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ABSTRACT 

Expectations of sums of squares for a diallel crossing treatment design with the lines divided into 

groups, and under a random effects model, becomes increasingly complicated as the number of groups 

increases. These expectations have been derived for two and three groups for an arbitrary number of 

lines in a group. For three groups, the sum of squares for group general combining ability contains 18 

variance components and that for group specific combining ability contains 17 variance components in 

the expected value. For g > 2 groups, there would be 2g + 3g(g-1)/2 + 3 and 2g + 3g(g-1)/2 + 2 

variance components in the expected value of the two respective sums of squares under a random 

effects model. The associated solutions for effects have been obtained for g groups. These results are 

applied to an artificial numerical example. Some comments are presented relative to the suitability of 

random effects and fixed effects models. The problem arose in response to questions from the last two 

authors regarding an analysis for a diallel crossing experiment of 12 lines of maize divided into three 

maturity groups with four lines in each group. 

1. INTRODUCTION 

An experiment designed as a randomized complete block experiment design with 66 crosses was 

conducted. The treatment design involved a diallel crossing design for 12 maize lines crossed in all 

possible combinations. The 12 lines belonged to three maturity groups (early= E, medium= M, and 

late= L) with four lines in each maturity group (see Table 1). The objective of the experiment was to 
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study specific and general combining ability for maturity groups and for lines within groups. 

A linear model for the situation such as the one described here could be: 

(1) 

where Pa and Eabcde are random independent block and error effects distributed with mean zero and 

variances u~ and u~, respectively, 1-l is an effect common to every observation, Gb and Gc are the group 

general combining ability (gca) effects for maturity groups b and c, sbc are the group specific 

combining ability (sea) effects of group b with group c, gbcd and gbce are the gca's of lines d and e, 

respectively, within the set of crosses from lines in groups b and c, sbcde are the sea effects of lines d 

and e within the maturity groups set be, a= 1,21 · ·,r replicates, b ~ c = 1,2,. · ·,g groups, d = 1,2,. · ·,nb, 

and e = 1,2,. · ·,nc, where nb equals the number of lines in group b and nc is the number of lines in group 

c. Let nbcde be 1 or 0, depending upon whether or not line d is crossed with line e in the set of nb lines 

from group b crossed with the nc lines of group c. Let nbc be the number of crosses made in the set be; 

then, nbc= nbnc for b f; c and nbc= nbb = nb(nb -1) I 2 for b =c. Also, nb. = nb(nb -1) I 2 + nb 

g 

Enc=nb[v-(nb+1)/2] is the total number of crosses with lines from group b, where V= Enb. In 
c=f.b b=l 

the above experiment, nb = nc = 4 and nb. = 4( 4-1) I 2 + 4( 4 + 4) = 38 crosses of early lines with 

themselves and with the lines in the medium and late maturity groups. 

It should be noted that the above model and treatment design differs from the one given by 

Hinkelmann (1974) in several respects. First, the treatment design here contains lines of group b 

crossed with the other lines in group b whereas Hinkelmann's does not. He considers an equal number 

of lines n from each population whereas in our formulation the number (nb and nc) may vary with b 

and c. In addition, he considers general combining ability effects (gca) as gbd and gee across all other 

groups, whereas we consider gca effects for the nb lines of group b crossed with the nc lines of group c, 

i.e., gbcd and gbce· The same is true for sea effects. This was done to accommodate the fact that gca 

and sea effects within the set of crosses be could vary as be varies. This could be particularly true for 

gca and sea effects within group (or population) and between group crosses. 

To obtain solutions for the effects in this overparameterized model as given m Section 2, let us 

impose the following constraints on the solutions for the various effects in ( 1 ): 
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Table 1. Treatment design for 12 lines from three maturity groups 

(X denotes a cross and blank means no cross). 

Line and maturity group 

Early= E Medium= M Late= L 

1 2 3 4 5 6 7 8 9 10 11 12 

E 1 X X X X X X X X X X X 

2 X X X X X X X X X X 

3 X X X X X X X X X 

4 X X X X X X X X 

M 5 X X X X X X X 

6 X X X X X X 

7 X X X X X 

8 X X X X 

L 9 X X X 

10 X X 

11 X 

12 
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} (2) 

An effect Gb will be obtained from all lines in group b crossed with all other lines. That is, for 

the early maturity group of lines (1, 2, 3, and 4 in Table 1) , line 1, e.g., will be crossed with all other 

lines 2,3,· · ·,12. The same will be true for lines 2, 3, and 4. 

This set of 6 + 16 + 16 = 38 crosses is used to illustrate how to estimate the general combining 

ability effect for group b = E, that is G E· The Gb and sbc values for this example are obtained from 

the g(g + 1)/2 = 6 groups E by E, E by M, E by L, M by M, M by L, and L by L. It could be argued 

that E by E, M by M, and L by L groups should be treated like selfs. If so, then the remaining three 

groups would be used to estimate Gb under the assumption that Sbb = 0. At least four groups would be 

necessary to obtain estimates for Sbc· The partitioning of the degrees of freedom for 4(4-1)/2=6 

groups would then be: 

Source of variation 

Groups 
Selfs 
Selfs vs. others 
Among others (GCA for groups) 

Degrees of freedom 

5 
2 
1 
2 

We are using the previous approach, equation (1), and the analysis as given in Table 2, i.e., Gb and Sbc 

are obtained from all groups and not as described above. 

Expected values for mean squares in the analysis of variance (ANOV A) for a diallel crossing 

experiment have been given by Federer (1948, 1951, 1955) and Griffing (1956). An extensive discourse 

on statistical analyses for diallel crossing systems has been given by Randall (1976). Also, as 

mentioned above, Hinkelmann (1974) has considered two-level diallel crossing experiment analysis. 

The expected values of mean squares for the ANOV A in Table 2 are given in Sections 3 and 4. 

A numerical example illustrating use of the solutions and expected values is given in Section 5. A 

discussion and summary of results appears in Section 6. 
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Table 2. ANOV A for the described experiment with random effects. 

Source of variation* Degrees of freedom Expected value of mean square 

Total 65r 
Correction for mean 1 
Block r-1 
Treatment 65 

Groups 5 
E byE 5 

GCA (E by E) 3 2 2 ? 2 
I:T t: + r I:T sEE+ -r I:T gEE 

SCA (E by E) 2 2 2 
I:Tc+ri:TsEE 

MbyM 5 

GCA (M by M) 3 

SCA (M by M) 2 

L by L 5 

GCA (L by L) 3 

SCA (L by L) 2 

E by M 15 

GCAE (M) 3 

GCA(E) M 3 

SCA (E by M) 9 

E by L 15 

GCAE (L) 3 

GCA(E) L 3 

SCA (E by L) 9 

M by L 15 

GCAM (L) 3 

GCA(M) L 3 

SCA (M by L) 9 

Block x treatment= error 65(r-1) 

Effects (Gb + Gc + Sbc• elim. J.L) 5 

GCA for groups 2 (See Section 4) 

Interaction = SCA for groups 3 

* GCA =general combining ability. 

SCA =specific combining ability. 

GCAE(M) = GCA effect for groupE from E by M group, etc. 



-6-

2. SOLUTIONS FOR EFFECTS IN EQUATION (1) 

The various totals associated with the normal equations from a least squares analysis are given 

below. The constraints in (2) plus t Pa = 0 are used to obtain the solutions. The usual dot notation 
a=l 

for summations is used here. 

and 

and 

and 

Y. be . . = rnbnc(l' + Gb + Ge + Sbe) forb ;l: c 

= rnb(nb-1)(p+2Gb+Sbb)j2 for b=c. 

Solutions for specific and general combining ability effects in set be are: 

sbede = y . bede-y . bed . - y . be . e + y . be . . for b ;l: c 

gbed · = Y . bed . - Y . be . . for b ;l: c 

= [Y . bbd . - r ( nb- 1) y . bb .. ] j r ( nb- 2) for b = c , 

gbe . e = Y . be . e- Y . be . . for b ;l: c 

The remaining totals associated with the normal equations are: 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Y.b ... = rnb(J.t+Gb) :Lne+rnb :Lne(Ge+Sbe)+rnb(nb-l)(p+2Gb+Sbb)j2, (16) 
c=f:. b c=f:. b 

Y. ·e·. = rne(J.t+Ge) :Lnb+rne :Lnb(Gb+Sbe)+rnc(ne-1)(J.t+2Ge+See)/2, (17) 
bf.e bf.e 

(18) 
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Solutions for Gb, j.L, and Sbc are: 

(19) 

(20) 

and 

(21) 

3. SUMS OF SQUARES AND EXPECTED VALUES FOR CROSSES AMONG LINES OF GROUP be. 

The general and specific combining ability sums of squares for crosses among lines of groups b 

and c for b -:f c are the same as for a two-factor factorial. The expected value of these sums of squares 

for both random and fixed effects, may be obtained from Federer (1955, Section VIII-5.1), Federer and 

Plaisted (1962), or Hinkelmann (1974). The last author also considers the case where some effects are 

fixed and some are random. Herein we only consider a random or a fixed effects model, which is not 

always appropriate. The various sums of squares for nb lines crossed with nc lines in all combinations, 

IS: 

Group main effect or general combining ability 

(22) 

with nb- 1 degrees of freedom and 

(23) 

with nc -1 degrees of freedom. 

Interaction or specific combining ability: 

(24) 

with (nb -1) (nc -1) degrees of freedom. 

The expected value for the sum of squares in (22) is 



-8-

The expected value for the sum of squares in (23) is: 

(nc-1 )( u~ + ru~bc+rnbu;(b)c). 

The expected value for the sum of squares in (24) is: 

( nb- 1 )( nc- 1 )( u~ + r u~bc) · 

(25) 

(26) 

(27) 

In the above, u~ is an error variance component, u~bc is a variance component associated with specific 

combining ability for group be, u;b(c) is a variance component associated with general combining 

ability for lines in group b in the presence of lines from group c, and u;(b)c is a variance component 

associated with general combining ability for lines in group c when crossed with lines of group b. The 

expected values of mean squares are given in Table 2 for the specific example when nb = 4. 

When b = c, i.e., group bb, the formulas for sums of squares and expected values for mean squares 

may be found in various places when there are nb(nb-1)/2 crosses among the nb lines (e.g., Sprague 

and Tatum, 1942; Federer, 1951, 1955; Griffing, 1956; Federer and Henderson, 1956). The sums of 

squares for general combining ability among lines in group bb is: 

(28) 

with expected value 

( nb -1 )( u~ + r u~bc + r(nb- 2) u;b(e)) (29) 

and with nb -1 degrees of freedom. Other formulas for computing the sum of squares in (28) are 

nb nb y2 4Y2 
" . y - " . bbd • - • bb •• 
d~lgbbd· ·bbd·- d~l r(nb-2) rnb(nb-2). (30) 

The sum of squares for specific combining ability for lines in group bb may be computed as 

nb nb y2 
" " . y " " · bcde L, L, sbbde · bbde = L, L, r 

d < e=2 d < e=2 

(31) 

with nb(nb- 3)/2 degrees of freedom and with expected value equal to 

(32) 
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Several expectations for the mean square for line d crossed with all other lines have appeared in 

the literature (Federer, 1948, 1951, 1955; Henderson, 1948; Rojas and Sprague, 1952; Griffing, 1956). 

Federer and Henderson (1956) discuss all these forms and demonstrate that all involve different model 

assumptions. They show that all are correct but the appropriate choice for an experiment centers on 

which model assumption is correct for the situation being considered. A short bibliography was also 

given by these authors. A more complete one may be found in Randall (1976). 

4. SUMS OF SQUARES AND EXPECTED VALUES FOR GROUPS 

As stated in the introduction, the treatment plan used for the maize experiment differs from that 

presented by Hinkelmann (1974), and as far as is known has not appeared elsewhere in the literature. 

Thus, it is necessary to develop formulae for computing sums of squares and their expected values. It 

is inappropriate in most cases to consider the group effects and their interactions as random effects. 

However, we present both cases, fixed and random, in the event that an experimental situation would 

have a random group effects situation. The sum of squares among the g(g + 1)/2 groups may be 

computed as: 

g 2 I 2 I L L y . be • • r nbc- y . . . . . r n . . ' 
b < c=l 

(33) 

where nbc= nb(nb -1)/2 for b = c, nbc= nbnc for b f. c, and n .. is the total number of crosses in the 

experiment, i.e., n .. = ( _t ni)( _t ni -1) I 2 = v( v -1 )2; for the maize experiment, this is 
•=1 t=l 

12(11)/2 = 66 crosses. The sums of squares for the group general combining ability and specific 

combining ability effects are, respectively: 

r btl nb[v-(nb + 1) I 2 }1l (34) 

and 

(35) 

For the random effects situation, the expectations of these sums of squares is quite complex. It 

was necessary to use the software package Mathematica to handle the tedious algebra. For all sums of 

squares except equations (34) and (35), jJ, and y. . . . . were the same but for these last two 

jJ, f. y ..... and this means that the sums of squares in (34) and (35) will not add to the one in (33). 
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A further complication of this particular situation is that the coefficient of a~ in (34) and (35) will not 

be degrees of freedom. 

Owing to the complexities, it was decided to present results for g = 2 and g = 3 rather than for a 

general value of g. For g = 2, 

. . 1 
Gl = -G2 = 22(Y ·11 · · -y · 22 · ·) 

and 

• 1 . . 
Sn = 22(Y ·11· · -2y ·12 •• + Y · 22 · ·) = S22 = -S12 · 

The expected value for the sum of squares in (35) is given in Table 3 and involves nme vanance 

components. This sum of squares has one degree of freedom but the coefficient of a~ for n1 = 3 and 

n2 = 4 is 35/32. If all effects except <abcde are fixed, then the expected value of the sum of squares in 

(35) is 

The expected value of the sum of squares in (34) for g = 2 is given in Table 4. There are seven 

variance components in the expectation. Because y . 12 .. is not included, the variance components 

a;12, a;1(2), and a;(l)2 do not appear in the expectation. As n1 = n2 becomes large, the coefficient of 

a~ approaches 3/4. Holding n1 constant and letting n2 become large, the coefficient of a~ becomes 

large, implying that as soon as the proportion of observations contained in group 2 approaches one, the 

amount of information on the difference G1 - G2 approaches zero. 

For g = 3 groups, it is convenient to use solutions for Gb in terms of the group means, i.e., 

C:l = 3\ (2y. 11 .. + Y. 12 .. + Y. 13 .. - Y. 22 .. - Y. 33 .. - 2y. 23 .. ] , 

(;2 = 312 (2y. 22 •. + y. 12 .. + y. 23 .. - y. 11 .. - y. 33 .. - 2y. 13 .. ] ' 

and 

(;3 = ;2 [2y . 33 .. + y . 13 .. + y. 23 .. - y . 11 .. - y . 22 .. - 2y. 12 .. ]. 

For g groups, 

Gb =-\ [(g-1)Y. bb . . + (g-2) f. Y. be • • -f. Y. cc .• -2 2:: 2:: Y. b'c • • ] · 
g c=l c=l b'<c 

=/=b =/=b =/=b 
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Table 3. Coefficients for components in r(n 11Si1 +n 1 n2Si2 +n22S~2 ). 

nl,n2 

Component Coefficient x 24 for n1 and n2 lines* 3,4 4,4 

0'2 [ 2 4 2 ] [v(v-1)] 35 49 
f n1(n 1 -1)+nl112+n2(n2-1) · 2 32 48 

2 2r [v(v2-1)] 7r 7r 
0' sll n1(11 1 -1) 16 24 

2 __k_ [ v( v- 1)] 7r 7r 
0' s12 111112 2 32 16 

2 2r [ v( v2-1)] 7r 7r 
0' s22 n2(n2-1) 32 24 

2 4r [v(v2-1)] 7r 7r 
0' gll 111 4 4 

2 4r [v(v2-1)] 7r 7r 
O'g1(2) Ill 4 4 

2 4r [v(v2-1)] 21r 7r 
0' g(1 )2 n2 16 4 

2 4r [v(v2-1)] 21r 7r 
0' g22 n2 16 4 

0'2 3rv(v-1) 63r 21r 
s 8 2 

2 rv(v-1) 21r 7r 
(Sn -2S12 + S22) 2 16 4 
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Table 4. Coefficients for components in r( n1 . Gi + n2 . G~). 

Component Coefficient x 24* 

u2 
i [ 2 2 ] nl(nl-1)+n2(112-1) ·[111· +n2.] 

2 2r 
[111 . + n2 .] rr sll 111(111-1) 

2 
rr s12 0 

2 2r 
[111. + 112 .] rr s22 112(11 2-1) 

2 
rr gll 4r [n1 . + 112 .JI 111 

2 
rr gl(2) 0 

2 
rr g(l )2 0 

2 
rr g22 4r [111 . + 112 .JI 112 

u2 s 2r [11 1 . + 11 2 .] 

u2 
G 8r [111 . + 112 .] 

(GI-G2) 
2 

r v [n1 . + 112 .] 

* n1 . = 111(111-1)/2 + 11 1112 = n1( v-(n1 + 1) I 2) 

n2 . = n2(11 2-1)/2 + 11 1n2 = 112( v-(112 + 1) I 2) 

3,4 

33 
32 

llr 
16 

0 

llr 
32 

llr 
T 

0 

0 

33r 
16 

33r 
8 

33r 
2 

33r 
T 

nl,n2 

4,4 

11 
12 

llr 
24 

0 

llr 
24 

llr 
T 

0 

0 

llr 
T 

llr 
2 

22r 

llr 
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The solutions for Sbc in terms of the group means for g = 3 are: 

and 

Su = ;2[4Y.u .. -4y·12· .-4y·13·. +Y·22· · +Y·33· · +2y·23· .], 

s12 = 3
12 [5y. 12 .. - 2y. 11 .. - 2y. 22 .. - y ·13 .. - y. 23 .. + y. 33 .. J , 

s22 = 3\ [4y. 22 .. -4y. 12 .. -4y. 23 .. + y ·11 .. + y. 33 .. + 2y. 13 .. J, 

s13 = ;2 [5y. 13 .. - 2y . 11 .. - y. 12 .. + y. 22 .. - y. 23 .. - 2y . 33 .. J , 

s23 = 3
12 [5y . 23 .. + y . 11 .. - y . 12 .. - 2y . 22 .. - y . 13 .. - 2y . 33 .. J , 

s33 = 3\ [4y. 33 .. + y. 11 .. + 2y. 12 .. - 4y. 13 .. + y. 22 .. - 4y. 23 .. J , 

Note that the above solutions are independent of the number of lines in group b as only means appear 

in the solution. 

The expected value of the sum of squares in (35) is given m Table 5. Here we note that 17 

variance components are included. For g = 4 groups, there would be 28 variance components involved, 

and for g groups there would be 2g + 3g(g-1)/2 + 2 variance components included in the expected value 

of the sum of squares in (35). 

The coefficients of variance components for the sum of squares in (34) are given m Table 6. 

There are 18 vanance components involved here. For g groups, the number would be 2g + 3g(g-

1)/2 + 3. The coefficient of IJ'~ is close to two for the two examples in the table, i.e., n1 = n2 = 3 and 

n3 = 4 and n1 = n2 = n3 = 4. For the sum of squares in Table 5, the coefficient of IJ'~ is 257/81 and 

55/18 for these two examples and is close to 3, the degrees of freedom. As was stated in Table 6, the 

coefficient of IJ'~ may be obtained by summing the six sets of coefficients for IJ';bc and dividing by r, the 

number of replicates. This fact is useful since it is much easier to check the formulas of each IJ';bc than 

for the sum of all six. In going to g ~ 4 groups this idea will become increasingly useful. 

For the fixed effects case for all effects except fabcde• all terms drop out except for SSG in Table 

6 and for the sum of squares for the three contrasts of the Sbc· The coefficients for (J'~ remain the same 

as given in Tables 5 and 6. 
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3 • 2 
Coefficients for components in r L: L nbc sbc. 

b ~ c=l 

nl,n2,n3 

Component Coefficient x 34 for n1, n2, and n3 lines* 3,3,4 4,4,4 

(J2 (sum of coefficients for u~bc divided by r) 257 55 
{ 8T 18 

2 11~ 1 [16n11 + 4111 n2 + n22 + 4n1 113 + n2n3 + n33] 51r 14r 
U sll 8T 27 

2 
111r112 [161111 + 25n1 n2 + 16n22 + n1 n3 + n2113 + 41133] 41r r 

U s12 8T 2 

2 n 11~3 (16nu + n1 112 + 41122 + 25n1 113 + n2113 + 16n33] 53r r 
U sl3 108 2 

2 11~2 [nu + 4n1 112 + 16n22 + nl n3 + 4n2n3 + n33] 
51r 14r 

u s22 8T 24 

2 
11; 113 (4n11 + n1 11 2 + 16n22 + n1 n3 + 25n2n3 + 16n33] 53r r 

U s23 108 2 

2 11~3[1111 + nl n2 + n22 + 4n1 n3 + 4n2n3 + 16n33] 
23r 14r 

U s33 54 27 

2 ~~ [1611 11 + 4n1 n2 + 1122 + 4111 n3 + 112113 + 1133] 68r 28r 
(J gll 27 9 

2 rf1 [ 1611 11 + 25111112 + 161122 + n1 113 + 11 2n3 + 4n33] 41r 2r (Jgl(2} 27 

2 
1f2 [1611 11 + 2511111 2 + l61122 + 111113 + 11 2113 + 4n33] 41r 2r (J g(1 }2 36 

2 rf1 [1611 11 + n1 112 + 41122 + 25111113 + n2113 + 161133] 53r 2r (J g1(3} 27 

2 rf3(1611 11 + 111112 + 4n22 + 25111 n3 + n2113 + l61133] 53r 2r (J g(l )3 36 

2 
ti2 [nu + 4nl n2 + 16n22 + nl n3 + 4112113 + n33] 

68r 28r 
(J g22 27 9 

2 
1f2 [4n 11 + 11 1 n2 + 16n22 + n1 11 3 + 25n2n3 + !61133] 53r 2r (J g2(3) 'If 

2 
1f3(4n 11 + n111 2 + !61122 + n1n3 + 25n2n3 + !61133] 53r 2r (J g(2 }3 36 

2 4r[ ] 23r 28r 
(J g33 113 11 11 + 11 111 2 + 11 22 + 4n1113 + 411 2113 + 16n33 9 9 

(J2 r[36 (111 112 + 111 n3 + 112113) + 54(11 11 + 11 22 + 1133 )] 
68r 100r 

s 3 -3-

* nbb=11b(nb-1)j2. 



-15-

3 
Table 6. Coefficients for components in r L nb. a& for nl, n2, and n3 lines 

b=l 

where nbb = nb(nb -1)/2. 
nl,n2,n3 

Component Coefficient x 34 - n1, n2, and 113 lines1 3,3,4 4,4,4 

(72 [111 . ( 4/1111 + 1/111112 + 1/111113 + 1/n22 + 4/112113 + 1/n33) 515 209 
f 243 108 

+ 11 2 . ( 1/n11 + 1/111 n2 + 4/111 n3 + 4/n22 + 1/n2n3 + 1/1133) 

+ n3 . (1/n11 + 4/111 n2 + 1/n1 n3 + 1/1122 + 1/n2n3 + 4/n33)] 

2 r[4n1 . + n2 . + n3 . J/ n11 
50r 38r 

l7 sll 8T 8T 

2 r[n1 . + n2 . + 4n3 . J/ n1 n2 
56r 19r 

l7 s12 243 108 

2 r[n1 . +4n2 . +n3 .]jn1113 
25r 19r 

l7 s13 162 108 

2 r[n1 . +4n2 . +n3 .]j1122 
50r 38r 

l7 s22 8T 8T 

2 r[4n1 . + n2 . + n3 . J/ n2n3 
25r 19r 

l7 s23 162 108 

2 r[n1 . +n2 . +4113 .]jn33 
28r 38r 

l7s33 8T 8T 

2 4r[4111 . + n2 . + n3 . J/ n1 
200r 228r 

(7 gll 81 81 

2 r[n1 . +n2 . +4n3 .]jn1 
56r 19r 

(7 gl(2) 8T 2f 

2 r[111 . +n2 . +4113 .]/112 
56r 19r 

(7 g(l )2 8T 2f 

2 r[11 1 . +4112 . +113 .]jn1 
50r 19r 

(7 g1(3) 8T 2f 

2 r[111 . +4112 . +n3 .]j113 
25r 19r 

(7 g(l )3 54 2f 

2 4r[l11 . + 4112 . + 113 .]j 11 2 
200r 228r 

(7 g22 81 81 

2 r[4111 . + 112 . + 113 . J/ 11 2 
50r 19r 

(7 g2(3) 8T 2f 

2 r[4111 . + n2 . + 113 . J/ 113 
25r 19r 

(7 g(2)3 54 2f 

2 4r[n1 . + n2 . + 4113 . J/ n3 
168r 228r 

(7 g33 81 81 
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3 
Table 6. Coefficients for components in r E nb. G~ for n1, n2, and n3 lines 

b=l 

where nbb = nb(nb -1)/2. 

(continued) 

nl,n2,n3 

Component 3,3,4 4,4,4 

104r 152r 
-9- -9-

52r 76r 

9r r r 
9 9 
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5. NUMERICAL EXAMPLE 

To illustrate the use of the various formulae for estimation of the various effects, an example was 

constructed from known values of effects (Table 7). Then, the formulae, if correct, must give the same 

values for the effects that were used to construct the example in Table 7. The values of the parameters 

used to construct the example are given in Table 8. For example, the first yield given in Table 7 is 

constructed as follows: 

The remaining yields in Table 4 were constructed similarly. The various effects estimated from the 

yields in Table 4 are: 

Formula 

SELll = 11-48/4-27/3+ 120/12 = 0 {10) 

§EMll = 7-21/3-27/3+72/9 = -1 {10) 

gEMl. = 21/3-72/9 = -1 {12) 

gEM . 1 = 27/3-72/9 = 1 {14) 

gELl. = 48/4-120/12 = 2 (12) 

gEL·l = 27/3-120/12 = -1 (14) 

gEEl· = [16-(3-1)(27/3)]/ (3-2) = -2 (13) 

gEE2· = 18-2(9) = 0 {13) 

gEE3· = 20-2(9) = 2 (13) 

gLLl· = [40-(4-1){84/6)]/ (4-2) = -1 (13) 

gLL2 • = [40-3{14)]/ 2 = -1 (13) 

gL£3· = [40-3(14)]/ 2 = -1 {13) 

gLL4· = [48-3(14)]/ 2 = 3 {13) 

SLL12 = 11-40/2-40/2+2(14) = -1 {11) 

SLL13 = 12-40/2-40/2 + 2{14) = 0 (11) 

§LL34 = 17-40/2-48/2+2(14) = 1 (11) 
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Table 7. Yields for ten lines in three maturity groups. 

Early Medium Late 

1 2 3 Total 1 2 3 Total 1 2 3 4 Total 

Early 

1 - 7 9 16 7 7 7 21 11 13 12 12 48 

2 - - 11 18 11 7 9 27 9 11 10 10 40 

3 - - - 20 9 7 8 24 7 9 8 8 32 

Total 27 27 21 24 72 27 33 30 30 120 

M edium 

1 - 7 4 11 11 9 9 11 40 

2 - - 10 17 13 15 13 15 56 

3 - - - 14 12 12 11 13 48 

Total 21 36 36 33 39 144 

Late 

1 - 11 12 17 40 

2 - - 13 16 40 

3 - - - 15 40 

4 - - - - 48 

Total 84 

Totals for groups 

Early Medium Late Totals 

Early 27 72 120 219 

Medium 21 144 237 

Late 84 348 

Total 468 
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Table 8. Solutions sbcde• gbcd.' gbc. e• Gb, Gc, sbc and jL for yields in Table 7. 

Early Medium Late 

sEE de sEMde sELde 

1 2 3 gEEd· 1 2 3 gEMd· 1 2 3 4 gELd· 

d=1 - 0 0 -2 -1 1 0 -1 0 0 0 0 2 

2 - - 0 0 1 -1 0 1 0 0 0 0 0 

3 - - - 2 0 0 0 0 0 0 0 0 -2 

gEM·e 1 -1 0 gEL·e -1 1 0 0 -

s gMMd· s 
gMLd· MMde MLde 

d=1 - 0 0 -3 1 -1 0 0 -2 

2 - - 0 3 -1 1 0 0 2 

3 - - - 0 0 0 0 0 0 

gML·e 0 0 -1 1 -

s 
LLde gLLd· 

d=1 - -1 0 1 -1 

2 - - 1 0 -1 

3 - - - -1 -1 

4 - - - - 3 

jL = 10 SEE= 1 

GE=-1 SEM= 0 

GM=-1 SEL = -1 

GL= 2 SMM = -1 

SML= 1 

SLL= 0 
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jL = [27 /3 + 72/9 + 120/12 + 21/3 + 144/12 + 84/6]1 6 = 10 

GE = (9+8+ 10)/3-10 = -1 

GL = (10+12+14)/3-10 = 2 

SEE= 9+10-(9+8+10)/3-(8+7+12)/3 = 1 

SEL = 10 + 10-(9 + 8 + 10)/3-(10 + 12 + 14)/3 = -1 

The various sums of squares given in Table 9 may be computed as follows. 

(20) 

(19) 

(19) 

(21) 

(21) 

Again note that 

jL :f= y ..... , which may indicate whether jL or y. . . . . should be used to compute the sums of 

squares. Since this is a randomized complete block (RCB) designed experiment, and since treatments 

and blocks are orthogonal in an RCB design, arithmetic means are appropriate. The way the model is 

formulated in (1), f-l is not orthogonal to Gb, Gc, and Sbc' This fact needs to be taken into account 

when computing sums of squares for the effects, but not for the blocks, treatments, and 

block x treatment sums of squares. The sum of squares for treatment is 

nb n 
c 2 I 2 I L L L L y ·be de r- Y · · · · · r n · · 

b ~ c d=l e=l 

= (72 + 92 + 72 + 72 + ... + 132 + 162 + 152) 1 1-4682/45 

= 5220-4,867.2 = 352.8 . 

The sum of squares for the g(g + 1)/2 = 6 groups is 

g 2 I 2 I L L Y · be . . r nbc- Y . . . . . r n .. 
b < c=l 

- 272 722 1202 21 2 1442 842 4682 
- 3+9+12+3+ 12 +6-'""45 

= 202.8 . 

The sums of squares within groups are obtained in the usual manner as are those for nb x nc two-way 

tables for b :f= c. Those sums of squares for the groups where b = c are obtained in the usual manner for 

diallel cross experiments with nb(nb -1)/2 = nbb crosses. Since specific combining ability estimates for 

nb = 3 with nbb = 3 crosses are not possible, there are only general combining ability effects estimable 

for the E and M groups of this example. For the L group, the sum of squares for general combining 

ability effects is from (28), 
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Table 9. ANOV A for observations in Table 4. 

Source of variation d.f. Sum of squares Mean square Expected value 

Total 45 5,220 - -

Correction for mean 1 4,867.2 - -
Block 0 - -

Treatment 44 352.8 - -

Among groups 5 202.8 40.56 -
ExE 2 8 - -

GCA 2 8 4.00 ui + r u;EE + (3-2)r u;E(E 

SCA 0 0 0 2 2 
<Tc+rusEE 

MxM 2 18 - -
GCA 2 18 9.00 u~ + ru;MM + (3-2)ru;M( M) 
SCA 0 0 0 2 2 

uf +rusMM 

LxL 5 28 - -

GCA 3 24 8.00 u~ + r u;LL + ( 4-2)r u!L(L) 

SCA 2 4 2.00 2 2 
uf+rusLL 

ExM 8 16 - -

GCAE(M) 2 6 3.00 2 2 3 2 
<Tf+rusEM+ rugE(M) 

GCA(E)M 2 6 3.00 2 2 3 2 
0"< + rusEM + r u g(E)M 

SCAEM 4 4 1.00 2 2 
O"<+rusEM 

ExL 11 38 - -

GCAE(L) 2 32 16.00 2 2 4 2 
O"<+rusEL+ rugE(L) 

GCA(E)L 3 6 2.00 u~ + ru;EL + 3r u!(E)L 

SCAEL 6 0 0.00 2 2 
u<+rusEL 

MxL 11 42 - -
GCAM(L) 2 32 16.00 2 2 4 2 

uc+rusML+ rugM(L) 

GCA(M)L 3 6 2.00 u~ + r u;M L + 3r u!(M)L 

SCAML 6 4 0.67 2 2 
O"f + rusML 

Block x treatment 0 0 0 0"2 
( 
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btl 4(~Y. LLd.- y. LL . . f I 1(42)(4-2) 

= {[2(40)-84J2 +[2(40)-84J 2 +[2(4o)-84t +[2(48)-84J 2 } 18 
= { 16 + 16 + 16 + 144} I 8 = 24 with 3 degrees of freedom . 

The sum of squares for specific combining ability effects from (31) is 

4 

'L: 'L: s LLde y · LLde 
d < e=2 

= [(-1)(11) + 0(12) + 1(17) + 1(13) + 0(16) + (-1)(15)] 

= 4 with 2 degrees of freedom. 

These two sums of squares add to the total among the six crosses, i.e., 

The remaining sums of squares are given in Table 9. 

Using equations (34) and (35), the sums of squares for group general and group specific combining 

abilities, we obtain 

r t nb.Gg = 24(-1)2 +24(-1)2 +30(2)2 = 168 
b=l 

and 

r "t nbcslc = 3(1)2 +9(0) 2 +12(-1)2 +3(-1)2 +12(1) 2 +6(0)2 = 30. 
b=l 

The among-groups sum of squares is 202.8 and the sum of the above two sums of squares is 

168 + 30 = 198. The difference between these two sums of squares is 202.8-198 = 4.8. The arithmetic 

mean y ..... = 10.4 and jJ, = 10. n .. ( y .... - jJ, Y = 45(10.4 -10)2 = 7.2. Hence, the difference in the 

two sums of squares is not a simple comparison of y. . . . . with jJ, but is some weighted average 

involving the Gb and Sbc effects as well. 

For this example, the various estimated variance components are: 

·2 0 
(Jf. = ' 

a-;EE = (0-0)/1 = 0, 

a-;MM = (0-0)/1 = 0, 

a-;LL = (2-0)/(r = 1) = 2, 

a-;EM = (1-0)/1 = 1 , 



and 

u~EL = (0-0)/1 = 0 , 

u~M L = (0.67- 0)/1 = 2/3 , 

u!EE = (4-0)/(3-2) = 4 , 

u;MM = (9-0)/(3-2) = 9, 

u!LL = (8-2)/(4-2) = 3, 

u!E(M) = (3-1)/3 = 2/3 , 

u!(E)M = (3-1)/3 = 2/3 , 

u;E(L) = (16-0)/4 = 4 , 

u;(E)L = (2-0)/3 = 2/3 , 

u;M(L) = (16-2/3)/4 = 23/6, 

u;(M)L = (2-2/3)/3 = 4/9, 
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o-~ = ( 30-28517 (O)- ~~ (O)- ~~ (1) _15~8 (O)- ~~ (O) _15ts( j )- ~~ (2)- ~~ ( 4)- ~i( j )-~Hj) 
-~~(4)-3~(~)-~~(9)-~~(~)-~~(~)- 293 (3))/ (68/3) = -1.36 (from Table 5), 

·2 - ( 515( ) 50( 56 ( ) 25 ( ) 50( ) 25 (2) 28( ) 200 56(2) 56(2) 
qG- 168 -243 O -81 0)-243 1 -162 O -81 O -162 3 -81 4 -81(4)-81 3 -81 3 

_50(4)-25(1)_200(9)-50(23)_25(1)_168(3))/52- 2 34 (from Table 6) 81 54 3 81 81 6 54 9 81 - . ' 

For the fixed effects case for all effects except fabcde and Pa effects, the various variances of 

difference of Gb effects for n1 = n2 = 3 and n3 = 4 are: 
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When n1 = n2 = n3 = 4, the variance of a difference between any two Gb values is 

Using the estimated value for (]'~ and using the appropriate t-value, range value, or other selected 

value, a confidence interval on the difference of two Gb values may be obtained. Linear combinations 

of the sbc values may be handled in a similar manner. 

6. DISCUSSION 

Using groups of lines in a diallel crossing system added complexity to the statistical analysis. A 

statistical peculiarity encountered was that the sums of squares for general and for specific combining 

ability did not add to that among-groups sum of squares. Also, the algebra became tedious and was 

facilitated using the software package Mathematica. 

The experimenter wished to have variance components for general combining and for specific 

combining abilities for the groups of lines. This would imply that maturity group effect was a random 

effect. Although a rationalization could be postulated for maturity, it appears more appropriate to 

consider the maturity groups as fixed effects. For other situations, a random group effects may be 

quite plausible. The lines within a group could quite conceivably be considered to be random effects in 

that a random sample of lines was obtained for each maturity group. 

Hinkelmann (1974) obtained general and specific combining ability effects over all the other 

groups. Although this appears to be a logical assumption in some cases, it would not be reasonable in 

general. For maturity groups, there appears to be little validity for believing that the gca and sea 

effects are the same in the early by medium and early by late maturity groups. Usually gca and sea 

effects within a group will not be the same as across groups. Based on this, it was decided to estimate 

the (J'~b(c)' (J'~(b)c' and (]';be variance components for each be group. If the effects are as Hinkelmann 

(1974) postulated, it will be simple to combine them across groups omitting crosses within a group. 

Including the crosses within a group would add some complexity. 
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