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Abstract

Let {Z } bean iid sequence of random variables with common distribution F
which belongs to the domain of attraction of exp{—e }. If in addition, F € 5.(7) (e,

lim P[Z) + Zy > x]/P[Z{ > x] =d € (00) and lim(1 -F(x—y))/ (1 -F(x)) = e for

X-w X

every y € R), then it is shown that a point process based on the moving average process

e o)
Xp=2 ¢

j=—

jZ n——j} converges weakly. A host of complementary results concerning
extremal properties of {X } can then be derived from this convergence result. These
include the convergence of maxima to extremal processes, the limit point process of

exceedances, the joint limit distribution of the largest and second largest and the joint limit

distribution of the largest and smallest. Convergence of a sequence of point processes based

¢ 0]
on the max—moving average process { V CjZn——j} is also considered.
j=—w
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1. INTRODUCTION

Consider a sequence of iid random variables {Z;, —o <k < ®} whose common
distribution F is both in the domain of attraction of A(x): = exp{—e '}, x €R and in
Sr('y), ~> 0. We now explain these dual requirements.

A distribution function F is in the domain of attraction of the extreme value

distribution A(x) = exp{—e '}, x € R if there exist a >0, b €R (n>1) and

(1.1) lim Fax + b ) = A(x), x€R

n-ow
or equivalently

N _ X
limnF(a x+b )=e

n- oo
where F(x) =1—F(x). If {Z, n>1} are iid with distribution F this can be rephrased

as

n
limP[V Z. <a x+b | =A(x), xR
lim {i=11 X+ bl = Al)

We assume X = sup{x: F(x) < 1) = . When (1.1) holds we write F € D(A). Cf.
de Haan (1970), Resnick (1987).

A distribution F isin the class S () for 7v2 0 if F(x) <1 forall x and

(1.2) lim F(x — y)/F(x) = ¢, for each y €R,

X o

and



(1.3) lim (1 — F*F(x))/F(x) = 1im P[Z, + Zy > x]/P[Z > x] =d <= .
X X0
X

The constant d is known to equal 2Ee 1 Which was proved for the case F(0) =0 by
Chover et al (1973) (see also Cline (1986b); Embrechts (1984)) and extended to the case that
F concentrates on R by Willekens (1986). When F(0) =0 and d =2, (1.3) implies

(1.2) with 7= 0 (Chistyakov (1964)), and in this case the class S (0) is called in the
literature S, the subexponential class. For our purposes it is not natural to restrict

attention to distributions concentrating on [0,w) .

The standing assumption in this paper is that the distribution F satisfies
FeD(A)N Sr(fy).

The condition F € D(A) is necessary for a sequence of point processes based on
{(Z) =D )/a , k21} toconverge. The condition F €S (7) is necessary for the tail of
Z1 + 22 to be comparable to 1 —F and means that sequences of point processes based on
linear combinations of the {Z p @ <n< o} will have interesting convergence properties.
The case where F ¢ S (7) will be discussed elsewhere. See Rootzén (1986).

The condition F € D(A) NS (7) was discussed in Goldie and Resnick (1988a) where
various sufficient conditions on F were reviewed and examples discussed of
FeD(A)NnS 1,('y)-. See also the important paper by Cline (1986a).

The class S (0) N D(A) includes the lognormal distribution as well as the

distribution with tail
F(x) = exp{—x/(log x)%}, x> 1, a> 0.

Rootzén (1983, 1986) considers the class F(x; a, p) defined for x> 1, K > 0 by



F(x; @, p) = Kx%exp{—P}.

If 0<p<1 then F(x; @, p) € S,(0)nD(A) whileif p=1 and a <-I,
F(x; a, p) € S.(1) N D(A) (Rootzén (1986)). Embrechts (1983) considers the class of
generalized inverse Gaussian distributions N"'l(x; A, X, ¥) whose density n_l(x; A, X, ¥)

is defined by

A —1

n~1(x; A x, ¥) = Kx —lexp{——(xx + x)/2}

for x > 0 where )

(A s ¥) € ((0, @) x [0, ) x (0, )) U ({0} x (0, )%) U ((=w, 0) x (0, ) x [0, w)). Embrechts
(1983) shows that if (A, X, ¥) € (~w, 0) x (0, ) x [0, @) then N"'(x; A, x, ¥) € S (#/2) and
one readily verifies, for example using the von Mises criterion (Resnick (1987), page 40),

that in this parameter region we also have membership in D(A).

[e¢]
Under mild conditions on a real sequence {Cj} the series % CjZ—j converges and
j=—w

we may define the main objects of this study, namely the stationary sequence of moving

averages

0}
(1.4) {Xp —e<n<w}= {__E chn_j, —0 < 1 < w}.
J=—w

We study the extreme value behavior of this sequence by means of a point process technique
which looks at a sequence of point processes based on {X_}.

Related work on extremes of moving averages is Finster (1982), Rootzén (1978, 1983,
1986), Davis and Resnick (1985a,b, 1986). See also Goldie and Resnick (1988b) for point

process results relevant to the present setting.



In Section 2 we review some background on point processes and prove a convergence
result about a sequence of point processes based on stationary variables which is flexible
enough for our needs. Section 3 builds on this treatment to prove a convergence result about
a sequence of point processes based on our moving averages (1.4). We give some remarks
and some complementary extreme value results in Section 4. Included are discussions about
convergence of maxima to extremal processes, the extremal index, exceedances, joint limit
distributions of the largest and second largest as well as the largest and smallest among
{X{,»X,}- In Section 5 we discuss max—moving averages based on {Z}.

We end this introductory section with a discussion of the conditions needed for

®
convergence of the series ¥ ¢.Z_..
j=—c0 J
PrOPOSITION 1.1: Suppose F € D(A) so the Balkema and de Haan (1972) representation

holds (Balkema and de Haan (1972); Resnick (1987)), viz

(15) F() = 000 expl{, (1/iu))an)

0

for some 2z, and x >z, where f(x)- € (0,0) as x-w, f>0 is absolutely continuous

on (zy, ») with density f* and 1im{’(u) =0. Given € > 0, there exists x; = xq(€)

u- oo
such that for x> X,
Flclx f(x)\1/€ €
(1.6) : J_;‘(—)Jlé (1 + € (X)) / (6(10_ c))l/

%

forany 0 <c < 1.



® 0
Furthermore if for some §>0, X lcj}1—§<oo and E|Z;| <w,then X Cjz—-j

j=—w j=—e

converges absolutely almost surely and if additionally Cj >0 for all j then for m such

that % 0.1—6

i i < 1 we have
j|>m

(1.7) limP[ ¥ c¢Z .>x]/F(x)=0.
X+ |j]2m

Proor: Since f is absolutely continuous we have for u > 1

XU
£/

ﬂmﬂ—ﬂ@zjx (s)ds

and since f’ +0 we have for sufficiently large x that the above is less than ex(u — 1)

whence
1/f(xu) 2 1/(f(x) + ex(u —1))

and thus

. -1,
%‘(’—;ﬁ = (1+ ofexp{~[,  (1/iw))du}
C—-l
=@m@m&hﬂmmm@
¢! 1
<1+ 0(1))exp{—-J1 (f(x) + ex(u — 1)) xdu}

~1
= (1 + o(1))exp{-log(1 + ex(c™" - 1)/f(x)))¢ }




for large x and (1.6) follows.

¢ 9]
Nextif E|Z;| <w and X ICj[1—6<oo then

j=—

o8} o8}
E|] Y e¢Z jl <E|Z,] % ]cjl < o . Furthermore following Rootzén (1986) we have if

J:_OOJ - J=—0
) 0.1“§<1 and x>0
il >m’
»)
Pl & ¢.Z . > ¥ c.Z ) c:C: X|
jl>m I 7 jl>m + 7 fjl>m T
F (x) F(x)
P{ U [Z.> ')
_lil>m
) F(x)
F(CT(SX)
< 3 (—L.
lil>m  F(x)

Applying (1.6) with ¢ = c}s we get an upper bound of

K( s oxpl/e
jl>m ]

. . 0 0/ € .
Provided 6/e¢>1 — §; i.e., >¢ wehave ¥ c¢./ <o and since
/ =3 if>md 7

limx f(x) = lim f/(x) = 0 the result follows. g
X0 - X=w

Under the additional assumption that F € S r(7)’ we may prove a stronger result than

(1.7), namely that (1.7) holds with Xc.Z . inplaceof ¥ c¢.Z . provided 0<c. <1
il ljl>m )
and Zc}_‘s < o for some 6> 0. To prove this we need the following preparatory
J
proposition which is a minor variant of Theorem 2.7 in Embrechts and Goldie (1982). See

Theorem 1 of Cline (1986a) for the following formulation when m = 2.



PROPOSITION 1.2: Let {Yi’ 1 <i<m} beindependent random variables and suppose

FeS (7). If

lim P[Y; > t]/F(t) = a, € [0, )

t- oo
for i=1,...,.m then
m —
(1.8) lim P[ T Y, > t)/F(t)
twoo  1=1

m
=3 o Eexp{y X Y.}
i=1 i
m

m
= .El(ai/Eexp{'in}) . Eexp{7_21Yj}.
1= J:
PrOPOSITION 1.3: Let {Z;} bean iid sequence of random variables with common

distribution F € D(A)n S (7). Let {Cj} be a sequence of constants such that 0 < g <1
s 16

forall j and X ¢, " < forsome 6> 0. Then
j=—w ,
_ i 724
(1.9) limP[¥c.Z_. > t]/F(t) = k" Eexp{yZc.Z .}/Ee
fog I i

where k1 = #{j: ¢ = 1}.

ProoF: Choose m so large that X cl._§< 1 and set

|j|>m

X= ¥ ¢Z .. Y= % c¢cZ ..
RS R |j|>m



Observe that F € D(A) implies 1 —F is rapidly varying whence

1 ife,=1
ICJ

Plc.Z . > t]/F(t) - .
7y > tlf {0 if o, < 1

B +ra1X 7
It follows from Proposition 1.2 that P[X > t]/F(t) -k "Ee **/Ee

. Moreover, by
Proposition 1.1, P[Y > t]/F(t) - 0, and now applying Proposition 1.2 once again, we obtain

(1.9). o
REMARK: Suppose Fe D(A)NS r(7) and satisfies the tail balancing condition,

Fx) L, _ Fl=x)

(1.10) _ _
F(x) + F(—x) F(x) + F(—=x)

-1—-p

as x - o where 0 < p < 1. Now assume the coefficients {cj} satisfy Elcj | =0 & for
J
some 6> 0 and ICj\ <1 for all j. Define kT = #{j: ¢; = 1}, k = #{j: ¢; = —1},

¢t = max{c,0}, ¢ = —min{c,0} and consider the two independent random variables

_ +
X+~§_3ch

and X_ =X c.Z .. By Proposition 1.3 and (1.10) we have

j -l j J 7l

P[-X_>t]/F(=t) =P[ X CJT(—Z_J-) > t]/F(—t) - k Eexp{—X_}/Eexp{—7Z,}.

.

J

Since F(—t)/F(t) = (1 —p)/p we may apply Proposition 1.2 to the independent sum

X+ (=X_) =ZcZ_. and conclude
j ] 7l

(1.11) lim P{gcjz_j > t]/F(t)

two0 ]

= (k+/Eexp{721} + k (1 —p)/(pEexp{—7Z,}))Eexp{ ’r>jich_j}-



2. POINT PROCESSES AND STATIONARY MIXING SEQUENCES

Our results in the next and succeeding sections are based on point processes and we
first review relevant notation and background and then give a convergence to Poisson result
general enough for our needs.

Weak convergence notation and usage are as in Billingsley (1968) except that "=>"
is used to indicate weak convergence. For point processes we follow Neveu (1976); see also
Kallenberg (1976), and Resnick (1986, 1987). Let E be a state space which for our
purposes is a subset of a compactified Euclidean space. Let & be the o—algebra generated
by open sets. For x€ E, F € &, eX(F) =1 if x€F, 0 otherwise. A point measure m is
defined to be a measure of the form EIEX' which is non—negative integer valued and finite

i i

on relatively compact subsets of E. The class of such measures is Mp(E) and J{p(E) is
the smallest - o—algebra making the evaluation maps m - m(F) measurable where
me M p(E) and F e &. A point process on E is a measurable map from a probability
space (2, /6 P) to (M(E), 4 (E)). Let c;g(E) be the continuous functions E -+ R,
with compact support. A useful topology for M p(E) is the vague topology which renders
Mp(E) a complete separable metric space. If by € M p(E), n >0 then p converges
vaguely to x (written By y uo) i p (f) - ”o(f) for all fe CE(E) where remember
wl) = J fdp.

A Poisson process on (E, & with mean measure p is a point processs ¢ satisfying

forall Fe &:

e HEVENR it W(F) < o
PI&(F) = K] =
0 if M(F) =

and if Fl""’Fn € & are mutually disjoint, then f(Fl),...,g(Fn) are independent. We
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assume g is Radon. We will call ¢ PRM (Poisson random measure) with mean measure u
on (E, &), or PRM(u) for short.

In Theorem 2.1 below, we generalize the point process convergence result of Adler
(1978). See also Hsing (1985) and Leadbetter, Lindgren and Rootzén (1983). First we define
a mixing condition which is similar to condition D in Adler (1978).

For each n> 1,let {X ni i>1} be a stationary sequence of random elements of E.
In order to define our mixing condition, let T > 0 be fixed and let % be the finite
collection of functions

€= {h,, h,..h }

o Bpoeoly

where ho =1, he C—f;(E), h, <1, i=1,..m. We then say that the array {an, j>1,

.
v

n > 1} satisfies condition D* if for any two disjoint intervals of integers I1 and 12 which

are contained in 1,2,...,[nT] and separated by £, we have

1E2 (X, ) 2 (X, P
M T gX J-TETT gX.)E T g(X )| <a
i=1 1EIJ 11,1 i=1 iEIj 1V 1,1 i=p+£ 10 1,1 I n,[

where 1 —g € ¢ and a ()" 0 as n- o for some subsequence (n) -« with
{(n) = o(n). The function & g(n) ™Y depend on both & and T.
Following Lemma 3.3.1 of Leadbetter, Lindgren and Rootzén (1983) we observe that

condition D* has the following straightforward generalization. Let I,,....I, be disjoint

k
collections of integers which are separated by at least ¢ and such that U I.c [1, nT].
j=1
Then
| k k :
EIl ITgX )—TEIN g(X_ .| <(k—1)a
i=liel, 1 M Dp gep i B n,/
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whenever 1—g. € %.

THEOREM 2.1: Suppose for each n > 1, {X i> 1} is a stationary sequence of random

n,i’
elements of E and that the array {Xn »i21,n2 1} satisfies condition D* . Further
assume that there exists a Radon measure v on E such that

(2.1) nP[X ,€-]%v

n,l

(¥ denotes vague convergence) and for any g € C%(E), g<l,

o [n/ k]
(2.2) limlimsupn ¥ Eg(X 1)g(X ) =0.
ko n-w i=2 o, 1
Then in Mp([O, ®) x E),
0 0] o
2 o€ => Y € :
k=1 (kn ’Xn,k) k=1 V'k’ 'k

where the limit is PRM(dt x dv).

Proor: We demonstrate weak convergence by showing Laplace functionals converge

(Neveu (1976)) and so we must show for any fe€ C?{‘([O, w) x E)

?

(2.3) B exp(= 3 f(i/n, X, )} - exp(~ g1 =),

1=1 ,00) X

the latter expression being the Laplace functional of PRM(dt x dv).
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We first show for T > 0 fixed and fe€ CE(E) that

[nT] —i(x)
(2.4) E exp{—ii‘D.1 f(Xn,i)} - exp{—Té(l —e Jy(dx).

For each n and k fixed partition the integers 1, 2,...,[nT] into 2k consecutive blocks of

size [[nT]/k] — #n) and {n), i.e

Ij =((=1)ry + 1,...jr, — 4n)), I’J’.‘ = (jr, =€) + L..jr ), j=1,..k—1

and
L= (k—1r, + 1.k —{n)), ¥ = (kr, —{(n) + 1,...,[nT])
where r = [[nT]/k]. Then as in the proof of Lemma 2.3 of Hsing, Hiisler and Leadbetter
(1986),
[nT] 'n K
28 [Bewp{- 2 (0, )} - (Bep(~ 3 fix, )|
[ T] k
<|Bep(— B {05, )} ~Bexpl=2 5 X, )}
j=11
J
k
+|Eexp{= T S (X, )} - (Eexp{-5 (X, ))¥]
j= 1161J 1611 ’
k & k
+ [(Eexp{=% (X D" - (Eexp{-2 (X )H"|
IEI i=1 ’
k
<Y E(l —exp{~Z% *f(Xni)}) + (k—1) %, f(n) + kE(1 — exp{— ZI f(X, )b
- ) 3 ie * ’

1 eI*
J 1 i
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—f(X
<((k—1)n) + (k + (n))E(1 —e ( n’l)) + (ke =Day gy

—
4 KIn)E(1 —e (Xn’l))

where we have used the inequality

n n n
| I %, — 1I yi[ <X lyi—xil, 0<y, x <1, i=1,..n.
i=1 i=1 i=1

(X ) —{(x) :
By (2.1) nE(1 —e ) p(l—e )v(dx) and since 4(n) = o(n), the final bound
in (2.5) converges to zero as n - w.

Applying the inequality

1-3 y. <1 (l—yi)$1-.2 v+ & Yi¥; 0<y, <1

1_§rn 15rn 1§rn 1§1<J§rn

with y, =1 —exp{—f(X ;)} and taking expectations we obtain
—(X_ ) Tn —(X_ )

1 ,1
(2.6) 1-1 E(l-e L% < Eexp{—iilf(Xn,i)} <l-r E(l—e n,17
T
n —£(X_ ) —£(X_ )
41 S E(l—e Mhag—e W,

From (2.1) and (2.2), we have

kr E(1—e n’l)) ST (1 = Tydx)
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and

r
n —f(X_ )
limsupr_ ¥ E(1l—e n,1 )1 —

| (X
Il =0 j=2

n’j)) = o(k”l) as k- o.

Therefore, after raising the ouside two terms of (2.6) to the 0 power and taking limits

as n - and then as k - o, the outside two terms converge to
exp{-T [p(1 - ¢ T)u(dx))

This combined with the result in the preceding paragraph proves (2.4).
Now let fe€ CE([O, ») x E) and suppose the suppport of f is contained in

[0, T] x K, K a compact subset of E with »(9K) = 0. By the uniform continuity of f,

given ¢ > 0, there exists a partition

0=a1<b1<a2<b2<...<am<bm=T
such that

m—1

T (a1 —b)) < ¢/u(K)

and

sup  |£(bsy, x) —f(t, ¥)| < ¢ TH/UK), j=1,..m
te(a.,b] ! ~

1]

xXeR
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Then writing E(.) for z , we have
i ..b.
1/n€(aJ, J]

—
Lo
pa—

B exp{-Si(i/nX, )} - E expl Jg £ fGi/m, Xy )
m—1
< E(l ——exp{-—J ) l/ne(bz .. +1) ( /Il, Xn,l)}

i (X_.eK}]
<Pl U U X .eK
j=11i/ne(b. aj—}—l] 1

~ [nb])P[X,, | € K]

Moreover,

(2.8) E|exp{— E 2( ) f(i/n, X, )} —exp{—
j=1 =
< Jia'lz( ) E(]1(i/n, X ) f(bj, Xn,i)lI[Xn’iEK])

<{ne P[Xn 1 € K]/v(K)

gz( 1oy, X D}

= €.

Now, since [na,j} — [nbj__l] > {(n) for large n,

m m
(2.9) |E exp{—jilz(j)f(bj, Xnil} —j—EIE exp{“‘Z(j)f(bj, Xp il < (m— Dan,[(n)

and by stationarity and (2.4),

—f(b.,x
(210) B exp {305 X, )~ e -(b; —a) 11 ~¢ @), = e
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Also,

—(b,, i
lexp{“.%ll(bj —aglie T a0} et g1 (e auqa))
J:

O,oo xE
m —f(b.,x) i(t,x)
]« gll—e ) = (1= 9))dtw(dx) |

X —f(t,x
k: 1f(a b}xEu—-e (%)) geu(dx) — [10.0)  E(1 = (%)) gt () |
m m—1
< (1™ /v<K>>J_1<b ~aH) + 400 T (o, by

=€+ €= 2e.
This plus (2.7) —(2.10) give

limsup | Eexp(~i(i/n, X )} el IS E(l—e_f(t’x))dtu(dx)}l < de

-0 ,00 X

and since € > 0 is arbitrary, (2.3) follows as desired. o

In many applications, the variables {Xn 0 i> 1} are m—dependent and in such
cases conditions D*, (2.1) and (2.2) are fairly easy to verify. See Proposition 3.1.

We close this section with a modification of Proposition 1.1 in Resnick (1986) which

will be used in Section 3.

PrOPOSITION 2.2: (a) Let E and E’ be two LCCB spaces with E compact and suppose
T: E-E’ is continuous on an open subset S of E. Thenif m € Mp(E) is a point

measure with support contained in S, the mapping T: Mp(E) - Mp(E’) defined by

T(Se, ) = e
PN T Iy
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is continuous at m.
(b) Suppose El’ EQ, Eé are LCCB spaces with E2 compact and T: E2—+Eé is

continuous on an open subset Sy of BE,. If me MP(El x E2) has the property

Cy _
m(E, Sg) =0
then T: Mp(E1 x E2) - Mp(E1 x Eé)
defined by
T(T =3
(i 6(ti,xi)) i G(tia TXi)

is continuous at m.
Proor: (a) Suppose m ¥ m. Then for large enough n and some k; 1<k < o,
m (S) = m(S) = k.

By Lemma 1.14 in Neveu (1976), there is an enumeration of the points of m , and m such

that

k k
= X , M= %
m jzlexj(n) m x €

and xgn) X as n-o for j=1,..k. Thus, by the continuity of T on S
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k k .
Tm = ¥ ¢ - X € = Tm.
Doy TXJ(n) =1 Tx.

(b) Suppose m L = Ze € Mp(E1 X EQ) converges vaguely to

(1), x(0)y

i i

m= Ee( ) For any fe¢ C?é(El x Eé) we need to show

., X.
tl’ 1

=i, () -+ £, Tx)

’ 4

as n - o . Suppose K1 is compact in E1 and K2 is compact in E2 and let K1 x Ké
contain the support of f. Take G1 C E1 open, relatively compact such that K1 C G1 and
m(J(G; x Ey)) = 0. Then

Ye

(t, Tx) Ut € Q] ™ St Tx) Ut € G |
TS Cats VAN e | 1 L PO | 1

and from the convergence result in (a)

() ()  sg(a(n), 14(®)
?f(tin , Txin )= ?f(tin , T in )l[tgn) €G

3. MOVING AVERAGES
In this section we consider the weak convergence of a sequence of point processes

based on the moving average process

X == E CiZ t = 0’ il,...

t—1’
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where for some § > 0,

0
(3.1) = el <o
i=—wn
Without loss of generality, we shall assume
(3.2) max{|c,|; 1=0,%1,...} =1

since otherwise we may consider the rescaled process {Xt /max{| ¢;|}. Note (3.2) implies

that one or more of the ci's has absolute value equal to 1. Set
(3.3) M ={i ¢, =1}, T = {i: ¢, =1}

1 ’ 1
andlet kT and k™ denote the cardinality of the sets 17 and I~ respectively.
PROPOSITION 3.1: Let {Zt} be an iid sequence of random variables with common
distribution F satisfying (1.1), with a . 771 € (0, o] and the tail balancing conditions

(1.10). Further assume {Ci} is a sequence of constants satisfying (3.1) and (3.2). For a

fixed integer m define the random vectors X, K for k>1 by
_ -
(34:) Xn,k —_ an (Zk - bn, - Zk - bn, Zk—l, O < lll _<_ Qm)

Then
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o

(3.5) Nn:r- Y€ 1
=> N: = N1 -+ N2
[¢ o]
= X €

k=1 (tkl, jkl’ 0, ’YYkl(i), 0 < |i] <2m)
®

in Mp([O, o) x E), E = ([, 00]2\{(*00, —0))} x [~w, oo]4m, where N is the superposition of

2 independent PRM's N1 and N2 with mean measures

_ —1
dte “dxe_ (dy) I F(y dz)
T <] i |<2m !

and

dte_ (dx)p '(1—pleVdy I F(y 'dz,).
@ 0<|i|<2m

w©

2 o¢€ .
k=1 (tip dip)
sequence {Ykl(i), k>1, i#0} which has common distribution F. The points of N,

In the representation for Ny, is PRM(dte “dx) independent of the iid

have a similar representation.
PROOF: First observe that N is a PRM(dt x dv) where

v(dx, dy, dzi,'()‘ < |i] € 2m)

=[(e7dx) e_(dy) + e_(d)(1—p)/p(eVdy)] T F(yldz).
0<]i|<2m
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In view of Theorem 2.1, it suffices to check D*, (2.1) and (2.2). For x > —0 Or y > —w,

we have by (1.1) and (1.10)

-1
n (Zl
—X

=P[Z;>a x+b ,Z <—ay+b ) -e ¢

nP[a — bn, - Zl - bn) € [X, oo] x [y, oo”

1 — _—
v+ *—p—B e_({x})e Y
(cf. Goldie and Resnick, 1988b). Since a, - 7-1 and Zy . is independent of Zy, for i#0

it is now straightforward to show
(3.6) nP[X ;€ -] Y

on E which verifies (2.1). Moreover since the sequence {X, o k=12,..} is 4m

dependent, the mixing condition D* is automatically satisfied.

Finally let g€ C%(E), g <1 with support contained in the set A x [, oofm1

?

where A is a compact subset of [—w, 00]2\{(00, —w)}. Then

W
hrIrlliup n 122 Eg(Xn,l)g(Xn,i)
[n /K]

<limsupn £ Pla (2, ~b_, ~Z, =D, Zy=b 7 —b )€ (A x A)
1 - i=2

Slimsupn2k“1(P a_l(Z —b ,—Z,—b )eA 2
n ‘"1 n 1 n

1} =0

KT (A x [, o )2

by (3.6) which, upon letting k - « , implies (2.3). Applying Theorem 2.1, we have
(3.5). o
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PRrOPOSITION 3.2: In addition to the hypotheses of Proposition 3.1, assume F € Sr(q/). In

NIp({O, ©) * (=, 0] x [—w,0]), we have

n:= % E € _ 1
ToielT k=1 (ka2 ~b ) el Segz, )
Hl

oo}

+E_Le 1

iel k=1 (kn’, aj (—Zy —b, ) a, E;Eéicgzk—e)

=> =Y 2 € _
iert k=1 (bkpolip ”ﬁ CpYpp(£=1))

i 121 kzlf(tkz’ ko 7 [z pYyolf—1))

where the points of the limit have the description given in the previous proposition.

Proor: Choose m > 0 so large that lc;l <1 for |i] > m which implies

Turec [-m, m]. Define

ﬂ(m) Y 020

N et ket wal, a i (Zy i =b ) at T ez, )
k—i n il 7k

+ X Zf 1
1€Ik1(kn a, (-7

m “Ax—p)

k—i ~ Pp) faél

where ZE m denotes the sumover ¢, 0 < |/| <m, £#i. Let n(m) have the analogous
#i

relationship to 7, (i.e., the sum Yc,Y, (¢—1i) is replaced by ¥ ¢, ({—i), r=1,2.
¢4 {7 k,r el "k

We first show that for each i # 0,
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(3.7) OEO €

!
8
-

- — -1Y .
k=1 (ka%, a_ (22, —b_), a=’ gim CPk+i—f)

in Mp([O, ) % (~o0, o] x [0, ). Let C = (o, Byl x (a78;] * (s, B,] be a relatively
compact subset of [0, ) x (—w0, @] x [~w, o). For 1> 0, the difference in (3.7) evaluated at

the set C is

(38) ( X - E e 4 -1
aon—1<k_<_a0n 60n—1<k5ﬁ011 (kn » 2y (*Zk"bn)> a, /Z?im Cﬁzk+i—f)

(€)

and the expectation of the absolute value of this expression is bounded by
. -1
(21 + 1)Pla "(#Z; —b ) > ;] = 0

as n-=wo by (1.1) and (1.10). Thus the difference in (3.7) evaluated at the set C,
converges in probability to zero. Since relatively compact sets of the form

(g, Byl * (e, 011 x (a9, By constitute a DC—semiring (cf. Kallenberg (1983)), (3.7) now
follows. The case i < 0 is dealt with in a similar fashion.

Consider the map Til: [0, oo] x B - [0, oo) x ([*-oo, 00]2\{(—00, —00)}) X {ﬂ)o, oo] defined by

Tﬂ(t, X, ¥, 250 < |{] <2m)
(t, %, ¥, é?im Cppy) ifz,  €R0O< |4 <m,l#i

0 otherwise.
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By Proposition 2.2b (Ey = [—w, ao]4m is compact) this function induces a map

T..: M ([0, ) x E) = M

M (10, @) * ([ o\ {0, @)}) * [0 )

P
which is a.s. continuous relative to the limit point process N in Proposition 3.1.

Furthermore the maps T;qy: [0, @) x ([, 00]2\{(-—00, —0)}) x [0, o] defined by

T (t,x,y,2)=(t,x,2) if i€ rt
=(t,y,2) if iel

induce continuous maps

3t M([0, ) x ([on, o] \{(—, —)})  [on, 0]) = M ([0, ) (5, ] x [0, w]) By

Proposition 1.1 of Resnick (1986) or Proposition 3.18 of Resnick (1987). Thus from (3.7),

T.
i

the continuous mapping theorem and the fact that addition is vaguely continuous

(Kallenberg (1983)) we get

(m) _ P o
o= 1§I+UI 2 ° Til(Nn> +0op(1)
=> 5, _T,0T,mN) =™
iertur i2 7 7il

as asserted.

To complete the proof, it suffices to show by Theorem 4.2 in Billingsley (1968) that
(3.10) ’ n(m) -7 a8 as M- w

and for every 6> 0
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(3.11) 1 im limsup P[p(nr(lm), n) > 68 =0

m-ow 1N ~oo

where p is the vague metric. Clearly n(m) - 7 as since

7Y ¢, ({—i)-v Te¢Y, (£—i) as., r=1,2
e (" kr 04 (" k,r

As for (3.11), by definition of the vague metric it is enough to show that for every

6>0 and h e CE([0, w) x (o, ] x [0, a]) with h <1,

(3.12) 1 im limsup P[]fhdnl(lm) —[hdn, |> é = 0.

M- -0

Suppose the support of h is contained in [0, o] x [, o] * [—0, w]. If d(-, -) isthe metric

on [~w, «], then by the uniform continuity of h, given € > 0, there exists # > 0 such that
sup{ |h(t, x, y) = h(t, x,2)|: t € [0, ), x € (—w, 0]} < €
whenever d(y,z) < §. The probability in (3.12) is bounded by
5B | hdn{™ — [hdy |
and this expectation is in turn bounded by

[na] [na]
(3.13) € ) P(Ak~i,n) +2% YP(A, . NB

_ _ . y
el U k=1 ertur k=1 = Kbn Uk

where



26

al(zy ~b )28 ifiel”

Akin =
-1 ey T—
la, (2,5 — b)) 2 8 ifiel

and

1 .|
B, .=ldla " YcZ, ,a "X _c,Z, ) > 4.
ki = [da, PN ESAN R

. . -1
Since Ak-—-i,n and Bk,i are independent, a, =7~ and

e b ifiert
nP(Ak—i,n) N
1—5—2 oD fieT™

the limsup of (3.13) is bounded by

1 -0

__.ﬁ + —
e (kT +k (1- + X, PlA(YZc¢Z 7% c > 0
( (1 —p)/p)(e - [ (7#1 Fet 7 fm Z_p20)

which upon letting m - w is equal to
ee-ﬂ(k+ +k (1-p)/p).

Since € > 0 is arbitrary, we conclude that the limit must be zero which proves (3.12).
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17t

0
THEOREM 3.3: Let {Xt} be the moving average process X, = IR N/ where {Zt} is
1=

an iid sequence of r.v.'s with common distribution F € D(A) N Sr(7), v > 0, and which
satisfies the balancing condition (1.10) Assume the coefficients {c;} satisfy (3.1) and

(3:2). Then in M ([0, @) x (-, o),

o]

= e 4
k=1 (ki', a_l(X, ~b_))
= GEGT S E i§I+€(tk1’jk1+7€§’.C€Yk 1 (£=1)
‘ 1 ’
ty iEI"G(th’ij +rLeY) o(l—1))

Hi

where the points in the limit are transformations of the points described in Proposition 3.1.

PRroOF: Let M > 0 be a large fixed constant and define the function T from

ENI: = [0, ®) x [——M, oo] x [-—oo, oo] into [0, ®) x (—o0, oo] by

(t, (x+y) yeR
T(t, x,y) =

(t,0) y£R

If we restrict the domain of the point processes 177, and 7 in Proposition 3.2 to the set EM

then by Proposition 2.2, the mapping T: M p(EM) - M p( [0, ) x (—0, ]) defined by

T(Ze, ) = e
€y ) = Lepy
I B

is a.s. continuous at (- ﬂEM), Thus,
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N ® i)
To(NE)=S%, T | _, 1{
n M jeItul k=1 (ki La_ (X —b))
where
ep . -+
1.—1 ifiel
2y (Zy ;= by) 2 -M]
(i) _
I
1,.~1 e —
lag (<25 — b)) > —M] ifiel .
Now as M -« ,
o9}

Tn(-NE)=3%, T e, . oy 1
M2 et k=1 (g B t A S )

4 o]
+ ¥ Y e . a1
RI ¢ Loy, (i)l
el k=1 (tka Jko + Tt g 2(H1)) lig 2 -M]

-+ € a.s.

50 to complete the proof of the theorem, it suffices to show, by Theorem 4.2 in Billingsley
(1968) and the definition of the vague metric, that for all 6 > 0, and
h e CE([0, @) x (=, a]), h <1,

- b -1 -1 (i)
(3.14) Limlimsup P[| ¥ h(kn ", a “(X; =b ))(1-X , 1Y) >g=o.
M-sw n-w k=l ok Tt et k

If h has support contained in [0, o] x [6, w], then the probability in (3.14) is
bounded by



P[[nff]{a“l(x —b)y>01-3, 140y
k=1 Dk n ieI*’(u)I‘“ k
1 i
<anPla (X,—-b )>01-% 157 #0].
< anPlay (Xo =by) iertur™ 0
Now,
1—3, 1aq
{ iertur 0
. . . L
cu, =11 =yunpl=otranierturm
i,jeI Ul
i# ]
and
eM ifiel™
nP[l(()i) =1] -
U =Rl M fier
Thus for i # ],
(3.15) aP1{l) = 1, 1 =1] = np[1l) = P = 1)< 0

a8 N - o 80 t0 prove (3.14) we only need to consider
~1 () _n .+
(3.16) nPla “(X, —-b ) >0, 157 =0, ieT" Ul

Set Y=2Yc7Z .-

¢;Z_; - Applying the remark in Section 1, (see (1.11))
S 1 )
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(3.17) PIY > 4]

F(t)
as t - o . Now the probability in (3.16) is bounded above by

~1
¥ nPla_~(X
ertur- R
-1
+nPla “(Xy—b ) >4, max Z_; <a M].
[n 0 1EI¥UI 1

0~ by) >0, a M <cZ_; <a (-M)+b]

By (2.19) in Goldie and Resnick (1988b), the 1 im limsup of each term in the first sum is
M-w n-w

zero. Moreover, the last term is bounded by
-1 + —
nP[aLn (Y-—bn)>0——(k +k )M]-0

a n-w by (3.17) and hence 1im limsup of (3.16) is zero. This combined with (3.15)

~ow D=

proves (3.14) as claimed. o

In case the coefficients ¢, are non—negative for all i, the balancing condition (1.10)
is not required. The proof of the following theorem is essentially identical to the proof of

Theorem 3.3 with the obvious modifications.

’ ®
THEOREM 3.4: Let {X,} Dbe the moving average process X,=1%

1=

lid with common distribution F € D(A)'n S.(7), 72 0. If the coefficients {c;} are

C;Z;_;, where {Z} is

non—negative and satisfy (3.1) and (3.2), then

£ = E € LYY ¢ . .
Tok=1 (ke lx —b ) Kielt (tk1’1k1+7€§iC€Yk1(£ )



31

where the points of the limit have a description analogous to those of Theorem 3.3.

4. REMARKS AND APPLICATIONS

Observe first in Theorem 3.3 that in the special case of subexponentiality where
v = 0, the limit point process is the sum of two independent compound Poisson point
processes f+ + ¢

+
E=Yk'e : Yk e :
¢ (ppdp) Ty (bygndpo)

where recall k™ = card I*. Each point of fi has multiplicity k*.

Once a sequence of point processes based on {Xk} is shown to converge, there are
standard techniques for gleaning the properties of extremes as corollaries and we briefly
sumarize some of these applications. (Cf. Leadbetter, Lindgren and Rootzén (1983); Resnick

(1986, 1987); Davis and Resnick (1985a,b).) We assume the hypotheses of Theorem 3.3 are

in force.
a) Convergence of maxima to extremal processes: Define for t > 0
Y (t)=a (X, ~b), 0<t<nl
n n {1 | n’’
t
e -1
=a, (V Xi——bn), t>n
=1
and

Y()=( V (o, +7 V,Sc¢,Y,  (£—1)))
b <t el T Ol

V(O V (g + 7V _ ZeY, o(6—1)) = YT ®)VY (t)
by g St k2 e O k2
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and we have

in D(0, »). (Here we are using the convention that the maximum taken over an empty
index set is —w .) This is obtained by applying the maximum point functional to the
convergence in Theorem 3.3 (cf. Resnick (1986, 1987)). YT and Y are independent
extremal processes and Y being the maxima of the two is thus also an extremal process.

Note

Ye . .
(trps i 7V L ZeY, (£—=1))

is PRM with mean measure of [0, t] x (x, @] equal to

te “E exp{y V_ (ZepY, 1(E=1))} = te—xm+(7)
i€l " {41 ’
and likewise
Pt o+ TV SeY, (0—1))
" el 4 4R

is PRM with mean of [0, t] x (x, @] equal to

-1 —X . —1 —X
tp (1 —p)e "Eexp{yV (Zc,Y, ~(f— =:t 1—ple )
) (1Y (Bey oe= i) = 571 = p)e™m_()
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Note that m (v) =0 if k*=0. Thus Y* is extremal — G . Wwhere

G,(x)=PYT(1) <x = A+

_1 .
G_(x)=P[YT(1) <x] = A(x)p < p)m__(’y).

Therefore Y = YT V Y™ is extremal—G with

-1 .
G(x) = G, (9C_(x) = A(X)m+(7) +p (1 p)m_(v).

Note that if k+ =1 then

where i is the unique integer with ¢; = 1. A similar calculation is possible if k~ = 1.
For other applications which depend only on the fact that Y is an extremal process

see Resnick (1975, 1986, 1987), Davis and Resnick (1985a).
(b)  Extremal index: From (1.11)
—X

nP[X, > ax+b )-re

where r = (k+/E exp{72,} + k (1 -p)/(pE exp{7Z{}))E exp{7X;}. Now from (a)
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50 that the extremal index (cf. Leadbetter, Lindgren, and Rootzén (1983), page 67ff) is

0= (m,(7) +p " (1=p)m_(7)/r.

(¢) Exceedances: For x € R, we may consider the indices k such that

¢9)
Xy >a x + b_ or equivalently the point process ¥ e 1 . From
k~ “n n k=1 kot [Xk>anx+bn]
Theorem 3.3 and the continuous mapping theorem we get
> (x(xa)= %
€ cx (X, o)) = e 41
k=1 (kn™!, 2z l(X, ~ b)) k=1 kn~ (X > apx + b
=> f( x (X’ °°])
=224 i + v SeX, (6—i) > x]
kiel™ k1 VUk1 7¢ Yk, 1
+X X

L iel™ ko [JkQ 7[;3 CpYy o(¢—1) > x]
=X 77 €, + Xnp¢
K Kty Kty

where

"§=2+1{' oy TeY, (i
iert Ui +72¢ g1 (£=1) > x]

with an analogous definition for ni. So the limiting exceedence point process is compound

Poisson.
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If v=0
+ _ .+ - _ -
=k'1 =k 1.
Tk g > 'k i > x|
Suppose X €p 5 I= 1,2 are two independent homogeneous Poisson processes on [0, «)
k “kr

with rates e - and p_l(l —p)e <. Then

K (yp Jiep) K Lk

and the exceedance point process

—d+
277+e +Xn e, =k Le +k Ten .
Kk 5%k Sk Tkt k Tk
(d) Joint distribution of the largest and ond largest: Define Mn = max{Xl,...,Xn}
and M1(12) = ond largest among {Xl,...,Xn}. Then
-1 -1 2
Plal(M, —b_) < x,a ‘(M2 —b ) <]
= P[£, ([0, 1] x (x, ] =0, £ ([0, 1] x (¥, ]) < 1]
= P[0, 1] x (x, ) = 0, £([0, 1] x(y, «]) < 1]

In the special case where v=0, kT >2 and k™ > 2, the set {&([0, 1] x (y, x]) = 1} has

probability zero and hence the joint limit distribution of a_'(M_ —b_, M(%) b ) is

PLE([0, 1] x [x Ay, o)) = 0] = A/P(x A ).
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Noteif M has distribution A/P. then
AYP(x Ay) = P[M <x M <yl
and hence

(a7t —b,), atv(P) —b ) => (M, M),

(e) Upper and lower extremes: We first establish a weak convergence result for the

“sequence of point processes

e ¢]
k—z-f(k‘1 Lx, —b), a (X, + b))
- 0o ay Wy n) 3 Nk n

from which joint limit behavior of the upper and lower extremes can be ascertained.

THEOREM 4.1: Under the assumptions of Theorem 3.3,

w *
e g -1
k=1 (kn", a, (Xk - bn), a, (Xk + bn))
o 9}
=> X Y (e . . + ¢ . )
et k=1 (tkla ha T 7€§icgyk1(£"l)»®) <tk2’ 0, <o F 7€§1C[Yk2<€_1))
5%
+ . ]
iel k:l(e(tkgvlkg + 7 CngQ(g — 1), )

¢
by g+ ’Q?.Ceym(g‘i)))
Fl1
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in Mp([o, w) % ([~ow, 00]2\{ (—», w)})) where the points in the limit are obtained from those

described in Proposition 3.1.

SKETCH OF ProoF: With E as defined in Proposition 3.1, let T be the continuous map

from E into

F = ([, o]\ {(=0, ~m)}) % ([0, 02\ {(, 0)}) * [0, o] T
given by

T(x, y,2,0 < [i| < 2m) = (x, y, =x, -y, 2, 0 < |i| < 2m).

Thus, by Proposition 1.1 of Resnick (1986) and Proposition 3.1,

®
P
o8}
=> ¥ . . . .
kzlf(tkl, .]k17 00, "Jkl, 0, 7Yk,1(1)7 0< Il’ < 2m)
o«
+ Y ¢

in Mp( [0, @) x F). This result combined with the analogous proof given for Proposition 3.2

yields
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'EI+k~2—16k“1 Nz, . —b),aNZ, . +b),atLcZ )
tel " k=1 (kn *, a "(Zy_;—by),a  (Zy_; + b, ) a, -t
o0
+3 Ye 4 -1 )
s 6}
=> % Y

€ . . -+ € . )
et k=1 (podr @ 7€§1C€Yk,l(€ =1)) 7 (tyg 0 =ik VE;JinYk,Q(g 1))

o 0]
) . . . .
e k§1€(tk2’ k2> © 7z§.czyk 2 () T by = =y A/g?icfyk o))
1 ? 3

in Mp([O, ©) x ([, 00]2\{(—00, ®)}) x [-w, ®]). The conclusion of the Theorem now follows

using the same type of argument as given for Theorem 3.3. o

e -1 -1 o
The limit distribution of (a_ (M, =Db,), a; (W, +b,)) where M = i\zlei and

Xi can now be easily derived. For simplicity, assume ~ = 0. Then

-1

<x, ag (Wn-i— bn) >y

= P[Ye ,1] x [AUB)) =
b (kn—l,agl(Xk—-bn),a;l'l(Xk—{-bn))([O =AuB)=0

where A = [X, @] x [, @] and B = [—w0, o] x [0, y]. Assuming kT >0 and k> 0, the
limit of this probability reduces to

P[Ef(tkl’ jkl)([o, 1] x (x A =y, «]) = 0, Ee(tk? jkz)([o,l] x (x A =y, «]) = 0]

= exp{—¢ XAV p)
= min {AY/P(x), AM/P(y)).
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Not unexpectedly, this limit distribution belongs to the class of distributions described in

Davis (1982). If k=0, then

-1

-1
Pla_' (M, —b ) <x, a (W _+b

n 7t Pp)
with a similar result holding if kT =o. Therefore, we conclude that the maximum and
minimum are asymptotically independent if and only if kT =0 or K~ =0. This result
differs from the corresponding result for the maximum and minimum of moving averages of
random variables with regularly varying tail probabilities. In that setting, Mn and Wn
are asymptotically independent if and only if the cj‘s are all of the same sign (see Davis and

Resnick, 1985a).

5. MAX-MOVING AVERAGES
Suppose F € D(A) (no other condition on F is needed) and consider the stationary

sequence

0
(5.1) {U, w<t<aop={V ¢Z . —w<t<o}
t j=~1)o']t~']

where 0 < g <1 and {Zj} is iid with common distribution F. We assume without loss
of generality that there is at least one i such that ¢, =1 andset I= {i: c; = 1} and

k* = card I. Since

P(U; <x] =P[VeZ, : <x} = IF(c;'x)
] ) 1] j J

we need for all sufficiently large x
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IIF(c,

. Jx)>0.

or what is equivalent

From Proposition 1.1

SF(c;) < (1 + Y sl R

J J J

so that provided ch(s < o for some ¢ we have '\_/CJ.Z__j <o a.8. Assume Ec(s <w.

J J J
We now investigate convergence of a sequence of point processes based on {Uj}.
E3
Define in [, o] \{—w} for i€l

ei = (éjl’ .] € I)
where
1 ifj=i
i
-0 ifj # i

We first have
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(5.2) Yo

in M ([0, @) * ([~ X \{—})) where Se(y ) 18 PRM(dte™dx). The proof of ihis

k (b Uy
statement can be based on the method of proof of Theorem 2.2 of Davis and Resnick (1985a)
and is omitted. Note that Theorem 2.1 is not applicable as condition (2.2) fails.

Next observe for large x and fixed ¢> 0

P[V ¢Z . >x] < LF(cx)
jgrd jer
<1+ ()Y g epo

by Proposition 1.1 and since f(x)/x - 0 we have

P[VecZ . >x]/F(x)-0

gl J
whence
(5.3) lim Pl (V eZ_ ~b ) >x] =0
- o0 jgrd
and

on [—-oo, oo) .
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Now we may extend (5.2) to

-1, —1 .
k=1 (kn ",(a " (Z)_; —D,), i€l), a (JZICJZk”J b))

iel k (g1 Ji8pr —)

in M ([0, @) * ([, ] \{w}) x [, @)). To check this let

__.1 .
m = ( Vv CJZk—J b )

1l .
and it suffices to show

R o8} P
(5.5) e 4 — Y € 1 = 0

in M ([0, o) x ([0, @] \{~w}) x [0, a]) for then (5.5) and

5.2) immediately give
(5.4). For (5.5) it suffices to show for any

f€ CH([0, ) x ([, o \ {0} * [0, o)),

that for any (> 0

(5.6) Pui(f(kn“l, 7o my) — (ka2 )| > (- 0.
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Suppose the support of f is contained in [0, T] x K x [~w, »] where K is compact. Since

f is uniformly continuous, for any v > 0 there exists M* so small that

|f(t, z, m) — {(t, z, —0) | < 7

for all t and z when m < M* . The probabiliity on the left side of (5.6) is

p [nT] .
[kzl m ;> M|
1 [nT] §
H Zf(( nk’ Ilk) ( n o, an7 —00))! > G, k}:/l mnk <M ]
= A +B.
Now A<nTP[{Vc¢Z .>a M*+b |]-0 by (53) and
jerd 8 .
limsup B < limsup P[yZe ([0, T] x K) > (]

0 -0 - k (kn

<P[Y Ye
[151 k(g i)

JZy)
([0, T) x K) > (7]

from (5.2). Since ¥ Ye
iel k (e i)

made as small as we like by proper choice of 7. Hence (5.6) and (5.5) follow.

([0, T] x K) is a finite random variable, this bound can be

Now define

T ([, a]* \f=w}) * [, @] = (o, o]
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k
i<k*),z)=V zVz
i=1

T((Ziv

and applying Propositon 1.1 of Resnick (1986) to (5.4) we obtain in Mp(O, o) x (—w, w])

o0
(5.7 Y¥e o
) k=1 (kn ', a (U — b))

> % %e, . =kTe,. .
ielk (ot K (e Ji)

where recall De(, s PRM(dte “dx).

From (5.7) it follows that

)=>Y(t)=k* V

]
n k
tkSt

so that

-1,
limPla_"(V

Ui -bn) <x] = A(x/k*).
n—w i=1

Furthermore the exceedance point process converges in M p([O, w)):
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€l =l
k=1 (kn ", a_ (U —b_))
o)

= Y e _
k=1 kn

=> k*¥ .
ke(tkv Jk)

=k*¥e, 1
|

11[Uk >a x+b]
(- x (x, ]

d
= k*EeT

te U > X 7 Ty

: X
where Eka is PRM(e “dt).
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