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We study the existence of an equivalent local martingale measure for discrete
time stochastic processes, an approach different from that in the current literature,
which concerns itself with equivalent martingale measures. We give a new definition
for “no arbitrage” and show that this condition is necessary for there to exist an
equivalent local martingale measure. We conjecture that if a process satisfies our
no arbitrage condition, then there exists an equivalent martingale measure for this
process. We show that if a process is unbounded enough, then there always exists
an equivalent local martingale measure for it, which is consistent with our conjec-
ture. We also prove that our conjecture holds for a special class of processes, which
includes a recent example from the literature.

We also consider families of stochastic processes and give a necessary condition
for a family of processes to have an equivalent local martingale measure. We exhibit
a family of processes for which there exists an equivalent local martingale measure

but not an equivalent martingale measure.
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Chapter 1

Introduction

Tt is well known that one can’t “win for sure ” betting on a martingale. In ([4]),
Dalang, Morton and Willinger give a result which intuitively can be interpreted as
“if one can’t win for sure betting on a process then it must be a martingale under
some equivalent measure”. This new measure is called an equivalent martingale
measure.

The concept of an equivalent martingale measure was first introduced in the
two fundamental papers, Harrison & Kreps [8] and Harrison & Pliska [9]. In these
papers, the relationship between the economic notion of arbitrage, and the proba-
bilistic idea of an equivalent martingale measure was first developed. The concept
of an equivalent martingale measure now plays a vital role in mathematical finance.
In general, necessary and sufficient conditions for the existence of an equivalent
martingale measure are not known. Before stating the known results on equivalent

martingale measures we will need some definitions.



From now on (£, F, P) will be a probability space, and F = {F;: t € T} will
be a filtration for this space. By a filtration, we mean an increasing sequence of

sub-o-fields of F,i.e. for s < ¢
Fs ¢ Fy C F

To begin with, we will consider a market with only finitely many assets. In chapter
2 we will generalize this to infinitely many securities. For the remainder of this
chapter, Z = {Z; :t € T} will be a d + 1 dimensional stochastic process defined
on (9, F, P) and adapted to F. By adapted, we mean that for each t, the mapping

w — Zy(w) is Fi-measurable.

Definition 1.0.1 Z is said to be a martingale (with respect to the filtration F') if

. E“ZtH < ooVt

o For every s < t we have P a.s.

E[Zi | Fs] = Zs aus.

Let T be a stopping time with respect to the filtration F. (The random time T is a
stopping time if for every ¢ the event {T' < t} € F;.) We will denote the “stopped”

process {Ziar :t € T} by zT.

Definition 1.0.2 If there exists a nondecreasing sequence of stopping times,
{T, }o2,, such that P(limp—oo Tn = o0) = 1 and for each n, ZTr is a martingale
(with respect to F' ) then Z is called a local martingale . When such a sequence of

stopping times exist, we will say that the sequence {T}52, reduces Z.



Remark 1.0.3 Note that under our definition of local martingale, if Z is a local
martingale then Zy must be integrable. This is consistent with the definition given
in Karatzas and Shreve [13]. In Dellacherie and Meyer [6] a more general definition
for a local martingale is given. Our results would not be affected by using the

definition of Dellacherie and Meyer.

Definition 1.0.4 A measure Q defined on (Q,F) is said to be egiuvalent to P if
for all A € F.
Q(A) =0 < P(A)=0.

We will denote this by Q@ .~ P.

Remark 1.0.5 If Q and P are countably additive, then @ ~ P if and only if for

every sequence of measurable sets {An},

P(A;) — 0 <= Q(An) — O

The next definition is a temporary definition that will be changed in section 2.

Definition 1.0.6 A probability measure, @, is called an equivalent martingale mea-

sure for Z, (with respect to F), if

e Q ~ Pand

e Z is a martingale under Q.
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1.1 Securities Market‘ Models

What we give below is essentially the model of Harrison & Kreps [8]. The funda-
mental objects of the model are a set of trading dates, an information structure,
and a price process. We will assume that the set of trading dates is the index set
T. The information structure is represented by the filtration F. Thus the o-field F;
represents the information available to an investor at time ¢. In this model, there
are d + 1 assets. The price process is given by the d 4+ 1 dimensional stochastic
process Z. Zy(t) (the kth component of Z) represents the price of the kth asset at
time ¢. We will need one component to serve as a numeraire. If one assumes that
security zero is a riskless asset such as a bond or money market account, then it
is reasonable to make the aséumption that the price of the Oth security is strictly
positive for all t. We will make the assumption that the Oth asset is strictly positive
and that all prices have been normalized by the price of security zero, from which
it follows that Zo(f,w) = 1 for all w and t. We will assume that the markets are
frictionless, that is there are no trading costs, taxes, etc. Agents in this model buy
and sell assets according to trading strategies. We will begin by considering simple

trading strategies.



Definition 1.1.1 A simple trading strategy is a d + 1 dimensional process

¢ = {¢¢:t € T} that satisfies

o There exists a finite integer N and a sequence of trading dates 0 = ¥y < t1 <

.« <ty < oo such that
N
¢t o Agl[o](t) -+ z}‘il(ti_l,ti](t)
i=1

(Where \; € Fy;.)

e Forn = 1,2,...,N -1,
10 Zty, = Ptny1ZLtn-

A strategy ¢ represents a rule for holding assets, with #*(t,w) specifying the
amount of asset k held at time ¢, when the state of the world is w. The first condition
requires that the portfolio held at time ¢, must be based on the information available
at time . With a simple trading strategy, agents are only allowed to trade a finite
number of times, as is specified by the second condition. The third condition requires
that a strategy be self-financing. That is, no new money may added to or removed

from the portfolio between time 0 and the end of trading.

Definition 1.1.2 The value process, V(¢), associated with a trading strategy ¢, 1s

defined by:
V}(Q’S) = ¢y Zy



Let ¢ be a trading strategy, which trades at the dates, to,%1,...,ty, we will denote
the value of the process at the end of trading by, V(¢), i.e. V(¢) = Viy(4). We

may express V(¢) as

V(¢) = ¢y - Ziy (1.1)
= qSiN ; (ZtN - ZtN—-l) + ¢tN : ZtN—l

= Pty - (ZtN - ZtN-l) + bin_1 Lin_a

= Vo(¢) + Xn: bty - (Zi — Zi-1)
=1

= Vo(d) + Zn: bt - (Ziy — Zin_y)
1=1

Along with the value associated with a strategy, is the corresponding gain. The

gain by time t associated with a strategy ¢ is

Gi(¢) = Vi(¢) — Vo(9)
Definition 1.1.3 A simple arbitrage opportunity is a trading strategy ¢ satisfying
o P(Vi(¢)=0)=1.
e P(V(¢)>0)=1and
o P(V(¢)>0)>0.

Remark 1.1.4 Since the definition of an arbitrage opportunity depends on the

definition of trading strategies, different definitions of trading strategies give rise to



different definitions of arbitrage. We have used the term simple arbitrage to separate

this definition from one we will give later.

In Harrison and Kreps [8], it is established that if {2 is finite, then there exists
an equivalent martingale measure for the price process Z if and only if there are no
simple arbitrage opportunities.

Dalang, Morton and Willinger (see [4] ) were able to remove the assumption that
Q is finite. Let T = {0,1,2,...,n}, and let (Q,F,P) be a complete probability
space (that is, F contains all the subsets of sets having probability zero). Z will be
an arbitrary price process (i.e. the only assumption on Z is that the 0th component
is identically 1). Let Z = {Z,t = 0,1,...,N} be the d-dimensional process

obtained by deleting the Oth component (ie. Z = (1, Z)).

Theorem 1.1.5 (Dalang, Morton, Willinger)

The following are equivalent

1. The market model contains no arbitrage opportunities.

2. Forallt € {1,2,...,N} and all R%-valued Fi_1-measurable random

vectors «,
(X‘(Zt—Zt_l) __>_ 0P —as — CY'(Zt—~Zt__1) = 0P —a.s.

8. There exists an equivalent martingale measure for Z.

Since the three statements of the theorem are equivalent, statements 1 and 2
are necessary and sufficient for there to exist an equivalent martingale measure for

7 Rach of the three statements of the theorem is invariant under a change to



an equivalent measure. Thus Theorem 1.1.5 completely characterizes all stochastic
processes with a finite index set for which there exists an equivalent martingale

measure.

1.2 Infinite Horizon Problems

We now turn to the question of whether there exists a similar result for processes
with an infinite index set (either discrete or continuous time processes). When
the index set is finite, any trading strategy is simple, and thus, the definition of
arbitrage is clear. When the index set is infinite, there are many ways in which
to define trading strategies. We will begin by showing that the absence of simple
arbitrage is not sufficient for there to exist an equivalent martingale measure. The

following example is well know in many different contexts.

Example 1.2.1 Let X7, Xy, ... be a sequence of i.i.d. random variables with

forsome 0 < p<1l;p#1/2. Let Z, = X1+ + Xp, and Fp = 0(Z1,y. ..y Zn).
Suppose that there exists an equivalent martingale measure Q) for Z. By the defini-
tion of a martingale

EglXn | Frn1] = 0Q- as.

Since X, only takes the values 1, we have that

P(Xn = 1| Fa1) = 1/2 Q-as.

Hence, under Q, the X, are i.i.d. with mean 0. By the strong law of large numbers,

X,/n — 2p—1 P-as., but under @, Xp/n — 0 Q-as., which contradicts the



assumption that @ and P are equivalent. Thus for a process with an infinite index
set the absence of simple arbitrage is not enough to guarantee the existence of an

equivalent martingale measure.

We will now look at two recent results for continuous time processes. The first
result is due to Stricker (see [16] ). Stricker considers a problem slightly different

from ours.

Definition 1.2.2 The process (Z, F, P) is said to have the property MP, if there
exists a probability measure @ ~ P with dQ/dP € Li(Q,F,P) (where g is

conjugate to p) and such that Z is a martingale with respect to Q.

Remark 1.2.3 In the early work of Harrison & Kreps and Harrison & Pliska, they
assumed that all the random variables in the model were in L?. There definition of
an equivalent martingale measure was different from ours. Under there definition,

a process had an equivalent martingale measure if it had the property M2

Let the index set T be [0,1]. We assume that the probability space (©2,F, P)

along with the filtration F satisfy the usual conditions. That is,

e F is right continuous, ie. if t < 1, then F; = Ng»Fs and

e Fy contains all null sets, ie. if B C A and P(A) = 0 then B € Fy.

The vector valued process H is called a simple predictable process if it can be

expressed in the form
n—1

H(t) = Z)‘il(ti,ti+1](t)
1=0

where 0 < tg <t < ... <tp < land \; = (,\},...,Agl) is JFy; measurable.
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In what follows,1 < p < 0o, and Z is a d-dimensional cadlag (right continuous
with left hand limits ) adapted process such that for each ¢t € [0,1], Zy € LP. Let
(H - Z); denote the stochastic integrable of H with respect to Z, By be the set of
all bounded non-negative random variables, and L% be the set of all non-negative

random variables in LP.

Theorem 1.2.4 (Stricker) :

The following are equivalent

1. (Z,P) has the property MP.

2. For every set A € F such that P(A) > 0,14 ¢ K — B,.

3. I nK=-B; = {0}

(K — By)is theset {k—b|ke K, b€ By}

The set K can be viewed as the set of all obtainable gains using simple pre-
dictable trading strategies. The set K — B is the set of gains obtained using simple
predictable trading strategies when investors are allowed to throw money away. (We
shall come back to this rather surprising concept in chapter 5). Suppose that condi-
tion 3 is not satisfied. Then there exists a non-negative nonzero element of L?, such
that Y can be approximated by elements of K — By. Thus intuitively, if statement
3 does not hold, by using simple trading strategies and throwing money away when
necessary, one can get arbitrarily close (in the L? sense) to a sure win. Thus the
third statement can be viewed as an “absence of arbitrage” condition. By the first

statement, Z has the property MP if and only if the no arbitrage condition holds.
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For continuous processes, Stricker’s Theorem simplifies to

Theorem 1.2.5 (Stricker) :

If Z is a continuous process then the following are equivalent
1. (Z, P) has the property MP.
2. For every set A € F such that P(A) > 0,14 ¢ K — B;.
3. L nK = {0}.

We will now look at a recent result by Delbaen (see [5] ). We will call the function

g elementary if it takes only finitely many values.

Definition 1.2.6 A process H : [0,1] x @ — R is called “very simple” if there
exists stopping times 0 =Ty < Ty < ... < T, < Tot+1 = 1 and Fr,-measurable
elementary functions go, g1, . ., gn such that
n ;
H(t) = golp(t) + ]ggkl(Tk,Tk“}(t)
Suppose that Z is a continuous bounded adapted process. Let
K = {(H-Z)1| H is a very simple process }.

From Theorem 5.1 in [5], one can conclude that the following are equivalent

1. If { Ya}n>1 is a sequence in K such that IYallo < 1, then

Y, — 0in probability = Y;" — 0 in probability

2. There exists an equivalent martingale measure for Z.
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As with Stricker’s result, one can view the set K as the set of all obtainable gains
using very simple trading strategies (a very simple strategy is a trading strategy with
the process ¢ being a very simple process). Suppose that condition 1 does not hold.
Then there exists a non-negative, nonzero random variable Y, such that Y can be
approximated (in probability) by elements of K. Thus condition 1 is a no arbitrage
condition. By remark 1.0.5 condition 1 is invariant under a change to an equivalent
measure. So Delbaen gives a necessary and sufficient condition for any continuous

bounded process to have an equivalent martingale measure.

Remark 1.2.7 If one drops the assumption that Z is bounded, then Delbaen gets
a necessary and sufficient condition for there to exist an equivalent measure under

which Z is a local martingale.

1.3 Discrete Time Processes

We will now consider discrete time processes with an infinite index set which is
what this thesis is concerned with. From now on, any stochastic process mentioned
is assumed to have the index set T = {0,1,...}.

Up till now we have been concerned with the existence of an equivalent mar-
tingale measure (using definition 1.0.6 ) for a process Z. We will take a different
approach and consider the existence of an equivalent measure under which Z 1s a
local martingale. We will now weaken the definition of an equivalent martingale
measure by only requiring that Z be a local martingale measure with respect to the

measure.
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Definition 1.3.1 A probability measure, Q, is called an equivalent martingale mea-

sure for Z (with respect to F') if
e Q ~ P and

e 7 is a local martingale under Q.

We will look at example 1.2.1 again.

Example 1.3.2 Recall that Z was a simple random walk with
P(X; = 1) =p =1-PX; = -1).

We saw that if p # 1/2 then there was no equivalent martingale measure for this
process. We now show that in this case one can win for sure ( in some sense ) by
betting on this process. We will assume that 1/2 < p <1 (the case 1/2 > p > 0 can
be done with a symmetric argument). The idea for the following strategy is due to
the work of Dubins and Savage ( see [7] chapter 5 and section 10.5).

Let € = 2p—1.
Set Wy = 1.
Forn > 1,set Ay = eWn_1lyw, <2} and W, = Wyh_1 + Xy

We then have that
Wn = Wn_l(l -+ Can{Wn_lsz})

= [TF=1 (1 + eXplyw,_,<2))
and
Yhat M(Zk — Zko1) = Tik=1 MK
W, —1

i



14
Claim limy,,—.oo Wy ezists a.s and limy, ..o Wy > 2.
Proof. It is enough to show that
i
[[(1+eXy) — oo as. (1.2)
k=1

Let Y, = log(l + €Xy). Then ¥1,Ys,... 1s an i.i.d. sequence of random variables.

Let p = EY;.
Lemma 1.3.3 (Ezpected Value lemma) If p > 1/2 then p > 0.

The proof is left to the appendix.

By the strong law of large numbers, (¥f=; Y3) /n — p as. which implies that

Yt 1Y, — +oo as. From this it follows that

k=1

log (ﬁ (1+ eXn)) — 00 a.s.

Which implies equation 1.2.

Thus
V)
Z M Xp — las.
k=1
Note also that for every n,
n
Z A X > —1
k=1

]

Thus for the above process when there does not exist an equivalent martingale
measure, one can win for sure by betting on the process. When an infinite number

of trades (or bets) are allowed, it is well known that by using “doubling strategies”
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one can win for sure by betting on a martingale. What separates the strategy in
example 1.3.2 from doubling strategies is that the value process in this example is
uniformly bounded below. Thus this winning strategy seems more reasonable than a
doubling strategy, and hence seems more reasonable to call an arbitrage opportunity.
The results in Chapter 2 are motivated by this idea of a reasonable sure win.

In Chapter 2 a necessary condition for the existence of an equivalent martingale
measure is given. This condition is a no arbitrage type condition. We will see that if
there exists an equivalent martingale measure, then there are no opportunities such
as those in example 1.3.2.

Chapters 3 and 4 are concerned with whether the condition given in Chapter 2 is
sufficient. We will prove that this condition is sufficient for two classes of processes.
Chapter 3 is concerned with processes for which all of the increments are unbounded.
In chapter 4, we prove for a simple class of processes that the condition in chapter
2 is sufficient.

In chapter 5 we will look at two examples. The first example is a family of
processes for which there exists an equivalent local martingale measure, but no
equivalent martingale measure. The second example is concerned with the wildness

of arbitrage opportunities for discontinuous processes.



Chapter 2

A Necessary Condition for the
Existence of an Equivalent

Martingale Measure

2.1 Introduction

In this chapter we will give a necessary condition for the existence of an equivalent
martingale measure. In chapter 1 it was shown that the absence of simple arbitrage
was not enough to guarantee that an equivalent martingale measure existed. We
will begin by considering other definitions of allowable trading strategies (and hence
a different definition of arbitrage). We will consider trading strategies that permit
an infinite number of trades. If an infinite number of trades are allowed, some sort
of boundedness requirement is necessary to eliminate “doubling strategies”.

We will first consider strategies of the form ¢ = (¢1,62,...) where ¢ is a

16
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bounded sequence. The following example is due to Back and Pliska ([3]).

Example 2.1.1 Consider a model with two assets. The Oth asset is a bond, whose
price is equal to 1 for all ¢ and w. We will denote the price of the second asset, the
risky asset, by Z. Let @ = {1,2,...} and 0 < p < 1.
Let P be given by,

Pw) = (1-p)p*™!

Set Zg = 1 and

(1/2)" ifn < w
Zp(w) =
(w? + 2w +2)(1/2)¥ ifn > w
Thus on the event {w } ; at each time n prior to w, the price falls by 50 % ; at time

w, the process increases by (w? + 2w)(1/2)¥; after time w the price is constant.

Back and Pliska show that there is no martingale measure for Z.

They consider trading strategies of the form, (W, ¢) where ¢ = (é1, d2,.. ) is
a bounded sequence. In their paper they show that there are no arbitrage oppor-
tunities for this model. The absence of arbitrage in this model follows from three
factors: the time of the price increase is unpredictable; when the price increases,
the size of the increase can be arbitrarily small; only bounded trading strategies are
permitted. Hence under this definition of trading strategies, the absence of arbitrage
is not sufficient for there to exist an equivalent martingale measure.

Another approach is to define a trading strategy such that unlimited negative

wealth is never allowed.
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Definition 2.1.2 We will call a process ¢ = (¢1,¢2,...) an admissable trading

strategy if
e For every N, the process up till time N is a simple trading strategy as defined
in definition 1.1.1.

e There exists M and I, such that for each n > M, Val(g) = 1y as.
o Vio(¢) = limy, Vi(¢) exists a.s.

We will see in section 3 that with this definition of trading strategies the no arbitrage
condition is necessary for there to exist an equivalent martingale measure for Z, but

the following example shows that it is not sufficient.

Example 2.1.3 This example is a modification of the Back and Pliska example.

Let @ = {a,1,2,3,...}, and let P be defined by

1/2 w = a
Plw) =
2“(""{"1) w = N

Let Zg = Oandforn > 1
n ifw=qaorw > n
w— 2 ifw # candw <n
It is easily verified that the only possible martingale measure for Z is given by,
Qe) = 0and Q(r) = 27", n = 1,2,... Thus, since P(e) > 0, @ is not
equivalent to P.

Proposition 2.1.4 If trading strategies are defined by definition 2.1.2, then the

process in example 2.1.3 does not admit any arbitrage opportunities.
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Proof. Let ¢ be such a strategy with V5(¢) = 0 and suppose that Voo(¢) = 0.

Then

n

Valg) = Y_XilZi — Zi-1)

i=1

Since on the event {1,2,...,n — 1}, Zn = Zn-1, we may assume that the A, are

constant. For any n, if A, > 0, then
P( VOO((]ﬁ) < Vn—l(gb) ) > P( {n} [ {1727' ceyt— 1}0) >0 (21)

Thus applying this when n = 1, we have that Ay < 0. Hence on the event
{1}e, Vi(¢) < 0. Applying this argument inductively, we have that for every n,
Ap < 0.

But on the event, {a},

oo
Voo = Y, Aa < 0.
n=1

Thus A\, = 0  V n. Hence there are no arbitrage opportunities for this process.

O

2.2 A Necessary Condition

In this section we will give a condition necessary for the existence of an equivalent
martingale measure. We will begin by proving several simple lemmas about local
martingales. In what follows X = {X,}32, will be a real-valued stochastic process

defined on (92, F, P) and adapted to the filtration F.

Lemma 2.2.1 If X is a local martingale and for some n and !, Xn > la.s., then

Xy > 1lforo < k< n.
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Proof. Let {T,}5%, be a sequence of stopping times that reduce X. Let
A = {.‘ n-—1 < l}.

Then since P(Ty > n—1) — 1as k — oo, there exists m such that
P(AN{Tyn > n}) > P(A)/2. Let
B = A({Tm > n}.
Then B € Fn_1. If P(B) > 0 then by the definition, of conditional expectation,
IP(B) < EXulp
= E(1BE[Xn | Fn-1])
= E(BE[XunTn18 | Fn-1])
= E(X(n-1)aT1B)
< IP(B)
Which is impossible. Thus P(B) = 0, hence P(A) = 0. The result follows by

induction. a
Lemma 2.2.2 If X is a local martingale and Xy, > 1, then, Xy is integrable.

Proof. From the previous lemma, for each m, Xpa,, > [
Since X is a local martingale (see rtemark 1.0.3 ) E | Xo | < oo
Since for each m, XT™ is a martingale,

E(Xpat,, — Xo) = 0.

Thus
E | Xunt, — Xo | = 2E[(XuaT, — X0)7 ]

IN

ZE[(‘ n/\Tm)— + X(.)*‘]

VAN

Al + E|Xo|) < oo



21

Since Xya7, — Xp a.s.asm — oo.

we have by Fatou’s lemma,
E|X,—Xo| < 1imi?r?1%fE[Xn,\Tm ~Xo|€ 2(-1+ E|Xo|) < o
It follows that E | X, | < o0
Lemma 2.2.3 If X is a local martingale, and X, > 1, then EXy = EXy.
Proof. | Xuar, | <|X1|+|X2|+---| Xa| By the previous lemma
E|X)|+E| X2 |+ +E|Xn|< o0
Thus by dominated convergence,

EX, = "}i_r%OEXnATm = EXp

Lemma 2.2.4 If X is a martingale, then the process G = {Gn}52, given by

Gn = Y M(X; — Xi_1), where for each i, Aj € Fi_1, is a local martingale.

Proof. Define the stopping times {S;}32, by Sk = inf{¢ || Aix1 |> Kk}

E|Gurs, | = E| Xk NilXi— Xic)ls, >4 |

E| Y k(X —Xi 1) lis, >0 |

YR EE | (Xi— Xio1) | s, >4}
P kE | (Xi - Xio) |

IN NN

AN

o0
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So for each n, GpaTy, 18 integrable.
E[Guns, | Fact]l = ElGm_ijase + M(Xn = Xn-1)l{s,2n} | Fr-1l
= Gu-nnsy T Anlisysn-1}E[Xn = Xn—1 | Fo]
= Gu-nasy T 0

Thus for every k, G5 = {Gnas, }52; is a martingale. It’s clear that

P(limg S; = +oo) = 1. Hence G is a local martingale. O
Corollary 2.2.5 If X is a local martingale, then G 15 a local martingale.

Proof. Let {T,} be a sequence of stopping times that reduce X. For each n,

XTn is a martingale, thus by the previous lemma GS»An is a martingale. Since

T, — oo a.sand S, — oo a.s we have that S, AT, — 00 a.s 0
(2, F, P) and adapted to F.

Let K be the set of obtainable gains, that is
K = {V(¢) — Vo(¢) : ¢ is a simple trading strategy}

By equation 1.1 we may express Vo (¢) as

We can then express K as

{Z)\Z Zi_1)|n < oo, Nj € Fi }

We will often use the second formulation of K.
Let Ky = {Y € K | Y is bounded below }. We want to close the set K under a

certain kind of limits which we will now define.
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Definition 2.2.6 For a set of random variables, B, we will call Y a #point of B if

there exists a sequence of random variables Y1,Ys,... € B such that
o Y, — Y as.
e The Y, are bounded below, that is there exists a number [ such that

Y, > las.

Definition 2.2.7 A set of random variables B, is called *closed if it contains all of

it’s xpoints.

Note that if Y is a #point of B under the measure P, and @ ~ P, then Y is xpoint

of B under the measure Q.

Lemma 2.2.8 Let C be a collection of xclosed sets, and let
A= ﬂ C
C
Then A is xclosed.

Proof. LetY be a *point of A, and let ¥, € C be as in the definition of a xpoint.
Then for every C in C, {¥3}%, C C. Hence, Y is *point ofeach C € C. It
follows that Y € C for every C € C

= Y € A

Which implies that A is *closed. a

Definition 2.2.9 Let Cg = {C | B C C, C is xclosed }. We define the xclosure,

B*, of B by

B = ﬂC.
Cp
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Remark 2.2.10 For an arbitrary set of random variables B, B* is not necessarily

the union of B and its set of *points.

Let Hy be the set of all non-negative random variables defined on (2, F, P).

Theorem 2.2.11 If there exists a measure Q, equivalent to P, such that Z is a

local martingale with respect to Q, then
K*nHy = {0}

Proof. Let K} be as above. Clearly, K* N Hy = {0} if and only if
K;nHy = {0}.

Let Q be as in the hypothesis of the theorem. Now define the set A by
A = {Y | EQY < 0}

It easily follows from Fatou’s lemma that A is xclosed. By lemma 2.2, K C A.

Also, AN H, = {0}, which implies that

K*nH, = {0}.

Conjecture 2.2.12 There exists an equivalent martingale measure for Z if and
only if

I{*HH_}, = {0}
That is, if K* N Hy = {0}, then there exists an equivalent martingale measure for

Z.
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Let K be the set K along with all of its *points. As remarked earlier, in general,
K is not the same set as K*. When K is the set of achievable gains associated with
Z, it is not clear what the relation between K and K* is, but we state the following

conjecture.
Conjecture 2.2.13 If K is the set of gains associated with Z, then
KNHy = {0} = K*( Hy = {0}.

Remark 2.2.14 As was stated in the first section, if trading strategies are defined
as in definition 2.1.2, then Theorem 2.2.11 shows that the absence of arbitrage is

necessary for there to exist an equivalent martingale measure.

2.3 Families of Stochastic Processes

In this section we will generalize the results of section 3 to a family of stochastic
processes. Again let (Q,F, P) be some probability space, and F be a filtration for
this space. Let V. = {Z% a € A} be a family of discrete time processes on
(Q, F, P) and F; that is for each « € A, Z* = {Z%(n) };52, is an adapted process
defined on (2, F, P). In the financial setting, V' represents the prices of a family of

assets available to investors.

Definition 2.3.1 If V is any family of stochastic processes defined on some prob-
ability space and adapted to the filtration F', we say that P is a (local) martingale

measure for V if P is a (local) martingale measure for every process in V.
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Let

K = (A28 - Z00) |a € AN € Fii)
k=1

K represents the set of outcomes obtained by investing in a single asset using simple
trading strategies. Let K be the set of all finite linear combinations of elements

of K. As in section 2, let K} be the xclosure of K;, and Hy be the set of all

non-negative random variables on (£, F, P).

Theorem 2.3.2 If there exists an equivalent local martingale measure for V, then
KfnHy = {0}

Proof. Let Q ~ P be a local martingale measure for V. Let B be the set of

elements of K that are bounded below.

Lemma 2.3.3 If X € B then EgX = 0.

Proof. If X € Kj, then X can be writtenas X = Gt (m1)+G2(mz)+- G (my),
where GF is a process of gains for some Z*. Thus by corollary 2.2.5, we have that
for each k, G is a local martingale, as well as (Gk)m’c ( the process stopped at the
time my ) . Hence (Gl)ml 44 (G™)™ is a local martingale. It follows by lemma

2.2, that EgX = 0.

The result follows by the same proof as theorem 2.2.11.

|

Remark 2.3.4 Artzner and Heath [1] ( remark 3, section 2.3 ) by citing Harrison
& Pliska [10] and Jacod [11], state that is very natural to consider examples with

infinitely many discontinuous price processes.



Chapter 3

Unbounded Stochastic Processes

3.1 Introduction

In this section we will examine whether Conjecture 2.2.12 is true. In order to

motivate the results of this chapter, we will begin with an example.

Example 3.1.1 Let {X,}2°, be a sequence of i.i.d. normal random variables with

mean and variance both 1 and let:
Zn =X1+Xo+ ...+ X5

The increments of this process are all unbounded above and below. Thus if K is
the set of obtainable claims (as defined in section 2.2), then the random variable
equal to 0 a.s. is the only element of K that 1s bounded below. This implies that

K* = K, which implies that

K* () Hy = {o}.

27
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Therefore if conjecture 2.2.12 holds, then there must be an equivalent martingale

measure for the process Z = {Z}.

One’s first attempt to construct an equivalent martingale measure might be to
use Girsanov’s Theorem. However, if one tries to construct an equivalent martingale
measure following Girsanov’s Theorem, one gets a measure under which the process
7 is the sum of i.i.d. normal mean zero random variables. It is easily seen by the
strong law of large numbers that this new measure is mutually singular with respect
to the original measure.

In section 2.3 we will show how to construct an equivalent martingale measure
for this process. The construction holds for a class of processes that we will call
totally unbounded.

Throughout the remainder of this chapter, Z = {Zn}3y, will be a stochastic
process defined on the probability space (£2,F, P), and adapted to the filtration

F = {Falilo:

Definition 3.1.2 A random variable is called totally unbounded if it is unbounded
above and below. A stochastic process, Z, is called totally unbounded if all of its
increments are conditionally totally unbounded, that is, for every n 2> 1 and for any

constant M,
P(Zy > M |Fn_1) > 0a.s and P(Z, < =M |Fp_1) > 0 a.s.

It is clear that if conjecture 2.2.12 is to hold, then every totally unbounded

process must have an equivalent martingale measure.
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3.2 Integrability

In order to construct the equivalent martingale measure in section 3, we need a
measure equivalent to P under which Z is an integrable process. In this section, we

will construct such a measure.

Proposition 3.2.1 There ezists a probability measure Py, equivalent to P, such

that Z is integrable with respect to Py.

Proof. We will construct the probability measure Py by constructing its Radon-
Nikodym derivative in the form:

dP
dP

= PPz

Intuitively, the component p; changes the measure so as to make the kth increment
integrable. The p; must be constructed such that when they are multiplied together,
the infinite product converges, and this product is the Radon-Nikodym derivative
of an equivalent probability measure. This will be established via a Borel-Cantelli
argument.

For n > 1, let X, be the nth increment of the process. That is
Xn = Zn— Zp-1.
Choose the integers N1, N, ... such that:
P(|X)| > 2Mk) <27 (kD)

For k > 1, let

Ag :{]Xkl>2Nk}, and C = ﬂ Ai.
E>1
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We then have that: P(C) > 1/2.
On the event C, the increments of the process are bounded. For each component,
we will shift mass from where the component takes large values to the set C. For

each k > 1 and n > N, let
Apa = {27 < 1Xpl <271}

Then

Ak = U']C;,o:NkAk,'n

Set pq = P. Assuming that pi,p2,...,HUn have been defined, let

am = Y (4’k1{un(An,k)>4~k} + /‘n(An,k)l{un(An,k)ﬂ—k})

k=Nnp,
Define p, by:
£ —k
(A w € App, n >k, and pa(Ank) >4
pu(w) = { 14 Leldalen e C
1 otherwise

Define jin41 by:
dping1 = podpn = p1p2--- pudl
By the definition of ps, we have that:
B pu = in(CUAG) + (14 2200052010 ()
+ ZiiNn(;,ﬁ%ﬁl{m(An,k) sab) F Lpn(an) <+ Hn(Ank)
= pn(CC N AL) + pn(C) + pin(An) — an + o
=1

Note that for each n, pn and g, have the following properties:
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e Forw € C, pn(w) > 1 and hence that un(C) 2 pn-1(C) (since ap <

Mn~1(An) )

e Ifw € C¢then pp(w) < 1 and thus for any measurable set B,

pn(BNC®) < pa1(BN C°).
Lemma 3.2.2 [[3%; pi(w) ezists a.s., and is strictly positive with P-probability 1.

Proof. Let B = ﬂ Ag.
k>1
Since limg_.o, P(Ag) = 0, we have that P(B) = 0.

K w € C°N B then for large k, pp(w) = 1. Thus for all w € c<N B¢,
o
H pr(w) exists and is strictly positive.
k=1

For w € C, we have that:

prlw) =1+ ————7—3——”";2(_’?"2;“’“

9=(k+1)
1+ *pey

9~(k+1)

AN

= 142",
Thus forw € C,

Now set

Lemma 3.2.3 Ep =1.
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Proof. We havethatfor k > n

pr(w) =1 ifw € C°N A

prw) =21 fweCl

Let p* = p(w) and p? = pn(w) for anyw € C (since p and p, are constant on C)

. It follows that:

Ep =p"P(C) +Epipz---pnlicenagy + Erliany

> ptP(C) 4+ Epipz- - pnlicenas)

= /‘n—f—l(Afz)
>1— P(An)
Z 1 — 2-—(n+l)

By Fatou’s Lemma

Ep < liminf, Epip2---pn

=1

Now define P; by,

dP, = pdP.
By definition P; < P. Since P(p > 0) = 1, P, is equivalent to P.
Lemma 3.2.4 7 is integrable with respect to Py.
Proof.

Ep|Xal = Ep|Xal = EplXall{x,j<omn) + T8N, BolXnllia, )
<2V R v, 47Xl L4 )

< 2Ne 4y o ak2RL < oo
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Thus

EPlian < EPltXli’*‘EPl‘X'Zl+"'+EPltan < 0
O

Thus, we have constructed a probability measure, Pi , such that Z is integrable

with respect to it, and Pp is equivalent to P.

3.3 Constructing the Martingale Measure

We are now ready for the main result of this chapter. We will show how to construct

an equivalent martingale measure for a stochastic process that is totally unbounded.

Theorem 3.3.1 If Z is totally unbounded, then there exists a probability measure

Q, equivalent to P, such that Z is a local martingale with respect to Q.

The construction is similar to that in section 2, but there are some necessary differ-

ences. Again we will define the Radon-Nikodym derivative as
dQ =
ap = e

but now each p, can be expressed as:

L BB 1A]
B(3$ 172

The py are constructed so as to make the conditional expectation of the increments

0. Again we will use a Borel Cantelli argument to make sure that we end up with

an equivalent probability measure. Before proceeding with the proof, we will first
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prove several lemmas.

Notation: For the random variable X and any positive number a, let
X = Xlix| <)

Lemma 3.3.2 Let X be a totally unbounded random variable with distribution p
defined on (Q,G). Suppose that X is integrable. Then, for any n, there exists a

G -measurable function pn such that:

1. pn > 0 a.s.

2 P(pp = 1) >1-27"

3. Epn|X| < 6E|X]|

4. Epn =1

5. Epp, X =0
Remark 3.3.3 The proof of this lemma shows how to construct the components
of the Radon-Nikodym derivative. The first condition is necessary for us to get an
equivalent measure. We will apply the second condition to use the Borel Cantelli ar-

gument. It is the fourth and fifth conditions that cause the conditional expectations

to work out correctly.

Proof. Let ¢; be such that g( [—c1,e1] ) = 1—-27"
Set €9 = 1 - p([—e1,c1])-
Define ¢g by, ca = 2E|X]|/¢o-

Let a; = M([-CZ, —c1) U (Clacﬂ)
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ay = p((c2,00)), and
as = p((=o0,¢2))-

Define €3 by:

) Sma,x{ E|X°|a3 E|X|ay 2(az + ag)}
2= = ) ’

2 EXl{X<_C2} EXl{X>c2} 3

We have for the first term in the definition of ez that:

3E|X2|  _ 3B|Xlas
4B|X|lix<—cp} ~ 4a3c2

= 3ep/4
The same inequality holds for the second term. Thus since
ag+ a3 = € — a1 < €o,

it follows that, es < €g. Set €3 = €o — €2.
We also have that: % < 1.
Define « by:

X 4 B X+ (EEN o
(%E‘Xl{X <02}) - (%EXl{X >c2})

o =

By the definition of €3, 0 < o < 1. Now define py, by,

1 if |X] < e

% if61<le_<_Cz
Pn =

29 X >

(=)o jf X < —cy

\

By the construction, it is clear that pn satisfies the first two statements of the lemma.

Lemma 3.3.4 Ep, X =0
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Proof.
EpaX = EX¢+2EX?—X)+a@ZEX x50)+ (1 - a)GEX L xa)
= EX% + 2 E(X?—X1)+ 2EXxc o)

+ a(%EXl{X>c2} - %EX]‘{X<-—62})

= 0
0
Lemma 3.3.5 Ep,|X| < 6E|X]|
Proof. From above, we have that
€9 e €1 c c €9
(1 — a)gE‘Xl{X<“‘C2} [ J— (E}& 1 + EIE(X 2 . X 1) -+ a'('l—z'EXl{X>cz})
Thus
€9 c ey
(1—a)~F | X | Lxcmey SEIX|? 4 —EXx50) (3.1)
Epn | X|= E|X[" +2E[X2-X"|+ 02EX 1 x5ey  (3:2)
al az

€
(1= 0)Z B[ X | Lix<oa)

We now check what happens in the three possible cases for 3.
Case 1: €9 = ag + a3

If as > a3 then substituting 3.1 into 3.2 we have,

Epn|X| <2(E|X?|+ S2EX1{X50))
< 2AE|X2| + 2EX1{x>c,))

< B6E|X|.



37

The same argument applies with a3 = a3.

:3_ Echztaz
2 EXl{X>c2}

Case2 : €9 =
Again using 3.1 and 3.2 we have that:

BpalX| < 2(BIX% + LB sy

EX1(x5eq}
< 5E|X]|
3 E|X |
Cased : €9 = ——-—-l———l———(—lé-
2 E‘Yl{X<—82}
The argument here is essentially the same as for the second case. O

Thus p satisfies the conditions of the lemma.

Lemma 3.3.6 Suppose the functions pn satisfy:

o 0 < p, <
d E[P?H—l‘fn] =1

o Plpni1 =1|F,) =1-2"%

then T[22, pn exists a.s., 18 strictly positive with probability 1, andVk > 1,

BIT] pulFica] = 1
n=k

Proof. Since P(p, = 1) >1— 2", it follows easily from the first Borel-Cantelli
Lemma that,

P(pn # 1i.0.)=0.
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Thus [[5% pn exists and is strictly positive a.s.
Let an = [1ien Pk

For any positive integer r,

E{an+1lfn] > Epny1--- Pn+ran+r+1l{an+r+1=1}
= Epny1--- Pn+rE[an+r+11{an+r+1=1}thn+r]

> Eppt1--- Pn—l—r(l - 2n+r+1)

1 _ gntrtl
Thus Elan+1|Fa] = 1. Fatou’s Lemma easily yields Elant1|Fn] < 1, so we are
done. O
Proof. (Of Theorem 1.2.1)
Let X, = Zn — Zp-1-
Let pn(-,w) be a regular conditional distribution of X, given Fyp_1.

That is, for any Borel set A, u(A,w) is a version of

E[l{x,ea} [Fn-1]

such that for almost all w, pg(+,w) is a measure that corresponds to a proper distri-

bution function (see Ash [2] ). Let

An = {w | pa(-,w) is totally unbounded and integrable }.

Then V n, P(A;) = 1. Forw € Aq apply Lemma 1.2.2 to fin and n to define
pu(w). For w & Ay, set pn(w) = 1.

By Lemma 1.2.3, we may define p by:

)
i

=
)
3
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We have that p > 0 a.s.,and Ep = 1.
Now define the measure @, by:
dQ = pdP.
It is clear that Q < P. Since p > 0 P-as., Q is equivalent to P. We now need
to verify that Z is a local martingale with respect to Q.

Define the stopping times T, by:
T, = inf{k >1]|pipz---px > n}
It’s clear that the T, are increasing, and
P(limT, = o) =1
Lemma 3.3.7 For each n, Eg|Ziat,| < o0

Proof. We have that:
EQ|Xkllin>ky = EpIXkll{T,>8)
< EnTIZk ot Xkl
= E[nE[ps|X¢| |1Fei]] < 6nE [ E[Xp [Frll
= 6nE|Xi| < o

Thus
Eg|Ziat,) = EqlZo+ Th1 Xil(m2iy |

< E|Zo| + 2h EQlXill(T,iy < o0

Lemma 3.3.8 If E|X| < oo, and Eg|X]| < oo,
then Y = Elont1X|Fn] 1s a version of Eg[X|Ful.

( Where an = [1izn Pk)-
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Proof. Clearly Y is Fn,—measurable. If A € Fn then:

EgY1ly = EpYly
= E[E[pY14|Fx]]
= Ep1---pnY14E[an |Ful
— Ep1---paY1y
= E(p1--- palaElanX|Fa])
= E(E[pX14|Fa))
_ E(pX1,)
— EgXla

Lemma 3.3.9 For each n, (ZpaT, )3so S @ Q-martingale.

Proof.
EQlZint, Lizusiy | Fi-1] = BolZklimzry| Fe1]
= 1z, 5k} (Zio1 + EQl Xk | Fri))
= 11,58} (Zh—1 + ElaxXg| Fi-1])
= 12kl Zr-1 +0)
= L1, >k} Zk-1

Using this, we have that:

EolZknt, |\ Fiot] = EQlZiat l(Tuzky|Fr—1] + EQ[Zknt, i<k} | Fr-1]
= Lot Zi-1 + BolZk-1at, LT <k} | Fr-1]
= 115k} k-1 T LT <k} Z(k-1)AT,

= Z(k-1)AT»
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Thus Z is a local martingale measure with respect to Q. Since @ is equivalent

to P, we are done. a

Remark 3.3.10 It would be interesting to know when one can construct a mar-
tingale measure and not not just a local martingale measure. One such case occurs
when under the original measure the process has independent increments. In this

case,  can be constructed so as to make the process a martingale.



Chapter 4

Binary Processes

4.1 Introduction

In this section we will give a special class of processes for which conjecture 2.2.12
holds. We will call this class of processes binary. This class includes the example
studied by Back and Pliska (example 2.1.1 ). As before, Z will be a stochastic process
defined on the probability space, (92, F, P). We will assume that the filtration, F,

is the filtration generated by Z. That is, Fo = 0(Z1,22,---, Zn).

Definition 4.1.1 Z is called binary, if

e () is countable.

e Given the values of the process up to time n — 1, Z, can take at most two

distinct values.

e 7 separates points of w. That is if wy, wa € Q and

Zn(w1) = Zp(wa) Vn

42
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then w; = wsg. (The last assumption can be replaced by the assumption that

I is the smallest o-field on which Z can be defined.)

4.2 Constructing Martingale Measures for
Binary Processes

In what follows, the sets K, K* and Hy will be as defined in section 2.2.

Theorem 4.2.1 If Z is a binary process, then there exists an equivalent martingale
measure for Z if and only if

K*(H:+ = {0} (4.1)
From now on will refer to 4.1 as the no arbitrage hypothesis. Let X, be the incre-
ments of the process, ie.

Xy = Zn — Zn-1
Lemma 4.2.2 If P({w}) > 0 then

P(Xp, > 0| Fp1)w) > 0 = P(Xp < 0| Fo-1)(w) > 0

That is if we have observed the process up to time n, then at time n+1, the process
is either constant with probability 1, or can increase or decrease, each with positive
probability.
Proof. Let

A = P({w} | Fa-1)

Suppose that P(X, > 0 | Foo1)(w) > 0, but P(Xp <0 | Fa-1)(w) = 0. Then
)X, € K and AX, € Hj, whichis a contradiction to the no arbitrage hypothesis.

O
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Definition 4.2.3 Define the function 7 : {8 — {0,1} by:

() 1 Xij(w) =0
mi(w) =
1 0 Xl(w) <0

For n > 2 define 7 : @ — {0,1}" by

(Tp-1(w),1) Xp(w) =2 0

(Tn-1(w),0) Xp(w) < O

mo(w) =

We will need 7, defined on {0,1}'“, n < k < oo as well as on . For z €
(0,1}, n < k < oo, set
m(z) = (z1,%2,...,Ta). 1€, Tn is the natural projection of x on the first n

coordinates.

Definition 4.2.4 For z € {0,1}", let

i ({z}) = {weQ|m(w) =1}

Note that by the definition of a binary process, Z, (and hence X3) is constant on

m ({2)])-
Proof. (of Theorem 4.2.1)

Define the collection of sets S by,
S = {Mu{uir({z}) e e {01} 1 < n < oo}

We will define the set function, @, on S, such that @ gives the sets in S the value
that a martingale measure would. After showing that @ has an extension to all of

F, we will then verify that this extension is equivalent to P.
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For the remainder of this chapter, e will always denote either 0 or 1. If its value

is not specified, then e is to be interpreted as “either 0 or 17.

Sete = 1 —e.
Set,

Q(0) =0 and
Q) = 1.

When 771 ({e}) # 0, then w, will denote an arbitrary element of 77 ({e}) -

If either P(x7 ({e})) =1 or Xi(we) = 0 (which implies X1 (we) = 0) then set
Q(r'({e}) = P(ri ({e}))
Q(ri'({e}) = Plri'({&})-

Otherwise, let
Xi(wr)
X1(w1) — Xi(wo)

a] =

Then by lemma 4.2.2, a; € (0,1).
Now set

P(x7Y(0) = a1 and P(x7'(1)) = 1 -

Now suppose for each k € {1,2,...,n — 1} and for every z € {0,1}*
Q(ri*({z})) has been defined.
Fix z € {0,1}"1.
We will now define Q(7({(z,€)})) in terms of Q(r1,({z})). In what follows we

is any element of 7, 1({(z,€)}). ie. w1 € = ({(z,1)}).
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Case 1: If P(x;},({z})) = 0 ( which implies that Q(r71,({z})) = 0), then set
Q(rr ' ({(z,0)}) = Q' ({(z,8)}) = 0

Case 2: If Xp(we) =0 and P(r,2 ({z})) > O then set

P(r, ' ({(z,e)}))
P(m21({=}))

Case 3 : P(r;'({(z,€)})) = 0, and P(r:'{(z,®)})) > 0.

Qr ' ({(z,e))) = Qrz1({=}))

(Note that by lemma 4.2.2 this implies that Xp(we = 0.)

Set
Q' ({(z,€)}) =0

Qri'({(z.®)}) = Qm1i({z})
Case 4: Q(r1,({z})) > 0, and Xy (w1) # 0, then set

Xn(wo)
Xn(wo) — Xn(w1)

Qp =

By lemma 4.2.2, a, € (0,1).

Now set

Qi ({(=:1)}) = an Q(r;11({z})
Q' ({(,0)}) = (1 —an)Q(rp1({z})

From this construction, we can define @, for every set in S. Note that everywhere

that a appears in the construction, we have that & € (0,1). Thus for z € {0,1}"

Q' ({z})) = 0 > P(r;'({z})) = 0
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Lemma 4.2.5 S is a semi-algebra; that is,
1.0, € S
2. S is closed under finite intersection.

3. IfS € 8, then S¢ is the finite union of disjoint sets in S.

Proof. To check 2, let S1, Sg be any two elments of S.
It is trivial if for either i = 1 or 2 §; = @ or Q. So we may assume that for each
i, S;  # 0,or Q. Then by the defintion of S there exists z1, 2 and ni,ny with
z1 € {0,1}" and z3 € {0,1}"™
such that
s1 = 7 ({(=0)}),
Sy = 7w, ({(22)})-
Suppose without loss of generality that n; < ng.
Then
S$1 Sz = {w]|mn(w) = x1and Tny(w) = x2}
The set on the right hand side is either Sp, or is the empty set. Thus 2 holds.

To verify 3, let S € S, then for some n and z € {0,1}" we have that

S = 7 ({z}) = {w|mw) = <}
Set,
G = {y € {0,1}" |y # =z}

Then G has finite cardinality and

s¢ = Um'y)) = {wlmw) # 2z}

yel
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Hence, S¢ is a finite union of elements of S.

Thus & is a semi-algebra as claimed.

Lemma 4.2.6 ( is an additive probability measure on S.
Proof. To show that Q is additive, let S1,52 € S, be such that
51()S2 = @and

silUss € S
Set
s = 5USs
Then for some z € {0,1}", S has the form § = 7 1({z}). Since the intersection
of $; and Sy is empty, and their union is 7 1({z}), it follows that there exists
e1,€e3,...,ex € {0,1} such that
S1 = Ty {(z €1 €2, 0, er,€)})

Sy = ﬂ;—}-k+1 ({(ZE, €1,€2,- - '76k7€)})

and that

ki ({(z,er,.,e)}) =0 1< <k
By the construction, we have that
Q(S) = Qmyix ({(z,e1,- -5 ex)})
and there exists 8 € [0,1], such that

Q(51) = BQ(S)
Q(Sy) = (1-p)Q(S)
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This implies that
Q(S) = Q(S1) + Q(S52)
O

In order for there to exist a countably additive extension of @ to all of F, we

need that Q be countably additive on S.

Definition 4.2.7 By countably additive on &, we mean that if
e 51,59,... €S
e S D Sy D S3 D
e N ,S, =0

then Q(S,) — 0.

Lemma 4.2.8 Q is countably additive on S.

Proof. Let {Sy,} be as in the definition of countable additivity. By the definition
of S, there exists for each k, nj and 7 € {0,1}™ such that

St = Top ({2i})-

For each n, let w, be an arbitrary element of S.

Sr D Sky1 implies that mp, (wpy1) = xp. Hence, we may assume that ng <ng < -+
We then have that, for each k,

Tng(The1) = Tk

Thus there exists z € {0,1}* such that for each k, Sp = W;kl({wnk(w)}). (This says
that the sequence of sets S, correspond to essentially one sample path) . By adding

some sets and removing duplicates if necessary, we may assume that n; = k, 1e.
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Sk = 75 ({me(2)})

If P(S,) = 0 for some n, then Q(S,) = 0, and the lemma is clearly true. So,
assume otherwise. By the construction of @, there exists f1,82,... € (0,1] such
that

Q(Sn) = FiP2--Pn

Suppose that

lim Q(Sn) > 0.

n=-00
We will show that this violates the no arbitrage hypothesis.
Let Sp = €.
For each n let w, be an arbitrary element of S,. For n such that S, # Sp—1, let
Fp = (mn_1(2),1) — (7n(2)) and Ty be an element of 7-1(Zn). Then we have that
Tn € Sp_1, but T, & Sn. Note that if Xn(wn) # 0, then Sy # Sn—1 and T, exists.
We will now construct an investment strategy, that in the limit gives us a sure
win. The strategy is such that if we win at time 1, then we stop. If we do not win
at time 1 and at time n our gain is negative (represented by —Gy), we invest just
enough so that if we win at time n + 1, our total gain will be 0. Assume without
loss of generality that 41 < 1. This implies that P(S{) > 0

Let



0 if Xp(wn) =0

“‘T‘Hg"%f; liwes, ) if Xn(wn) # 0

G, = Gn-1— )\n}(n

and set
G = -\ Xy
Forn > 2let
An(w) =
and set
We then have that

Gn(@n) = Gn—l(wn)( X

- G (L)

Kolon) o) _

i3
n(@n)

On the event Sy, we have that

Gn(wn) = Gn_an(ZUn)—Xn “n

Xn(wn

= Gn-——l /Bn

Which implies that on the event S, we have

Let

Then we have that

X1 (o
Gn(wn) = X wi);;...ﬁn

1-1/P)
BZEB"‘En

Y, = Z)\iXi = -G,
j=1

1 w € 57

=30 w € S:USt

1-1/61
Tl w € S
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we have that

where

For each n we have that

Where c is a positive constant. Thus if lim, Q(S») > 0, then the Y, are bounded

below (uniformly). We then haveY € K*, and Y € H,. Since Y is not 0, we have

a contradiction to

So it must be that lim, Q(S,) = 0. Thus Q is countably additive.
By proposition 1.6.1 in Neveu [15] , there is a unique probability measure, Q,

that is the extension of Q on o(S). From now on we will simply refer to Q as Q.

For cachw € 12,

Thus o(S) = F.

Y, — Y as
B 1 we Sy
0 we S
~ — Gy
> —c/(Baf3 - Bn)
= —cQ(51)/Q(Sn)
> limy Q(S1)/Q(Sk)

oo

{w} = N 7' ({m(w})) € o(S)

n=1

K* () Hy = {0}
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It easily follows from the construction that under @, Z is a martingale (with
respect to F).
It remains to show that @~ P.

It is enough to verify that for each w € §

Q{w}) = 0 « P({w}) =0

Case 1: P(n ({mk(w)})) = 0 for some k.
If k = 1, it follows from the construction of Q(x7'(e)) that Q=7 ({r1(w)})) = 0,

which implies that Q({w}) = 0. For k > 1, case 1 in the construction implies that

Qri ' ({mr(w)}) = 0
= Q({«}) =0
Case 2: Q(77 ' ({mg(w)}) = 0 for some k.
This can only happen in the first three cases of the construction. Each of the first

three cases implies that
P({w}) = 0

Case 3: Q({w}) > 0

Let S; = 77 ' ({mk(w)}), we then have that

ﬁsk = {w}
k=1

Suppose that P({w}) = 0. Then we have that the sets Si decrease to a set of
probability 0. Using the proof of lemma 4.2.3, we get a contradiction to the no
arbitrage hypothesis. Hence it must be that P({w}) > 0.

Case 4: Q({w}) = 0, and for each £k, Q(ri'({m(w)}) >0
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We will show that if P({w}) > 0, then we can construct a sequence, ¥, € K,
such that the sequence is bounded below and converges to a nonzero positive random
variable. The ¥,, will be positive on the event {w}, and bounded below if Q({w}) =
0.

For an arbitrary n, suppose that m,(w) = (mn—1(w),e). Then when the set
7 ({(7n=1(w),€)}) is non-empty, Tn will denote an arbitrary element of this set.

Note that when 77! ({ms—1(w),%)}) is empty we have that Xn(w) = 0.

To simplify the notation, when ;! ({(7n—1(w,€)}) is not empty let

by, = Xn(w)

If 77 ({(7n_1(w),?)}) is empty, let an = bn = 0. Thus b, is the change in the
process at time n on the sample path corresponding to w, and an is the change in

the process at time n when the process follows the sample path corresponding to w

up to time n — 1, but not up to time n. By lemma 4.2.2,
sgn(a,) = —sgn(bn)

By the construction

Qwh = T i

Where
1 b, = 0
ﬁn =
P by # 0

By assumption, [[oz; S = 0.

Let v1 = T—l-lﬂll{bﬁgg}
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and forn > 2

=1-]]8 (4.2)

Thus,
N

lim Y by = 1
N k=1

Hence for each n, we may choose My, such that

Mn (e 0]
S owbe > (1—1/n) > b
k: k:n

Let S; = 7 ({ma(w)}).
Set

n Tk
Ap(w) = “—"—El{wesk_l}

= Vi
We are now ready to define the sequence of gains, ¥y.
Set
Mn
k=n
Then we have that for each n, Y, € K.

On the event {w},

Y, = Z:_E.n_:)li > 1——1/n,

(i)-in '7ibi -
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[
and on S, _4,

Y, =0
Since
o0
{w} = U S
n=1
it follows that
Y, — Y as.

Where Y is 0 on {w}® and 1 on {w}. The last step is show that the ¥, are bounded
below.

On the event S;_; N S§, for & > n we have that

Yy, = Soin vibi + vk

" D iy vibi

> k%

= 3 vibi

= 1% (by equation 4.2)
Hz‘:lkf@i

— Hi:l /62

[T, 6

> 1

Thus for all n, Y;; > —1 a.s. Thus Y is a #point of the set K. Since Y is a positive
nonzero random variable, we get a contradiction to the no-arbitrage hypothesis.
Thus if Q({w}) = 0, then we must have that P({w}) = 0. We have now shown

that Q ~ P, which completes the proof of Theorem 4.2.1.



Chapter 5

Concluding Examples

5.1 A Family of Processes without an
Equivalent Martingale Measure

In this chapter we will look at two examples. The first example is a family of
stochastic processes for which there exists an equivalent local martingale measure,
but for which no equivalent martingale measure exists. This example along with the
results in Chapter 2 suggest that in general the idea of no arbitrage should actually
be related to the existence of an equivalent local martingale measure and not just
an equivalent martingale measure.

Let @ = {1,2,...} x {0,1} and let F be the collection of all subsets of 2. We
will write each element of @ as w = (wi,wz). We will assume that the original

measure, P, is such that every point of Q has positive probability.

57



58

Define the process Z by,
Z(0,w) = 2
Z(l,w) = w; and for k > 2
Z({1) + 2% i we =1
Z(k,w) = @)
Z(l) — 2%t i wy =0
Now define the processes {X"}22, by
X"0) =1
and for k > 1
2n i w = n
X"(kw) =
0 f w #n
Let the filtration F be the o-fields generated by the processes. V will be the family

consisting of Z and {X"}22,. Suppose that @ is a martingale measure for V. Since

X" is a martingale under @ for every n, we have that
1 = EgX"(1) = 2"Q(w1 =n)

Hence, Qw1 = n) = 27"
Since Eg[Z(2) | F1] = Z(1), we have that for each n, Q((n,1)| w1 =n) = 1/2.
Thus
Q((n,1)) = Q((n,0)) = 27"
It follows that @ is the only possible martingale measure for Q.

Now, Eg | Z1 | < oo, but

o0
EqlZ(2)-2Z(1)|= Y 227" = o
k=1
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From which it follows that Eq | Z(2) | = oo. Thus since Z is not integrable, Q
(and hence any equivalent measure ) is not a martingale measure for V, but we will

show that it is a local martingale measure for V.
Claim Q is a local martingale measure for V.

Proof. By the definition of  each X" is a martingale. Define the stopping times

1 Hw > n
Th =

00 fw < n
It‘s clear that the T}, are increasing and that T\, — oo a.s.
Under Q, Z(1) is a geometric random variable with mean 2, so EqgZ(1) = 2 =
Z(0). Since Z(2ATy) < 2k it’s obvious that Z(2 A Tj) is integrable. On the event
{Ti > 1}

1
EQlZ2ATy) | Arl = 21 + 5(221 -7y = 7

Thus for each k, ZT¢ is a martingale. Hence, @ is a local martingale measure for Z.
O

Since Q is a local martingale measure for V/, it follows by Theorem 2.3.2, that
V does not admit any arbitrage opportunities in the sense of the results in Chapter

2.

5.2 Unbounded Winnings

Each of the results of Stricker and Delbaen for continuous processes involved closing
the set of obtainable outcomes, K, under some topological operation. In Stricker’s

result for discontinuous processes, he takes the closure of the set K — By, The
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appearance of By is due to this wildness of the set of outcomes associated with a
discontinuous process. We will give an example which illustrates this wildness. One
can win in a reasonable sense by betting on this process, but the only way to win
involves the possibility of arbitrarily large winnings.

Let X1, X3, Xs,... be independent and have the following distributions:

-1 with probability 1/3
Xn = 1 with probability 2/3—27"
Tn with probability 2-"

Where r, = 22*([[7-12%) = Pl
We will let ¢, = 1/rp.
Let Zo =0, and Z, = X1 +Xo+ -+ Xn.

Let F be the o-fields generated by the process. One can view Z as a continuous
time process that only changes values at the times 1,2,...
Define the set K as Stricker does, ie.

n

K = {Z MXi | M € fi—l}

=1

It is not hard to check that there is no equivalent martingale measure for this process.

Thus by Stricker’s Theorem we must have that
K - By ﬂL}l_ # {0}.
We will show that for this process:

e ]___~
K n L, =0.
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That is, if one is not allowed to throw money away, the “winning strategies” will
not converge in L!. Intuitively, all of the winning strategies for this process are so
good that they win too much money to converge in L.

Suppose that Y1,Ys,... € KandY, — Y m L'. We will show that
Y > 0=Y =0.
Fach Y, has the form:

Y, = i)\?Xu )\;1 e Fi_i.
=1

By taking subsequences if necessary, we may assuine that m; < mg < mg < ...

Several times we will use the fact that if A € Fq, then
n - T3 T
P(4) =0 o P(A) > [[27* = PR (5.1)
k=1
The first step is to show that in order for the Y, to converge in L1, it is necessary
that A7 be small for large k.

Claim There ezists M such that for each n,
(A< 27F VE>M

Proof. By enumerating the possible cases, one can check that for any numbers a
and b

Ela + bX,|> maxfa(l -2 L2~ (m=Vr, b} (5.2)

Set:

€ = 2ﬁ(1——2"n) > 0

n=1
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Since they converge to Y, the Y, are a Cauchy sequence in L!. Thus there exists N
such that

E|Y;-Y|< e Vi1l >N
Now let M = mpy.
If n < N then, by the assumption that the my are increasing, A} = 0 for k > M.
So choose n > N such that m, > M .
Let X =YX, (08N - 21X

By using equation 5.2 with b = A7, anda = X + Z:?__”M’il AP X;, we have

E|X+ S MNXi|

E|Yy-Y,| =
1=M+1
mnp—1
= E|E[| X+ Y MNXi+A, Xm, || Fru-1]
=M1
mn—1
> (1-2"m=ME | X+ Y MXi| (5.3)
=M +1

By using equations 5.2 and 5.3 repeatedly we get that

E|Yy—Y,]| z<mﬁl(1—2—i))E1X+ f_j AP X |

1=k i=M+1
k-1
> 2E | X+ >, AMX; + Xk | (5.4)
i=M+1

By using equations 5.2 and 5.4 together and conditioning we have that

E|Yy—Ys| > €eE|rmAp|27F
> er 2R A0 o2

= 2" Atfloo

Since E | Yy — Y, | < € we have that | A} | < 27k a.s.
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The second step is to show that because A7 are small for large 7, Y > 0 implies

that Y, 5 0.

Claim For any k,
. _
(Z/\?Xi) P oasn — oo
1==1

Proof. Suppose not, then there exists k and 6 > 0 such that

P((g)\?&)— >6) > 6

for every n along some subsequence. Now for k > M, since | A} | < 2-*% we have
for any n that:

mMn .
POIS X | <27) > P(Xie {~L1h k<i<ma)
1=k

> TI2k(1 — 279 (5.5)
Let m be such that m > M and 2™ < §/2. We then have that:

P(Yy < —6/2) > P(S NXi < =8 Sl AP X < 0 T A < 6/2)
> P(YE APX; < =8 YR APX < 0 X £ Vi>m)

6 YR XX < 0) (MR (1= 279)

—6) (M1 37) (MEman (1 — 00))

> 8 (M1 37) (Mmia (1 —279)

> P(Th M X

VAN

> P(Sh AP Xi

IA

But, since the last line is independent of n and Y, LA Y, this contradicts Y > 0.

Thus we have that,

. .
(Z Ayxi) Lo
=1
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This implies that:

k +
(Z /\?Xi) £ 0
i=1

Let € > 0, and let k be such that 2-k < €/2. By equation 5.5, we have that

P(|Yal> ¢) <P(IThiXil>e/2) +P (| Srn gy M X |> e/2)
< P (l Thg AP X > 6/2) + (1 — 12k (1 — 2_5))

Thus for any sufficiently large k

lim P(|Y, |> €) <1— [[ @-279
nee i=k+1

Since
m .
1 1—-27"1 =1
dim 110 =27

We have that Y, £ 0. From which it follows that Y = 0. Thus

KEnB, = {0}

Remark 5.2.1 This also shows that if the Y, are bounded elements of K and

Y, — Y as., then Y > 0 implies that Y = 0. Thus the condition of Delbaen’s is

not sufficient for discontinuous processes.



Chapter 6

Summary

The major topic of this thesis was the relationship between the financial condition
of “ no arbitrage " and the mathematical condition of the existence of an equivalent
martingale measure for a stochastic process. The most notable differences between
this work and the previous work in this area is that we study the existence of
equivalent local martingale measures instead of just equivalent martingale measures
( as defined by definition 1.0.6), and we propose a new definition of no arbitrage. In
chapter 5 a family of processes was given for which an equivalent local martingale
measure exists, but there is no equivalent martingale measure for this process. This
family of processes shows that, at least for infinite families of assets, the existence
of equivalent local martingale measures is the right question to be addressed. If one
takes our approach, then Delbaen has completely solved this problem for continuous
processes.

For discrete time processes, we have given a necessary condition for there to
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exist an equivalent local martingale measure and conjectured that this condition 1s
also sufficient. In support of this conjecture we have shown that if the increments
of a process are unbounded enough (that is if the process is what we call totally
unbounded), then there always exists an equivalent local martingale measure. We
have also shown that our conjecture holds for a class of processes which includes the

example studied by Back and Pliska in the literature.

6.1 Future Research

We will now give several areas of future research suggested by this work. The most
fundamental open question is conjecture 2.2.12. Most results relating no arbitrage
to equivalent martingale measures are based on the Hahn-Banach theorem. One dif-
ficulty with this approach, is that to apply the Hahn-Banach Theorem (or a theorem
based on it) one must introduce some sort of LP assumption; this is unnatural since
such a condition is not preserved under a change to an equivalent measure. Delbaen,
using some results from functional analysis, was able to get around the problem of
an LP assumption. An approach like Delbaen’s seems to hold some promise towards
proving conjecture 2.2.12.

Because it involves *closed sets, conjecture 2.2.12 is somewhat messy. Proving
conjecture 2.2.13 would be useful in that it simplifies our principle conjecture.

A final question we will address is the idea of uniqueness of an equivalent martin-
gale measure. In several contexts, it is known that the martingale measure is unique
if and only if the market model is complete. The idea of completeness was addressed

by Harrison & Kreps [8] and Harrison & Pliska [9]. More recently completeness
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has been studied by Miiller [14], Jartow & Madan [12], Artzner & Heath [1], and
Delbaen [5]. As is the case with the definition of arbitrage opportunities, in order
to define completeness one must first define admissable trading strategies. Thus,
there are several possible definitions for complete markets. In [5], Delbaen calls
the market complete if the set of outcomes using very simple strategies ( definition
1.2.6 ) is dense in L!. Delbaen is able to characterize when the market is complete.
It would be interesting to look at this question using *closure in the definition of
completeness.

In [1], Artzner and Heath give an example of a market with discontinuous prices,
in which the market is complete in the L' sense, but there are many equivalent
martingale measures. Call a set A *dense in Bif A* = B. A possible definition of
completeness is to say that the market 1s complete if the set of obtainable outcomes is
«dense in the set of bounded random variables. With this definition of completeness,
the model of Artzner and Heath does not have complete markets. It seems that it

would be worthwhile to further study completeness under this definition.



Appendix A

Proof of Expected Value Lemma

Proof. Sincee = 2p—1,

Elog(1+€eXy) = plog(2p) + (1 — p)log(2(1 — p))

= log(2) + plog(p) + (1 — p)log(1l — p). (A1)

Let f(z) = 2zlog(z). Then f(z)is a strictly convex function on [0,00). If z,y are

non-negative then

Flz)2+y/2) < 1/2f(z) +1/2f(y) (A.2)

with strict inequality unless = y. Lettingz = p =1 —y we have that
1
log(5) < plog(p) + (1~ p)log(l — p)

From which it follows that Elog(l +€X1) > 0.
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