
1 

Scaling, Renormalization, and Universality in 

Combinatorial Games: the Geometry of Chomp 

(with technical appendices) 

Eric J. Friedman1 and Adam Scott Landsberg2* 

 1School of ORIE, Cornell University, Ithaca, NY 14853, USA 

  2Joint Science Department, Claremont McKenna, Pitzer and Scripps Colleges, 

Claremont, California 91711, USA.      

*Current address: School of ORIE, Cornell University, Ithaca NY 14853, USA. 

 

Abstract:  We develop a new approach to combinatorial games (e.g., chess, Go, 

checkers, Chomp, Nim) that unveils connections between such games and 

nonlinear phenomena commonly seen in nature:  scaling behaviors, complex 

dynamics and chaos, growth and aggregation processes.  Using the game of Chomp 

(as well as variants of the game of Nim) as prototypes, we discover that the game 

possesses an underlying geometric structure that “grows” (reminiscent of crystal 

growth), and show how this growth can be analyzed using a renormalization 

procedure.  This approach not only allows us to answer some open questions about 

the game of Chomp, but opens a new line of attack for understanding (at least 

some) combinatorial games more generally through their underlying connection to 

nonlinear science.    

Combinatorial games, which include chess, Go, checkers, Chomp, dots-and-

boxes, and Nim, have both captivated and challenged mathematicians, computer 

scientists, and players alike (1-10).  Analysis of these two-player games has generally 

relied upon a few beautiful analytical results (1,11-14)  or on numerical algorithms that 
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combine heuristics with look-ahead approaches (α−β pruning) (15,16).  Using Chomp 

as a prototype, we report on a new geometrical approach which unveils unexpected 

parallels between combinatorial games and key ideas from physics and dynamical 

systems, most notably notions of scaling, renormalization, universality, and chaotic 

attractors.   Our central finding is that underlying the game is a probabilistic geometric 

structure that encodes essential information about the game, and that this structure 

exhibits a type of scale invariance:  Loosely speaking, the geometry of “small” winning 

positions and “large” winning positions are the same after rescaling.  (This general 

finding also holds for at least some other combinatorial games, as we explicitly 

demonstrate with a variant of Nim.) This geometric insight not only provides 

(probabilistic) answers to some open questions about Chomp, but suggests a natural 

pathway toward a new class of algorithms for more general combinatorial games, and 

hints at deeper links between such games and nonlinear science.  

Chomp is an ideal candidate for our study, since in certain respects it appears to 

be among the simplest in the class of “hard” games.  Its history is marked by some 

significant theoretical advances (19-22), but it has yet to succumb to a complete analysis 

in the 30 years since its introduction by Gale (17) and Schuh (18).  The rules of Chomp 

are easily explained.  Play begins with an N x M array of counters (Fig. 1a).  On each 

turn a player selects a counter and removes it along with all counters to the north and 

east of it (Fig. 1b).  Play alternates between the two players until one player takes the 

last counter, thereby losing the game.  (An intriguing feature of Chomp, as shown by 

Gale, is that although it is very easy to prove that the player who moves first can always 

win (under optimal play), what this opening move should be has been an open question.  

Our methodology will in fact provide a probabilistic answer to this question.)   

For simplicity, we will focus here on the case of three-row (M=3) Chomp, a 

subject of recent study by Zeilberger (19-20) and Sun (21).  Generalizations to four-row 



3 

and higher Chomp are analogous. To start, we note that the configuration of the 

counters at any stage of the game can be described (using Zeilberger’s coordinates) by 

the position p=[x,y,z], where x specifies the number of columns of height three, y 

specifies the number of columns of height two, and z the number with height one (Fig. 

1b).   Each position p may be classified as either a winner, if a player starting from that 

position can always force a win (under optimal play), or as a loser otherwise.  (This 

classification is well defined by Zermelo’s theorem.)  The set of all losers contains the 

information for solving the game.  One may conveniently group the losing positions 

according to their x values by defining a “loser sheet” Lx to be an infinite two-

dimensional matrix whose (y,z)th component is a 1 if position [x,y,z] is a loser, and a 0 

otherwise.  (As noted by Zeilberger, one can express Lx in terms of all preceding loser 

sheets Lx-1, Lx-2, …, L0.)    Studies by Zeilberger (19,20) and others (21-23) have 

detected several numerical patterns along with a few analytical features about the losing 

positions, and their interesting but non-obvious properties have even led to a conjecture 

that Chomp may be “chaotic in a yet-to-be-made-precise sense” (20).  However, many 

of the numerical observations to date have remained largely unexplained, and disjoint 

from one another. 

To provide broader insight into the general structure of the game, we depart from 

the usual analytic/algebraic/algorithmic approaches.  We instead show how the analysis 

of the game can be recast and transformed into a type of “renormalization” problem 

commonly seen in physics (and later apply this methodology to other combinatorial 

games besides Chomp).  Analysis of the resulting renormalization problem not only 

explains earlier numerical observations, but provides a unified, global description of the 

overall structure of the game.  We remark that this approach will be distinguished by its 
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decidedly geometric flavor, and by the incorporation of probabilistic elements into the 

analysis, despite the fact that the combinatorial games we consider are all games of no 

chance which lack any inherent probabilistic components to them whatsoever.    

To proceed, we turn consideration to so-called “instant-winner sheets”, defined as 

follows:  A position p=[x,y,z] is called an instant winner (in Zeilberger’s terminology) 

if from that position a player can legally move to a losing position with a smaller x-

value.  We therefore define an instant-winner sheet Wx to be the infinite, two-

dimensional matrix consisting of all instant winners with the specified x-value, i.e., the 

(y,z)th component of matrix Wx is a 1 if position [x,y,z] is an instant winner, and a 0 

otherwise.  These instant-winner sheets will prove crucial for understanding the 

geometric structure of the game (and, as will be seen, contain all the information needed 

to construct the loser sheets). 

Our first insight comes from numerical simulations, wherein we numerically 

construct the instant winner sheets {Wx} for various x values (using a recursive 

algorithm which will be made clear below).  Figs. 2a,b show the structure of W700 and 

W350, respectively, and are representative of what is observed at other x values.  Each 

sheet exhibits a nontrivial internal structure characterized by several distinct regions: a 

solid (filled) triangular region at the lower left, a series of horizontal bands extending to 

the right (towards infinity), and two other triangular regions of different densities.  Most 

importantly, however, we observe that the set of instant-winner sheets {Wx} possess a 

remarkable scaling property:  their overall geometric shape is identical up to a scaling 

factor!  In particular, as x increases, all boundary-line slopes, densities, and shapes of 

the various regions are preserved from one sheet to the next (although the actual point-

by-point locations of the instant winners within each sheet are different).  Hence, upon 
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rescaling, the overall geometric structure of these sheets is identical (in a probabilistic 

sense).  We point out that the “growth” (with increasing x) of the instant-winner sheets 

is strikingly similar to certain crystal-growth and aggregation processes found in 

physics – in each case, the structures grow through the accumulation of new points 

along current boundaries, and exhibit geometric invariance during this process.  The 

loser sheets {Lx} can be numerically constructed in a similar manner; their 

characteristic geometry is revealed in Fig. 2c.  It is found to consist of three (diffuse) 

lines: a lower line of slope mL and density of points 
λ

L, an upper line of slope mU and 

density 
λ

U, and a flat line extending to infinity.  The upper and lower lines originate 

from a point whose height (i.e., z-value) is αx. The flat line (with density one) is only 

present with probability γ  in randomly selected loser sheets. Like the instant-winner 

sheets, the loser sheets also exhibit this remarkable geometric scaling property: as x 

increases, the geometric structure of Lx grows in size, but its overall shape remains 

unchanged (the only caveat being that, as previously noted, the flat line seen in Fig. 2c 

is sometimes absent in some of the loser sheets). We emphasize that while these are 

only numerical findings, they will provide critical intuition for the results that follow.   

Our second key finding is that there exists a well-defined, analytical recursion 

operator that relates one instant winner sheet to its immediate predecessor.  Namely, we 

can write Wx+1 = R Wx, where R denotes the recursion operator.  (The operator R can be 

decomposed as R=L (I+DM ), where L is a left-shift operator, I  is the identity operator, 

D is a diagonal element-adding operator, and M  is a “sheet-valued” version of the 

standard mex operator which is often used for combinatorial games.)  A detailed 

derivation of this result is provided in Appendix A.  However, for our present purposes 

it suffices to simply note that a recursion operator relating the instant-winner sheets 
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exists.  We point out that once a given instant-winner sheet Wx has been constructed, 

the corresponding loser sheer Lx can be found via Lx = M  Wx (Appendix A).    

Stepping back for a moment, what we now have is a renormalization problem akin 

to those so often encountered in physics and the nonlinear sciences, such as the famous 

period-doubling cascade discovered by May (24) in a biological mapping and analyzed 

by Feigenbaum using renormalization techniques (25).  In particular, we have objects 

(instant winner matrices) that exhibit similar structure at different size scales (cf., Figs. 

2a,b), and a recursion operator relating them.  Our task therefore is to determine an 

invariant geometric structure W such that if we act with the recursion operator followed 

by an appropriately-defined rescaling operator S, we get W back again:  W = S R W  

(i.e., we seek a fixed point of the “renormalization-group operator” S R.)  This can be 

done, but before doing so we point out a critical feature of the analysis.  Even though 

the recursion operator R is exact and the game itself has absolutely no stochastic aspects 

to it, it is necessary to adopt a probabilistic framework in order to solve this recursion 

relation.  Namely, our renormalization procedure will show that the slopes of all 

boundary lines and densities of all regions in the Wx’s (and Lx’s) are preserved – not 

that there exists a point-by-point equivalence.  In essence, we will bypass consideration 

of the random-looking ‘scatter’ of points surrounding the various lines and regions of 

Wx and Lx by effectively averaging over these ‘fluctuations’.   

The key to implementing the renormalization analysis is to observe that the losers 

in Lx (Fig. 2c) are constrained to lie along certain boundary lines of the Wx plot (Fig. 

2b), and are conspicuously absent from the various interior regions of Wx (for all x).  In 

other words, the interior regions of each Wx remain “forbidden” to the losers.  Hence 

the geometry of Wx’s  must be very tightly constrained if it is to preserve these 
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forbidden regions under the recursion operator Wx →R  Wx+1  (for otherwise the Wx’s 

would not remain geometrically scale invariant).  Each forbidden region in Wx imposes 

a constraint on the permissable structural form that the Wx’s can take, and can be 

formulated as an algebraic equation relating the hitherto unknown parameters mL, 
λ

L, 

mU, 
λ

U, γ , α  that define the loser sheets.  A detailed calculation, described in Appendix 

B, shows that there are six independent conditions:  
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Stated differently, these are the necessary conditions for the instant-winner sheets to be 

fixed points of the renormalization operator S R.  Solving the above relations yields   
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These six key parameters completely characterize the loser sets {Lx} of the game, and 

from these the properties of the associated instant winner sheets {Wx} are readily 

deduced.  We thus have a fundamental (probabilistic) description of the global 

geometric structure of the game.  We note that these six (analytically derived) parameter 

values also provide an explanation for existing numerical observations about Chomp, 

including key numerical conjectures on the game’s loser properties by Brouwer (23).  

We mention that only a single assumption was needed to construct the six preceding 

parameter relations; namely, that fluctuations associated with the diagonal operator D 

were uncorrelated with the fluctuations surrounding the upper line in Lx. 

Several interesting results immediately follow.  First, having analytically 

determined the geometric structure of the loser sheets, we can now show that the 

winning opening move in Chomp (from the initial position [x0, 0, 0]) must be to a 
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position that lies in the vicinity of one of the two points:  [x0/ 2 ,  x0 (2- 2 )/2,  0]   or      

[x0 (2- 2 ) , 0, x0( 2 -1)].    (Here, “vicinity” is defined by the width of the loser band 

surrounding the analytical loser lines in loser sheets {Lx}.)   Moreover, this winning 

opening move can be shown to be unique.  (See Appendix C for details.)  (Previously, 

uniqueness was known to hold numerically for x0<90,000 (23)).    Second, for most 

winning positions (except those near a boundary), knowing their location within Wx 

allows us to compute the expected number of winning moves based on which lines in 

the loser sheets are accessible.  Third, knowledge of the geometrical structure of the 

loser sheets suggests a natural pathway to more efficient algorithms by simply designing 

the search algorithm to aim directly for the analytically determined loser lines in Lx.  

This is in fact a general feature of our methodology (not limited to just Chomp):  once 

the geometry of a combinatorial game has been identified by the renormalization 

procedure, efficient geometrically-based search algorithms can be constructed.  Lastly, 

as seen in Fig. 2c, the co-existence of order (i.e., analytically well-defined loser lines) 

and disorder (i.e., the scatter of points around these lines) signifies that combinatorial 

games such as Chomp may be unsolvable yet still informationally compressible, in the 

language of Chaitin (26).  

The probabilistic renormalization approach we have employed naturally gives rise 

to a whole new set of interesting questions about combinatorial games.  For instance, we 

can construct variants of standard games simply by perturbing an instant-winner sheet 

by the addition of a finite number of new points.  (Such additions effectively modify the 

game by declaring these new positions to be automatic winners.)  We can then examine 

whether or not the same instant-winner-sheet geometry appears in these variants (i.e., is 

the geometric structure an attractor?).  Simulations show that for a sizeable class of 
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variants of Chomp the original geometric structure of Fig. 2 re-emerges.  Hence it 

appears stable (in a probabilistic sense).  In the language of renormalization we would 

say that such game variants fall into the same universality class as the original game.  A 

related issue concerns sensitivity to initial conditions, a hallmark of chaos in dynamical 

systems theory.  Using our recursion operator Wx+1 = R Wx, we can examine how small 

perturbations to Wx propagate.  Although the overall instant-winner geometry of the 

perturbed and unperturbed systems will be the same if they lie in the same universality 

class, they will differ on a point-by-point basis.  We find (see Fig. 3) that small initial 

perturbations can in fact significantly alter the actual loser locations quite dramatically, 

highly reminiscent of chaotic systems.  For example, adding just a single point to W100 

can, after only 25 iterations, alter the locations of nearly half of all losing positions in all 

subsequent loser sheets {Lx | x>125}.  

We can also apply our methodology to other combinatorial games.  Consider the 

simple game of (three-heap) Nim (1,27):  Play begins with a set of counters stacked into 

three piles (heaps).  The number of counters in the heaps will be described by 

coordinates [x,y,z].  At each turn, a player selects a heap and removes one or more 

counters from it.  Play alternates between the two players until no counters remain.  

Under ordinary play whoever takes the last counter(s) wins.  It is straightforward to 

construct the recursion and renormalization operators for this game (Appendix D), and 

to analyze its properties analogously.  Fig. 4a shows the geometry of an instant-winner 

sheet Wx for three-heap Nim.  As in Chomp, this structure exhibits a geometric scaling 

property (athough the Wx’s do depend on their x-values).  Unlike Chomp however, 

ordinary Nim is known to be a completely solvable game, and we find that the geometry 

of its Wx’s is unstable.  Indeed, if we add just a few random perturbations to one of the 
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sheets (so that the game is no longer readily solvable), then a very different-looking 

instant winner structure of the form shown in Fig. 4b emerges.  This striking new 

structure, just as for Chomp, is remarkably stable, generic (i.e., it seems to naturally 

emerge for most perturbations), and scale invariant.  In fact, we speculate that the 

ordinary game of Nim has an unstable, nongeneric geometry precisely because of its 

solvable nature, and that the robust geometry of Fig. 4b for variants of Nim is much 

more typical.  It is not unreasonable to conjecture more generally that generic 

combinatorial games will have robust underlying geometric structures, while those of 

solvable games will be structurally unstable to perturbations.   

Lastly, we remark that the “growth” (with increasing x) of the geometric 

structures Wx (Figs. 4b and 2a)  for games such as Nim and Chomp is suggestive of 

certain crystal growth and aggregation processes in physics (28) and activation-

inhibition cellular automata models in biology (29).  This semblance arises because the 

recursion operators governing the game evolution  (Wx →R  Wx+1)   typically act by 

attaching new points to the boundaries of the existing (instant-winner sheet) structures. 

Although the details vary, this type of attachment-to-boundaries process is a common 

feature of many physical growth models.  Viewed in this way, then, our procedure 

offers a means of transforming the study of a combinatorial game into that of a shape-

preserving growth process – and with it the hope that some of the tools which physicists 

have developed for analyzing such growth models may now be brought directly to bear 

on combinatorial games.   

We must conclude by emphasizing that though we have applied our methodology 

successfully to a few games – Chomp, Nim, and their variants – and it has yielded some 

interesting insights, these games represent just a small handful in the set of established 
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combinatorial games, and consequently the limitations of this methodology and its 

scope of applicability are not known at present.  However, we hope that this novel 

(renormalization-based) approach to combinatorial games and the tantalizing 

connections it raises to key ideas from the nonlinear sciences will stimulate further 

research along these lines.   

 

Fig. 1:  The game of Chomp.  (a) play begins with an MxN rectangular array of 

counters (three-row Chomp is illustrated). At each turn, a player selects a 

counter and removes it along with all counters lying in the northeast quadrant 

extending from the selected counter.  Play alternates between the two players 

until one player is forced to take the ‘poison’ counter (shown in red), thereby 

losing the game.  (b) a sample game configuration after player 1 selects counter 

A, followed by player 2 selecting counter B.  More generally, an arbitrary game 

configuration can be specified by coordinates [x,y,z], as shown. 

Fig. 2:   The geometry of Chomp.  (a) the instant-winner sheet geometry for 

three-row Chomp, shown for x=700.  Instant winner locations in the y-z plane 

are shown in blue.  (b) the instant-winner sheet for x=350.  Comparison of W350 

to W700 highlights the central scaling property of the instant winner sheets {Wx}:  

as they “grow” in size with increasing x, they remain geometrically identical up 

to a scale factor (i.e., shapes, densities, and boundary-line slopes remain fixed).  

(Note: This geometric invariance is not especially apparent at very small values 

of x, but rapidly emerges as x increases.)  (c) the loser-sheet geometry Lx, 

shown for x=350.  Observe that losers in each sheet all lie near one of three 

lines:  a lower line of slope mL, density 
λ

L; an upper (tilted) line of slope mU, 

density 
λ

U; and an upper flat line (of density one) which only exists for some x-
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values.  The probability that a flat line in Lx exists for a randomly chosen x is γ .  

The lower and upper tilted lines both emanate from a point near (y,z)=(0, α  x).  

Note that these loser lines are located along boundaries of the associated 

instant-winner sheet (compare L350 with W350) The geometrical structure of the 

Lx’s, like that of the Wx’s, remains invariant (up to a scale factor) as one goes to 

progressively larger x values (not shown).  As described in the text, the analysis 

of this invariance property allows for a complete geometrical/probabilistic 

characterization of the structures shown in these figures (including an analytical 

determination of the parameters mL, 
λ

L, mU, 
λ

U, γ , α ). 

Fig. 3:  Dependence on initial conditions.  The figure illustrates how 

perturbing an instant winner matrix by a single point subsequently spreads and 

“infects” the loser sheets at higher x values (i.e., altering the precise locations of 

the losing positions).  The red data points show the fraction of losers along the 

upper tilted and lower lines (e.g., Fig. 2c) that are affected when one adds a 

single point to W400  and then iterates.  The blue data points show the 

corresponding effect when the initial perturbation is to W100.  The green data 

shows (a rolling average of) the spread of the infection to losers lying along the 

flat tail of Fig. 2c (for an initial perturbation to W400).  Note that the effects can 

be pronounced in spite of the linear appearance of the initial growth for small 

iteration numbers (see blue, red data).  For example, the blue data shows that 

changing just a single point (out of the approximately 4,000 points making up 

the relevant region of W100), will, after only about 25 iterations of the recursion 

operator, shift the location of nearly half of all losing positions! 

Fig. 4:  The geometries of ordinary and variant Nim.   (a) the instant winner 

structure Wx at x=256 for ordinary 3-heap Nim.  As in Chomp, this geometrical 

structure is preserved (up to an overall scale factor) with increasing x values; 
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i.e., Wx and W2x look identical (not shown).  However, unlike Chomp, the 

geometry is highly unstable to perturbations, and also exhibits an internal 

periodicity such that Wx and Wx+1 are similar but not wholly identical in structure. 

In the figure the instant winners have been color coded based on their “age” (as 

defined by the recursion algorithm which generated them); blue is oldest, red 

youngest.  (b) the instant winner structure Wx at x=256 for a generic Nim 

variant.  Nim variants are similar to ordinary Nim, except that one or more heap 

configurations are arbitrarily declared to be automatic winners.  The striking 

geometrical structure shown in the figure is both stable and reproducible, i.e., it 

typically emerges whenever one or more random heap configurations are 

declared automatic winners.  As in Chomp, this attracting structure is preserved 

(up to scale factors) as one goes to increasingly large x-values.  (We note, 

however, that the scaling behavior appears more pronounced for Wx
→ W2x than 

it is for Wx
→ Wx+1, a remnant, we believe, of the underlying solvable structure of 

ordinary Nim upon which these Nim variants are based.) 
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Technical Appendices: 

 

Appendix A:  Derivation of recursion relation Wx+1= R Wx 

Recall the following definitions: 

� Position p=[x,y,z] defines the current game configuration, with x specifying the 

number of columns of height three, y the number of columns of height two, and z 

the number of height one (see Fig. 1 of main text).  Each position p is classified as 

a winner (if a player starting from that position can always force a win under 

optimal play), or as a loser otherwise.   

� A loser sheet Lx is the infinite, two-dimensional matrix whose (y,z)th component 

is a 1 if position [x,y,z] is a loser, and a 0 otherwise.  The set of loser sheets       

{L 0, L1, L2, …} provides a convenient way of organizing the game’s losing 

positions in a hierarchical fashion according to their x values;  each loser is 

uniquely assigned to a particular loser sheet.   

 

� A winning position p=[x,y,z] called  an instant winner if from that position a 

player can reach a losing position with a smaller x-value in exactly one move.  

(The set of instant winners is a subset of the winners.)  An instant-winner sheet 

Wx is defined to be an infinite, two-dimensional matrix whose (y,z)th component 



is a 1 if position [x,y,z] is an instant winner, and a 0 otherwise (i.e., the instant-

winner sheets group the instant winners according to their x values). 

 

Consider an arbitrary position p=[x,y,z].  Under the game rules, the set of positions which 

are accessible from p in a single move (i.e., the “children” of p) are: 

 

M6          0                    ]0 ,0 ,[

M5          0         ],0 ,[

M4         t0               ],,[

M3         0                    ],,[

M2         0                    ]0 ,,[

M1         0               ],,[

xttx

xttyztx
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≤<+−
≤<−
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 By inverting these relations, the set of positions from which it is possible to reach p in a 

single move (i.e., the “parents” of p) can be readily determined.   Note that the first three 

moves (M1-M3) are to positions with the same x value as p, while the last three are to 

positions with lower x values.  We also note three elementary though useful facts: 

(*) The children of any winning position must contain at least one loser. 

(**) The parents of any losing position must all be winners. 

(***)   If all children of a position are winners, then the position must be a loser.  

 

We next define a set of operators which can act on sheets (here, “sheets” can refer to the 

loser sheets, the instant-winner sheets, or, more generally, to any infinite, two-

dimensional matrix consisting of 0’s and 1’s).  In what follows we denote a general sheet 

by A, and its (y,z)th component by A(y,z), where y specifies the column of matrix A, and 

z its row.  The labeling begins with zero (i.e.,  y,z∈{0,1,2,…}); y=0 refers to the leftmost 

column, and z=0 to the bottom row:   



� Define L to be the left-shift operator which shifts all elements of a sheet to the 

left:  LA(y,z)=A(y-1,z).   (In other words, L effectively eliminates the leftmost 

column of A.) 

� Define an addition operator + on sheets by the logical OR:  Given two sheets A,B, 

(A+B)(y,z)=1 if either A(y,z)=1 or B(y,z)=1.  

� Define I to be the identity operator:    IA=A for any sheet A. 

� Define the diagonal element-adding operator D, which acts on loser sheets, as 

follows:  Observe first that for each loser sheet Lx there is a unique losing position 

with y=0, i.e., there is a unique z-value (denoted z*(x)) such that Lx(0,z*(x))=1. 

(Such a loser must exist since the set of instant winners is bounded in z; 

uniqueness holds by (**) in conjunction with M3).  Now define operator d which 

acts on loser sheets as follows:  dLx is a matrix which is zero everywhere except 

at the following points:  dLx(t,z*(x)-t)=1 for all )(*0 xzt ≤≤  (Geometrically, the 

non-zero components of matrix dLx form a diagonal line of 1’s extending 

downwards and to the right from the losing entry at (0,z*(x)) at a 45° angle.)  

Finally, the desired diagonal element-adding operator D is defined by D=I+d.  

Geometrically, DLx is thus identical to Lx except for the addition of the diagonal 

row of 1’s.   Henceforth, we will call the diagonal elements associated with D the 

“deadly diagonals” (since, as will become clear, they tend to complicate the 

analysis considerably). 

 

Using the above operators, we next derive a relationship between a given instant winner 

sheet Wx and the set of loser sheets {Lx-1, Lx-2, …,L0}.    First recall that, by definition, 



position p=[x,y,z] is an instant winner in Wx (i.e., Wx(y,z)=1) iff there is a loser reachable 

from p with a lower x value.  So to construct Wx we need only determine which positions 

[x,y,z] are capable of reaching a loser in {Lx-1,Lx-2,…,L0} (i.e., we seek the parents of the 

losers).  For this purpose only moves M4-M6 are relevant (since moves M1-M3 maintain 

the same x-value.)  From M4 (or its inverse), it is easily verified that the terms LLx-1, 

L2Lx-2, …,LxL0 will all contribute to Wx.  From M5 (and its inverse), terms LdLx-1,  

L2dLx-2, …, LxdL0 will contribute.  There are no contributions from rule M6 because, by 

Gale’s argument, positions of the form [x,0,0] are never losers (for any x>0).  Thus, 

combining all contributions we have  
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We next show that Wx contains all the necessary information for constructing Lx.  

Specifically, we develop a sheet-valued mex operator M (which we dub “supermex”) and 

show that  

                                           xx WL  M=                                                        (2) 

To understand the construction of Lx from Wx via the supermex operator,  we begin with 

a  preliminary observation:  if we rank all positions in the game by size using the standard 

“dictionary” ordering  (i.e., define [x,y,z] > [x',y',z'] if either (x>x') or (x=x' and y>y') or 

(x=x', y=y', and z>z')),  then as play progresses the size of successive positions will 

strictly decrease, as may be verified by considering the game rules M1-M6 (i.e., children 

are always smaller than their parents).  Now the basic intuition behind (2) is as follows:    

Start with the instant-winner sheet Wx, and locate the smallest position which is not an 

instant winner (i.e., the smallest (y,z) such that Wx(y,z)=0).  Call this position q.  q must 



be a loser, as shown by the following argument:   Since q is not an instant winner, then by 

definition none of its children can be losers with a lower x-value.  Moreover, none of its 

children can be losers with the same x-value either, since q is (by construction) the 

smallest non-instant-winner in Wx, and so its children in Wx (which under the dictionary 

ordering must be smaller in size) can only be instant winners.  Hence, all the children of q 

are winners, and by (***) it follows that q is a loser.  Having thus identified the first loser 

in Lx, we can then find the next loser as follows:  First find all parents of the first loser q 

which have the same x-value as q (using rules M1-M3) and mark these as “winners” in 

the Wx matrix by setting the appropriate entries equal to 1. (Note that both these new 

winners and the original instant winners in Wx will be labeled with a 1.)  We point out 

that in the formal algorithm presented below, we do no actually want to alter Wx itself 

(since it is well-defined via (1)), so instead we define a scratch sheet Tx given by Tx=Wx, 

and make the alterations to Tx.  Having marked the parents of q, we again find the 

smallest remaining position in Tx (apart from q) which is neither a winner or instant 

winner.  By the same argument used above, this position must be a loser.  Through this 

iterative process (of marking parents of losers and finding the smallest remaining non-

winner), we can generate all losers in Lx.   

 

More formally, we can algorithmically define the action of the supermex operator M on 

an instant-winner sheet Wx  to generate Lx  (equation (2)) as follows:     

      Supermex algorithm: 

1. Set Lx=0   (i.e., Lx(y,z)=0 for all y,z ∈ {0,1,2,…}) 

2. Set Tx=Wx 



3. Set y=0  (i.e., we will start with the first column of Tx) 

4. Let zsmall(y) =mex({z|Tx(y,z)=1})  (i.e., find the z-value of the smallest non-

winner) 

5. Set Lx(y, zsmall(y))=1  (i.e., mark the point as a loser) 

6. Set Tx(y,t)=1 for all t≥ zsmall(y) and set Tx(y+t, zsmall(y)-t )=1 for all t≤ zsmall(y) 

7. Set y →y+1 

8. If zsmall(y)=0 stop;  else go to step 4. 

Several remarks are in order.  (i) The mex operator in step 4 is the standard minimal 

excluded value operator defined on sets of non-negative integers (e.g., 

mex({0,1,2,5,7})=3; mex({1,4})=0). (ii) The program finds the smallest non-winners by 

searching Tx column by column, starting with column y=0  (steps 2 and 7). (iii) step 6 

corresponds to finding the parents of the current smallest losing position via rules M3 and 

M1 and marks them as winners.  (Any winners which are not instant winners are called 

“implied” winners in Zeilberger’s terminology.)   Geometrically, the implied winners 

arising from rule M3 fill up the entire column directly above the loser, while the implied 

winners from rule M1 form a diagonal line running down and to the right from the loser 

at a 45° angle.   This diagonal line will prove important for later considerations, and in 

support of Zeilberger’s terminology, we will refer to this diagonal as an “implied” 

diagonal.  (Implied diagonals are distinct from the “deadly diagonals” associated with the 

operator D discussed previously.)  (iv) if zsmall(y)=0 (step 8),  then by rule M2 no other 

losers in Lx exist and the search terminates. (v) if zsmall(y) ≠ 0 for any y, then the 

computation will not terminate.  (As we show later, the probability of it terminating is 



.12 −=γ )    However, Byrnes [22] has shown that even when it does not terminate it 

does eventually becomes periodic and hence predictable. 

 

Now, combining our expressions for Wx and Lx (equations (1) and (2)), we have 
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Finally, we make the critical observation that if we create Wx+1 by substituting x→x+1 

above and then compare it to the original expression for Wx, it becomes possible to re-

express Wx+1 in terms of Wx as follows: 

                                              xx1x WW(W R  M) DI L ≡= ++                          (3) 

where   

                                                 M) DI LR +≡ (                                                (4) 

 

 

Appendix B:  Fixed point of the renormalization operator W →S R W 

In this appendix we derive analytical values for the six key parameters characterizing the 

overall geometric structure of the loser and instant-winner sheets.   Recall that the 

geometry of the loser sheets Lx (Fig. 2c of main text) consists of three diffuse lines:  a 

lower line of slope mL and density of points (per unit y)  
λ

L, an upper line of slope mU and 

density 
λ

U (per unit y), and a flat line extending to infinity.  The upper and lower lines 

originate from a point whose height (i.e., z-value) is αx. The flat line (with density one) 

is altogether absent in some loser sheets; we define γ  to be the probability that a flat loser 



line is present in a randomly selected loser sheet.  We will show here that these 

parameters must have the following values:  
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These are the (unique) parameter values for which the Wx’s and Lx’s can exhibit the 

observed scaling invariance.  Said differently, these parameter values define an invariant 

geometry of the instant-winner sheets that is a fixed point of the renormalization-group 

operator SR.   As we show below, this invariance property can be expressed via a set of 

algebraic equalities, the solution of which leads to the above parameter values. 

 

To begin, we express the recursion relation (3) as 

                                   )WW xx1x (W MD L +=+                                                        (6) 

and observe that the new instant-winner sheet Wx+1 is generated from the old Wx by the 

following sequence of steps:  First, the mex operator acts to create the loser sheet Lx  (i.e.,  

MWx=Lx).   This loser sheet is then modified by the operator D, which adds a diagonal 

line of 1’s into the matrix.  We then add this modified loser sheet (DLx) to the original 

Wx sheet, and then simply left-shift the whole sheet, yielding Wx+1.    

 



The most critical stage of this “growth” of Wx into Wx+1 is when the original instant-

winner sheet Wx is altered by the addition of the modified loser sheet DLx.  To best 

understand this change, we decompose DLx into its four basic components:  the lower 

loser line in Lx, the upper (tilted) loser line in Lx, the flat loser line in Lx (when it exists), 

and the deadly diagonal line created by D.  (See Fig. A1 of the appendix for a geometric 

depiction of these lines.)  This in turn allows us to similarly decompose any Wx:  The 

basic idea is that as we recursively construct Wx via 1-x10 W  . . .  WW →→→ RRR , 

at each step we are adding a modified loser sheet to the current instant-winner sheet. 

Hence, once Wx is built up, we can separate out the contributions that came from lower 

loser lines, upper loser lines, flat lines, and deadly diagonals.  Figure A2 of the appendix 

shows a typical Wx (for x=100); Figure A3 shows its decomposition into the four sets 

(defined by which component of the modified loser sheets contributed).   We label these 

sets LL (for lower loser lines), U (for upper loser lines), F (for flat loser lines), and DD 

(for deadly diagonals).   Note that DD overlaps with U and with F, but that no other sets 

overlap.  In particular, LL, U, and F cannot overlap with one another for the simple 

reason that as the three loser lines (in a modified loser sheet) are being laid down, they 

never intersect the current instant-winner sheet to which they are being added (since they 

are losers).  DD and LL do not overlap for a simple geometrical reason:  each time a new 

DD line is laid down, it is located above the existing LL region (since the LL lines have 

slope mL<-1, whereas the DD lines have slope -1).  Note that while we have ignored the 

left-shift operator L in eqn. (6) in the above discussion, the action of this shift operator is 

in a certain sense trivial, and does not alter any of the preceding conclusions. 

 



Each of the regions LL, U, F, and DD in Fig. A3 are constructed from a series of lines.  

(The series of deadly diagonal lines and the flat lines making up DD and F respectively 

are clearly visible in the figure; the lower loser lines in LL and upper loser lines in U are 

less apparent primarily because the lower and upper loser lines (Fig. A1) which are being 

laid down are not solid (i.e., their density of points is less than one). ) We now calculate 

the density of lines in LL, DD, U, and F.  We will start with LL, DD, and U, since they 

all follow from the same argument:  Consider a given Wx.   The lower loser line, upper 

loser line, and deadly diagonal line in DLx (that will eventually be added to Wx to create 

Wx+1) all originate from the same point (y,z)=(0,α x).  Thus their initial “height” in the y-z 

plane is α x, and all have the same general form z=my+ α x.  In the construction of Wx+1 

from Wx,  these loser lines are added to Wx and then the resulting sheet is left-shifted (as 

described by the equation (6)).  In this process, these former loser lines become the 

leading edges of the new instant-winner sheet Wx+1.  Their height (in Wx+1) becomes α x+m (since the operator L shifted these lines leftward by one unit, thereby dropping 

their height by |m|).  Now consider the new loser lines for Wx+1 (i.e., DLx+1), which will 

be used in the construction of Wx+2.  These new loser lines will come in at height α (x+1).  

When these are added to Wx+1 and left-shifted, they become the leading edge of Wx+2 at 

height α (x+1)+m.  Meanwhile, the old lines (which had been the leading edge of Wx+1) 

will drop in height again by |m| owing to the second left-shift (to height α x+2m), and will 

now form the next-to-leading edge of Wx+2.  Comparing the heights of the lines forming 

the leading edge and next-to-leading edge of Wx+2 yields a difference of   α -m.  This is 

the vertical spacing between successive lines comprising the LL, U, and DD regions of an 

instant-winner sheet.  Hence, the density of lines (per unit z) is 
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where m = mL, mU, -1 for lower losers, upper losers, and deadly diagonals, respectively.  It 

follows from elementary geometry that the density of lines per unit y is  

                                           
m-
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α

 (horizontal line density)                                (8) 

where, as before,  m = mL, mU, -1 for lower losers, upper losers, and deadly diagonals, 

respectively.  We emphasize that when applied to LL and DD, results (7), (8) give the 

average density of the lower and upper lines in an instant winner sheet – they do not 

represent the actual density of points making up those lines (since the lower and upper 

loser lines are not in fact solid, but are comprised of points with densities 
λ

L,
λ

U, 

respectively).  Lastly, the density (per unit z) of the flat lines in F is also readily 

calculated.  Recall that the probability that a flat loser line exists in a randomly selected 

Lx is γ .  So, for a given Wx, the total number of flat lines that have been generated during 

the recursive construction procedure is simply γ x.  From Fig. A1 we see that the vertical 

extent of these lines is simply )m/m-x(1 LUα .  Thus, we have 
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We now derive six algebraic constraints on the geometric structure of instant-winner and 

loser sheets which, when solved, yield the desired parameter values given  in (5). 

 

Constraint 1:  Existence and uniqueness of losers 



Consider the region of a loser sheet Lx where the upper and lower loser lines exist.  Then 

there exists a unique loser in each column of Lx in this region.  This result follows 

directly from the supermex algorithm described above.  (The coordinates of these unique 

losers are (y,zsmall(y)).  Accordingly, since 
λ

U, 
λ

L  denote the density of losers (per unit y) 

along the upper and lower loser lines, we have 

                                                1LU =+ λλ  

 

Constraint 2:  Region III is forbidden 

Notice that the upper triangular region of the Wx’s (labeled region III of Fig. A2) is 

devoid of losers for all x.  In particular, when the losers Lx are constructed from the 

instant-winner sheet Wx via the supermex operator (Lx=MWx), they are forbidden from 

appearing in any of the existing “holes” in region III (i.e., locations (y,z) where 

Wx(y,z)=0).   The mechanism preventing their appearance there is the implied diagonals 

generated during the supermex operator.  Specifically, each time a new loser along the 

upper loser line is created, it casts down an implied diagonal (see step 6 of the supermex 

algorithm) and thereby fills in some of remaining holes in region III.  These implied 

diagonals cannot overlap with one another, and as a set must effectively fill up all holes 

in region III (which is necessary for the scaling property of the Wx’s to be preserved).  

The condition on the implied diagonals filling the gaps is actually stronger than it might 

appear at first glance:  since the locations of the gaps are not well correlated with the 

locations of the upper losers, in fact the implied diagonals cast down not only just fill the 

gaps, but in fact densely fill region III.  Now, since the slope of the upper loser line is mU, 

and the losers are scattered with density 
λ

U (per unit y) along this line, we can calculate 



the density (per unit vertical z) of the implied diagonals they cast off via a simple 

geometric argument:  The average horizontal separation between successive losers on the 

upper loser line is 1/ 
λ

U, and since the slope of the line is mU, their average vertical is             

-mU/
λ

U.  (See Fig. A4).  The average vertical spacing between implied diagonals is thus  

1/ 
λ

U  + mU/
λ

U, and so their density per unit vertical is simply the reciprocal of this, 

namely 
λ

U/(1+ mU).  Hence, demanding that the implied diagonals fill the region, we set 

their density equal to one, which yields: 

                                                        1
m1 U
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(An entirely analogous argument applied to region F shows that the density of losers 

along the flat loser line equals unity.) 

 

Constraint 3:  Region II is forbidden 

Region II is made up of contributions from DD (along with F in the lower part of the 

region and U in the upper part), with DD playing the key role.  In particular, losers are 

prevented from appearing inside region II because the implied diagonals which are cast 

down by losers on the lower loser line during the supermex process mesh perfectly with 

the existing DD, thereby completely filling the region and making it forbidden to losers.  

(The underlying reason behind the perfect meshing of the implied diagonals and DD is 

that every loser created on the lower loser line must necessarily be filling in an existing 

hole, and so there could not have been a DD line already there.  Thus, the implied 

diagonal emanating from the loser will not overlap any DD.  Moreover, as we move 

across the columns of Wx and lay down lower losers (via the supermex operation), the 

lowest remaining hole in the current column must necessarily get filled by a loser.  



Hence, the implied diagonals and the DD’s must mesh completely, entirely filling every 

column of region II.)  So the constraint is that the densities (per unit vertical) of the DD’s 

and the implied diagonals must sum to unity.  The density of the DD’s is given by eqn. 

(7) above with m=-1.  The density of the implied diagonals associated with the lower 

losers can be found via the same geometric-type argument used to find the density of 

implied diagonals for the upper losers in Constraint 2 (see the construction in Fig. A4):    

-
λ

L/(1+ mL).   Thus, the constraint for region II is 
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Constraint 4:  Bottom row of region I is forbidden 

Observe from Fig. A2 that the bottom-most row (z=0) of region I is completely filled, 

and hence forbidden to losers. (The same is true for all other rows of region I, but those 

will be handled separately.)  We now derive the constraint that must be satisfied in order 

that the bottom row of every Wx (for all x-values) always remains filled.  To begin, note 

that only LL and DD contribute to the bottom row of region I, and that they do not 

overlap.  (F would potentially contribute too were it not for the fact that the bottom row 

of F happens to be completely empty.)  Since the bottom row of region I is completely 

filled, it follows that the densities of the DD’s and LL (in the bottom row) must sum to 

unity.  The density of the DD’s has been calculated previously (eqn. (7) with m=-1).  The 

density of LL along the bottom row follows from a critical observation:  Whenever a flat 

loser line is absent in a loser sheet (which occurs with probability 1-γ ), it is because a 

loser with height zero has been generated in the lower loser line (recall step 8 of the 

supermex algorithm).  Hence, the average density (per unit horizontal) of losers along the 



bottom row of a given Wx must equal the average density (per unit horizontal) of the 

LL’s (eqn (8)) times the probability that a height-zero loser is generated (1-γ ).  This 

yields  (γ -1)mL/(α -mL).   Setting the sum of the densities of the DD’s and LL in the 

bottom row equal to unity yields the desired constraint:   
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Constraint 5:   Lower Region I is forbidden 

All rows of region I (not only the bottom row as discussed above) are forbidden to losers.  

Consider now a row in the lower part of region I, where LL, DD, and F all contribute (but 

not U).  The sum of these three contributions fills up the entire row.  To simplify the 

analysis we select a row in which the horizontal band of F is entirely empty.  Hence LL 

and DD alone must fill this row, and since they do not overlap, it follows that the sum of 

the densities (per unit y) of DD and LL must equal unity for that row.  Now, the density 

of the DD’s is already known (eqn. (7) with m=-1), so we need only compute the density 

of points contributed from LL.  At first glance, it might seem that we could do so simply 

by multiplying the horizontal density of the LL lines (eqn. (8) with m=mL) by the 

expected number of points contributed to a given row by each LL line (-
λ

L/mL).  

However, this naïve argument misses the fact that we have restricted consideration to a 

row in region I in which the horizontal band coming from F happens to be empty, but 

have ignored the fact that the location of points along a LL line are strongly correlated 

with empty/filled rows of F.  Indeed, points in LL can only exist in empty bands of F. 

The proper calculation goes as follows:  Consider a segment of a LL line.  Let its vertical 

extent be H, so its horizontal extent is –H/mL  (since it has slope mL).  The expected total 



number of points distributed along this LL line segment is (-H/mL)
λ

L.   Now, from eqn. 

(9), the number of empty bands of F that will ‘hit’ the line segment is just                      

(1- γ /α /(1-mU/mL) )H   (i.e.,  the vertical density of empty bands times the vertical height 

of the line segment).  So the number of points on the segment per empty band is  

)mmm/(m/)mm( LULLULL γαααλ −−−− .  Multiplying this by the density of LL lines 

(eqn. (8)) yields the desired horizontal density of points contributed by LL along the row.  

Finally, setting the sum of this density and the density of the DD’s to unity, we find 
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Constraint 6:   Upper Region I is forbidden 

Consider a row in the upper portion of region I, where U, DD, and LL all contribute (but 

not F).  Note that U and DD overlap with one another, though not with LL.  Since the row 

is completely filled, we have density(LL)+density(U+DD) =1.  Now, the density of 

points contributed to a row by the LL lines is easily found:  The density of the LL lines 

themselves is given by eqn. (8), while the average number of points contributed to a 

given row by each LL line is just –
λ

L/mL.  So the (horizontal) density of points in a row 

from LL is simply 
λ

L/(α - mL).  (Note: the intermediate expression  (–
λ

L/mL) used in the 

above calculation is easily obtained:  Consider a segment of a LL line.  Let H denote its 

vertical extent H and –H/mL its horizontal extent.  So the total number of points along 

this segment is  (-H/mL)
λ

L.  Dividing by H yields the expected number of points per row 

contributed by the line.)  Using a similar argument, the (horizontal) density of points 

contributed in a row contributed from U is 
λ

U/(α - mU).  The density from DD is 1/(α +1).  

Assuming no correlations between the contributions from U and DD, the expected 



density of their combined contributions is 1 - (1- 
λ

U/(α - mU))(1-1/(α +1)).  Adding this to 

the density from LL, the requirement that the row is completely filled becomes 
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Solving these six algebraic constraint relations yields exact values for the key parameters 

characterizing the geometric structure of the game.  These values are given in (5) above. 

 

 

Appendix C:  Location and uniqueness of winning opening move 

Consider a starting position of Chomp p0=[x0,0,0].  We wish to identify losing positions 

which are reachable from p0.  Fig. A1 provides a general geometric depiction of all losers 

in a generic loser sheet Lx, and rules M1-M6 of Appendix A specify all possible moves.  

A quick inspection reveals that only moves of the type M4 and M5 are viable candidates 

for reaching a loser from p0.   We start with M4.  The reachable positions from p0 are of 

the form [x0-t, t,0].  Hence we seek a loser in sheet t−0xL  which lies on the lower loser 

line at a height z=0.  Since the lower lose line has the functional form z=mLy+α (x0-t), this 

requires y=- α (x0-t)/mL.  Hence, we set t=y= - α (x0-t)/mL.  Solving for t, the desired loser 

location is: 
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Consider now M5.  The reachable positions from p0 are of the form [x0-t', 0, t'].  From fig. 

A1 we see that we seek a loser in sheet t′−0xL  located at height z=α (x0-t') in the y=0 

column (i.e., where the upper and lower loser lines meet).  Setting t'= α (x0-t') and solving, 

the desired loser location is 
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Hence we conclude that the only possible losing positions which are accessible from p0 

must lie in the vicinity of points (L1) or (L2).  (Note that (L1), (L2) are not themselves 

actual losing positions (since they are not integers)  –   recall from Fig. 2 of main text that 

losers tend to be scattered within a narrow band surrounding the analytical loser lines, 

and are usually not directly on these lines).  We point out here that the “vicinity” of (L1), 

(L2) is determined by the width of the loser band surrounding the analytical loser lines in 

loser sheets {Lx}.  Numerical simulations indicate that this width appears to have a global 

maximum bound (i.e., for all x) of less than 2.5.  Though this bound has yet to be proven 

analytically, it is in agreement with the general heuristic argument that the supermex 

operator M, by its very construction, tends to place new losers as close as possible to 

existing boundaries in the instant-winner sheets (i.e., the losers “hug” the analytical loser 

lines).   

From the above considerations, it might appear that there could exist multiple losers in 

the vicinity of either (L1) or (L2) which are all accessible from starting position p0,  in 

which case there would be more than one winning opening move.  However, as we show 



now, this is not the case – there is but a single losing position accessible from p0, and 

hence the winning opening move is unique.  To see this, start by considering the set of 

possible losing positions in the vicinity of (L1).  They will all have the general form        

[x0-t, t,0], where t now represents some integer close to the original (non-integer) value of 

t used above to determine (L1).  Suppose more than one of these positions is actually a 

loser. Let L1* denote the largest of these losers (in the dictionary ordering).  By rule M4, 

however, it is easy to see that the other losers in the neighborhood will be reachable from 

L1*.  Hence, this must mean that these other supposed losers cannot in fact be losers – 

since a losing position is never accessible from another losing position.  So we conclude 

that there can be at most one losing position in the neighborhood of (L1).   Likewise, by 

noting that the possible losing positions in the vicinity of (L2) must all have the general 

form [x0-t', 0, t'], and invoking rule M5, we use a similar argument to show that there can 

be at most one loser in the vicinity of (L2).  Thus far, we see that we can have, at most, 

one loser near (L1) and one loser near (L2).  Suppose both exist.  Observe, however, that 

the loser near (L2) would be accessible from the loser near (L1) by rule M5 (since 

tt >′ ), leading to a contradiction (see (*) of Appendix A).  Hence, there is a unique loser 

which is accessible from initial position p0, and so the winning opening move is unique.   

 

Appendix D:  Recursion operator for three-heap Nim 



Let position p=[x,y,z] specify the current configuration of the game, with x denoting the 

number of counters in the first heap, y the number in the second, and z the third.  The 

positions which are reachable from position p in a single move are given by 

                        

M3                     zt0        t]-zy,[x,

M2            y         t0        z]t,-y[x,

M1            x         t0        z]y,t,-x[

≤<

≤<

≤<

 

As in Chomp, let Lx represent a loser sheet (Lx(y,z)=1 if [x,y,z] is a loser and 0 

otherwise), and Wx an instant-winner sheet.  From M1 it is clear that the parents of an 

arbitrary position p=[x,y,z] at a higher x-value will have the same (y,z) as p.  Thus, using 

the parents of losers in the loser sheets to construct the instant-winner sheet yields 

                                     1-x10x L    . . .   LLW +++=  

The loser sheets are constructed from the instant-winner sheets via a supermex operator 

M (not the same supermex operator as in Chomp) 

                                      xx W L  M=  

where the action of M on an instant-winner sheet Wx is defined algorithmically via 

Supermex algorithm: 

1. Set Lx=0   (i.e., Lx(y,z)=0 for all y,z ∈ {0,1,2,…}) 

2. Set Tx=Wx     (Tx serves as a scratch sheet) 

3. Set y=0  (i.e., we will start with the first column of Tx) 



4. Let zsmall(y) =mex({z|Tx(y,z)=1})  (i.e., find z-value of  smallest non-winner) 

5. Set Lx(y, zsmall(y))=1  (i.e., mark the point as a loser) 

6. Set Tx(y, zsmall(y)+t)=1 and Tx(y+t, zsmall(y) )=1 for all t≥ 0       (see M3, M2) 

7. Set y →y+1 

8. Go to step 4. 

 

Combining the expressions for Wx and Lx above yields 
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Using this expression to construct Wx+1, and then comparing it to Wx, leads to the desired 

recursion relation for Nim: 

                                    Wx+1 = (I+M) Wx 

where I denotes the identity operator. 
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