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In this thesis, we develop decomposition-based approximate dynamic program-

ming methods for problems in capacity allocation and network revenue manage-

ment. Noting that the dynamic programming formulation of these problems suffers

from the “curse of dimensionality”, we demonstrate that a set of single-dimensional

dynamic problems can be employed to provide approximate solutions to the original

dynamic program. We show that the proposed approximations have two impor-

tant characteristics: First, they provide relatively tight performance bounds on the

optimal value of the stochastic optimization problem under consideration. Second,

they give rise to policies that on average perform significantly better than a variety

of benchmark methods found in the literature.

We begin by focusing on network revenue management problems. We assume a

profit maximizing airline operating a network of flight legs and processing itinerary

requests arriving randomly over time. We consider several variants of the basic

model and for each show that the dynamic programming formulation can be de-

composed by flight legs into a set of single-leg revenue management problems.

Furthermore, we demonstrate that the appropriate decomposition method gives

rise to an upper bound on the optimal total expected revenue and that this upper

bound is tighter than the upper bound provided by a deterministic linear program

known from the literature. Finally, computational experiments show that the pol-



icy based on the suggested value function approximation performs significantly

better than a set of standard benchmark methods.

In addition to network revenue management applications, we also consider a

capacity allocation problem with a fixed amount of daily processing capacity. Here,

the decision maker tries to minimize the cost of scheduling a set of jobs arriving

randomly over time to be processed within a given planning horizon. The schedul-

ing (holding) cost of a given job depends on its priority level and the length of its

scheduled waiting period. In this setting, the decomposition approach that we sug-

gest decomposes the problem by booking days. In particular, we replace the orig-

inal dynamic program with a sequence of single-dimensional dynamic programs,

each of which is concerned with capacity limitations on one particular booking day

only. We show that our approach provides tight lower bounds on the minimum

total expected holding cost. Furthermore, it gives rise to a scheduling policy that

on average performs better than a variety of benchmark methods known from the

literature.
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Chapter 1

Introduction

There are countless examples of decision making under uncertainty in real-world

applications. Airlines need to decide whether to sell a given seat on the flight at a

discount or, at the risk of not selling this seat at all, to keep this capacity available

until the departure at a regular price. Hospitals need to decide whether to schedule

a routine MRI test for a low-priority patient at the risk of not being able to serve

a randomly arriving high-priority patient later. A baseball manager has to decide

whether to keep an effective reliever in a close game for another inning at the risk

of not having this pitcher available for the game next day. A common feature

of these problems is that the decision is made while the consequences of each

potential decision are not completely known. Given that each decision is made at

a given time, subject to certain constraints while optimizing a known performance

measure, we can naturally model these problems as dynamic programs. Assuming

xt is the state of the system at the beginning of time period t and Vt(xt) denotes

the maximum revenue that the system can generate starting from state xt at time

period t to the end of the planning horizon, we can establish the optimal action at

time period t by solving the Bellman equation

Vt(xt) = max
at∈At(xt)

E {rt(xt, at, ωt) + Vt+1(Xt+1(xt, at, ωt))} . (1.1)

Here, At(xt) denotes the set of feasible actions at time period t assuming xt the

state of the system, rt(·, ·, ·) the revenue function at time period t, ωt the random

element in the system and Xt+1(·, ·, ·) the state in time period t + 1.

Aside from the difficulty of taking expectations over potentially unknown distri-

butions, the main challenge with solving equation (1.1) is the (high) dimensionality
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of the state space. In fact, for most practical applications, the size of the state

vector renders solving the Bellman equation above computationally intractable.

This phenomenon is referred to in the literature as the “curse of dimensionality”.

In dynamic programming literature, this difficulty is addressed by proposing

various types of approximation methods. Roughly speaking, we can identify three

main approximation strategies. We note that these are not necessarily mutually

exclusive. The first group of methods tries to simplify the optimization problem

under consideration using techniques such as aggregating the state or decision vari-

ables or eliminating randomness by replacing random variables by their expected

values. An example of this approach in network revenue management setting is

the static deterministic linear program. The obvious problem with this approach

is that it eliminates randomness and hence ignores any local dynamics driven by

the random element in each time period. The second group of methods approx-

imates optimal policies by optimizing over a chosen parametric family of control

policies. For instance, in network revenue management, one can concentrate on

nested protection levels policies only. The problem of this approach is that the

chosen parametric family in general does not include the optimal policy. Finally,

the third strategy is to decompose the original (multi-dimensional) dynamic pro-

gram into a collection of one-dimensional dynamic programs. This thesis builds

on this last stream of literature.

A unifying feature of our decomposition methods is the idea to approximate

the original (multi-dimensional) dynamic programming formulation by decompos-

ing it into a set of one-dimensional dynamic programs. We apply our approach

to problems in capacity allocation and network revenue management. In the net-

work revenue management setting, the decomposition approach can be visualized

2



as an effort to allocate revenue generated by selling a given itinerary among all

flight legs associated with this itinerary. Once all itinerary revenues are allocated

among its respective flight legs, we can solve a sequence of revenue management

problems, each taking place over a single flight leg. As a result, we approximate

the original value functions by solving a number of one-dimensional dynamic pro-

grams. Alternatively, the decomposition method approximations can be visualized

as an application of Lagrangian relaxation to the original dynamic programming

formulation. Once the linking constraints in the original dynamic programming

formulation are identified, these constraints are relaxed by associating them with

corresponding Lagrange multipliers.

The organization of this thesis is as follows. In Chapter 2, we develop a rev-

enue management model to jointly make the capacity allocation and overbooking

decisions over an airline network. Our approach begins with the dynamic program-

ming formulation of the capacity allocation and overbooking problem and uses an

approximation strategy to decompose the dynamic programming formulation by

the flight legs. This decomposition idea opens up the possibility of obtaining ap-

proximate solutions by concentrating on one flight leg at a time, but the capacity

allocation and overbooking problem that takes place over a single flight leg still

turns out to be intractable. We use a state aggregation approach to obtain high

quality solutions to the single leg problem. Overall, our model constructs separable

approximations to the value functions, which can be used to make the capacity

allocation and overbooking decisions for the whole airline network. Computational

experiments indicate that our model performs significantly better than a variety

of benchmark strategies from the literature.

In Chapter 3, we develop two methods for making pricing decisions in network
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revenue management problems. We consider a setting where the probability of

observing a request for an itinerary depends on the prices and the objective is

to dynamically adjust the prices so as to maximize the total expected revenue.

The idea behind both of our methods is to decompose the dynamic programming

formulation of the pricing problem by the flight legs and to obtain value func-

tion approximations by focusing on one flight leg at a time. We show that our

methods provide upper bounds on the optimal total expected revenue and these

upper bounds are tighter than the one provided by a deterministic linear program

commonly used in practice. Our computational experiments yield two important

results. First, our methods provide substantial improvements over the determinis-

tic linear program. The average gap between the total expected revenues obtained

by our methods and the deterministic linear program is 7.11%. On average, our

methods tighten the upper bounds obtained by the deterministic linear program

by 3.66%. Second, the two methods that we develop have different strengths. In

particular, while one method is able to obtain tighter upper bounds, the other one

is able to obtain pricing policies that yield higher total expected revenues.

In Chapter 4, we consider a dynamic capacity allocation problem with a fixed

amount of daily processing capacity. Jobs of different priorities arrive randomly

over time and we need to decide which jobs should be scheduled on which days.

The jobs that are waiting to be processed incur a holding cost depending on their

priority levels. The goal is to minimize the total expected cost over a finite plan-

ning horizon. It is possible to formulate this problem as a dynamic program,

but this formulation quickly gets intractable for practical problem instances. In

this chapter, we propose a dynamic programming decomposition method that ad-

dresses this difficulty. The idea behind our model is to decompose the problem by

booking days and solve a sequence of single-day capacity allocation problems. We
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show that this approach both can be used to make capacity allocation decisions

and it provides a lower bound on the optimal total expected costs. Computational

experiments indicate that our method performs significantly better than a variety

of benchmark strategies.
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Chapter 2

A Dynamic Programming

Decomposition Method for Making

Overbooking Decisions over an Airline

Network

2.1 Introduction

Capacity allocation and overbooking are two main ingredients of network revenue

management. In particular, capacity allocation deals with the question of which

itineraries to keep open for purchase and which itineraries to close as the remaining

capacities on the flight legs are depleted over time with the customer purchases.

Overbooking deals with the question of to what extent the sales should exceed

the physically available capacity on the flight legs, given that not everyone with a

reservation ends up showing up at the departure time. The capacity allocation and

overbooking decisions are inherently connected. What fare classes to make avail-

able for purchase depends on how many seats in excess of the physically available

capacity the airline is willing to sell. On the other hand, how much to overbook

depends on what itineraries the airline keeps open and the probability that a cus-

tomer who purchases a reservation for one of the open itineraries shows up at the

departure time.

In this chapter, we propose a revenue management model that makes the joint

capacity allocation and overbooking decisions over an airline network. Our ap-

proach formulates the problem as a dynamic program and uses an approximation
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strategy to decompose the dynamic programming formulation by the flight legs.

This decomposition idea opens up the possibility of obtaining approximate solu-

tions by concentrating on one flight leg at a time, though the capacity allocation

and overbooking problem that takes place over a single flight leg still happens to be

intractable. In particular, the state variable in the dynamic programming formu-

lation of the single leg problem involves a large number of dimensions in practical

applications. We overcome this difficulty by using state aggregation to obtain high

quality solutions to the single leg capacity allocation and overbooking problem.

Ultimately, our model provides separable approximations to the value functions,

which can be used to construct a capacity allocation and overbooking policy for

the whole airline network.

Our work in this chapter draws on two streams of literature. The first stream of

literature is the work on dynamic programming decomposition methods in network

revenue management. Dynamic programming decomposition methods date back

to Belobaba (1987) and they are approximate methods aimed at decomposing the

network revenue management problem by the flight legs. The basic idea is to asso-

ciate a displacement adjusted fare with each itinerary over each flight leg, which is

different from the actual fare that the airline charges. The displacement adjusted

fares immediately allow us to solve a sequence of single leg revenue management

problems. In the single leg revenue management problem that takes place over a

particular flight leg, we only concentrate on the remaining capacity on this flight

leg and assume that the fares associated with the itineraries are equal to the dis-

placement adjusted fares over this flight leg. Once we have solved the single leg

problem over each flight leg, we add up the value functions obtained for different

flight legs to obtain separable approximations to the value functions. In this chap-

ter, we use a similar idea to decompose the capacity allocation and overbooking
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problem. The important distinction of our approach is that we explicitly deal with

overbooking, whereas the earlier decomposition methods work exclusively under

the assumption that overbooking is not possible and all reservations show up at

the departure time. Our extension to overbooking is nontrivial and has important

practical implications as overbooking plays a major role in airline operations.

The second stream of literature that we draw on is the work on solving the

capacity allocation and overbooking problem over a single flight leg. This stream

of literature becomes especially useful when we try to solve the single leg capacity

allocation and overbooking problems after decomposing the original problem. As

mentioned above, the single leg capacity allocation and overbooking problem is

intractable, as its dynamic programming formulation involves a high dimensional

state variable. To be able to solve this problem, we build on the approach proposed

by Subramanian, Stidham and Lautenbacher (1999). In particular, we assume that

the proportions of the reservations that we have for different itineraries are fixed

and known. This allows us to keep track of only the total number of reserva-

tions, rather than the number of reservations for each itinerary, in our dynamic

programming formulation. In this case, the state variable in the dynamic program-

ming formulation of the single leg problem collapses to a scalar and the dynamic

programming formulation becomes tractable.

In this chapter, we make the following research contributions. 1) We develop

a model to make the capacity allocation and overbooking decisions over an airline

network. The idea behind our model is to decompose the problem by the flight

legs and to solve a sequence of single leg problems. 2) We show that our approach

provides an upper bound on the optimal total expected profit as long as we can

solve the single leg problems accurately. 3) However, noting that the capacity
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allocation and overbooking problem over a single flight leg is still intractable,

we show how to obtain approximate solutions to the single leg problems in a

tractable manner. 4) Computational experiments indicate that our model performs

significantly better than many of the existing models in the literature.

The rest of the chapter is organized as follows. In Section 2.2, we review

the other literature that is related to our work. Then, in Section 2.3, we give

a dynamic programming formulation for the capacity allocation and overbooking

problem over an airline network. Section 2.4 gives a simple deterministic linear

program that can be used to develop control policies. In Section 2.5, we describe

our model by using the deterministic linear program as a starting point. Next,

Section 2.6 presents our computational experiments. Finally, in Section 2.7 we

provide concluding remarks.

2.2 Review of Related Literature

Despite the fact that there is substantial literature on capacity allocation over

an airline network, the interaction between capacity allocation and overbooking

is not thoroughly studied. Early models focus on the single leg version of the

problem. Beckmann (1958), Thompson (1961) and Coughlan (1999) develop single

leg capacity allocation and overbooking models under the assumption that the

demands from different fare classes are static random variables. These models

ignore the temporal dynamics of the demand process and their goal is to decide how

many seats to allocate to different fare classes. Later models by Chatwin (1992),

Chatwin (1999) and Subramanian et al. (1999) also consider the single leg problem,

but they try to capture the dynamics of the demand process more accurately.
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Subramanian et al. (1999) note the intractability of the dynamic programming

formulation of the single leg problem and propose the approximation strategy that

we build on in this chapter. It is important to contrast their observation with

the single leg capacity allocation problem without overbooking. If overbooking is

not allowed, then the dynamic programming formulation of the capacity allocation

problem involves a scalar state variable and can easily be solved. Therefore, the

possibility of overbooking, by itself, brings nontrivial challenges even for the single

leg case. Karaesmen and van Ryzin (2004b) describe an overbooking model for

multiple flight legs that operate between the same origin destination pair and can

serve as substitutes of each other.

There are a few papers that consider the overbooking decisions over an airline

network. A popular method to make the capacity allocation decisions in network

revenue management problems is to solve a deterministic linear program. This lin-

ear program is built under the assumption that the itinerary requests are known in

advance and they take on their expected values. There is a constraint associated

with each flight leg in the linear program and the right sides of these constraints

are the leg capacities. Therefore, the optimal values of the dual variables asso-

ciated with these constraints are used to estimate the opportunity cost of a seat

on different flights legs. In this case, one can construct a capacity control policy,

where the fare from an itinerary request is compared with the total opportunity

cost of the capacities that would be consumed by this itinerary request. If the fare

exceeds the total opportunity cost, then the itinerary request is accepted. There

are many variants of the linear programming idea and Section 3.3 in Talluri and

van Ryzin (2004) describes these variants. We do not go into the details of these

variants, as most of them deal only with capacity allocation decisions. However,

Bertsimas and Popescu (2003) show how to build a deterministic linear program
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to deal with overbooking and no shows. We use a variant of their determinis-

tic linear program as a benchmark strategy in our computational experiments.

Karaesmen and van Ryzin (2004a) develop a capacity allocation and overbooking

model, where they compute booking limits by using the optimal objective value of

the deterministic linear program as an estimate of the total expected revenue from

the itinerary requests. Gallego and van Ryzin (1997) provide theoretical support

for the deterministic linear program by showing that the control policy obtained

from a variant of the deterministic linear program is asymptotically optimal as the

leg capacities and the expected number of itinerary requests increase linearly at

the same rate. Kleywegt (2001a) constructs a pricing and overbooking model in

continuous time. The demand process that he uses is deterministic and he utilizes

Lagrangian duality to solve the model.

The literature on decomposition of network revenue management problems is

also related to our work. Williamson (1992) is one of the first to decompose the

network revenue management problem by the flight legs. Her goal is to apply

the expected marginal seat revenue heuristic of Belobaba (1987) on each flight leg

individually to construct value function approximations. Section 3.4.4 in Talluri

and van Ryzin (2004) describes a more refined variant of her approach in the sense

that this variant does not assume that the demand from different fare classes arrive

over nonoverlapping time intervals. Liu and van Ryzin (2008) and Bront, Mendez-

Diaz and Vulcano (2008) show how to extend decomposition methods to address

customer choice behavior among the different itineraries that are available for pur-

chase. Topaloglu (2009) shows that decomposition methods can be visualized as

an application of Lagrangian relaxation to the dynamic programming formulation

of the network revenue management problem. Kunnumkal and Topaloglu (2009a)

show that it is possible to extend the observations of Topaloglu (2009) to address
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the customer choice behavior. There is some recent work on decomposing the ca-

pacity allocation and overbooking problem over an airline network. Erdelyi and

Topaloglu (2009c) use separable functions to approximate the value functions in

the dynamic programming formulation of the capacity allocation and overbooking

problem. In this respect, their paper is connected to our work. However, their

approximations are separable by the itineraries and the number of scalar functions

they keep is equal to the number of possible itineraries. In contrast, our approxi-

mations are separable by the flight legs and the number of scalar functions we keep

is equal to the number of flight legs. The number of flight legs is generally smaller

than the number of itineraries. Furthermore, they use simulation to construct their

scalar functions, whereas we solve small dynamic programs to construct our value

function approximations. We use their model as a benchmark strategy.

There are recent approaches for the capacity allocation problem over an air-

line network. Adelman (2007) uses linear value function approximations for the

capacity allocation problem and he chooses the slopes and intercepts of the value

function approximations by solving a linear program that represents the dynamic

programming formulation of the problem. Zhang and Adelman (2009) extend this

approach to deal with customer choice behavior. They also show that decompo-

sition methods can provide upper bounds on the optimal total expected revenue.

Meissner and Strauss (2008) refine the approach proposed by Adelman (2007) by

using piece-wise linear value function approximations. An important advantage

of the recent approaches is that they provide upper bounds on the optimal total

expected revenue. However, the recent approaches do not address the interaction

between capacity allocation and overbooking and the goal of our paper is to fill

this gap.
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2.3 Problem Formulation

We consider a set of flight legs over an airline network that can be used to serve the

itinerary requests arriving randomly over time. At each time period, an itinerary

request arrives and we need to decide whether to accept or reject this itinerary

request. An accepted itinerary request becomes a reservation, whereas a rejected

itinerary request simply leaves the system. At the departure time of the flight

legs, a certain portion of reservations shows up and we need to decide which of

these reservations should be allowed boarding. The objective is to maximize total

expected profit defined as the difference between the expected revenue obtained

by accepting itinerary requests and the expected penalty cost incurred by denying

boarding to reservations.

The set of flight legs is L and the set of itineraries is J . We note that a flight

leg is referred to as a resource and an itinerary is referred to as a product in some

settings. The problem takes place over the finite planning horizon {τ, . . . , 0}. The

itinerary requests arrive over time periods T = {τ, . . . , 1} and the flights depart

at time period 0. We assume that a time period corresponds to a small enough

time interval that there is at most one itinerary request at each time period. The

probability that there is a request for itinerary j at time period t is pjt. Accepting

a request for itinerary j generates a revenue of fj and this reservation shows up

at the departure time with probability qj. If a reservation for itinerary j shows

up at the departure time and it is denied boarding, then we incur deny penalty

cost of θj. If we allow boarding to a reservation for itinerary j, then we consume

aij units of capacity on flight leg i. The capacity on flight leg i is ci. We assume

that the arrivals of the itinerary requests at different time periods and the show up

decisions of different reservations at the departure time are independent. We also
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assume that the reservations are not canceled over time periods {τ, . . . , 1} and we

do not give refunds to the no shows, but these assumptions are for brevity and one

can make extensions to address cancellations and refunds.

We let xjt denote the total number of reservations for itinerary j at the be-

ginning of time period t so that xt = {xjt : j ∈ J } captures the state of the

reservations. Assuming that the number of reservations for itinerary j at the be-

ginning of time period 0 is xj0, we use Sj(xj0) to denote the number of reservations

for itinerary j that show up at the departure time. Given the assumption that the

show up decisions of different reservations are independent, Sj(xj0) has a binomial

distribution with parameters (xj0, qj). If we use S(x0) = {Sj(xj0) : j ∈ J } to

denote the state of the reservations that show up at the departure time, then we

can compute the penalty cost associated with the denied reservations by solving

the problem

Γ(S(x0)) = min
∑
j∈J

θj wj (2.1)

subject to
∑
j∈J

aij [Sj(xj0)− wj] ≤ ci i ∈ L (2.2)

wj ≤ Sj(xj0) j ∈ J (2.3)

wj ∈ Z+ j ∈ J , (2.4)

where wj is the number of reservations for itinerary j that we deny boarding. The

objective function of the problem above corresponds to the penalty costs associated

with the denied reservations. Constraints (2.2) ensure that the reservations that we

allow boarding do not exceed the leg capacities, whereas constraints (2.3) ensure

that the numbers of denied reservations do not exceed the numbers of reserva-

tions that show up at the departure time. It is important to observe that problem

(2.1)-(2.4) assumes that we can jointly decide which reservations should be denied
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boarding throughout the network and this can be an optimistic assumption. Let-

ting ej be the |J | dimensional unit vector with a one in the element corresponding

to j, we can find the optimal policy by computing the value functions through the

optimality equation

Vt(xt) =
∑
j∈J

pjt max{fj + Vt−1(xt + ej), Vt−1(xt)}+
[
1−

∑
j∈J

pjt

]
Vt−1(xt) (2.5)

with the boundary condition that V0(x0) = −E{Γ(S(x0))}. In this case, if the

state of the reservations at the beginning of time period t is given by xt, then it is

optimal to accept a request for itinerary j at time period t whenever

fj ≥ Vt−1(xt)− Vt−1(xt + ej). (2.6)

Unfortunately, even for modest sized applications, the state vector xt involves

hundreds of dimensions rendering exact solution to the optimality equation in

(2.5) computationally intractable. In the next section, we begin by describing an

approximate solution method that involves solving a deterministic linear program.

Following this, we build on the deterministic linear program to develop a more

sophisticated approximate solution method.

2.4 Deterministic Linear Program

A standard solution method for the network revenue management problem de-

scribed in the previous section involves solving a deterministic linear program.

This linear program is formulated under the assumption that the arrivals of the

itinerary requests and the show up decisions of the reservations take on their ex-

pected values. In particular, if we let zj be the number of requests for itinerary j
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that we plan to accept over the planning horizon and wj be the number of reserva-

tions that we plan to deny boarding, then this linear program can be formulated

as

max
∑
j∈J

fj zj −
∑
j∈J

θj wj (2.7)

subject to
∑
j∈J

aij [qj zj − wj] ≤ ci i ∈ L (2.8)

zj ≤
∑
t∈T

pjt j ∈ J (2.9)

wj − qj zj ≤ 0 j ∈ J (2.10)

zj, wj ≥ 0 j ∈ J . (2.11)

In the problem above, we assume that if we accept zj requests for itinerary j, then

qj zj reservations for itinerary j show up at the departure time. Constraints (2.8)

ensure that the numbers of reservations that we allow boarding do not exceed the

leg capacities. Constraints (2.9) ensure that the numbers of itinerary requests that

we accept do not exceed the expected numbers of itinerary requests. Constraints

(2.10) ensure that the numbers of denied reservations do not exceed the expected

numbers of reservations that show up at the departure time. The deterministic

linear programming formulation for the network revenue management problem is

widely known under the assumption that overbooking is not possible and all reser-

vations show up at the departure time; see Talluri and van Ryzin (1998). Problem

(2.7)-(2.11) extends this formulation to handle overbooking and no shows. Al-

though this extension is quite intuitive, to our knowledge, Bertsimas and Popescu

(2003) is the only reference to this extension.

One use of problem (2.7)-(2.11) is that its dual solution can be used to construct

a policy to accept or reject the itinerary requests. Letting {λ∗i : i ∈ L} be optimal

values of the dual variables associated with constraints (2.8) in problem (2.7)-
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(2.11), we use λ∗i to estimate the opportunity cost of a unit of capacity on flight

leg i. In this case, if the revenue from an itinerary request exceeds the total

expected opportunity cost of the capacities consumed by this itinerary request or

if the revenue from an itinerary request exceeds the expected penalty cost, then

we accept the itinerary request. In other words, if we have

fj ≥ min
{

qj

∑
i∈L

aij λ∗i , qj θj

}
, (2.12)

then we accept a request for itinerary j. The two arguments of the min{·, ·}
operator above capture two effects. If the total expected opportunity cost of the

capacities consumed by a request for itinerary j is small enough that we have

fj ≥ qj

∑
i∈L aij λ∗i , then we accept a request for itinerary j. Furthermore, if we

have fj ≥ qj θj, then we can generate revenue, in expectation, simply by accepting

a request for itinerary j and denying boarding to this reservation at the departure

time. We refer to the decision rule in (2.12) as the DLP policy, standing for

deterministic linear program. This decision rule is also used by Bertsimas and

Popescu (2003).

One other use of problem (2.7)-(2.11) is that its optimal objective value provides

an upper bound on the optimal total expected profit. In other words, letting zLP

be the optimal objective value of problem (2.7)-(2.11) and 0̄ be the |J | dimensional

vector of zeros, it is possible to show that Vτ (0̄) ≤ zLP . For future reference, we

state this result as a proposition below. The proof of this proposition can be found

in Erdelyi and Topaloglu (2009c).

Proposition 2.4.1 We have Vτ (0̄) ≤ zLP .

The upper bound in Proposition 2.4.1 can be useful when assessing the opti-

mality gap of a suboptimal decision rule such as the DLP policy in (2.12).
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2.5 Dynamic Programming Decomposition

There are several shortcomings of the deterministic linear program. It only uses

the total expected numbers of the itinerary requests, ignoring the probability dis-

tributions and the temporal dynamics of the arrivals of the itinerary requests.

Furthermore, it assumes that the numbers of reservations that show up at the

departure time take on their expected values. In this section, we build on the de-

terministic linear program to develop a solution method that captures the temporal

dynamics of the itinerary requests somewhat more accurately.

2.5.1 Decomposing into Single Leg Revenue Management

Problems

The starting point for our approach is a duality argument on the deterministic

linear program to decompose the network revenue management problem into a

sequence of single leg revenue management problems. We begin letting {λ∗i : i ∈ L}
be the optimal values of the dual variables associated with constraints (2.8) in

problem (2.7)-(2.11). We choose an arbitrary flight leg i and relax constraints (2.8)

in problem (2.7)-(2.11) for all other flight legs by associating the dual multipliers

{λ∗l : l ∈ L \ {i}}. In this case, linear programming duality implies that problem

(2.7)-(2.11) has the same optimal objective value as the problem

max
∑
j∈J

[
fj − qj

∑

l∈L\{i}
alj λ∗l

]
zj −

∑
j∈J

[
θj −

∑

l∈L\{i}
alj λ∗l

]
wj +

∑

l∈L\{i}
λ∗l cl

subject to
∑
j∈J

aij [qj zj − wj] ≤ ci

(2.9), (2.10), (2.11).
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We note that the problem above includes the capacity constraint only for flight leg

i. For notational brevity, we let

Λi
j =

∑

l∈L\{i}
alj λ∗l F i

j = fj − qj Λi
j Θi

j = θj − Λi
j. (2.13)

Omitting the constant term
∑

l∈L\{i} λ∗l cl, we write the problem above as

max
∑
j∈J

F i
j zj −

∑
j∈J

Θi
j wj (2.14)

subject to
∑
j∈J

aij [qj zj − wj] ≤ ci (2.15)

(2.9), (2.10), (2.11), (2.16)

in which case, the optimal objective value of problem (2.14)-(2.16) differs from zLP

by
∑

l∈L\{i} λ∗l cl.

The decision variables zj and wj do not appear in constraint (2.15) whenever

itinerary j does not use the capacity on flight leg i. This observation allows us

to decompose problem (2.14)-(2.16) into two problems, one of which involves the

itineraries that use the capacity on flight leg i and the other one involves the

remaining itineraries. To this end, we let J i = {j ∈ J : aij > 0} so that J i is

the set of itineraries that use the capacity on flight leg i. In this case, it is easy to

see that the optimal objective value of problem (2.14)-(2.16) is equal to the sum

of the optimal objective values of the problem

max
∑

j∈J i

F i
j zj −

∑

j∈J i

Θi
j wj (2.17)

subject to
∑

j∈J i

aij [qj zj − wj] ≤ ci (2.18)

zj ≤
∑
t∈T

pjt j ∈ J i (2.19)

wj − qj zj ≤ 0 j ∈ J i (2.20)

zj, wj ≥ 0 j ∈ J i, (2.21)
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which involves only the decision variables {zj : j ∈ J i} and {wj : j ∈ J i}, and

the problem

max
∑

j∈J\J i

F i
j zj −

∑

j∈J\J i

Θi
j wj (2.22)

subject to zj ≤
∑
t∈T

pjt j ∈ J \ J i (2.23)

wj − qj zj ≤ 0 j ∈ J \ J i (2.24)

zj, wj ≥ 0 j ∈ J \ J i, (2.25)

which involves only the decision variables {zj : j ∈ J \ J i} and {wj : j ∈
J \ J i}. It turns out that the optimal objective value of problem (2.22)-

(2.25) can easily be obtained by mere inspection. In particular, we show in Ap-

pendix A.1 that the optimal objective value of problem (2.22)-(2.25) is equal to
∑

t∈T
∑

j∈J\J i pjt max{F i
j , F

i
j − qj Θi

j, 0}. Therefore, summing up the discussion

so far in this section, if we let zi
LP be the optimal objective value of problem

(2.17)-(2.21), then we have

zLP = zi
LP +

∑
t∈T

∑

j∈J\J i

pjt max{F i
j , F

i
j − qj Θi

j, 0}+
∑

l∈L\{i}
λ∗l cl. (2.26)

Comparing problem (2.17)-(2.21) with problem (2.7)-(2.11), we can observe that

problem (2.17)-(2.21) is the deterministic linear program corresponding to a single

leg revenue management problem that takes place over flight leg i. In this single

leg revenue management problem, only the requests for the itineraries in the set J i

are considered. If we accept a request for itinerary j, then we generate a revenue

of F i
j . If we deny boarding to a reservation for itinerary j, then we incur a penalty

cost of Θi
j. Since zi

LP denotes the optimal objective value of problem (2.17)-(2.21),

Proposition 2.4.1 implies that zi
LP provides an upper bound on the optimal total

expected profit for the single leg revenue management problem that takes place

over flight leg i.
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On the other hand, we can compute the optimal total expected profit for the

above described single leg revenue management problem taking place over flight

leg i by solving the corresponding dynamic program. To this end, we introduce

some new notation. We let Ri(·) be the operator that restricts the components

of a |J | dimensional vector to those that correspond to the elements of J i. For

example, we have Ri(xt) = {xjt : j ∈ J i} and Ri(S(x0)) = {Sj(xj0) : j ∈ J i}. In

this case, the optimality equation for the single leg revenue management problem

that takes place over flight leg i reads

V i
t (Ri(xt)) =

∑

j∈J i

pjt max{F i
j + V i

t−1(Ri(xt + ej)), V
i
t−1(Ri(xt))}

+
[
1−

∑

j∈J i

pjt

]
V i

t−1(Ri(xt)) (2.27)

with the boundary condition that V i
0 (Ri(x0)) = −E{Γi(Ri(S(x0)))}. Here, Γi(·)

accounts for the penalty cost of denied boarding at the departure time in the single

leg revenue management problem that takes place over flight leg i and it is given

by

Γi(Ri(S(x0))) = min
∑

j∈J i

Θi
j wj (2.28)

subject to
∑

j∈J i

aij [Sj(xj0)− wj] ≤ ci (2.29)

wj ≤ Sj(xj0) j ∈ J i (2.30)

wj ∈ Z+ j ∈ J i. (2.31)

We recall that zi
LP provides an upper bound on the optimal total expected

profit for the single leg revenue management problem that takes place over flight

leg i. This optimal total expected profit is given by V i
τ (Ri(0̄)) so that we obtain

V i
τ (Ri(0̄)) ≤ zi

LP . The next proposition shows the relationship between the so-
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lutions to the optimality equations in (2.5) and (2.27). Its proof is in Appendix

A.2.

Proposition 2.5.1 For all t ∈ T , we have

Vt(xt) ≤ V i
t (Ri(xt))−

∑

j∈J i

qj Λi
j xjt −

∑

j∈J\J i

min
{

qj

∑

l∈L
alj λ∗l , qj θj

}
xjt

+
∑

j∈J\J i

t∑
s=1

pjs max{F i
j , F

i
j − qj Θi

j, 0}+
∑

l∈L\{i}
λ∗l cl. (2.32)

Using Proposition 2.5.1 with t = τ and xt = 0̄, the discussion just before this

proposition implies that

Vτ (0̄) ≤ V i
τ (Ri(0̄)) +

∑

j∈J\J i

τ∑
s=1

pjs max{F i
j , F

i
j − qj Θi

j, 0}+
∑

l∈L\{i}
λ∗l cl

≤ zi
LP +

∑

j∈J\J i

τ∑
s=1

pjs max{F i
j , F

i
j − qj Θi

j, 0}+
∑

l∈L\{i}
λ∗l cl = zLP ,

where the last equality follows from (2.26). Therefore, we can obtain an upper

bound on the optimal total expected profit by solving the optimality equation

in (2.27) and this upper bound is tighter than the one provided by the optimal

objective value of problem (2.7)-(2.11). Nevertheless, the state variable in the

optimality equation in (2.27) has still |J i| dimensions, which can be quite large

for many practical applications. Before we describe one method to approximate

the solution to this optimality equation, we take a quick detour in the next section

and describe how we can use the upper bound in Proposition 2.5.1 to construct a

policy to accept or reject the itinerary requests.
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2.5.2 Approximating the Optimal Decision Rule

Proposition 2.5.1 suggests approximating Vt(xt) with the upper bound given by

the expression on the right side of (2.32). In particular, using Ṽ i
t (xt) to denote the

expression on the right side of (2.32), we can replace Vt−1(xt) − Vt−1(xt + ej) in

the decision rule in (2.6) with Ṽ i
t−1(xt)− Ṽ i

t−1(xt + ej) and follow this decision rule

to accept or reject the itinerary requests. One ambiguous aspect of this approach

is that the choice of flight leg i is arbitrary and the performance of the proposed

decision rule can depend on the choice of this flight leg. We work around this

ambiguity by computing {Ṽ i
t (·) : t ∈ T } for all i ∈ L so that we can use the average

∑
i∈L Ṽ i

t (xt)/|L| as an approximation to Vt(xt). Noting that Ṽ i
t (xt) ≥ Vt(xt) for

all i ∈ L, we still have the upper bound that
∑

i∈L Ṽ i
t (xt)/|L| ≥ Vt(xt). Thus,

we propose approximating Vt−1(xt) − Vt−1(xt + ej) on the right side of (2.6) by
∑

i∈L Ṽ i
t−1(xt)/|L| −

∑
i∈L Ṽ i

t−1(xt + ej)/|L|. The definition of Ṽ i
t (xt) in (2.32)

implies that

Ṽ i
t−1(xt)− Ṽ i

t−1(xt + ej) =





V i
t−1(Ri(xt))− V i

t−1(Ri(xt + ej))

+ qj Λi
j if j ∈ J i

min
{

qj

∑

l∈L
alj λ∗l , qj θj

}
if j ∈ J \ J i.

Therefore, letting 1(·) be the indicator function, if the state of the reservations at

time period t is given by xt, then we accept a request for itinerary j whenever we

have

fj ≥ 1

|L|
∑
i∈L

1(j ∈ J i)
{

V i
t−1(Ri(xt))− V i

t−1(Ri(xt + ej)) + qj Λi
j

}

+
1

|L|
∑
i∈L

1(j ∈ J \ J i) min
{

qj

∑

l∈L
alj λ∗l , qj θj

}
. (2.33)

One possible way to look at the decision rule in (2.33) is that each flight leg

23



contributes one term to the expression on the right side. If flight leg i is used by

itinerary j, then this flight leg contributes the term V i
t−1(Ri(xt)) − V i

t−1(Ri(xt +

ej)) + qj Λi
j. If, on the other hand, flight leg i is not used by itinerary j, then this

flight leg contributes the term min{qj

∑
l∈L alj λ∗l , qj θj}. The important observa-

tion is that the term min{qj

∑
l∈L alj λ∗l , qj θj} is identical to the right side of the

DLP policy in (2.12). Therefore, the flight legs that are not used by itinerary j

do not provide any additional information over what is already provided by the

deterministic linear program. Furthermore, the number of flight legs that are not

used by itinerary j is likely to be substantially larger than the number of flight

legs that are used by itinerary j, which implies that the right side of the expres-

sion above is likely to be dominated by the term min{qj

∑
l∈L alj λ∗l , qj θj}. Thus,

one conjectures that the decision rule in (2.33) performs very much like the DLP

policy. A small set of computational experiments confirmed this conjecture.

To overcome this shortcoming, instead of averaging over all flight legs and using
∑

i∈L Ṽ i
t (xt)/|L| as an approximation to Vt(xt), we average only over the flight legs

that are used by a particular itinerary. In particular, we let Lj = {i ∈ L : aij > 0}
so that Lj is the set of flight legs that are used by itinerary j. In this case,

whenever we need to make a decision for itinerary j, we use
∑

i∈Lj Ṽ i
t (xt)/|Lj|

as an approximation to Vt(xt). We note that we still have the upper bound that
∑

i∈Lj Ṽ i
t (xt)/|Lj| ≥ Vt(xt). Thus, if the state of the reservations at time period t

is given by xt, then we accept a request for itinerary j whenever we have

fj ≥ 1

|Lj|
∑

i∈Lj

{
V i

t−1(Ri(xt))− V i
t−1(Ri(xt + ej)) + qj Λi

j

}
. (2.34)

The state variable in the optimality equation in (2.27) has |J i| dimensions.

Theoretically, this is an improvement in comparison to the optimality equation in

(2.5), which involves a state variable with |J | dimensions. Practically, however,
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this improvement is irrelevant as |J i| is on the order of hundreds or thousands

even for modest applications. Therefore, it is still quite difficult to compute the

value functions {V i
t (·) : t ∈ T } and to use the decision rule in (2.34). In the next

section, we give one method to approximate the value functions {V i
t (·) : t ∈ T },

which seems to work particularly well for our application context.

2.5.3 Reducing the State Space

In this section, we consider the single leg revenue management problem that takes

place over flight leg i whose dynamic programming formulation is given in (2.27).

Our goal is to approximate the value functions {V i
t (·) : t ∈ T } by using simple

scalar functions. We observe that the optimality equation in (2.27) has to keep

track of the “identities” of the reservations so that the penalty cost given by the

optimal objective value of problem (2.28)-(2.31) can be computed properly. On the

other hand, if we assume that knowing the total number of reservations is adequate

to compute the penalty cost, then the state variable in the optimality equation in

(2.27) collapses to a scalar. Our approximation builds on this observation and it is

based on approximating the expected penalty cost at the departure time by using

only the total number of reservations.

We begin by introducing some new notation. We use Ai(·) to denote the

operator that adds up the components of a |J | dimensional vector corresponding

to the elements of the set J i. For example, we have Ai(xt) =
∑

j∈J i xjt and

Ai(xt) is the total number of reservations at the beginning of time period t for the

itineraries that use flight leg i. Our approximation is based on the assumption that

if we have a total of Ai(x0) reservations at the beginning of time period 0 for the

itineraries that use flight leg i, then a fixed portion, say αi
j, of these reservations
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are for itinerary j. In this case, recalling that the random variable Sj(·) captures

the number of reservations for itinerary j that show up at the departure time and

defining the vectors αi = {αi
j : j ∈ J i}, αiAi(xt) = {αi

j Ai(xt) : j ∈ J i} and

Si(αiAi(x0)) = {Sj(α
i
j Ai(x0)) : j ∈ J i}, we can approximate the penalty cost at

the departure time by Γi(Si(αiAi(x0))). In this expression, the vector αiAi(x0)

approximates the numbers of reservations that we have at the beginning of time

period 0, whereas the vector Si(αiAi(x0)) gives the numbers of reservations that

show up at the departure time. The function Γi(·) is given by the optimal objective

value of problem (2.28)-(2.31) and it computes the penalty cost for the single leg

revenue management problem that takes place over flight leg i. This approximation

to the penalty cost at the departure time, in turn, allows us to approximate the

solution to the optimality equation in (2.27) by using the solution to the optimality

equation

vi
t(Ai(xt)) =

∑

j∈J i

pjt max{F i
j + vi

t−1(Ai(xt + ej)), v
i
t−1(Ai(xt))}

+
[
1−

∑

j∈J i

pjt

]
vi

t−1(Ai(xt)) (2.35)

with the boundary condition that vi
0(Ai(x0)) = −E{Γi(Si(αiAi(x0)))}. We note

that the optimality equation above involves a scalar state variable and it can be

solved quite efficiently.

There are three issues that need to be resolved to be able to find a numerical

solution to the optimality equation in (2.35). The first issue is related to the

choice of αi
j. We use the DLP policy in (2.12) for this purpose. In particular, we

simulate the trajectory of the DLP policy under M itinerary request realizations.

Letting {xm
jt : j ∈ J , t ∈ T } be the state trajectory in the mth itinerary request
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realization, we let

αi
j =

∑M
m=1 xm

j0∑M
m=1

∑
̃∈J i xm

̃0

.

In practice, it is common to use the DLP policy to come up with an average

probability that a reservation shows up at the departure time. Our choice of αi
j

closely follows this approach.

The second issue arises due to the fact that the argument of Sj(·) in the vector

Si(αiAi(x0)) = {Sj(α
i
j Ai(x0)) : j ∈ J i} is not necessarily integer. We recall that

Sj(xj0) is a binomially distributed random variable with parameters (xj0, qj), but

a binomially distributed random variable with a fractional trial parameter is ill-

defined. We overcome this issue by always visualizing Sj(xj0) as a mixture of two

binomially distributed random variables. In particular, letting b·c be the round

down function, with probability bxj0c + 1 − xj0, Sj(xj0) is equal to a binomially

distributed random variable with parameters (bxj0c, qj), and with probability xj0−
bxj0c, Sj(xj0) is equal to a binomially distributed random variable with parameters

(bxj0c+ 1, qj). With this convention, if xj0 is integer, then Sj(xj0) continues to be

binomially distributed with parameters (xj0, qj). If, however, xj0 is fractional, then

Sj(xj0) is not necessarily binomially distributed, but its expected value continues

to be (bxj0c+ 1− xj0) qj bxj0c+ (xj0 − bxj0c) qj (bxj0c+ 1) = qj xj0.

Finally, the third issue becomes apparent when we note that the boundary

condition of the optimality equation in (2.35) requires computing the expectation

E{Γi(Si(αiAi(x0)))} over the multi-dimensional random variable Si(αiAi(x0)).

There is no closed form expression for this expectation and we simply approximate

it through Monte Carlo samples.

Once we agree on the resolution of the three issues described above, we can

obtain {vi
t(·) : i ∈ L, t ∈ T } through the optimality equation in (2.35) and use
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{vi
t(·) : i ∈ L, t ∈ T } as approximations to {V i

t (·) : i ∈ L, t ∈ T } in the decision

rule in (2.34). In particular, if the state of the reservations at the beginning of

time period t is given by xt, then we accept a request for itinerary j whenever we

have

fj ≥ 1

|Lj|
∑

i∈Lj

{
vi

t−1(Ai(xt))− vi
t−1(Ai(xt + ej)) + qj Λi

j

}
. (2.36)

We refer to this decision rule as the DPD policy, standing for dynamic programming

decomposition.

2.6 Computational Experiments

In this section, we compare the performances of the decision rules in (2.12) and

(2.36), along with other benchmark strategies. We begin by describing the ex-

perimental setup and the benchmark strategies. Following this, we present our

computational results.

2.6.1 Experimental Setup

We consider an airline network that consists of a hub and N spokes. This is a

key network structure that frequently arises in practice. There are two flight legs

associated with each spoke. One of these is from the hub to the spoke, whereas

the other one is from the spoke to the hub. The airline offers a high fare and a low

fare itinerary associated with each origin destination pair. Therefore, the number

of flight legs is 2N and the number of itineraries is 2N (N +1). The fare associated

with a high fare itinerary is κ times the fare associated with the corresponding low

fare itinerary. The penalty cost of denying boarding to a reservation for itinerary
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j is given by θj = δ fj +σ max{f̃ : ̃ ∈ J }, where δ and σ are two parameters that

we change. For request probabilities {pjt : j ∈ J , t ∈ T }, we assume the following

mechanism. First, we assume that for each origin destination pair (o, d), there is a

constant Rod ∈ {0, 1} that denotes the total probability that either one of the two

associated itineraries is requested at any time period. During the duration of the

first third of the booking horizon, i.e. over time periods {τ, . . . , b2
3
τc}, we assume

that the probability of requesting a high fare itinerary is zero while the probability

of requesting a low fare itinerary is equal to the corresponding Rod. Then, in the

remaining time periods, we assume that the probability Rod is linearly transferred

from the low fare itinerary to the high fare itinerary so that in the last time period

the probability of requesting the high fare itinerary is equal to the full value of

Rod. We note that Rod values are generated randomly at the beginning so that

their sum over all origin destination pairs is equal to 1. The probability that a

reservation shows up at the departure time is q and it does not depend on the

itinerary. Noting that the total expected demand for the capacity on flight leg i is

given by q
∑

t∈T
∑

j∈J aij pjt, we measure the tightness of the leg capacities by

ρ =
q
∑

i∈L
∑

t∈T
∑

j∈J aij pjt∑
i∈L ci

.

We label our test problems by (N, κ, δ, σ, q, ρ) and use N ∈ {4, 8}, κ ∈ {4, 8},
(δ, σ) ∈ {(4, 0), (8, 0), (1, 1)}, q ∈ {0.90, 0.95} and ρ ∈ {1.2, 1.6}. This provides

48 test problems for our experimental setup. In all of our test problems, we have

τ = 240. The online supplement provides the data files for all of our test problems.

We describe the format of the data files in Appendix A.3.

It is worthwhile to note that the interaction between κ and (δ, σ) creates in-

teresting situations. For example, when we have κ = 8 and (δ, σ) = (4, 0), if the

revenue associated with a low fare itinerary is f , then the penalty cost associated

with this itinerary is 4f and the revenue associated with the corresponding high
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fare itinerary is 8f . In this case, if we have a request for the high fare itinerary and

a flight leg in this itinerary is already overbooked with a reservation for the low fare

itinerary, then we can still accept the high fare itinerary request and deny boarding

to the low fare reservation to make a net profit of 8f − 4f . This corresponds to

the case where a high fare itinerary trivially preempts the corresponding low fare

itinerary. On the other hand, when we have κ = 4 and (δ, σ) = (1, 1), such preemp-

tions do not occur. We also note that the test problems with (δ, σ) = (1, 1) tend

to have higher penalty costs than the test problems with (δ, σ) = (8, 0), which, in

turn, tend to have higher penalty costs than the test problems with (δ, σ) = (4, 0).

2.6.2 Benchmark Strategies

We compare the performances of the following seven benchmark strategies.

Dynamic programming decomposition (DPD) This benchmark strategy cor-

responds to the DPD policy given by (2.36). We use M = 100 when computing

{αi
j : i ∈ L, j ∈ J }. We estimate all expectations through 1,000 Monte Carlo

samples. With these settings, the 95% confidence interval for the expectation of

αi
j has precision ∓4.1% on the average, whereas the 95% confidence interval for

the expected penalty cost incurred at the departure time has precision ∓1.8% on

the average.

Deterministic linear program (DLP) This benchmark strategy corresponds to

the DLP policy in (2.12). The basic variant of this strategy simply solves problem

(2.7)-(2.11) to obtain the optimal values of the dual variables associated with

constraints (2.8) and uses these dual variable to implement the DLP policy. We

use a reoptimized variant of this strategy, where we divide the planning horizon into
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K equal segments and resolve an updated version of problem (2.7)-(2.11) for each

segment. In particular, given that the state of the reservations at the beginning of

the kth segment is xτ(K−k+1)/K , we replace the right hand side of constraints (2.8)

with {ci−
∑

j∈J aij qj xj,τ(K−k+1)/K : i ∈ L}, the right hand side of constraints (2.9)

with {∑τ(K−k+1)/K
t=1 pjt : j ∈ J } and the right hand side of constraints (2.10) with

{qj xj,τ(K−k+1)/K : j ∈ J }, and solve this modified version of problem (2.7)-(2.11).

Letting {λ∗i : i ∈ L} be the optimal values of the dual variables associated with

constraints (2.8), we use these updated values in the decision rule in (2.12) until we

resolve problem (2.7)-(2.11) at the beginning of the next segment. We use K = 20

in our computational experiments.

Finite differences in the deterministic linear program (FDD) Given that

the state of the reservations at the beginning of time period t is xt, FDD approxi-

mates the optimal total expected profit over the time periods {t, . . . , 0} by using

the optimal objective value of the problem

max
∑
j∈J

fj zj −
∑
j∈J

θj wj

subject to
∑
j∈J

aij [qj zj − wj] ≤ ci −
∑
j∈J

aij qj xjt i ∈ L

zj ≤
t∑

t̃=1

pjt̃ j ∈ J

wj − qj zj ≤ qj xjt j ∈ J

zj, wj ≥ 0 j ∈ J .

We denote Lt(xt) the optimal objective value of the problem above and let FDD

use Lt(xt) as an approximation to Vt(xt). In this case, we can make the decisions

by replacing {Vt(·) : t ∈ T } in the decision rule in (2.6) with {Lt(·) : t ∈ T }. This

approach is proposed in Bertsimas and Popescu (2003).
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Similar to DLP, we use a reoptimized version of FDD, where we divide the

planning horizon into K equal segments and retune the decision rule at the begin-

ning of each segment. Given that the state of the reservations at the beginning of

the kth segment is xτ(K−k+1)/K , we compute Lτ(K−k+1)/K(xτ(K−k+1)/K)

−Lτ(K−k+1)/K(xτ(K−k+1)/K +ej) for all j ∈ J . Following the decision rule in (2.6),

if we have

fj ≥ Lτ(K−k+1)/K(xτ(K−k+1)/K)− Lτ(K−k+1)/K(xτ(K−k+1)/K + ej)

then we always accept a request for itinerary j until we reach the beginning of the

next segment and retune the decision rule. We use K = 20.

Virtual capacities based on a naive computation (VCN) In this benchmark

strategy, the airline sets virtual capacities on the flight legs by assuming that the no

shows take on their expected values. Following this, the airline makes the capacity

allocation decisions under the assumption that all of the reservations show up, but

the capacities on the flight legs are equal to the virtual capacities. In other words,

noting that a reservation shows up at the departure time with probability q, the

airline sets the virtual capacity on flight leg i as ui = bci/qc and solves a version

of the deterministic linear program in (2.7)-(2.11), which can be stated as

max
∑
j∈J

fj zj (2.37)

subject to
∑
j∈J

aij zj ≤ ui i ∈ L (2.38)

zj ≤
∑
t∈T

pjt j ∈ J (2.39)

zj ≥ 0 j ∈ J . (2.40)

We denote {λ∗i : i ∈ L} the optimal values of the dual variables associated with the

first set of constraints above and let VCN use the DLP policy in (2.12). Similar

to DLP and FDD, we use a reoptimized version of VCN with 20 reoptimizations.
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Virtual capacities based on an economic model (VCE) One criticism for

VCN is that it chooses the virtual capacities under the assumption that the no

shows take on their expected values. However, depending on the tradeoffs between

the fares, penalty costs and show up probabilities, we may want to be more or less

aggressive than what the expected values of the no shows suggest. The goal of VCE

is to make up for this shortcoming. VCE is proposed in Karaesmen and van Ryzin

(2004a) and it is based on the following three assumptions. First, the revenue that

we make from one unit of capacity on a flight leg is known. We let ri be the revenue

that we make from one unit of capacity on flight leg i. Second, if a reservation uses

the capacities on multiple flight legs, then we can allow boarding to this reservation

on one flight leg, while denying boarding to the same reservation on another flight

leg. Furthermore, the penalty cost of denying boarding to a reservation on a flight

leg is known. We let gi be the penalty cost of denying boarding to a reservation

on flight leg i. Third, if the airline sets the virtual capacity on flight leg i as ui,

then it sells exactly ui reservations on flight leg i.

By the third assumption, if we set the virtual capacity on flight leg i as ui,

then we sell ui reservations on flight leg i, in which case, the first assumption

implies that we generate a revenue of ri ui. On the other hand, if we let Bi(ui) be

a binomially distributed random variable with parameters (ui, q), then the number

of reservations that show up at the departure time is given by Bi(ui) and the

second assumption implies that the expected penalty cost that we incur on flight

leg i is gi E{max{Bi(ui)− ci, 0}}. Therefore, VCE solves the problem maxui
ri ui−

gi E{max{Bi(ui)−ci, 0}} to set the virtual capacity on flight leg i. Once the virtual

capacities have been set, VCE proceeds in the same way as VCN.

Karaesmen and van Ryzin (2004a) suggest several choices for ri and gi. Fol-
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lowing their work, we let Rj = fj/
∑

l∈L alj and Gj = θj/
∑

l∈L alj for all j ∈ J
to evenly distribute the revenue and penalty cost associated with an itinerary over

the flight legs that it uses. In this case, we try choosing ri as ri =
∑

j∈J i Rj/|J i| or

ri = max{Rj : j ∈ J i} or ri = min{Rj : j ∈ J i}, and gi as gi =
∑

j∈J i Gj/|J i| or

gi = max{Gj : j ∈ J i} or gi = min{Gj : j ∈ J i}. Using all combinations of these

choices, we have nine different choices for ri and gi. We test the performances of

all of these nine choices for all of our test problems, but for brevity, only report

the results corresponding to the best choice. For different test problems, the best

choice for ri and gi can be different. Similar to VCN, we use a reoptimized version

of VCE with 20 reoptimizations.

Virtual capacities joint with capacity allocation decisions (VCJ) Both

VCN and VCE use the assumption that we can set the virtual capacities first, and

then, come up with a policy to accept or reject the itinerary requests. In contrast,

VCJ uses the penalty cost gi E{max{Bi(ui) − ci, 0}} in problem (2.37)-(2.40) to

jointly set the virtual capacities and come up with a policy to accept or reject the

itinerary requests. In particular, VCJ solves the problem

max
∑
j∈J

fj zj −
∑
i∈L

gi E{max{Bi(ui)− ci, 0}}

subject to
∑
j∈J

aij zj − ui ≤ 0 i ∈ L

zj ≤
∑
t∈T

pjt j ∈ J

zj, ui ≥ 0 i ∈ L, j ∈ J ,

where we use interpolations of the function E{max{Bi(ui) − ci, 0}} to be able to

compute it at a fractional ui. We denote {λ∗i : i ∈ L} the optimal values of the

dual variables associated with the first set of constraints above, and let VCJ use

the DLP policy in (2.12). This approach is proposed in Karaesmen and van Ryzin
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(2004a). Similar to VCE, we try three different choices for gi and report the results

corresponding to the best choice. We use a reoptimized version of VCJ with 20

reoptimizations.

Separable penalty costs (SPC) This benchmark strategy is developed by Erde-

lyi and Topaloglu (2009c). The fundamental observation behind SPC is that if the

penalty cost of denying boarding to the reservations were given by a separable

function of the form Γ(S(x0)) =
∑

j∈J γj(Sj(xj0)), then the optimality equation

in (2.5) would decompose by the itineraries. To exploit this observation, SPC ap-

proximates Γ(S(x0)) in problem (2.1)-(2.4) with a separable function of the form
∑

j∈J γj(Sj(xj0)) and solves the optimality equation in (2.5) with the approximate

boundary condition that V0(x0) = −E{∑j∈J γj(Sj(xj0))}. The value functions

{Vt(·) : t ∈ T } obtained in this fashion are used to construct a policy to accept or

reject the itinerary requests. SPC uses a simulation based method to construct the

separable approximation
∑

j∈J γj(Sj(xj0)) to the penalty cost. Roughly speaking,

we simulate the DLP policy in (2.12) to have a general idea about the numbers of

reservations that show up at the departure time. Following this, we compute the

slopes of Γ(·) at these numbers of reservations along different directions and use

these slopes to construct the scalar functions {γj(·) : j ∈ J }. An exact descrip-

tion of this benchmark strategy is beyond the scope of this chapter and we refer

the reader to Erdelyi and Topaloglu (2009c) for the details. Similar to the other

benchmark strategies, we retune the separable approximation five times over the

planning horizon. It turns out that retuning SPC more than five times does not

provide any additional benefit.
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2.6.3 Computational Results

Our main computational results are summarized in Tables 2.1 and 2.2. In partic-

ular, these two tables respectively show the results for the test problems with four

and eight spokes. The first column in Tables 2.1 and 2.2 gives the parameters of

the test problem. The second column gives the upper bound on the optimal total

expected profit provided by the optimal objective value of problem (2.7)-(2.11).

The next seven columns give the total expected profits obtained by DPD, DLP,

FDD, VCN, VCE, VCJ and SPC. These total expected profits are estimated by

simulating the performances of the different policies under 50 itinerary request

trajectories. We use common itinerary request trajectories when simulating the

performances of the different policies. The tenth column gives the percent gap

between the total expected profits obtained by DPD and DLP. This column also

includes a “X” whenever DPD performs significantly better than DLP and a “

¯” whenever there is no statistically significant performance gap between the two

methods at 95% level. The next five columns do the same thing as the tenth

column, but they compare the performance of DPD with FDD, VCN, VCE, VCJ

and SPC. Finally, the last column shows the percentage gap between performance

obtained by DPD and the profit bound reported in the second column. The size

of this gap gives an upper bound on the percentage gap between the performance

of DPD and the optimal policy.

The results indicate that DPD performs substantially better than all of the

benchmark strategies that use a linear programming formulation. Among the

linear programming based benchmark strategies, FDD performs the best and it is

followed by VCJ, DLP, VCE and VCN. The superiority of FDD over DLP is also

observed by Bertsimas and Popescu (2003).
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The performance gaps between DPD and DLP, FDD, VCN, VCE and VCJ are

statistically significant for all of the test problems. The average performance gaps

between DPD and DLP, FDD, VCN, VCE and VCJ are respectively 4.09, 2.85,

6.82, 4.76 and 2.82 for the test problems with four spokes. The same gaps increase

to 5.39, 2.87, 8.18, 6.08 and 3.53 for the test problems with eight spokes. The

average percentage gap between the DPD performance and the upper bound from

the deterministic linear program is 5.72 for the test problems with four spokes

and 9.39 for the test problems with eight spokes. Among the three benchmark

strategies that use virtual capacities, VCJ performs better than VCN and VCE.

It is interesting to note that VCJ performs better than DLP as well. There are

test problems where VCN performs better than DLP, despite the fact that VCN is

essentially an ad hoc modification of DLP that does not carefully address the pos-

sibility of no shows. However, the performance of VCN is not robust as indicated

by the test problems with (δ, σ) = (4, 0). There is not a clear distinction between

DLP and VCE, but there are test problems where VCE can perform substantially

worse than DLP.

The performance gap between DPD and SPC is on the order of half a percent

to a percent. We emphasize that a percent revenue difference is still considered

significant in the revenue management setting. On a majority of the test problems,

DPD performs better than SPC and in the remaining test problems, there does not

exist a statistically significant gap between the two benchmark strategies. Similar

to DPD, SPC performs noticeably better than all of the benchmark strategies that

use a linear programming formulation. Therefore, DPD and SPC, by working with

the dynamic programming formulation of the capacity allocation and overbooking

problem, provide significant improvements over using a deterministic linear pro-

gramming formulation, which ignores the temporal dynamics of the arrivals of the
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itinerary requests.

It is possible to observe a few trends in the performance gaps. In particular,

the performance gaps between DPD and the linear programming based benchmark

strategies tend to increase as the fare difference between the high fare and low fare

itineraries, penalty costs and overall tightness of the leg capacities increase. For test

problems with large fare differences, large penalty costs and tight leg capacities,

the “regret” associated with making an “incorrect” decision is relatively large. For

example, when the fare difference between the high fare and low fare itineraries

is large, accepting a request for a low fare itinerary “incorrectly” may preclude

accepting a request for a high fare itinerary later in the planning horizon and the

revenue forgone in this case can be quite large. Similarly, when the penalty costs

are large, it is costly to deny boarding to a reservation that was accepted “by

mistake”. When the leg capacities are tight, it is important to make the itinerary

acceptance decisions more “carefully”, as it is not possible to accommodate all

itinerary requests. Thus, it is encouraging that a careful stochastic model pays

off and DPD performs significantly better than the linear programming based

benchmark strategies as the fare differences, penalty costs and tightness of the

leg capacities increase. To display some of these trends, Table 2.3 shows the

performance gaps between DPD and the other benchmark strategies averaged over

a number of test problems with a particular characteristic. For example, the

second column shows the performance gaps averaged over the test problems with

four spokes. The trends that we mention can be observed from this table.

Table 2.4 shows the CPU seconds required to compute one set of value function

approximations for DPD and SPC. All of the computational experiments are run

on a Pentium IV desktop PC with 2.4 GHz CPU and 1 GB RAM. Since the
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Table 2.3: Comparison of the performances of DPD and the other benchmark
strategies for different sets of test problems.

Benchmark N κ (δ, σ) ρ
strategies 4 8 4 8 (4,0) (8,0) (1,1) 1.2 1.6

DPD vs. DLP 4.09 5.39 4.26 5.22 1.58 4.59 8.05 3.93 5.55
DPD vs. FDD 2.85 2.87 2.43 3.29 0.85 2.82 4.91 2.54 3.18
DPD vs. VCN 6.82 8.18 5.78 9.22 7.89 7.23 7.38 6.50 8.50
DPD vs. VCE 4.76 6.08 3.98 6.86 5.53 5.30 5.43 4.43 6.41
DPD vs. VCJ 2.87 3.53 2.47 3.93 1.99 3.38 4.21 2.53 4.05
DPD vs. SPC 0.63 0.88 0.83 0.68 0.64 0.87 0.75 0.65 0.86

Table 2.4: CPU seconds for DPD and SPC.

Benchmark N
strategy 4 8
DPD 48 76
SPC 118 220

number of spokes appears to be the primary factor affecting the computation

times, we give the average CPU seconds over different test problems. The two

rows in Table 2.4 show the CPU seconds for DPD and SPC. The second and

third columns respectively correspond to the test problems with four and eight

spokes. The CPU seconds for DPD includes the operations required to estimate

{αi
j : i ∈ L, j ∈ J } and to compute {vi

t(·) : i ∈ L, t ∈ T }. The results

indicate that DPD takes significantly less time than SPC and scales more favorably.

Considering its performance, DPD appears to be preferable to SPC. DLP, FDD,

VCN, VCE and VCJ take at most a few seconds to reoptimize their decision rules.

Despite this extra computational burden, the computational requirement for DPD

is still reasonable. Given the substantial improvements that it provides over the

other benchmark strategies, DPD appears to be a viable choice.
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2.7 Conclusions

In this chapter, we developed a network revenue management model to jointly make

the capacity allocation and overbooking decisions over an airline network. Our

approach is based on decomposing the network revenue management problem into a

sequence of single leg revenue management problems and exploiting the observation

that if the proportions of the reservations at the departure time were known,

then the dynamic programming formulation of the single leg revenue management

problems would involve only a scalar state variable. Using these observations,

we constructed tractable approximations to the value functions. Computational

experiments demonstrated that the resulting policies perform significantly better

than the benchmark strategies.
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APPENDIX

A Appendix to Chapter 2

A.1 Optimal Objective Value of Problem (2.22)-(2.25)

Letting 1(·) be the indicator function and noting constraints (2.24), we note that

the optimal values of the decision variables {wj : j ∈ J \J i} are {1(Θi
j ≤ 0) qj zj :

j ∈ J \J i}. Therefore, letting [·]+ = max{·, 0}, we can write problem (2.22)-(2.25)

as

max
∑

j∈J\J i

[
F i

j + [−Θi
j]

+ qj

]
zj

subject to zj ≤
∑
t∈T

pjt j ∈ J \ J i

zj ≥ 0 j ∈ J \ J i.

In the problem above, the optimal values of the decision variables {zj : j ∈ J \J i}
are {1([F i

j + [−Θi
j]

+ qj] ≥ 0)
∑

t∈T pjt : j ∈ J \ J i}. Therefore, the optimal

objective value of the problem above is

∑
t∈T

∑

j∈J\J i

[
F i

j + [−Θi
j]

+ qj

]+
pjt =

∑
t∈T

∑

j∈J\J i

max{F i
j , F

i
j − qj Θi

j, 0} pjt.

A.2 Proof of Proposition 2.5.1

To simplify the proof, we introduce auxiliary value functions {ψi
t(·) : i ∈ L, t ∈ T }

by letting

ψi
t(xt) =

∑
j∈J

pjt max{F i
j + ψi

t−1(xt + ej), ψ
i
t−1(xt)}+

[
1−

∑
j∈J

pjt

]
ψi

t−1(xt) (A.1)
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with the boundary condition that ψi
0(x0) = −E{φi(S(x0))}, where

φi(S(x0)) = min
∑
j∈J

Θi
j wj (A.2)

subject to
∑
j∈J

aij [Sj(xj0)− wj] ≤ ci (A.3)

wj ≤ Sj(xj0) j ∈ J (A.4)

wj ∈ Z+ j ∈ J . (A.5)

The following two results provide the intermediate steps to prove Proposition 2.5.1.

Lemma A.2.1 For all t ∈ T , we have

ψi
t(xt) = V i

t (Ri(xt)) +
∑

j∈J\J i

qj [−Θi
j]

+ xjt +
t∑

s=1

∑

j∈J\J i

pjs max{F i
j , F

i
j − qj Θi

j, 0}.

Proof of Lemma A.2.1 We show the result by induction over the time periods.

Noting the upper bounds on the decision variables {wj : j ∈ J \ J i} in problem

(A.2)-(A.5), we observe that the optimal values of these decision variables are

{1(Θi
j ≤ 0) Sj(xj0) : j ∈ J \ J i}. Thus, since we have aij = 0 for all j ∈ J \ J i,

we have

φi(S(x0)) = Γi(Ri(S(x0)))−
∑

j∈J\J i

[−Θi
j]

+ Sj(xj0),

where Γi(Ri(S(x0))) is the optimal objective value of problem (2.28)-(2.31). Tak-

ing expectations in the expression above and noting that Sj(xj0) has a bino-

mial distribution with parameters (xj0, qj), we obtain ψi
0(x0) = −E{φi(S(x0))} =

−E{Γi(Ri(S(x0)))}+
∑

j∈J\J i qj [−Θi
j]

+xj0 = V i
0 (Ri(x0)) +

∑
j∈J\J i qj [−Θi

j]
+xj0

and the result holds for the last time period. Assuming that the result holds for
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time period t− 1, we have

ψi
t−1(xt + ej)− ψi

t−1(xt) =





V i
t−1(Ri(xt + ej))− V i

t−1(Ri(xt)) if j ∈ J i

qj [−Θi
j]

+ if j ∈ J \ J i.

(A.6)

Therefore, we have

ψi
t(xt) =

∑
j∈J

pjt max{F i
j + ψi

t−1(xt + ej)− ψi
t−1(xt), 0}+ ψi

t−1(xt)

=
∑

j∈J i

pjt max{F i
j + V i

t−1(Ri(xt + ej))− V i
t−1(Ri(xt)), 0}

+
∑

j∈J\J i

pjt max{F i
j + qj [−Θi

j]
+, 0}+ V i

t−1(Ri(xt))

+
∑

j∈J\J i

qj [−Θi
j]

+ xjt +
t−1∑
s=1

∑

j∈J\J i

pjs max{F i
j , F

i
j − qj Θi

j, 0},

where the first equality follows from (A.1) and the second equality follows from

(A.6) and the induction assumption. Since max{F i
j +qj [−Θi

j]
+, 0} = max{F i

j , F
i
j−

qj Θi
j, 0}, the result follows by collecting the terms on the right side of the expres-

sion above and noting the definition of V i
t (Ri(xt)) in (2.27). 2

Lemma A.2.2 For all t ∈ T , we have

Vt(xt) ≤ ψi
t(xt)−

∑
j∈J

qj Λi
j xjt +

∑

l∈L\{i}
λ∗l cl.
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Proof of Lemma A.2.2 We show the result by induction over the time periods.

We let {w∗
j : j ∈ J } be the optimal solution to problem (2.1)-(2.4). We have

Γ(S(x0)) =
∑
j∈J

θj w∗
j

≥
∑
j∈J

θj w∗
j +

∑

l∈L\{i}
λ∗l

{ ∑
j∈J

alj [Sj(xj0)− w∗
j ]− cl

}

=
∑
j∈J

Θi
j w∗

j +
∑
j∈J

Λi
j Sj(xj0)−

∑

l∈L\{i}
λ∗l cl

≥ φi(S(x0)) +
∑
j∈J

Λi
j Sj(xj0)−

∑

l∈L\{i}
λ∗l cl, (A.7)

where the first inequality follows from the fact that the solution {w∗
j : j ∈ J }

satisfies constraints (2.2) and λ∗l ≥ 0 for all l ∈ L\{i}, the second equality follows

from (2.13) and the second inequality follows from the fact that {w∗
j : j ∈ J } is

a feasible but not necessarily an optimal solution to problem (A.2)-(A.5). Tak-

ing expectations in the expression above, we obtain V0(x0) = −E{Γ(S(x0))} ≤
−E{φi(S(x0))} −

∑
j∈J qj Λi

j xj0 +
∑

l∈L\{i} λ∗l cl = ψi
0(x0) −

∑
j∈J qj Λi

j xj0 +
∑

l∈L\{i} λ∗l cl and the result holds for the last time period. Assuming that the

result holds for time period t − 1, the induction assumption immediately implies

that

max{fj + Vt−1(xt + ej), Vt−1(xt)} ≤ max{fj + ψi
t−1(xt + ej)− qj Λi

j, ψ
i
t−1(xt)}

−
∑
j∈J

qj Λi
j xjt +

∑

l∈L\{i}
λ∗l cl.

Recalling that F i
j = fj − qj Λi

j, one can combine the inequality above with (2.5)

and (A.1) to obtain the result for time period t. 2
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We are now ready to finalize the proof of Proposition 2.5.1. Lemmas A.2.1 and

Lemma A.2.2 imply that

Vt(xt) ≤ V i
t (Ri(xt)) +

∑

j∈J\J i

qj [−Θi
j]

+ xjt −
∑
j∈J

qj Λi
j xjt

+
∑

j∈J\J i

t∑
s=1

pjs max{F i
j , F

i
j − qj Θi

j, 0}+
∑

l∈L\{i}
λ∗l cl.

The result follows by noting that the sum of the second and third terms on the

right side of the expression above can be written as

∑

j∈J\J i

qj [−Θi
j]

+ xjt −
∑
j∈J

qj Λi
j xjt

=
∑

j∈J\J i

qj max{−θj + Λi
j, 0} xjt −

∑

j∈J\J i

qj Λi
j xjt −

∑

j∈J i

qj Λi
j xjt

= −
∑

j∈J\J i

qj min{θj, Λ
i
j} xjt −

∑

j∈J i

qj Λi
j xjt

= −
∑

j∈J\J i

min
{

qj θj, qj

∑

l∈L
alj λ∗l

}
xjt −

∑

j∈J i

qj Λi
j xjt,

where the last equality follows from the fact that Λi
j =

∑
l∈L\{i} alj λ∗l and aij = 0

whenever j ∈ J \ J i.

A.3 Description of the Data Files

The data files that we use in our computational experiments are provided as an

online supplement. The goal of this section is to describe the format of the data

files. All of our data files are labeled as rm A B C.C D.D E.E F.F.txt, where A

corresponds to the number of spokes in the airline network, B corresponds to the

fare difference between a high fare and its corresponding low fare itinerary, C.C

and D.D correspond to the parameters that we use to compute the penalty cost,
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E.E corresponds to the probability that a reservation shows up at the departure

time and F.F corresponds to the ratio of the total expected demand to the total

expected capacity. In other words, following the notation in Section 5.1, A, B,

(C.C, D.D), EE and F.F respectively correspond to N , κ, (δ, σ), q and ρ.

In all of our data sets, we assume that we serve N spokes out of a single hub.

Location 0 corresponds to the hub and locations {1, . . . , N} correspond to the

spokes. The itineraries that connect the hub to a spoke or a spoke to the hub

include one flight leg. The itineraries that connect two spokes include two flight

legs, one from the origin spoke to the hub and one from the hub to the destination

spoke.

Table A.5 shows the organization of the data file for a test problem with τ = 3

and N = 2. The character “#” indicates a comment line and such lines are skipped.

The entries in the five portions of the data file have the following interpretations.

The first portion of the data file shows the number of time periods in the planning

horizon. The second portion of the data file shows the flight legs in the airline

network. The first line in this portion shows the number of flight legs. After

this first line, each line corresponds to one flight leg and shows the origin location,

destination location and capacity of the flight leg. The third portion of the data file

shows the itineraries. The first line in this portion shows the number of itineraries.

After this first line, each line corresponds to one itinerary and shows the origin

location, destination location, fare level, revenue and penalty cost for the itinerary.

Fare level 0 indicates a low fare itinerary and fare level 1 indicates a high fare

itinerary. We emphasize that the itineraries that connect two spokes include two

flight legs, one from the origin spoke to the hub and one from the hub to the

destination spoke. The fourth portion of the data file shows the arrival probabilities
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for the requests for different itineraries.

Table A.5: Organization of the data file for a test problem with τ = 3 and
N = 2.

# beginning of data file
# portion 1
# number of time periods indecision horizon 3

# portion 2
# list of flights [in format origin location, destination location, capacity]
# first line is number of flights
4
1 0 16
2 0 21
0 1 12
0 2 20

# portion 3
# list of itineraries [in format origin location, destination location,
# fare level, revenue, penalty cost]
# first line is number of itineraries
7
0 1 0 24.0 48.0
0 1 1 192.0 384.0
0 2 0 34.0 68.0
1 0 0 192.0 384.0
1 2 0 53.0 106.0
2 1 0 53.0 106.0
2 1 1 212.0 442.0

# portion 4
# list of request arrival probabilities [in format itinerary, probability]
# first entry in each line indicates time period
0 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1
1 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1
2 [0 1 0] 0.1 [0 1 1] 0.1 [0 2 0] 0.1 [1 0 0] 0.1 [1 2 0] 0.1

# portion 5
# list of show up probabilities [in format itinerary, probability]
[0 1 0] 0.9
[0 1 1] 0.9
[0 2 0] 0.9
[1 0 0] 0.9
[1 2 0] 0.9
[2 1 0] 0.9
[2 1 1] 0.9

# end of data file
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Each line in this portion corresponds to a time period in the planning horizon. Each

line first shows an itinerary indicated by the triplet [origin location, destination

location, fare level], followed by the probability that we observe a request for this

itinerary. For example, the probability that we observe a request for the low fare

itinerary from location 2 to 1 at the first time period is 0.2. Since we may not

observe any itinerary arrivals at a particular time period, the probabilities in a

particular line do not necessarily add up to one. The fifth portion of the data

file shows the show up probabilities. Each line in this portion corresponds to one

itinerary. Each line first shows an itinerary indicated by the triplet [origin location,

destination location, fare level], followed by the probability that a reservation for

this itinerary shows up at the departure time.
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Chapter 3

Using Decomposition Methods to Solve

Pricing Problems in Network Revenue

Management

3.1 Introduction

Capacity allocation has traditionally been regarded as the prevalent control policy

for the network revenue management systems operated by the airlines. In partic-

ular, a capacity allocation policy fixes the prices for the itineraries at prespecified

levels and decides which itineraries to close and which itineraries to keep open for

sale so as to maximize the total expected revenue. It has been argued that the air-

lines are suitable for capacity allocation since their promotion and administrative

needs require them to fix the prices for the itineraries in advance of the sales and a

capacity allocation policy indeed allows them to work with fixed prices. However,

this argument has started to lose its validity with the advent of online sales chan-

nels allowing the airlines to dynamically adjust the prices for the itineraries as the

sales take place. As a result, pricing has started to emerge as a feasible control

policy for the network revenue management systems operated by the airlines.

One of the traditional approaches for making pricing decisions in network rev-

enue management problems is based on a deterministic linear program. This deter-

ministic linear program assumes that the arrivals of the itinerary requests are given

by deterministic functions of the prices. The decision variables correspond to the

numbers of time periods in the planning horizon for which we charge the different

price levels for the itineraries. The deterministic linear program dates back to the
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work of Gallego and van Ryzin (1997) and it has received a lot of attention from

academics and practitioners over the years, but due to its deterministic nature, it

is not able to capture the temporal dynamics of the itinerary requests accurately.

In this paper, we propose two new methods suitable for making pricing deci-

sions in network revenue management problems. In the setting we consider, the

probability of observing a request for an itinerary depends on the prices that we

charge for the itineraries and the objective is to dynamically adjust the prices so

as to maximize the total expected revenue. Both of the methods that we pro-

pose use the deterministic linear program mentioned above as a starting point.

In particular, by using the dual solution to the deterministic linear program, we

first allocate the immediate revenue associated with a certain price level among

the different flight legs. Once we have allocated the immediate revenue associated

with a certain price level among the different flight legs, we can solve a sequence

of revenue management problems, each taking place over a single flight leg. In the

single leg revenue management problem that takes place over a particular flight

leg, if we charge a certain price level for a certain itinerary, then the revenue that

we obtain is given by the portion of the price level that is allocated to the flight

leg. By solving the dynamic programming formulation of the single leg revenue

management problem for each flight leg, we obtain a value function from each one

of the flight legs, in which case, we sum up these value functions to obtain a value

function approximation for the original network revenue management problem. Ul-

timately, both of the methods that we propose construct separable approximations

to the value functions.

The methods that we propose in this paper provide advantages when compared

with the deterministic linear program. To begin with, since our methods use dy-
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namic programming formulations for the single leg revenue management problems,

they are likely to capture the temporal dynamics of the itinerary requests more

accurately than the deterministic linear program. In addition, it is possible to

show that the deterministic linear program provides an upper bound on the total

expected revenue obtained by the optimal control policy. Such upper bounds be-

come useful when we assess the optimality gap of a suboptimal control policy. We

show that our methods also obtain upper bounds on the optimal total expected

revenue and the upper bounds obtained by our methods are provably tighter than

those from the deterministic linear program. Finally, our computational experi-

ments demonstrate that the two methods that we propose can provide substantial

improvements over the deterministic linear program. Averaging over all of the test

problems in our experimental setup, we observe that the gap between the total

expected revenues obtained by our methods and the deterministic linear program

is 7.11%, whereas the gap between the upper bounds obtained by our methods and

the deterministic linear program is 3.66%.

The basic idea behind the two methods that we propose is to decompose the

pricing problem over an airline network by the flight legs and to obtain value

function approximations by solving a sequence of single leg revenue management

problems. Therefore, our methods can be visualized as dynamic programming

decomposition approaches. There are some other dynamic programming decom-

position approaches in the literature that try to construct good control policies by

focusing on one flight leg at a time. However, these approaches exclusively use

capacity control policies, whereas our focus is on pricing. To our knowledge, there

are few practical algorithms for pricing and the transition from capacity control to

pricing is nontrivial and practically important. Zhang and Adelman (2009) were

the first to show that a dynamic programming decomposition approach can pro-
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vide upper bounds on the optimal total expected revenue in the capacity allocation

setting. Liu and van Ryzin (2008) use dynamic programming decomposition ap-

proaches to model customer choice behavior, where each customer observes the set

of itineraries that are available for sale and makes a choice among them. Topaloglu

(2009) demonstrates that it is possible to develop dynamic programming decom-

position approaches by using a suitable Lagrangian relaxation argument on the

dynamic programming formulation of a capacity allocation problem. Erdelyi and

Topaloglu (2009b) follow a dynamic programming decomposition idea to develop

a joint capacity allocation and overbooking model.

Although pricing is a fundamental control mechanism in network revenue man-

agement, most of the pricing papers in the literature focus on pricing a single

product in isolation, whereas the network revenue management setting requires

pricing multiple itineraries that interact with each other. Gallego and van Ryzin

(1994) analyze the problem of dynamically adjusting the price of a single product

and characterize the form of the optimal policy. They also show that a single price

policy is asymptotically optimal as the initial inventory of the product and the

length of the selling horizon increases linearly at the same rate. Feng and Gallego

(2000), Feng and Xiao (2000) and Zhao and Zheng (2000) extend the analysis in

Gallego and van Ryzin (1994) to incorporate more complicated demand dynamics

and pricing constraints. Feng and Gallego (1995) consider the case where the price

of a product can be adjusted only once, either from high to low or from low to high.

They characterize the optimal timing of the price change. Maglaras and Meissner

(2006) establish that certain pricing problems can be converted into equivalent

capacity allocation problems and this result immediately allows them to extend

the structural properties for capacity allocation problems to pricing problems.
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The literature is thinner when we focus on pricing over an airline network.

Gallego and van Ryzin (1997) propose a deterministic optimization problem for

pricing multiple itineraries that interact with each other. They show that the pric-

ing decisions made by this deterministic optimization problem are asymptotically

optimal in the same sense as in Gallego and van Ryzin (1994). We use a variant of

their approach as a benchmark strategy in our computational experiments. Kley-

wegt (2001b) develops a joint pricing and overbooking model, where the itinerary

requests are deterministic functions of the prices and he solves the model by using

Lagrangian duality arguments. Zhang and Cooper (2006) consider the problem of

pricing substitutable flights that operate between the same origin destination pair.

They build upper and lower bounds on the value functions and use these bounds

to construct pricing policies, but their approach does not appear to extend to a

general airline network. Kunnumkal and Topaloglu (2009b) propose a stochastic

approximation algorithm for making pricing decisions over an airline network. The

review papers by McGill and van Ryzin (1999), Bitran and Caldentey (2003) and

Elmaghraby and Keskinocak (2003) and the book by Talluri and van Ryzin (2004)

provide extensive coverage of pricing models in network revenue management.

In this paper, we make the following research contributions. 1) We develop two

methods for making pricing decisions in network revenue management problems.

Our methods are based on decomposing the pricing problem over an airline network

by the flight legs and obtaining value function approximations by focusing on one

flight leg at a time. Since our methods use dynamic programming formulations,

they capture the temporal dynamics of the itinerary requests more accurately than

the deterministic linear program mentioned above. 2) We show that both of our

methods provide upper bounds on the total expected revenue obtained by the opti-

mal control policy. It is possible to show that the deterministic linear program also
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provides such an upper bound, but the upper bounds provided by our methods are

provably tighter than those provided by the deterministic linear program. 3) Our

computational experiments demonstrate that the methods that we propose can

provide substantial improvements over the deterministic linear program. On aver-

age, the total expected revenues obtained by our methods improve those obtained

by the deterministic linear program by 7.11% and there are test problems where

the performance gap can be as high as 17.02%. Similarly, the average gap between

the upper bounds obtained by our methods and the deterministic linear program

is 3.66% and there are test problems where the gap between the upper bounds is

as high as 7.98%. Furthermore, our computational experiments indicate that the

two methods that we propose complement each other as they provide improve-

ments over the deterministic linear program. In particular, one of the methods is

successful in obtaining tight upper bounds on the optimal total expected revenue,

whereas the other method is successful in identifying pricing policies that yield

high total expected revenues.

The rest of the paper is organized as follows. In Section 3.2, we formulate the

pricing problem over an airline network as a dynamic program. Then, in Section

3.3, we describe the deterministic linear program, show that it provides an upper

bound on the optimal total expected revenue and demonstrate how it can be used

to construct a pricing policy. Sections 3.4 and 3.5 propose two new methods for

making pricing decisions. In each one of these sections, we focus on one of the

two methods and show that the method in question provides an upper bound on

the optimal total expected revenue and this upper bound is tighter than the one

provided by the deterministic linear program. Furthermore, we demonstrate how

our methods can be used to construct pricing policies. Next, Section 3.6 provides

computational experiments. Finally, in Section 3.7, we conclude.
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3.2 Problem Formulation

We have a set of flight legs that can be used to serve the requests for itineraries

that arrive randomly over time. At each time period, we adjust the prices for the

itineraries, which, in turn, determine the probability of observing a request for an

itinerary. Pricing serves as the only control mechanism and we do not have the

option of rejecting an itinerary request. Whenever there is an itinerary request,

we accept the itinerary request, generate a revenue that reflects the price for the

itinerary and consume the capacities on the relevant flight legs. The objective is to

adjust the prices for the itineraries over time so as to maximize the total expected

revenue.

The problem takes place over the finite planning horizon T = {1, . . . , τ} and

time period τ +1 is the departure time of the flight legs. A time period corresponds

to a small enough interval of time that there is at most one itinerary request at

each time period. This is a standard modeling approach in the network revenue

management literature. The set of flight legs in the airline network is L and the

set of itineraries is J . The total available capacity on flight leg i is ci. If we

serve a request for itinerary j, then we consume aij units of capacity on flight leg

i. For notational brevity, we denote Aj = {aij : i ∈ L} the resources consumed

by itinerary j. The set of possible prices for itinerary j is given by the finite set

{pk
j : k ∈ K} and the price that we charge for itinerary j has to take a value in this

set. If we charge the price pk
j for itinerary j, then we observe a request for itinerary

j at a time period with probability λk
j . For notational brevity, we let rk

j = λk
j pk

j so

that rk
j is the expected revenue that we generate at a time period from itinerary j

when we charge the price pk
j for this itinerary. Throughout the paper, we employ

a few assumptions for the price and probability pairs {(pk
j , λ

k
j ) : k ∈ K}. First,
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we assume that
∑

j∈J maxk∈K{λk
j} ≤ 1 so that irrespective of the prices that we

charge, there is at most one itinerary request at each time period. Second, we

assume that there exists some φ ∈ K such that λφ
j = 0. In this case, if we do not

have enough capacity to serve a request for itinerary j, then we can simply charge

the price pφ
j to ensure that we do not observe a request for itinerary j. Third, as

implicitly evident from our notation, we assume that the probability of observing

a request for itinerary j depends only on the price for itinerary j, but not on the

prices for the other itineraries. This assumption is reasonable when the itineraries

do not serve as substitutes of each other. Furthermore, it is relatively simple to

relax this assumption and we point out possible relaxations throughout the paper.

We use xit to denote the remaining capacity on flight leg i at the beginning

of time period t so that xt = {xit : i ∈ L} gives the state of the remaining leg

capacities. We use ut = {uk
jt : j ∈ J , k ∈ K} to capture the decisions at time

period t, where uk
jt = 1 if we charge the price pk

j for itinerary j at time period t

and uk
jt = 0 otherwise. In this case, the set of feasible decisions at time period t is

given by

U(xt) =
{

ut ∈ {0, 1}|J ||K| :
∑

k∈K
aij λk

j uk
jt ≤ xit ∀ i ∈ L, j ∈ J (3.1)

∑

k∈K
uk

jt = 1 ∀j ∈ J
}

. (3.2)

Since λφ
j = 0, constraints (3.1) ensure that if we do not have enough capacity

to serve a request for itinerary j, then we charge the price pφ
j for this itinerary.

Constraints (3.2) ensure that each itinerary is offered at a single price at each time

period. We use Vt(xt) to denote the maximum total expected revenue that can

be obtained over the time periods {t, . . . , τ} given that the state of the remaining

leg capacities at the beginning of time period t is xt. We can evaluate the value
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functions {Vt(·) : t ∈ T } by solving the optimality equation

Vt(xt) = max
ut∈U(xt)

{ ∑
j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Vt+1(xt − Aj)
}

+
[
1−

∑
j∈J

∑

k∈K
uk

jt λ
k
j

]
Vt+1(xt)

}
(3.3)

with the boundary condition that Vτ+1(·) = 0. If the state of the remaining leg

capacities at the beginning of time period t is given by xt, then we can find the

optimal pricing decisions by solving the problem on the right side of the optimality

equation in (3.3).

Unfortunately, the optimality equation in (3.3) involves a high dimensional

state variable and the computation of {Vt(·) : t ∈ T } easily gets intractable for

practical problems. In the next section, we begin by formulating a linear program-

ming approximation to the optimality equation in (3.3). This linear program later

serves as a starting point for our solution methods.

3.3 Deterministic Linear Program

Under the assumption that the itinerary requests take on their expected values,

it is possible to formulate a deterministic linear program to approximate the total

expected revenue over the planning horizon. In particular, letting wk
j be the num-

ber of time periods at which we charge the price pk
j for itinerary j, we can solve
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the problem

max
∑
j∈J

∑

k∈K
rk
j wk

j (3.4)

subject to
∑
j∈J

∑

k∈K
aij λk

j wk
j ≤ ci ∀ i ∈ L (3.5)

∑

k∈K
wk

j = τ ∀ j ∈ J (3.6)

wk
j ≥ 0 ∀ j ∈ J , k ∈ K (3.7)

to approximate the total expected revenue. In the problem above, the objec-

tive function accounts for the total expected revenue over the planning horizon.

Constraints (3.5) ensure that our decisions do not violate the leg capacities. Con-

straints (3.6) ensure that the total number of time periods at which we charge the

different prices is equal to the number of time periods in the planning horizon.

There are two uses of problem (3.4)-(3.7). First, the optimal objective value

of problem (3.4)-(3.7) provides an upper bound on the total expected revenue

obtained by the optimal control policy. Such an upper bound becomes useful

when assessing the optimality gap of a suboptimal control policy. In particular, if

we denote c = {ci : i ∈ L} the vector of available capacities on the flight legs, V1(c)

is the optimal total expected revenue over the planning horizon. In this case, if we

let ẑLP be the optimal objective value of problem (3.4)-(3.7), the next proposition

shows that ẑLP provides an upper bound on V1(c). The proofs of all of our results

can be found in the Appendix B.

Proposition 3.3.1 We have V1(c) ≤ ẑLP .

Gallego and van Ryzin (1997) show an analogue of Proposition 3.3.1. The ap-

pealing aspect of their result is that they assume that the prices can take values
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over a continuum and the itinerary requests arrive in continuous time according a

Poisson process. However, their result requires that the expected revenue from an

itinerary is a concave function of the arrival probability, whereas Proposition 3.3.1

does not make an assumption for the relationship between rk
j and λk

j .

A second use of problem (3.4)-(3.7) occurs when we try to make the pricing

decisions. In particular, if we let {ŵk
j : j ∈ J , k ∈ K} be the optimal solution

to problem (3.4)-(3.7), then one alternative for making the pricing decisions is to

charge the price pk
j for itinerary j with probability ŵk

j /τ at each time period. If we

do not have enough capacity to serve a request for itinerary j, then we naturally

charge the price pφ
j for itinerary j. We refer to this decision rule as DLP-P, where

DLP stands for deterministic linear program and P stands for primal. Another

alternative for making the pricing decisions is to use the optimal dual solution to

problem (3.4)-(3.7). In particular, if we let {π̂i : i ∈ L} be the optimal values

of the dual variables associated with constraints (3.5) in problem (3.4)-(3.7), then

we can use π̂i to capture the opportunity cost of a seat on flight leg i. This

allows us to approximate the value functions {Vt(·) : t ∈ T } with linear functions

{Ṽt(·) : t ∈ T } of the form Ṽt(xt) =
∑

i∈L π̂i xit. In this case, we can replace the

value functions {Vt(·) : t ∈ T } on the right side of problem (3.3) with the linear

value function approximations {Ṽt(·) : t ∈ T } and solve this problem to make the

pricing decisions at time period t. We refer to this decision rule as DLP-D, where

D stands for dual.

Closing this section, we briefly elaborate on how to extend problem (3.4)-(3.7)

to cover the case where the probability of observing a request for itinerary j does

not depend only on the price for itinerary j, but also on the prices for the other

itineraries. To cover this case, we let {pk : k ∈ K} be the set of possible joint
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prices for the itineraries, where the vector pk = {pk
j : j ∈ J } includes the prices

of all itineraries. If we charge the prices pk for the itineraries, then we observe

a request for itinerary j at a time period with probability λk
j and λk

j can depend

on the whole vector of prices pk. In this case, if we let wk be the number of time

periods at which we charge the prices pk for the itineraries, then all we need to

do is to replace the decision variables {wk
j : j ∈ J } in problem (3.4)-(3.7) with a

single decision variable wk. In this case, the objective function of problem (3.4)-

(3.7) becomes
∑

k∈K
∑

j∈J rk
j wk, where the term

∑
j∈J rk

j can be interpreted as

the expected revenue that we generate at a time period from all itineraries when we

charge the prices pk. The first set of constraints become
∑

k∈K
∑

j∈J aij λk
j wk ≤ ci

for all i ∈ L, where the term
∑

j∈J aij λk
j can be interpreted as the expected

capacity consumption at a time period on flight leg i when we charge the prices

pk. The second set of constraints become
∑

k∈K wk = τ . We note that the number

of possible joint prices {pk : k ∈ K} can be very large in a practical application,

which implies that the number of decision variables in problem (3.4)-(3.7) can also

be very large. However, the number of constraints in problem (3.4)-(3.7) is always

manageable. Therefore, we can solve problem (3.4)-(3.7) in a tractable fashion by

using column generation.

3.4 Decomposition by Revenue Allocation

A shortcoming of the DLP-P and DLP-D decision rules is that they are based

on the assumption that the itinerary requests take on their expected values. In

this section, we build on problem (3.4)-(3.7) to develop a decision rule that ad-

dresses the stochastic nature of the itinerary requests more accurately. We begin

by augmenting the set of flight legs with a fictitious flight leg ψ so that the set
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of flight legs becomes L ∪ {ψ}. We assume that none of the itineraries use the

fictitious flight leg so that its capacity is irrelevant. In this case, using the decision

variables {wk
ij : i ∈ L ∪ {ψ}, j ∈ J , k ∈ K} instead of the decision variables

{wk
j : j ∈ J , k ∈ K}, we observe that problem (3.4)-(3.7) is equivalent to the

problem

max
∑
j∈J

∑

k∈K
rk
j wk

ψj (3.8)

subject to
∑
j∈J

∑

k∈K
aij λk

j wk
ij ≤ ci ∀ i ∈ L (3.9)

∑

k∈K
wk

ij = τ ∀ i ∈ L, j ∈ J (3.10)

wk
ψj − wk

ij = 0 ∀ i ∈ L, j ∈ J , k ∈ K (3.11)

wk
ij ≥ 0 ∀ i ∈ L, j ∈ J , k ∈ K. (3.12)

To see the equivalence between problems (3.4)-(3.7) and (3.8)-(3.12), we note that

we can use constraints (3.11) to replace all of the decision variables {wk
ij : i ∈ L}

in problem (3.8)-(3.12) with a single decision variable wk
ψj. In this case, we can

drop constraints (3.11) from problem (3.8)-(3.12) and problems (3.4)-(3.7) and

(3.8)-(3.12) become equivalent to each other. Therefore, recalling the notation in

Section 3.3, we note that the optimal objective value of problem (3.8)-(3.12) is still

ẑLP .

We let {µ̂k
ij : i ∈ L, j ∈ J , k ∈ K} be the optimal values of the dual

variables associated with constraints (3.11) in problem (3.8)-(3.12). If we dualize

these constraints by associating the multipliers {µ̂k
ij : i ∈ L, j ∈ J , k ∈ K} with

them, then the objective function of problem (3.8)-(3.12) reads
∑

j∈J
∑

k∈K[rk
j −

∑
i∈L µ̂k

ij] w
k
ψj +

∑
i∈L

∑
j∈J

∑
k∈K µ̂k

ij wk
ij. By the constraints in the dual of problem

(3.8)-(3.12) associated with the decision variables {wk
ψj : j ∈ J , k ∈ K}, we have

∑
i∈L µ̂k

ij = rk
j for all j ∈ J , k ∈ K. Therefore, the term [rk

j −
∑

i∈L µ̂k
ij] in the last
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expression is equal to zero and the optimal objective value of problem (3.8)-(3.12)

is equal to the optimal objective value of the problem

max
∑
i∈L

∑
j∈J

∑

k∈K
µ̂k

ij wk
ij (3.13)

subject to (3.9), (3.10), (3.12). (3.14)

The crucial observation here is that the objective function and all of constraints

(3.9), (3.10) and (3.12) in problem (3.13)-(3.14) decompose by the flight legs.

This implies that problem (3.13)-(3.14) decomposes into |L| subproblems and the

subproblem corresponding to flight leg i has the form

max
∑
j∈J

∑

k∈K
µ̂k

ij wk
ij (3.15)

subject to
∑
j∈J

∑

k∈K
aij λk

j wk
ij ≤ ci (3.16)

∑

k∈K
wk

ij = τ ∀ j ∈ J (3.17)

wk
ij ≥ 0 ∀ j ∈ J , k ∈ K. (3.18)

Summing up the discussion in the last two paragraphs, if we let ẑi
LP be the optimal

objective value of problem (3.15)-(3.18), then we have ẑLP =
∑

i∈L ẑi
LP .

Comparing problem (3.15)-(3.18) with problem (3.4)-(3.7), we observe that

problem (3.15)-(3.18) corresponds to the deterministic linear program for a revenue

management problem that takes place over the single flight leg i. In this single leg

revenue management problem, if we charge the price pk
j for itinerary j, then the

expected revenue that we generate at a time period from itinerary j is given by

µ̂k
ij. Therefore, we can visualize µ̂k

ij as the portion of the expected revenue rk
j that

is allocated to flight leg i. Since by Proposition 3.3.1, the optimal objective value

of the deterministic linear program provides an upper bound on the optimal total

64



expected revenue, ẑi
LP provides an upper bound on the optimal total expected

revenue in the single leg revenue management problem that takes place over flight

leg i.

On the other hand, we can compute the optimal total expected revenue in the

single leg revenue management problem that takes place over flight leg i by solving

the optimality equation

vi
t(xit) = max

ut∈U i(xit)

{ ∑
j∈J

∑

k∈K
uk

jt

{
µ̂k

ij + λk
j vi

t+1(xit − aij)
}

+
[
1−

∑
j∈J

∑

k∈K
uk

jt λ
k
j

]
vi

t+1(xit)

}
(3.19)

with the boundary condition that vi
τ+1(·) = 0. The optimality equation above is

similar to the one in (3.3), but the state variable only keeps track of the remaining

capacity on flight leg i. The superscript i in the value functions emphasizes that

the optimality equation above computes the optimal total expected revenue for

the single leg revenue management problem that takes place over flight leg i. The

set of feasible decisions U i(xit) is given by

U i(xit) =
{

ut ∈ {0, 1}|J ||K| :
∑

k∈K
aij λk

j uk
jt ≤ xit and

∑

k∈K
uk

jt = 1 ∀j ∈ J
}

.

We note that the definition of U i(xit) is similar to that of U(xt) in (3.1)-(3.2), but

U i(xit) only imposes the capacity availability on flight leg i.

The optimal total expected revenue in the single leg revenue management prob-

lem that takes place over flight leg i is given by vi
1(ci). Furthermore, by the discus-

sion above, ẑi
LP provides an upper bound on the optimal total expected revenue

in this single leg revenue management problem. This implies that vi
1(ci) ≤ ẑi

LP .

If we add over all i ∈ L and recall that we have
∑

i∈L ẑi
LP = ẑLP , then we ob-

tain
∑

i∈L vi
1(ci) ≤ ẑLP . On the other hand, the next proposition shows that
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V1(c) ≤
∑

i∈L vi
1(ci) and we obtain V1(c) ≤

∑
i∈L vi

1(ci) ≤ ẑLP . Therefore, we can

solve the optimality equation in (3.19) to obtain an upper bound on the optimal

total expected revenue and this upper bound is tighter than the one provided by

the optimal objective value of problem (3.4)-(3.7). Solving the optimality equa-

tion in (3.19) is tractable since this optimality equation involves a one-dimensional

state variable.

Proposition 3.4.1 We have Vt(xt) ≤
∑

i∈L vi
t(xit) for all t ∈ T .

In addition to bounding the optimal total expected revenue, we can use the

optimality equation in (3.19) to make the pricing decisions. In particular, we can

approximate the value functions {Vt(·) : t ∈ T } with separable upper bounds

{Ṽt(·) : t ∈ T } of the form Ṽt(xt) =
∑

i∈L vi
t(xit). In this case, we can replace the

value functions {Vt(·) : t ∈ T } on the right side of problem (3.3) with the separable

value function approximations {Ṽt(·) : t ∈ T } and solve this problem to make the

pricing decisions at time period t. We refer to this decision rule as DRA, standing

for decomposition by revenue allocation. Our choice of terminology is motivated

by the fact that {µ̂k
ij : i ∈ L} serve as the portions of the expected revenue rk

j that

are allocated to the different flight legs.

3.5 Decomposition by Leg Relaxation

In this section, we describe a second decision rule that also addresses the stochastic

nature of the itinerary requests. Similar to the DRA decision rule in the previous

section, the starting point for this decision rule is a duality argument on problem

(3.4)-(3.7), but the specifics of the duality argument are different. We let {π̂i : i ∈
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L} be the optimal values of the dual variables associated with constraints (3.5) in

problem (3.4)-(3.7). We pick an arbitrary flight leg i and relax constraints (3.5)

for all other flight legs by associating the dual multipliers {π̂l : l ∈ L \ {i}}. In

this case, by linear programming duality, problem (3.4)-(3.7) has the same optimal

objective value as the problem

max
∑
j∈J

∑

k∈K

[
rk
j −

∑

l∈L\{i}
alj λk

j π̂l

]
wk

j +
∑

l∈L\{i}
π̂l cl (3.20)

subject to
∑
j∈J

∑

k∈K
aij λk

j wk
j ≤ ci (3.21)

(3.6), (3.7). (3.22)

We recall that we use ẑLP to denote this common optimal objective value. Ignor-

ing the constant term
∑

l∈L\{i} π̂l cl in the objective function above and comparing

problem (3.20)-(3.22) with problem (3.4)-(3.7), we observe that problem (3.20)-

(3.22) corresponds to the deterministic linear program for a revenue management

problem that takes place over the single flight leg i. In this single leg revenue

management problem, if we charge the price level k for itinerary j, then the ex-

pected revenue that we generate at a time period from itinerary j is given by

rk
j −

∑
l∈L\{i} alj λk

j π̂l. Since by Proposition 3.3.1, the optimal objective value of

the deterministic linear program provides an upper bound on the optimal total

expected revenue, ẑLP −
∑

l∈L\{i} π̂l cl provides an upper bound on the optimal

total expected revenue in the single leg revenue management problem that takes

place over flight leg i.

We can use an optimality equation similar to the one in (3.19) to compute the

optimal total expected revenue in the single leg revenue management problem that
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takes place over flight leg i. In particular, this optimality equation is given by

ϑi
t(xit) = max

ut∈U i(xit)

{ ∑
j∈J

∑

k∈K
uk

jt

{
rk
j −

∑

l∈L\{i}
alj λk

j π̂l + λk
j ϑi

t+1(xit − aij)
}

+
[
1−

∑
j∈J

∑

k∈K
uk

jt λ
k
j

]
ϑi

t+1(xit)

}
(3.23)

with the boundary condition that ϑi
τ+1(·) = 0. The optimal total expected revenue

in the single leg revenue management problem that takes place over flight leg i is

ϑi
1(ci) and by the discussion in the previous paragraph, we have ϑi

1(ci) ≤ ẑLP −
∑

l∈L\{i} π̂l cl. On the other hand, the next proposition shows that V1(c) ≤ ϑi
1(ci)+

∑
l∈L\{i} π̂l cl and we obtain V1(c) ≤ ϑi

1(ci)+
∑

l∈L\{i} π̂l cl ≤ ẑLP . Therefore, we can

solve the optimality equation in (3.23) to obtain an upper bound on the optimal

total expected revenue and this upper bound is tighter than the one provided by

the optimal objective value of problem (3.4)-(3.7). Furthermore, since the choice of

flight leg i is completely arbitrary, the last chain of inequalities hold for all i ∈ L,

in which case, we can take the minimum over all i ∈ L and use

min
i∈L

{
ϑi

1(ci) +
∑

l∈L\{i}
π̂l cl

}

as the tightest possible upper bound on the optimal total expected revenue and

this upper bound is also tighter than the one provided by ẑLP .

Proposition 3.5.1 We have Vt(xt) ≤ ϑi
t(xit)+

∑
l∈L\{i} π̂l xlt for all i ∈ L, t ∈ T .

Each of {ϑi
t(xit) +

∑
l∈L\{i} π̂l xlt : i ∈ L} provides an upper bound on Vt(xt),

but it is not clear which one of these upper bounds to use as a value function

approximation when making the pricing decisions. A natural approach is to average

over all i ∈ L and make the pricing decisions by using

Ṽt(xt) =
1

|L|
∑
i∈L

{
ϑi

t(xit) +
∑

l∈L\{i}
π̂l xlt

}
(3.24)
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as an approximation to Vt(xt). Unfortunately, this idea does not perform too much

better than the DLP-D decision rule. To see the reason, we first observe that if

we make the pricing decisions by replacing the value functions {Vt(·) : t ∈ T } in

problem (3.3) by any value function approximations {Ṽt(·) : t ∈ T }, then we need

to solve a problem of the form

max
ut∈U(xt)

{ ∑
j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Ṽt+1(xt − Aj)
}

+
[
1−

∑
j∈J

∑

k∈K
uk

jt λ
k
j

]
Ṽt+1(xt)

}

= max
ut∈U(xt)

{ ∑
j∈J

∑

k∈K
uk

jt

{
rk
j + λk

j Ṽt+1(xt − Aj)− λk
j Ṽt+1(xt)

}}
+ Ṽt+1(xt).

(3.25)

Focusing on the second problem above, since the last term Ṽt+1(xt) is independent

of the pricing decisions at time period t, we observe that the term that really affects

the quality of the pricing decisions is the difference Ṽt+1(xt)− Ṽt+1(xt − Aj).

We proceed to compare the form of the difference Ṽt+1(xt) − Ṽt+1(xt − Aj)

for the value function approximations used by the DLP-D decision rule and for

the value function approximations given in (3.24). As described in Section 3.3,

the value function approximations used by the DLP-D decision rule is of the form

Ṽt(xt) =
∑

i∈L π̂i xit for all t ∈ T . Therefore, for the value function approximations

used by the DLP-D decision rule, we have Ṽt+1(xt)− Ṽt+1(xt − Aj) =
∑

i∈L aij π̂i.

On the other hand, for the value function approximations given in (3.24), we have

Ṽt+1(xt)− Ṽt+1(xt − Aj) =
1

|L|
∑
i∈L

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}
.

(3.26)

We let Lj be the set of flight legs that are used by itinerary j. If i 6∈ Lj, then we

have aij = 0 by definition so that the sum in the curly brackets above can succinctly

be written as
∑

l∈L\{i} alj π̂l =
∑

l∈L alj π̂l whenever i 6∈ Lj. Furthermore, we have
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ϑi
t+1(xit)− ϑi

t+1(xit − aij) = 0 for all i 6∈ Lj. In this case, we can write (3.26) as

Ṽt+1(xt)− Ṽt+1(xt − Aj)

=
1

|L|

{ ∑

i∈Lj

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}
+

∑

i∈L\Lj

[ ∑

l∈L
alj π̂l

]}
.

(3.27)

One way to visualize the expression on the right side above is that each flight

leg contributes one term to the average. A flight leg i ∈ Lj contributes the term

ϑi
t+1(xit)− ϑi

t+1(xit − aij) +
∑

l∈L\{i} alj π̂l, whereas a flight leg i 6∈ Lj contributes

the term
∑

l∈L alj π̂l. In general, the number of flight legs in the airline network

that are not used by itinerary j is much larger than the number of flight legs

that are used by itinerary j. This implies that we would expect the average in

(3.27) to be dominated by the terms
∑

l∈L alj π̂l contributed by the flight legs that

are not used by itinerary j, in which case, the average in (3.27) would be very

close to
∑

l∈L alj π̂l. Therefore, for the value function approximations used by the

DLP-D decision rule and for the value function approximations given in (3.24), the

differences Ṽt+1(xt) − Ṽt+1(xt − Aj) are very similar to each other and using the

value function approximations in (3.24) does not provide too much improvement

over using the DLP-D decision rule.

To deal with this difficulty, instead of taking an average over all flight legs as

in (3.27), we only take an average over the flight legs i ∈ Lj. In particular, we

replace the difference Ṽt+1(xt)− Ṽt+1(xt − Aj) in problem (3.25) with

1

|Lj|
∑

i∈Lj

{
ϑi

t+1(xit)− ϑi
t+1(xit − aij) +

∑

l∈L\{i}
alj π̂l

}

and solve this problem to make the pricing decisions at time period t. We refer to

this decision rule as DLR, standing for decomposition by leg relaxation. Our choice

of terminology is motivated by the fact that the DLR decision rule is obtained by
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relaxing the capacity constraints in problem (3.4)-(3.7).

Both the DRA and DLR decision rules are obtained by building on problem

(3.4)-(3.7). Therefore, it is possible to follow the discussion at the end of Section

3.3 so as to extend the DRA and DLR decision rules to handle the case where the

probability of observing a request for itinerary j does not depend only on the price

for itinerary j, but also on the prices for the other itineraries.

3.6 Computational Experiments

In this section, we numerically compare the upper bounds and total expected

revenues obtained by the decision rules that we describe in Sections 3.3, 3.4 and

3.5.

3.6.1 Experimental Setup and Benchmark Strategies

In our computational experiments, we consider two types of functions that capture

the relationship between the price and the probability of observing an itinerary

request. In the first type of function, we assume that the probability of observing

an itinerary request is a linear function of the price. In particular, we let Λj(p) =

ρj [1− p/κj] so that if we charge the price p for itinerary j, then the probability of

observing a request for itinerary j at a time period is given by Λj(p). The parameter

ρj can be interpreted as the probability of observing a request for itinerary j

when we do not charge anything for this itinerary and the parameter κj can be

interpreted as the price sensitivity. The price for itinerary j ranges over the interval

[0, κj] so that we have Λj(p) ∈ [0, ρj] for all p ∈ [0, κj]. To work with a finite set of
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price and probability pairs {(pk
j , λ

k
j ) : k ∈ K}, we discretize the interval [0, ρj] into

40 equal pieces and focus on the probabilities λk
j = (k − 1)ρj/40 and the prices

pk
j = Λ−1

j (λk
j ) for all k = 1, . . . , 41, where Λ−1

j (·) denotes the functional inverse of

Λj(·). In the second type of function, we assume that the probability of observing

a request for an itinerary is an exponential function of the price. In particular, we

let Λj(p) = ρj e−p/κj , where the interpretations for ρj and κj are the same as in

the linear case. We assume that the price for itinerary j ranges over the interval

[0, ln(10) κj] so that we have Λj(p) ∈ [ρj/10, ρj] for all p ∈ [0, ln(10) κj]. Similar to

the linear case, we discretize the interval [ρj/10, ρj] into 40 equal pieces and focus

on the probabilities λk
j = [ρj/10] + (k − 1) 9 ρj/400 and the prices pk

j = Λ−1
j (λk

j )

for all k = 1, . . . , 41. In addition to these 41 price and probability pairs, to obtain

some φ ∈ K such that λφ
j = 0, we assume that ∞ is an admissible price and if we

charge this price, then the probability of observing an itinerary request is zero.

Figure 3.1: Airline network with eight spokes.

Our test problems are based on those in Kunnumkal and Topaloglu (2009b).

We consider an airline network that serves N spokes from a single hub. There

is one flight leg from each spoke to the hub and another flight leg from the hub

to each spoke. Figure 3.1 shows the airline network with N = 8. There are two

itineraries associated with every possible origin destination pair. One of these
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itineraries is highly price sensitive and the other one is moderately price sensitive.

Therefore, there are 2N flight legs and 2N(N +1) itineraries, 4N of which include

one flight leg and 2N(N − 1) of which include two flight legs. The price sensitivity

associated with a highly price sensitive itinerary is κ times larger than the price

sensitivity associated with the corresponding moderately price sensitive itinerary.

To measure the tightness of the leg capacities, we let k̂j = argmaxk∈K{rk
j } so that

the price and probability pair (pk̂j

j , λk̂j

j ) maximizes the one period expected revenue

from itinerary j. If we charge the prices {pk̂j

j : j ∈ J } for the itineraries, then

the total expected demand for the capacity on flight leg i is τ
∑

j∈J aij λk̂j

j where

τ is the number of time periods in the planning horizon. Then, we measure the

tightness of the leg capacities by

γ =
τ

∑
i∈L

∑
j∈J aij λk̂j

j∑
i∈L ci

.

We use (T, N, γ, κ) to label our test problems, where T ∈ {L, E} denotes whether

{Λj(·) : j ∈ J } are linear or exponential functions and the remaining three

components are as described above. We vary (T,N, γ, κ) over {L, E} × {4, 8} ×
{1.2, 1.6, 2.0} × {2, 4, 8} and this provides 36 test problems.

We use three benchmark strategies. Our first benchmark strategy corresponds

to the DLP-P decision rule that we describe at the end of Section 3.3. Our practical

implementation of this decision rule divides the planning horizon into S equal

segments and resolves problem (3.4)-(3.7) at time periods {1 + (s − 1)τ/S : s =

1, . . . , S}. In particular, at the beginning of segment s, we replace the right side of

constraints (3.5) with the current remaining leg capacities {xi,1+(s−1)τ/S : i ∈ L}
and the right side of constraints (3.6) with the current remaining number of time

periods τ − (s− 1)τ/S. We solve problem (3.4)-(3.7) and letting {ŵk
j : j ∈ J , k ∈

K} be an optimal solution to this problem, we charge the price pk
j for itinerary

j with probability ŵk
j /[τ − (s − 1)τ/S] until we reach the beginning of the next
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segment. A few setup runs indicated that increasing S beyond 12 does not improve

the performance of the DLP-P decision rule noticeably so that we use S = 12.

The performances of the DLP-P and DLP-D decision rules turn out to be virtually

identical in all of our test problems and we do not provide detailed results for

the DLP-D decision rule. Our second benchmark strategy corresponds to the

DRA decision rule that we describe at the end of Section 3.4, whereas our third

benchmark strategy corresponds to the DLR decision rule that we describe at

the end of Section 3.5. For the DRA and DLR decision rules, it is also possible

to divide the planning horizon into equal segments and resolve problems (3.8)-

(3.12) and (3.4)-(3.7) at the beginning of each segment to obtain new values for

{µ̂k
ij : i ∈ L, j ∈ J , k ∈ K} and {π̂i : i ∈ L}, but it turns out that this extension

does not provide any noticeable improvement for these decision rules.

3.6.2 Computational Results

Our main computational results are summarized in Tables 3.1 and 3.2. In partic-

ular, Table 3.1 and 3.2 respectively show the results for the test problems where

{Λj(·) : j ∈ J } are linear and exponential functions. The first column in these

tables shows the problem characteristics. The second, third and fourth columns

respectively show the upper bounds on the optimal total expected revenue ob-

tained by DLP-P, DRA and DLR. The fifth and sixth columns show the percent

gaps between the upper bounds obtained by DRA and the remaining two bench-

mark strategies. The upper bounds obtained by DRA are consistently the tightest

and we use DRA as a reference when comparing the upper bounds. The seventh,

eighth and ninth columns respectively show the total expected revenues obtained

by DLP-P, DRA and DLR.
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We estimate these total expected revenues by simulating the performances of the

different benchmark strategies under multiple sample paths. We use common

random numbers when simulating the performances of the different benchmark

strategies and all of the performance gaps are statistically significant at 95% level.

The tenth and eleventh columns show the percent gaps between the total expected

revenues obtained by DLR and the remaining two benchmark strategies. The total

expected revenues obtained DLR are consistently the highest and we use DLR as a

reference when comparing the total expected revenues. The twelfth column reports

the percent gap between the most successful strategy, DLR, and the tightest bound

obtained by DRA.

Comparing the upper bounds obtained by the three benchmark strategies, we

observe that the upper bounds obtained by DRA are significantly tighter than those

obtained by DLP-P and DLR. For the test problems in Table 3.1, the average gap

between the upper bounds obtained by DRA and DLP-P is 3.28%, whereas the

average gap between the upper bounds obtained by DRA and DLR is 2.04%. When

we move to the test problems in Table 3.2, the upper bounds obtained by DRA

improve those obtained by DLP-P and DLR by respectively 3.94% and 2.57%

on average. There are test problems where the gap between the upper bounds

obtained by DRA and DLP-P is as high as 7.98% and the gap between the upper

bounds obtained by DRA and DLR is as high as 6.11%. In all of our test problems,

the upper bounds obtained by DRA are uniformly tighter than those obtained by

DLP-P and DLR.

Comparing the total expected revenues obtained by the three benchmark strate-

gies, we observe that DLR obtains significantly higher total expected revenues than

DLP-P and DRA. For the test problems in Table 3.1, the average gap between the
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total expected revenues obtained by DLR and DLP-P is 5.05%, whereas the aver-

age gap between the total expected revenues obtained by DLP and DRA is 2.94%.

When we move to the test problems in Table 3.2, the total expected revenues ob-

tained by DLR improve those obtained by DLP-P and DRA by respectively 9.17%

and 3.41% on average. There are test problems where the gap between the total

expected revenues obtained by DLR and DLP-P is as high as 17.02% and the gap

between the total expected revenues obtained by DLR and DRA is as high as

5.53%. In all of our test problems, the total expected revenues obtained by DLR

are uniformly higher than those obtained by DLP-P and DRA. Although the total

expected revenues obtained by DRA are not as high as those obtained by DLR,

DRA also provides significant improvements over DLP-P.
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Figure 3.2: Percent gaps between the upper bounds obtained by DRA and
the remaining two benchmark strategies for the test problems
where {Λj(·) : j ∈ J } are exponential functions.

DLP-P represents one of the traditional approaches for solving pricing problems

and our results indicate that DRA and DLR complement each other as they provide

improvements over DLP-P. In particular, DRA tightens the upper bounds and

allows us to assess the optimality gaps more accurately, whereas DLR obtains

higher total expected revenues. To give a feel for the problem parameters that
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affect the relative performances of the three benchmark strategies, Figure 3.2 plots

the gaps between the upper bounds obtained by DRA and the remaining two

benchmark strategies and Figure 3.3 plots the gaps between the total expected

revenues obtained by DLR and the remaining two benchmark strategies. The test

problems in the horizontal axis in these figures are arranged in such a fashion that

the first and last nine test problems respectively involve four and eight spokes.
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Figure 3.3: Percent gaps between the total expected revenues obtained by
DLR and the remaining two benchmark strategies for the test
problems where {Λj(·) : j ∈ J } are exponential functions.

nine test problems. The difference between the price sensitivities of the highly and

moderately price sensitive itineraries gets larger as we move from left to right within

a block of three test problems. For economy of space, Figures 3.2 and 3.3 consider

only the case where {Λj(·) : j ∈ J } are exponential functions. Figure 3.2 indicates

that the gaps between the upper bounds obtained by DRA and the remaining two

benchmark strategies get larger as the leg capacities get tighter, whereas Figure

3.3 indicates that the gaps between the total expected revenues obtained by DLR

and the remaining two benchmark strategies get larger as the difference in the

price sensitivities gets larger. If we had infinite capacity on the flight legs, then
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the different time periods in the planning horizon would not interact. In this case,

letting k̂j = argmaxk∈K{rk
j }, it would be trivially optimal to charge the prices

{pk̂j

j : j ∈ J } for the itineraries. Therefore, we intuitively expect the test problems

with tight leg capacities to be more difficult. On the other hand, if the difference in

the price sensitivities of the highly and moderately price sensitive itineraries gets

larger, then we use a richer set of prices to obtain good performance. Therefore,

we also intuitively expect the test problems with larger differences in the price

sensitivities to be more difficult. These observations indicate that DRA obtains

especially tighter upper bounds and DLR obtains especially higher total expected

revenues for the test problems that we intuitively expect to be more difficult.

Table 3.3: CPU seconds for DRA and DLR.

No. Time CPU Seconds
Pers. (τ) DRA DLR

180 3.43 0.44
360 4.17 1.34
720 7.67 5.02

1,440 22.16 19.52

No. CPU Seconds
Spokes (N) DRA DLR

4 0.68 0.58
6 1.81 1.06
8 4.17 1.34
10 9.05 1.74

Table 3.3 shows the CPU seconds for DRA and DLR with different numbers

of time periods in the planning horizon and with different numbers of spokes in

the airline network. All of our computational experiments are carried out on a

Pentium IV PC running Windows XP with 2.4 Ghz CPU and 1 GB RAM. The CPU

seconds for DRA correspond to the time required to solve problem (3.8)-(3.12) and

the optimality equation in (3.19), whereas the CPU seconds for DLR correspond

to the time required to solve problem (3.4)-(3.7) and the optimality equation in

(3.23). The results indicate that the CPU seconds for DRA are noticeably longer

than those for DLR. This discrepancy is due to the fact that DRA is based on

problem (3.8)-(3.12) and this problem is significantly larger than problem (3.4)-
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(3.7), which forms the starting point for DLR. Even for the largest test problems,

the CPU seconds for both DRA and DLR are quite reasonable. The CPU seconds

for DLP-P are on the order of a fraction of a second and we do not provide detailed

CPU seconds for DLP-P. Overall, considering their improvements over DLP-P in

terms of both upper bounds and total expected revenues, we conclude that DRA

and DLR are strong candidates for solving practical pricing problems.

3.7 Conclusions

In this paper, we developed two methods for making pricing decisions in network

revenue management problems. Both methods decompose the dynamic program-

ming formulation of the problem by the flight legs and solve dynamic programs

with one-dimensional state variables. We established that our methods obtain

upper bounds on the optimal total expected revenue and these upper bounds are

tighter than the one obtained by the deterministic linear program. Our computa-

tional experiments demonstrated significant improvements over the deterministic

linear program and indicated that the two methods complement each other. In

particular, the first method is useful in obtaining tight bounds on the optimal to-

tal expected revenue, whereas the pricing policy from the second method obtains

higher total expected revenues.
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APPENDIX

B Omitted proofs from Chapter 3

B.1 Proof of Proposition 3.3.1

We let {Ûk
jt : j ∈ J , k ∈ K, t ∈ T } be the pricing decisions under the optimal

control policy, where Ûk
jt = 1 if we charge the price pk

j for itinerary j at time period

t and Ûk
jt = 0 otherwise. Similarly, we let Ŝjt = 1 if we serve a request for itinerary

j at time period t under the optimal control policy and Ŝjt = 0 otherwise. We note

that {Ûk
jt : j ∈ J , k ∈ K, t ∈ T } and {Ŝjt : j ∈ J , t ∈ T } are random variables

and we have
∑

k∈K Ûk
jt = 1 for all j ∈ J , t ∈ T by the feasibility of the pricing

decisions. Furthermore, using Ûjt to denote the vector {Ûk
jt : k ∈ K}, we have

E{Ŝjt} = E{E{Ŝjt | Ûjt}} =
∑

k∈K E{Ŝjt | Ûk
jt = 1}P{Ûk

jt = 1} =
∑

k∈K λk
j E{Ûk

jt},
where the last equality follows from the fact that E{Ŝjt | Ûk

jt = 1} = λk
j and P{Ûk

jt =

1} = E{Ûk
jt} since Ûk

jt is a Bernoulli random variable. Under the optimal control

policy, the price that we charge for itinerary j at time period t is
∑

k∈K pk
j Ûk

jt.

Thus, letting Π̂ be the optimal total expected revenue, we have

Π̂ = E

{ ∑
t∈T

∑
j∈J

Ŝjt

[ ∑

k∈K
pk

j Ûk
jt

]}
=

∑
t∈T

∑
j∈J

∑

k∈K
pk

j E{Ŝjt Û
k
jt}

=
∑
t∈T

∑
j∈J

∑

k∈K
pk

j E{Ŝjt | Ûk
jt = 1}P{Ûk

jt = 1} =
∑
j∈J

∑

k∈K
pk

j λk
j

[ ∑
t∈T
E{Ûk

jt}
]
. (B.1)

On the other hand, since the itinerary requests that we serve satisfy the capacity

constraints, we have
∑

t∈T
∑

j∈J aij Ŝjt ≤ ci for all i ∈ L. Taking expectations in

the last inequality and noting that E{Ŝjt} =
∑

k∈K λk
j E{Ûk

jt}, we obtain

∑
t∈T

∑
j∈J

aij E{Ŝjt} =
∑
j∈J

∑

k∈K
aij λk

j

[∑
t∈T
E{Ûk

jt}
]
≤ ci. (B.2)
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By the feasibility of the pricing decisions, we have
∑

k∈K Ûk
jt = 1 for all j ∈ J ,

t ∈ T . If we take expectations and add over all time periods, then we obtain

∑

k∈K

[∑
t∈T
E{Ûk

jt}
]

= τ. (B.3)

By (B.2) and (B.3), {∑t∈T E{Ûk
jt} : j ∈ J , k ∈ K} is a feasible solution to problem

(3.4)-(3.7). Furthermore, the objective value provided by this feasible solution is
∑

j∈J
∑

k∈K rk
j [

∑
t∈T E{Ûk

jt}] = Π̂, where the equality follows by (B.1). Thus, the

optimal objective value of problem (3.4)-(3.7) is at least Π̂. 2

B.2 Proof of Proposition 3.4.1

We show the result by induction over the time periods. For time period τ + 1, we

have Vτ+1(·) = 0 and vi
τ+1(·) = 0 for all i ∈ L so that the result holds trivially for

time period τ +1. Assuming that the result holds for time period t+1 and letting

ût be the optimal solution to problem (3.3), we have

Vt(xt) =
∑
j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j Vt+1(xt − Aj)
}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

]
Vt+1(xt)

≤
∑
j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j

∑
i∈L

vi
t+1(xit − aij)

}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

] ∑
i∈L

vi
t+1(xit)

=
∑
i∈L

{ ∑
j∈J

∑

k∈K
ûk

jt

{
µ̂k

ij + λk
j vi

t+1(xit − aij)
}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

]
vi

t+1(xit)

}

≤
∑
i∈L

vi
t(xit),

where the first inequality follows from the induction assumption, the second equal-

ity follows from the fact that rk
j =

∑
i∈L µ̂k

ij for all j ∈ J , k ∈ K and the last
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inequality follows from the fact that ût is a feasible but not necessarily an optimal

solution to problem (3.19). 2

B.3 Proof of Proposition 3.5.1

We use an induction argument that is similar to the proof of Proposition 3.4.1.

For time period τ + 1, we have Vτ+1(·) = 0, ϑi
τ+1(·) = 0 for all i ∈ L and π̂l ≥ 0

for all l ∈ L by dual feasibility to problem (3.4)-(3.7). Therefore, the result holds

for time period τ + 1. Assuming that the result holds for time period t + 1 and

letting ût be the optimal solution to problem (3.3), we have

Vt(xt) =
∑
j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j Vt+1(xt − Aj)
}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

]
Vt+1(xt)

≤
∑
j∈J

∑

k∈K
ûk

jt

{
rk
j + λk

j ϑi
t+1(xit − aij) + λk

j

∑

l∈L\{i}
π̂l [xlt − alj]

}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

] [
ϑi

t+1(xit) +
∑

l∈L\{i}
π̂l xlt

]

=
∑
j∈J

∑

k∈K
ûk

jt

{
rk
j −

∑

l∈L\{i}
alj λk

j π̂l + λk
j ϑi

t+1(xit − aij)
}

+
[
1−

∑
j∈J

∑

k∈K
ûk

jt λ
k
j

]
ϑi

t+1(xit) +
∑

l∈L\{i}
π̂l xlt

≤
∑
i∈L

ϑi
t(xit) +

∑

l∈L\{i}
π̂l xlt,

where the first inequality follows from the induction assumption and the last in-

equality follows from the fact that ût is a feasible but not necessarily an optimal

solution to problem (3.23). 2
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Chapter 4

A Dynamic Programming

Decomposition Method for Capacity

Allocation Problems

4.1 Introduction

The problem of allocating limited capacity among competing jobs in a dynamic

fashion occurs in many settings. Clinics allocate appointment slots to patients

with different needs, production plants allocate production capacity to orders with

different priorities, hotels allocate room inventory to customers with different will-

ingness to pay amounts. Controlling such systems requires careful planning for

several reasons. To begin with, the decisions for the current day are made with

limited information about the future job arrivals. The problem is dynamic in the

sense that the future capacity that is not committed to the jobs that arrive today

can be committed to the jobs that arrive tomorrow. Finally, it is crucial to keep a

balance between committing the capacity to a lower priority job that is available

today and reserving the capacity for a potential higher priority job that may arrive

tomorrow.

In this paper, we consider a capacity allocation problem that captures the

tradeoffs described above. We have a fixed amount of daily processing capacity.

Jobs of different priorities arrive randomly over time and we need to decide which

jobs should be scheduled on which days. The jobs that are waiting to be processed

incur holding costs depending on their priority levels. The goal is to minimize the

total expected cost over a planning horizon. It is possible to formulate this problem
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as a dynamic program, but this formulation quickly gets intractable for practical

problem instances. To overcome this difficulty, we decompose the dynamic pro-

gramming formulation of the capacity allocation problem by booking days. As a

result, we obtain tractable approximations to the value functions which can be

used to make capacity allocation decisions over time.

Our approach starts with a dynamic programming formulation of the capacity

allocation problem. To obtain a lower bound on the total expected costs of the op-

timal policy, we formulate a deterministic linear problem based on the assumption

that job arrivals take on their expected values and it is possible to schedule frac-

tional portions of jobs for different days. Using a duality argument, we reformulate

this linear problem so that it can be interpreted as a linear program corresponding

to a capacity allocation problem where the daily capacity is restricted only for one

day in the planning horizon. We refer to this problem as a single-day capacity

allocation problem. Concentrating on the dynamic programming formulation of

this single-day problem, we show that it gives rise to tractable approximations to

the value functions corresponding to the original capacity allocation problem. We

use these value functions approximations to propose a capacity allocation policy.

Furthermore, we show that these value functions approximations provide lower

bounds on the total expected costs of the optimal policy and that these bounds

are tighter than the lower bound provided by the deterministic linear program

discussed above.

Several papers study variations of our capacity allocation problem. The most

related one is Patrick, Puterman and Queyranne (2008), where the authors consider

the allocation of appointment slots in a clinic. The authors begin by formulating

their capacity allocation problem as a dynamic program. Since this formulation
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quickly gets intractable for practical problem instances, they develop an approxi-

mate dynamic programming method that uses linear approximations to the value

functions. To choose the slope parameters of the linear approximations, they

substitute the linear approximations into a linear program that characterizes the

dynamic programming formulation of the capacity allocation problem. A second

paper that is related to our work is Erdelyi and Topaloglu (2009a). Considering

the same capacity allocation problem as here, the authors focus on a class of poli-

cies that are characterized by a set of protection levels and develop a stochastic

approximation method to find a good set of protection levels. Protection level

policies are also considered in Gerchak, Gupta and Henig (1996). The authors

concentrate on the capacity allocation problem with two priority levels. The main

contribution of their paper is to characterize the structure of the optimal policy

and to show that protection level policies are not necessarily optimal.

We borrow the dynamic problem decomposition idea from the revenue man-

agement literature. Williamson (1992) is one of the first to decompose the network

revenue management problem by flight legs. A discussion of early decomposition

heuristics methods is given in Talluri and van Ryzin (2004). Liu and van Ryzin

(2008) and Kunnumkal and Topaloglu (2009a) extend decomposition heuristics

ideas to the network revenue management problem that incorporates customer

choice behavior. Zhang and Adelman (2009) are the first to show that a dynamic

programming decomposition is capable of providing upper bounds on the optimal

total expected revenue in the network revenue management problem. Topaloglu

(2009) demonstrates that decomposition methods can be visualized as an appli-

cation of Lagrangian relaxation to the dynamic programming formulation of the

network revenue management problem. Erdelyi and Topaloglu (2009b) and Erde-

lyi, Kunnumkal and Topaloglu (2009) extend the decomposition ideas to network
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revenue management problems involving overbooking and pricing decisions, re-

spectively. It is interesting to note that the capacity allocation problem that we

consider in this paper can be viewed as a revenue management problem as it

involves making the most use out of limited and perishable capacity. However,

traditional revenue management problems involve only the decision of whether to

accept or reject a job, whereas our capacity allocation problem involves the deci-

sion of when to schedule a job along with whether the job should be accepted or

rejected.

We make the following research contributions in this paper. 1) We develop a

method to make dynamic scheduling decisions in a capacity allocation model in-

volving jobs of different priorities. The idea behind our model is to decompose the

problem by booking days and solve a sequence of single-day capacity allocation

problems. 2) We show that our approach provides a lower bound on the total

expected cost obtained by the optimal policy and this bound is tighter than the

one provided by the deterministic linear program formulation. 3) Computational

experiments demonstrate that our method performs significantly better than stan-

dard benchmark stategies.

The rest of the paper is organized as follows. In Section 4.2, we describe the

capacity allocation problem and give a precise formulation of the corresponding

dynamic program. Then, Section 4.3 formulates a deterministic linear program

that both gives rise to potential control policies as well as provides a lower bound on

the optimal total expected cost. Section 4.4 decomposes the dynamic program into

a sequence of single-day capacity allocation problems while Section 4.5 addresses

practical issues with solving these single-day allocation problems. In Section 4.6,

we further specify the implementation of the policy suggested by the decomposition
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approach. Next, Section 4.7 presents computational experiments. Finally, Section

4.8 gives concluding remarks.

4.2 Problem Formulation

We have a fixed amount of daily processing capacity. At the beginning of each day,

we observe the arrivals of jobs of different priorities and we need to decide which

jobs should be scheduled for which days. The jobs that are waiting to be processed

incur a holding cost depending on their priority levels and we also have the option

of rejecting a job by incurring a penalty cost. We are interested in minimizing the

total expected cost over a finite planning horizon.

The problem takes place over the set of days T = {1, . . . , τ}. The set of possible

priority levels for the jobs is P = {1, . . . , P} where priority 1 is the highest priority

and priority P is the lowest priority. The number of priority p jobs that arrive

on day t is given by the random variable ωp
t so that ωt = {ωp

t : p ∈ P} captures

the job arrivals on day t. We assume that the job arrivals on different days are

independent. If we schedule a priority p job that arrives on day t for day j, then

we incur a holding cost of hp
jt. The penalty cost of rejecting a priority p job that

arrives on day t is dp
t . We let hp

jt = ∞ whenever it is infeasible to schedule a priority

p job arriving on day t for day j. For example, since it is infeasible to schedule

a job for a day in the past, we have hp
jt = ∞ whenever j < t. Furthermore, we

assume that all jobs can be scheduled only within a booking horizon of length S

days. In other words, a job arriving on day t can only be scheduled for a day j ∈ St

where St = {t, . . . , t + S − 1}. Consequently, we let hp
jt = ∞ whenever j ≥ t + S.

Once we schedule a job for a particular day, this decision is fixed and cannot be
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changed. We assume that all jobs consume one unit of processing capacity, but

this assumption is only for notational brevity and it is straightforward to extend

our approach to multiple units of capacity consumption.

Given that we are on day t, we let xjt be the remaining capacity on day j so

that xt = {xjt : j ∈ T } captures the state of the remaining capacities observed at

the beginning of day t. We let up
jt be the number of priority p jobs that we schedule

for day j on day t so that ut = {up
jt : p ∈ P , j ∈ T } captures the decisions that

we make on day t. In this case, the set of feasible decisions on day t is given by

U(xt, ωt) =
{

ut ∈ Z|P||T |+ :
∑
p∈P

up
jt ≤ xjt ∀ j ∈ T ,

∑
j∈T

up
jt ≤ ωp

t ∀ p ∈ P
}

,

(4.1)

where the first set of constraints ensure that the decisions that we make comply

with the remaining capacities and the second set of constraints ensure that the

decisions that we make comply with the job arrivals. On the other hand, the total

cost that we incur on day t is given by

∑
j∈T

∑
p∈P

hp
jt u

p
jt +

∑
p∈P

dp
t

[
ωp

t −
∑
j∈T

up
jt

]
,

where the first term corresponds to the holding cost for the jobs that are scheduled

for different days in the planning horizon and the second term corresponds to the

penalty cost for the jobs that are rejected. We note that without loss of generality,

it is possible to assume that dp
t = 0 for all p ∈ P , t ∈ T . To see this, we

write the cost function above as
∑

j∈T
∑

p∈P
[
hp

jt − dp
t

]
up

jt +
∑

p∈P dp
t ωp

t . Since
∑

j∈T
∑

p∈P dp
t ωp

t is a constant that is independent of the decisions, assuming that

dp
t = 0 for all p ∈ P , t ∈ T is equivalent to letting cp

jt = hp
jt − dp

t and working with

the holding cost cp
jt instead of hp

jt. Throughout the rest of the paper, we indeed

assume that dp
t = 0 for all p ∈ P , t ∈ T .
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We use Vt(xt) to denote the minimum possible total expected cost over days

{t, . . . , τ} given that the state of the remaining capacities on day t is xt. Letting

ej be the |T | dimensional unit vector with a one in the element corresponding

to j ∈ T , we can compute the value functions {Vt(·) : t ∈ T } by solving the

optimality equation

Vt(xt) = E

{
min

ut∈U(xt,ωt)

{∑
j∈T

∑
p∈P

cp
jt u

p
jt + Vt+1(xt −

∑
j∈T

∑
p∈P

up
jt ej)

}}
(4.2)

with the boundary condition that Vτ+1(·) = 0. The optimal total expected cost

over the whole planning horizon is V1(x1), where x1 gives the initial state of the

remaining capacities and it is a part of the problem data. The knowledge of {Vt(·) :

t ∈ T } can be used to find the optimal decisions on each day. In particular, if the

state of the remaining capacities and the job arrivals on day t are respectively given

by xt and ωt, then we can solve the optimization problem inside the expectation

in (4.2) to find the optimal decisions on this day.

Unfortunately, the number of dimensions of the state vector xt is equal to

the number of days, which can easily be on the order of hundreds for practical

applications. Furthermore, solving the optimality equation in (4.2) requires taking

an expectation over the job arrivals on each day and this expectation can be

difficult to compute. These considerations render finding the exact solution to the

optimality equation in (4.2) intractable. In the next two sections, we give two

possible approaches for finding approximate solutions to the optimality equation

in (4.2). The first approach involves solving a linear program, whereas the second

approach builds on this linear program to construct separable approximations to

the value functions.
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4.3 Linear Programming Formulation

One approach for finding approximate solutions to the optimality equation in (4.2)

involves solving a linear program that is formulated under the assumption that

the job arrivals take their expected values and it is possible to schedule fractional

numbers of jobs for different days. In particular, using the decision variables

{up
jt : p ∈ P , j ∈ T , t ∈ T } with the same interpretation as in the previous

section, we can solve the problem

min
∑
t∈T

∑
j∈T

∑
p∈P

cp
jt u

p
jt (4.3)

subject to
∑
t∈T

∑
p∈P

up
jt ≤ xj1 j ∈ T (4.4)

∑
j∈T

up
jt ≤ E{ωp

t } p ∈ P , t ∈ T (4.5)

up
jt ≥ 0 p ∈ P , j ∈ T , t ∈ T (4.6)

to approximate the optimal total expected cost over the planning horizon. Con-

straints (4.4) in the problem above ensure that the decisions that we make over

the planning horizon do not violate the remaining capacity on each day, whereas

constraints (4.5) ensure that the decisions that we make on each day do not violate

the expected numbers of job arrivals.

One important use of problem (4.3)-(4.6) occurs when we want to obtain lower

bounds on the optimal total expected cost. In particular, if we denote z∗LP the

optimal objective value of problem (4.3)-(4.6), the next proposition shows that

we have z∗LP ≤ V1(x1) so that the optimal objective value of problem (4.3)-(4.6)

provides a lower bound on the optimal total expected cost. Such lower bounds are

useful to get a feel for the optimality gap of any suboptimal control policy.
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Proposition 4.3.1 We have z∗LP ≤ V1(x1).

Proof Our proof is standard, but it allows us to demonstrate a useful inequality.

Given that the job arrivals over the planning horizon are ω = {ωp
t : p ∈ P , t ∈ T },

we let π∗(ω) be the total cost incurred by the optimal policy and z∗LP (ω) be the

optimal objective value of problem (4.3)-(4.6) that is obtained after replacing the

right side of constraints (4.5) with {ωp
t : p ∈ P , t ∈ T }. Replacing the right side

of constraints (4.5) with {ωp
t : p ∈ P , t ∈ T } and solving problem (4.3)-(4.6)

corresponds to making the decisions after observing first all of the job arrivals over

the whole planning horizon. Furthermore, problem (4.3)-(4.6) allows scheduling

fractional numbers of jobs. On the other hand, the optimal policy makes the

decisions for a particular day after observing the job arrivals only on that day.

Furthermore, the optimal policy schedules integer numbers of jobs. Therefore,

it holds that z∗LP (ω) ≤ π∗(ω). Taking expectations and noting that z∗LP (ω) is a

convex function of ω, Jensen’s inequality implies that

z∗LP (E{ω}) ≤ E{z∗LP (ω)} ≤ E{π∗(ω)}. (4.7)

The first expression in the chain of inequalities above is equal to z∗LP , whereas the

last expression is equal to the total expected cost incurred by the optimal policy,

which is given by V1(x1). 2

Therefore, (4.7) implies that both z∗LP and E{z∗LP (ω)} provide lower bounds

on the optimal total expected cost. The lower bound provided by z∗LP is looser,

but this lower bound can be computed simply by solving problem (4.3)-(4.6). On

the other hand, the lower bound provided by E{z∗LP (ω)} is tighter, but there is

no closed form expression for the expectation in E{z∗LP (ω)} and computing this

expectation requires estimation through Monte Carlo samples. Nevertheless, our

computation experiments indicate that this extra computation burden usually pays
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off and the lower bound provided by E{z∗LP (ω)} can be significantly tighter than

the lower bound provided by z∗LP .

Another important use of problem (4.3)-(4.6) occurs when we want to construct

an approximate policy to make the decisions on each day. In particular, letting

{µ∗j : j ∈ T } be the optimal values of the dual variables associated with constraints

(4.4), we can use µ∗j to estimate the value of a unit of remaining capacity on day j.

This idea suggests using
∑

j∈T µ∗j xjt as an approximation to Vt(xt). In this case, if

the state of the remaining capacities and the job arrivals on day t are respectively

given by xt and ωt, then we can replace Vt+1(xt −
∑

j∈T
∑

p∈P up
jt ej) on the right

side of (4.2) with
∑

j∈T µ∗j
[
xjt −

∑
p∈P up

jt

]
and solve the problem

min
ut∈U(xt,ωt)

{∑
j∈T

∑
p∈P

cp
jt u

p
jt +

∑
j∈T

µ∗j
[
xjt −

∑
p∈P

up
jt

]
}

(4.8)

to make the decisions on day t. We use this approach as a benchmark strategy

later in the paper.

In the next section, we show how we can use problem (4.3)-(4.6) to construct

separable approximations to the value functions.

4.4 Dynamic Programming Decomposition

The method that we develop in this section constructs separable approximations to

the value functions by decomposing the optimality equation in (4.2) into a sequence

of optimality equations, each involving a scalar state variable. We begin with a

duality argument on problem (4.3)-(4.6). We let {µ∗j : j ∈ T } be the optimal values

of the dual variables associated with constraints (4.4) in problem (4.3)-(4.6). We

choose an arbitrary day i in the planning horizon and relax constraints (4.4) for

94



all of the other days by associating the dual multipliers {µ∗j : j ∈ T \ {i}} with

them. In this case, if we let 1(·) be the indicator function, the objective function

of problem (4.3)-(4.6) can be written as

∑
t∈T

∑
j∈T

∑
p∈P

cp
jt u

p
jt +

∑

j∈T \{i}
µ∗j

[
xj1 −

∑
t∈T

∑
p∈P

up
jt

]

=
∑
t∈T

∑
j∈T

∑
p∈P

[
cp
jt − 1(j 6= i) µ∗j

]
up

jt +
∑

j∈T \{i}
µ∗j xj1.

Therefore, by linear programming duality, the optimal objective value of problem

(4.3)-(4.6) is the same as the optimal objective value of the problem

min
∑
t∈T

∑
j∈T

∑
p∈P

[
cp
jt − 1(j 6= i) µ∗j

]
up

jt +
∑

j∈T \{i}
µ∗j xj1 (4.9)

subject to
∑
t∈T

∑
p∈P

up
it ≤ xi1 (4.10)

∑
j∈T

up
jt ≤ E{ωp

t } p ∈ P , t ∈ T (4.11)

up
jt ≥ 0 p ∈ P , j ∈ T , t ∈ T . (4.12)

Comparing problem (4.9)-(4.12) with problem (4.3)-(4.6) and ignoring the constant

term
∑

j∈T \{i} µ∗j xj1 in the objective function, we observe that problem (4.9)-

(4.12) is the linear programming formulation for a capacity allocation problem

where there is limited capacity only on day i and the capacities on all of the other

days are infinite. In this capacity allocation problem, if we schedule a priority p

job that arrives on day t for day j, then we incur a holding cost of cp
jt − 1(j 6=

i) µ∗j . We refer to this problem as the capacity allocation problem focused on

day i. Then, the discussion in this paragraph and Proposition 4.3.1 imply that

z∗LP −
∑

j∈T \{i} µ∗j xj1 provides a lower bound on the optimal total expected cost

for the capacity allocation problem focused on day i.

On the other hand, if there is limited capacity only on day i and the capacities

on all of the other days are infinite, then the set of feasible decisions can be written
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as

Ui(xit, ωt) =

{
ut ∈ Z|P||T |+ :

∑
p∈P

up
it ≤ xit,

∑
j∈T

up
jt ≤ ωp

t ∀ p ∈ P
}

. (4.13)

The definition of the feasible set above is similar to the one in (4.1), but we only

pay attention to the remaining capacity on day i. In this case, if there is limited

capacity only on day i and the holding cost of scheduling a priority p job that

arrives on day t for day j is cp
jt − 1(j 6= i) µ∗j , then we can obtain the optimal

total expected cost by computing the value functions {vit(·) : t ∈ T } through the

optimality equation

vit(xit) = E

{
min

ut∈Ui(xit,ωt)

{ ∑
j∈T

∑
p∈P

[
cp
jt − 1(j 6= i) µ∗j

]
up

jt + vi,t+1(xit −
∑
p∈P

up
it)

}}

(4.14)

with the boundary condition that vi,τ+1(·) = 0. The optimality equation in (4.14)

is similar to the one in (4.2), but it keeps track of the remaining capacity only on

day i. The subscript i in the value functions emphasizes this. By the discussion

in the previous paragraph, we have z∗LP −
∑

j∈T \{i} µ∗j xj1 ≤ vi1(xi1). Furthermore,

the next proposition shows that vi1(xi1) +
∑

j∈T \{i} µ∗j xj1 ≤ V1(x1) and we obtain

z∗LP ≤ vi1(xi1) +
∑

j∈T \{i}
µ∗j xj1 ≤ V1(x1).

Noting that the result above holds for any day i, we also have

z∗LP ≤ max
i∈T



vi1(xi1) +

∑

j∈T \{i}
µ∗j xj1



 ≤ V1(x1). (4.15)

Therefore, we can obtain a lower bound on the optimal total expected cost in the

capacity allocation problem by solving the optimality equation in (4.14) and this

lower bound is tighter than the one provided by the optimal objective value of prob-

lem (4.3)-(4.6). We refer to the bound from (4.15) as the dynamic programming

decomposition (DPD) bound.
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Proposition 4.4.1 We have vit(xit) +
∑

j∈T \{i} µ∗j xjt ≤ Vt(xt) for all t ∈ T and

all i ∈ T .

Proof We fix i ∈ T and use a standard induction argument over the days of the

planning horizon. The result is easy to show for the last day. We assume that the

result holds for day t + 1 and let {ûp
jt : p ∈ P , j ∈ T } be an optimal solution

to the optimization problem inside the expectation (4.2), ϑt(xt, ωt) be the optimal

objective value of this problem and ϑit(xit, ωt) be the optimal objective value of

the optimization problem inside the expectation in (4.14). We have

ϑt(xt, ωt) =
∑
j∈T

∑
p∈P

cp
jt û

p
jt + Vt+1(xt −

∑
j∈T

∑
p∈P

ûp
jt ej)

≥
∑
j∈T

∑
p∈P

cp
jt û

p
jt + vi,t+1(xit −

∑
p∈P

ûp
it) +

∑

j∈T \{i}
µ∗j

[
xjt −

∑
p∈P

ûp
jt

]

=
∑
j∈T

∑
p∈P

[
cp
jt − 1(j 6= i) µ∗j

]
ûp

jt + vi,t+1(xit −
∑
p∈P

ûp
it) +

∑

j∈T \{i}
µ∗j xjt

≥ ϑit(xit, ωt) +
∑

j∈T \{i}
µ∗j xjt,

where the first inequality follows from the induction assumption and the second

inequality follows from the fact that {ûp
jt : p ∈ P , j ∈ T } is a feasible but not

necessarily an optimal solution to the optimization problem inside the expectation

in (4.14). The result follows by taking expectations in the chain of inequalities

above and noting that Vt(xt) = E{ϑt(xt, ωt)} and vit(xit) = E{ϑit(xit, ωt)}. 2

Proposition 4.4.1 suggests possible approximations to Vt(xt). On the other

hand, since each of {vit(xit) +
∑

j∈T \{i} µ∗j xjt : i ∈ T } provides a lower bound

on Vt(xt), it is not clear which of these approximations to use. We propose two

different methods to resolve this ambiguity. First, we consider approximating
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Vt(xt) by

1

|T |
∑
i∈T



vit(xit) +

∑

j∈T \{i}
µ∗j xjt



 , (4.16)

i.e. by averaging all available approximations. To motivate our second approach,

we note that in the approximation of Vt(xt) corresponding to day i, the component

vit(xit) captures the value of the remaining capacity on day i, whereas the compo-

nent
∑

j∈T \{i} µ∗j xjt indicates the value of the remaining capacities on days other

than day i. We note that the component
∑

j∈T \{i} µ∗j xjt is somewhat trivial in

the sense that it exactly corresponds to how the linear programming formulation

evaluates the capacities on days other than day i. To obtain more sophisticated

estimates for the values of the remaining capacities on days other than day i, we

propose computing {vit(·) : t ∈ T } for all i ∈ T . In this case, given that we are on

day t, the component vit(xit) captures the value of the remaining capacity on day

i and we can use
∑

i∈T vit(xit) as an approximation to Vt(xt). Preliminary simu-

lation runs indicate that this (second) approach to value functions approximation

performs better than the approach suggested by (4.16). Hence, in the compu-

tational results section of this paper, we only report the results obtained using

the second approach and refer to is as the dynamic programming decomposition

(DPD) policy.

In the next section, we re-solve the computational issues that are related to

solving the optimality equation in (4.14).

4.5 Solving the Optimality Equation

The value functions {vit(·) : t ∈ T } computed through the optimality equation in

(4.14) involve a scalar state variable. Therefore, it is straightforward to store these
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value functions. However, solving the optimality equation in (4.14) still requires

dealing with an optimization problem with |P||T | decision variables. The next

proposition shows that the optimization problem inside the expectation in (4.14)

can be solved efficiently.

Proposition 4.5.1 We can solve the optimization problem inside the expectation

in (4.14) by a sort operation.

Proof We let K̄ = maxj∈T {xj1} so that the remaining capacities are always less

than or equal to K̄. By using induction over the days of the planning horizon,

it is possible to show that {vit(·) : t ∈ T } are convex functions in the sense that

2 vit(k) ≤ vit(k +1)+ vit(k−1) for all k = 1, . . . , K̄−1, t ∈ T . In this case, letting

K = {0, . . . , K̄ − 1} and ∆k
it = vi,t+1(k + 1)− vi,t+1(k) for all k ∈ K, we associate

the decision variables {wk
it : k ∈ K} with the first differences {∆k

it : k ∈ K} and

write the optimization problem inside the expectation in (4.14) as

min
∑
j∈T

∑
p∈P

[
cp
jt − 1(j 6= i) µ∗j

]
up

jt +
∑

k∈K
∆k

it w
k
it + vi,t+1(0)

subject to
∑
p∈P

up
it +

∑

k∈K
wk

it = xit

∑
j∈T

up
jt + yp

t = ωp
t p ∈ P

wk
it ≤ 1 k ∈ K

up
jt, y

p
t , w

k
it ∈ Z+ p ∈ P , j ∈ T , k ∈ K,

where we use the slack variables {yp
t : p ∈ P} in the second set of constraints

above.

For a particular priority level p, we consider the decision variables {up
jt : j ∈

T \ {i}} and yp
t in the problem above. As far as the constraints are concerned,
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these decision variables appear only in the second set of constraints. Therefore,

if any one of the decision variables {up
jt : j ∈ T \ {i}} and yp

t takes a nonzero

value in the optimal solution, then this decision variable has to be the one with the

smallest objective function coefficient. This implies that we can replace all of these

decision variables with a single decision variable, say zp
t , and the objective function

coefficient of zp
t would be equal to the smallest of the objective function coefficients

of the decision variables {up
jt : j ∈ T \ {i}} and yp

t . Since the objective function

coefficients of the decision variables {up
jt : j ∈ T \ {i}} are {cp

jt − µ∗j : j ∈ T \ {i}}
and the objective function coefficient of the decision variable yp

t is zero, letting

ĉp
t = min{min{cp

jt − µ∗j : j ∈ T \ {i}}, 0}, the last problem above becomes

min
∑
p∈P

cp
it u

p
it +

∑
p∈P

ĉp
t zp

t +
∑

k∈K
∆k

it w
k
it + vi,t+1(0) (4.17)

subject to
∑
p∈P

up
it +

∑

k∈K
wk

it = xit (4.18)

up
it + zp

t = ωp
t p ∈ P (4.19)

wk
it ≤ 1 k ∈ K (4.20)

up
it, z

p
t , w

k
it ∈ Z+ p ∈ P , k ∈ K. (4.21)

Using constraints (4.19), we write zp
t = ωp

t − up
it for all p ∈ P and substitute these

decision variables into the objective function to obtain

∑
p∈P

cp
it u

p
it +

∑
p∈P

ĉp
t

[
ωp

t − up
it

]
+

∑

k∈K
∆k

it w
k
it + vi,t+1(0)

=
∑
p∈P

[
cp
it − ĉp

t

]
up

it +
∑
p∈P

ĉp
t ωp

t +
∑

k∈K
∆k

it w
k
it + vi,t+1(0).
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Therefore, dropping the constant term
∑

p∈P ĉp
t ωp

t + vi,t+1(0) from the objective

function, we write problem (4.17)-(4.21) as

min
∑
p∈P

[
cp
it − ĉp

t

]
up

it +
∑

k∈K
∆k

it w
k
it (4.22)

subject to
∑
p∈P

up
it +

∑

k∈K
wk

it = xit (4.23)

up
it ≤ ωp

t p ∈ P (4.24)

wk
it ≤ 1 k ∈ K (4.25)

up
it, w

k
it ∈ Z+ p ∈ P , k ∈ K. (4.26)

Problem (4.22)-(4.26) is a knapsack problem with each item consuming one unit

of capacity. The items are indexed by p ∈ P and k ∈ K. The (dis)utilities of

items p ∈ P and k ∈ K are respectively cp
it − ĉp

t and ∆k
it. The capacity of the

knapsack is xit. We can put at most ωp
t units of item p ∈ P and one unit of

item k ∈ K into the knapsack. The result follows by the fact that a knapsack

problem with each item consuming one unit of capacity can be solved by sorting

the objective function coefficients and filling the knapsack starting from the item

with the smallest objective function coefficient. 2

Another difficulty with the optimality equation in (4.14) is that we need to

compute the expectation of the optimal objective value of the optimization problem

inside the first set of curly brackets. The proof of Proposition 4.5.1 shows that

this optimization problem is equivalent to problem (4.22)-(4.26), which is, in turn,

a knapsack problem, where each item consumes one unit of capacity and there is

a random upper bound on how many units of a particular item we can put into

the knapsack. Powell and Cheung (1994) derive a closed form expression for the

expectation of the optimal objective value of such a knapsack problem. We briefly

describe how their result relates to our setting.
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To reduce the notational clutter, we note that for appropriate choices of the

set of items N = {1, . . . , N}, (dis)utilities {βn : n ∈ N}, integer valued knapsack

capacity Q and integer valued random upper bounds α = {αn : n ∈ N}, problem

(4.22)-(4.26) is a knapsack problem of the form

min
∑
n∈N

βn zn (4.27)

subject to
∑
n∈N

zn = Q (4.28)

zn ≤ αn n ∈ N (4.29)

zn ∈ Z+ n ∈ N . (4.30)

Using ζ(α) to denote the optimal objective value of the problem above as a function

of α, we are interested in computing E{ζ(α)}. For a given realization of α, we can

solve problem (4.27)-(4.30) by sorting the objective function coefficients of the

decision variables and filling the knapsack starting from the item with the smallest

objective function coefficient. We assume that β1 ≤ β2 ≤ . . . ≤ βN , in which case

it is optimal to start from the item with the smallest index.

We let φ(n, q) be the probability that the nth item uses the qth unit of the

available knapsack capacity in the optimal solution. If we know φ(n, q) for all

n ∈ N , q = 1, . . . , Q, then we can compute the expectation of the optimal objective

value of problem (4.27)-(4.30) as

E{ζ(α)} =

Q∑
q=1

∑
n∈N

βn φ(n, q).

Computing φ(n, q) turns out to be not too difficult. Since the optimal solution fills

the knapsack starting from the item with the smallest index, for the nth item to

use the qth unit of capacity in the knapsack, the total capacity consumed by the

first n − 1 items should be strictly less than q and the total capacity consumed
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by the first n items should be greater than or equal to q. Therefore, we have

φ(n, q) = P{α1 + . . . + αn−1 < q ≤ α1 + . . . + αn} and we can compute φ(n, q) as

long as we can compute the convolutions of the distributions of {αn : n ∈ N}.

The discussion in the previous two paragraphs provides a method to compute

the expectation of the optimal objective value of the optimization problem inside

the first set of curly brackets in (4.14). In the next section, we decribe how we

can use the value functions computed through the optimality equation in (4.14) to

make the decisions on each day.

4.6 Applying the Greedy Policies

The discussion at the end of Section 4.4 suggests using
∑

j∈T vjt(xjt) as an approx-

imation to Vt(xt). In this case, if the state of the remaining capacities and the job

arrivals on day t are respectively given by xt and ωt, then we can replace Vt+1(xt−
∑

j∈T
∑

p∈P up
jt ej) on the right side of (4.2) with

∑
j∈T vj,t+1(xjt −

∑
p∈P up

jt) and

solve the problem

min
ut∈U(xt,ωt)

{ ∑
j∈T

∑
p∈P

cp
jt u

p
jt +

∑
j∈T

vj,t+1(xjt −
∑
p∈P

up
jt)

}
(4.31)

to make the decisions on day t. The problem above involves |P||T | decision vari-

ables. The next proposition shows that we can efficiently solve this problem as a

min-cost network flow problem.

Proposition 4.6.1 We can solve problem (4.31) as a min-cost network flow prob-

lem.
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Proof As mentioned in the proof of Proposition 4.5.1, it is possible to show that

{vjt(·) : j ∈ T , t ∈ T } are convex functions. In this case, letting K and ∆k
jt be

defined as in the proof of Proposition 4.5.1, we associate the decision variables

{wk
jt : k ∈ K, j ∈ T } with the first differences {∆k

jt : k ∈ K, j ∈ T } and write

problem (4.31) as

min
∑
j∈T

∑
p∈P

cp
jt u

p
jt +

∑
j∈T

∑

k∈K
∆k

jt w
k
jt

subject to
∑
p∈P

up
jt +

∑

k∈K
wk

jt = xjt j ∈ T

∑
j∈T

up
jt ≤ ωp

t p ∈ P

wk
jt ≤ 1 k ∈ K, j ∈ T

up
jt, w

k
jt ∈ Z+ p ∈ P , k ∈ K, j ∈ T

We define the new decision variables {yp
t : p ∈ P} as yp

t =
∑

j∈T up
jt for all p ∈ P ,

in which case the problem above becomes

min
∑
j∈T

∑
p∈P

cp
jt u

p
jt +

∑
j∈T

∑

k∈K
∆k

jt w
k
jt (4.32)

subject to
∑
p∈P

up
jt +

∑

k∈K
wk

jt = xjt j ∈ T (4.33)

∑
j∈T

up
jt − yp

t = 0 p ∈ P (4.34)

yp
t ≤ ωp

t p ∈ P (4.35)

wk
jt ≤ 1 k ∈ K, j ∈ T (4.36)

up
jt, y

p
t , w

k
jt ∈ Z+ p ∈ P , k ∈ K, j ∈ T . (4.37)

The problem above is a min-cost network flow problem. In particular, we consider

a network composed of two sets of nodes N1 = {j ∈ T } and N2 = {p ∈ P}, along

with a sink node. The decision variable up
jt corresponds to an arc connecting node
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j ∈ N1 to node p ∈ N2. The decision variable yp
t corresponds to an arc connecting

node p ∈ N2 to the sink node. Finally, the decision variable wk
jt corresponds to an

arc connecting node j ∈ N1 to the sink node. The supply of node j ∈ N1 is xjt

and constraints (4.33) are the flow balance constraints for the nodes in N1. The

supply of node p ∈ P is zero and constraints (4.34) are the flow balance constraints

for the nodes in N2. The flow balance constraint for the sink node is redundant

and it is omitted. Constraints (4.35) and (4.36) act as simple upper bounds on the

arcs. Figure 4.1 shows the structure of the network for the case where T = {1, 2},
P = {a, b} and K = {k, l}.

Since problem (4.31) can be solved as a min-cost network flow problem, its

continuous relaxation naturally provides integer solutions. 2

wk
1,t+1

wl
1,t+1

ua
1t

ub
1t

wk
2,t+1

wl
2,t+1

ub
2t

ua
2t

ya
t

yb
t

1

2

a

b

sink

x1t

x2t

Figure 4.1: Network for T = {1, 2}, P = {a, b} and K = {k, l}.

4.7 Computational Experiments

In this section, we compare the performance of the separable value function approx-

imations computed through the method in Section 4.4 with a number of benchmark
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strategies.

4.7.1 Experimental Setup and Benchmark Strategies

Our experimental setup is based on Erdelyi and Topaloglu (2009a). In particular,

we first generate a base problem and then modify its parameters to obtain test

problems with different characteristics. In the base problem, we have |T | = 100

for the length of the planning horizon, |P| = 3 for the number of priority levels

and S = 7 for the length of the booking horizon. The holding costs are hp
jt =

2|P|−p 1.25j−t for all t ∈ T , p ∈ P and j ∈ St where St = {t, . . . , t + S − 1}.
The penalty costs are dp

t = β 2|P|−p 1.25S−1 for all t ∈ T and p ∈ P . In the

base problem, we assume that β = 5. The daily job arrivals for the first, second

and third priority levels are uniformly distributed over [5, 15], [10, 30] and [20, 60],

respectively. We note that this scenario corresponds to a coefficient of variation

equal to 1√
12
∼= 0.3. We assume that the maximum daily processing capacity is

c = 70. We define ρ = 1
c S

∑
s∈S1

(c − xs1) so that ρ corresponds to the portion of

the total capacities in the first S days already reserved before job arrivals on day

1 are processed. In the base problem, we assume ρ = 32%.

We compare the performance of the dynamic programming decomposition

(DPD) algorithm introduced in Section 4.4 with three benchmark strategies. Our

first benchmark strategy corresponds to the decision rule described at the end of

Section 4.3. Since this rule employs linear approximations to value functions, we

refer to this strategy as LAX. In addition to the basic version of the algorithm as

explained in Section 4.3, we test a dynamic version of the algorithm where values of

dual variables {µ∗j : j ∈ T } are updated during simulation runs. In particular, we

divide the planning horizon into M equal segments and re-solve (4.3)-(4.6) at time
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periods {tm = b1 + (m − 1)τ/Mc : m = 1, . . . , M}. We note that that at the be-

ginning of segment m, we replace T in problem (4.3)-(4.6) with Ttm = {tm, . . . , τ}
and the right side of constraints (4.4) with the current remaining daily capacities

{xj,tm : j ∈ Ttm}. Letting {µ∗j : j ∈ Ttm} be the optimal values of dual vari-

ables corresponding to the updated capacity constraints (4.4), we use these when

computing linear approximations to value functions until we reach the beginning

of next segment. For the test problems reported in next section, we tested both

the static version of LAX as well as its dynamic version with M = 5. Since the

dynamic version did not always prove to be an improvement over the static one,

we always report the better of the two performances for each test problem.

The second benchmark strategy we use is a simple first come first serve policy.

Starting with the highest priority jobs and continuing with jobs of lower priority

levels in a descending order, this strategy schedules all jobs to the earliest available

day in the booking horizon. If the policy runs out of space in the booking horizon,

the remaining (not yet scheduled) jobs are denied. We refer to this policy as FC.

Although this strategy is not expected to provide quality results, it can be used as

an indicator of how challenging a particular test problem is.

To motivate our third benchmark strategy, we note that LAX policy uses

the dual solution to the linear program (4.3)-(4.6). Naturally, however, one can

consider using the primal solution to a similar linear program to make capacity

allocation decisions. In particular, at time period t given remaining capacities

{xjt : j ∈ T } and observed job arrivals {ωp
t : p ∈ P}, the idea is to consider the
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following linear program

min
∑
s∈Tt

∑
j∈Tt

∑
p∈P

cp
js up

js (4.38)

subject to
∑
s∈Tt

∑
p∈P

up
js ≤ xjt j ∈ Tt (4.39)

∑
j∈Tt

up
jt ≤ ωp

t p ∈ P (4.40)

∑
j∈Tt

up
js ≤ E{ωp

s} p ∈ P , s ∈ Tt+1 (4.41)

up
js ≥ 0 p ∈ P , j ∈ Tt, s ∈ Tt. (4.42)

We note that the difference between problems (4.3)-(4.6) and (4.38)-(4.42) is that

the latter is only concerned with the portion of the planning horizon starting at

time period t. Furthermore, rather than expected values of job arrivals at time

period t, the program above uses actually observed job arrivals for this time period.

Assuming job arrivals take on their expected values in subsequent time periods, the

optimal solution to the above problem, denoted {u∗jt : j ∈ Tt}, gives the capacity

allocation at time period t. Although this policy is not necessarily optimal with

stochastic job arrivals, we tested it as a benchmark. In several setup runs we

encountered both scenarios when the policy performed relatively well and scenarios

when it performed poorly. Later, we discovered that when the performance of the

strategy is poor, it helped significantly to replace the expected values on the right

side of constraints (4.41) with (random) realizations of job arrivals {ωp
s : p ∈ P , s ∈

Tt+1}. We refer to the original variant of the method as LPPE and its randomized

version as LPPR. For the test problems reported in next section, we tested both

variants of the policy and always reported the better of the two results. We refer

to this compound policy as LPP.
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4.7.2 Computational Results

Table 4.1 shows the computational results for the base problem. The second col-

umn gives the lower bound on the optimal total expected cost provided by problem

(4.3)-(4.6). The third column gives the estimate of the expected value of the lower

bound provided by the perfect hindsight linear program. We omit reporting the

DPD bounds because it turns out that these are not significantly better than the

bounds obtained from the deterministic linear program. The fourth, fifth, sixth

and seventh columns in this table show the estimates of total expected costs in-

curred by FC, LAX, LPP and DPD, respectively. We estimate these costs by

simulating the performances of different methods under 100 job arrival trajecto-

ries using common random numbers for all methods. The numbers in the brackets

in the second row of these columns indicate the percentage of all jobs rejected by

FC, LAX, LPP and DPD, respectively. We note that, almost exclusively, the low-

est priority jobs are rejected. The eighth column shows the percent gap between

the performance of DPD and FC. Similarly, the ninth and tenth columns show the

performance gaps between DPD and the remaining two methods. The eleventh

column shows the percent gap between the total expected cost incurred by DPD

and the lower bound reported in the third column. Consequently, the eleventh

columns gives an upper bound on the gap between the performances of DPD and

the optimal policy.

Table 4.1: Computational results for the base problem.

Test Lower Bound Total Expected Cost % Gap with DPD DPD
Prob. z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
Base 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)

The results suggest that DPD performs significantly better than all benchmark
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methods for the base problem. On the other hand, FC performs noticeably worse

than all other methods highlighting the importance of protecting capacity for future

high priority job arrivals. Comparing the performance of LAX and LPP suggests

that LAX performs better, presumably because it does not make a mistake of

rejecting too many jobs. Naturally, the least percentage of jobs is rejected by FC.

This, however, comes at the expense of having too many high priority jobs waiting

too long in the system. Overall, DPD appears to find the best balance between the

percentage of rejected jobs and protecting the capacities for future high priority

jobs. The simulations also confirm that the lower bound E{z∗LP (ω)} is tighter

than the lower bound z∗LP (E{ω}) with a noticeable gap of 5.36% between the two

bounds for the base problem.

In Tables 4.2-4.8, we vary different parameters of the base problem to generate

test problems with modified characteristics. The first columns in these tables

indicate the value of the modified parameter. The interpretations of other columns

in Tables 4.2-4.8 remain the same as in Table 4.1.

Table 4.2: Computational results with varying number of priority levels.

Lower Bound Total Expected Cost % Gap with DPD DPD
N z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
2 11,654 12,574 15,545 14,233 15,184 13,804 12.61 3.11 10.00 9.78

(0.13) (2.53) (4.41) (2.10)
3 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)
4 17,234 17,893 23,577 19,966 20,108 18,964 24.33 5.28 6.03 5.99

(0.02) (2.58) (4.04) (2.05)
5 19,838 20,520 27,594 22,832 22,656 21,581 27.86 5.80 4.98 5.17

(0.00) (2.63) (4.07) (2.19)

In Table 4.2, we vary the number of priority levels. We note that DPD performs

consistently better than all benchmark strategies for all test problems although

the performance gap between DPD and LPP decreases with increasing number of
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priority levels.

In Table 4.3, we vary the length of the booking horizon. Again, DPD is notice-

ably better than FC and LAX for all test problems. However, for longer booking

horizons, DPD is outperformed by LPP. We note that the strong performance of

LPP for large booking horizons is obtained due to LPPE which not typical as,

for most test problems, LPPR performs better that LPPE. We deduce that LPPE

benefits from longer booking horizons as it allows the policy to avoid the mistake

of rejecting too many jobs if the capacities appear tight.

Table 4.3: Computational results with varying booking horizon length.

Lower Bound Total Expected Cost % Gap with DPD DPD
S z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
3 11,994 13,018 14,390 14,217 15,063 14,012 2.70 1.46 7.50 7.64

(0.72) (1.31) (6.89) (1.04)
5 12,566 13,590 16,417 15,197 16,426 14,722 11.51 3.23 11.57 8.33

(0.21) (1.65) (6.15) (1.32)
7 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)
9 16,527 16,936 21,390 20,075 17,810 17,885 19.60 12.24 -0.42 5.60

(0.00) (1.68) (2.63) (1.96)
11 19,977 20,374 24,448 24,424 20,972 21,578 13.30 13.19 -2.81 5.91

(0.00) (0.84) (1.87) (1.19)

In Table 4.4, we vary the coefficient of variation for the job arrivals. DPD

performs significantly better than all benchmark methods and the performace gap

between DPD and both LAX and LPP increases with increasing variation. This is

encouraging because addressing temporal dynamics of job arrivals was one of the

goals behind developing the DPD rule.
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Table 4.4: Computational results with varying coefficient of variation values.

Lower Bound Total Expected Cost % Gap with DPD DPD
CV z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
0.0 13,979 13,979 17,867 13,979 13,979 13,979 27.81 0.00 0.00 0.00

(0.00) (2.40) (2.40) (2.40)
0.1 13,979 14,154 17,891 14,637 14,992 14,411 24.15 1.57 4.03 1.82

(0.00) (2.41) (2.89) (2.23)
0.2 13,979 14,380 18,099 15,434 15,985 14,991 20.73 2.96 6.63 4.25

(0.00) (2.42) (3.42) (2.16)
0.3 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)
0.4 13,979 15,222 19,515 17,718 18,549 16,909 15.41 4.78 9.70 11.08

(0.16) (2.52) (5.16) (1.96)
0.5 13,979 15,810 20,455 19,251 20,135 18,325 11.62 5.05 9.88 15.91

(0.41) (2.70) (6.33) (1.93)

In Table 4.5, we vary the daily available capacity. We note that with increasing

capacity, the problem becomes less challenging and the performance gaps between

different policies become negligible as all policies perform close to the optimal

policy. By contrast, with tighter capacities, the problem becomes more challenging

and it is encouraging that DPD then outperforms LAX and LPP by a wider margin.

On the other hand, it appears that for very tight capacities, the test problem again

becomes somewhat less challenging and the performances of all three non-trivial

policies level up and approach the performance of optimal policy.

Table 4.5: Computational results with varying daily available capacities.

Lower Bound Total Expected Cost % Gap with DPD DPD
c z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
55 34,841 34,930 57,896 37,428 36,524 35,868 61.41 4.35 1.83 2.69

(18.22) (20.11) (20.13) (18.75)
65 20,023 20,365 36,237 24,688 23,828 21,588 67.86 14.36 10.38 6.01

(3.58) (9.33) (9.59) (6.92)
70 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)
75 11,858 12,218 12,515 12,746 12,265 12,305 1.71 3.58 -0.33 0.71

(0.00) (0.00) (0.00) (0.00)
85 11,342 11,389 11,448 11,459 11,396 11,397 0.45 0.54 -0.01 0.07

(0.00) (0.00) (0.00) (0.00)
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Table 4.6: Computational results with varying holding costs.

Lower Bound Total Expected Cost % Gap with DPD DPD
φ z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap

1.2 10,111 10,841 12,578 11,997 13,241 11,645 8.01 3.02 13.71 7.42
(0.02) (2.46) (4.04) (2.03)

2.0 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54
(0.02) (2.46) (4.23) (2.05)

3.0 20,489 21,260 29,064 24,119 23,772 22,638 28.39 6.54 5.01 6.48
(0.02) (2.46) (4.24) (2.04)

4.0 28,859 29,595 42,278 33,850 32,150 31,131 35.81 8.73 3.27 5.19
(0.02) (2.46) (4.24) (2.03)

In Tables 4.6 and 4.7, we vary the holding and the penalty costs. We work with

holding costs of the form hp
jt = φ3−p 1.25j−t for all t ∈ T , p ∈ P and j ∈ St and

penalty costs of the form dp
t = β φ3−p 1.256 for all t ∈ T and p ∈ P . We recall that

the base case corresponds to φ = 2 and β = 5. We observe that DPD in general

significantly outperforms all other methods. The only exception is the performance

of LPP method for a test problem with very large penalty costs. Again, this can

be explained by the earlier observation that the LPP policy in general tends to

reject more jobs than it would be optimal. However, it appears that for extremely

high penalty costs, the LPP policy avoids making this mistake.

Table 4.7: Computational results with varying penalty costs.

Lower Bound Total Expected Cost % Gap with DPD DPD
β z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap
2.0 12,194 13,074 18,729 14,697 14,944 14,372 30.32 2.26 3.98 9.93

(0.02) (2.46) (8.24) (2.13)
4.0 13,384 14,286 18,741 15,918 17,064 15,383 21.83 3.48 10.93 7.68

(0.02) (2.46) (5.63) (2.06)
5.0 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54

(0.02) (2.46) (4.23) (2.05)
6.0 14,575 15,195 18,753 17,138 16,813 16,378 14.50 4.64 2.66 7.79

(0.02) (2.46) (2.95) (2.03)
8.0 15,413 15,904 18,765 19,107 16,771 16,829 11.50 13.54 -0.34 5.82

(0.02) (0.81) (1.80) (1.15)

Finally, in Table 4.8, we vary the parameter corresponding to the initial ca-
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pacity occupancy. We conclude that DPD consistently outperforms all benchmark

strategies independently of the value of ρ.

Table 4.8: Computational results with varying initial occupancy.

Lower Bound Total Expected Cost % Gap with DPD DPD
ρ z(E{d}) E{z(d)} FC LAX LPP DPD FC LAX LPP gap

0.00 11,160 12,925 13,783 13,783 14,997 13,469 2.33 2.33 11.34 4.21
(0.00) (0.00) (2.33) (0.00)

0.16 13,801 14,579 18,106 16,347 17,008 15,686 15.43 4.21 8.43 7.59
(0.02) (2.31) (4.02) (1.86)

0.32 13,979 14,771 18,747 16,528 17,238 15,885 18.02 4.05 8.52 7.54
(0.02) (2.46) (4.23) (2.05)

0.50 15,622 16,382 24,388 18,263 18,799 17,517 39.22 4.26 7.32 6.93
(0.20) (3.88) (5.49) (3.40)

0.70 17,694 18,399 31,773 20,292 20,603 19,513 62.83 3.99 5.59 6.05
(0.70) (5.35) (6.77) (4.83)

4.8 Conclusion

In this paper, we considered a capacity allocation problem that involves allocating a

fixed amount of daily processing capacity to jobs of different priority levels arriving

randomly over time. While finding the optimal policy would involve solving a

dynamic program with a large number of state variables, we proposed a dynamic

programming decomposition idea, which required solving dynamic programs with

only one state variable. Computational results indicated that the decomposition

policy performs significantly better than alternative policies.
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Chapter 5

Summary

In this thesis, we develop dynamic programming decomposition methods for ca-

pacity allocation and network revenue management problems. We demonstrate

that our approach in general gives rise to two important results. First, the sug-

gested decomposition methods are useful in providing tight bounds on optimal

total expected values of the underlying optimization problems. Second, the poli-

cies implied by the value functions approximations generated by the decomposition

methods significantly outperform a variety of known benchmark strategies.

In Chapter 2, we consider a network revenue management problem in which the

airline is assumed to perform capacity allocation and overbooking decisions jointly.

We demonstrate that, by concentrating on one flight leg at a time, it is possible to

obtain approximate solutions to the dynamic programming formulation of the un-

derlying revenue optimization problem. These approximate solutions are obtained

by solving a sequence of single leg revenue optimization problems. Furthermore,

we show that a state aggregation technique can be used to obtain tractable high

quality solutions to the single leg problems. Overall, our model constructs separa-

ble approximations to the value functions, which can be used to make the capacity

allocation and overbooking decisions for the whole airline network. Computational

experiments indicate that our model performs significantly better than a variety

of benchmark strategies from the literature.

In Chapter 3, we consider a network revenue management problem in which the

airline is assumed to control prices of its offered itineraries. Specifically, we consider

a setting where the probability of observing a request for an itinerary depends on
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the prices and the objective is to dynamically adjust the prices so that the total

expected revenue is maximized. We construct two different approximations to value

functions of the dynamic programming formulation of this pricing problem. Both

methods share the idea of decomposing the dynamic programming formulation by

the flight legs and obtaining value function approximations by focusing on one flight

leg at a time. We show that our methods provide upper bounds on the optimal

total expected revenue and these upper bounds are tighter than the one provided

by a deterministic linear program commonly used in practice. Our computational

experiments yield two important results. First, our methods provide substantial

performance improvements over the deterministic linear program. Second, the two

methods that we develop have different strengths. In particular, while one method

is able to obtain tighter upper bounds, the other one is able to obtain pricing

policies that yield higher total expected revenues.

In Chapter 4, we consider a capacity allocation problem with a fixed amount

of daily processing capacity. Jobs of different priorities arrive randomly over time

and need to be scheduled for processing. The jobs that are waiting to be processed

incur a holding cost depending on their priority levels and the length of the sched-

uled waiting period. The goal is to minimize the total expected cost over a finite

planning horizon. We propose an approximation method that decomposes the dy-

namic programming problem by booking days and solves a sequence of single-day

capacity allocation problems. We show that this approach both provides a lower

bound on the optimal total expected costs and can be used to make capacity allo-

cation decisions. Computational experiments indicate that our method performs

significantly better than a variety of benchmark strategies.
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