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Summary - In proportional hazards models, the hazard of an animal >.(t), ie, its 
probability of dying or being culled at time t given it is alive prior to t, is described 
as >.(t) = >.o(t)ew'e where >.o(t) is a 'baseline' hazard function and ew'e represents the 
effect of covariates w on culling rate. A distribution can be attached to elements Sq in 
e, identifying, for example, genetic effects and leading to mixed survival models, also 
called 'frailty' models. To estimate the parameters r of the distribution of frailty terms, a 
Bayesian analysis is proposed. Inferences are drawn from the marginal posterior density 
1r( r) which can be derived from the joint posterior density via Laplacian integration, a 
powerful technique related to saddlepoint approximations. The validity of this technique is 
shown here on simulated examples by comparing the resulting approximate 1r( r) to the one 
obtained by algebraic integration. This exact calculation is feasible in very specific cases 
only, whereas the saddlepoint approximation can be applied to situations where >.o(t) is 
arbitrary (Cox models) or parametric (eg, Weibull), where the frailty terms are correlated 
through a known relationship matrix, or in more general models with stratification and/or 
time-dependent covariates. The influence of the censoring rate and the data structure is 
also illustrated. 

survival analysis I mixed model I variance component estimation I Bayesian analy­
sis I proportional hazards model 

Resume - Une analyse bayesienne des modeles de survie mixtes. Dans le cas des 
modeles a risques proportionnels, la fonction de risque d'ti.n animal >.(t), c'est-a-dire sa 
probabilite de mourir ou d 'etre reforme ati. temps t sachant qu 'il est vivant jU8te avant t, a 
laforme >.(t) = .>.o(t)ew'O ou >.o(t) est une fonction de risque« de base» et ew'O represente 
l'effet des covariables w sur le tati.x de dforme. Une distribution peut etre associee ati.x 
termes sq de 0, identijiant, par exemple, des effets genetiques et conduisant d des modeles 
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de survie mixtes, aussi appeles modeles de fragilite. Pour l'estimation des parametres r de 
la distribution des termes aleatoires, une analyse bayesienne est proposee. Les inferences 
statistiques sont faites d partir de la densite marginale a posteriori 1r( r) qui peut etre 
obtenue d partir de la distribution conjointe a posteriori par integration laplacienne, une 
technique liee a'lix approximations point-selles. La validite de cette technique est demontree 
ici d partir d'exemples simules, en comparant les resultats de l'approximation de 7r(r) avec 
ce'lix obtentis apres integration algebrique. Cette derniere correspond d un calcul exact 
realisable uniquement dans des cas tres particuliers, alors que l'approximation point-selle 
peut etre appliquee dans des situations ou .Ao(t) est completement arbitraire (modeles 
de Cox) ou parametrique (par exemple, de type Weibull}, ou les termes aleatoires sont 
correles d travers une matrice de parente connue, ou avec des modeles plus genera'lix avec 
stratification etj ou covariables dependantes du temps. L 'influence du taux de censure et 
de la structure des donnees est atissi illustree. 

analyse de donnees de survie I modeles mixtes I estimation des composantes de 
variance 1 analyse bayesienne 1 modele a. risques proportionnels 

INTRODUCTION 

Traits associated with longer productive life of livestock are receiving increasing 
attention in the animal breeding field: it is recognized that decreasing culling due 
to the involuntary causes ( eg, related to disease, infertility, lameness, etc) by genetic 
or non-genetic means has a positive effect on economic performance, mainly through 
decreased replacement costs (van Arendonk, 1986; Strandberg, 1991, Strandberg, 
1995, Strandberg and Solkner, 1996). Huge field data sets are usually available 
for comprehensive analyses of productive life, for example, as a by-product of 
the dairy recording schemes in dairy cattle. The obvious methodology of choice 
for such studies is survival analysis, in which proper techniques to deal with the 
unavoidable presence of censored data have been developed. However, statistical 
complexity and computational difficulties related to these methods have delayed 
the adoption of state-of-the-art methodology and different indirect approaches 
have been proposed (see Strandberg and Solkner (1996) for a review). Some large­
scale applications (Smith, 1983; Smith and Quaas, 1984; Ducrocq, 1987; Ducrocq 
et al, 1988a, b; Ruiz, 1991; Fournet, 1992; Egger-Danner, 1993; Ducrocq, 1994) 
as well as the availability of a software specifically written with animal breeding 
applications in mind (Ducrocq and Solkner, 1994) have demonstrated that the use 
of less appropriate approaches can be avoided. 

The most popular class of survival models is the class of proportional hazards 
models (Cox, 1972; Kalbfleisch and Prentice, 1980; Lawless, 1982; Cox and Oakes, 
1984). The hazard of an animal (or in the animal breeding context, its risk of 
being culled) at time t is described as the product of a baseline hazard function 
>.0(t), which is either left completely arbitrary (Cox model) or has a parametric 
form (eg, exponential, Weibull or gamma) and of a positive term which is an 
exponential function of a vector of covariates w' multiplied by a vector of regression 
parameters e. 

Proportional hazard models can be extended to include random ( eg, genetic) 
effects, as in the regular mixed linear models that are used for genetic evaluations 
worldwide. Mixed survival models are classically referred to as 'frailty' models by 
statisticians. The 'frailty' term v is defined as an unobserved random quantity which 
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affects multiplicatively the hazard of individuals or groups of animals. When a term 
Vm is defined for each animal llfd ().m(t, w) = vm.X(t, w)), the frailty component 
extracts part of the unobserved variation between individuals (Vaupel et al, 1979; 
Hougaard, 1986a,b; Follmann and Goldberg, 1988; Aalen, 1994) and therefore 
allows for a correction of the possible discrepancy between the true variance of 
the observations and the one specified by the model. Such an extra variation is 
referred to as 'overdispersion' (Louis, 1991; Tempelman and Gianola, 1994). When 
Vq is defined for a group of individuals, eg, all daughters of a sire q, it describes the 
shared unobservable (genetic, in this case) characteristics which act on the hazard 
of each member of the group (Clayton and Cuzick, 1985; Anderson et al, 1992; 
Klein, 1992; Klein et al, 1992). In all cases, the simple transformation 8 = log v 
allows the inclusion of the frailty term in the linear term w' a. 

Traditionally, a gamma (Clayton and Cuzick, 1985; Ducrocq, 1987; Klein, 1992) 
distribution has been attached to the frailty term v because of its flexibility and 
mathematical convenience. Other distributions have also been proposed, eg, a 
positive stable distribution or an inverse Gaussian distribution (Hougaard, 1986a,b; 
Klein et al, 1992). Unfortunately, in all cases, they do not have the theoretical 
appeal of the (multivariate) normal distribution commonly used in animal breeding 
when a infinitesimal polygenic model is assumed. However, it has been shown that 
the estimates obtained for the parameters of the gamma distribution of v were 
relatively large, at least in dairy cattle, which means that v had an approximate log­
normal distribution, ie, 8 was approximately normally distributed (Ducrocq, 1987; 
Ducrocq et al, 1988b; Ducrocq, 1994). Therefore, it has been suggested to account 
for the genetic relationship between animals by assuming a multivariate normal 
distribution for 8, the logarithm of the frailty term v (Ducrocq, 1987; Korsgaard, 
1996). 

Several approaches have been used to estimate the parameters of the frailty 
distributions. Klein (1992) and Klein et al (1992) suggested the use of an EM 
algorithm (Dempster et al, 1977), with iterative estimation of v, a and the baseline 
cumulative hazard distribution for a Cox model, followed by the estimation of the 
frailty distribution given v. When a Weibull model is combined with a gamma 
frailty term, Follmann and Goldberg (1988) showed that the frailty term can be 
algebraically integrated out from the likelihood function. The same property has 
been used in a Bayesian context (Ducrocq, 1987; Ducrocq et al, 1988b; Fournet, 
1992; Ducrocq, 1994). Monte-Carlo techniques have also been suggested in order to 
obtain the marginal posterior distributions of the hyperparameters (Clayton, 1991; 
Dellaportas and Smith, 1993; Korsgaard, 1996) but their use on large data sets with 

• . complex models (eg, with time-dependent covariates) may be very tedious. 
The objective of this paper is to present a general Bayesian approach to 

the analysis of mixed survival models, with (but without being restricted to) 
typical animal breeding situations in mind. The framework will be presented for 
a simple Weibull model with two types of priors for the frailty term (gamma or 
log-normal). Straightforward generalization to other models (with stratification 
and time-dependent covariates, Cox models) will follow. A particular strategy 
for estimation of the hyperparameters suitable for large applications, complex 
models and situations where a relationship matrix is used will be presented and 
its performance will be studied on simulated data. 
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METHODS 

In the Weibull regression case, the baseline hazard function has the Weibull form 
>.0(t) = >.p(>.t)P-1. For the time being, we will assume that all covariates are time­
independent and that only one baseline is defined (no stratification). The vector e 
includes fixed and random effects. For clarity, and unless specified otherwise, only 
one random effect in the model, eg, a sire effect s is considered here. Using the 
classical linear mixed-model notation: 

I ( I I ) 
Wm = Xm Zm and e = ( ~) 

where 13 is the vector of fixed effects. 
The hazard function >.(t) for animal m is: 

>.(t) 1 e, p) = .>.a(t)exp{w~e} 
= Ap(>.t)P-1exp{ w~ e} 
= ptP-1exp{p log.>.+ w~e} [1] 

and p log .>. can be incorporated in a grand mean (or any factor) in w~ e. 
For simplicity, we will write from now on: 

>.(t I e,p) = ptP- 1exp{w~e} [2] 

using the same notation but keeping in mind that a component of w~ e (represent­
ing an intercept) now includes p log.>.. 

If the record comes from a daughter m of sire q, with observed failure at Tm: 

fort~ Tm [3] 

Here, Vq = e8 <Z is the frailty term. The usual relationship f(t) = >.(t)S(t) where 

S(t) = 1t >.(u) du can be used to show that [3] is a particular case of a log-linear 

model of the form (Kalbfleisch and Prentice, 1980): 

( ) 1 1 1 1 
Ym =log Tm = -~13 + -Sq + -Wm p p p 

[4] 

[5] 

where Wm follows an extreme value distribution (Kalbfleisch and Prentice, 1980; 
Lawless, 1982) whose variance is equal to 1r2 /6. Note that here Wm implicitly 
includes three-quarters of the additive genetic variance. With this presentation, 
a natural definition of the heritability of the survival trait on the logarithmic scale 
is: 

h2 = 4 Var(s*) = 4 Var(s) 
Var(log T) ~2 + Var(s) 

[6] 

. ' 
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Formula [6] solves the problem of a proper definition of heritability for survival 
traits indicated in Ducrocq (1987) and Ducrocq et al (1988b). 

Prior distributions 

Gamma. fra.ilty model 

Assume: 

Vq rv gamma( 1 , 1) 

ie, 

Sq IV (generalized) log-gamma(/, 1) 
The log-gamma distribution (Bartlett and Kendall, 1946, according to Lawless 

(1982), p 21) corresponds to the distribution of logx when x follows a gamma 
distribution. Note however that the suffix 'log-' (eg, in 'log-normal') is often given 
to the distribution of x when logx has a known form (eg, normal). Again, the 
choice of this prior distribution is mainly related to its flexibility and mathematical 
convenience (see also Klein, 1992, and Klein et al, 1992). Then: 

( I ) - 'Y'Y ,-1 { } 7rQ Vq / - r('Y) Vq exp -/Vq [7] 

and 
Nq [ I ] 

7ro(s I 'Y) =!! r~'Y) exp {'Y(sq- e8 q)} [8] 

Log-norma.I frailty model 

In quantitative genetics, due to the infinitesimal polygenic model usually assumed, 
it is more natural to consider the following prior distribution for the frailty term: 

Vq rv log - normal(O, a~) 

ie, 

and if sires are related: 

s rv MVN(O, Au~) 
where A is the relationship matrix between sires, we have 

7ro(s I a~)= (27ra;)N~/21Ail/2 exp ( -2!;s'A-ls) 

Hyperpa.ra.meters 

[9] 

In order to simultaneously consider the two previous cases, we will denote the 
dispersion parameter of the random effect distribution by T (with T = 'Y orr= a;) 
and we will assume a flat prior for r as well as for (3 and p: 

7ro((3,p)=1 and 7ro(r)=1 [10] 
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Likelihood construction 

Conditionally on e and p, the contribution to the likelihood of animal m which fails 
(c5m = 1) or is censored (c5m = 0) at time Ym, is: 

Lm = Lm(Ym I e,p) 

= [>.(ym I e, p)] 6
Tn X S(ym I e, p) [11] 

where S(t) is the survivor function at timet. For the Weibull model, these two 
components are: 

>.(ym I e, p) = PY~-1 ew;,.a 

S(ym I e,p) = exp (-loy"' >.(t I e,p)dt) 

= exp ( -y~ ew;,.a) [13] 

Combining all these contributions (for m = 1, ... , N) which are conditionally 
independent, we obtain: 

£( e, P I Y) = II Lm = {. PN [ II Ym] p-
1 

exp ( L w~ e) } 
m {unc} {unc} 

x exp (- L y~ew;,.a) [14] 
{ unc,cens} 

where { unc} and { cens} represent the sets of indices m corresponding to uncensored 
and censored records, respectively. 

log£(9,p I y) = (Nlogp+ (p-1) L log Ym+ L w~e) - L y~ew;,.e 
· {unc} {unc} {unc,cens} 

[15] 

Joint posterior density 

Applying Bayes' theorem, we obtain: 

p(e,p,r I y) ex £(y I e,p) x 7ro(s I r) x 7ro((3,p) x 7ro(r) [16] 

and taking the logarithm on both sides: 

logp(e, p,r I y) =constant+ L log£m(Ym I e, p) + log7ro(s I r) [17] 
m 
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Inference on e and p 

If we assume that r is known, the logarithm of the joint posterior density of 

8 = ( : ) given T is: 

logp(8 I y,r) = (Nlogp+ (p -1) L logym + L ~~e) 
{unc} {unc} 

L y~ew:,.a +log 7ro(s I r) (18] 
{unc,cens} 

Using the same notation as in Tempelman and Gianola (1993), let S-r be the 
mode of this joint posterior density: 

eT = (::) = Arge maxp(8 I y,r) 

At the mode, the gradient vector is null: 

\?Pr(e) = (8logp(9 I y,r)) = 0 
89 a=e.,. 

For latter use, we also need to define the negative Hessian matrix: 

H-r = ( 82logp(9 I y,r)) 
8989' 

Joint inference on 13, p and r 

[19] 

[20] 

[21] 

Consider here the particular case of the gamma frailty model, where the ran­
dom effect s has a log-gamma distribution ( r = 'Yi this implies that the genetic 
relationship between sires is ignored). Then the marginal posterior density of 
(3, p and r is obtained by integrating out s from the joint posterior density 
p(e,p,r I y) =p(e,p,'Y I y): 

p(l3,p,r I y) = L: p(e,p,r I y)ds 

ex L: C(y I 13, s, p) x 7ro(s I p) x 7ro(r) ds (22] 

Grouping the contributions to the likelihood of all daughters of each sire q: 

P(l3,p,'Y I Y) = 100 IT Pnq [ IT Ym] p-l e:xp ( L w~e) 
-oo q=l {unc,q} {unc,q} 

e:xp (- L Y~ ew:r.e) 7ro(sq I 'Y) dsq (23] 
) { unc,cens,q} 
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where now { unc, q} and { cens, q} are the sets of indices m of the nq uncensored 
and the censored daughters of sire q, respectively. 

Writing ew:,.e = ex:nf3esq for all daughters of sire q, one can factor out the terms 
which do not depend on Sq, which leads to: 

with: [ l p-1 ( ) 
aq = pnq IT Ym exp '2: X~ 13 

{unc,q} {unc,q} 

[25] 

and: 

[26] 
{ unc,cens ,q} 

Each of these products, for q = 1, ... Nq, is of the form: 

[27] 

The term under the integral can be recognized as the kernel of a log-gamma 
distribution with parameters (nq + 1) and (Dq + 1). Therefore, 

Hence, the integration of the random effects Sq out of the joint posterior density 
can be done algebraically: 

p(~. p, -r I Y l ~ [ r~~r fi { ;;;,rln;l~~} f28J 

or: 

logp((3, p, 1! y) = Nq[llogl-log(r(l))] 
Nq 

+ L {log aq +log r(nq + 'Y) - (nq + 'Y) log(Oq + 'J')} [29] 
j q=l 

Expressions [28] and [29] are essentially those used in Ducrocq (1987), Ducrocq 
et al (1988b) and Ducrocq (1994) for the estimation of the sire variance of the 
length of productive life of dairy cows. Follmann and Goldberg (1988) referred to 
the distribution in [28] as a multivariate Burr distribution. Again, (3, p and 7 can 
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be estimated as the mode of this posterior distribution: 

( ~) ~ Arg(OM) max log p(~,p,-y I y) [30] 

v 

with associated negative Hessian matrix H. 

Inference on T 

Inferences on the dispersion parameter T should be based on its marginal posterior 
distribution, after integrating out the nuisance parameters e and p (Berger, 1985; 
Robert, 1992): 

p(T I y) = j j p(e,p,r 1 y)dedp [31] 

or: 

p(T I y) = j j exp{log p(e,p,T I y)}dedp [32] 

Except in trivial cases, this integration cannot be performed algebraically. To 
obtain the marginal posterior distribution of the dispersion parameter T, one can 
either simulate random samples from it (Clayton, 1991; Dellaportas and Smith, 
1993; Korsgaard, 1996), compute the integral numerically (Smith et al, 1985) or find 
an approximation. We will choose the third alternative, using a technique known 
as Laplacian integration (Tierney and Kardane, 1986; Achcar and Bolfarine, 1986; 
Tierney and Kardane, 1986; Tierney et al, 1989; Tempelman and Gianola, 1993; 
Goutis and Casella, 1996). For any given valuer* of r, we want to approximate: 

p(r* I y) = j j exp{log p(e,p I y,r*)} de dp [33] 

Intuitively, if p(e, p I y, r) = p(Br*) is unimodal, the value of the integral will 
heavily depend on the value of the density at its mode er*. Then, using the first 
terms of a Taylor series expansion of log p( 8r*) around this mode and noticing that 
\JPr* ( er*) = 0, We have: 

. p(T* I y) ex j exp{logp(8 I y,T*)}de 

approx J { - * 1 - 1 - - } 
'<X- exp log p(8r* I y,T)- 2(8- 8r*) Hr*(8- 8r*) d8 

p(Sr* I y, 7*) 
= (27r)nl2 I fir* 1t [34] 

The determinant part in the last equation is obtained by recognizing the kernel of 
a multivariate normal density of mean er* and variance fir* under the integral sign. 
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This results in an approximation of the marginal posterior density which is similar 
to what is described in the statistical literature as a saddlepoint approximation of 
this density (Daniels, 1954; Reid, 1988; Kolassa, 1994; Goutis and Casella, 1996). 
Taking the logarithm on both sides, we get the following approximation: 

- 1 -
log p( r* I y) ~ constant + log p( er* I y' r*) - 2 log IHr* I [35] 

=constant+ f(r*) [36] 

An obvious point estimate of T is f at the mode of this approximate marginal 
posterior density: 

f = Argr max log p(r I y) [37] 

However, the use of [34] is not limited to the computation of its mode. Other 
point estimates or other types of inferences (credible sets or hypothesis testing, etc 
(Berger, 1985; Robert, 1992)) can be derived from the knowledge of the full marginal 
posterior density. Repeated computations of [34], and in particular of the negative 
Hessian matrix H, for many different values of T may quickly become too heavy, 
though. We propose to summarize the general characteristics of the distribution [34] 
through the computation of its first three moments by unidimensional numerical 
integration based on Gauss-Hermite quadrature. To obtain a more precise estimate 
of these moments after quadrature, the iterative strategy proposed by Smith et 
al (1985) is implemented. Using initial values of the mean and the variance of 
the distribution of log T (to force the integration domain to be (-oo, +oo)), the 
integration variable is standardized. New estimates are obtained by quadrature 
and the standardization is repeated. After a few iterations, this strategy ensures 
that the quadrature rules are applied in an appropriate region of the function to 
integrate. Details are given in the Appendix. The results can be used to obtain 
a second approximation of the marginal posterior density based on its first three 
moments. Using an expression known as the Gram-Charlier series expansion of a 
function f(x) of a variable x with moments p,, 0'2 and K, we have (McCullagh, 1987): 

f(x) ~ ¢(x)(1 + K(z3 - 3z)j6) [38] 

where ¢( x) is the density of a normal distribution with mean J.t and variance 0'2 

and z- (x- J.t)/0'. 

Other situations 

Cox model 

The application of the saddlepoint approximation to obtain the marginal posterior 
density of the dispersion parameter of the random effect is not restricted to the 
Weibull regression model. It can be applied, at least in theory, to any joint posterior 
density. For example, in the case of a Cox mixed model, for which the baseline 
hazard function .X0 (t) is assumed to be completely arbitrary, p(er* I, y, r*) and the 
corresponding negative Hessian matrix Hr* in [34] can be derived replacing the 
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likelihood function in [16] by the partial likelihood function initially proposed by 
Cox (1972): 

.C(y I e,r) =II ( iw:e w' ·l 
T[i] e m 

mERisk(T[i]) 

[39] 

where the T[i]'s are the distinct observed failure times and Risk(T[iJ) is the set of 
individuals at risk at time T[i)' ie, alive just prior to T[i)· Then, assuming that r 
is known, the estimate of e to be used in [34] is obtained from the joint posterior 
density as: 

e'T = Arge maxp(e I y, r) [40] 

Stratification. Time-dependent covariates 

Stratification and the use of time-dependent covariates are common approaches 
to accommodate situations for which the proportional hazards is not valid for all 
effects or throughout the whole time range. As for the Cox model, the main changes 
with respect to the situation described so far occur in the computation of the 
likelihood and its derivatives and do not interfere with the validity of the saddlepoint 
approximation. For example, if the covariates in bfmwm are step-functions oftime 
with changes at times 'Pm,i, i = 0, ... I with 'Pm,o = 0 and 'Pm,I = Ym, then Wm is 
piecewise constant on intervals ['Pm,i, 'Pm,i+l [ and the expressions to use in [12] are: 

>.(ym I e,p) = PY~-lew:r,(Ym)e [41] 

S(ym I e, p) ~- [- ''t,' .w:..<~- .• >• ( 1'::.,,+1 - 1'::,,,) l [42[ 

In the case of stratification, the hazard function >.(ym) and the survivor function 
S(ym) include parameters p and p log>. (the 'intercept' in w~e in [1]) specific to 
the relevant stratum. 

ILLUSTRATION 

In order to illustrate the approach described above for the estimation of dispersion 
parameters of the random effects in frailty models, simulated data were generated 
based on a Wei bull model with a random effect (that will be referred to as a 
sire effect) and mimicking the data structure that is often encountered in animal 
breeding situations. The objective was to assess the quality of the saddlepoint 
approximation by comparing the exact marginal posterior distribution of the 
variance parameter of the sire effect ([28] obtained via algebraic integration) with its 
approximation ([34] after Laplacian integration). This comparison was done under 
the following conditions: a log-gamma distribution [8] was considered as a prior for 
the sire effect (which is a prerequisite for possible algebraic integration); only one 
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fixed effect (13 = f-L the grand mean) was included; and it was assumed that in (28], 
we have: 

P(f..L, p, II y) ~ p(i I y, f-L = P,, p = p) (43] 

Preliminary examination of [43] showed that in all cases studied, the density (43] 
was virtually identical to the approximate density p(i I y) after integrating out f-L 
and p by Laplacian integration. In other words, what was actually compared here 
are two approximate densities obtained after Laplacian integration of f-L, p and Nq 
sire effects Sq in one case, of f-L and p (with algebraic integration of the Sq 's) in the 
other case. 

The general behavior of the saddlepoint approximation of the marginal posterior · • 
density of the sire variance was also examined under a variety of situations (different 
types of censoring, of unbalanced structure, with a multivariate normal prior, with 
relationships between sires, using a Cox model, etc). 

Simulation strategy 

In all situations (unless specified otherwise), 5 000 records were generated using the 
following Weibull hazard function: 

(44] 

where Ajkq(t) represents the hazard at timet of the jth animal (j = 1, · · · 5 000/Nq) 
under the influence of the kth level of a fixed effect, hereafter referred to as the 'herd' 
effect (k = 1, · · · K) and daughter of the qth sire (q = 1, · · · Nq)· Values f-L = -11 
and p = 1.5 were used in all cases described here, corresponding to an average 
failure time of about 1800. For the comparison between Laplacian and algebraic 
integrations, it was assumed that K = 0, ie, f3k = 0 and the sire effects Sq were 
generated from a log-gamma distribution with parameter 1 = 50. This corresponds 
to a variance of Sq equal to wC1)(i) ~ 0.02, where 

wCl)( ) = {)2 logf(x) 
I 8x2 

is the trigamma function evaluated at I· Using expression (6], we get: 

[45] 

which is in the typical range of heritability values encountered for this kind of trait. 
When a normal distribution was assumed, a sire variance of a = 0.02 was retained 

to generate the sire effects. When herd effects were used in model [44] (K > 0), 
these were arbitrarily generated from a uniform [-2, 2] distribution. 

Two different censoring schemes were simulated. In censoring type A, all gen­
erated records greater than a given value CA were considered as censored at CA. 
The value of C A was chosen by trial and error in order to obtain a given proportion 
of censored records. Censoring type B tried to mimic an overlapping generations 
scheme. The daughters of a first batch (10%) of sires had a censored record equal 
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to GB when their simulated failure time was greater than GB. The daughters of the 
following batch (also 10%) of sires were considered as censored when their failure 
time was greater that 2GB, and so on. The censoring time for the last 10% was 
10GB. Therefore, the daughters of the first group of sires were heavily censored 
('young daughters of young sires') while the proportion of censored records for the 
last group was small ('daughters of old sires'). Again, GB was determined by trial 
and error. 

Different unbalanced situations were also simulated. In scheme Ul, the daughters 
of 100 sires (with 50 daughters each) were distributed over 505 herds, five with 500 
animals and 500 with five daughters. In scheme U2, half of the animals (2 500) were 

' · assumed to be daughters of five sires with 500 daughters each while the other half 
were daughters of 500 sires with five daughters each. These animals were randomly 
distributed over 100 herds. Finally, in scheme U3, the daughters of the 50 'best' 
sires (with 50 daughters each) were raised in the 'best' 50 herds (where 'best' means 
lowest relative culling rate) while the daughters of the 'worst' 50 sires were raised 
in the 'worst' herds. 

To study the impact of the existence of genetic relationships between individuals, 
data were generated according to a model slightly different from [44]. First, 
the effects s98 of ten grandsires ('sires of sires') were generated from a normal 
distribution with mean 0 and variance u~/4 (with u; = 0.02). For each of them, 
ten sire effects Bq were obtained by adding to s98 a normally distributed random 
effect with variance au;/ 4. Finally, 50 records of daughters of each of these sires 
were simulated according to the model: 

[46] 

where Tj represents the remaining additive genetic effect for the jth animal and 
was generated from a normal distribution with mean 0 and variance :ru;, leading 
to records with a global additive genetic variance equal to u~ = 4 u;. These data 
were analyzed and the marginal posterior density of the sire variance component 
was obtained under three different genetic models: two sire models identical to 
[44] assuming no relationships between sires (case Sl) or including the relationship 
matrix between sires (case 82), and an 'animal' model (case An), describing the 
individual additive genetic effect ai of each animal j and including the complete 
relationship matrix between the 5110 animals (5 000 with records+ 100 sires+ 10 
grand-sires): 

[47] 
·. All computations were done using the 'Survival Kit', a set of Fortran programs 

developed by Ducrocq and Solkner (1994). The 'Survival Kit' was specifically 
written to efficiently analyze the very large field data sets encountered by animal 
breeders and implements all the features described in this paper with Weibull and 
Cox models, possibly with strata, time-dependent covariates and random effects. 
In particular, the maximization of the expressions [18] or [29] is based on a limited 
memory quasi-Newton method (Liu and Nocedal, 1989) which only requires the 
computation of the vector of first derivatives of [18] or [29]. If required (for example;_ 
in [36] or when computing asymptotic standard errors), the negative Hessian is 
computed but only at convergence. Sparse matrix subroutines (Perez-Enciso et al, 
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1994) are used to compute the determinant or the inverse of this negative Hessian 
in the Weibull case. 

Results 

Laplacian integration vs Algebraic integration 

Figure 1 represents the marginal posterior distribution obtained after integrating 
out the sire effects Sq from the joint posterior distribution, either algebraically 
or using the Laplacian approximation. All records were uncensored. In the three 
samples presented here, the true value 1 = 50 is obviously included in any 
reasonable HPD credible set. When there were few sires with many daughters 
each, the two computed forms of the marginal posterior distribution were virtually 
indistinguishable. When little information was available for each sire effect (ten 
daughters each in the 500 sires case), the marginal posterior distributions were 
rather flat, with a long tail towards large values of 1 {ie, small sire variances). The 
agreement between Laplacian and algebraic integration was not as good, although 
the modes of the two distributions were close. With even less information per 
sire (five daughters or less per sire), neither of the two marginalization techniques 
worked in most of the cases: the mode of the distribution or its first moments could 
not be computed. 
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Fig 1. Marginal posterior density of the variance parameter 'Y obtained after Laplacian 
integration (---- -) or algebraic integration (--); 5 000 records; 10, 100 or 500 sires 
with 500, 50 or 10 daughters each. No censoring. 'Y = 50 = true value of the gamma 
parameter. 
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Effect of censoring 

Figure 2 presents again the result of the same two marginalization approaches, for 
100 sires with 50 daughters each but under censoring schemes A and B, with in both 
cases a proportion of 50% censored records (CA = 1200 and CB = 270). Clearly, 
censoring had little effect on the quality of the approximation when the Laplacian 
integration was used. However, because the amount of information available to 
estimate a rather small sire variance was drastically reduced, it was not always 
possible to obtain a well-defined posterior density (see Breslow and Clayton (1993) 
for similar results in the context of generalized linear mixed models). For example, in 
figure 2, the posterior density in the case of censoring scheme A does not integrate to 
1. The same phenomenon also occurred for some samples with censoring scheme B. 
Interestingly, when sire effects with a larger variance 'Y = 10 were simulated, which 
corresponds to an heritability of 0.24, even extreme situations with more than 
80% censored records (with CA = 520) led to well-defined, very peaked posterior 
densities. 

0.06 

f .. 
·~ il 0.04 
8. 

f 
0.02 

0 20 40 60 80 100 120 140 

Gamma parameter 

Fig 2. Marginal posterior density of the variance parameter 'Y obtained after Laplacian 
integration (- - - - -) or algebraic integration (--); 5 000 records; 100 sires with 
50 daughters each. 'Y = true value of the gamma parameter. Censoring scheme A: all 
records above 540 days are censored at 540. Censoring scheme B: the sires are distributed 
over ten batches of ten sires, mimicking overlapping generations schemes. Censoring occurs 
after 270 days for batch 1, 540 days for batch 2, etc. 

Normally distributed random effects 

Having shown the validity of the saddlepoint approximation of the marginal 
posterior density, other samples were generated with normally distributed sire 
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effects and with 100 (fixed) 'herd' effects. Figure 3 displays the marginal posterior 
density for ten such samples, with 100 sires and no censoring. The obtained 
distributions were not as skewed as in the case of a log-gamma distribution. At 
least in the examples studied, the true value 0.02 was always in any HPD credible 
set. Note however that the variance of these densities were quite large (standard 
deviations between 0.0049 and 0.0079 for a true parameter value of 0.02). 
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Sire variance 

Fig 3. Marginal posterior density of the sire variance u~ obtained after Laplacian 
integration. Ten samples with 5 000 records; 100 sires with 50 daughters each; 100 'herd' 
effects; no censoring; u~ = 0.02 = true value. 

Effect of unbalancedness 

When unbalancedness was induced by simulating both very large and small herds 
(case Ul), the effect on the marginal posterior density appeared to be minimal 
(fig 4). When a large heterogeneity was created in the number of daughters per sire 
(case U2), the main consequence was a less precise estimation of the sire variance. 
The most negative impact was observed when the animals were not randomly 
distributed across herds (case U3). It seems that a part of the favorable influence of 
the best sires on the survival of their daughters was attributed to the herd effects, 
resulting in a sire variance strongly biased downwards. 

Including a relationship matrix 

The two marginal posterior densities obtained under a sire model with or without 
inclusion of the true relationship matrix between sires were very similar (fig 5). 
As may have been expected, the inclusion of the relationship matrix slightly in­
creased the variance of this posterior density, because it accounts for the fact that 
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Fig 4. Marginal posterior density of the sire variance u; obtained after Laplacian 
integration in three unbalanced cases; 5 000 records. Case Ul: 500 herds with five animals; 
five herds with 500 animals. Case U2: 500 sires with five daughters each; five sires with 
500 daughters each. Case U3: the daughters of the best sires are located in the best herds. 
No censoring; u; = 0.02 = true value. 
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Fig 5. Marginal posterior density of the sire variance u; obtained after Laplacian 
integration under two sire models (without a relationship matrix (Sl) or with the true 
relationship matrix between sires (82)) and under an animal model (An); 5 000 records; 
no censoring; u; = 0.02 = true value. 
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the records of related animals are more similar, hence globally less variable. In all 
the samples simulated, the animal model consistently led to a slight overestimation 
of the sire variance: the marginal posterior density in the case of the animal model 
was systematically to the right of those for the two sire models. This may be 
attributed, at least in part, to the fact that a much larger number of parameters 
have to be integrated out with an animal model than with a sire model. Such a 
problem has been pointed out for example by Mayer (1995) in the context of a 
threshold model. The Laplacian integration probably does not perform as well in 
such a case. Note, however, that this may be worsened by the fact that only a 
very simple pedigree structure was simulated here. In particular, no information at 
all was assumed to be available on the female side. The sire model used does not 
account for the overdispersion implicitly created by the effect r 3, which represents 
three-quarters of the total additive genetic variance. An attempt to fit a model 
similar to (46] assuming a log-gamma prior distribution for r3 and performing the 
algebraic integration of r3 led to a marginal posterior density of the sire variance 
similar to that obtained with the two sire models and a very large estimate ( 'Y > 400 
at the mode) for the gamma parameter, synonymous of a very small variance for the 
r 3 's. This is likely the result of the lack of information available for the estimation 
for 'Y that was already illustrated in figure 1. 

Cox model vs Weibull model 

When a parametric (Weibull) or semi-parametric (Cox) model was used in the 
construction of the likelihood function, it was repeatedly observed that the resulting 
marginal posterior densities of u; were very similar (fig 6), with often a slightly 
larger variance in the case of the Cox model. It is not known if similar results 
would have been obtained had the data been generated assuming a baseline hazard 
function different from the Weibull hazard. 

Approximation of the marginal posterior density of r based on its first 
three moments 

The first three moments of the marginal posterior density of the parameter r 
were computed by numerical integration of [34] using a five-point Gauss-Hermite 
quadrature formula and after standardization of the function to integrate. New 
standardization factors were obtained and the procedure was repeated until the 
computed moments stabilized, which usually occurred after only three iterations. 
Figure 7 illustrates the fact that the. knowledge of these moments leads to a 
reasonable approximation of the marginal posterior density of r 

DISCUSSION AND CONCLUSION 

Bayesian analysis offers a coherent framework for the otherwise unclear problem of 
variance components estimation in mixed nonlinear models (Ducrocq, 1990): all the 
elements for inferences on dispersion parameters are contained in the marginal pos­
terior distribution of these parameters and the construction of the latter is based 
on general principles. Particular applications to animal breeding situations were 
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Fig 6. Marginal posterior density of the sire variance u~ obtained after Laplacian 
integration when a Weibull (--) or a Cox (- - - - -) model is used; 5 000 records 
generated from a Weibull distribution; 100 sires with 50 daughters each; 100 'herd' effects; 
no censoring; u~ = 0.02 = true value. 
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Fig 7. Marginal posterior density of the sire variance u~ obtained after Laplacian 
integration computed at 80 different points (--) or approximated using a Gram­
Charlier series expansion based on its first three moments (- - - --); 5 000 records generated 
from a Weibull distribution; 100 sires with 50 daughters each; 100 'herd' effects; no 
censoring; u~ = 0.02 =true value, mode at T = 0.0197. Final estimates of the mean, 
standard deviation and coefficient of skewness: 0.0215, 0.0064, 0.588. 
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proposed for categorical data (Foulley et al, 1987; Hoachele et al, 1987; Foulley 
et al, 1989) and for Poisson mixed models (Tempelman and Gianola, 1993). In 
this paper, a general approach for genetic evaluation and estimation of dispersion 
parameters for Weibull and Cox mixed models was described. Its main attractive 
features are its generality and its computational feasability, even for very large 
applications. As an example of the latter, the largest analysis that we have carried 
out involved the estimation of the mode and the first three moments of the marginal 
posterior distribution of the sire variance component for the length of productive 
life of 633 516 Holstein cows, daughters of 3 613 related sires. The Weibull mixed 
model used was quite complex and included time-dependent effects such as a herd­
year-.season effect (with 82 713 levels, assumed to be randomly distributed with a 
log-gamma distribution), a lactation number x stage of lactation effect, a herd size 
effect and a year-to-year variation in herd size effect as well as continuous linear 
and quadratic effects of covariates such age at first calving, milk, fat and protein 
yield. 

Popular extensions of proportional hazards models such as stratification or the 
use of time-dependent covariates complicate the actual likelihood computations but 
do not interfere with the marginalization procedures described here. The inclusion 
of genetic relationships between individuals is straightforward through the use of 
an appropriate prior distribution. Other prior distributions (including informative 
priors) or other parametric baseline hazard functions could have been incorporated. 
More complex genetic structures (eg, with maternal effects) can be fitted. When 
more than one random effect is considered in the model, the approximation 
described here leads to the joint marginal posterior of all the dispersion parameters 
for all random effects. Further marginalization can be performed numerically along 
the lines described in the Appendix for the calculation of the moments of the 
marginal posterior distribution but this may be considered too costly. In the case of 
a Weibull mixed model with two random effects, one of them having a log-gamma 
distribution, the possibility of integrating out the latter algebraically avoids this 
difficulty. 

Laplacian integration can be applied to other situations too. For example, Tier­
ney and Kadane (1986) and Tierney et al (1989) suggested the direct computation 
of the mean of the marginal posterior density using second-order approximation 
formulae. These formulae were derived applying Laplacian integration to both the 
numerator and the denominator of a ratio of integrals. However, this requires the 
maximization of the joint posterior density for the dispersion parameters, the fixed 
effects and the random effects. This approach failed when we attempted it as the 
maximization procedure led to dispersion parameters estimates corresponding to 
random effects with null variance. The same phenomenon had been described pre­
viously in similar situations (Tempelman and Gianola, 1993). 

At least in theory, Laplacian integration could have been used to obtain the 
marginal posterior distribution of parameters other than the dispersion parameters. 
However, this may be considered far too demanding, because each application of the 
Laplace expansion requires the maximization of one particular function involving 
all parameters except the one of interest. This is in contrast with some Monte­
Carlo methods, such as Gibbs sampling, where the marginal distributions for all 
parameters can be obtained simultaneously. However, in practical animal breeding 
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situations, the separate consideration of all marginal densities is often not required, 
because estimated breeding values are point estimates mainly used to rank animals: 
when little information is available for the genetic evaluation, an accurate ranking of 
the candidates to selection is unrealistic. In the opposite case (precise estimation), 
the rankings based on, say, the mode or the mean of either the marginal or the joint 
posterior distribution are likely to be very similar. Marginal posterior densities of 
nonlinear functions of parameters can also be calculated (Wong and Li, 1992). 

Marginalization based on Laplacian integration has been shown to give excellent 
results in standard situations. For many nonlinear applications, the quality of the 
saddlepoint approximation would have to rely on the comparison of the approximate 
marginal distribution of the dispersion parameters with the actual distribution 
obtained via Monte-Carlo simulations. The exceptional situation studied here where 
an exact algebraic integration of a log-gamma random effect is possible permits 
a more straightforward comparison. It was found that the designs for which the 
two marginal posterior distributions (exact and approximate) depart from each 
other correspond to situations where the quantity of information available for the 
estimation of genetic parameters is quite limited. This means, in particular, that 
the saddlepoint approximation is likely to be unsuccessful for the estimation of the 
parameters of a frailty term used to des<;ribe an extra variation (overdispersion). 
However, one can still use algebraic integration of the random effects in the case of 
a gamma frailty component in a Weibull model. 
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APPENDIX: MOMENTS OF THE MARGINAL POSTERIOR 
DENSITY OFT 

Define g( T) = exp {! ( T) - f (f)}. Expressions [36] or [37] imply: 

p(T I y) = kg(T) 

for some integration constant k (100 g( T )dT = ~) . Let: 

[A1] 

[A2] 

Knowing hn(T), n = 0, ... , 3, one can compute k and the first three moments of the 
approximate marginal posterior density of T: 

k=-1-
ho(T) 

h1(T) 
p,(T) = l-£1 = ho(T) 

2 h2(T) 2 
Var(T) = 11-2-11-1 = ho(T) -11-1 

(p,s - 31-£111-2 + 2p,y) 
/'i,=~-....:.......:.:......::=:-~~ 

Var(T)3/ 2 

[A3] 

[A4] 

[A5] 

[A6] 

with p,3 = ~:~~~. Adapting the approach of Smith et al (1985) to our particular 

case, the expressions [A3], [A4], [A5] and [A6] are computed iteratively using the 
following algorithm: 
- Reparameterize T in such a way that the new variables take values between -oo 
and +oo. Here, this can be done with the change of variable ~ = log T 

[A7] 

- Let 11-e and u~ be the (approximate) marginal posterior mean and variance of ~. 
By definition: 

[A8] 

[A9] 
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Let 11-~o) and u~o) be initial estimates of these moments. Standardize ~ using the 
(0) 

transformation v = ~ -c~r· . Then, we get a first estimate of the moments in [A2]: 
O"t; 

hn(T) = /_: CT~O) e(n+l)(JLko)+uko>v) 

and new estimates for /1-t; and u~ by computing: 

l +oo 
11-?) = -oo CT~O) (~J-~0) + ut> v) 

l +oo 
2(1) - (0) ( (0) + (0) )2 

O"t; - O"t; 11-t; O"t; v 
-oo 

( (0) (0) ) 
g(eiL~ +u~ v )dv 

.,2 

Finally, factoring out the expression e-2 in the integrand, we get: 

( l+oo .,2 [ (0) (n+1)(JL(o)+u(o)v)+"2 ( (JL(o)+u(o)v))] d 
hn -r) = -oo e-2 O"t; e E E 2 g e E E v 

= /_:00 e- v; r(v, /1-~0) ;CT~O)) dv 

[AlO] 

[All] 

[A12] 

[A13] 

[A14] 

Similar expressions exist for 11-~1) and u:(l). They are of the form required for the 
application of the Gauss-Hermite quadrature rules. For example, hn(-r) will be 
evaluated as: 

[A15] 
i=l 

where Vi and Wi, for i = 1, ... I, are the roots and the associated weights of the 
Hermite polynomial of order I (Abramowitz and Stegun, 1964). Again, similar 
formulae apply to 11-~l) and u:(l). Once those new values of 11-t; and u~ have been 

computed, they can replace the initial values 11-~o) and u~o) and the procedure can 
be iterated until convergence. 

It is important to note that the main work involved is the computation of g(e<"')) 
at I points Vi and that the resulting values are used repeatedly in the computation 

) (1) 2(1) 
of hn(T , 11-t; and CTt; • 


