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Abstract: We develop a new approach to combinatorial games (e.g., che&o,
checkers, Chomp, Nim) that unveils connections betweench games and
nonlinear phenomena commonly seen in nature: scaling behav&rcomplex
dynamics and chaos, growth and aggregation processes. Using ¢iaene of Chomp
(as well as variants of the game of Nim) as prototypes, we diwer that the game
possesses an underlying geometric structure that “growstéminiscent of crystal
growth), and show how this growth can be analyzed using a rermalization
procedure. This approach not only allows us to answer sonopen questions about
the game of Chomp, but opens a new line of attack for undganding (at least
some) combinatorial games more generally through their undeylng connection to

nonlinear science.

Combinatorial games, which include chess, Go, checkers, Clumtgpand-
boxes, and Nim, have both captivated and challenged mathemsticomputer
scientists, and players alike-10). Analysis of these two-player games has generally

relied upon a few beautiful analytical resultsl@l-14 or on numerical algorithms that



combine heuristics with look-ahead approacke$(pruning) (5,19. Using Chomp
as a prototype, we report on a new geometapgloach which unveils unexpected
parallels between combinatorial games and key ideas frosigstand dynamical
systems, most notably notions of scaling, renormalization, tsailty, and chaotic
attractors. Our central finding is that underlying the gar@egrobabilistic geometric
structure that encodes essential information about the gachéhat this structure
exhibits a type of scale invariance: Loosely speaking, the egepiof “small” winning
positions and “large” winning positions are the same aftealeg. (This general
finding also holds for at least some other combinatorial gaasesge explicitly
demonstrate with a variant of Nim.) This geometric insigittonly provides
(probabilistic) answers to some open questions about Chomp, buttsumgesural
pathway toward a new class of algorithms for more general catabial games, and

hints at deeper links between such games and nonlinear science.

Chomp is an ideal candidate for our study, since in certapects it appears to
be among the simplest in the class of “hard” gameshidtery is marked by some
significant theoretical advancek(22), but it has yet to succumb to a complete analysis
in the 30 years since its introduction by Gdlé) @nd Schuh18). The rules of Chomp
are easily explained. Play begins with an N x M aafagounters (Fig. 1a). On each
turn a player selects a counter and removes it along Wwitbaters to the north and
east of it (Fig. 1b). Play alternates between the two dayil one player takes the
last counter, thereby losing the game. (An intriguing feaiti@homp, as shown by
Gale, is that although it is very easy to prove that thgeplho moves first can always
win (under optimal play), what this opening move should be has Inegpea question.

Our methodology will in fact provide a probabilistic answethie guestion.)

For simplicity, we will focus here on the case of three-(M=3) Chomp, a

subject of recent study by Zeilberg&®¢20 and SunZ1). Generalizations to four-row



and higher Chomp are analogous. To start, we note that thguratibn of the
counters at any stage of the game can be described (usibgrgei’s coordinates) by
the position p=[x,y,z], where x specifies the number of cakiof height three, y
specifies the number of columns of height two, and z the nuwitieheight one (Fig.
1b). Each position p may be classified as eitheinaer, if a player starting from that
position can always force a win (under optimal play), orlasex otherwise. (This
classification is well defined by Zermelo’s theorem.) $heof all losers contains the
information for solving the game. One may conveniently groujogieg positions
according to their x values by defining a “loser shegttoLbe an infinite two-
dimensional matrix whose (y'%2romponent is a 1 if position [x,y,z] is a loser, and a 0
otherwise. (As noted by Zeilberger, one can express terms of all preceding loser
sheets L1, Ly, ..., Lp.) Studies by Zeilberget 9,20 and others31-23 have
detected several numerical patterns along with a few agallf¢atures about the losing
positions, and their interesting but non-obvious properties havdexvéma conjecture
that Chomp may be “chaotic in a yet-to-be-made-precise5€®. However, many
of the numerical observations to date have remained laugelyplained, and disjoint
from one another.

To provide broader insight into the general structure oftime, we depart from
the usual analytic/algebraic/algorithmic approaches. Weddsthow how the analysis
of the game can be recast and transformed into a typeradrtnalization” problem
commonly seen in physics (and later apply this methodology to cohasinatorial
games besides Chomp). Analysis of the resulting renorriatizaroblem not only
explains earlier numerical observations, but provides a ungiedal description of the

overall structure of the game. We remark that this appredtche distinguished by its



decidedly geometric flavor, and by the incorporation of probaibiktements into the
analysis, despite the fact that the combinatorial gameon&der are all games of no
chance which lack any inherent probabilistic components to tisstsoever.

To proceed, we turn consideration to so-called “instant-wisheets”, defined as
follows: A position p=[x,y,z] is called anstantwinner (in Zeilberger’s terminology)
if from that position a player can legally move to a logingition with a smaller x-
value. We therefore define an instant-winner sheetd/e the infinite, two-
dimensional matrix consisting of all instant winners with $pecified x-value, i.e., the
(y,z)" component of matrix Wis a 1 if position [x,y,z] is an instant winner, and a 0
otherwise. These instant-winner sheets will prove crucralfderstanding the
geometric structure of the game (and, as will be sa@tain all the information needed
to construct the loser sheets).

Ouir first insight comes from numerical simulations, wheregmumerically
construct the instant winner sheetsfVibr various x values (using a recursive
algorithm which will be made clear below). Figs. 2d&bvg the structure of Wy and
W3sq, respectively, and are representative of what is obdatother x values. Each
sheet exhibits a nontrivial internal structure charactdrizy several distinct regions: a
solid (filled) triangular region at the lower left, a sarof horizontal bands extending to
the right (towards infinity), and two other triangular regiohslifferent densities. Most
importantly, however, we observe that the set of instant-wshests {\WW} possess a
remarkable scaling property: their overall geometric skgjukentical up to a scaling
factor! In particular, as x increases, all boundary-linpes$, densities, and shapes of
the various regions are preserved from one sheet to theattbxrigh the actual point-

by-point locations of the instant winners within each sheediffiexent). Hence, upon



rescaling, the overall geometric structure of these sieetantical (in a probabilistic
sense). We point out that the “growth” (with increasing xhefinstant-winner sheets
is strikingly similar to certain crystal-growth and aggtegaprocesses found in
physics — in each case, the structures grow through the aationuf new points
along current boundaries, and exhibit geometric invariance dinigmgrocess. The
loser sheets {}} can be numerically constructed in a similar mannerythei
characteristic geometry is revealed in Fig. 2cs found to consist of three (diffuse)
lines: a lower line of slope nand density of points,, an upper line of slope nand
densityh,, and a flat line extending to infinity. The upper and lowerslioeginate
from a point whose height (i.e., z-valuelis. The flat line (with density one) is only
present with probability in randomly selected loser sheets. Like the instant-winner
sheets, the loser sheets also exhibit this remarkable geosealing property: as x
increases, the geometric structure gfjtows in size, but its overall shape remains
unchanged (the only caveat being that, as previously noteftitttiae seen in Fig. 2c
is sometimes absent in some of the loser sheets). \peasme that while these are
only numerical findings, they will provide critical intuition ftire results that follow.
Our second key finding is that there exists a well-definealytical recursion
operator that relates one instant winner sheet to its imteguli@decessor. Namely, we
can write W1 =R Wy, whereR denotes the recursion operator. (The opeRtcan be
decomposed &R=L (I+DM), whereL is a left-shift operatol, is the identity operator,
D is a diagonal element-adding operator, Bhi a “sheet-valued” version of the
standard mex operator which is often used for combinatomaégd A detailed
derivation of this result is provided in Appendix A. However,dur present purposes

it suffices to simply note that a recursion operator reldtiegnstant-winner sheets



exists. We point out that once a given instant-winner shiedtas been constructed,
the corresponding loser shegrdan be found via,L=M Wy (Appendix A).

Stepping back for a moment, what we now have is a renormalizatbtem akin
to those so often encountered in physics and the nonlinearesgisnch as the famous
period-doubling cascade discovered by M24) (n a biological mapping and analyzed
by Feigenbaum using renormalization techniq@&s (In particular, we have objects
(instant winner matrices) that exhibit similar structurditierent size scales (cf., Figs.
2a,b), and a recursion operator relating them. Our taséftineris to determine an
invariant geometric structure W such that if we act whhrecursion operator followed
by an appropriately-defined rescaling oper&owe get W back again: WS RW
(i.e., we seek a fixed point of the “renormalization-group ajeet S R) This can be
done, but before doing so we point out a critical feature cdnladysis. Even though
the recursion operatét is exact and the game itself has absolutely no stoclzesgtérts
to it, it is necessary to adopt a probabilistic frameworsrder to solve this recursion
relation. Namely, our renormalization procedure will show tthatslopes of all
boundary lines and densities of all regions in thésand L's) are preserved — not
that there exists a point-by-point equivalence. In essencejlil®/pass consideration
of the random-looking ‘scatter’ of points surrounding the various lnesregions of
W, and L by effectively averaging over these ‘fluctuations’.

The key to implementing the renormalization analysis @bterve that the losers
in Ly (Fig. 2c) are constrained to lie along certain boundary lihtdeed\ plot (Fig.
2b), and are conspicuously absent from the various interior regfiélig (for all x). In
other words, the interior regions of each Wmain “forbidden” to the losers. Hence

the geometry of Ws must be very tightly constrained if it is to presetvese



forbidden regions under the recursion operaterf . W, (for otherwise the \Ws
would not remain geometrically scale invariant). Each forbidegion in W imposes
a constraint on the permissable structural form that tfie &8n take, and can be
formulated as an algebraic equation relating the hitherto unknaramgters m i,
my, Ay, ¥, o that define the loser sheets. A detailed calculatiescribed in Appendix

B, shows that there are six independent conditions:

A 1 A m 1
A +A = u_ - - - L = -1 L 4+ =
oA=L 1+m, Loga m, +1 Y )a'—mL g+l
al, { m, —m, j+ 1, A a {1_ Ay J:O.
a-m{ma-ma+my) a+l a-m  a+l a—-m,

Stated differently, these are the necessary conditiortedanstant-winner sheets to be

fixed points of the renormalization opera®R. Solving the above relations yields

a=4, A =l-4, m =-1-4, m, =-1+1, y=+2-1
These six key parameters completely characterize thedete{L} of the game, and
from these the properties of the associated instant wineetssf\\(} are readily
deduced. We thus have a fundamental (probabilistic) descriptibe giobal
geometric structure of the game. We note that theqausalytically derived) parameter
values also provide an explanation for existing numerical obgamgadbout Chomp,
including key numerical conjectures on the game’s loser propbstiBsouwer 23).
We mention that only a single assumption was needed to ottrtieusix preceding
parameter relations; namely, that fluctuations assocvetedhe diagonal operat®
were uncorrelated with the fluctuations surrounding the upper libg in

Several interesting results immediately follow. Fimgtying analytically
determined the geometric structure of the loser sh@etsan now show that the

winning opening move in Chomp (from the initial positiog, [& 0]) must be to a



position that lies in the vicinity of one of the two pointxo/\/i, X0 (2—\/5)/2, 0] or

[Xo (2—\/5) , 0, )g(\/i -1)]. (Here, “vicinity” is defined by the width of¢Hoser band
surrounding the analytical loser lines in loser sheegs L Moreover, this winning
opening move can be shown to be unique. (See Appendixdgtails.) (Previously,
uniqueness was known to hold numerically fgr90,000 (23)). Second, for most
winning positions (except those near a boundary), kmptheir location within W
allows us to compute the expected number of winningemtased on which lines in
the loser sheets are accessible. Third, knowledge of the @aingtructure of the
loser sheets suggests a natural pathway to more effatgarithms by simply designing
the search algorithm to aim directly for the analyticallyedmined loser lines in,L
This is in fact a general feature of our methodology ljnated to just Chomp): once
the geometry of a combinatorial game has been identifigkeogenormalization
procedure, efficient geometrically-based search algoritande constructed. Lastly,
as seen in Fig. 2c, the co-existence of order (i.e., acalytivell-defined loser lines)
and disorder (i.e., the scatter of points around thess)lsignifies that combinatorial
games such as Chomp may be unsolvable yet still infanaly compressible, in the
language of Chaitin2).

The probabilistic renormalization approach we have emplogédally gives rise
to a whole new set of interesting questions aboubaeatorial games. For instance, we
can construct variants of standard games simply by perguanimnstant-winner sheet
by the addition of a finite number of new pointSu¢h additions effectively modify the
game by declaring these new positions to be automatizans.) We can then examine
whether or not the same instant-winner-sheet geometry agpdhese variants (i.e., is

the geometric structure an attractor?). Simulations shaifdr a sizeable class of



variants of Chomp the original geometric structure gf Bire-emerges. Hence it
appears stable (in a probabilistic sense). In the laegofagnormalization we would
say that such game variants fall into the same universddisg as the original game. A
related issue concerns sensitivity to initial conditi@anballmark of chaos in dynamical
systems theory. Using our recursion operates;\WR Wy, we can examine how small
perturbations to Wpropagate. Although the overall instant-winner geonudttire
perturbed and unperturbed systems will be the satheyiflie in the same universality
class, they will differ on a point-by-point basis. Vifel (see Fig. 3) that small initial
perturbations can in fact significantly alter the actuaddscations quite dramatically,
highly reminiscent of chaotic systems. For example, addstg single point to Wo
can, after only 25 iterations, alter the locations of ndaaliyof all losing positions in all
subsequent loser sheets{lx>125}.

We can also apply our methodology to other combinatoriabgar@onsider the
simple game of (three-heap) Nim27): Play begins with a set of counters stacked into
three piles (heaps). The number of counters in the el described by
coordinates [x,y,z]. At each turn, a player selects a hedpeamoves one or more
counters from it. Play alternates between the two playdifsnorcounters remain.
Under ordinary play whoever takes the last counter(s3.wihis straightforward to
construct the recursion and renormalization operatorhi®game (Appendix D), and
to analyze its properties analogously. Fig. 4a showgdbmetry of an instant-winner
sheet W for three-heap Nim. As in Chomp, this structure kithia geometric scaling
property (athough the Y do depend on their x-values). Unlike Chomp however,
ordinary Nim is known to be a completely solvable game vani@ind that the geometry

of its W,’s is unstable. Indeed, if we add just a few random geations to one of the
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sheets (so that the game is no longer readily solvabé&s),a very different-looking
instant winner structure of the form shown in Fg.emerges. This striking new
structure, just as for Chomp, is remarkably stable, gefigricit seems to naturally
emerge for most perturbations), and scale invariantacip we speculate that the
ordinary game of Nim has an unstable, nongeneric gepmetcisely because of its
solvable nature, and that the robust geometry of Bidordvariants of Nim is much
more typical. Itis not unreasonable to conjecture more giynérat generic
combinatorial games will have robust underlying geometncgires, while those of
solvable games will be structurally unstable to pertuobati

Lastly, we remark that the “growth” (with increasingaf)the geometric
structures W (Figs. 4b and 2a) for games such as Nim and Chonyggestive of
certain crystal growth and aggregation processes in phyd&car{d activation-
inhibition cellular automata models in biolod®9. This semblance arises because the
recursion operators governing the game evolution (W -~ W,.1) typically act by
attaching new points to the boundaries of the exigtigjant-winner sheet) structures.
Although the details vary, this type of attachment-toraauies process is a common
feature of many physical growth models. Viewed is thay, then, our procedure
offers a means of transforming the study of a combita@tgame into that of a shape-
preserving growth process — and with it the hope thaesaf the tools which physicists
have developed for analyzing such growth models may ndwdaght directly to bear
on combinatorial games.

We must conclude by emphasizing that though we have applretiethodology
successfully to a few games — Chomp, Nim, and their variaahd it has yielded some

interesting insights, these games represent just a smdfiuhan the set of established
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combinatorial games, and consequently the limitations sinlethodology and its
scope of applicability are not known at present. Howeverhope that this novel
(renormalization-based) approach to combinatorial gamethartdntalizing

connections it raises to key ideas from the nonlinear s@emitlestimulate further

research along these lines.

Fig. 1: The game of Chomp. (@) play begins with an MxN rectangular array of
counters (three-row Chomp is illustrated). At each turn, a player selects a
counter and removes it along with all counters lying in the northeast quadrant
extending from the selected counter. Play alternates between the two players
until one player is forced to take the ‘poison’ counter (shown in red), thereby
losing the game. (b) a sample game configuration after player 1 selects counter
A, followed by player 2 selecting counter B. More generally, an arbitrary game

configuration can be specified by coordinates [x,y,z], as shown.

Fig. 2: The geometry of Chomp. (@) the instant-winner sheet geometry for
three-row Chomp, shown for x=700. Instant winner locations in the y-z plane
are shown in blue. (b) the instant-winner sheet for x=350. Comparison of Ws
to Wrqgo highlights the central scaling property of the instant winner sheets {W,}:
as they “grow” in size with increasing x, they remain geometrically identical up
to a scale factor (i.e., shapes, densities, and boundary-line slopes remain fixed).
(Note: This geometric invariance is not especially apparent at very small values
of x, but rapidly emerges as x increases.) (c) the loser-sheet geometry L,
shown for x=350. Observe that losers in each sheet all lie near one of three
lines: alower line of slope m, density A.; an upper (tilted) line of slope my,

density Ay; and an upper flat line (of density one) which only exists for some x-
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values. The probability that a flat line in L exists for a randomly chosen x is y.
The lower and upper tilted lines both emanate from a point near (y,z)=(0, a x).
Note that these loser lines are located along boundaries of the associated
instant-winner sheet (compare Lsso with W3s0) The geometrical structure of the
Ly’s, like that of the Wy’s, remains invariant (up to a scale factor) as one goes to
progressively larger x values (not shown). As described in the text, the analysis
of this invariance property allows for a complete geometrical/probabilistic
characterization of the structures shown in these figures (including an analytical

determination of the parameters m;, A, my, Ay, Y, Q).

Fig. 3: Dependence on initial conditions. The figure illustrates how
perturbing an instant winner matrix by a single point subsequently spreads and
“infects” the loser sheets at higher x values (i.e., altering the precise locations of
the losing positions). The red data points show the fraction of losers along the
upper tilted and lower lines (e.g., Fig. 2c) that are affected when one adds a
single point to Wy and then iterates. The blue data points show the
corresponding effect when the initial perturbation is to Wioo. The green data
shows (a rolling average of) the spread of the infection to losers lying along the
flat tail of Fig. 2c (for an initial perturbation to Wagp). Note that the effects can
be pronounced in spite of the linear appearance of the initial growth for small
iteration numbers (see blue, red data). For example, the blue data shows that
changing just a single point (out of the approximately 4,000 points making up
the relevant region of Wig), will, after only about 25 iterations of the recursion

operator, shift the location of nearly half of all losing positions!

Fig. 4: The geometries of ordinary and variant Nim. (a) the instant winner
structure Wy at x=256 for ordinary 3-heap Nim. As in Chomp, this geometrical

structure is preserved (up to an overall scale factor) with increasing x values;
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i.e., Wy and Wy look identical (not shown). However, unlike Chomp, the
geometry is highly unstable to perturbations, and also exhibits an internal
periodicity such that Wy and Wy.; are similar but not wholly identical in structure.
In the figure the instant winners have been color coded based on their “age” (as
defined by the recursion algorithm which generated them); blue is oldest, red
youngest. (b) the instant winner structure Wy at x=256 for a generic Nim
variant. Nim variants are similar to ordinary Nim, except that one or more heap
configurations are arbitrarily declared to be automatic winners. The striking
geometrical structure shown in the figure is both stable and reproducible, i.e., it
typically emerges whenever one or more random heap configurations are
declared automatic winners. As in Chomp, this attracting structure is preserved
(up to scale factors) as one goes to increasingly large x-values. (We note,
however, that the scaling behavior appears more pronounced for Wy—W, than
it is for W,—Wy.1, a remnant, we believe, of the underlying solvable structure of

ordinary Nim upon which these Nim variants are based.)
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Technical Appendices:

Appendix A: Derivation of recursion relation W,.1= R W,

Recall the following definitions:

Position p=[x,y,z] defines the current game configuration, with x specifying the
number of columns of height three, y the number of columns of height two, and z
the number of height one (see Fig. 1 of main text). Each position p is classified as
awinner (if a player starting from that position can always force a win under

optimal play), or as boser otherwise.

A loser sheet L, is the infinite, two-dimensional matrix whose (Y. zomponent
is a 1 if position [x,y,z] is a loser, and a 0 otherwise. The set of loser sheets
{Lo, L1, Ly, ...} provides a convenient way of organizing the game’s losing
positions in a hierarchical fashion according to their x values; each loser is

uniquely assigned to a particular loser sheet.

A winning position p=[x,y,z] called amstant winner if from that position a
player can reach a losing position with a smaller x-value in exactly one move.
(The set of instant winners is a subskthe winners.) Amnstant-winner sheet

W, is defined to be an infinite, two-dimensional matrix whose {ycpmponent



is a 1 if position [X,y,z] is an instant winner, and a O otherwise (i.e., the instant-

winner sheets group the instant winners according to their x values).

Consider an arbitrary position p=[x,y,z]. Under the game rules, the set of positimhs w

are accessible from p in a single move (i.e., the “children” of p) are:

[Xx,y—t,z+1] O<t<y M1
[x,y—t,0] O<t<y M2
[Xy,z—1] O<tsz M3
[x—t,y+t,7] O<tsx M4
[x—1,0,z+y+{] O<t=<x M5
[x-1,0,0] O<t<sx M6

By inverting these relations, the set of positions from which it is possibledo paa a

single move (i.e., the “parents” of p) can be readily determined. Note tHabkthkeree

moves (M1-M3) are to positions with the same x value as p, while the last thrtee ar
positions with lower x values. We also note three elementary though useful facts:
*) The children of any winning position must contain at least one loser.

(**) The parents of any losing position must all be winners.

(***) If all children of a position are winners, then the position must be a loser.

We next define a set of operators which can act on sheets (here, “sheet$camthe
loser sheets, the instant-winner sheets, or, more generally, to any infioie, tw
dimensional matrix consisting of 0’s and 1’s). In what follows we denote a ¢jshes

by A, and its (y,Z} component by A(y,z), where y specifies the column of matrix A, and
z its row. The labeling begins with zero (i.e., (¥8,1,2,...}); y=0 refers to the leftmost

column, and z=0 to the bottom row:



= DefinelL to be thdeft-shift operator which shifts all elements of a sheet to the
left: LA(y,z)=A(y-1,z). (In other wordd, effectively eliminates the leftmost
column of A.)

= Define anaddition operator + on sheets by the logical OR: Given two sheets A,B,
(A+B)(y,z)=1 if either A(y,z)=1 or B(y,z)=1.

= Definel to be the identity operator:l A=A for any sheet A.

= Define thediagonal element-adding operato, which acts on loser sheets, as
follows: Observe first that for each loser shegthere is a unique losing position
with y=0, i.e., there is a unique z-value (denoted z*(x)) such t{taiz*(x))=1.
(Such a loser must exist since the set of instant winners is bounded in z;
uniqueness holds by (**) in conjunction with M3). Now define operdtewhich
acts on loser sheets as followd-, is a matrix which is zero everywhere except
at the following points:dLy(t,z*(x)-t)=1 for all 0<t < z* (x) (Geometrically, the
non-zero components of matik, form a diagonal line of 1's extending
downwards and to the right from the losing entry at (0,z*(x)) at a 45° angle.)
Finally, the desired diagonal element-adding opeilatsrdefined byD=I+d.
GeometricallyDLy is thus identical to Lexcept for the addition of the diagonal
row of 1's. Henceforth, we will call the diagonal elements associatedwtib
“deadly diagonals” (since, as will become clear, they tend to complicate the

analysis considerably).

Using the above operators, we next derive a relationship between a given instant winne

sheet W and the set of loser sheets{l- L2, ...,Lo}. First recall that, by definition,



position p=[x,y,z] is an instant winner in\W.e., Wi(y,z)=1) iff there is a loser reachable
from p with a lower x value. So to construck We need only determine which positions
[X,y,z] are capable of reaching a loser in{lLx.»,...,Lo} (i.e., we seek the parents of the
losers). For this purpose only moves M4-M6 are relevant (since moves M1-M3 maintai
the same x-value.) From M4 (or its inverse), it is easily verified that timstd .;,

L%y, ...,L%Lo will all contribute to W. From M5 (and its inverse), terrhslL 1,

L2dLy., ..., L*dLo will contribute. There are no contributions from rule M6 because, by
Gale’s argument, positions of the form [x,0,0] are never losers (for any x>0), Thus

combining all contributions we have

t=x t=x
W, =3 LY +d) L =Y L'DL,, )
t=1 t=1

We next show that WWcontains all the necessary information for constructing L
Specifically, we develop a sheet-valued mex opeidtgwhich we dub “supermex”) and
show that

L,=MW, 2)
To understand the construction gfftom W via the supermex operator, we begin with
a preliminary observation: if we rank all positions in the game by size isrggandard
“dictionary” ordering (i.e., define [x,y,z] > [X',y',Z] if either (x3»or (x=x" and y>Yy') or
(x=x', y=y', and z>z")), then as play progresses the size of successiv@posili
strictly decrease, as may be verified by considering the game rulddo\Mile., children
are always smaller than their parents). Now the basic intuition behind (2pltoasf
Start with the instant-winner sheet,Véind locate the smallest position which is not an

instant winner (i.e., the smallest (y,z) such thaty¥¢)=0). Call this position g. g must



be a loseras shown by the following argument: Since q is not an instant winner, then by
definition none of its children can be losers with a lower x-value. Moreover, none of its
children can be losers with the same x-value either, since q is (by constrtiation)

smallest non-instant-winner in Wand so its children in W{which under the dictionary
ordering must be smaller in size) can only be instant winners. Hence, dllitrercof g

are winners, and by (***) it follows that q is a loser. Having thus identified theldssr

in Ly, we can then find the next loser as follows: First find all parents of the fiestdos
which have the same x-value as q (using rules M1-M3) and mark these as “winners”
the W, matrix by setting the appropriate entries equal to 1. (Note that both these new
winners and the original instant winners iy Wl be labeled with a 1.) We point out

that in the formal algorithm presented below, we do no actually want to gltiésaN

(since it is well-defined via (1)), so instead we define a scratch shgeteh by T=Wj,

and make the alterations tQ. THaving marked the parents of g, we again find the
smallest remaining position iry {apart from q) which is neither a winner or instant
winner. By the same argument used above, this position must be a loser. Through this
iterative process (of marking parents of losers and finding the smallesthneghnon-

winner), we can generate all losers jn L

More formally, we can algorithmically define the action of the supermex topé&iaon
an instant-winner sheet \Mo generate L (equation (2)) as follows:

Supermex algorithm:

1. SetLL=0 (i.e., k(y,z)=0 forally,zLl {0,1,2,...})

2. Set =Wy



3. Sety=0 (i.e., we will start with the first column o) T
4. Let zmafy) =mex({z|Tx(y,z)=1}) (i.e., find the z-value of the smallest non-
winner)

5. Set (Y, zmaly))=1 (i.e., mark the point as a loser)

6. Set K(y,t)=1 for all t=zsmay) and set Jy+t, zmaly)-t )=1 for all t< zsmaly)

7. Sety - y+l

8. If zsma(y)=0 stop; else go to step 4.
Several remarks are in order. (i) The mex operator in step 4 is the standandlmini
excluded value operator defined on sets of non-negative integers (e.qg.,
mex({0,1,2,5,7})=3; mex({1,4})=0). (ii) The program finds the smallest non-winners by
searching Y column by column, starting with column y=0 (steps 2 and 7). (iii) step 6
corresponds to finding the parents of the current smallest losing position vidMBibasd
M1 and marks them as winners. (Any winners which are not instant winners ade calle
“implied” winners in Zeilberger’s terminology.) Geometrically, thepliad winners
arising from rule M3 fill up the entire column directly above the loser, whil@tpéed
winners from rule M1 form a diagonal line running down and to the right from the loser
at a 45° angle. This diagonal line will prove important for later considerations, and in
support of Zeilberger’s terminology, we will refer to this diagonal asraplied”
diagonal. (Implied diagonals are distinct from the “deadly diagonals” iassoavith the
operatoD discussed previously.) (iv) itza(y)=0 (step 8), then by rule M2 no other
losers in I exist and the search terminates. (vV)ifa&y) # O for any y, then the

computation will not terminate. (As we show later, the probability of it terimigag



y= V2 —-1.) However, Byrnes [22] has shown that even when it does not terminate it

does eventually becomes periodic and hence predictable.

Now, combining our expressions for,\&nd L (equations (1) and (2)), we have
t=x
W, => L'DMW,,
t=1

Finally, we make the critical observation that if we create;\Wy substituting x> x+1
above and then compatre it to the original expression foit\Wecomes possible to re-
express W1 in terms of W as follows:

W, =L({+DM)W, =RW, (3)
where

R=L (I +DM) (4)

Appendix B: Fixed point of the renormalization operator W - SR'W

In this appendix we derive analytical values for the six key paraméit@raaterizing the
overall geometric structure of the loser and instant-winner sheets. Ratalie
geometry of the loser sheetg (Fig. 2c of main text) consists of three diffuse lines: a
lower line of slope mand density of points (per unit ¥, an upper line of slope nand
densityd, (per unit y), and a flat line extending to infinity. The upper and lower lines
originate from a point whose height (i.e., z-value)xs The flat line (with density one)

is altogether absent in some loser sheets; we defmée the probability that a flat loser



line is present in a randomly selected loser sheet. We will show here tleat thes
parameters must have the following values:
-1
a= T2

A =1-%,

(5)

These are the (unique) parameter values for which theaid L/’'s can exhibit the
observed scaling invariance. Said differently, these parameter values atefmvariant
geometry of the instant-winner sheets that is a fixed point of the renornadigatiup
operatorSR. As we show below, this invariance property can be expressed via a set of

algebraic equalities, the solution of which leads to the above parameter values.

To begin, we express the recursion relation (3) as

W,,, =L (w, +DMW, ) (6)
and observe that the new instant-winner shegt W generated from the old Mdy the
following sequence of steps: First, the mex operator acts to create thehlesek (i.e.,
MW,=Ly). This loser sheet is then modified by the opefatarhich adds a diagonal
line of 1's into the matrix. We then add this modified loser sh#ief)(to the original

W, sheet, and then simply left-shift the whole sheet, yieldipg.W



The most critical stage of this “growth” of MMhto W1 is when the original instant-
winner sheet Wis altered by the addition of the modified loser slidgt To best
understand this change, we decom@dkginto its four basic components: the lower
loser line in L, the upper (tilted) loser line in Lthe flat loser line in L (when it exists),
and the deadly diagonal line createdhy(See Fig. Al of the appendix for a geometric

depiction of these lines.) This in turn allows us to similarly decompose gnyl k¢
basic idea is that as we recursively construghi& W, (1T - W, [IT - ... (1T - W, ,,

at each step we are adding a modified loser sheet to the current instantsiveeter

Hence, once Wis built up, we can separate out the contributions that came from lower
loser lines, upper loser lines, flat lines, and deadly diagonals. Figure A2 of the appendi
shows a typical W(for x=100); Figure A3 shows its decomposition into the four sets
(defined by which component of the modified loser sheets contributed). We label these
sets LL (for lower loser lines), U (for upper loser lines), F (for flat Itises), and DD

(for deadly diagonals). Note that DD overlaps with U and with F, but that no other sets
overlap. In particular, LL, U, and F cannot overlap with one another for the simple
reason that as the three loser lines (in a modified loser sheet) ardaitishgwn, they

never intersect the current instant-winner sheet to which they are beed)@dtte they

are losers). DD and LL do not overlap for a simple geometrical reason: eachiew

DD line is laid down, it is located above the existing LL region (since thénkek have

slope m<-1, whereas the DD lines have slope -1). Note that while we have ignored the
left-shift operatolL in egn. (6) in the above discussion, the action of this shift operator is

in a certain sense trivial, and does not alter any of the preceding conclusions.



Each of the regions LL, U, F, and DD in Fig. A3 are constructed from a serias®f li
(The series of deadly diagonal lines and the flat lines making up DD and F inedpect
are clearly visible in the figure; the lower loser lines in LL and upper loe=in U are
less apparent primarily because the lower and upper loser lines (Figh#&h)ave being
laid down are not solid (i.e., their density of points is less than one). ) We now calculate
the density of lines in LL, DD, U, and F. We will start with LL, DD, and U, since they
all follow from the same argument: Consider a given Whe lower loser line, upper
loser line, and deadly diagonal lineDih., (that will eventually be added to,Mb create
W,.1) all originate from the same point (y,z)={R). Thus their initial “height” in the y-z
plane isax, and all have the same general form z=ray+ In the construction of W;
from W, these loser lines are added tQ &dd then the resulting sheet is left-shifted (as
described by the equation (6)). In this process, these former loser lines bkeome t
leading edges of the new instant-winner shegt WTheir height (in W;,) becomes
ax+m (since the operatdr shifted these lines leftward by one unit, thereby dropping
their height by |m|). Now consider the new loser lines far (i e., DLx+1), which will

be used in the construction of,\W. These new loser lines will come in at height+1).
When these are added tg.Mvand left-shifted, they become the leading edge b At
heighta(x+1)+m. Meanwhile, the old lines (which had been the leading edge.@f W
will drop in height again by |m| owing to the second left-shift (to heigh2m), and will
now form the next-to-leading edge of Comparing the heights of the lines forming
the leading edge and next-to-leading edge phWelds a difference ofa-m. This is

the vertical spacing between successive lines comprising the LL, U, andgdbsef an

instant-winner sheet. Hence, the density of lines (per unit z) is



= (verticalline density) (7)
a-m

where m = mm,, -1 for lower losers, upper losers, and deadly diagonals, respectively. It

follows from elementary geometry that the density of lines per unity is

—_— (horizontal line density) (8)
a-m

where, as before, m =,im,, -1 for lower losers, upper losers, and deadly diagonals,
respectively. We emphasize that when applied to LL and DD, results (7), (8) @ive th
average density of the lower and upbees in an instant winner sheet — they do not
represent the actual densitypmints making up those lines (since the lower and upper
loser lines are not in fact solid, but are comprised of points with derisifigs

respectively). Lastly, the density (per unit z) of the flat lines in Fsis r@adily

calculated. Recall that the probability that a flat loser line existssandomly selected

Ly isy. So, for a given W the total number of flat lines that have been generated during
the recursive construction procedure is simply From Fig. A1 we see that the vertical

extent of these lines is simply(1-m, /m_ . )Thus, we have

y

m
L

(verticaldensityof flat loserlines) (9)

We now derive six algebraic constraints on the geometric structure of instener and

loser sheets which, when solved, yield the desired parameter values gi&n in (

Constraint 1 Existence and uniqueness of losers



Consider the region of a loser shegilhere the upper and lower loser lines exist. Then
there exists a unique loser in each column,ahlthis region. This result follows

directly from the supermex algorithm described above. (The coordinatesetitiigae
losers are (Yegaly)). Accordingly, sincéy, A, denote the density of losers (per unit y)
along the upper and lower loser lines, we have

A, +A = 1

Constraint 2 Region |11 isforbidden

Notice that the upper triangular region of thg'8\(labeled region Il of Fig. A2) is
devoid of losers for all x. In particular, when the losgrafe constructed from the
instant-winner sheet YWia the supermex operator, @MW), they are forbidden from
appearing in any of the existing “holes” in region lll (i.e., locations (yl®re
Wi(y,z)=0). The mechanism preventing their appearance there is thedimiplg®nals
generated during the supermex operator. Specifically, each time a nealdoggthe
upper loser line is created, it casts down an implied diagonal (see step 6 of theegupe
algorithm) and thereby fills in some of remaining holes in region lll. &lveplied
diagonals cannot overlap with one another, and as a set must effectively filhofeall

in region 1l (which is necessary for the scaling property of this ¥ be preserved).
The condition on the implied diagonals filling the gaps is actually strongerttivaghit
appear at first glance: since the locations of the gaps are not well teornelth the
locations of the upper losers, in fact the implied diagonals cast down not only jins fill
gaps, but in fact densely fill region Ill. Now, since the slope of the upper inses Im,,

and the losers are scattered with dersjtgper unit y) along this line, we can calculate



the density (per unit vertical z) of the implied diagonals they cast off viapdesim
geometric argument: The average horizontal separation between sucloseswen the
upper loser line is I, and since the slope of the line ig, itheir average vertical is

-my/hy. (See Fig. A4). The average vertical spacing between implied diagonals is thus
1/n + my/Ay, and so their density per unit vertical is simply the reciprocal of this,
namelyi,/(1+ my). Hence, demanding that the implied diagonals fill the region, we set
their density equal to one, which yields:

Ay
1+m,

=1

(An entirely analogous argument applied to regiah&ws that the density of losers

along the flat loser line equals unity.)

Constraint 3 Region Il isforbidden

Region Il is made up of contributions from DD (adonith F in the lower part of the
region and U in the upper part), with DD playing #ey role. In particular, losers are
prevented from appearing inside region Il becabsarplied diagonals which are cast
down by losers on the lower loser line during thpesmex process mesh perfectly with
the existing DD, thereby completely filling the reqg and making it forbidden to losers.
(The underlying reason behind the perfect meshirigeoimplied diagonals and DD is
that every loser created on the lower loser linstmecessarily be filling in an existing
hole, and so there could not have been a DD lieady there. Thus, the implied
diagonal emanating from the loser will not overdagy DD. Moreover, as we move
across the columns of Mnd lay down lower losers (via the supermex operatthe

lowest remaining hole in the current column mustessarily get filled by a loser.



Hence, the implied diagonals and the DD’s must noeshpletely, entirely filling every
column of region Il.) So the constraint is that thensities (per unit vertical) of the DD’s
and the implied diagonals must sum to unity. Téestty of the DD’s is given by eqn.
(7) above with m=-1. The density of the impliedgbnals associated with the lower
losers can be found via the same geometric-typenaggt used to find the density of
implied diagonals for the upper losers in Constrai(see the construction in Fig. A4):

-M/(1+ m). Thus, the constraint for region Il is

Constraint 4 Bottomrow of region | is forbidden

Observe from Fig. A2 that the bottom-most row (zeDdegion | is completely filled,
and hence forbidden to losers. (The same is tnualfother rows of region I, but those
will be handled separately.) We now derive thest@nt that must be satisfied in order
that the bottom row of every Wfor all x-values) always remains filled. To begnote
that only LL and DD contribute to the bottom rowregion I, and that they do not
overlap. (F would potentially contribute too wéraot for the fact that the bottom row
of F happens to be completely empty.) Since thborow of region | is completely
filled, it follows that the densities of the DD’s@LL (in the bottom row) must sum to
unity. The density of the DD’s has been calculggexViously (eqn. (7) with m=-1). The
density of LL along the bottom row follows from atical observation: Whenever a flat
loser line is absent in a loser sheet (which ocwiitts probability 1y), it is because a
loser with height zero has been generated in therldoser line (recall step 8 of the

supermex algorithm). Hence, the average densayypit horizontal) of losers along the



bottom row of a given Wmust equal the average density (per unit horizpatdhe
LL’s (eqgn (8)) times the probability that a heigtgro loser is generated {L- This
yields ¢-1)m/(a-m.). Setting the sum of the densities of the DDid &L in the

bottom row equal to unity yields the desired caaiatr

(y_l)mL + 1 =1
a-m_ a+l

Constraint 5 Lower Region | isforbidden

All rows of region I (not only the bottom row asdussed above) are forbidden to losers.
Consider now a row in the lower part of region here LL, DD, and F all contribute (but
not U). The sum of these three contributions filtsthe entire row. To simplify the
analysis we select a row in which the horizontaidoaf F is entirely empty. Hence LL
and DD alone must fill this row, and since theyndd overlap, it follows that the sum of
the densities (per unit y) of DD and LL must equuaity for that row. Now, the density
of the DD'’s is already known (eqgn. (7) with m=-40, we need only compute the density
of points contributed from LL. At first glance,ntight seem that we could do so simply
by multiplying the horizontal density of the LL &s (egn. (8) with m=p) by the

expected number of points contributed to a givemlsg each LL line (k./my).

However, this naive argument misses the fact tleghave restricted consideration to a
row in region | in which the horizontal band comiingm F happens to be empty, but
have ignored the fact that the location of poild®i@ a LL line are strongly correlated
with empty/filled rows of F. Indeed, points in Idan only exist in empty bands of F.
The proper calculation goes as follows: Consideegment of a LL line. Let its vertical

extent be H, so its horizontal extent is —H/ifsince it has slopem The expected total



number of points distributed along this LL line semt is (-H/m)A.. Now, from eqn.
(9), the number of empty bands of F that will ‘Hie line segment is just
(2-y/a/(1-my/my) )H (i.e., the vertical density of empty baritses the vertical height
of the line segment). So the number of pointshensegment per empty band is
-A.a(m_ —-my)/m_/(am —-am, - ym ). Multiplying this by the density of LL lines
(eqn. (8)) yields the desired horizontal densitpoints contributed by LL along the row.
Finally, setting the sum of this density and thediy of the DD’s to unity, we find

Aca(my, -m,) + 1 =1

(@-m_)(am, —am_+)m, ) a+l

Constraint 6 Upper Region | isforbidden

Consider a row in the upper portion of region lenhU, DD, and LL all contribute (but
not F). Note that U and DD overlap with one angtiieugh not with LL. Since the row
is completely filled, we have density(LL)+density{DD) =1. Now, the density of
points contributed to a row by the LL lines is gaBund: The density of the LL lines
themselves is given by eqgn. (8), while the averagaber of points contributed to a
given row by each LL line is jusiit/m,.. So the (horizontal) density of points in a row
from LL is simplyA_/(a- m.). (Note: the intermediate expressiori (/) used in the
abovecalculation is easily obtained: Consider a segroéatLL line. Let H denote its
vertical extent H and —H/prits horizontal extent. So the total number oing®along
this segment is (-H/m... Dividing by H yields the expected number of gsiper row
contributed by the line.) Using a similar argumehné (horizontal) density of points
contributed in a row contributed from Uxg/(a- my). The density from DD is Jd¢1).

Assuming no correlations between the contributioms U and DD, the expected



density of their combined contributions is 1 - X4 a- my))(1-1/(@+1)). Adding this to

the density from LL, the requirement that the reveompletely filled becomes

A« (1_ A ]:0
a-m_ a+l a-mg

Solving these six algebraic constraint relatioreddg exact values for the key parameters

characterizing the geometric structure of the gaiteese values are given in (5) above.

Appendix C: Location and uniqueness of winning opening move

Consider a starting position of Chomg=[x,0,0]. We wish to identify losing positions
which are reachable fromy.pFig. Al provides a general geometric depictibalblosers
in a generic loser sheet,land rules M1-M6 of Appendix A specify all possilshoves.

A quick inspection reveals that only moves of yj@etM4 and M5 are viable candidates
for reaching a loser frompp We start with M4. The reachable positions fianare of

the form [x-t, t,0]. Hence we seek a loser in sheet, which lies on the lower loser

line at a height z=0. Since the lower lose ling tiee functional form z=py+a(X-t), this
requires y=u(Xo-t)/m.. Hence, we set t=y=a(xo-t)/m_. Solving for t, the desired loser

location is:

—m X, ax,

: , 0 (L1)
a-m_ - a-m,




Consider now M5. The reachable positions frgmane of the form [xt', O, t']. From fig.

Al we see that we seek a loser in she%t_t, located at height z¥xo-t") in the y=0

column (i.e., where the upper and lower loser limegt). Setting t'a(Xe-t") and solving,

the desired loser location is

{XO 0 m“)} (L2)

a+l’ " a+l

Hence we conclude that the only possible losingtijpons which are accessible frorg p
mustlie in the vicinity of points (L1) or (L2). (Note that (L1), (L2) an®t themselves
actual losing positions (since they are not integer recall from Fig. 2 of main text that
losers tend to be scattered within a narrow banwsaoding the analytical loser lines,
and are usually not directly on these lines). Wiafout here that the “vicinity” of (L1),
(L2) is determined by the width of the loser bandeunding the analytical loser lines in
loser sheets {}}. Numerical simulations indicate that this widippears to have a global
maximum bound (i.e., for all x) of less than 2Hough this bound has yet to be proven
analytically, it is in agreement with the generautistic argument that the supermex
operatorM, by its very construction, tends to place newi®ses close as possible to
existing boundaries in the instant-winner sheess, (ihe losers “hug” the analytical loser

lines).

From the above considerations, it might appearttieat could exist multiple losers in
the vicinity of either (L1) or (L2) which are alteessible from starting positio, pin

which case there would be more than one winningiogemove. However, as we show



now, this is not the case — there is but a simggeng position accessible frorg, @and

hence the winning opening move is unique. To Bise $tart by considering the set of
possible losing positions in the vicinity of (L1T.hey will all have the general form

[Xo-t, t,0], where t now represents some integer dogbke original (non-integer) value of
t used above to determine (L1). Suppose moredharof these positions is actually a
loser. Let L1* denote the largest of these losershe dictionary ordering). By rule M4,
however, it is easy to see that the other losetisameighborhood will be reachable from
L1*. Hence, this must mean that these other swgablasers cannot in fact be losers —
since a losing position is never accessible fromtlaar losing position. So we conclude
that there can be at most one losing positionemiighborhood of (L1). Likewise, by
noting that the possible losing positions in thanty of (L2) must all have the general
form [xe-t', O, t], and invoking rule M5, we use a simigagument to show that there can
be at most one loser in the vicinity of (L2). THas we see that we can have, at most,
one loser near (L1) and one loser near (L2). Ssppoth exist. Observe, however, that
the loser near (L2) would be accessible from tisedmear (L1) by rule M5 (since

t' > 1), leading to a contradiction (see (*) of Appendix Hence, there is a unique loser

which is accessible from initial positio, @nd so the winning opening move is unique.

Appendix D: Recursion operator for three-heap Nim




Let position p=[X,y,z] specify the current configtion of the game, with x denoting the
number of counters in the first heap, y the nunibbéine second, and z the third. The

positions which are reachable from position p sirgle move are given by

[x-ty,2] O<t<x M1
[X,y-t,z] O<t<y M2
[X,y,z-1] O<ts<z M3

As in Chomp, let k represent a loser sheet({,z)=1 if [X,y,z] is a loser and 0
otherwise), and Wan instant-winner sheet. From M1 it is clear thatparents of an
arbitrary position p=[x,y,z] at a higher x-valuelMiave the same (y,z) as p. Thus, using

the parents of losers in the loser sheets to amtdine instant-winner sheet yields

W, =L, +L,+ .. +L,,

The loser sheets are constructed from the instamiewr sheets via a supermex operator

M (not the same supermex operator as in Chomp)

where the action d¥1 on an instant-winner sheet,\l¢ defined algorithmically via

Supermex algorithm:

1. SetLL=0 (i.e., k(y,z)=0 forally,zll{0,1,2,...})
2. Set T,=W, (T serves as a scratch sheet)

3. Sety=0 (i.e., we will start with the first coluno Ty)



4. Let zmafy) =mex({z|Tx(y,z)=1}) (i.e., find z-value of smallest non-wier)
5. Set (Y, zmaly))=1 (i.e., mark the point as a loser)

6. Set K(Y, Zsmaly)+t)=1 and T(y+t, Zsmaly) )=1 for all =0 (see M3, M2)
7. Sety - y+1

8. Goto step 4.

Combining the expressions for,\nd L, above yields

n=x-1

W, = > MW,
n=0

Using this expression to constructMy and then comparing it to \Meads to the desired

recursion relation for Nim:
MW= (1+M) Wy

wherel denotes the identity operator.
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