goal of this section was to illustrate that unification can be smoothly
integrated into a functional language. Two applications were presented that
illustrate the use of unification in such a framework and show the advantages over
purely functional formulations. Both applications are incompatible with the logic
programming paradigm, since they depend crucially on the metalogical test whether
a variable is free. There seem to be virtually no applications of practical relevance
that employ “logical variables” in an entirely transparent fashion and still show
significant advantages over a purely functional formulation.

6 Adding Multiple Results

Fresh is obtained from FU by adding three constructs for the introduction and
elimination of multiple results. Operationally, multiple results lead to a reduction
strategy with chronological backtracking. Multiple results and matching yield a
language with expressive data base capabilities. Furthermore, the combination of
backtracking and collection can often replace recursion and lead to intuitive
formulations with a declarative reading. Finally, the incorporation of unification
and multiple results yields a language that subsumes Horn logic with equality.

36

Multiple results are introduced by disjunctions. The results of a disjunction
e|f are the results of e followed by the results of f. Like Prolog, Fresh employs a left-
to-right depth-first search strategy. For instance, the expression (12)|(1]3) has the
result sequence 1, 2, 1, 3. Note that the result 1 occurs twice. The combination of
recursion and backtracking allows expressions that have an infinite result sequence.

For instance, an application inf[()] where
inf of ()» 1] inf[()].
has the infinite result sequence 1,1,1,.. .. A useful example for the combination of

recursion and backtracking is a list enumerator

el : list(T) > T of
H, T»H| ellT].

with the declarative reading “an element of a list is either the head or an element of
the tail”. The application el[1, 2,3, ()] yields the result sequence 1, 2,3, 0 where the
failure result O stems from the empty list ().

Multiple results extend naturally to pairs and applications. Here are some

examples:
((112), (3| 2) yields (1,3), (1,2), (2,3), (2,2)
(X=(112), X=(2|3)) yields 0 0 (2,2, 0

((1» (first]second))| (X»X)) [1]2]3] yields first, second, 0, 01, 1, 2, 3

The extension of the conditional to multiple results is somewhat more subtle.
We introduce a new conditional e = f; g called soft conditional. It is reduced by first
reducing e. If e has no success result the reduction proceeds with g and the result
sequence of g is the result sequence of the entire conditional. If the condition part e
has a success result, the reduction proceeds with f under the first environment
created by e. The result sequence of the entire conditional is then obtained by
concatenating the result sequences of the then-part funder the refined environments
produced by the condition part e. In other words, execution can backtrack from the
then-part to the condition part. Here are examples:

X=(1]2]3) = X;5 yields 1,2, 3
X=(1]2]3) = ((X=(23)),4);5 yields 0,0 (2,4, O, 0 3,4)
X=1= X=2;5 yields O

((X=1),(1=2)) = X=1;(4/5/X) yields 4,5, X

37

The last example shows that bindings produced by the condition part (here X=1) are
not propagated to the else-part.

Confinement (written le) discards all but the first success result of an
expression. Here are examples:

(5, X) yields (5, X)
(1] 2] 3) yields 1
(X=(1]2]2) = X=2;5) yields 2
o=1) yields [

The last example shows that confinement fails if the expression it is applied to has no
success result.

We can now define a hard conditional

e—>f.g is le = f; g
that does not allow backtracking from the then-part to the condition part. In a

program without disjunctions the soft and the hard conditional are equivalent since
then there are no multiple results that can be cut away.

Collection (written {e})is the second construct for the elimination of multiple
results. The expression {e } reduces to the list of all success results of the expression
e. If e fails, that is has only failure results, the collection of e reduces to the empty
list. Thus collection always has exactly one success result. Here are some examples:

{1} yields (1,0)
{1123} yields (1,2,3,0)
{x=(123)|5} yields (1,2,3,5,()
{0=1} yields ()
{el[1,2,3,01} yields (1,2,3,0)

Delayed bindings created during the reduction of a collection are not propagated to
the outer context. Furthermore, variables in the elements of the result list are
renamed to new ones such that no two elements share variables. For instance, the

expression

X=(1,Y) = {X=(Z, (2|3|uU|u))}

38

yields the result ((1,2), (1,3), (1, A), (1,8), ()) and the delayed binding X =(1, Y) where A
and B are new variables. During the reduction of the collection the bindings Y =2,
Y=3, Y=U, Y=U are created successively. Since these bindings are independent, a
propagation of a binding for Y outside of the collection construct is not sensible. This
semantics for the collection construct are also supported by an evolving type
discipline for Fresh.

A collection of an expression with an infinite result sequence will not
terminate. This problem could be resolved if the language employed a lazy reduction
strategy for collections. Then confinement could be defined by the collection
construct as (FS)={e} = F.

Collection constructs also exist in Prolog [4] and KRC [33]. However, these
languages integrate collection somewhat artificially since syntax and semantics
inside a collection are different from the rest of the language. In Fresh collection can
be applied to any expression.

Fresh’s bare syntax is
ex=al|d|x|@f)]|sf|flel|le=>Ffglelfl|le] {e}.
The connection to FM and FU is made by the syntactic extension
e—>f, g is le = f g

which defines the hard conditional. The results of FM or FU programs remain
unchanged under Fresh’s semantics. Disjunction provides for a second form of the
clausal definition construct:

sireq |l is X»((s1rer)]
sa2pe2 || (s2pe2)|
Sn}en (Sn’en))[X].

If the patterns s; are pairwise nonunifiable (that is, have a common instance) this
construct is equivalent to the clausal definition construct based on the conditional.
Otherwise, the disjunction-based construct allows that more than one clause
contributes to the result sequence.

39

6.1 Examples

Recall the definition of list enumeration

el: list(T) > T of
H, T » H| ellT].

which reads “an element of a list is either its head or an element of its tail”. The
collection { (ellls], elll;]) } yields the cartesian product of the lists [; and [.
Furthermore, the sublist of all elements of a list [/ that satisfy a predicate p is
obtained by {X & p[X=el(l]]} where the where-clause f « e is a syntactical variant
of f=e;faill].

In section 2 we defined in FM a function that yields the power list of a list. We
can now define a declarative version of this function:

sublist: list(T) » list(T) of
0O» 05
H,T » S|H,S & S= sublist[T].

This may be read: “The sublist of the empty list is the empty list; and a sublist of a
nonempty list is either a sublist of the tail or the head together with a sublist of the
tail”. The power list of a list [is now simply computed by {sublist[[]}.

The next example illustrates Fresh’s data base capabilities. The task is to
implement a grade book that contains entries of the form (student, test, grade). A
straightforward solution is to represent the grade book as a list of such tuples. In the
following we assume that the variable B is bound to such a grade book. The query
“all students who got an A in test CS211” is realized by the expression

{S & (5,cs211,a)=el [B] }.
The query “all students who ever flunked a test” becomes
{S « (5, T,fy=el[B]}.

A list of all students who ever flunked a test together with the list of all tests a
student flunked is computed by

{(s,{T & (5, T,)=el[B]}) « (5, T1,f)=el[B] }.

40

The query “all students who flunked data bases and got an A in theory” becomes (the
where symbol binds left-associative)

{S & (S, database, f)=el [B] & (S, theory, a)=el [B]}.

Finally, the grade book obtained from B by deleting all entries for the test CS211 is
computed by

{E& - T=c211 & E=(5,T,G)=el[B]}.

6.2 Comparison with Prolog

A Prolog program is a set of predicates. Each predicate is defined by a
sequence of Horn clauses. Two typical examples are list concatenation and reversal:

append(nil, L, L) « true.
append(cons(H, T), L, cons(H, TL)) « append(T, L, TL).

reverse(nil, nil) &« true.

reverse(cons(H, T), L) « reverse(T, R), append(R, cons(H, nil), L).

The empty list is the atom nil and a list with head & and tail ¢ is the term cons(A, t).
Horn clauses and predicates can be expressed in Fresh as well:

append of
nil, L, L » true ||
cons(H, T), L, cons(H, TL) » append|[T, L, TL].

reverse of
nil, nil » true ||

cons(H, T), L » reverse[T,R] = append[R, cons(H, nil), L].

Predicates become functions that either fail or yield the atom true as result. Prolog’s
conjunction is sequential and translates therefore into an if-clause. The two Fresh
functions have precisely the same semantics as the corresponding Prolog predicates.
In other words, Horn logic with depth-first search is a subset of Fresh. Prolog’s cut is
easily replaced by confinement and conditional, and Prolog’s negation as failure is
negation in Fresh.

41

Horn clauses are not the intended programming style for Fresh. In fact, Fresh
is an attempt to offer Prolog’s capabilities in a framework that avoids Prolog’s
drawbacks:

e In Fresh, all constructs can be nested. This avoids the need for auxiliary
variables and leads to a compact notation.

e Functions and nesting make information flow explicit. In Prolog,
information flow can only be accomplished by side effects (delayed bindings)
and is thus difficult to analyze.

e In Fresh, full unification and delayed bindings are the exception. If we
consider an open unification e=f where one side reduces to a ground term as
matching, only the examples in section 5 require full unification and employ
side effects. In Prolog, every predicate application requires full unification
and conveys output through side effects.

e In Fresh, backtracking is introduced explicitly by disjunction and is
localized by confinement and collection. A sufficient condition that implies
that a function has at most one result can be easily tested at compile-time. In
Prolog, backtracking is the default. Since most applications do not involve
backtracking, intellectual effort and numerous cuts are needed to suppress
backtracking.

e Higher-order functions and functional abstraction are a structured
alternative to Prolog’s obscure assert and call constructs. While higher-order
functions are easily covered by a static type discipline, this is not the case with
Prolog’s assert and call constructs.

e Fresh’s pair construct offers a clear possibility for parallelism. Since
Prolog’s conjunction is defined sequentially, the exploitation of and-
parallelism requires complicated compile-time analysis. In Fresh,
sequentialization is naturally expressed by nesting and conditionals.

42

7 Unification

In Fresh, all variable bindings are obtained by solving equations between
patterns and reduced arguments. In contrast to FM, both sides of an equation can
contain variables. This complicates the situation since such equations can have
infinitely many solutions. For instance, the equation

(a, X, U, (b,q) =(a, (Y,0), V., X)

is certainly solved by {X=(b, ¢), Y=b, U=Vv}. However, {X=(b, ¢), Y=b, V=U} is a
solution as well; and infinitely many further solutions can be obtained by binding
the variables V or U to arbitrary terms. Fortunately, solvable unification problems
have most general solutions, from which all other solutions can be obtained. In our
exarﬁple, the first two solutions are most general. We will prove that most general
solutions are unique up to reversal of bindings that bind variables to variables. Thus
the task of a unification algorithm is to decide whether an equation system is

solvable and, if so, to compute a most general solution.

This section presents the basic notions and results from unification theory in a
framework that is tailored for the semantic account of Fresh. Idempotent
substitutions will play the role of ground substitutions and be most general solutions
of unification problems and term environments in the reduction tree semantics. A
nondeterministic unification algorithm is obtained by extending the matching rules.
The key results are theorem 7.5 (most general solutions are unique up to binding
reversal), theorem 7.9 (the unification rules are noetherian) and theorem 7.12 (the
unification rules are confluent up to binding reversal and yield a most general
solution).

7.1 Subsumption, Idempotence and Equivalence of Substitutions

A substitution 0 subsumes a substitution y, written 6=y, if 6=0y. A
substitution 0 is idempotent if it subsumes itself, that is, 6=66. It is easy to show
that O<y is a preorder (that is, reflexive and transitive) on the set of idempotent
substitutions. Thus, 6~y © 6=y A w=0 defines an equivalence relation ~ on
idempotent substitutions. We say that two substitutions 6 and y are equivalent if
they are idempotent and subsume each other, that is, 6<y and y=6. The letter p
will always range over idempotent substitutions.

43

Recall that we consider only finite substitutions, and that a finite substitution
O can be identified with its representation, that is, the equation system
{x=6x|x €D(0)}. The following is easy to prove:

Proposition 7.1. 0 subsumes y if and only if 6 solves .

The variables introduced by a substitution 6, written [(0), are the variables
contained in the right-hand sides of its representation, that Iis,
I(6) = U {V(6x)|x €D(B) }. Obviously, a substitution is idempotent if and only if its
domain and its introduced variables are disjoint. V(8) := D(6)UI(B) is the set of all
variables occurring in the finite representation of 6. Two substitutions 6 and y are
independent if V(0) and V(y) are disjoint. If 6 and y are independent, then BUy
denotes the substitution whose representing equation system is the union of the
representing equation systems of 6 and .

Proposition 7.2. If 6 and y are independent then 6y =ywy6=0Uw.

Our next goal is to show that two substitutions are equivalent if and only if
they are equal up to binding reversal. The concept of a direct variant makes precise
what we mean by binding reversal. A substitution y is a direct variant of a
substitution 0 if there exist pairwise distinct variables x7,..., xn , y7...., yn such
that Ox;=y; for all i and y={y;=x7,..., yn=x,}0. For example, the substitution
{X=Y,Zz=Y} is a direct variant of {Y=2, X=2} since {X=Y, Z=Y}= {Z=Y} {Y=Z X=Z}.
The following proposition is easy to prove:

Proposition 7.3. Direct variants of idempotent substitutions are
idempotent.

The following lemma is needed for the proof of the next theorem.

Lemma 7.4. Let 6 and wy be equivalent, but distinct substitutions. Then
there exist distinct variables x and y such that 6x=y and yy=x.

44

Proof. Let Isl denote the depth of a term s. First we observe that
[Bsi=lysl=Isl since 10sl=10ysi=lysi=lyOsi=10si=Isl. Now let s be a term such that
Os=ws. We prove the claim by induction on 18sl.

iBsi=1. Since substitutions cannot disagree on atoms or designators s must be
a variable. Since 8s=ys and ys=1y0s we have that y:=0sis a variable. Since ys=0s
and 8s=0ys we have that x:=wys is a variable. Thus Ox=y and yy=x and x and y are
distinct.

[Bsl>1. Then 8s=(uy7, ug)=(Ous, Oug) and ys=(vy, v2)=(gvy, Yvo) since 6 and g
are idempotent. Since 8s=ys we have Ou;=wv; without loss of generality. Now the
claim follows from the induction hypothesis.]

Theorem 7.5. Let 6 and y be idempotent substitutions. Then 6 and y are
equivalent if and only if y is a direct variant of 6.

Proof. Righttoleft. Let w={y;=x;7,...,yn=xn}0and xy7, Xn,YI,....Yn be
pairwise distinct variables such that 6x;=y; for all i. Then y subsumes 0 since 6
subsumes 6. On the other hand, 6 subsumes y (that is, 6=6{y;=x7,..., Yn=xn}0)
since O{y;=x1,...,yn=xn}=06. Thus 6 and y are equivalent.

Left to right. We prove that y is a direct variant of 6 by induction on n :=
| {x €V|bx=wyx}|, thatis, the number of variables 6 and y disagree on.

n=0. Then 6=y.

n>0. Then 6 and y are distinct. Thus by lemma 7.4 there are distinct
variables x and y such that 6x=y and yy=x. Then 0":={y=x}0 is a direct variant of 6.
Furthermore, we know by proposition 7.3 that 6' is idempotent. Thus we have by the
right to left part of the proof that 6~6'. Since we assumed that 6~y we have y~6'.
Now the induction hypothesis applies to y and 6" and yields that y is a direct variant
of 0'. Thus there exist pairwise distinct variables x7,..., xn , ¥7,..., yn such that
0'xj=y; forall iand y={ys=x7,..., yn=x,10". Since 8'x=x we have that x is distinct
from all x;; since 68'x=x and yx=x (y is idempotent and yy=x) we have that x is
distinct from all y;. Since 8'y=x, y and x are distinct and 6' is idempotent we have
that y is distinct from all y; ; finally, since 6'y=x and x is different from all y; we have
that y is different from all x;. Thus y={y;=x7,..., yn=x,}0'={y1=x1,...,
Yn=xnt{y=x}0={y1=x1,..., yn=xn, y=x}0 since {y;=x;,..., yn=xn} and {y=x} are
idempotent. Thus y is a direct variantof 6. [

45

7.2 The Unification Rules

The next lemma justifies a method for the stepwise construction of idempotent
substitutions, which is employed by the unification rules.

Lemma 7.6. The composition {x=ps}p is an idempotent substitution if

x ¢D(p)UV(ps). Furthermore, {x=ps}p subsumes p.

Proof. The second claim is obvious since p subsumes p. Let y be a variable.
To prove that {x=ps}p is idempotent it suffices to show that {x=psip{x=psipy =
{x=pstpy. This equality holds since D({x=ps}p) = D(p)U{x} and D(p)U{x} and
V({x = psipy) are disjoint. []

A unification problem is a pair p{E} where p is an idempotent substitution and
E is a finite equation system. A solution for a unification problem p{E} is a
substitution 0 that solves p and E. Unification is the process of computing the
solution of a unification problem. The unification rules reduce a unification problem
p{E} by growing the solved part p and shrinking the unsolved part E. Note that p
already solves p. There are seven unification rules:

(Taut) p{s=s, E} .~ p{E} iff s AUDUV

(LSubst) p{x=u, E} .~ p{px=u, E} iff x €D(p)

(LBind) p{x=u, E} > {x=pu}p{E} iff x ¢D(p)UV(pu)
(RSubst) p{s=x, E} ,~ p{s=px, E} iff x €D(p)

(RBind) p{s=x, E} .~ {x=ps}p{E} iff x ¢D(p)UV(ps)

(Split) p{. =, v), E} .~ p{s=zut=v, E}

(Fail) p{s=u, E} .~ O iff none of the rules above applies

The unification rules extend the matching rules. Since variables can now
occur in the right-hand sides as well, there are symmetric substitution and binding
rules for right-hand sides. The significant difference between unification and
matching is in the formulation of the binding rules. The augmented environment
{x=pu}p is obtained by left-composition with {x=pu}. Since the right-hand sides of
the representation of p can now contain variables, they may become instantiated

46

under the new binding. A new binding x =pu can only be made if it is not cyclic, that
is, x ¢V(pu). This is the so-called occurrence check. For instance, the equation
X =(X, X) has no solution.

Most Prolog systems ignore the occurrence check since it requires a
considerable computational overhead. These systems are not only logically
inconsistent, but their unification algorithm will also not terminate for certain
cyclic equation systems. Colmerauer [5, 6] has developed a consistent theory of
cyclic unification and infinite regular trees. However, to guarantee termination, he
incorporates a condition that is as expensive as the occurrence check. Van Emden
and Lloyd [20] show that Colmerauer’s cyclic unification is sound for Horn logic with
an augmented equality theory. For Fresh, the occurrence check does not cause
problems, since the big majority of unifications can be implemented by matching. In
typed Fresh, which is currently under development, compile-time analysis will
automatically decide for which equations matching is sufficient. Furthermore, typed
Fresh will exploit conditions (like those formulated by Plaisted [25]) that imply that
occurrence checks are redundant although both sides contain variables.

In the following ,—* denotes the reflexive and transitive closure of ,— on the
set of unification problems. Furthermore, p{E} ,~*p' is an abbreviation for
p{E} .~* p'{@}. The next proposition says that unification generalizes matching.

Proposition 7.7. Let p{M}be a matching problem. Then p{M} ,—* p' if and
only if p{M} .~* p'.

Proof. If the right-hand sides of equations are ground terms, the right
substitution and binding rules do not apply. Furthermore, the occurrence check in
the left binding rule is always satisfied. Thus the applicable unification rules are
equivalent to the matching rules. [

Lemma 7.8. Let p{E} .~" p'{E'}. Then p'isanidempotent substitution and
subsumes p. Furthermore, V(p') C V(p)UV(E).

Proof. The first claim follows from lemma 7.6 by induction on the length of the
reduction sequence. The second claim is obvious since none of the rules introduces
new variables. []

47

The following theorem states that the unification rules do not allow infinite

reduction sequences.

Theorem 7.9. The reduction ,— isnoetherian.

Proof. Suppose there is an infinite reduction sequence starting from p{E}.
Since p{E} contains only finitely many variables, new variables are not introduced,
and the binding rules increase the number of variables in the domain of the
idempotent substitution p, we can assume without loss of generality that the infinite
reduction sequence does not employ the binding rules. The remaining rules do not
increase the number of occurrences of variables contained in the domain of the
idempotent substitution p. Since both substitution rules decrease the number of
those occurrences at least by one, we can now assume that the infinite reduction
sequence employs only the tautology and splitting rule which, is impossible. []

The next lemma states that a solvable unification problem cannot be reduced
to the failure configuration .

Lemma 7.10. If p{E} has a solution and E is nonempty, then there exist p'
and E' such that p{E} .~ p{E'}.

Proof. Let 0 be a solution for p{E} and E be nonempty. Suppose none of the
rulesis applicable. Since there is a solution, E does not contain equations of the form
a=b, a=(s, t), or (s,)=a where a is either an atom or a designator. Furthermore,
since the tautology and splitting rule are not applicable, all equations in E must
have form x = (s, ¢) or (s, t) =x. Without loss of generality let x=(s,) be in E. Since the
substitution rule is not applicable we have x¢D(p). Since the binding rule is not
applicable, we have x€ V(ps) without loss of generality. Thus we have 6x= 6(s, t)=
(Bs, 8t). Consequently [0xI>10sl=10psl since O subsumes p. Since x€ V(ps) we have
[Bpsi=10xl, which is a contradiction. []

The next theorem states that the unification rules are sound, that is, the set of

solutions isinvariant under reduction with a unification rule.

Theorem 7.11. Let p{E} ,—~ p'{E'}. Then 6 is a solution of p{E} if and only
if 0 is a solution of p'{E'}.

48

Proof. We have to prove the claim for each except the failure rule. For the
tautology and the splitting rule the claim is obvious. Since the left and the right
version of the substitution and binding rules are symmetric, it suffices to prove the
claim for the left substitution and the left binding rule.

Left substitution rule, left to right. Let 6 be a solution of p{x=s, E}. It suffices
to prove that Opx=0s. Thisis the case since 6 subsumes p and 6 solves x=s.

Left substitution rule, right to left. Let 6 be a solution of p{px=s, E}. It suffices
to prove that Ox=06s. This is the case since 6 subsumes p and 0 solves px=s.

Left binding rule, left to right. Let 0 solve p{x=s, E}. It suffices to prove that 6
subsumes {x = ps}p. Since 0 subsumes p this is the case if 6 subsumes 6{x=ps}. Lety
be a variable. If y is different from x, 6y=06{x = ps}y obviously holds. Otherwise we
have Bx=0s=0ps=0{x = ps}x since O solvesx=sand subsumesp.

Left binding rule, right to left. Let 0 solve {x=ps}p {E} and x¢D(p). We have to
show that 6 subsumes p and solves x=s. We have 8=0{x = ps}p=0{x=ps}pp=06p since 0
subsumes {x=ps}p and p is idempotent. Thus 6 subsumes p. Furthermore,
Bx=6{x = ps}px=0{x = pslx=0ps=06s since O subsumes {x = ps}p, x¢D(p), and 6 subsumes
p. Thus B solvesx=s.]

Let O be a set of substitutions. Then a substitution 6€0 is most general for ©®
if 6 is subsumed by every substitution in ®. It is easy to see that most general
substitutions are idempotent and all most general substitutions for ® are equivalent.
The following theorem tells us that if a unification problem can be solved, then the
unification rules will solve it and produce a most general solution.

Theorem 7.12. A unification problem p{E} has a solution if and only if there
is a p' such that p{E} .~*p'; and p{E} ,~* O if and only if p{E} has no solution.
Furthermore, if p{E} ,—~*p' then p'is a most general solution of p{E} and satisfies
V(p')YCV(p)UV(E).

Proof. The first and second claim follow by induction on the length of
reduction sequences by lemma 7.10 (no dead ends) and theorems 7.9 (no infinite
reduction sequences) and 7.11 (solutions are invariant under reductions). Note that
a solved problem p{@} is solved by p. Furthermore, recall that 6 is a solution of p{@}
if and only if 6 subsumes p. Thus theorem 7.11 yields the third claim by induction on
the length of reduction sequences. The last claim is part of lemma 7.8. O

49

The last step in the reduction of pairs is the unification of the component term
environments. Term environment will be idempotent substitutions and can thus be
regarded as solved equation systems. We call two substitutions compatible if they
are subsumed by a common substitution.

Corollary 7.13. Let 6 and w be substitutions. Then there exists a
substitution that subsumes 6 and y if and only if there exists p such that
e{0Uy} ,—~* p; if p exists it is a most general substitution that subsumes 6 and .

Proof. From proposition 7.1 we know that 6 subsumes vy if and only if 6 solves
y’s equation system. Thus the claim follows immediately from theorem 7.12. []

The reader may consult Siekmann [31] for an overview of the current state of
first-order unification theory. Unification was first studied by Herbrand [11], who
gave the first unification algorithm. But unification only became of real importance
with the advent of automatic theorem provers, and unification algorithms were
independently rediscovered by Robinson [28], Guard et al. [10] and Knuth and
Bendix [16]. Fast unification algorithms exploit a structure sharing representation
for terms and were devised by Huet [13], Martelli and Montanari [21], and Patterson
and Wegman [24]. Patterson and Wegman’s algorithm is linear-time. There is some
work on higher-order unification by Huet [12, 13]. Goldfarb [8] shows that second-
order unification is undecidable by reducing Hilbert’s tenth problem to it. Thus
programming languages must use first-order unification.

8 Reduction Tree Semantics of Fresh

In FM, a success reduction has the form

6p{e} > &'{u}

where 8§ and &' are function environments, p is a term environment, e is the
expression to be reduced, and u is the result. An interpreter would begin with the
initial configuration §p{e} and compute the final configuration §'{u}. The final
function environment is an extension of the initial one and contains the functions

50

that were created during the reduction process. The term environment is a ground

substitution, that is, it binds variables to ground terms.

In Fresh, free variables are first-class objects. The term environment can bind
variables to nonground terms and the reduction process can produce delayed
bindings for variables that occur in the values of other variables. Delayed bindings
are propagated to the outer context. For instance, delayed bindings produced for the
condition part of a conditional are available during the reduction of the then-part.
To propagate delayed bindings, reductions for Fresh employ a final term
environment p',

Sp{e} » & p'{u}

which is obtained from the initial one by including delayed bindings. Thus the final
term environment will subsume the initial one, that is, p'=p'p. Subsumption
captures what we described as refinement or narrowing of the term environment.
The fact that the final term environment subsumes the initial one implies p'x=p'px
for all variables x, that is, the final value p'x is an instance of the initial value px.
This means that bindings cannot be arbitrarily changed but only be refined. Once a
variable is bound to a ground term (always the case in FM), its value is final and

cannot be changed anymore.

Since reduced arguments in Fresh can contain variables, the variables in a
closure must be renamed to new ones upon application to avoid variable clashes.
New variables can be exported to the context of an application since they may be
included in the result or the refined term environment. Thus being a “new variable”
is a property that cannot be decided in the local context of an application but must be
defined globally. To solve this problem, we will employ reductions of the form

Sp{e} > &'p'{u}V

where V is the set of all variables that are newly introduced in the reduction tree
justifying the reduction. The rules that combine reductions will come with
conditions that prevent variable clashes.

With these extensions, FU’s reduction rules can be easily obtained from the
rules for FM. However, to obtain the rules for Fresh, we also have to account for
multiple results. Intuitively, when building a reduction tree, we have at every

51

disjunction the choice of proceeding with either the left or the right side. We will
make the reduction process deterministic by equipping initial configurations with a
choice string that contains the necessary decisions a priori. Thus, the final form of
reductions for Fresh is

Sp{e}é > 8'p'{u}tV

where the choice string & is a string over the characters L (left) and R (right). The
semantics of disjunctions is then captured by the rules

Splelf}LE - C SplelfIRE —» C
Spfetf - C Sp{ft§ - C

" We now begin the formalization of Fresh’s semantics. A choice string is a
string over the characters L and R. The empty choice string is denoted by ¢ and &&'
denotes the concatenation of two choice strings £ and . The relation § < &' (read “§ is
immediately before £) is defined by

E<f o 30 &=UR R A &=L L

where ¢, R.--Rand L---L can be empty strings. This relation is used to formalize
chronological backtracking. A sequence &;,...,¢&, of choice strings is a chain if
&=L Land & < -~ < &, . Informally, a chain records in chronological order all
choice strings beginning with the first possible one up to §,. A chain §;,...,&, is
maximal if £,=R -R. A maximal chain contains all possible choice strings for an

expression in chronological order.

As for FM, we first define a general form of reductions and proof then that
every reduction in a reduction tree for a consistent initial configuration is consistent.
Term environments are substitutions and function environments are finite maps from
designators to closures. The domain of a function environment § is denoted by D(8).
Closures consist of a term environment and an abstraction. An initial configuration
has form 8 p { e } £ where 6 is a function environment, p is a term environment, e is
the expression to be reduced, and { is a choice string. A final configuration is either
the failure configuration 7 or has the form 8 p { u } V where 8§ is a function
environment, p is a term environment, u is a term (the result), and V is a set of
variables. A reduction has the form I — F where [is an initial and F is a final
configuration.

52

Atoms and Designators

6p{ate —» 8p{a}@ Sp{dle - 6p{d}o

Variables

Sp{x}e - Sp{px}T

Pairs

8p{leN}&& — (8;U8s) ps{psu, v)} V,UVy iff p;{p2} o>" p3

8pl{e}& — 8;p1{u}lVv; and D(8;,)ND(8,)CD(8)

8p{f}& — 8op2{v}Ve and V;, Voand V(e)
are pairwise disjoint

Sp{eN}t&& - O iff pr{p2} =" O

Sp{e}té& — 8;ps{u}lVv; and V;, Voand V((e [))are

8p{f}1& — S2p2{v} V> pairwise disjoint

Sp{eN}t&& - O Spl{eNt&& - O

8plet&r - O 8ple}é - F

6p{fi& > F 8p{ft& - O

As in FM, the components of a pair are reduced independently. Then the
produced function and term environments are combined. The additional failure rule
handles the case where the unification of the term environments fails. The
expression (X=1, X=4) is an example for this case. The condition p; {ps} ,»* O is
equivalent to py{p;} «=* 0 and e{p;Ups } ,—* O (¢ is the empty substitution). The
unified term environment must be applied to the result of both components since
they can contain variables that are bound by new bindings in the unified term

53

environment. The expression (X=(1,Y), X=(Z,4)) is an example that was discussed in
section 5. The conditions for designators and variables ensure that there are no
clashes with new designators and variables.

Soft Conditional
Spl{e=f.g}t&& — 8G2p2{v}V,;UV, iff V,;, Voand V((e, f)) are
Sp{et& - 8ipi{utV; pairwise disjoint

S:pi{ft& — 8apa{v}V,

. 8pf{e=f.g18% - O iff V,and V(f)are disjoint

Spl{et& - S p{u} Vv,
S:pi{f}t& - O

Sp{e=f.gtf - F

Sp{e} —»* O
8p{fi§ - F

The expression § p{e} —»* [is an abbreviation for a nonempty sequence

Spleté&—»0,...,8p{e}é, - O

of reductions such that &;,.. ., &, is a maximal chain. Thus the third rule says that
the else-part is only reduced if the condition part has no success result.

Abstraction

Sp{sre}le —» 8ld<(p,sre)lp{d}T iff d ¢D(8) and p'=p|v(spe)

Once an abstraction is reduced to a closure, the closure is not affected by
further variable bindings. For instance, the expression X=(1,Y) > V=(Z»X)
—-Y=5->(V,X) reduces to (d,(1,5) where d is bound to a closure with term
environment X =(1,Y) and abstraction z)X. Thus side-effects do not apply to closures.

54

Technically, this is easily achieved since closures are kept in a separate environment
and new bindings only affect the term environment. This is one reason for having

designators.

Application

Sp{flel}&& — Saps{v}V,UVLUV, iff prpa{s=u} .~* p3
Sp{(fe)}t& - S;pi{dw}tV, and (ps, srg) € VAR(S,(d))
81ps{g}& — Baps{v}V; and V, = V(p2)UV(s»g)

and V;, V,, V3are pairwise disjoint
and Vyand V(p;)UV(u)aredisjoint

Sp{flel}&& - O iff pipo{s=u} ,~* p3
Sp{fe)}& —» Spi{duw}tV; and (ps, spg) € VAR(8;(d))
S;p3{gt& — O

and V(p2)UV(s»pg)and V(p;)UV(u)aredisjoint

Sp{flel}& - O iff pipo{s=u} .~* 0O
Sp{(fe)t& » 8 p;{(d w}iV, and (ps, s»g) € VAR(8;(d))

and V(p2)UV(spg)and V(p;)UV(u)aredisjoint

8p{flel}E - O iff visnota designator
Sp{(fa}tf - 8 pi{ww}V;

Sp{flel} - O
Sp{(fea}lf > O

VAR(8;(d)) is the set of all variants of the closure §;(d). A variant of §;(d) is obtained
by renaming the variablesin §;(d) consistently.

55

Disjunction

SplelfiLE - F Splelf}RE - F
Sp{e}f - F Sp{ft§ - F
Confinement

8p{lete - F Sp{telte - 0O
Sp{e} »' F 8p{e} »* O

The abbreviation 8p{e} »*0 was explained with the conditional rules. The
expression 8 p{e} »' F abbreviates a nonempty sequence

Sp{et& - 0O ,..., 8pleté&_r » O, Sp{e}s, = F
of reductions such that&;,...,§, is a chain. Thus F is the first success result under

chronological backtracking.

Collection

Sp{{e}te » Bu-udypf{w, . .u)}VWy, ... u'y)
Sp{el0} - & {us},..., 8, {u.}

iff Vi,j. izj = D(E;)ND(;) C D)
A izj = VW)NVw,;) =92
A u; € VAR(u;) N V@;)NV(p) =0

The expression 8p{f} —»* 8;{u;},...,8, {u,} abbreviates a sequence of reductions
for 8 p{f} such that their choice strings form a maximal chain and §; and u; are the
function environments and results of the success results. VAR(u) is the set of all
variants of u where a variant of u is obtained by renaming the variables in u
consistently. All elements of the result list are renamed such that they do not share
variables with each other or the final term environment. A collection has no side
effects since the final configuration inherits the initial term environment.

56

Reduction trees are defined as for FM. The next proposition says that the
existence of a reduction tree does not depend on the choice of designators and

variables.

Proposition 8.1. Let R be a reduction. Then R has a reduction tree if and
only if every variant of R (under consistent designator and variable renaming) has a
reduction tree.

Since initial configurations carry a choice string that determines which side of
a disjunction is reduced, Fresh’s reduction rules are deterministic. Thus we have:

Theorem 8.2. All reduction trees for an initial configuration are equal up to
consistent designator and variable renaming.

We now define consistency of function environments, configurations and
reductions. A term environment p is closed under a function environment § if for all
x€D(p) all designators in px are in D(8). A function environment § is consistent if for
all d€D(8) such that 8(d)=(p, s»e) the closure environment p and the abstraction
body e are closed under 8§ and D(p)CV(spe). An initial configuration Sp{e}& is
consistent if its function environment is consistent, its term environment and its
expression are closed under its function environment, and its term environment is
idempotent. A final configuration 8 p{u}V isconsistentifits function environment
is consistent, its term environment and its result are closed under its function
environment, and its term environment is idempotent. A reduction §p{e}§ — &' p'
{u}V is consistent if its initial and final configuration are consistent, the final
function environment is an extension of the initial function environment (that is, §
= §'|p()), the final term environment subsumes the initial term environment (that
is, p'=p'p), and V and V(p)UV(e) are disjoint. A failure reduction I - is consistent
ifitsinitial configuration is consistent.

Theorem 8.3. Every reduction in every reduction tree for a consistent initial
configuration is consistent.

57

8 Conclusion and Related Work

Fresh is an attempt to reformulate Prolog’s computational innovations in the
framework of higher-order functional programming. The paper shows that a smooth
integration without syntactic or semantic overhead is possible. Since Fresh contains
Horn logic with equality, it can be used like a logic programming language. On the
other hand, Fresh offers all the advantages of functional programming. Higher-
order functions and predicates replace Prolog’s obscure assert and call constructs.
Information flow can be expressed explicitly by functions and nesting of expressions
rather than by delayed bindings and auxiliary variables.

. T 'am currently working on a polymorphic type discipline for Fresh. The type
system will distinguish between ground and nonground types. Ground types are
types whose elements are ground terms, while elements of nonground terms can
contain variables. Typed Fresh will provide for many compile-time optimizations.
For instance, the distinction between ground and nonground types makes it possible
to determine at compile-time which instances of unification can be implemented by
matching. There has been very little work on type systems for unification-based
languages. Mycroft and O’Keefe [23] have adapted ML’s type system to a subset of
Prolog, but their type discipline does not distinguish between ground and nonground

types.

The integration of lazy reduction into Fresh seems promising. This would
allow to apply collection to expressions with infinite result sequences and would thus
interface backtracking more satisfying. Subrahmanyam and You [32] discuss the
combination of unification and lazy reduction. Another interesting research topic is
the integration of Concurrent Prolog’s [29, 30] communication and synchronization
mechanisms. Since these mechanisms depend mainly on logical variables and

unification, an adaption to Fresh seems straightforward.

Van Emden and Kowalski [34] and Apt and Van Emden [1] provide several
precise characterizations of the semantics of Horn clauses. However, these
semantics do not apply to Prolog since they do not cover backtracking, the cut or
collection. Jones and Mycroft [15] define an operational and a denotational
semantics for a subset of Prolog that includes the cut but excludes the collection,
assert and call constructs.

58

There are many recent papers on the integration of functional and logic
programming. One direction was initiated by Kornfeld [17] and is based on Horn
logic with equality. In this framework first-order functions can be defined by
equality axioms. Goguen and Meseguer's Eqlog [9] extends this approach by
employing a many-sorted logic. Eqlog comes with a complete and simple model
theoretic semantics and thus is truly a logic programming language. However, this
is only possible since Eqlog does not include critical features like negation, higher-
order objects, collection or control constructs. Work at Utah emphasizes the
incorporation of unification into functional programming. Lindstrom [19] shows
how to incorporate logical variables into FEL, a functional language featuring lazy
evaluation, and gives an implementation technique suitable for reduction
architectures. Reddy [27] discusses a first-order functional language, which
generalizes reduction to narrowing or resolution. He gives a denotational semantics,
examines the extension to lazy narrowing, and discusses a parallel implementation.

Reddy’s language does not include multiple results.

Acknowledgements

The paper benefited from discussions with Alan Demers and James Hook.

59

References

1. Apt, K. R. and M. H. Van Emden. Contributions to the Theory of Logic
Programming. Journal of the ACM 29.3(1982), 841-862.

2. Burstall, R. M., D. B. MacQueen and D. T. Sanella. HOPE: an Experimental
Applicative Language. Lisp Conference, ACM, 1980, 136-143.

3. Clark, K. L. Negation as Failure. In Logic and Data Bases, H. Gallaire and J.
Minker, Eds., Plenum Press, 1978, 293-322.

4. Clocksin, W. F. and C. S. Mellish. Programming in Prolog. Springer Verlag,
1981.

5. Colmerauer, A. Prolog and Infinite Trees. In K. L. Clark and S.-A. Tarnlund,
Eds., Logic Programming, Academic Press, 1982.

6. Colmerauer, A, H. Kanoui, M. Van Caneghem. Prolog, Theoretical Principles
and Current Trends. Technology and Science of Informatics, 2,4 (1983), 255-292.

7. Damas, L. and R. Milner. Principal Type-Schemes for Functional Programs.
Proc. Principles of Programming Languages, ACM, 1982, 207-212.

8. Goldfarb, D. The Undecidability of the Second Order Unification Problem.
Journal of Theoretical Computer Science, 13 (1981), 225-230.

9. Goguen,dJ. A.and J. Meseguer. Eqlog: Equality, Types, and Generic Modules for
Logic Programming. In D. DeGroot, and G. Lindstrom, Eds., Functional and Logic
Programming, Prentice Hall, 1985.

10. Guard, J. R., F. C. Oglesby, J. H. Benneth and L. G. Settle. Semi-Automated
Mathematics. Journal of the ACM, 18,1 (1969).

11. Herbrand, J. Recherches sur la Theorie de la Demonstration. In J. Van
Heijenoort, Ed., From Frege to Gédel: a Source Book in Mathematical Logic, 1879-
1931, Harvard University Press, 1967.

12. Huet, G. Unification in Typed Lambda Calculus. Proc. Symp. on A-Calculus
and Computer Science, Springer LNCS 37,1975, 192-212.

13. Huet, G. Resolution d’Equations dans les Languages d’'Ordre 1, 2, ..., w. These
d’Etat, Specialite Mathematiques, Universite Paris VII, 1976.

60

14. Huet, G. Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. Journal ofthe ACM, 27,4 (1980), 797-821.

15. Jones, N. D. and A. Mycroft. Stepwise Development of Operational and
Denotational Semantics for Prolog. First Int. Symp. on Logic Programming, IEEE,
1984, 281-288.

16. Knuth, D. and P. Bendix. Simple Word Problems in Universal Algebras. In J.
Leech, Ed., Computational Problems in Abstract Algebras, Pergamon Press, 1970,
263-297.

17. Kornfeld, W. A. Equality for Prolog. Proc. 7th Int. Joint Conf. on Artificial
Intelligence, 1983, 514-519.

18. Kowalski, R. A. Algorithm=Logic+ Control. Communications of the ACM, 22,
7(1979), 424-436.

19. Lindstrom, G. Functional Programming and the Logical Variable. Proc.
Principles of Programming Languages, ACM, 1985, 266-280.

20. Lloyd, J. W. Foundations of Logic Programming. Springer Verlag, 1984.

21. Martelli, A. and U. Montanari. An Efficient Unification Algorithm. ACM
Transactions on Programming Languages and Systems 4, 2 (1982), 258-282.

22. Milner, R. A Proposal for Standard ML. Proc. Symp. on Lisp and Functional
Programming, 1984, 184-197.

23. Mycroft, A. and R. A. O’Keefe. A Polymorphic Type System for Prolog.
Artificial Intelligence 15(1984).

24. Paterson, M. S. and M. N. Wegman. Linear Unifcation. Journal of Computer
and System Science, 16 (1978), 158-167.

25. Plaisted, D. A. The Occur-Check Problem in Prolog. First Int. Symp. on Logic
Programming, IEEE, 1984, 272-280.

26. Plotkin, G.D. A Structural Approach to Operational Semantics. DAIMI FN-19,
Comp. Sc. Dept., Aarhus University, Denmark, 1981.

27. Reddy, U. Narrowing as the Operational Semantics of Functional Languages.
Second Int. Symp. on Logic Programming, IEEE, 1985.

28. Robinson, J. A. A Machine-Oriented Logic based on the Resolution Principle.
Journal of the ACM, 12,1 (1965), 23-41.

61

29. Shapiro, E. Y. and A. Takeuchi. Object-Oriented Programming in Concurrent
Prolog. New Generation Computing,1,1(1983), 25-48.

30. Shapiro, E. Systems Programming in Concurrent Prolog. Proc. Principles of
Programming Languages, ACM, 1984, 93-105.

31. Siekmann, J. H. Universal Unification. Proc 7th Int. Conf. on Automated
Deduction, Springer LNCS 170, 1984, 1-42.

32. Subrahmanyam, P. A. and J.-H. You. Pattern Driven Lazy Reduction: a
Unifying Evaluation Mechanism for Functional an Logic Programs. Proc. Principles
of Programming Languages, ACM, 1984, 228-234.

33. Turner, D. A. Recursion Equations as a Programming Language. In J.
Darlington, P. Henderson and D. A. Turner, Eds., Functional Programming and its
Apllications, Cambridge University Press, 1982.

34. Van Emden, M. H. and R. A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. Journal of the ACM, 23,4 (1976), 733-742.

35. Van Emden, M. H. and J. W. Lloyd. A Logical Reconstruction of Prolog II.
Second Int. Logic Programming Conference, 1984, 35-40.

36. Warren, D. Logic Programming and Compiler Writing. Software —Practice and
Experience, 10 (1980), 97-125.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif

