
COLLAPSE OF OPTICAL VORTICES AND
SEQUENTIAL FILAMENTATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Luat Thanh Vuong

January 2009



c© 2009 Luat Thanh Vuong

ALL RIGHTS RESERVED



COLLAPSE OF OPTICAL VORTICES AND SEQUENTIAL FILAMENTATION

Luat Thanh Vuong, Ph.D.

Cornell University 2009

This thesis presents investigations of nonlinear light propagation dynamics in

isotropic self-focusing materials. The first half of this thesis is devoted to study-

ing the transverse spatial dynamics of optical vortices, donut-shaped beams

with helical phase fronts. The second half of this thesis describes the spatiotem-

poral dynamics of sequential plasma filaments that are formed by high-peak

power laser pulses. The objective of these studies is to identify novel behavior,

to predict nonlinear trends, and to achieve a new understanding of the physical

processes that govern the dynamics of high-power beams and pulses.
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CHAPTER 1

INTRODUCTION

A system is nonlinear when the constituent behavior changes due to interac-

tions with itself. Because of the interactions, certain dynamics can be amplified

over others and produce a system attractor, where a range of initial conditions

evolve into an equivalent state. This broadly classifies self-organization and pat-

tern formation dynamics in nonlinear systems, which are investigated in a wide

range of fields including optics, fluids, plasma physics, and material science

[19]. Nonlinear systems can also exhibit bifurcations, where small changes in

the initial conditions lead to different system attractors, also known as a phase

transition. Lines of bifurcation characterize a nonlinear system and are studied

in many disciplines [110] because they provide insight into the ways in which

dynamics can be controlled. In physics, steep switching mechanisms can be

used to measure environmental parameters and moreover, have communica-

tions applications.

The optical nonlinearities of isotropic materials studied in this thesis are due

to electronic responses of bound and liberated electrons; other physical pro-

cesses, for example the motion of molecules, occur at timescales longer than

the laser pulse duration and therefore have insignificant involvement with the

laser pulse. Light can be confined over distances several orders of magnitude

greater than its confocal parameter by the combined effects of self-focusing

and light-induced gas ionization [11]. The formation of light filaments has

been shown to be robust to perturbations [18], and the onset of filamentation

and multiple filamentation spatial patterns are controllable by several means

[28, 39, 45, 48, 53, 70]. Experiments involving high-power filaments contribute
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to our understanding of fundamental physical processes and offer an array of

potential applications [42, 57, 98, 111].

In section 1.1 the intensity-dependent refractive index is described and the

Nonlinear Schrödinger evolution equation for modeling the self-focusing of

electric fields in the paraxial limit is derived. In section 1.1.3 we demonstrate

the evolution of an electric field filament to the two-dimensional Townes profile

attractor and describe the pattern formation that arises from a modulational in-

stability. In section 1.2 we derive the nonlinear envelope equation that accounts

for gas ionization [section 1.2.1] and high-order temporal effects in the propa-

gation dynamics [section 1.2.2]. This approach rederives the identical evolution

equation used in [76] using a frequency-domain approach, and but contains a

different coefficient involving the plasma absorption. The frequency-domain

analysis is helpful for integrating broadband dispersion corrections, which are

discussed in section 3.3.

In chapter 2, the angular momentum of light is introduced. This chapter

combines the investigations of collapse and multiple-filamentation dynamics

for homogeneously-polarized optical vortices and inhomogeneously-polarized

beams [105, 106, 107]. In our investigations of self-focusing optical vortices

in Kerr media, we show how vortices evolve to a distinct self-similar profile,

which becomes unstable to azimuthal perturbations. We predict the dynamics

of these instabilities and verify our claims numerically and experimentally. With

copropagating orthogonal-circularly polarized beams, we observe that optical

vortices with different topological charge spatially separate during multiple-

filamentation and we explain the origin of this effect. New dynamics accom-

pany this spatial separation of azimuthal instabilities, and we experimentally
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measure the OAM switching and polarization rotation that occurs via nonequi-

librium phase transitions.

In chapter 3 we describe the spectral reshaping that occurs as a result of

the sequential formation of two on-axis plasma filaments or sequential filamen-

tation. We provide a theoretical description of the spatio-temporal dynamics

of sequential filamentation in noble gases that can lead to pulse compression

down to nearly single-cycle pulses. We show that the strong pulse compression

occurs as a result of serially-generated on-axis filaments and spectral filtering of

an extensive blue-shifted compressible spectra. We show that the dynamics of

this sequential filamentation can be readily tuned by varying the gas pressure

and can be scaled to various pulse energies. We provide a theoretical descrip-

tion of optimal pulse compression via filamentation and we propose that the

alternating dynamics between beam focusing and defocusing and the produc-

tion of visible sequential plasma filaments is the primary mechanism that leads

to the extensive blue-shifted spectrum which enables pulse compression.

In the conclusion, potential directions for further investigating filamentation

are outlined.

1.1 Derivation of Nonlinear Schrödinger Equation

The challenge of modeling the propagation of electromagnetic fields generally

lies in simplifying Maxwell’s equations. In this thesis, we consider nonmagnetic

isotropic materials where Maxwell’s equations are represented as

∇ · Ẽ =
1
n2

0

[
4πρ f ree − 4π∇ · P̃NL

]
, (1.1)

∇ × Ẽ = −
1
c
∂H̃
∂t
, (1.2)
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∇ · H̃ = 0, (1.3)

∇ × H̃ =
1
c
∂

∂t

[
n2

0Ẽ + 4πP̃NL

]
+ 4πJ̃, (1.4)

where Ẽ and H̃ are the electric and the magnetic fields, J̃ is the electron current

density, ρ is the free electron density, n0 is the linear refractive index, c is the

speed of light and P̃NL is the nonlinear contribution of the material polarization

due to bound charges. When we take the curl of both sides of Eq. 1.2, substitute

Eq. 1.4, and apply the vector identity ∇ × (∇ × Ẽ) = ∇(∇ · Ẽ) − ∇2Ẽ, the result

∇(∇ · Ẽ) − ∇2Ẽ = −
1
c
∂

∂t

[1
c
∂(n2

0Ẽ + 4πP̃NL)
∂t

+ 4πJ̃
]
, (1.5)

is a wave equation with additional terms. In this thesis, we assume that the

material in which the electromagnetic field is propagating has no net charge or

ρ f ree = 0, and the first term on the right hand side if Eq. 1.1 vanishes. Substitut-

ing and distributing terms in Eq. 1.5, Maxwell’s equations for the electric fields

in an isotropic nonlinear material are written

n2
0

c2

∂2

∂t2 Ẽ − ∇2Ẽ = −
4π
c2

∂2

∂t2 P̃NL +
4π
n2

0

∇(∇ · P̃NL) −
4π
c
∂

∂t
J̃. (1.6)

We consider the dynamics associated with the third-order nonlinear optical in-

teractions and a nonlinear polarization P̃NL that result in pure self-focusing.

Second-order effects, by symmetry, typically do not occur in isotropic media,

although there are exceptions, namely the case where a third-order nonlinear

polarization produces sufficient asymmetry to generate second-harmonic [75].

These and higher-order harmonics are neglected because even during extended

propagation, the additional frequency components do not contribute apprecia-

bly to the nonlinear propagation dynamics [62]. Self-focusing occurs due to an

intensity dependent refractive index that is defined

n = n0 + n2I (1.7)
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where

I =
n0

2π
|Ẽ|2 (1.8)

Without a formal derivation using the fourth-rank tensor nonlinear susceptibil-

ity, the nonresonant electronic response is represented,

P̃NL =
n2

0n2c
2π2

[
(Ẽ · Ẽ∗)Ẽ +

1
2

(Ẽ · Ẽ)Ẽ∗
]
, (1.9)

which assumes Kleinman symmetry, or that the average position of the elec-

trons is unchanged due to presence of the electric field. Therefore, we also ne-

glect light-induced effects on the electron behavior due to radiation pressure or

ponderomotive forces. For the remaining subsections in section 1.1, we assume

that there are no charged carriers, or J̃ = 0, however, in section 1.2, J̃ is reintro-

duced to derive the nonlinear envelope equation. We also return to this vecto-

rial treatment of Maxwell’s equations [Eq. 1.6] in order to discuss higher-order

polarization effects in the generation of plasma for future experiments [section

3.3].

1.1.1 Vectorial Effects and Assumptions Related to P̃NL

We simplify the tensor form of Eq. 1.6 and Eq. 1.9 into scalar contributions of an

electric field using two similar approximations that both assume electric fields

with light rays are parallel to the direction of propagation. The first assumption

in the analysis of Eq. 1.6 is that the second term on the right-hand side is zero,

∇(∇ · P̃NL) ≈ 0. (1.10)

Since the nonlinear polarization P̃NL grows and vanishes depending on the

evolving spatial beam profile of Ẽ, its divergence ∇ · P̃NL , 0. In order for Equa-
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tion 1.10 to remain valid, the transverse spatial beam profile must not change

rapidly, either in the transverse direction or during propagation.

The second approximation involves the calculation of the nonlinear polar-

ization [Eq. 1.9], where we also assume that longitudinal field components are

small, or

Ẽ = Ã(x, t)ê + ∆̃(x, t)k̂ (1.11)

≈ Ã(x, t)ê, (1.12)

where ê is the polarization vector that lies in the transverse or x − y plane and k̂

points in the z-direction. This is equivalent to the claim that the transverse spa-

tial beam profile does not change appreciably; the longitudinal field component

generally scales in proportion with the transverse gradient and inversely with

the wavenumber, which is large at optical wavelengths.

Neglecting the longitudinal field component, we now find that the nonlinear

polarization P̃NL depends on the polarization of light. If Ẽ is linearly-polarized

along the î-direction or along the x-axis, then since

î∗ = î, (1.13)

î · î = 1, (1.14)

P̃LP
NL =

3n2
0n2c

4π2 |Ã|
2Ãî, (1.15)

Eq. 1.6 can be simplified,

n2
0

c2

∂2

∂t2 Ã − ∇2Ã = −
n2

0n2c
π

12
c2

∂2

∂t2 |Ã|
2|Ã, (1.16)

which is also known as the nonlinear Helmholtz equation. Alternatively, if

we consider a circularly-polarized beam ê = σ̂± denoting a right (-) or left(+)

6



circularly-polarized field, then

σ̂± = (î ± iĵ)/
√

2 (1.17)

σ̂∗± = σ̂∓, (1.18)

σ̂± · σ̂± = 0, (1.19)

σ̂± · σ̂∓ = 1, (1.20)

and consequently,

P̃CP
NL =

n2
0n2c
2π2 |Ã|

2Ãσ̂±. (1.21)

Since the magnitude of the nonlinear polarization scales according to the

electric field polarization,

|P̃CP
NL| =

2
3
|P̃LP

NL|, (1.22)

we observe similar dynamics circular-polarized and linearly-polarized input

beams at different field intensities.

To evaluate the nonlinear evolution of inhomogeneously-polarized fields,

we treat orthogonal-circularly-polarized fields separately in coupled scalar

wave equations. A spatially-varying polarization of an electric field

Ẽ = Ã+(x, t)σ̂+ + Ã−(x, t)σ̂− (1.23)

is described by the coupled scalar equations involving Ã+ and Ã−

n2
0

c2

∂2

∂t2 Ã± − ∇2Ã± = −
n2

0n2c
π

12
c2

∂2

∂t2 (|Ã±|2 + 2|Ã∓|)Ã±. (1.24)

It is not difficult to show that when considering a linearly-polarized field

represented in the circular-polarization basis, or |Ã±| = 1/
√

2 that Eq. 1.24 be-

comes Eq. 1.16.
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1.1.2 The Slowly-varying Envelope Approximation

The electric field and nonlinear polarization are represented by their carrier fre-

quency envelope

Ẽ = Ae−i(ωt−kz)ê, (1.25)

P̃ = Pe−i(ωt−kz)ê. (1.26)

In order to focus on the transverse nonlinear dynamics, we assume that A and

P do not change with time and ∂t = −iω. Transferring into a reference frame

that travels at the speed with this continuous wave field, or τ = t − n0z
c , and

∂z = ∂ζ − n0/c∂τ.

−ω2n2
0

c2 A − (∇2
⊥ +

∂2

∂ζ2 −
n0

c
∂2

∂ζ∂τ
+

n2
0

c2

∂2

∂τ2 )A =
n2

0n2c
π

12ω2

c2 (|A±|2 + 2|A∓|)A±. (1.27)

The first and last terms on the left-hand side cancel when we operate ∂τ = −iω,

since k = n0ω/c. We invoke the slowly-varying approximations that

∂A
∂ζ

<< kA (1.28)

to arrive at the Nonlinear Schrödinger Equation

∂

∂ζ
A =

i
k
∇2
⊥A +

in0n2

π

12ω
c2

(
|A±|2 + 2|A∓|

)
A±. (1.29)

In chapter 2 of this thesis, we normalize this equation and its variables,

∂

∂ζ
ψ± = i∇2

⊥ψ± + iβ
[
|ψ±|

2 + 2|ψ∓|2
]
ψ±, (1.30)

where ψ± is the scaled transverse profile associated with spin-polarized elec-

tric fields,
√

Cψ±(ρ, θ, ζ) = A±(r, θ, z) and C is a normalization constant such that∫
[|ψ+|2 + |ψ−|2]ρ dρ dθ = 1. The propagation variable is ζ = z/kw2

0, and the nor-

malized radius is ρ = r/w0, where k = 2πn0/λ, and w0 is the mode field radius

8



of the initial beam. The coefficient β = αPπ/3Pcr where the power P = n0cC/2π

and where α is a shape-dependent parameter for which the critical power is de-

fined [35]. The second and third terms on the right represent self-action effects

or self-focusing and cross-phase modulation, respectively. Initial beam profiles

are width-normalized so that the mode field radius
∫
ρ2[|ψ+|2 + |ψ−|2]ρ dρ dθ = 1,

which is essential for comparing the angular momentum dynamics in chapter

2.

1.1.3 Self-similar Collapse and Modulational Instability

A gaussian beam with power greater than the critical power for self-focusing

Pcr will be trapped in its self-induced nonlinear potential, wherein each light

filament holds a precise quanta of power and, in the absence of temporal ef-

fects or higher-order terms, will undergo collapse [60]. The self-similar evolu-

tion toward collapse is illustrated in Fig. 1.1(a) where the peak field intensities

asymptotically approach infinity, while the beam radius scales inversely [77].

Regardless of the initial shape, the collapsing portion of the beam converges to-

wards a distinct profile, while the remaining portion diffracts. This self-similar

profile is an attractor also known as a Townes profile [14], and can be calculated

numerically assuming that the electric field has the form ψnorm

ψ(ζ, ρ, θ)norm = L(ζ)ψ
(
ζ,

ρ

L(ζ)
, θ

)
, (1.31)

where L(ζ) = 1
max|ψ| . The unique solution to the Nonlinear Schrödinger Equation

after a lens transformation can be solved given an asymptotic rate for L(ζ). In

Fig. 1.1(b) we display an experimental image of an irregularly-shaped back-

ground diffracting with a single round filament at its center with the Townes

9



self-similar fields
with equivalent power(a) (b)

Figure 1.1: (a) Self-similar profiles with equivalent power. (b) Experimen-
tal image of a round Townes profile in the cross-section of a fil-
ament, with an irregularly-shaped background diffracting de-
scribing the results of K.D.Moll et al., Phys. Rev. Lett. (2003).

profile. In section 2.1, we demonstrate a new self-similar profile that manifests

in the collapse of optical vortices.

When an electric field carries more power than the critical power for self-

focusing, we can observe the formation of multiple-filaments in the spatial beam

profile. Spatial features of an optical beam in a Kerr medium can arise from

modulational instability (MI) [6], which can lead to multiple-filamentation (MF).

These MF patterns can be dramatically manipulated with beam shape [4, 28],

and the noise that seeds the MI does little to change the overall MF patterns

[34]. In Fig. 1.2 we show the power-dependent filamentation patterns induced

by input beam ellipticity [46]. At low powers, the elliptically-shaped beams

form a single filament on axis. The periodic bands of filaments that arise in

the vertical and horizontal dimensions are associated with modulational insta-

bilities in the bands. In section 2.1 we analyze the modulational instabilities

associated with optical vortices and in section 2.3 we study deterministic vortex

multiple-filamentation patterns that are induced by elongating the spatial beam

profile.
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Input Output Profiles

e = 2.1

e = 4.1

e = 5.75

37 μJ

25 μJ

53 μJ

38 μJ

27 μJ

63 μJ

32 μJ

21 μJ

37 μJ

Figure 1.2: Power-dependent filamentation patterns influenced by input
beam ellipticity from T.D. Grow et al., Opt. Express (2005).

1.2 Nonlinear Envelope Equation

The Nonlinear Envelope Equation derived in this section considers a frequency-

dependent linear refractive index n0(ω) and the ionization of gas molecules by

high-power pulses. Here we begin using Eq. 1.6 and make the paraxial assump-

tions described by Eqs. 1.10 and 1.11,

n2
0

c2

∂2

∂t2 Ẽ − ∇2Ẽ = −
4π
c2

∂2

∂t2 P̃NL −
4π
c
∂

∂t
J̃. (1.32)
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Since the wavenumber is dependent on frequency k(ω) = n0(ω)ω/c, we represent

its expansion about the electric field carrier frequency,

n0(ω)
c

(ω) = k(ω) (1.33)

= k0 + k1(ω − ω0) +
1
2

k2(ω − ω0)2 +O(ω − ω0)3, (1.34)

and truncate the expansion. We also make the approximation that k1/k0 = 1/ω0,

n0ω0

c
(ω) ≈ k0

ω

ω0
+

1
2

k2(ω − ω0)2, (1.35)

which is a valid approximation when the group and phase velocity are equal at

the carrier frequency ω = ω0. In simplifying the time derivatives of the electric

field,

FT
[(n0(ω)

c

)2 ∂2

∂t2 Ẽ
]
= −k(ω)2Ẽ, (1.36)

we assume that k2(ω − ω0)2 << k0 and

k(ω)2 ≈ k2
0

(
ω

ω0

)2
+ k0

ω

ω0
k2(ω − ω0)2. (1.37)

We also represent the electric field vector using its scalar envelope A(r, ω−ω0, z)

with carrier frequency centered about ω0,

Ẽ(r, t, z) =
∫

Ẽ(r, ω, z)e−iωtdω (1.38)

Ẽ(r, ω, z) = A(r, ω − ω0, z)eik(ω)zê (1.39)

≈ A(r, ω − ω0, z)eik0zê. (1.40)

Here, the approximation made between lines 1.39 and 1.40 allow us to consider

that the electric field envelope in the time domain is the fourier transform of the

frequency-domain envelope, or

FT [A(ω − ω0)] = A(t)eiω0t, (1.41)
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which is only a valid approximation for small-bandwidth pulses.

The transverse laplacian in Eq. 1.32 becomes

∇2Ẽ =
[
∇2
⊥ +

∂2

∂z2 − 2ik0
∂

∂z
− k2

0

]
Aeik0zê. (1.42)

We change variables to move in a reference frame that travels at the speed

with the pulse, or τ = t − n0(ω0)z/c, and ∂z = ∂ζ − k1∂τ, which results in ζ-

derivatives,

∂

∂z
A =

∂

∂ζ
A −

k0

ω0

∂

∂τ
A, (1.43)

∂2

∂z2 A =
∂2

∂ζ2 A − 2
k0

ω0

∂

∂τ

∂

∂ζ
A +

( k0

ω0

)2 ∂2

∂τ2 A. (1.44)

Let Ω = ω − ω0 be the Fourier transform pair variable with τ. If we make the

slowly-varying envelope approximation, the left hand side of Eq. 1.32 becomes

−∇2Ẽ − k(Ω)2Ẽ =
{
− ∇2

⊥ +

[
2 ik0Ω

ω0

∂
∂ζ
−

(
k0
ω0

)2
Ω2

]
+ 2ik0

[
∂
∂ζ
+ k0

ω0
iΩ

]
−k2

0 − k2
0

(
Ω+ω0
ω0

)2
− k0

Ω+ω0
ω0

k2Ω
2
}
Aeik0zê (1.45)

= −

{
∇2
⊥ − k0

Ω+ω0
ω0

[
2i ∂

∂ζ
− k2Ω

2
]}

Aeik0zê (1.46)

If we assume that the nonlinear polarization vector and current density have

the same direction and carrier as the electric field,

P̃NL = p(Ω)e−i[(Ω+ω0)t−k0z]ê (1.47)

J̃ = j(Ω)e−i[(Ω+ω0)t−k0z]ê. (1.48)

The scalar nonlinear envelope equation becomes,

−

{
∇2
⊥ + k0

Ω + ω0

ω0

[
2i
∂

∂ζ
− k2Ω

2
]}

A =
4π
c2 (Ω + ω0)2 p +

4πi
c

(Ω + ω0) j (1.49)

The next 2 sections will simplify the right-hand side of Eq. 1.49 and calculate

the nonlinear polarization and current density envelopes, p and j.
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1.2.1 The Nonlinear Polarization Envelope p

The intense electric fields generate charged carriers due to multi-photon ioniza-

tion,
∂ρ

∂τ
=
β(m)Im

0

m~ω0
, (1.50)

where ρ is the density of charged carriers, β(m) is the m-photon ionization co-

efficient, m is the number of photons needed to liberate the electron from the

valence band, and I0 is the intensity of the electric field.

To account for the energy transferred in the electric field for excitation and

ionization of the propagation material, we must consider the real and imagi-

nary parts of the nonlinear polarization. To calculate the nonlinear polarization,

we assume the input electric field is linearly-polarized [Eq. 1.15] and that the

nonlinear polarization P̃NL has the same vector direction as the electric field. We

define the real and imaginary envelopes of the nonlinear polarization

p = (pn + ipα). (1.51)

Here we follow a method similar to Geissler [44] where the nonlinear polariza-

tion is derived from the classical trajectory x̃(t) of the bound electron,

∂

∂t
P̃ = J̃b = e

∂ρ

∂t
x̃ + eρ

∂x̃
∂t
, (1.52)

where ρ(t) is the electron density. Taking a second derivative with respect to t:

∂2

∂t2 P̃ = e
∂2ρ

∂t2 x̃ + eρ
∂2x̃
∂t2 + 2e

∂x̃
∂t
∂ρ

∂t
, (1.53)

A common approximation is assumes that at the instant at which a bound elec-

tron is ionized, its velocity is negligible,

∂x̃
∂t
∼ 0, (1.54)
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and the two remaining terms of Eq. 1.53 are associated with absorption and

refraction, respectively,

∂2ρ

∂t2 x̃ =
∂2P̃α

∂t2 , (1.55)

eρ
∂2x̃
∂t2 =

∂2P̃n

∂t2 , (1.56)

the second equation of which is equivalently analyzed in [10]. The nonlinear

polarization is, as before, an intensity-dependent change in the refractive index:

p̃n(Ω) = 3χ̃
(3)
|A(Ω)|2A(Ω) (1.57)

To find p̃α(Ω), Geissler assumes that the electron is “born” via multiphoton ion-

ization on the outer side of the Coulomb barrier at a distance of

x̃(t) =
I0

eẼ∗(t)
=

Ip

eI(t)
Ẽ(t) (1.58)

where I0 is the ionization potential, I0 ∼ n~ω0, and I(t) = |Ẽ(t)|2. Substituting Eq.

1.58 into 1.55
∂2P̃α

∂t2 =
n~ω0

I0

∂2ρ

∂t2 Ẽ (1.59)

or, in terms of the nonlinear polarization envelope in the frequency domain,

−(Ω + ω0)2 pα = FT
[n~ω0

I0

∂2ρ

∂τ2 A
]
, (1.60)

which represents our current numerical approach. To summarize, the nonlinear

polarization envelope or Eq. 1.51 is

p̃ = 3χ̃
(3)
|A(Ω)|2A(Ω) −

i n~ω0

(Ω + ω0)2 FT
[ A
I0

∂2ρ

∂τ2

]
. (1.61)

1.2.2 The Current Density Envelope j and the NEE

We use, as is traditionally done, the Drude model for an electron gas:

ṽ(t) =
∫ t

−∞

−e
m

Ẽ(t′)e
t′−t
τc dt′ (1.62)
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where ṽ(t) is the electron velocity, m is the mass of the electron, and τc is the av-

erage time between electron collisions. This can be represented as a convolution

in the time-domain,

ṽ(t) =
−e
m

Ẽ(t) ⊗ e
−t
τc , (1.63)

so that taking the Fourier Transform and substituting

ṽ(ω) =
−e
m

Ẽ(ω)
1
τc
− iω

, (1.64)

we have an equation for the current density, J̃ = −eρṽ. Simplifying for the

current density envelope,

j(Ω) =
eρτc

m
A(Ω)

1 − i(Ω + ω0)τc
, (1.65)

We would like this term in the time-domain, and would like to calculate higher-

order dispersion effects due to the frequency-dependence of this term. Different

approaches in the literature lead to subtly different results, and here, we calcu-

late the polarization envelope as a quasi-expansion the frequency domain,

j(τ) ≈ FT−1
[

j(Ω = 0) + ∂ j(Ω)
∂Ω

∣∣∣∣∣
Ω=0
Ω

]
(1.66)

≈
eτc
m FT−1

[
A(Ω)

1−iω0τc
+
−iτcA(Ω)Ω
(1−iω0τc)2

]
ρ (1.67)

≈
eτc
m

[
A(τ)

1−iω0τc
−

τc
(1−iω0τc)2

∂A
∂τ

]
ρ. (1.68)

Equation 1.68 makes the approximation that the spectrum of the our pulse is

approximately flat, which is not necessarily accurate, particularly when pulse-

splitting occurs and the spectra is consequently modulated. However, this pro-

vides a first-order dispersion correction to the current density.

We return to Eq. 1.49, collect coefficients, transform to the time-domain,

FT−1[Ω + ω0] = ω0(1 +
i
ω0

∂

∂τ
), (1.69)
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and simplifying coefficients,

∂

∂ζ
A = i

2k0
(1 + i

ω0

∂
∂τ

)−1∇⊥A − 2iπ
c2 (1 + i

ω0

∂
∂τ

)|A|2A

+2π
c2

n~ω0
I

∂2ρ

∂τ2 A − 2π
ω0c

eτc
m

[
A(τ)

1−iω0τc
−

τc
(1−iω0τc)2

∂A
∂τ

]
ρ + i k2

2
∂2

∂τ2 A. (1.70)

In chapter 3, the normalized nonlinear propagation equation that we use

to model the evolution of the electric-field amplitude A(r, τ, z) for the case of a

radial symmetry in a transparent medium is,

uζ =
i
4

T−1∇2
⊥u −

iLd f

2Lds
utt + T

iLd f

Lnl
|u|2u −

Ld f

2Lmp

ηtu
|u|2
−

iLd f

Lpl
(1 −

i
ω0τc

)
[
u −

τc
τp

ut

1 − iω0τc

]
η,

(1.71)

where u(ρ, t, ζ) = A(r, τ, z)/A0 is the electric field amplitude envelope initially cen-

tered at angular frequency ω0 and normalized by A0 = A(r = 0, τ = 0, z = 0),

ρ = r/w0, ζ = z/2Ld f , Ld f = k0w2
0 is the diffraction length or confocal pa-

rameter, k0 = 2πn0/λ, t = (τ − k1z)/τp is the retarded time, and the operator

T = (1+ i∂t/ω0τp) follows from the slowly-varying envelope approximation. The

dispersion length is Lds = τ2
p/k2, L−1

nl = αPpk/2Pcr, Ppk is the initial peak power,

and the critical power for self-focusing is defined Pcr = αλ
2/4πn0n2 where n2 is

the nonlinear refractive index coefficient and α = 1.8962 is a constant associated

with the initial gaussian beam profile [35]. The first term in Eq. 1.71 represents

linear diffraction with the inclusion of space-time focusing. The second term

accounts for dispersion k(ω) = k0 + k1(ω − ω0) + k2(ω − ω0)2 and the third term

describes self-steepening.

The dimensionless plasma density is scaled by the laser-induced breakdown

(LIB) threshold, η = ρ/N0 where N0 = β
(m)Im

0 τp/m~ω0, where I0 is the gas-specific

and pulse-duration dependent LIB intensity [32], and β(m) is the Keldysh coef-

ficient [59]. We define the m-photon absorption length as (Lmp)−1 = β(m)I(m−1)
0
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and the plasma length as (Lpl)−1 = σ0N0/2n2
0ω0τc. We assume a constant

inverse bremsstrahlung cross-section derived in [31] so that σ0 = σ(ω0) =

k0ω0τc/[Np(1 + (ω0τc)2)]. Np = meω
2
0/4πe2 is the electron plasma density when

the plasma frequency equals ω0. The last term of Eq. 1.71 in square brackets is

a first-order chromatic dispersion correction. It is assumed that recombination

and avalanche ionization effects occur at picosecond timescales [102] and can be

neglected so that the nondimensionalized plasma density η is entirely formed

by m-photon ionization,

ηt =
∂η

∂t
= |u|2m. (1.72)
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CHAPTER 2

ANGULAR MOMENTUM AND OPTICAL VORTICES

The angular momentum density of an electromagnetic field is classically-

defined as the cross-product between radius and momentum, yet its property

derives entirely from coherent phase and polarization effects. Spin angular mo-

mentum (SAM) is associated with circular polarization [7]. Optical vortices with

orbital angular momentum [95] reveal new dimensions of complexity in nonlin-

ear beam propagation. These helical-phase beams have a strictly zero amplitude

at the singularity where the phase is undefined and a topological charge m that

is a measure of the phase winding. Fundamental research involving OAM and

SAM explores quantum, nonlinear, and classical phenomena with applications

in quantum cryptography, microparticle manipulation, optical switching, soli-

tons, and remote sensing [23]. In this introduction to the angular momentum

of light for studying transverse nonlinear dynamics, we provide equations for

evaluating the SAM and OAM density in electric fields in the paraxial limit.

The electric and magnetic fields of a continuous-wave circularly-polarized

mode with transverse amplitude A(r, θ) are

Ẽ = [Aσ̂± − ∆± k̂]e−i(ωt−kz), (2.1)

B̃ = [∓iE − σ̄2(∇⊥∆±)]e−i(ωt−kz), (2.2)

where the transverse gradient is ∇⊥ = ∇−∂z k̂, the second spin-Pauli matrix is σ̄2,

and the orthogonal unit vectors associated with each circular polarization are

σ̂± = (î ± i ĵ)/
√

2 = (r ± iθ̂)e±iθ/
√

2. Substituting ∇⊥ and σ̂±, Maxwell’s equations

require that the magnitude of the longitudinal field component is

∆± =
i
k
∇⊥ · Aσ̂± (2.3)
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=
i
k

[(∂r +
1
r

)r +
∂θ
r
θ̂] · A[e±iθr ± ie±iθθ̂] (2.4)

=
i
k

[(∂rA) ± i
∂θ
r

A]e±iθ. (2.5)

This representation of the longitudinal field component [Eq. 2.5] illustrates two

important characteristics of circularly-polarized fields. The magnitude of this

longitudinal field component depends on the radial and azimuthal gradients,

which add or cancel depending on the polarization handedness. Furthermore,

the complex-valued electric-field longitudinal component experiences unit ad-

dition or subtraction of a topological charge depending on the handedness of

the circular polarization, due to the cylindrical-coordinate representation of

circularly-polarized fields.

To evaluate fields in the paraxial limit, we neglect the second term of the

magnetic field in Eq. 2.2, which scales with second-order derivatives of A and

k−1. The longitudinal component of the classically-defined angular momentum

vector of a circularly-polarized electromagnetic field is

< Jz > =
1

8πc
[r × (E × B∗) + c.c.]z (2.6)

=
r

8πc
r × {(Aσ̂± − ∆± k̂)

×[∓iA∗σ̂∓ ± i(∆±)∗ k̂] + c.c.}z. (2.7)

Since σ̂± × σ̂∓ ∝ k̂ and k̂ × k̂ = 0, only the two cross-terms between σ̂ and k̂

contribute to < Jz >. Using a common vector identity,

< Jz > =
±irr
8πc
× {[Aσ̂±] × (∆±)∗ k̂) + c.c.}z (2.8)

=
∓ir
8πc

[A∆∗±(σ̂± · r)k̂) + c.c.]z (2.9)

=
±r

8πc
√

2k
{A[(∂rA∗) ∓ i

∂θ
r

A∗] + c.c.}, (2.10)

where we divide the radial and azimuthal components, commonly associated

with spin angular momentum and orbital angular momentum, in the following
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manner:

< S z > =
±r

8πc
√

2k
A(∂rA∗) + c.c. (2.11)

< Lz > =
−i

8πc
√

2k
A(∂θA∗) + c.c., (2.12)

which is consistent with former analyses [2, 3]. Equations (2.11) and (2.12)

underline how SAM and OAM are related through symmetry but also repre-

sent vectorial corrections to scalar equations. We now apply our formalism to-

wards understanding spin-polarized fields propagating in isotropic nonlinear

Kerr self-focusing media.

2.1 Collapse of Optical Vortices

Here we investigate the collapse of optical vortices in self-focusing Kerr me-

dia. Soliton vortex dynamics have been theoretically investigated in numerous

contexts [23, 65], and the angular momentum and spatial dynamics have been

studied experimentally in de-focusing Kerr, photorefractive, quadratic, and sat-

urable nonlinear media [23, 29]. Some evidence of vortex MF in self-focusing

Kerr media has been observed [40], however these preliminary experiments

were with powers below the critical threshold for vortex ring collapse.

In contrast to the MF of vortex rings in saturable media where an m-charge

vortex tends to 2m filaments [8], we find filamentation in a purely Kerr medium

to be a function of both input power and m. We derive a new analytical relation

that predicts the number of filaments which is in agreement with numerical

simulations. Furthermore, we perform, to our knowledge, the first experimental

study of collapsing vortices in Kerr media, the results of which are in excellent
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agreement with our predictions. The radially-symmetric self-similar collapse of

these beams, investigated previously [65] is performed via a different formalism

[36], and we show the agreement between simulation and analytical curves.

Our analysis extends the previous work of vortex azimuthal MI [96, 104].

A radially-symmetric field with topological charge m will approach a specific

self-similar shape in a manner analogous to the evolution of m = 0 beams to

the Townes profile [14, 77]. The critical power for vortex ring collapse for a

Laguerre-Gaussian with vortex charge m can be approximated as [65]

P(m)
cr =

22m+1Γ(m + 1)Γ(m + 2)
2Γ(2m + 1)

Pcr. (2.13)

Regardless of the initial shape, for powers above a critical threshold, the collaps-

ing portion of the beam converges towards a distinct profile, in which the peak

intensity scales inversely with the width, while the remaining portion diffracts.

This self-similar profile ψnorm thus has the form ψ(ζ, ρ, θ)norm = L(ζ)ψ
(
ζ, ρ

L(ζ) , θ
)
,

where L(ζ) = 1
max|ψ| . We define Ỹm,P to be the profile to which ψ(ζ, ρ, θ)norm is

asymptotic as ζ tends to ζc, which is the normalized distance at which ψ be-

comes singular. To find Ỹm,P analytically, we use a general lens transformation

for solutions of self-similar type near collapse [36], assume L(ζ) ∼ σ
√
ζc − ζ, and

find that Ỹm,P obeys the equation

Ỹ
′′

+
1
ρ̃

Ỹ
′

−
[
m2/ρ̃2 − σ4ρ̃2 + 4

]
Ỹ +

2απP
Pcr

Ỹ3 = 0, (2.14)

where ρ̃ = ρ

L(ζ) is the normalized radius and Ỹ(ρ̃ = 0) = Ỹ(ρ̃ = ∞) = 0. The Townes

profile is equivalent to Ỹm,P with m = 0, σ = 0, and P = Pcr. In Fig. 2.1 we plot Ỹ

for different m and P, determined by employing a shooting method, beginning

close to zero and minimizing the power at a radius ten times that of the peak

field, fixingσ for a solution with unit power, and finally renormalizing the result
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Figure 2.1: Self-similar profiles Ỹm,P with (a) P = P(m)
cr and σ = 0.47 for

m = 1, 2, and 3 (b) P = 4Pcr ≈ P(1)
cr and P = 8Pcr ≈ 2P(1)

cr , corre-
sponding to σ = 0.47 and σ = 0.38, respectively, for m = 1.

so that the peak field amplitude is 1. Thus, Ỹm,P are the unique solutions of

Eq.(2.14) defined by m and P, with power and maximal norm of 1.

In Fig. 2.2 we plot the evolution of a Laguerre-Gaussian input field with a

topological charge of m = 1 and P = 4.4Pcr ≈ 1.1P(1)
cr . After propagating ζ = 0.5,

the intensity of ψnorm above the 1/e2 point is nearly identical to the Ỹ-profile.

The ring intensity continues to increase and correspondingly shrink in both di-

ameter and thickness as its normalized profile converges to Ỹ . The relatively

wide sampling of [4096x4096] points for ρ = [−20, 20] in the split-step numeri-

cal computation, along with a super-gaussian transmission window ensure that

numerical noise and reflected power do not prematurely seed vortex breakup or

cause vortex transmutation [33], and a nonuniform propagation stepsize min-

imizes simulation error. Similar convergence to Ỹ can be demonstrated with

other radially-symmetric input profiles of varying m and P.

The addition of azimuthal noise alters collapse to a self-similar ring pro-

file, and instead we observe breakup into a ring of individual filaments and

investigate these MF patterns. Due to the on-axis phase singularity where
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Figure 2.2: Simulation plots for an input L̃G0,1 with P = 4.4Pcr ≈ 1.1P(1)
cr

at ζ = 0, 0.5, and 1.3. Surface plots of |ψ|2 are shown with the
vertical axis scaled by P. Intensity cross-sections of ψnorm are
drawn for the input (dashed), profiles at ζ = 0.5 and 1.3 (solid),
and the Ỹ to which ψnorm converges (dotted). The intensity at
ρ̃ = 0, which is equal to zero, is not shown.

the field is strictly zero, optical vortex beams result in the formation of fila-

ments off-axis. For our perturbation analysis, instead of plane waves [96] or

uniform-intensity rings [104], we use stationary field amplitudes resembling

the Laguerre-Gaussian T EMp,l modes, with the radial mode index p = 0, the

azimuthal index l = m, such that

ψ(ζ, ρ, θ) = C(1 + δ) L̃G0,m(ρ, θ), (2.15)

L̃G0,m(ρ, θ) = (
ρ

w
)me−

1
2 ( ρw )2

eimθ, (2.16)

where C and w are the normalization terms for the electric field amplitude and

mode field, respectively, and δ is the phase perturbation of azimuthal wavenum-

24



ber η,

δ = δ1(ζ)eiηθ + δ2(ζ)e−iηθ. (2.17)

We assume the instability occurs at the radius of maximum intensity and sub-
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Figure 2.3: (a) Gain G of the azimuthal instability as a function of
wavenumber η for m = 1, P = 5Pcr ≈ 1.25P(1)

cr , 10Pcr ≈

2.5P(1)
cr , and 15Pcr ≈ 3.75P(1)

cr . As the power increases, G shifts
to higher values of η. (b) Plot of the maximum-gain η as a func-
tion of P/Pcr for m = 1, 4, and 7.

stitute ρ =
√

mw. We look for solutions to δ1(ζ) and δ2(ζ) in the form of eGζ , where

G has a non-vanishing real part, and identify the relation for G,

G =
(m + 1

2 )
m

√
P̃2

m − (µ − 2P̃m)2, (2.18)

where P̃m =
2Pαmm

Pcrem and µ = 2m + m2 + η2. The wavenumbers η which satisfy Eq.

(2.18) for positive G will experience gain as plotted in Fig. 2.3(a). As the power

increases, G becomes wider and taller. As the power or topological charge in-

creases, G shifts towards higher η. It follows immediately from Eq.(2.18) that

the maximum G is attained at µ = 2P̃m and is equal to Gmax =
2(m+ 1

2 )Pαmm−1

Pcrem from

which we can extrapolate that at higher powers, vortices with higher topologi-

cal charge are more susceptible to azimuthal MI. This relation for Gmax yields the

following prediction for the number of azimuthal maxima in the MF patterns for
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Figure 2.4: Numerical and analytical results for topological charge m = 10.
The curve plots the wavenumber ηmax of maximal gain as a
function of P/Pcr. The left inset shows the MF pattern of
P = 35Pcr ≈ 0.56P(10)

cr at ζ = 0.07 from numerical simulations
with 16 azimuthal maxima. The right inset shows that for
P = 140Pcr ≈ 2.24P(10)

cr and 36 azimuthal maxima at ζ = 0.02.
In both cases the analytical predictions are in excellent agree-
ment with the simulation results.

a given value of P

ηmax =

√
2P̃m − 2m − m2. (2.19)

Thus, we can approximate the wavenumber of maximal gain and the MF pat-

terns solely as functions of beam power and topological charge. Plots for ηmax as

a function of P for m=1, 4, and 7 are shown in Fig. 2.3(b). We verified our model

with the numerical code used to demonstrate self-similar collapse, and using

10% amplitude and phase noise, we find that our simulations match Eq.(2.19)

for a topological charge up to at least m = 10 (see Fig. 2.4). Our work is consis-

tent with recent analysis [104], predicting 2m + 1 azimuthal maxima at P = P(m)
cr .

Moreover, our theory utilizes an integrable analytic field, the result of which is

independent of ring radius and valid for powers other than P(m)
cr .

Above P(m)
cr , numerical simulations confirm the analytical prediction from
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Eq.(2.18) that higher-charge vortices are increasingly susceptible to azimuthal

MI since MF occurs at shorter normalized distances for comparable noise and

powers. At lower powers, spatial spreading results in higher stability to az-

imuthal MI [40]. We observe in our simulations that a vortex of m = 10 and

P = 20Pcr ≈ 0.3P(10)
cr with 5% noise neither forms azimuthal maxima nor col-

lapses but instead diffracts as a ring. We find, however, the same m = 10 vortex

with 20% noise forms 10 filaments in agreement with analytical predictions.

Our perturbation analysis utilizing a stationary profile accurately describes the

MF of Laguerre-Gaussian beams for powers below P(m)
cr , and for powers above

P(m)
cr , when breakup caused by MI is seeded initially. Under conditions where

the vortex is more stable to MI and approaches the Ỹ-profile before undergo-

ing filamentation, our prediction for the number of filaments may become less

accurate.

input:

90fs 800nm

A1
WP

PBS

L1

A2

L2 A3

PP(s)
L3

A4

L4

water cell
L5

CCD

m=1 m=2

Figure 2.5: Experimental setup. The half-wave plate WP and polarizing
beam splitter PBS control the power. In the spatial filter L1-
A2-L2, aperture A2 is a high-power tungsten pinhole. Aper-
ture A3 selects a small portion of the gaussian beam to trans-
mit through the spiral phase plate(s) PP. Aperture A4 filters
out higher-order Laguerre-Gaussian modes. The lower insets
show typical transverse profiles incident upon the water cell
and branching interference fringes demonstrating the vortex
phase. The fringes are produced using a continuous-wave
beam at 800nm and by imaging the phase plate(s) with a gaus-
sian beam of zero topological charge.
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Figure 2.6: Experimentally observed output profiles for m = 1 with pulse
energies (A) 6µJ, (B) 12µJ, (C) 18µJ, and corresponding simu-
lations with powers (a) P = 3.85Pcr ≈ P(1)

cr , (b) P = 7.7Pcr ≈ 2P(1)
cr ,

(c) P = 11.6Pcr ≈ 3P(1)
cr . Experimental pictures for m = 2

with pulse energies (D) 6µJ, (E) 12µJ, (F) 18µJ, and corre-
sponding simulations with powers (d) P = 8.6Pcr ≈ 1.1P(2)

cr ,
(e) P = 17.2Pcr ≈ 2.2P(2)

cr , (f) P = 25.8Pcr ≈ 3.3P(2)
cr . Plots of

ηmax vs P/Pcr, with points along the curve marked to represent
corresponding MF patterns shown for m = 1 (G) and m = 2 (H).

The experimental setup for investigating the collapse dynamics of optical

vortices is shown in Fig. 2.5. Laguerre-Gaussian modes are produced using

spiral phase plates with 90-fs, 800-nm pulses of a Ti:Sapphire regenerative am-
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plifier system. The phase plates are m = 1 and are made from a polymer ma-

terial using a high-precision molding technology [82]. Two plates are stacked

to produce m = 2 vortices. The telescoping is changed to vary the input beam

width, and the final telescoping ranges from 50:1 to 2:1 demagnification. We

estimate that the pulses have slightly broadened to 100 fs after the telescoping.

The vortices are propagated through an adjustable-length cell filled with water

[27]. The time-averaged spatial beam profile from approximately 130 pulses is

imaged with a 12-bit CCD camera (Spiricon LBA-FW-SCOR20). Distilled de-

ionized water is used in the experiments, since it has a higher threshold for

plasma formation than plain distilled water. Fig. 5 shows the typical input in-

tensity profile and its interference pattern with a flat-phase gaussian beam. The

latter shows a branch in the fringes verifying the m = 1 and m = 2 singularities

produced by the phase plates.

We propagate m = 1 and m = 2 vortices until just before the point at which

super-continuum generation is observed, which indicates that collapse has oc-

curred [41], and modify the telescoping L3-L4 so that this distance to collapse is

15-20 cm. Figures 2.6(Aa-Ff) show experimental results and the corresponding

simulations for m = 1 and m = 2, where doubling and tripling the power has

the effect of changing the number of azimuthal maxima from 2 to 4 to 5 and

from 5 to 8 to 10, respectively. These results are highly repeatable and the num-

ber of azimuthal maxima, within the propagation distances described, vary at

most by one. The CCD images are also highly stable, which we attribute to the

pulse-to-pulse power stability of our laser system. The primary source of noise

is inhomogeneity in the beam profile due to the alignment and imperfections

of the PPs and the final aperture A4. Differences between experimental and

simulation images are not surprising in view of these imperfections. However,
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while variations of the input profile affect the distance to collapse, the result-

ing η, within the lengths described, is virtually unchanged. We estimate that

a 0.6µJ, 100 fs pulse has a peak power equal to one critical power. Our abso-

lute power measurements are within a factor of 3 of our analytical predictions,

and our relative power measurements are in excellent agreement as shown in

Figs. 2.6(G-H). We believe that deviations in power from the theory are due

to dispersive broadening effects that occur during propagation, which in our

experiments, is responsible for a decrease in peak power of thirty percent.

In conclusion, we observe self-similar collapse of vortex beams. These beams

are azimuthally unstable, and we derive an analytical expression for the number

of azimuthal maxima in the breakup as a function of the power and topologi-

cal charge, which predicts the MF of vortices both below and above the criti-

cal power for vortex collapse, P(m)
cr . Experimental results show this trend to be

reliable for optical pulses undergoing collapse with powers as high as 3 P(m)
cr .

Understanding MF behavior in the long-distance propagation of femtosecond

laser pulses is valuable to remote-sensing applications [58]. Moreover, our re-

sults may also have relevance to vortices in Bose-Einstein condensates since the

behavior of those systems has strong analogies with that of optical beams in

Kerr media [23].

2.2 Orbital Angular Momentum Hall Effect via Multiple-

Filamentation

The well-known Hall effect describes a spin-dependent separation of charged

carriers that occurs in the presence of an applied magnetic field. More recently,
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optical analogies associated with light helical phasefronts or orbital angular mo-

mentum (OAM) have been formulated [9], and this theoretical work explains

how intensity patterns with different phase vorticity or topological charge ex-

perience a transverse shift upon reflection or refraction [21, 43]. The underly-

ing physical principle is an accumulated geometric phase [5] that results from

changing values of photon OAM [79], which synthesizes a larger body of work

involving geometric phase and transverse shifts that are dependent on the opti-

cal spin or orthogonal-circular polarization [9, 26, 67, 85, 100].

Beyond connections with quantum mechanical phenomena, our under-

standing of the OAM Hall effect and geometric phase extends knowledge of

a classically-defined optical angular momentum density [2, 3]. Light can im-

part mechanical torque via its spin polarization or via its vortex phasefronts

associated with OAM. Since both spin and OAM manifest in the longitudinal

components of electric fields through Maxwell’s equations, spin and OAM are

coupled during propagation in anisotropic materials. Methods for separately

measuring either photon spin or OAM have been proposed [66] but it remains

a challenge to calculate the redistribution or evolution of angular momentum

[15, 71]. This has limited the previous investigations of angular momentum and

geometric phase to studies of linear propagation dynamics [1] and quantized

mode transformations [30, 97].

In this chapter, we describe the existence of the OAM Hall effect that oc-

curs via multiple filamentation in isotropic nonlinear media. For the first time,

we study the nonlinear dynamics associated geometric phase and electric field

angular momentum and derive an analytical relation that predicts the trans-

verse shift resulting from the growth of azimuthal instabilities at high and low
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powers. The OAM Hall effect, which couples intrinsic and extrinsic OAM [84],

leads to coupled geometric phases associated with spin and OAM. Our work

explains experimental results observed previously [55, 108] and describes the

spin-orbit interaction [67] in a formalism that draws connections between the

classically-defined angular momentum of light and related quantum mechani-

cal phenomena.

In our simulations, 10% amplitude and phase noise is added with a uniform

random variable to the spatial Fourier-transform domain to create smoothly-

varying aberrations in the spatial beam profile similar to those produced in ex-

periments. Figure 2.7 illustrates the OAM Hall effect in Kerr media when the

total input power is P = 12Pcr. We plot the intensity patterns of the orthogonal-

polarization fields ψ− and ψ+ when the peak intensity has increased by a factor

of 4 due to self action effects, for m− = +1 and m+ = −1 [Figs. 2.7(a-b)], and

for m− = +2 and m+ = −2 [Figs. 2.7(c-d)], where m± are the topological charges

associated with ψ±. Green and red lines drawn through the off-axis intensity

maxima of ψ− and ψ+ indicate that orthogonally-polarized filaments are rotated

with respect to each other. The coherent superposition of the spatially-offset

fields results in hybrid elliptically-polarized filaments [55, 108]. With equal in-

put power, both the m± = ∓1 and m± = ∓2 copropagating vortices form 6 fila-

ments, and we observe that the transverse shift is larger for higher topological

charge.

To quantify the transverse shift between orthogonal-polarization filaments,

we employ the recursive variational method of optical flow (VMOF) [54]. The

VMOF produces a vector-field mapping between two similar images, for which

we use the intensity profiles associated with the orthogonal-circular polariza-
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Figure 2.7: Illustration of the OAM Hall effect. Intensity profiles for
orthogonal-polarization fields ψ− and ψ+ under self-focusing
conditions when the input power P = 12Pcr and (a-b) m− = +1
and m+ = −1 (c-d) m− = +2 and m+ = −2. Peak intensities have
increased by a factor of 4. (e) Calculated azimuthal shift be-
tween ψ− and ψ+ intensity patterns as a function of propagation
distance.

tion fields. The VMOF mapping scales in proportion to the power in the off-axis

filaments and the “velocity” between the images. To compute the azimuthal

shift due to the growth of the azimuthal instabilities, we sum over the azimuthal

components of the VMOF mapping and divide by the peak intensity. This quan-

tifies the transverse shift that occurs between the orthogonal-circular polariza-

tion images in relation to the distance between adjacent off-axis filaments.

In Fig. 2.7(e) we compare the azimuthal shift for copropagating ψ+ and ψ−

vortices with topological charge m± = ∓1 and m± = ∓2 corresponding to Fig.

2.7(a-d), where we continue the numerical integration until the peak field in-

tensity has increased by a factor of 10. Since high-power vortices are increas-

ingly unstable to azimuthal instabilities with higher topological charge [106],

we observe that azimuthal shift increases at an earlier propagation distance for

m± = ∓2, which indicates an earlier formation of azimuthal instabilities. When
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we halt the simulations, the VMOF measures that the transverse shift of m± = ∓2

as approximately twice that of the case where m± = ∓1.

In Fig. 2.8(a) we plot the azimuthal shift for copropagating ψ− and ψ+ vor-

tices with topological charge m± = ±2 for powers ranging P/Pcr = 6.25 to 18 and

halt simulations when the peak intensity has increased by a factor of 10. In Fig.

2.8(b), we plot the radial position of the filaments as a function of propagation

distance, and observe that for input powers P > 8Pcr, collapsing off-axis fila-

ments have trajectories towards the origin while the azimuthal shift increases.

For lower powers P < 8Pcr, the filaments travel outward while orthogonal-

polarization components of each filament draw closer together, such that the

azimuthal shift decreases as individual filaments undergo collapse.
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Figure 2.8: (a) Azimuthal shift between ψ+ and ψ− intensity patterns and
the (b) radial position of maximum intensity for m± = ∓2 as
a function of propagation distance for various input powers
P. The transverse shift decreases when the filaments have an
outward trajectory.

The underlying physical principle behind the spatial separation of vortices

is the fact that persistent azimuthal modulational instabilities occur in pairs of

counter-rotating waves. Although previous demonstrations of the OAM Hall

effect require propagation through an inhomogeneous material it is not the
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intensity-dependent refractive index, per se, that causes the spatially-rotated

intensity patterns. In a manner similar to the Aharonov-Bohm effect [79], the

counter-rotating waves accumulate different geometric phases, which depend

on the initial field topological charge.

To analyze the spatial separation that occurs due to nonlinear dynamics, we

use a separable self-similar field profile with an azimuthal perturbation of the

form,

ψ±(ρ, θ, ζ) = K(ζ)L(ζ)R(
ρ

L(ζ)
)eim±θ(1 + δ±(θ, ζ)), (2.20)

where

δ±(θ, ζ) = δ1
2
(ζ)e

i(ηθ±Ξ1
2
)
+ δ2

1
(ζ)e

i(−ηθ±Ξ2
1
)
, (2.21)

L(ζ) = 1/max(|ψ|) when considering high-power vortices whose unperturbed

propagation undergoes self-similar ring collapse, and L(ζ) = 1 for assuming an

unperturbed solution of a diffracting stationary profile associated with lower

powers [106]. The normalization constant K(ζ) depends on δ1 and δ2, and the

analytic form of the perturbation in Eq. 2.21 is required to conserve total OAM

[2, 3]. We analyze the geometric phases Ξ1
2
(ζ) that accumulate during the growth

of the instabilities δ1
2
(ζ) of azimuthal wavenumber ±η. When |δ1|

2 − |δ2|
2 is small,

and in the case where copropagating orthogonal-polarization fields have oppo-

site topological charge or m± = ∓mo, the angular shift between the orthogonal-

polarization filament patterns of the Eq. 2.20 is approximately,

∆ f il = Ξ1 − Ξ2 =

∫
m L(ζ)2

ρ f il(ζ)2 dζ, (2.22)

where ρ f il is the radial position of the filament or azimuthal instability. The

instabilities of exp(iηθ) and exp(−iηθ) that lead to the formation of η filaments

experience a change in OAM of m± − η and m± + η, respectively, which de-

termine the position of the filaments. Orthogonal-polarization fields spatially
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separate when m+ , m− or during the growth of instabilities associated with

inhomogeneously-polarized fields.

Our measurements of azimuthal shift in numerical simulations comparing

different vortex fields m± [Fig. 2.7(c)] confirm that the angular shift is approxi-

mately proportional to the topological charge, as predicted by Eq. 2.22 and in

Ref. [79]. Furthermore, we identify two regimes associated with the nonlinear

dynamics, as shown in Fig. 2.8. Fields with power below the critical power for

vortex ring self-focusing undergo diffraction where both the outward filament

trajectories and cross-phase modulation reduce the OAM Hall effect and lead

to decreased azimuthal shift [Eq. 2.22]. However, above the power for vortex

ring self-focusing, the azimuthal shift between orthogonal-polarization vortices

remains constant, since the decreasing radii of the filaments compensate for self-

action effects associated with individual filament collapse.

The OAM Hall effect, which couples intrinsic and extrinsic OAM, leads to

several novel propagation dynamics within the paraxial regime. We measure

the exchange of intrinsic OAM between copropagating fields and observe that

the geometric phase associated with spin and OAM can add or cancel. Local

contributions of spin and OAM are determined by the transverse gradient of

the spatial beam profile and calculated by < Ŝ ± >= ±ρψ±(∂ψ∗±/∂ρ) + c.c. and

< L̂± >= −iψ±(∂ψ∗±/∂θ) + c.c. The operators Ŝ ± = ±ρ∂/∂ρ and L̂± = −i∂/∂θ follow

from [2, 3] and calculate the longitudinal components of the angular momentum

vector in the circular-polarization basis.

In Fig. 2.9(a) we show the evolution of intrinsic OAM for various input pow-

ers P corresponding to Fig. 2.8. Through combined contributions of the OAM

Hall effect and cross-phase modulation, each orthogonal-circularly polarized
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Figure 2.9: (a) Evolution of the orbital angular momentum (OAM) as-
sociated with each orthogonal-spin polarized field ψ± where
m± = ∓2 for input powers corresponding with Fig 2.8. Changes
in OAM are associated with the nonlinear trajectory of off-axis
phase vortices. The degree of circular polarization, ψ+ and ψ−
phase profiles for P = 6.25Pcr are shown for propagation dis-
tances (b) ζ = 2.0, (c) ζ = 2.3, and (d) ζ = 2.4.

field experiences spatially-offset modifications of the optical refractive index.

We observe that OAM exchange between orthogonal polarizations is larger for

longer propagation distances and with lower input beam powers. The dynam-

ics are accompanied by the formation, annihilation, and nonlinear trajectories

of phase vortices. Dramatic changes in the phase profiles associated with ψ+

and P = 6.25Pcr are shown in Figs. 2.9 (b-d), where for each figure the first row

corresponds to the degree of circular polarization, or |ψ+|2 − |ψ−|2 or the Stokes

S 3 matrix and the second and third columns represent the phase profiles of the
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multiple filamentation pattern. The formation of 6 filaments cause azimuthal

distortions in the phase profile as the beam diffracts [Fig. 2.8(c)], and these

phase distortions form a topological defect pair between ζ = 0 and ζ = 2.3. At

ζ = 2.3, we only one of the original topological charges remains on-axis. The

formation of off-axis topological defects accompanies turning OAM dynamics

[Fig. 2.9(a)].
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Figure 2.10: Comparison of copropagating vortices m± = ∓4 and m± = +4
when the power P = 25Pcr. The spatially-varying com-
mutator relation [L̂, Ŝ ] at ζ = 0.17, is negligible when (a)
m± = 4 and highly corrugated when (b) m± = ∓4. (c) The
gain G vs. azimuthal wavenumber η for copropagating vor-
tices. The homogeneously-polarized case where topological
charge m± = +4 (orange) has one band of gain and there
is no associated geometric phase. The gain associated with
inhomogeneously-polarized m± = ∓4 changes depending on
the geometric phase Ξ1 = −Ξ2 (green) and Ξ1 = π − Ξ2 (pur-
ple).

The spatial separation between copropagating vortices contributes to more

complicated nonlinear propagation dynamics associated with multiple filamen-

tation. In saturable self-focusing media, it has been shown that the interac-
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tion between copropagating vortices leads to more stable soliton solutions [24].

However, we observe that in nonlinear Kerr media the OAM Hall effect leads to

competition between different azimuthal instabilities associated with the chang-

ing geometric phases. We choose to illustrate this by the commutation relation

between spin Ŝ and OAM L̂ operators

[L̂, Ŝ ]± =
〈
ψ±

∣∣∣∣∣[L̂, Ŝ ]
∣∣∣∣∣ψ±〉 = ±iρ

[
∂ψ±
∂ρ

∂ψ∗±
∂θ
+ c.c.

]
, (2.23)

which represents the accumulated geometric phase due to the effects of polar-

ization, in agreement with the spin-orbit interaction Hamiltonian correction to

the paraxial equation that was derived in [67]. The sign of [L̂, Ŝ ]± indicates

whether geometric phase contributions associated with changes in spin and

OAM due to torsional ray trajectories partially add or cancel. Due to the parallel

transport effect [5, 9], the transverse shift in the intensity patterns is accompa-

nied by the field advancing or receding in the k̂-direction depending on the

orthogonal-spin polarization.

This interpretation of a commutator relation, which follows from the deriva-

tion of spin and OAM geometric phase analyzed in [9], illustrates paraxial dy-

namics associated with the transverse spatial beam profile. Only nonradially-

symmetric spin-polarized fields carry spatial locations where [L̂, Ŝ ]± , 0. More-

over, as in the electronic analogy, we observe that it is possible for an electric

field to carry both zero net spin and zero net OAM, but have a nonzero commu-

tator relation where [L̂, Ŝ ]+ + [L̂, Ŝ ]− , 0. The OAM Hall effect provides the in-

teraction for observing this relation precisely during the multiple filamentation

of two orthogonal circularly-polarized nonradially-symmetric fields ψ±, where

m± = ∓mo.

In Figs. 2.10(a-b) we compare the spatially-varying commutator relation
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[L̂, Ŝ ]± of multiple filamentation patterns for homogeneously-polarized m± = 4

and inhomogeneously polarized m± = ∓4 copropagating vortices. Although

both conditions result in the formation of 8 collapsing off-axis filaments, at

the propagation distance ζ = 0.17 when the peak intensity has increased by

a factor of 5, the commutator relation varies drastically. As expected, we ob-

serve negligible coupling between spin and OAM geometric phases for the

case where m± = 4, since there is no spatial separation between orthogonal-

polarization fields [Fig. 2.10(a)]. In contrast, the commutator relation [L̂, Ŝ ]±

for the inhomogeneously-polarized case illustrates a irregularly-corrugated and

spatially-varying coupling between spin and OAM geometric phases.

We calculate the gain G associated with the growth of azimuthal instabilities

as a function of the azimuthal wavenumber η to explain the irregular azimuthal

modulations in spatial beam profile illustrated by Fig. 2.10(b). Solutions for

the gain G are calculated by using a similar approach as in [106] incorporat-

ing geometric phase and cross-phase modulation. For copropagating vortices

where m± = ∓4, we observe multiple bands of gain depending on the geometric

phase. We plot different solutions for the gain for different values of geomet-

ric phase Ξ1 = −Ξ2 (green) and Ξ1 = π − Ξ2 (purple) and compare with the

gain curve associated with m± = 4, which is unchanged by geometric phase

(orange). The widened gain and growth of numerous wavenumbers indicate

competing dynamics between azimuthal instabilities. In simulations involving

inhomogeneously-polarized fields we observe turbulent dynamics during the

initial stages of propagation, which are explained by shifting gain curves G as-

sociated with varying geometric phases Ξ1
2

and the OAM Hall effect.

In conclusion, the OAM Hall effect manifests itself during the multiple fil-
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amentation of copropagating optical vortices of different topological charge in

nonlinear self-focusing Kerr media. When the filaments have outward trajec-

tories, the spatial separation is reduced by cross-phase modulation within in-

dividual filaments. At lower powers and longer propagation distances, the

OAM Hall effect in combination with cross-phase modulation results in OAM

exchange between orthogonal polarizations. A new commutator relation illus-

trates how coupled geometric phases associated with spin and OAM accom-

pany the OAM Hall effect.

As the original electronic Hall effect is exploited in numerous applications of

sensors, the separation of polarization components via the OAM Hall effect in

filamentation provides a means for manipulating and interpreting the evolution

of vortex fields. Our results are relevant to understanding changes in the spatial-

beam profile of inhomogeneously-polarized and phase vortex beams in remote

sensing, laser machining, trapping, and microscopy applications. This research

draws new connections between the classically-defined angular momentum of

light and quantum mechanical effects associated with spin particle dynamics.

2.3 Geometric Phase and Angular Momentum Switching be-

tween Optical Vortex Beams

In the novel “Around the World in Eighty Days” by Jules Verne, the main char-

acters circumnavigate the globe in 1872 as part of a wager, and gain an extra

“day”, measured by sunrises and sunsets. Vernes characters fortuitously chose

an eastward heading, for if instead they had taken a westward path, they would

have crossed the international dateline in the opposite direction and forfeit the
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Figure 2.11: Degree of circular polarization or |ψ(m)
− |

2 − |ψ(0)
+ |

2 at z =

0, 1/2z f il, 3/4z f il, andz f il for copropagating orthogonal-spin
fields ψ(0)

+ and ψ(m)
− where (a) m = 1 (b) m = 3 and (c) m = 7, and

z f il = 0.25, 0.18, and 0.14. The radial separation of orthogonal-
spin fields is due to diffraction, while the azimuthal separa-
tion is due to the accumulated geometric phase associated
with counter-rotating instabilities.

wager. The difference of one “day” that is generally experienced between east-

ward and/or westward travelers whose combined journeys encircle either pole,

is an illustration of a path-dependent geometric phase. Geometric phase arises

in a range of physical and mathematical phenomena and in quantum mechan-

ics, it is observed by superposing two particles or waves that have taken differ-

ent paths, and measuring the shift of interferometric fringes.

In our nonlinear optics investigations, the interference patterns of counter-

rotating waves are the transverse intensity modulations or azimuthal instabil-

ities, that experience growth on OPVs due to an intensity-dependent refrac-

tive index. Instabilities in the spatial beam profile lead to the formation of

multiple off-axis filaments round nucleations of self-trapped light undergoing
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Figure 2.12: (a) Evolution of the orbital angular momentum < L+ > and
< L− > associated with the optical field components ψ(0)

+ and
ψ(2)
− , respectively, for different initial powers: diffraction or

P << Pcr (black), 3.6Pcr (blue), 4.8Pcr (orange), 6.0Pcr (red). Or-
bital angular momentum switching occurs between P = 3.6Pcr

and P = 4.8Pcr. Plots (b)-(d) show phase profiles for ψ(0)
+

(above) and ψ(2)
− (below, scaled by half), with intensity profiles

(left insets, scaled by one-third) for (b) input, (c) after prop-
agating one diffraction length with no nonlinear interaction,
and (d) with P = 4.8Pcr. In (c) and (d), the solid-circled off-axis
vortex has a topological charge of 1, (clockwise red-yellow-
blue), while the dashed-circled off-axis vortex has a charge of
+1. (clockwise blue-yellow-red).

collapse [42] whose locations depend on the initial beam shape and power

[28, 48, 106, 47], material properties and polarization effects [96, 25, 92, 87] and,

as we have recently reported, an accumulated geometric phase.
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Here we consider the coherent superposition of a spin-polarized OPV with

topological charge m, ψ(m)
− , and an identically-shaped orthogonal-spin zero-

OAM ring ψ(0)
+ , copropagating in an isotropic self-focusing material such as wa-

ter or glass. We seed multiple filamentation patterns deterministically by elon-

gating the spatial extent of the beam 5% with 4-fold rotational geometry, which

results in the formation of four filaments within the nonlinear material. The

initial profiles are Laguerre-Gaussian fields, with unit radius and power nor-

malization. We elongate the spatial extent of the transverse electric fields with

perturbation parameters δ and η:

ψ(m−)
− (ρ, θ) = ρme−ρ

2(1+δ cos(ηθ)) (2.24)

where η = 4 is chosen to make the beam square-shaped in order to match

our initial conditions in experiments.

In Fig. 2.11, we show the nonlinear evolution of filaments modeled with the

2D nonlinear Schrodinger equation, which takes into account diffraction, self-

focusing, and cross-phase modulation. The three columns illustrate m = 1, 3,

and 7, with beam powers P = 12Pcr, where Pcr is the critical power for self-

focusing of a gaussian-shaped beam. We halt simulations at z f il when peak

powers have increased by a factor of 4, which occurs at z f il = 0.25, 0.18, and0.14

diffraction lengths, respectively. Each set of plots shows the degree of spin

polarization or spatial separation between orthogonal-spin components S 3 =

|ψ(m)
− |

2 − |ψ(0)
+ |

2 at different propagation distances, which is zero at z = 0.

In Fig. 2.12, we observe greater spatial separation between orthogonal-

spin fields with increasing m calculated both by Σ|S 3| and peak values of |S 3|.

Orthogonal-spin fields separate in the radial direction due to the diffraction as-

sociated with differing phase vorticity [Fig. 2.11(a)]. Orthogonal-spin fields
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also spatially separate in the azimuthal direction θ due to the growth of trans-

verse instabilities, which are counter-rotating fields proportional to exp[i4θ+Ξ1]

and exp[−i4θ + Ξ2], where Ξ1 − Ξ2 represent shifted locations or spatially-

offset filaments and geometric phase. This azimuthal separation dominates

in Fig. 2.11(c). We recently reported that the initial nonlinear dynamics of

inhomogeneously-polarized fields are turbulent due to shifting instabilities as-

sociated with changing geometric phase, however, a more pronounced effect

is OAM switching, in which each orthogonal-spin field experiences spatially-

offset modifications of the optical refractive index due to cross-phase modula-

tion, curving electric field phase fronts 1.

In Fig. 2.12, we show the evolution of the spatial beam profile and OAM

associated with ψ(0)
+ and ψ(2)

− , or < L+ > and < L− >. When there is no nonlinear

interaction between ψ(0)
+ and ψ(2)

− , < L+ > and < L− > are unchanged. Increas-

ing the power we observe between P = 3.6Pcr and P = 4.8Pcr, the output OAM

switches from < L+ > / < L− >= 5% to < L+ > / < L− >= 70%. This transi-

tion is accompanied by a change in the spatial beam pattern, which exhibits a

single on-axis peak in ψ(0)
+ when there is low OAM exchange and off-axis fila-

ments above the power threshold for OAM switching. At even higher powers,

the filaments collapse within shorter propagation distances and with less OAM

exchange 2.

The question that naturally arises is how ψ(0)
+ , which initially has no OAM,

1The OAM exchange was theoretically explored for coupled vortex solitons in saturable self-
focusing media in [22]. We note that our definition of OAM differs from that used here, which is
based on the trajectory of off-axis solitons. In contrast, our total OAM, < L+ > + < L>, is always
conserved and our analytic form measures the non-discrete change of OAM due to diffracted
electric fields.

2If the simulations are carried further, the OAM of ψ(0)
+ eventually exceeds that of ψ(2)

− , how-
ever it is unclear how such numerical results would remain within paraxial assumptions, in
particular, when vectorial effects are taken into account [37].
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acquires the OAM that we observe. Figure 2(b) shows initial phase fronts of the

co-propagating beams, ψ(0)
+ and ψ(2)

− (below, at one-half scale), where the upper-

left insets show the initial intensity profiles at a scale of one-third. Since there

is no interaction on-axis where the beam amplitude is strictly zero due to the

on-axis phase singularity of ψ(2)
− , we expect that ψ(0)

+ remains m = 0 on-axis, and

that any OAM is acquired through an off-axis phase redistribution.

Fig. 2.12(c) illustrates how the input beam diffracts in the absence of any

nonlinear interaction, that is, for the case P << Pcr. We see that ψ(0)
+ and ψ(2)

− sep-

arate spatially within one diffraction length and four pairs of opposite-charge

off-axis vortices emerge in the phase profile of ψ(0)
+ , due to the 4-fold symme-

try. Although OAM is intrinsic to the helical phasefronts that constitute ring-

shaped OPVs, beams do not necessarily require OAM to evolve with helical

phase fronts, as pairs of opposite-charge off-axis vortices arise from the diffrac-

tion of irregularly shaped m = 0 beams [86, 91]. Figure 2.12(d) illustrates the

nonlinear interaction effects on the phase profile for the same input beam where

P = 4.8Pcr. We now find that the off-axis vortices in ψ(0)
+ whose signs are the same

as that of the acquired OAM, travel closer to the beam center. The difference in

radius between the two opposite-charge off-axis vortices is representative of the

OAM exchange. At higher powers, when off-axis filaments occur within shorter

propagation distances, there is less OAM exchange, and the opposite-charge off-

axis vortices form at smaller but comparable radii.

To demonstrate the OAM exchange experimentally, we filter out ψ(0)
+ and

ψ(2)
− independently and measure the off-axis trajectory of the filaments, and also

study the output polarization patterns [Fig. 2.13]. We spatially and temporally

overlap two pairs of Hermite Gaussian (HG) lobes consisting of 90-fs pulses at
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Figure 2.13: A linearly-polarized Gaussian beam is incident onto a split
0 − π - phase plate (π − PP). The beam after a spatial fil-
ter (S F) is a two-lobe Hermite-Gaussian mode. A half-wave
plate (HWP) rotates the linear polarization by 45 degrees,
and a thin-film polarizer (T FP) divides the beam. In one
arm, an additional HWP and periscope result in a 90-degree-
rotated mode. We align the two arms spatially and use a
precision translation stage for temporal alignment, and ver-
ify a radially-polarized field distribution. A spiral phase plate
(S PP) imprints an additional m = +1 topological charge, and
we image the S PP onto the surface of a 30-cm-block of BK7
glass. The CCD camera takes several images of the output-
filtered spin-polarized components at various distances from
the output BK7 glass face, which we analyze by employing
the variational method of optical flow. The CCD camera also
takes four polarization-filtered images of the BK7 output face
to compute the Stokes vectors.

800 nm to produce a coherent superposition of ψ(−1)
+ and ψ(+1)

− Laguerre-Gaussian

modes, which are square or diamond- shaped due to the imperfect aspect ratio

of the HG lobes. These components are transmitted through an m = +1 spiral

phase plate [82] that is imaged onto the surface of a 30-cm-long block of BK7

glass with varying magnification in order to investigate the dynamics for differ-
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Figure 2.14: Measurements and images of the filament patterns above and
below the threshold for orbital angular momentum switch-
ing. Plots of azimuthal displacement of filament patterns as a
function of propagation computed by the variational method
of optical flow analysis of sequential CCD images (a) below
and (d) above the power threshold for OAM switching. Lines
(b) and (c) show a relatively large difference in azimuthal ro-
tation, associated with ψ(2)

− and ψ(0)
+ at P = 3µJ, and where the

corresponding spatial beam patterns are (b) a diffracting ring,
and (c) an on-axis filament. Lines (e) and (f) show comparable
angular displacement when P = 8µJ, where the correspond-
ing measured spatial beam patterns show off-axis filaments.
Notice, the multiple-filamentation patterns shown in Figs (e)
and (f) are rotated approximately 30 degrees with respect to
each other due to geometric phase.

ent input powers in the fixed glass length. We filter the ψ(0)
+ and ψ(2)

− components

with a broadband quarter-waveplate and a Polarcor polarizer oriented at 45 de-

grees to the axes of the wave plate.
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Figure 2.15: Experiment (a-d) and simulation (e-h) Stokes parameters of
the output field. The inset frames show the Stokes parame-
ters for the input. (a,e) S 0, intensity. (b,f) S 1, vertical (red)
and horizontal (blue) polarizations. (c,g) S 2, 45 (red) and -45
(blue) linear polarizations. (d,h) S 3, + (blue) and (red) helical
polarizations.

The filamentation patterns that form within the glass undergo diffraction in

air at the output. The off-axis trajectory or azimuthal change of the patterns

is a measure of the output OAM. We image the output filament patterns at

0, 2.5, 5, 7.5, and 10 cm from the BK7 output face and utilize the variational

method of optical flow (VMOF) [54] to quantify and compare the small-angle

rotation of ψ(0)
+ and ψ(2)

− independently. The recursive VMOF produces a vector

field mapping between two similar images and is highly sensitive to detecting

small changes between images. To compute the azimuthal shift, we sum over

the azimuthal components of the vector field mapping.

Figure 2.14 (a) and (d) show the integrated azimuthal shift or relative rota-

tion of the beam patterns, as the undergo linear diffraction after the BK7 glass,

below and above the power for OAM switching. Below switching with P = 3µJ,

the azimuthal shift of ψ(0)
+ is less than 10% that of ψ(2)

− and we estimate that the fil-

ament patterns associated with ψ(2)
− rotate approximately 12 degrees within the

ten-centimeter linear propagation after the output BK7 edge. Above switching
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with P = 8µJ, the azimuthal shift is comparable for both circular polarizations.

Figures 2.14(b-c) and 3(e-f) show the experimental CCD images that correspond

to the formation of on- and off-axis filaments, as also observed in simulations

below and above the threshold for OAM exchange. The locations of off-axis fil-

aments associated with ψ(0)
+ and ψ(2)

− [Figs. 2.14(e-f)] are rotated with respect to

eachother, a consequence of the geometric phase.

For this system of copropagating ψ(0)
+ and ψ(2)

− beams, we also characterize the

unique evolution of polarization patterns resulting from this nonequilibrium

phase transition, in which orthogonal-polarization fields spatially separate in

the linear regime simply due to diffraction [Fig. 2.12(c)]. Figure 4 shows the

computed Stokes parameters for powers above OAM switching, where the in-

sets display that for the input beam, characteristic of a radially-polarized vortex.

The Stokes parameters, which show the polarization of the beam via intensity

measurements, decompose the total beam [Figs. 2.15(a) and 2.15(e)] into its ver-

tically and horizontally-polarized components [Figs. 2.15(b) and 2.15(f)], 45 and

-45 linearly-polarized components [Figs. 2.15(c) and 2.15(j)], and orthogonal-

spin polarizations [Figs. 2.15(d) and 2.15(h)]. It should be noted that although

the Stokes parameters provide a common representation of the spatial polariza-

tion patterns, they do not provide a complete characterization of the polariza-

tion and polarization singularities .

Figures 2.15(d) and 2.15(h) illustrate the geometric phase, in which each

filament has a contribution from orthogonal-circular polarizations separated

spatially on either side of each filament. These regions of orthogonal spin-

polarization both draw closer together as the filament collapses while also ro-

tating around the filament, producing an observable change in the local polar-
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ization. The collective dynamics pertaining to our coherent superposition of

ψ(0)
+ and ψ(2)

− leads to growth of azimuthally-polarized components from an ini-

tially radially-polarized beam, which can be seen in Figs. 4(c) and (f), where at

the output, the top and bottom filaments have a horizontally-polarized com-

ponent, and the left and right filaments have a vertically-polarized compo-

nent. Simulations indicate that in the absence of temporal effects, the initially

radially-polarized beam becomes more than 30% azimuthally-polarized. Fur-

thermore, we claim that the local rotation of polarization is only observed with

inhomogeneously-polarized beams with net OAM, highlighting unusual dy-

namics that occur via a combination of OPV diffraction and cross-phase modu-

lation. Temporal effects account for the primary differences between simulation

and experiment; the front and trailing portions of the optical pulses have lower

power and experience less Kerr nonlinearity, which produces the appearance

of a filament trail or background ring, as shown by the time-integrated CCD

camera image.

Our experiments illuminate connections between OAM and polarization

that can be interpreted in multiple ways. Cross-phase modulation provides a

spin-spin coupling whose anisotropy transfers OAM from one spin polarization

to the other and where the electric field vector produces an effective birefrin-

gence that leads to polarization rotation. Another perspective can be found by

considering the evolution of the individual spin-polarized phasefronts, where

each azimuthal instability is an extrinsic or local off-axis OAM that is coupled to

the field topological charge, and where the nonlinear trajectory of off-axis vor-

tices [Fig. 2.12(c),(d)] is a hydrodynamic effect. But we can also depict the self-

focusing of the off-axis filaments as attractive bound states between orthogonal

polarizations carrying different OAM, where the spin-pairs have increasingly-
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similar spatial overlap and momentum as the filaments tend towards collapse.

Regardless, a remarkable result is that these dynamics occur via self-induced

geometrical effects in isotropic media. It is the growth of azimuthal instabilities

via nonlinear self-focusing dynamics that provides asymmetry via geometric

phase in a collectively-organized pattern, which couples spin angular momen-

tum with OAM.
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CHAPTER 3

SPECTRAL RESHAPING AND PULSE COMPRESSION VIA

SEQUENTIAL FILAMENTATION IN GASES

Recently, filamentation has provided a mechanism for compressing pulses to

only a few optical cycles with millijoule energies [50], wherein the sustained

balance of self-focusing and ionization produces extensive spectral broadening.

Although several other methods have demonstrated few-cycle pulse compres-

sion with energies well over a millijoule [56, 78, 94, 103], these methods require

serial processes, where spectral broadening or dispersion compensation are re-

quired using separate stages. Hollow-core capillaries have been used to pro-

duce few-cycle pulse duration compression above a millijoule without the need

for a secondary stage of dispersion compensation [109], however it is unclear

how pulse compression could scale to higher energies in waveguiding config-

urations, even with large-core photonic band gap fibers [64]. Although fila-

mentation as a mechanism for pulse compression is not without challenges, this

approach appears scalable to higher pulse energies. Furthermore, recent experi-

ments and numerical simulations demonstrate self-compression or compression

without the need for additional negative dispersion compensation [93, 99].

In this chapter, we provide a theoretical description of optimal pulse com-

pression via filamentation and we propose that the alternating dynamics be-

tween beam focusing and defocusing and the production of visible sequential

plasma filaments is the primary mechanism that leads to the extensive blue-

shifted spectrum which enables pulse compression. With noble gases, optimiz-

ing spectral broadening and sequential filamentation involves simply varying

the gas pressure, and a distinct two-plasma-filament structure provides the vi-
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sual signature of optimal spectral reshaping. While there have been extensive

numerical investigations examining pressure trends [16, 17, 74, 81] and a de-

scription of serial filamentation, [13, 27, 73], to our knowledge this is the first

work that ascribes the extensive spectral broadening to frequency-dependent

linear and nonlinear spatial dynamics. This understanding is necessary for

properly characterizing filament pulses and provides guidance for improving

compression techniques.

Plasma filaments are associated with self-guiding or self-channeling of laser

pulses, and only partial information can be extrapolated about the spatial or

temporal profile simply by the time-integrated plasma densities. One diffi-

culty in interpreting the nonlinear dynamics of extended filamentation is that

the electric-field background reservoir, which is not directly observable in ex-

periment, plays an enormous role in the nonlinear propagation dynamics [73].

In fact, simulations and precise measurements of meter-long single-plasma-

filament densities indicate a corrugated electron-density structure [13, 89], with

intermediate self-focusing stages within isolated filaments. In this paper, we re-

fer to a filament as the presence of ionized gas or plasma, and we believe that

the mechanism described here of sequential filamentation provides a building

block for understanding the more complicated evolution of high-power ultra-

short laser pulses.

Previous experimental results have demonstrated pulse compression via se-

quential filamentation with initial input pulses of 0.7 mJ at 800 nm in which

initial input pulses of 35 fs were compressed to 11 fs in argon gas [52] and with

0.33 mJ pulses at 2 µm [51] from 50 fs to 18 fs in xenon. Here we show how

the dynamics scale for different input pulse geometries, input pulse durations,
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input pulse energies, and wavelengths, and different gas media. The goal of

this paper is twofold: to provide a better framework for optimizing pulse com-

pression via filamentation techniques and to synthesize previously published

results to arrive at a more comprehensive paradigm for filamentation in gases.

We provide predictions that describe how pulse compression via sequential fil-

amentation can scale to higher pulse energies.

3.1 Compression and Pressure-dependent Sequential Filamen-

tation at 800 nm

In this section, we consider the regime of material parameters where sequen-

tial filamentation is observed in experiments. By tuning the gas pressure, we

change several physical parameters and observe trends that are repeatable un-

der numerous experimental conditions. Although changing the pressure shifts

the relative contributions of both linear and nonlinear effects in Eq. 1.71, due

to the robust dynamics, sequential filamentation can still be observed within a

range of input pulse powers. We also show that sequential filamentation is a

template for understanding seemingly isolated and longer single plasma fila-

ments.

The dispersion and nonlinear self-focusing coefficients scale linearly with

pressure, that is,
Ld f

Lds
∝ p, (3.1)

and
Ld f

Lnl
∝ p, (3.2)
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since k2, n2 ∝ p. The higher-order processes of plasma defocusing, multiphoton

absorption, and ionization are more sensitive to changes in pressure. Since both

the Keldysh rate, β(m), and LIB intensity I0 scale linearly with pressure, it follows

that the multiphoton ionization length scales to the power of m, that is,

Ld f

Lmp
∝ pm. (3.3)

The electron collision time τc scales inversely with pressure, and in the limit

ω0τc >> 1, σ0 ∼ 1/τc, and the inverse bremsstrahlung cross-section scales lin-

early with pressure (i.e., σ0 ∝ p). Consequently, plasma defocusing scales at a

different rate,
Ld f

Lpl
∼ pm−2. (3.4)

Different plasma structures arising from changes in the pressure near the

optimal regime of sequential filamentation are shown in Fig. 3.1. These simula-

tions correspond to experimental parameters described in [52], where compres-

sion from 30 fs to 10 fs was demonstrated at an optimum pressure at 0.75 atm.

The experimental input pulse with an energy of 0.7 mJ is collimated to a 1/e2

diameter of 0.5 cm and focused with a 100-cm lens, where the linear focus is ap-

proximately 40 cm within an argon gas cell. To find matching numerics, we use

the following length scales: Ld f /Lds = 4 × 10−3, Ld f /Lnl = 1.3, Ld f /Lmp = 3 × 10−7,

and Ld f /Lpl = 4 × 10−6, which are consistent with the experimental parameters.

Argon has an ionization energy of 15.7 eV, corresponding to m = 11, and at a

pressure of 1 atm, k2 = 2.5 × 10−8 fs2 / nm and n2 = 1 × 10−19 W / cm2. The

calculated Keldysh coefficient of β(11) = 10−140 cm19 / W10 yields an intensity

I0 = 2 × 1013 W/ cm2, which leads to an LIB density of N0 = 7 × 1010/cm3.

If we use an electron-neutral collision time at p = 1 atm of τc = 375 fs, then

σ0 ∼ 5 × 10−20 cm2.
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 Plasma Filament Patterns for Different Gas Pressures

(a) 0.55 atm

(b) 0.70 atm

(c) 0.75 atm

(d) 0.83 atm

(e) 0.88 atm

propagation distance (cm) 75 25 

Figure 3.1: Predicted time-integrated and normalized plasma density as a
function of propagation at different argon gas pressures: (a)
0.55 atm [P = 0.95Pcr] (b) 0.70 atm [P = 1.2Pcr] (c) 0.75 atm
[P = 1.3Pcr] (d) 0.83 atm [P = 1.35Pcr] (e) 0.88 atm [P = 1.42Pcr]

Several trends in Fig. 3.1 are also evident in experiment and follow intu-

itively. At low pressures, we observe one plasma filament with a length ap-

proximately equal to one confocal parameter, as shown in Fig. 3.1(a). As we

increase the pressure, the onset of filamentation occurs earlier due to increased

contributions from self-focusing and plasma formation. At 0.7 atm, shown in

the Fig. 3.1(b), we observe a light plasma trail after the first plasma filament,

which increases in density as we increase pressure. When we tune to the opti-

mum pressure at 0.75 atm, shown in Fig. 3.1(c), the double plasma structure is

most distinct. Continuing to increase the pressure above this optimum results in

the second filament both lengthening and drawing closer to the first, as shown

in Fig. 3.1(d) at 0.83 atm. At 0.88 atm, the second structure nearly merges with

first. In experiments [52], we observe off-axis multiple filamentation when the

pressure exceeds approximately 1 atm.

Since the sequential filament pattern is not easily observed when the pres-

sure decreases 10% below the optimum and since 10% above the optimal pres-
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sure the sequential filaments have the appearance of one longer filament, one

might expect that the double-plasma filament structure is difficult to access,

yet we find that the dynamics are robust and observable over a range of beam

and material parameters. As we increase the input pulse energy, the optimum

double-filament structure occurs at slightly lower pressures, which increases

the self-focusing to balance plasma effects. The greater contributions of self-

focusing balance the higher pulse energies and yield more extended sequential

plasma filament patterns.

Pulses at longer wavelengths and gases with higher ionization energies con-

tribute to reduced ionization rates [59], which favors higher energy pulse com-

pression. At longer wavelengths and lower input pulse powers, higher pres-

sures are necessary to achieve the same ionization rates, in agreement with [52].

However, at higher pressures the dispersion-dominated post-shock dynamics

[38] limit the length of plasma filaments, and a more tightly-focused geometry

is necessary to observe sequential filamentation.

Plasma defocusing affects the development and evolution of a background

field reservoir, and we propose that pulse compression via sequential filamen-

tation scales to higher pulse energies at lower gas pressures, especially when

plasma defocusing can be decreased accordingly. We recall that the relative con-

tributions of plasma defocusing to multiphoton ionization scale inversely with

τ2
c , that is,

Ld f

Lpl
/

Ld f

Lmp
∼ τ−2

c . (3.5)

The electron collision time increases with lower gas pressure but also increases

with atomic number [90, 68] due to Coulomb screening. We analyze how se-

quential filamentation could vary in different media in Fig. 3.2. The double-
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structured on-axis peak-intensity curves coincide with two distinct plasma fila-

ments with P/Pcr = [0.95, 1.35, 1.8, 2.2], Ld f /Lmp = [3 × 10−8, 3 × 10−7, 3 × 10−6, 3 ×

10−5] and Ld f /Lpl = [5.7 × 10−8, 1.2 × 10−6, 2.1 × 10−5, 2.7 × 10−4], respectively.

Longer plasma filaments with lower peak intensities are observed in ma-

terials with higher ionization rates and increased plasma defocusing, while

shorter sequential plasma filaments occur at higher peak intensities with lower

ionization rates and decreased plasma defocusing. To achieve similar dynam-

ics at lower pressure, it is more favorable to use gases with smaller inverse

bremsstrahlung cross-sections or higher atomic number to minimize the effects

of plasma defocusing. Such materials also result in higher plasma densities in

the sequential filament and may demonstrate additional plasma filament stages.
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Figure 3.2: On-axis peak intensity as a function of propagation with dif-
ferent material parameters. Lines [blue, green, red, cyan] cor-
respond to P/Pcr = [0.95, 1.3, 1.8, 2.2], Ld f /Lmp = [3 × 10−8, 3 ×
10−7, 3 × 10−6, 3 × 10−5] and Ld f /Lpl = [5.7 × 10−8, 1.2 × 10−6, 2.1 ×
10−5, 2.7 × 10−4].
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3.2 Nonlinear Dynamics of Sequential Filamentation

The sequential plasma filament structure we study here is formed by a two-peak

temporal profile, where on-axis plasma defocusing of the front peak results in

a background reservoir that feeds the rear peak [13, 63, 73]. To emphasize the

spatial dynamics here, we show in Fig. 3.3(a) the contour plot of the fluence

or time-integrated intensity as a function of propagation, which illustrates that

each plasma filament has a distinctly different spatial beam profile. Figure 3.3(b)

is the spatial beam profile at z = 40 cm, where the time-integrated spatial beam

profile has a sink in the center due to multi-photon absorption. Approximately

5% of the initial pulse energy is lost to the production of plasma within the

first filament structure. The resulting spatial beam profile with off-axis maxima

requires higher powers for self-focusing [35], and with the combined effects of

plasma defocusing, a substantial fraction of the pulse energy also diffracts after

the first plasma filament.
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(a) Simulation fluence in sequential filamentation 
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Figure 3.3: (a) Contour plot of fluence corresponding to Fig. 3.2 and
P = 1.3Pcr. Contour lines are equally-spaced on a linear scale.
The position of the plasma filaments are dotted. (b) Lineout of
spatial beam profile at z = 40 cm. (c) Lineout of spatial beam
profile at z = 70 cm.

As a consequence of plasma absorption and diffraction, lower peak-fluence
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values are observed during the second filament, and in contrast to the first fila-

ment, the spatial beam profile during the second plasma filament has an on-axis

maxima. In spite of lower fluence, ionization occurs due to the higher intensities

resulting from self-compression [13, 41, 63] and increased shock-wave-induced

self-focusing dynamics [38, 41]. At z = 70 cm, towards the end of the plasma fil-

ament, the spatial beam profile approaches a Townes profile [14, 77], as shown

in Fig. 3.3(c), which has a narrower peak and wider wings than a Gaussian pro-

file. This profile is the 2-D self-focusing attractor in the absence of plasma and

is responsible for filamentation self-filtering of the spatial-mode [89].

When the ionization rate is low, the off-axis maximum in the spatial beam

profile during the first plasma filament has a narrower radius, which suggests a

higher power threshold for multiple filamentation. Since the self-focusing prop-

agation dynamics are determined by the input spatial beam profile [28, 48], it

is not surprising that shaping the input spatio-temporal profile and changing

the relative contributions to the filament and background field reservoir in re-

focusing events can dramatically affect the propagation dynamics. It was re-

cently demonstrated how the use of a circular mask on the input spatial beam

profile improved the filamentation pointing stability and increased the spectral

broadening [88]. Understanding the interplay between plasma defocusing and

spatial replenishment in sequential filamentation may also explain pointing in-

stabilities associated with polarization [101].

The significance of the sequential plasma filament in pulse compression can

be observed in the spatial-spectral distribution, which indicates how the spec-

trum would change if apertured at the designated propagation distance. In Fig.

3.4 we plot the power spectrum as a function of radius at several distances of
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propagation, corresponding to the optimally pressure-tuned scenario of sequen-

tial filamentation shown in Fig. 3.1(c). Before the first filament at z = 36 cm,

depicted in Fig. 3.4(a), we observe that there has been slight broadening on-axis

due to the higher intensities on-axis, but the broadening is generally symmet-

ric and centered on-axis. At z = 43 cm, we see that the spectra has broadened

most significantly off-axis [Fig 3.4(b)], due to the higher off-axis fluence as pre-

viously described in Fig. 3.3(b). At z = 51 cm [Fig. 3.4(c)], towards the end

of the first plasma filament, the power spectra is centered on axis, and we see

that the spectrum has broadened by approximately a factor of two. The spec-

tra is slightly asymmetric with a sharper edge on the longer-wavelength edge.

We note that after the first filament, the spectral broadening is not sufficient to

explain the pulse compression observed at the output in experiments.

The sequential plasma filament is the signature of a dramatic spatial redis-

tribution of spectral components. Between the end of the first plasma filament

and the beginning of the second at z = 62 cm [Fig. 3.4(d)], we observe a highly

asymmetric spectral distribution, where on-axis the power spectrum exhibits an

extended blue-tail, which coincides with a red-wavelength-shifted background

off axis. This trend continues towards the end of the second plasma filament,

as shown in Fig. 3.4(e). At low pressures when there is only a single plasma

filament [i.e., Fig 3.1(a)], no spatial-spectral reshaping occurs.

We confirm that spatial-spectral reshaping accompanies the propagation dy-

namics when the second filament merges with the first to produce the appear-

ance of one longer filament, such as that observed at higher pressures shown in

Fig. 3.1(e). In [93], the extensive blue-shifted spectrum is crucial to pulse self-

compression, which suggests that the spatial-spectral redistribution we observe
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Figure 3.4: Contours of spectrum vs. radius at various distances during
the optimized sequential filament propagation (a) at the onset
of the first plasma filament stage at z = 36 cm, (b) in the middle
of the first plasma filament at z = 43 cm, (c) near the end of the
first filament at z = 51 cm, (d) at the onset of the second plasma
filament stage at z = 62 cm, and (e) near the end of the second
plasma filament. Aperture-dependent (f) power spectra and
(g) temporal profiles at the sequential filament output z = 69
cm.

with sequential filamentation plays a general role in the pulse compression dy-

namics of filamentation. Similar observations of spatial-spectral reshaping in

serial plasma filaments have been made [80] and were attributed to plasma-

induced changes in the refractive index. We note that the electron density re-

sults in a lower refractive index and beam defocusing, which is incompatible

with the explanation in [80].

Between the end of the first filament and the onset of the second, that is,

between z = 51 and z = 63 cm, we observe comparable peak intensities, but
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relatively lower fluence, and negligible contributions from plasma. Therefore,

in contrast to previous assumptions, we cannot attribute the sudden extensive

on-axis spectral broadening that occurs between the first and second filaments

to self-phase modulation or plasma formation. Fluence and peak intensities are

relatively low, and as we recall from Fig. 3.2, the sequential filament structure

is observed even when initial peak powers are below the threshold for critical

self-focusing. We extrapolate that the blue-compressible spectrum [93] is a com-

bined effect of frequency-dependent space-time focusing and self-steepening.

A comparison of the relative contributions in the nonlinear envelope equation

[Eq. 1.71],

(
Ld f

Lnl
T |u|2u)/(∇2

⊥T−1u) ∼ ω2, (3.6)

which indicates that higher frequencies experience greater self-focusing. Equa-

tion 3.6 is not qualitative; it is a direct asymptotic limit for the coefficients as

defined in Sec. 1.2. Consequently, it is the bluer frequencies that refocus after

the first plasma filament to ionize and produce the second plasma stage. Al-

though it is difficult to isolate the contribution of the sequential filament from

that of the extended spatial confinement of light, our observations suggest that

the two separated plasma channels not only coincide with the longest filament

structures but result in minimal loss of pulse energy due to plasma formation

and multiphoton ionization.

The resulting output beam is spatially inhomogeneous, as similarly de-

scribed in [112], and in Fig. 3.4(f), we show the aperture-dependent power spec-

trum when 20%, 40%, 60%, 80%, and all of the power is transmitted. We observe

the widest blue-shifted spectra on-axis, which also corresponds to the highest

degree of compression. The total spatially-integrated power spectrum has only

twice the initial input bandwidth, whereas on-axis, the spectrum has broadened
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by almost a factor of four. We have approximately 30% power efficiency pulse

compression to 10 fs, measured by the full-width half-maximum of the tempo-

ral profiles in Fig. 3.4(g). In the experiment, negatively-chirped output pulses

are observed [51, 52, 93], which remains unexplained by the simulation model.

An illustration of spatial-spectral reshaping due to linear frequency-

dependent propagation effects is shown in Fig. 3.5, where we provide con-

tour plots of the spatial-spectral distribution for the two-filament structure cor-

responding to Fig. 3.4 at z = 74 cm [Fig. 3.5(a)] and the far-field spatial-

spectral distribution found in the focal plane of an achromatic 100-cm lens,

assuming aberration-free linear propagation after z = 74 cm [Fig. 3.5(b)] in

which linear space-time focusing is included. Contours are equally-spaced on

a linear scale. A comparison of the near and far-field plots both show similar

blue-shifted spectra on-axis and red-shifted background, however the spatially-

varying structures differ markedly due to linear space-time focusing effects.

Spatial-spectral reshaping in the linear and nonlinear domains provides rigor-

ous challenges for pulse characterization and measurement in both numerical

and experimental investigations. In the far-field, we observe that the short-

est pulse duration is no longer precisely on axis, and that the shortest self-

compressed pulses are observed when integrating over a finite aperture size,

which agrees with experiments.

In our simulations [Fig. 3.1] in which the pressure is varied, we observe

that distinct sequential filamentatiion coincides with a maximal blue spectral

tail, which we believe to be another indication of optimal spectral reshaping

with serial filaments. This observation is in agreement with the experimental

results provided in Ref. [88]. In Fig. 3.6 we plot the on-axis spectra with a
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Figure 3.5: Spatial-spectral distributions after sequential filamentation
with power P = 1.3Pcr (a) at z = 74 cm and (b) in the far-field
when imaged by a 100-cm lens, assuming linear propagation
after z = 74 cm.

maximal norm of one, which corresponds to the pressure tuning in Fig. 3.1. The

red curve, which corresponds to the maximal blue-tail, coincides with the most

distinct sequential plasma filament pattern [Fig. 3.1(c)].

Longer sequential filamentation patterns have wider on-axis blue-shifted

spectral tails, despite lower peak filament intensities [Fig. 3.2] and indicate that

longer filament structures favor higher degrees of pulse compression. Our claim

that higher-energy pulse compression via sequential filamentation occurs with

shorter sequential filaments [Sect. 3.1] suggests that there exists a conjugate bal-

ance between pulse energy and pulse compression. In order to achieve both

high energy pulses and a higher degree of pulse compression, precise control,

tuning, and characterization of experimental parameters are required, which

makes the spatial-spectral effects described in this paper highly relevant.

It is important to clarify that the spatial-spectral dynamics described here

and associated with the sequential filament are entirely separate from conical

emission. In fact, the radial dependence of frequencies in the output far-field
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Figure 3.6: Output on-axis power spectra corresponding to Fig 1, for dif-
ferent pressures at the propagation distance at which the nor-
malized plasma density has by approximately 2/3 of its value
at the peak. The maximal blue-shoulder corresponds with the
most distinct double-filament plasma structure in Fig. 1(c).

of normal-dispersion filamentation processes due to conical emission generally

has a trend opposite to that of the processes described here and for larger bluer

radii [12, 63, 80, 89], which is explained by phase-matched wave mixing [72]. Al-

though dispersion is negligible in our configuration, subtle evidence of conical

emission can be seen by comparing the change in lobe angle of the background

spectra between Figs. 3.4(d) and 3.4(e). In Fig. 3.4(d) the off-axis spectral max-

ima align at 1-o’clock and 5-o’clock, and evolve in Fig. 3.4(e) to align more verti-

cally. This angular shift indicates that the longer background wavelengths have
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a smaller divergence. While conical emission is governed by the interplay of

dispersion and self-phase modulation, the spatial redistribution of the spectral

components emphasized in this article is most dramatic in the serial refocusing

of the field background.

3.3 Discussion and Conclusion of Spectral Reshaping

Sequential filamentation underlines the fundamental propagation dynamics as-

sociated with more extended plasma filament production. The formation of a

second plasma channel is the signature of maximal blue-shifted wavelengths

in the background refocusing on-axis, extended spatial confinement of light

with minimal pulse energy loss to multiphoton absorption and is the result of

frequency-dependent space-time focusing and self-steepening effects. We show

by simulation that two distinct sequential plasma filaments are the signature

of optimal pulse compression [51, 52] and a maximally blue-shifted tail in the

on-axis power spectrum [93]. Dramatic spatial-spectral reshaping occurs with

the formation of the second filament in a process entirely separate from conical

emission. We also describe the general dynamics that accompany the gas pres-

sure tuning to optimize sequential filamentation and provide predictions for

how pulse compression via filamentation can scale to higher powers. We antic-

ipate that pulse compression efficiency and pointing stability can be improved

with input spatial beam pulse shaping.

Future theoretical efforts aimed at integrating wavelength-dependent-

dispersion curves and plasma-induced dispersion will improve our under-

standing of filamentation. The simulations are more challenging, however,
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because the time and frequency-domain electric field envelopes are no longer

fourier-transform pairs. In other words, if Ã(r,Ω, ζ) is the pulse envelope in the

frequency-domain, where Ω = ω − ω0, and Ẽ(r, t, ζ) and Ẽ(r, ω, ζ) are the electric

fields in the time and frequency domains, then,

A(r, t, ζ) = FT−1{Ã(r,Ω, ζ)}e−iω0t, (3.7)

Ẽ(r, ω, ζ) = Ã(r, ω − ω0, ζ)ei(k̃(ω))ζ , (3.8)

Ẽ(r, t, ζ) = A(r, t, ζ)eiω0t ⊗ FT−1(ei(k̃(ω))ζ), (3.9)

where ⊗ is a convolution because the wavenumber k̃(ω) has time-dependence.

Also, Ã is the envelope of Ẽ in the frequency domain, but A is not precisely the

envelope of Ẽ in the time domain. Rederiving the nonlinear envelope equation

in the frequency domain, we can calculate the frequency-domain evolution for

the envelope, Ã(r,Ω, ζ),

Ãζ =
−i
2

[
κ̃(Ω)+k1Ω

]−1{
−∇2

⊥Ã+
[
2κ̃(Ω)+k1Ω

]
k1ΩÃ−

4π
c2

[
(Ω+ω0)2(p̃n+ip̃α+i(Ω+ω0) j̃

]}
,

(3.10)

where κ(Ω) = k(Ω + ω0). The nonlinear polarization that depends on changes in

the refractive index is unchanged,

p̃n(Ω) = 3χ̃
(3)
|A(Ω)|2A(Ω), (3.11)

but the absorptive part of the nonlinear polarization envelope p̃α should com-

puted differently than Eq. 1.60

p̃α = −
m~ω0

(Ω + ω0)2 FT
{
∂2ρ

∂τ2 FT−1
[
(Ã∗)−1e−iκ(Ω)ζ

]}
, (3.12)

which requires either the additional storage or FT computations.

The current density should also be evaluated in the Fourier domain given by
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Eq. 1.65,

j(Ω) =
eρτc

m
A(Ω)

1 − i(Ω + ω0)τc
. (3.13)

This requires relatively little change in the current approach. However, for the

calculation of the electron density, the multiphoton ionization rate should no

longer be estimated by a constant over the bandwidth of the pulse and Eq. 1.50

becomes

∂ρ

∂τ
= FT−1

[
β(m(Ω))(Ω)

] ∣∣∣∣∣FT−1
[
Ãeiκ(Ω)ζ

]∣∣∣∣∣m(Ω)

m(Ω)~ω0
, (3.14)

where, if we assume a linear approximation, then the Keldysh coefficient is:

β(m(Ω))(Ω) ≈ β(m)(Ω = 0) + b1Ω. (3.15)

In principle, the inverse bremsstrahlung cross-section and electron collision

time also have wavelength dependence, but these issues are a matter of defi-

nition.

The modeling for broadband pulses as described in this section would be

essential for investigating higher harmonic generation and necessary for con-

tinuing research in pulse compression dynamics.
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CHAPTER 4

CONCLUSION

In this thesis we have studied the nonlinear dynamics associated with the for-

mation and propagation of light filaments in isotropic self-focusing media. In

the first chapter, we investigated the collapse of optical vortices and demon-

strated that the number of filaments resulting from azimuthal instabilities de-

pends on the vortex beam power and topological charge. We showed that co-

propagating optical vortices with differing topological charge spatially-separate

during filamentation and studied the associated nonlinear dynamics. The in-

teraction coupled to the spatial separation between optical vortices results in

power-dependent dynamics and changing torsional filament trajectories. In

the second part of this thesis, we studied the spatiotemporal dynamics of se-

quential filamentation in noble gases, and showed that the alternating focusing

and defocusing dynamics results in the spectral broadening that enables pulse

compression. The author briefly discussed challenges associated with modeling

broadband pulses, which would be important in future efforts studying high-

harmonic generation and pulse compression via filamentation.

Additional directions for research involving the filamentation of optical vor-

tices could develop the initial conclusions stated here of more complicated and

even turbulent dynamics accompanying the self-focusing of inhomogeneously-

polarized electric fields. As discussed in regards to the OAM Hall effect, the spa-

tial separation of copropagating vortices leads to shifting gain curves associated

with the growth of spatial instabilities and competing filamentation dynamics.

Nonparaxial and higher-order vectorial corrections, particularly as they relate

to angular momentum and inhomogeously-polarized fields, could be studied to
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understand nonlinear dynamics beyond the 2-D Nonlinear Schrödinger Equa-

tion and these effects should also be observable in filamentation experiments.

Although such higher-order corrections may not arrest collapse, they should in-

fluence the locations at which the filaments are formed. A simple experiment to

demonstrate these effects would vary the temporal delay between orthogonal-

circularly polarized vortices and investigate the transverse filamentation pat-

terns. Since angular momentum exists due to the transverse spatial beam pro-

file gradient, the growth of azimuthal instabilities accompanies a spatial redis-

tribution of angular momentum, the understanding of which may be relevant

to probing the motion nanoparticles in remote sensing applications.

Although investigations of polarization effects and angular momentum in

propagating electromagnetic fields are currently limited to 2-D spatial dynam-

ics, these effects may influence the temporal dynamics, particularly accompany-

ing the formation of plasma. The author proposes that vectorial corrections to

the nonlinear envelope equation should be investigated. At present, linear and

circularly-polarized electric fields are typically modeled by rescaling propaga-

tion parameters, however, this approach provides only a qualitative comparison

between linear and circular-polarization dynamics; vectorial or polarization ef-

fects associated with plasma formation dynamics are not integrated. Recent fil-

amentation experiments investigating pulse compression [69], THz generation

[20], and poynting stability [52], indicate that subtle differences in both spatial

and temporal dynamics due to input beam polarization are not reconciled by the

current analytical model. Since circularly-polarized electric fields impart torque

to freely-moving charged particles, the plasma formed by circularly-polarized

fields may generate a magnetic field.
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The magnetic field produced by a circularly-polarized field would change

direction depending on the circular polarization handedness. In underdense

plasmas, theory suggests that circularly-polarized picosecond pulses with peak

powers on the order of tens of terawatts produce relativistic electron velocities

resulting in megagauss magnetic fields on-axis [49, 61]. Our initial calculations

suggest that circularly-polarized femtosecond terawatt pulses produce plasma

filaments in air with magnetic fields on-axis, which we should measure off-axis.

Evidence of appreciable magnetic fields may indicate different mechanisms for

energy absorption in plasma associated with different polarizations and may

lead to new remote-sensing applications for filamentation.
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