
YOUTOPIA: A COMMUNITY DATABASE

MANAGEMENT SYSTEM

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Lucja Anna Kot

February 2010

c© 2010 Lucja Anna Kot

ALL RIGHTS RESERVED

YOUTOPIA: A COMMUNITY DATABASE MANAGEMENT SYSTEM

Lucja Anna Kot, Ph.D.

Cornell University 2010

This thesis introduces Youtopia, a system for collaborative management of rela-

tional data. In the age of Web 2.0, the sharing of relational data by communities

is an increasingly important phenomenon. As a data management setting, it poses

unique technical challenges which warrant dedicated solutions. We focus on two

key aspects of Youtopia functionality: data cleanliness maintenance and handling

interference between user tasks – or transactions – that access the same data.

We present a set of operations for maintaining data cleanliness in a collaborative

manner. A unique feature of our operation set is the mechanism for enforcing tuple-

generating dependencies (a formalism for constraint maintenance). In Youtopia,

these are enforced through a process based on the classical chase that involves both

automated and human-assisted steps.

Next, we examine the issue of transaction interference. We provide a suitable

definition of serializability for the Youtopia transaction model and present an al-

gorithm framework that can be used to enforce it. We illustrate our framework

with an extended case study that includes experimental results from the imple-

mentation of our algorithms. Finally, we begin the investigation of concurrency

control notions other than serializability. We present several isolation levels for

transactions which are less restrictive than full serializability, but can be imple-

mented with much more lightweight mechanisms and thus enable the system to

achieve better throughput and latency in the processing of user operations.

BIOGRAPHICAL SKETCH

 Lucja Anna Kot was born in Kraków, Poland. She completed her undergraduate

education at the University of Auckland, New Zealand, earning both Bachelor of

Science and Bachelor of Arts degrees in 2000. She began her graduate studies

at the University of Pennsylvania, earning a Master of Arts degree in Romance

Languages in 2002. She subsequently moved to Cornell University and changed

her field of study to Computer Science; she is completing her Ph.D. degree in the

subject in 2010.

iii

ACKNOWLEDGEMENTS

I would like to thank my committee, Professors Christoph Koch, Johannes

Gehrke, Dexter Kozen and Richard Shore, for their help and advice during my

graduate studies and while working on this thesis. I would also like to thank all

other faculty members who have been my teachers and mentors throughout my

graduate and undergraduate studies.

Outside the purely academic setting, a great many people have been very sup-

portive in ways large and small, and I would like to express my gratitude to them

here. This includes all my officemates at Cornell, as well as other fellow graduate

students, in computer science and other departments. Last but not least, thanks

are also due to all my family for their help and support over the years. A particular

thank you goes out to my husband Walker and my two cats Marcus and Lyta for

helping me to stay sane through it all.

A portion of the material in this thesis is joint work with Christoph Koch.

Moreover, an earlier version of some of the material from Chapters 1, 2 and 3

was previously published as: Lucja Kot and Christoph Koch, Cooperative Update

Exchange in the Youtopia System, in PVLDB 2(1):193-204 (2009). This material is

reused here in accordance with the relevant copyright policy under which authors

retain the right to use all or part of their articles in their own future work.

This material is based upon work supported by the National Science Founda-

tion under Grants IIS-0534404 and IIS-0911036 and by New York State Science

Technology and Academic Research under agreement number C050061. Any opin-

ions, findings and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National Science

Foundation (NSF) or of NYSTAR.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Figures . vi

1 Introduction 1
1.1 Collaborative database management systems 1
1.2 Use scenarios: the travel website and the library 5
1.3 Working with data collaboratively 7

1.3.1 Data cleaning . 7
1.3.2 Concurrency control . 12

1.4 Contributions and outline of this thesis 18

2 Data cleaning in Youtopia 20
2.1 Duplicate tuples . 21
2.2 Corresponding tuples . 23

2.2.1 Table-level correspondences 23
2.2.2 Tuple-level correspondences 25
2.2.3 Operations involving correspondences 31

2.3 The Youtopia data cleaning operations 41

3 Transaction serializability 48
3.1 Non-blocking algorithms for concurrency control 48
3.2 Youtopia Multiversion Conflict-Serializability 56
3.3 Enforcing YMCSR . 66
3.4 A case study . 69

3.4.1 Modeling the chase . 70
3.4.2 The algorithm . 73
3.4.3 Experiments . 77

4 Beyond serializability 84
4.1 Designing isolation levels for a collaborative DBMS 85
4.2 Three isolation levels for Youtopia 89

5 Related work 94
5.1 Tgds, the chase and data integration 94
5.2 Sharing structured data . 95
5.3 Concurrency control . 97

Bibliography 99

v

LIST OF FIGURES

1.1 Portion of the travel database . 9

2.1 Example of duplicate tuples . 21
2.2 Example of data with correspondences 24
2.3 Example of explicitly specified tuple-level correspondences 27
2.4 Example SQL query for computing a best-effort join 29

3.1 Violation query template . 72
3.2 Violation query example . 72
3.3 Results for the all-insert workload 80
3.4 Results for the mixed workload . 81

vi

CHAPTER 1

INTRODUCTION

1.1 Collaborative database management systems

In the age of Web 2.0, the sharing and management of data by communities is

ubiquitous. Groups of people share data for a wide variety of reasons, from enter-

tainment or commercial activity to collaboration on scientific or artistic projects.

The data involved is also highly varied, running the gamut from unstructured

through semistructured to relational. Current systems used for data sharing are

most often custom-built for a concrete scenario; as such, they exhibit significant

diversity as well. To name only a few prominent solutions, Wiki software has

proved very successful for community management of unstructured data; scientific

portals such as BIRN [2] and GEON [4] allow scientists to pool their datasets; and

an increasingly large number of vertical social networking sites include a custom,

topic-specific database that is maintained by the site’s members.

The Youtopia system is a general-purpose solution to enable community data

sharing in arbitrary settings. Our initial focus within the Youtopia project has

been on relational data; however, the ultimate goal is to include arbitrary data

formats and manage the data in its full heterogeneity, as in Dataspaces [41].

Before introducing Youtopia in more detail, we begin by addressing a funda-

mental question. Is a custom-designed system for community data management

truly necessary? After all, relational data could in principle be shared using ex-

isting technology, by having the community simply use a database. Of course,

some additional functionality – beyond that of a traditional DBMS – would be

1

desirable to communities, and providing it might pose a few practical challenges.

For example, the DBMS would require an interface that is easy for non-experts

to use. It would also have to incorporate policies and mechanisms for handling

disagreement: Who should have administrative privileges on which tables? How

should edit wars be handled? And so on. While certainly nontrivial, these issues

seem in principle resolvable without recourse to radically new technology.

Our answer to the above motivational question is in the affirmative. While a

normal database can certainly be used by a community, it is seldom the best-fit

solution. This is because the community data sharing setting comes with unique

features that create both challenges and opportunities for system design. As those

features are often very different from those found in “classical” database use sce-

narios (such as business transaction processing), entirely new system designs are

both possible and appropriate.

What is unique about the community setting? Without proposing to give an

exhaustive list of differences, we briefly discuss several key aspects that are of

particular importance.

First, a community DBMS should be logically decentralized as far as possible.

That is, no functionality should require complete understanding by a human of

all the data and/or metadata. As a database and a community grow, it becomes

more and more difficult for individual users (or very tightly cooperating groups)

to maintain such in-depth knowledge, and bottlenecks inevitably arise. It is much

better to redesign all functionality so that any tasks carried out by humans only

require a small amount of local domain knowledge.

Redesigning a DBMS to achieve logical decentralization can be highly nontriv-

2

ial, for many reasons. Beyond the obvious ones, there is the issue that the global

knowledge requirements may not be explicit in the system. For example, they may

come in the form of global assumptions or constraints about the data or metadata

that must be maintained as the database evolves. Even if these constraints are

not directly used by humans (because, for example, they serve as prerequisites for

certain automated processes to run), their enforcement as the data and schema

changes may require global domain knowledge from a human. We will see an

example of such a constraint in Section 1.3, when we discuss update exchange.

In a logically decentralized community DBMS, all tasks involving the data and

metadata will be be carried out collaboratively by groups of users. If no single

user has enough domain knowledge to complete a task, the system must allow

people to pool their limited understanding by each contributing as they are able.

This means the tasks must be possible to perform on a best-effort basis, with the

“minimum meaningful unit of contribution” being as small as possible. Of course,

there is no reason why all the principals collaborating on a task need to be human:

algorithms can be used to assist users in the process as well.

If all work on the data is carried out on a best-effort basis, the system will

inevitably contain – at any given point in time – many partially-completed tasks,

and consequently data (and metadata) that is incomplete, inconsistent or otherwise

dirty. Dirty data will be found in a community DBMS for other reasons too,

for example due to bulk-loading of a table from a dirty external source. The

system must handle such data gracefully for the purposes of query answering and

permitting other tasks to proceed. It should also come with a comprehensive suite

of tools for data cleaning; users must, of course, be able to perform this cleaning

on a best-effort basis.

3

Another issue that cannot be avoided in a community DBMS is disagreement

management. Users will inevitably disagree on data, and mechanisms must be in

place for handling this. Whether the disagreement is handled “inside” the system

(by, say, allowing multiple versions of tuples), or “externally” (through an arbitra-

tion system as in Wikipedia), the system must provide support for disagreement-

related tasks. At the very minimum, comprehensive logs of user operations must

be available and easy to query, so that interested parties can understand the na-

ture and scope of the disagreement. Indeed, such logs have other applications too:

for example, they can be used to obtain provenance information to determine the

reliability of the data in cases where trust is an issue.

The last challenge we mention here is making optimal use of human attention

to improve data quality. In a community DBMS, we will frequently be very lucky

in that we will have an active group of users who are motivated to improve data

quality, as in Wikipedia. However, this human attention should not be squandered,

and it is helpful if the system is equipped to exploit it as well as possible. For

example, if automated cleaning rules can be inferred from user cleaning behavior,

they would likely greatly reduce the amount of drudge work needed from the

humans and thus improve the system tremendously.

In the next section of this chapter, we present two use scenarios for Youtopia;

they will serve as a source of running examples throughout this thesis. In the

following section, we introduce the two particular aspects of classical DBMS func-

tionality which we have been working on adapting to the community setting: the

maintenance of data cleanliness and concurrency control. Finally, Section 1.4 con-

tains a detailed list of the specific technical contributions we make in this thesis.

4

1.2 Use scenarios: the travel website and the library

Our first use scenario is a large, public, Web-based community repository con-

taining travel information. Modern travel-related websites such as Wikitravel fre-

quently contain a large amount of structured data: calendars of events, train or

bus schedules, or just geopolitical information that is inherently structured. For

example, the English-language page on Wikitravel devoted to Europe includes a

large table detailing, for each European country, whether it belongs to the Eu-

ropean Union (and if so, since when), whether it uses the Euro and whether it

belongs to the Schengen zone. [12]

While Wikitravel and similar websites such as Tripit [10] are currently useful,

any travel site could provide a significantly richer user experience by making better

use of structured data. For example, it could allow users to perform information

discovery queries (“What are the biggest cities in Europe, across all countries?”).

It could also allow them to create their own private tables that could be shared with

friends - for example, a user might create a table to keep track of the cities in the

world that they have visited, together with trip dates. It could even provide an API

allowing external developers to create applications that use the structured data in

interesting ways. For instance, it would be useful to have a route planning program

that takes as input a table of the user’s desired destinations, and uses another table

containing train schedules to produce a suggested day-by-day itinerary.

In practice, the users of such a travel data repository would also wish to share

less-structured data such as text and photos. Thus, a complete end-to-end solu-

tion would be a composite system that includes both a Youtopia repository and

other components such as a Wiki. Such multi-component systems are used to-

day to cater to particular vertical communities; for example, Assembla [1] is an

5

online platform for collaborative software development, and includes a Subversion

repository, but also provides a Wiki and a task assignment system. In the case of

the travel website, an ideal solution would seamlessly integrate the structured and

unstructured data and tools. Initially, however, we restrict ourselves to thinking

about a travel database that contains only structured data.

In our second scenario, Youtopia is used by the owners and patrons of a small

community library. The owners use it to maintain administrative data relevant to

the running of the library, such as book holdings, wishlists and event calendars; the

patrons can create tables of their own on any topics of interest to the community,

such as private reading lists, book reviews, and so on. Thus, a portion of the

repository is very open and functions much like the travel website. However, the

functionality associated with the administrative tables used is much closer to that

found in a traditional OLTP database system.

We note that there is currently both a real need and a lack of solutions for a

system that would provide RDBMS-like functionality while remaining lightweight

and easy to use. There are many settings where a set of spreadsheets is not

adequate, but where a full-fledged RDBMS is too expensive or difficult to set up.

Many grass-roots communities have needs that fall exactly into this intermediate

space, and there is a great level of interest in systems to address these needs. This

interest is evident, for example, in many posts found in the Google Fusion Tables

discussion group [7]. Youtopia, which is by design a lightweight but powerful

system suited to settings where users have limited understanding of both the data

and database technology, is uniquely positioned to fill this niche.

6

1.3 Working with data collaboratively

This section discusses data cleaning and concurrency control in community

DBMSs, and introduces the unique challenges posed by their redesign for logi-

cally decentralized, best-effort operation.

1.3.1 Data cleaning

In any database, a key goal is maintaining data that is as clean and logically

consistent as possible, in the face of data modifications both small (individual tuple

inserts or deletes) and large (bulk loading of data from external sources). Some

data cleaning can be done by hand by humans; indeed, in community settings, users

are particularly likely to be willing and able to perform basic cleaning operations.

For the same reasons that Wikipedia attracts an army of people willing to correct

and improve articles, it is realistic to expect that our travel website’s users will

be willing and able to perform simple operations like duplicate identification and

removal. Of course, if the repository is sufficiently large and the rate of changes to

the data is high, humans will not be able to keep up. For this and other reasons,

it is definitely worthwhile to leverage data cleaning algorithms to assist in the

process. In the best of all worlds, most of the cleaning work would be offloaded to

an algorithm, with humans only stepping in occasionally at crucial points. This

hybrid approach is actively being investigated by researchers today [43, 24].

Besides duplicate handling, another aspect of cleaning where the system can

help is the maintenance of data consistency with respect to logical constraints.

The simplest example of this is maintaining the consistency of copies, near-copies

or otherwise overlapping data. Overlapping data arises naturally in the commu-

7

nity setting, and this is not always a pathological phenomenon due to inadequate

normalization or similar issues. Users may, for example, create materialized views

for data presentation purposes. Or they may disagree on a portion of the data

while agreeing on another, a common occurrence in scientific communities [60].

This requires the maintenance of two (materialized or virtual) versions of the rel-

evant data that agree on the “uncontroversial” portion. Clearly, any updates to

duplicated, shared and/or overlapping data should be propagated in a way that

ensures consistency. If a tuple is inserted into one copy of a table, the same tuple

must be inserted into all others so that they remain true copies.

A slightly different, but related, kind of logical constraints are those that estab-

lish a relationship between some data and other data that is (partially) derivative

of it, where the derivation process is more complex than making a simple copy.

Consider the example travel database shown in Figure 1.1. The R table contains

reviews of attraction tours in New York State; suppose we would like to ensure that

all attractions in New York State that have available tours are indeed reviewed,

or at least get the chance to be reviewed by becoming visible in the R table. This

can be accomplished through a tuple-generating dependency (tgd). Concretely, the

tgd σ3 allows us to express and enforce the constraint above, as explained in the

following example.

Example 1.3.1. Suppose company ABC Tours starts running tours to Niagara

Falls and the tuple T(Niagara Falls, ABC Tours) is added. The tgd will cause

the new tuple R(Niagara Falls, ABC Tours, x3) to be inserted by the system.

The x3 is a labelled null or variable which indicates that some review for the tour

should exist, but is unknown to the system. The review may subsequently be filled

in manually by a user.

8

C

(City)

city
Ithaca

Syracuse

S

(Suggested

Airport)

code location city served
SYR Syracuse Syracuse

SYR Syracuse Ithaca

A

(Attraction)

location name
Geneva Geneva Winery

Niagara Falls Niagara Falls

T

(Tours)

attraction company tour start
Geneva Winery XYZ Syracuse

Niagara Falls x1 Toronto

R

(Tour

Reviews)

company attraction review
XYZ Geneva Winery Great!

x1 Niagara Falls x2

V

(Conventions)

city convention
Syracuse Science Conf

E

(Excursion

Ideas)

convention attraction
Science Conf Geneva Winery

σ1 : C(c)→ ∃a, c′ S(a, c′, c)

σ2 : S(a, c′, c)→ C(c′) ∧ C(c)

σ3 : A(l, n) ∧ T(n, c, c′)→ ∃r R(c, n, r)

σ4 : V(c′, x) ∧ T(n, c, c′)→ E(x, n)

Figure 1.1: Portion of the travel database

9

The process of this propagation of changes is known as the (tgd) chase [14,

50, 25] – a simple mechanism for constraint maintenance in which the corrective

operations required are relatively easy to determine and perform.

Tuple-generating dependencies and equivalent constraints such as GLAV map-

pings [49] and conjunctive inclusion dependencies [47] are frequently encountered

in data integration [39, 30, 42, 45, 63]. Their ubiquity points to the fact that

they are a very powerful formalism, applicable in a variety of subject domains.

They can also handle the simpler constraints described before - copy consistency

maintenance and view maintenance.

The other tgds in Figure 1.1 enforce additional constraints, as follows. σ1

states that every city has a recommended airport. Under σ2, every airport is

located in a city and serves a city. Because of σ4, convention attendees can receive

recommendations for day trips based on the convention venue and available tours.

Since tgds are such a powerful and versatile tool, we would like Youtopia users

to be able to create them and add them to the system as easily as they add new

tables. There are, however, several reasons why this is hard. First, it is not always

trivial for a user to specify a tgd that correctly reflects the intuitive constraint they

have in mind. Still, the issue of tgd creation has been addressed in some existing

work [63, 56] and we are building on these solutions to set up an infrastructure to

facilitate this process. Notably, Youtopia allows users to cooperate and pool their

understanding to set up and refine tgds. Dependency creation can also be made

easier by the presence of subdomain-specific summary views: knowledgeable users

can define such views which capture in their schema the essence of the subdomain.

Much as portals and topic lists in Wikipedia can guide contributors in the catego-

rization of their articles, such views can guide table owners in the formulation of

10

their tgds.

The other problem with allowing ad-hoc tgd creation by users is more serious.

If the dependencies happen to have cycles among themselves, as do our σ1 and σ2,

it is sometimes possible for the system to start performing a nonterminating chase

that involves an infinite cascade of inserts.

Example 1.3.2. Suppose JFK airport is added as a suggested access airport for

Ithaca. The tuple S(JFK, NYC, Ithaca) is added to the database. To satisfy

σ2, we need to add tuple C(NYC). This in turn causes a violation of σ1, which is

repaired by inserting S(x3, x4, NYC). This new insert causes a violation of σ2,

requiring the insertion of C(x4), and so on.

Such cyclical firing of rules is a well-known problem; current research has han-

dled it by placing a global acyclicity restriction on the dependencies [47, 45, 39, 30].

However, in a collaborative setting, such a restriction is unrealistic and undesirable,

for at least two reasons. First, it violates our logical decentralization desideratum

for system design. As the number of tgds grows, any cycles that are created “by

accident” are increasingly likely to be large and complex. A user who is warned

by the system that the tgd they want to add would create a cycle may not have

the global knowledge to understand, let alone resolve, this problem. Second, cycli-

cal dependencies are not always a pathological phenomenon, so disallowing them

can prevent users from expressing meaningful constraints. σ1 and σ2 above are an

example of this; we also give another example from a different subject domain.

Example 1.3.3. Suppose we wish to maintain information about people’s an-

cestry in a genealogical database such as Geni [3]. It is natural to do this

with three tables, Person, FatherOf and MotherOf, and tgds to connect these

three together. First, every person has a father and a mother, so we set up

11

a tgd Person(x) → ∃y, z FatherOf(y, x) ∧ MotherOf(z, x). Also, every father

and mother is a person, so we add the tgds FatherOf(x, y) → Person(x) and

MotherOf(x, y) → Person(x). These tgds are cyclic; inserting, for example,

Person(John) into an empty database will once again lead to an infinite cascade

of insertions.

Here, the cycle is clearly not pathological; the existence of an unbounded chain

of ancestors is actually consistent with the conceptual model that the users had

in mind when they set up the dependencies. After all, anyone should always be

able to add more information about further and further ancestors as they research

their family’s history. However, the chase enforcement mechanism for the tgds is

required by definition to materialize the entire unbounded chain of ancestors; this

of course is a nonterminating process.

In Chapter 2 we present a different enforcement mechanism for tgds that pro-

vides a solution to the nonterminating chase problem. We also explain how tgds

and our enforcement mechanism can function as an integral part of a broader set

of data cleaning operations.

1.3.2 Concurrency control

As users work with data to achieve particular goals, they will naturally perform

tasks that involve multiple steps and operations. Even in a hybrid system where

both human and automated principals collaborate, many of the steps in a task

will be carried out by humans. Because of this, the tasks will be “long-running”

in system terms, as the delays between steps are likely to be substantial: in the

best case, on the order of minutes, in the worst, of days or more. We now give two

12

examples of long-running tasks.

Example 1.3.4 (Community library book order). This example is set in the com-

munity library scenario and involves library employees placing a book order. The

task might proceed as follows:

• Kate starts the task and creates the Order table to contain details of the books

to be ordered.

• Jim queries the Book Wishlist table to determine the 15 most frequently

wished-for books and inserts them into the Order table.

• Jane organizes a series of talks by visiting authors, and knows who is visiting

next year based on information in the Visitors table. She selects suitable

books by the visiting authors (e.g. by finding the 2 most highly ranked ones

for each author), and if the books are not already either in current library

holdings or in the Order table, they get added too.

• Tom inserts more books into Order based on another query (e.g. textbooks

used in the local community college this year)

• Daisy notices that given the state of the Order table, there is still enough

money in the budget for a new edition of an important reference book , so

she adds it too.

• Kate places the order based on the current state of the Order table and con-

cludes the task.

Example 1.3.5 (Planning a trip). Our second example involves the travel

database; here, Alice and Bob plan a trip to France together. They will be traveling

together for the first two weeks, but will split up for the third and final week.

13

• Alice and Bob begin by creating a table with their arrival and departure in-

formation, budget, etc. and begin to plan the first two weeks.

• Alice wants to visit some castles, so she queries for the 5 most popular castles

in France and creates a small table containing information about them.

• Bob is interested in music festivals, so he creates a table devoted to these.

• Alice and Bob run a Youtopia application that plans a trip for them based

on the castles and festivals they want to see, taking into account available

transportation options, their budget, etc.

• The application creates a table with a day-by-day itinerary.

• Alice and Bob now plan their separate trips for the third week; each creates

their own tables, itineraries, etc, relating to their activities during that week.

As we see in the the trip planning example, it is possible for tasks to nest

hierarchically within others; Alice’s and Bob’s separate trip plans for the third

week should probably be modeled as nested subtasks of the main trip one.

Collaborative tasks are then a sequence of logically related operations, where

the notion of “logically related” is defined by the users themselves. As such, they

are somewhat similar to waves in Google Wave [8]. However, Google Waves are

documents themselves, while a collaborative database task consists of the queries

and writes performed on the data, not the data itself; as such, it is purely a

meta-level concept. Indeed, we can imagine using an already-executed task to

generate a template that could be reused on different data. For example, we could

create a task template that would automatically generate a sample trip itinerary,

given some basic input parameters such as destination country, budget constraints,

specific interests etc.

14

Of course, none of these tasks are carried out in isolation, on an otherwise

unused system. Interference between different tasks can and will arise, as can be

seen in the following examples.

Example 1.3.6. Return to the book order scenario in Example 1.3.4. After Jane

inserts her books based on who will be visiting, one more visitor is scheduled, and

the tuple with their name is inserted into the Visitors table. So, Jane may

need/want to order books by that author too. This of course may affect other

events downstream, such as Daisy’s ability to use up the rest of the budget on an

extra book.

Example 1.3.7. This example continues the trip planning scenario from Example

1.3.5, with the main trip task and two subtasks for the third week. Suppose Bob

realizes the end date for the trip needs to be moved forward by two days, because

he has to be back earlier. So he changes that information in a table in the main

task for the trip. That change affects the itineraries in the subtasks, as they were

computed with the old trip end date in mind.

Example 1.3.8. Again consider the trip from Example 1.3.5. Suppose there is

another task in the system that continuously gathers information about all the trips

in the system, calculating – say – general statistics about most popular attractions,

most common trip lengths and budgets, etc. Now Alice and Bob decide they need

to cancel their trip completely. The statistics-gathering task has read information

about their trip, however, and it is therefore making statistical computations based

– in part – on inaccurate information.

It is relatively clear that interference can be problematic; indeed, in Examples

1.3.6 and 1.3.7, it is probably desirable for some corrective action to be taken,

manually or by the system. In the last example, however, this is actually less clear

15

– the statistics-gathering task may not require equally precise guarantees. Statis-

tics based on somewhat out-of-date information may be acceptable, particularly if

correcting the problem would require a heavyweight operation like a restart of the

entire statistics-gathering process.

Dealing with task interference in a collaborative setting is obviously related

to the problem of maintaining isolation between traditional OLTP transactions.

Because of this, we henceforth use the term transaction to refer to the collaborative

tasks as well. However, our transactions have several important “non-traditional”

features which mean that existing OLTP concurrency control solutions are not well-

suited to them. Because of this, it is desirable to provide a dedicated concurrency

control protocol for them – another argument for a dedicated collaborative DBMS.

How, more precisely, is concurrency control different in a collaborative DBMS?

To answer this question, we need to clarify and (somewhat) formalize our model

of a transaction. It is simply a sequence of reads and writes, where the reads are

specified intensionally (with queries), and the writes are specified extensionally.

Because of the user interaction element, arbitrarily long delays may occur between

two consecutive steps of a transaction. The last operation of a transaction may

be a commit operation, but this is not required. When a commit operation does

occur, the desired effect is that of a standard OLTP commit, i.e., durability for

this transaction is desired. An example of a transaction that likely does need to

commit is the one in Example 1.3.4. On the other hand, the one in Example 1.3.5

probably does not need to.

When transactions are actually running in the system, they can be in one of

three states – executing, waiting for user input and ready. The first two are self-

explanatory. In the ready state, a step for this transaction is available (in the sense

16

of being known to the system) and is only pending scheduling to run.

The following collaborative DBMS features pose unique challenges in imple-

menting a concurrency control scheme:

• no transaction in the ready state may be required by the system to wait for

an indefinitely long period of time. Thus any concurrency control protocol

must be non-blocking, in the sense that no operation can be forced to wait

until another transaction’s operation(s) complete. This is of course because

the other transaction may be subject to arbitrary delays.

• any transaction that has not performed an explicit commit may abort at any

time due to an explicit user request.

• all other aborts (i.e. cascading ones required to maintain appropriate con-

currency control behavior) are extremely undesirable and should be avoided.

On the other hand, the two following differences from the OLTP scenario can

make the design of concurrency control algorithms easier:

• not all transactions end with a commit operation; in fact, the majority will

not, and can thus be rolled back if necessary. Of course, aborts are very

undesirable, as mentioned above, but they are seldom actually impossible.

• it is much more acceptable to relax requirements for data consistency (and

consequently, for transaction isolation).

Within the above constraints, there are several choices on what to enforce and

how to enforce it, and the exact level of enforcement is likely to depend on the

specific setting and indeed the specific transaction (as is evident in the difference

17

between Examples 1.3.7 and 1.3.8). This suggests that the best solution is a con-

currency control framework providing a variety of options or levels of enforcement,

allowing users and/or system deployers to choose what is most suitable for them.

We begin the investigation of the design space for such levels in Chapters 3 and 4.

1.4 Contributions and outline of this thesis

In this section, we present the technical contributions of this thesis in the form of

a chapter-by-chapter outline.

First, we show how the data cleanliness maintenance process from Section 1.3

can be redesigned for a best-effort collaborative setting. In Chapter 2 we intro-

duce a set of basic operations for data cleaning, including explanations of how they

interact with each other. We also present a new mechanism for tuple-generating

dependency enforcement which has several advantages over the traditional chase.

First, it comes much closer to the intuitive enforcement model that is implicit in

tgd semantics. Second, it allows us to remove the acyclicity constraint on depen-

dencies. Finally, it exemplifies a novel hybrid computation model for constraint

enforcement, where as much work as possible is carried out automatically, but

users occasionally step in and assist the algorithm with their domain knowledge.

In Chapter 3, we begin the investigation of transaction interference. We in-

troduce a notion of serializability that is appropriate for the collaborative DBMS

setting and relate it to classical notions of serializability found in the literature. We

then give a protocol for enforcing serializability, including an algorithm framework.

We present a case study for serializability enforcement in a restricted setting, where

transactions may only use a limited subset of operations from those discussed in

18

Chapter 2. Our presentation includes specific algorithms and experimental results.

In Chapter 4, we begin a broader investigation of concurrency control en-

forcement options for transactions. We discuss in depth the unique constraints,

desiderata and tradeoffs associated with handling transaction interference in com-

munity data management. We also present several isolation levels for transactions

which are less restrictive than serializability, and can thus be enforced with more

lightweight mechanisms (albeit at the cost of some loss in data consistency).

Chapter 5 contains a brief overview of the literature relevant to community

database management, with a focus on the work that provides specific technical

background for the research presented here.

19

CHAPTER 2

DATA CLEANING IN YOUTOPIA

In this chapter, we present the collaborative data cleaning functionality pro-

vided by Youtopia. Our tools allow users to perform operations that improve data

quality with respect to two concepts: duplicate tuples and corresponding tuples

from different tables. As we show in the first two sections of this chapter, these

concepts have very natural formalizations which are associated with an intuitive set

of manipulation operations. However, in several cases, there are multiple options

as to the exact definition of the operations and there is room for design decisions to

be made. We indicate these decision opportunities as they arise in our discussion.

The last section of this chapter presents a concrete set of operations chosen from

the available alternatives. Our operation set is designed to provide a large amount

of data cleaning functionality, and allows for the participation of both humans and

algorithms in the cleaning process.

We make a note here about queries in Youtopia. In what follows, we frequently

talk about principals, both human and automatic, querying the database. Algo-

rithms can of course pose arbitrary queries – in SQL or in any other language –

as they wish. We assume that the human users can also pose simple SQL queries,

including at least select-project-join queries and aggregation. Making the latter

happen with non-expert users is of course a nontrivial interface design problem,

but as can be seen in Google Base [5] and Fusion Tables [6], form-based interfaces

can allow users to construct quite sophisticated queries in a relatively intuitive

way. Thus, our last assumption is not an unrealistic one.

20

C

(US Cities)

name state population
Wilmington Delaware 73,000

Wilmington North Carolina 100,000

Wilmington x1 90,000

Figure 2.1: Example of duplicate tuples

2.1 Duplicate tuples

Consider the example table in Figure 2.1, which might be encountered in our travel

website scenario. It contains information about US cities, and includes three tuples

referring to cities named Wilmington. On inspection, one might come to suspect

that the third tuple may be a duplicate of one of the first two. This is not a difficult

observation to make; however, determining which tuple is being duplicated may

be much harder.

Youtopia provides tools that allow users to collaboratively resolve the problem

of the third tuple. It is possible for a user to mark the appropriate pairs of tuples

as duplicate candidates, without going further. Another user with more domain

knowledge can subsequently decide which tuples are indeed duplicates and remove

the redundancy. In Youtopia, we allow users to perform the following operations

related to duplicate management:

• mark two tuples as potential duplicates

• reverse the above, i.e. unmark two tuples as potential duplicates

• merge two tuples which are marked as duplicate candidates

• reverse the above, i.e. split a tuple into two new tuples (not marked as

duplicate candidates)

21

These four operations are simple and should be easy to understand for all

users. Interestingly, they have counterparts for unstructured data in the world of

Wikipedia, where pairs of articles may be flagged as candidates for a merge and

subsequently merged. Both the marking and merging are, of course, reversible [11].

The operations are also simple to implement and require only minimal additional

metadata. For every table, we need to maintain a binary relation Dup specifying

which pairs of tuples are marked as potential duplicates. Note that mathematically,

this relation is irreflexive, symmetric, and not transitive; in Figure 2.1, although

the third tuple is suspected of being a duplicate of one of the first two, it does not

automatically follow that the first two tuples may themselves be duplicates.

There is a design decision to be made regarding the extent to which information

in the relation Dup is visible to the user. For data browsing, it is certainly rea-

sonable and indeed desirable to expose the potential duplicate information, either

right away or on demand. For queries, however, the issue is less clear. The simplest

choice is to ignore it, answering queries on the database in a way that disregards

this information. For example, the answer to the query SELECT COUNT(*) FROM

C would be 3. A more sophisticated solution would be to take Dup information

into account for at least some queries – indeed, aggregation queries such as the

one just presented would be an obvious choice. It may be helpful to a user to

learn that there are at least two mid-sized cities called Wilmington in the US, and

possibly three, but no more. Developing suitable query semantics in such a setting

is future work. This type of extension is not trivial and requires serious thought

since – as we will see – all our data cleaning operations, including queries, interact

with each other, and the semantics of one cannot be extended or modified without

considering this change’s impact on the others.

22

2.2 Corresponding tuples

2.2.1 Table-level correspondences

In addition to managing duplicate (and potentially duplicate) tuples, Youtopia

users can perform operations to deal with tuple overlap and correspondence. At

the underlying mathematical level, Youtopia treats both of these concepts iden-

tically, despite the fact that they appear different at first glance. In common

parlance, the term overlap is most likely to refer to data duplication caused by

the presence of copies of tables and/or derived materialized views. When users

talk about correspondence, on the other hand, they are more likely to mean inter-

table relationships such as the one in Figure 2.2. This figure presents two tables

from our library scenario. The first contains information about biographies, the

second about famous people. We expect that every person who is the subject of a

biography is relatively famous, and as such, more data on them is to be found in

the Famous People table. We saw more examples of such correspondences in the

database in Figure 1.1.

The reason we treat overlap and correspondence as a single phenomenon is

that both can be expressed with the same mathematical formalism, namely that

of tuple-generating dependencies or tgds [30, 60]. Formally, a tuple-generating

dependency has the form

Φ(x, y)→ ∃zΨ(x, z)

where Φ is a conjunction of relational atoms over the sets of variables and constants

x and y (each of these may contain both variables and constants), while Ψ is

a similar conjunction of relational atoms over x and z. The free variables are

understood to be universally quantified. σ5 in Figure 2.2 is an example of a tgd and

23

B

(Biographies)

ISBN title subject lastname
123 Roosevelt Roosevelt

456 Roosevelt Roosevelt

P

(Famous People)

firstname lastname DOB
Eleanor Roosevelt 10/11/1884

Franklin D. Roosevelt 1/30/1882

Theodore Roosevelt 10/27/1858

σ5 : B(i, t, l)→ ∃f, d P(f, l, d)

Figure 2.2: Example of data with correspondences

expresses the correspondence between the two tables which we previously explained

in English. In what follows, we will also sometimes use the term mappings to refer

to tgds.

How, precisely, do tuple-generating dependencies express table-level overlap

and/or correspondence? In some high-level sense, they are logical formulas that

are satisfied by the database iff the overlap or correspondence exists. To make this

more precise, we need to define what it means for a formula to be satisfied over a

Youtopia database. This is not trivial; for example, our definition must take into

account the fact that Youtopia databases may contain variables (labeled nulls) in

addition to constants.

For reasons which will become clear shortly, we first give the definition of tgd

satisfaction in a restricted case, where both the left-hand side (LHS) and right-

hand side (RHS) of the tgd contain only one atom. This is actually a very common

and important subcase, as for example the fact of being a copy or derived view can

be expressed with such mappings. If R and S have three attributes and are both

copies of each other, this can be expressed with the mappings R(x, y, z)→ S(x, y, z)

24

and S(x, y, z)→ R(x, y, z).

Definition 2.2.1 (Database). A database D is a finite set of finite relations. The

relations contain attribute values which are either constants from a finite set Const

or labeled nulls from a finite set V ar.

Definition 2.2.2 (Tgd satisfaction, join-free case). Consider mappings µ from a

set X of variables and constants (which appear in tgds) to V ar ∪ Const. Restrict

the mappings so that µ(c) = c for every c ∈ Const. Given such a µ, we can extend

it to a mapping from relational atoms to relational atoms, by taking for a given

relation R of arity n, µ(R(x1, x2, · · ·xn) = R(µ(x1), µ(x2), · · ·µ(xn)).

Let σ be a tgd with a single atom on the left-hand side (LHS) and a single atom

on the right-hand side (RHS), so that it has the form

A(x, y)→ ∃z B(x, z)

for some tables A and B. σ holds on D if, for every mapping µ as presented above

defined on x∪y, whenever µ(A(x, y)) ∈ D, µ can be extended to a mapping µ′ from

x ∪ y ∪ z to V ar ∪ Const, with the property that µ′(B(x, z)) ∈ D.

We note that Definition 2.2.2 is closely related to the corresponding one in [30].

However, our notion of tgd satisfaction will diverge from theirs in the multi-atom

case.

2.2.2 Tuple-level correspondences

Before we deal with the multi-atom case, we discuss a second kind of correspon-

dence that is meaningful and defined in Youtopia – tuple-level correspondence.

25

Return to the example database in Figure 2.2. As previously explained, σ5 ex-

presses the intuitive table-level correspondence we have previously discussed, and

it holds on this database according to Definition 2.2.2. There is, however, addi-

tional information about the correspondence which users might be able to supply

and which they might be interested in querying. The database contains tuples

about two biographies of people named Roosevelt. Which Roosevelt(s) are they

biographies of? This information would be very useful to someone interested, say,

only in books about Theodore Roosevelt. It is also information that might be easy

for users to supply – if the biography tuples are normally inserted one at a time,

by a person holding the physical book, it is very easy for that person to specify

the appropriate Roosevelt each book at insertion time.

Such tuple-level correspondences are easy to model using a mathematical re-

lation defined on tuples from different tables (unlike Dup, which related tuples

from the same table). In the example in Figure 2.2, we would define a binary

relation on tuples from tables B and P to contain information about the per-tuple

correspondences.

There is the question of whether this new relation should be unrestricted, or

– for example – constrained so that all correspondences are many-to-one. The

latter choice is the one we make in our current system. This decision is not overly

restrictive, as many-to-one correspondences are by far the most natural for users

to express and work with. Moreover, this design choice makes it very easy to

represent the correspondence information in a way that allows for fast update and

retrieval, even in queries that involve a large amount the data. We explain how

this representation works using an example.

Consider Figure 2.3, which contains the same data as in Figure 2.2, but has been

26

B

(Biographies)

ISBN title subject lastname person key
123 Roosevelt Roosevelt 2
456 Roosevelt Roosevelt 0

P

(Famous People)

firstname lastname DOB key
Eleanor Roosevelt 10/11/1884 1

Franklin D. Roosevelt 1/30/1882 2
Theodore Roosevelt 10/27/1858 3

σ5 : B(i, t, l)→ ∃f, d P(f, l, d)

Figure 2.3: Example of explicitly specified tuple-level correspondences

augmented with metadata to represent tuple-level correspondences. The P table

has been extended with an additional field which is a primary key; the additional

attribute in B is a foreign key referencing that primary key. This should not be

surprising, as σ5 is essentially specifying an inclusion dependency between the two

tables. There is one extra feature to our representation, which is the special value 0

in the second tuple of B. This is a wildcard value indicating that the corresponding

tuple from B is unknown.

Note that the information we have represented about the tuple-level corre-

spondences is still in a very strong sense related to σ5 and its satisfaction on the

database. Indeed, it gives us information beyond the fact that σ5 holds on the

database - it specifies how and why it holds. We formalize this intuition in the

notion of explicit witnesses.

Definition 2.2.3 (Explicit tgd satisfaction witness, join-free case). Let σ be as in

Definition 2.2.2. A witness to the satisfaction of σ is any pair of tuples t1 = A(w1)

and t2 = B(w1) such that there exists a mapping µ from x ∪ y ∪ z to w1 ∪ w1 with

the property that µ(c) = c for all c ∈ Const. An explicit witness to the satisfaction

27

of σ is a witness to its satisfaction that has explicitly been marked as such by a

human or algorithm.

Now, what should happen when the two tables on Figure 2.3 are in fact joined

on the last name of the biography subject? Intuitively, any available tuple-level

correspondence information should be taken into account. If no such information is

available, as in the case of the second B tuple, all potentially corresponding tuples

from R should be included in the join result. We formalize this in the notion of a

best-effort join. (The join is best-effort because it always returns the most accurate

information about tuple-level correspondences that is available).

Definition 2.2.4 (Best-effort join with respect to a join-free tgd). Let σ be as

before; we define the best-effort join of A and B with respect to σ. A relational

join is a subset of the Cartesian product of a set of tables; here, for the sake of

notational clarity, we give our definition as a decision criterion for determining

whether a pair of tuples t1 ∈ A and t2 ∈ B should be included in the join result. Let

t1 ∈ A be given. For this t1, we include the following t2 ∈ B:

• if t1 is part of an explicit witness for σ with some t2 ∈ B, then include t2

only

• otherwise, include all t2 ∈ B that join – in the normal relational sense – with

t1. The set of attributes to be used for the join is determined by the position

of the shared variables x in σ, in the obvious way.

We note that although the representation mechanism used for tuple-level cor-

respondences in Figure 2.3 requires all correspondences to be many-to-one, this is

not a restriction present in Definitions 2.2.3 and 2.2.4. If desired, therefore, it is

28

SELECT * FROM B, P WHERE

(B.person_key = P.key) OR

(B.person_key = 0 AND B.subject_lastname = P.lastname)

Figure 2.4: Example SQL query for computing a best-effort join

possible to work with many-to-many correspondences, although a compact repre-

sentation may be harder to achieve. However, if the correspondences are restricted

to be many-to-one and our representation is used, then the best-effort join has the

additional advantage of being extremely easy to compute. For example, the join

we have been discussing between the tables in Figure 2.3 can be obtained with the

SQL command in Figure 2.4.

We also note that the best-effort join with respect to a tgd is defined and

possible to compute even on databases that do not satisfy the tgd in the first

place. This is important, since, as we shall see, we will in general end up working

with such “dirty” databases – either because some violations of tgds are new and

have not yet been repaired, or because some principal in the system has decided

not to repair them for one reason or another.

At this point, we are finally in a position to discuss tgds with more than one

atom per side. The reason we were restricted to the single-atom case until now is

that multi-atom tgds involve joins between relations in a fundamental way, and the

join operator used – normal or best-effort – affects the definition of tgd satisfaction.

Suppose that the users of the database in Figure 2.3 now wish to set up a

dependency similar to σ3 in Figure 1.1, allowing for biographies to be reviewed.

They create a table R to hold the reviews, with attributes title, subject firstname,

29

subject lastname and review, and create a tgd σ6:

B(i, t, l) ∧ P(f,l,d)→ ∃r R(t, f, l, r)

Now that the tgd is in place, how should the R table be populated to satisfy

it? The dependency includes a conjunctive query on the LHS that represents a

join between B and P; it is essentially stating that R is a projection of that join,

extended with an additional review field. The question, of course, is which join

should be used. In this case, it makes good sense to use the best-effort join with

respect to σ5. For other dependencies and other cases, this need not be true. The

choice of join to be used is thus a property of the tgd itself – it is an additional

statement about its semantics which it is reasonable to expect the user to specify

when they create it. Formally, every instance of a ∧ operator must come with a

specification of the operator to be used when evaluating the join implied by the

conjunctive formula.

Once the above is understood, it is possible to extend our definitions of tgd

satisfaction, witness, and explicit witness, to the case of multi-atom tgds. It is

also possible to extend our relational representation of tuple-level correspondences

(using foreign key-like constructs augmented with wildcard values) to these tgds.

Neither the mathematical nor representational extensions are given here; they

are conceptually straightforward, yet require substantial notational machinery to

develop fully. In the real world, the vast majority of tgds will involve one or

at most two atoms per side (a three-way join is not trivial for most people to

understand, let alone use in a tgd). Of those tgds that involve two atoms, the

overwhelming majority will have a clear intended join semantics: the two relations

being joined will either have a single tgd connecting them (most likely, an inclusion

dependency), or have no applicable tgds and then the normal relational join will

30

be necessary. Thus, in practice, and in the remainder of this thesis, we will assume

that the join semantics are given as part of the specification of each tgd, and we

will never mention them explicitly. We will also use the normal notation ∧ in all

tgds rather than adorn it with annotations to indicate any special join semantics.

2.2.3 Operations involving correspondences

What are meaningful operations for Youtopia users to perform on metadata re-

lating to table-level and tuple-level correspondences? First, of course, users may

create (and remove) tgds. However, we do not discuss such higher-order operations

in this thesis; supporting them raises its own unique set of challenges and adds its

own layer of complexity to the design, as even the following simple example shows:

Example 2.2.5. Suppose we have two tables in the database with the same schema

but completely different content, and tgds are created specifying that these two tables

should be copies of each other. How should the system proceed? Should it copy all

data from one table to the other and vice versa to create copies? Or should it

enforce the tgds only for future inserts to the tables, in the sense that any insert

to the first will be propagated to the second and vice versa?

Therefore, we assume from now on that the relations in the database and the

tgds themselves are fixed, and we focus on operations that are meaningful and

necessary in that context. These operations come in two kinds: specifying (and

removing) per-tuple connections, and enforcing tgds when violations occur due to

other user operations on the database.

The first kind of operation is straightforward. Users should be able to specify

that a pair of tuples is an explicit witness to the satisfaction of a tgd. They should

31

also be able to undo this operation, i.e., bring the database back to a state where

that particular witness is no longer an explicit witness. This is easy to do in a

visual interface, where a user can draw a line between two tuples to specify that

they correspond, or remove such a line if it is incorrect.

The second kind of operation has to do with tgd enforcement, and requires

substantially more work to formulate fully. Why, to begin at the beginning, is

tgd enforcement necessary? Data in the database will be modified during normal

usage of the repository. Tuples will be inserted, deleted, modified, and – as we

have seen – merged and/or split as part of duplicate-related data cleaning. (The

latter two operations can be modeled as a set of inserts and deletes). Even if we

begin with a database that satisfies all tgds, these operations will cause violations

to occur.

Definition 2.2.6 (Tgd violation, join-free case). Let σ and the mappings µ be as

in Definition 2.2.2. If σ is not satisfied, there is a set M of mappings µ that cannot

be extended to corresponding µ′ as explained in Definition 2.2.2. Every such µ is

a violation of σ. Every corresponding µ(A(x, y)) ∈ D is a violation witness for σ.

Thus, a tgd violation witness is a tuple that is present in the database and

matches the LHS of the tgd, but does not come with a corresponding tuple to

match the RHS. Again, the definition of violation and violation witness extend in

a simple way to tgds with more than one atom per side. In this case, violation

witnesses consist of a set of tuples from the database that together match the LHS

of the tgd, but do not have a corresponding tuple or set of tuples to match the

RHS.

Violations can be created by operations on the data in two different ways; in-

formation on how a violation was created can be important when deciding how and

32

whether to correct it. Therefore, we distinguish between two kinds of violations.

Definition 2.2.7 (LHS-violations and RHS-violations, join-free case). Let σ and

the mappings µ be as in Definition 2.2.6. Suppose σ is not satisfied on a database

D, but was satisfied on the previous version of the database D′, where D was

produced from D′ by a single insert, delete, modify, merge or split operation. Let

µ be a concrete violation and µ(A(x, y)) ∈ D a concrete violation witness for σ. If

µ(A(x, y)) /∈ D′, µ is a LHS-violation, otherwise it is a RHS-violation.

Again, this definition extends to the multi-atom case. The intuition here is that

LHS-violations are created by adding to the database a “new” tuple that matches

the LHS of σ, but is (so far) missing a corresponding RHS tuple. For example,

a tuple insertion can only ever cause a LHS-violation. On the other hand, RHS-

violations are created by removing from the database a tuple which was previously

part of a witness for the satisfaction of σ, so that the corresponding LHS tuple (or

tuples, for a multi-atom tgd) from that satisfaction witness are “orphaned” and

become a violation witness. A tuple deletion can only ever create RHS-violations.

How should LHS-violations and RHS-violations of tgds be handled? At a high

level, for each violation type, there are four options:

• the violation can be ignored,

• the operation causing the violation can be disallowed (or reverted, if it has

already happened),

• the violation witness can be removed from D,

• the violation witness and σ can be used to generate a tuple or set of tuples.

These are inserted into the database and remove the violation by trans-

33

forming the violation witness into (part of) a satisfaction witness. This is

essentially the standard chase procedure for tgds [14, 50].

The first two options are self-explanatory and simple to implement. The other

two are less so, because they involve corrective operations that may themselves,

in turn, cause violations that require correction. We discuss them in more detail

shortly.

The choice of an enforcement mechanism for each violation type is ultimately a

decision to be made by the system users. There are, however, certain choices that

are better motivated than others. For example, correcting LHS-violations using

the third method (removing the violation witness) is a questionable idea, as such

a correction essentially reverts the user edit that created the violation witness in

the first place. If this is the desired outcome, it would have been better achieved

by disallowing the original edit. Similarly, correcting a RHS-violation using the

fourth method would revert or almost revert the user operation that was the source

of the violation, as in the following example.

Example 2.2.8. Consider the database in Figure 1.1. Suppose the tuple R(Geneva

Winery, XYZ Tours, Great!) is deleted. This creates a RHS-violation of

σ3. Correcting it using the fourth option above requires the insertion of tuple

R(Geneva Winery, XYZ Tours, x3), which almost regenerates the tuple that was

just deleted. If the user truly wants this tuple removed, they have no way to achieve

this without figuring out by hand that they must first delete a tuple from either the

A or T table.

We now explain in more detail how the third and fourth enforcement method

may be implemented; in view of the argument above, however, we restrict our

34

discussion to applying the fourth option to LHS-violations and the third option

to RHS-violations; in what follows, we refer to these processes as the forward and

backward chase respectively.

The Youtopia forward chase

Superficially, the forward chase in Youtopia, as informally described in the above

list, is very similar to the standard tgd chase [30]. A tgd violation witness is

identified: matching RHS tuples are generated, and – usually – inserted into the

database. The process then repeats. However, if the insertion just described were

always carried out, it would sometimes be possible to generate an infinite cascade

of inserts, as we have seen in Example 1.3.2. In the literature, this problem is

usually handled by imposing a global acyclicity restriction on the tgds permitted

in the system [47, 45, 39, 30]. Of course, this is not an appropriate solution in a

community setting, as explained in Chapter 1.

However, tuple insertion is not the only way to repair a violation by supplying

a matching RHS to the witness. Sometimes it is possible to provide a matching

RHS by unifying some labeled nulls with other values in the database. Indeed, if

a knowledgeable human were observing the infinite sequence of inserts in Example

1.3.2, they would very likely step in and short-circuit the process. For example,

they might supply the additional information that the suggested airport for NYC

is itself in NYC. This is equivalent to indicating that the two tuples C(x4) and

C(NYC) are referring to the same fact and should be collapsed.

The Youtopia forward chase model is a formalization of the above intuition. A

forward chase starts out in the traditional way: we identify violations and their

witnesses, generate new tuples and insert them. This chase’s execution sequence

35

can be represented as a tree, with inserted tuples as nodes and direct causality

relationships as edges. If on any path the system detects nondeterminism such as

was present in our example with respect to the tuple C(x4), the chase stops along

that path and awaits human intervention. Our notion of nondeterminism is based

on the concept of the more specific than relation on tuples.

Definition 2.2.9 (Specificity Relation). A tuple t = (a1, · · · ak) is more specific

than a tuple t′ = (a′1, · · · a′k) if the map f defined as f(a′i) = ai is a function and f

is the identity on constants (i.e. values that are not labeled nulls)

We say that nondeterminism occurs on a chase path if a tuple t belonging to

relation R is generated by the chase, but R already contains a tuple t′ which is

more specific than t. In this case, it is possible that t is intended to represent

the same fact as t′, and t should be set aside for human inspection to determine

whether this is the case. In the above example, the tuples C(NYC) and S(x3, x4,

NYC) will be inserted by the chase, as no tuples more specific than these exist. On

the other hand, the tuple C(x4) will not be inserted, since more specific tuples do

exist. In this way, the chase will stop even though the tgds are cyclic. Indeed, it

is always the case that (this phase of) a Youtopia forward chase must stop sooner

or later.

Lemma 2.2.10. For any forward chase using the above algorithm, computation

will stop along all paths in the chase tree after finitely many steps, unless the chase

terminates before such a point is reached.

This lemma is proved through a simple counting argument, making use of the

fact that the starting database is finite and thus contains a finite set of variables

and constants. The chase cannot generate tuples containing those forever; from

36

some point onwards, it must generate only tuples containing fresh labeled nulls

(i.e. those that were not in the initial database). After another finite set of steps,

the tuples already generated will also cover/represent all possible ways in which

labeled nulls can repeat within a tuple. Any tuple generated after this last point

must unify with one already in the database.

Once a chase has stopped, it is time for a human user to step in and assist

the violation correction process. The user has access to all the tuples which were

generated but not inserted into the database; we refer to those as (positive) frontier

tuples. Faced with a frontier tuple t, a user may perform one of two frontier

operations :

• expand t, that is, insert t into the database.

• unify t, that is, choose another tuple t′ in the same relation as t which is

more specific than t and perform variable unification between any labeled

nulls in t and t′. t disappears after such an operation.

Given a suitable interface that provides meaningful provenance information for

the frontier tuples, these operations should be quite feasible for a knowledgeable

human to perform. The user can simply be presented with a frontier tuple and

asked: “Is this a new tuple, or can you match it to a tuple already in the rela-

tion?”. If they answer yes to the first option, they are requesting expansion, and

otherwise the matching tuple they indicate supplies the necessary unification infor-

mation. In terms of the duplicate operations presented in Section 2.1, unification

is a special instance of merge, and expansion of unmarking two tuples as duplicate

candidates. Because of this, the frontier and duplicate management operations can

be performed using the same interface.

37

The unification operation may cause changes to other tuples in the system

if they contained one of the labeled nulls which disappeared in the unification.

These changes may themselves cause further tgd violations. Expansion may also

generate new violations due to the insertion of t. However, in both cases the new

violations are guaranteed to be LHS-violations, so the chase can simply add them

to its violation queue for future correction.

A special case for frontier operations concerns tgds with multiple atoms on the

right-hand side. The firing of such a tgd in a forward chase generates multiple

frontier tuples that may share some labeled nulls. On such tuple sets, the frontier

operations work as expected given that the shared labeled nulls must be treated

consistently.

After a frontier operation, the system may be able to carry out further deter-

ministic chase steps; if it can, it does so until it terminates or once again reaches a

point where it must stop on all paths. At this point it asks for user assistance again

and the process repeats. A chase execution thus consists of a sequence of determin-

istic strata separated by periods of blocking and waiting for frontier operations.

The full forward chase execution model is presented in Algorithm 1.

The Youtopia backward chase

The backward chase is a process that corrects RHS-violations by removing the

violation witnesses from the database. Thus in Example 2.2.8, the violation of σ3

would be corrected by deleting either A(Geneva, Geneva Winery) or T(Geneva

Winery, XYZ Tours) – one is sufficient. The backward chase is therefore a process

of cascading deletions.

38

Algorithm 1: The forward chase

writeSet := initial user operation

violQueue := ∅

repeat

{Begin deterministic stratum}

repeat

perform writes in writeSet

writeSet := ∅

violQueue.remove(violations just corrected)

violQueue.append(violations just created)

choose unprocessed v ∈ violQueue

if v is deterministically repairable then

writeSet := set of corrective writes for v

else

generate frontier tuples for v

make nonblocking request to user for frontier op

end if

mark v as processed

until violQueue.isEmpty ∨ all v await frontier ops

{End deterministic stratum}

if awaiting frontier ops then

block while no frontier operations performed

writeSet := result of first frontier operation received

end if

until writeSet.isEmpty ∧ violQueue.isEmpty

39

Unlike a forward chase, a backward chase must eventually terminate, as it

cannot delete more tuples than exist in the database initially. However, backward

chases come with their own flavor of nondeterminism which also requires human

assistance to resolve. In our example, it is sufficient for one of the two tuples in

question to be deleted for σ3 to be satisfied again; the Youtopia system recognizes

this, but does not make a decision, deferring it instead to a user.

Like the forward chase, the backward chase progresses deterministically as far

as it can; when it encounters a situation like the above, with a set of tuples where

at least one must be deleted, it marks all these tuples as negative frontier tuples

and requests user assistance. Faced with such a set of negative frontier tuples,

a user may perform the negative frontier operation of deleting any subset of the

tuples.

Once again, performing this frontier operation requires no technical knowledge

from the user. They are simply presented with a set of tuples and requested to

select the subset which is to be deleted based on their domain knowledge.

We remark that the deletion frontier operation is in some sense the counterpart

of the expansion operation on the positive frontier; both cause the frontier to

advance further. It is also possible to formulate a negative frontier operation that

would be the counterpart of unification; this would be a reconfirmation operation,

where a user specifies for some proper subset of a set of negative frontier tuples

that the subset is not to be deleted. Determining whether such an operation would

be useful in a community DBMS and, if so, implementing support for it, is future

work.

If the backward chase functionality is desired and implemented in a real-wold

40

system, additional issues must be considered. Cascading deletions may be danger-

ous from an access control standpoint; the system must check whether a deletion

may cascade into a table where it would cause a permissions violation. In such a

case, it is preferable that the original deletion should be rejected by the system

(following the second of our enforcement options). Moreover, the interface must

make it easy for the user to determine whether they really intend to perform a

deletion. In our ongoing discussion based on Example 2.2.8, the user’s intent may

have been just to remove the review rather than delete the entire tuple; if so, they

should have replaced Great! by a fresh labeled null instead.

2.3 The Youtopia data cleaning operations

This section presents the concrete set of operations used in the Youtopia system;

the set includes almost all the operations introduced in this chapter. As mentioned

earlier, we only consider the case where all relation schemas and tgds are fixed;

adding support for changing these is ongoing work. Algorithms 2 through 7 de-

scribe further bookkeeping actions that must be taken after each of our operations,

as explained in the textual introduction which follows.

As discussed, we need to make design decisions on the enforcement of tgds. In

Youtopia, LHS-violations are either corrected via the forward chase or ignored; the

enforcement mechanism is a property of the specific tgd and is made explicit at

the time of its creation. If the tgd has its LHS-violations corrected by the chase,

we call it a subscription, otherwise we call it a connection.

To understand why we allow both connections and subscriptions in Youtopia,

consider as an example the tgd σ5 in Figure 2.2. If a user inserts a tuple relating

41

Algorithm 2: Actions to take after tuple insertion

{Tuple t has been inserted into relation R}

if the insert occurred to satisfy a subscription σ having R on the RHS then

{t was inserted either by the chase or by a user performing the expansion

operation using Algorithm 5}

add explicit per-tuple correspondence information linking t to the LHS tuples

which “generated it” (i.e. belong to the same σ satisfaction witness as t)

end if

for all connections σ having R on the LHS do

prompt user to supply optional per-tuple connection information between t

and appropriate RHS tuples

end for

for all subscriptions σ having R on the LHS do

V := violation witnesses for σ containing t

run the forward chase to correct all violations in V

{any further inserts in the chase generate recursive calls to Algorithm 2}

end for

to a new biography into table Biographies, and the biography is of a person not

in the (Famous) People table, what should the system do? Arguments can be

made both for running the forward chase and for ignoring the violation. On the

one hand, if the unknown person is the subject of a biography, they are probably

important and should be in the People table, so a forward chase should be run.

On the other hand, suppose the People table is a high-quality, master table which

should not be corrupted with potentially spurious inserts, whereas the tuples in

the Biography table generally come from questionable sources. Then it is better to

42

Algorithm 3: Actions to take after tuple deletion

{Tuple t has been deleted from relation R}

for all connections or subscriptions σ having R on the RHS do

for all former σ satisfaction witnesses w that contained t do

let w’ be the portion of w corresponding to the LHS of σ

if w’ is now a violation witness for σ then

notify user of this RHS-violation and allow them to correct it

{any corrective actions generate calls to their own handling algorithms,

e.g. a correction through a further delete requires a recursive call to

Algorithm 3}

else if w was an explicit satisfaction witness for σ then

update the per-tuple correspondence info for w to reflect the fact that

while these tuples are still part of a σ satisfaction witness, they are no

longer part of an explicit satisfaction witness

{For example, in Figure 2.3, if the second tuple in P is deleted, person key

must be set to 0 for the first tuple in B}

end if

end for

end for

leave the tgd partially unsatisfied than to have large numbers of inserts, potentially

of low-quality data, be propagated into People. Indeed, σ5 is very close to a

traditional inclusion dependency, and those are never implemented with a forward-

chase like enforcement mechanism, precisely because the RHS table in an inclusion

dependency tends to be the “master” table in some sense. In fact, true inclusion

dependency-style enforcement would disallow the new insert – a mechanism which

43

Algorithm 4: Actions to take after tuple modification

{Tuple t ∈ R has just been changed to t′}

run Algorithm 3 as though t had just been deleted

run Algorithm 2 as though t′ had just been inserted

if t was a LHS tuple included in an explicit satisfaction witness w for some tgd

σ then

if the modification to t′ means t′ cannot be part of the same witness then

{there was a change to attribute shared between a LHS and a RHS rela-

tion, for example, suppose in Figure 2.3, the first tuple in B had its sub-

ject lastname changed to Washington }

update the per-tuple correspondence info to reflect the fact that w is no

longer an explicit satisfaction witness for σ

end if

end if

Algorithm 5: Actions to take after duplicate unmarking

{Tuples t and t′ have been unmarked as duplicate candidates}

if one of t or t′, say t, was a frontier tuple then

if no more tuples t′′ are potential duplicates for t then

{perform frontier operation of expansion}

insert t into the database

run Algorithm 2

end if

end if

44

Algorithm 6: Actions to take after tuple merging

{Tuples t and t′ have been manually merged into t′′}

for all unifications between a labeled null xi and another value v performed in

the merge do

O := set of tuple modifications required to replace all occurrences of xi in

the database with v

perform all operations in O, including subsequent calls to Algorithm 4

end for

for all w explicit satisfaction witnesses to σ containing t or t′ on the RHS do

update the per-tuple correspondence info to reflect the fact that t′′ is now the

corresponding RHS tuple in all cases

end for

for all w explicit satisfaction witnesses to σ containing t or t′ on the LHS do

update the per-tuple correspondence information for t′′ accordingly, requiring

the user to resolve any conflicts manually

{a conflict can arise if there were two explicit satisfaction witnesses for σ, w

containing t on the LHS and w containing t′ on the RHS, but w and w’ contain

different RHS tuples; correspondences must be many-to-one}

end for

is almost certainly too strong for most collaborative DBMS settings. Ignoring the

violation allows the inserts into Biographies to still proceed, but protects the

data quality of People. Ultimately, only the user who understands the domain,

the tables and the tgd can decide whether to make it a connection or a subscription.

RHS-violations, on the other hand, are not repaired automatically. The system

does notify the user of them as they occur so that the user may manually cascade

45

Algorithm 7: Actions to take after tuple splitting

{Tuple t has been manually split into t′ and t′′}

for all w explicit satisfaction witnesses containing t on the LHS or RHS do

have the user update the per-tuple correspondence information manually

end for

for all violation witnesses of any subscription σ containing t′ or t′′ do

have the user specify whether to correct the violation (via the forward chase)

end for

the deletion if they choose, but it takes no further action on its own. We believe

that in the majority of cases, the backward chase would be too strong a mechanism.

When users create tgds, they think of them primarily as assistance tools either

for specifying tuple-level correspondences or for propagating inserts (in Youtopia,

this functionality is provided by tgds that are correspondences and subscriptions,

respectively), rather than as logical formulas that truly must hold on the entire

database. In the majority of cases, a deletion that causes a RHS-violation of a tgd

should create an explicit exception to the satisfaction of the tgd. If no exception

is desired, it is reasonable to expect the user to correct the problem manually.

The Youtopia data cleaning operations are then as follows:

• data manipulation: insert, delete and modify tuples.

• duplicate management : mark and unmark any pair of tuples as duplicate

candidates, merge two duplicate candidates into one tuple, split a tuple

into two. This includes the forward chase frontier operations as a subcase.

• correspondence management : specify or un-specify a tuple-level correspon-

dence between two (or more) tuples, with respect to a specific tgd.

46

In many cases, performing an individual operation from those listed above may

affect metadata related to duplicates and per-tuple correspondence information;

thus, additional actions may need to be taken by the system. Below, we present

very high-level pseudocode explaining what is done in Youtopia for each operation

that may require further action. Three of the operations do not require any further

action - these are marking a pair of tuples as potential duplicates, marking two tu-

ples as corresponding with respect to a tgd, and unmarking them as corresponding.

Algorithms 2 through 7 present pseudocode for the remaining six.

As is clear from the pseudocode, the bulk of the work to be done is related

to the maintenance of per-tuple correspondence information, which is frequently

nontrivial. Indeed, in the case of the tuple split operation, we leave this work to be

performed explicitly by the user, as there are arguably no corrective actions that

are applicable in all possible situations. As a tuple split is a relatively complicated

operation that requires substantial domain knowledge from the user, it is reason-

able to expect them to be able to update the per-tuple correspondence information

as well at the time of the split.

47

CHAPTER 3

TRANSACTION SERIALIZABILITY

3.1 Non-blocking algorithms for concurrency control

This chapter introduces a notion of serializability for Youtopia transactions; we call

it Youtopia Multiversion Conflict-Serializability (YMCSR), as it is related to the

classical Multiversion Conflict-Serializability (MCSR) [62]. The reader might be

curious about the reasons behind our decision to work explicitly within the multi-

version setting. After all, it explicitly includes implementation-related machinery

(i.e. versioning), and is thus in a sense not as fully general as some other set-

tings. We have chosen to work in the multiversion framework because is especially

well-suited for the design of non-blocking concurrency control algorithms in unre-

stricted system scenarios (i.e. those which may include a high level of transaction

contention with respect to data).

As mentioned in Section 1.3, any concurrency control algorithm that is practi-

cal for use in a community DBMS must be “non-blocking” in some sense. We begin

by exploring and formalizing this concept of non-blocking. Most of the material in

this section is closely related to facts known as folklore in the classical concurrency

control community; our goal in this section is to formalize it and make precise the

way in which it applies to Youtopia transactions, which have some non-standard

features. Our formalization will serve not only to motivate our choice of the mul-

tiversion environment, but to set the stage for a more involved examination of the

tradeoff between the strength of concurrency control enforcement mechanisms and

the achievability of isolation levels in Chapter 4.

48

We start by formalizing the notion of a Youtopia transaction. As we have

already mentioned, a transaction is sequence of reads and writes, optionally ended

by an explicit special commit, abort or terminate operation. A transaction is

not required to ever perform any of these; for example, a forward chase that is

perpetually extended by frontier expansion operations might neither commit nor

terminate. Such a chase might well arise in practice, for example in the genealogical

database discussed in Example 1.3.3.

A word is in order on the explicit abort operation. It will occur when the system

aborts a transaction because of concurrency control problems, but also whenever a

user manually specifies that a concrete transaction is to be aborted and “undone”

with respect to its effects on the database. A transaction may be aborted, for

example, because is is no longer useful or relevant (e.g. a travel database user

realizes that they cannot make a planned trip), or because a user is removing cases

of vandalism on the data, or when a large portion of the transaction was carried

out by an algorithm and a human subsequently determines that the algorithm used

an inappropriate heuristic and made inappropriate changes to the data.

It is natural to specify the reads in a transaction intensionally, that is, by means

of queries. Both the users and the algorithms running on the system (such as the

forward and backward chase from Chapter 2) normally perform their reads through

queries; thus, the specific tuples they read will depend on the state of the database

at the time the query is posed. A priori we do not restrict the expressiveness of

the query language; however, in any real-world system, we can expect most queries

to be expressible in standard SQL. This is a realistic restriction to impose on the

human users; also, as we will see in Section 3.4, it holds on all queries posed by

the algorithms running the Youtopia forward and backward chase.

49

Writes, on the other hand, can be specified extensionally. In our model, a write

is a tuple insertion, deletion or modification operation. We note that all the oper-

ations introduced in Section 2.3 can be modeled as a sequence of such basic writes.

For insert, delete, modify, merge and split operations, this is self-explanatory. If

we assume that per-tuple correspondence information is specified with extra at-

tributes as in Figure 2.3, it is easy to see how the correspondence management

operations can also be represented as tuple modifications. Finally, marking and

unmarking pairs of tuples as duplicates can also be implemented with tuple insert

and delete operations. For example, the Dup relation can be represented as an

index table relating each tuple’s key to the keys of its potential duplicates. In this

representation, the translation from a duplicate mark/unmark operation to a set

of tuple insertions and deletions on the index table is straightforward.

Definition 3.1.1 (Transaction). A transaction is a finite or infinite sequence of

operations and delays. Each operation is either a read query, a tuple insertion,

deletion or modification, or the special commit, terminate or abort operation.

A transaction may contain only one commit or terminate operation; if it does

contain such an operation, it must be the last operation in the transaction. The

semantics of the read, insert, delete and modify operations are the standard ones.

The terminate and commit operations have no direct effect on the database. A

delay is a number representing time in a suitable unit and also has no effect on

the database; delays may be arbitrarily large.

We assume a system model in which transaction execution is controlled by a

scheduler component that may permit an operation to run, or delay the operation

execution until some future time.

Definition 3.1.2 (Transaction states). Consider a transaction T that is executing

50

in the system. At a given point in time, T may be in one of three states. It is

in the running state if a read or write operation is actively being carried out. It

is in the waiting state if it is currently “executing” a delay, that is, it is waiting

for user intervention to proceed. Otherwise, it is in the ready state – this means

that it knows which concrete operation it wishes to perform next and is awaiting

permission from the scheduler to execute it.

Definition 3.1.3 (Non-blocking scheduler). We say that a scheduler is non-

blocking if no transaction in the ready state is ever required to wait for an in-

definitely long period of time before being allowed to run.

The most important source of indefinite waits in Youtopia are, of course, the

delays in the transactions themselves. Because these may occur at any time, a

non-blocking scheduler may never delay the execution of a transaction T which

is ready specifically in order to wait until another transaction T ′ exits its waiting

state. We formalize this somewhat as follows.

Definition 3.1.4 (Blocking criterion). Consider a test φ; suppose φ is evaluated

on a system where a set of transactions is in the waiting state and evaluates to

false. Suppose now that the delay for each of the waiting transactions is artifi-

cially extended to an infinite time duration. If it is not guaranteed that φ must

nevertheless evaluate to true after finitely many time units have passed, φ is a

blocking criterion.

The reader will note that our formalization is not complete: we use the term test

without defining it. This is because we do not wish to restrict in any way the class

of criteria or tests that a scheduler algorithm can evaluate on a running system. For

example, a scheduler may wish to perform tests based on timing events (“has this

51

transaction been in the waiting state for more than three seconds?”). A test can be

considered as a subroutine that returns a binary value when run by the scheduler,

and may read arbitrary information from the state of the running system; further

formalization of this notion is not necessary for the present discussion.

The following lemma is obvious and connects Definitions 3.1.3 and 3.1.4.

Lemma 3.1.5. A scheduler is non-blocking iff it uses no blocking criteria in de-

termining whether or not to allow a transaction that is in the ready state to run.

In Youtopia, the only acceptable schedulers are non-blocking, following Defi-

nition 3.1.3. Inspecting the definition clarifies that some amount of “blocking” in

the system may in fact be acceptable – for example, transactions may be made

to wait until a timeout occurs. However, no blocking may be performed based on

any transaction’s anticipated future re-entering of a ready state after it has been

waiting. It should be clear that classical locking-based algorithms such as 2PL and

its variants are unsuitable in Youtopia, as they use blocking criteria in deciding

which transaction steps they allow to proceed. For example, some 2PL variants

delay steps until a particular transaction terminates (and releases its locks).

How can concurrency control be enforced in a non-blocking way? Intuitively,

it seems that the scheduler must allow transaction steps to proceed even when it

cannot guarantee that it is “safe” for them to do so from a concurrency control

standpoint; this, it appears, may be “risky” in some sense. We can formalize these

intuitions as well.

A scheduler’s purpose is ultimately to enforce some property on the transac-

tions’ execution. Normally this is a serializability property of some sort, and it is

typically defined on schedules, which we now define for Youtopia transactions.

52

Definition 3.1.6 (Schedule). A transaction schedule is a pair (D, τ) where D is

an initial database and τ is a finite or infinite sequence of operations that have

been performed by the transaction on D. Read queries, tuple insertions and tuple

deletions are included directly in the schedule; tuple modifications are represented

as a tuple deletion followed by an insertion. When dealing with the operations

within a schedule, we use the notation w(t) for a write of tuple t, and r(q) for a

read that consists of posing the query q. A schedule can be finite or infinite. We

denote by τ(D) the database that results when τ is actually executed over D.

The above definition is for a single transaction. If multiple transactions exe-

cute and their operations interleave, the resulting sequence is a multi-transaction

schedule. We can assume that in a multi-transaction schedule we can distinguish

which operations were performed by which transaction, through suitable tagging

of the operations. We will not differentiate between single- and multi-transaction

schedules from now on.

Definition 3.1.7 (History). A history is a schedule in which every transaction

performs (and ends with) either a commit, an abort or a terminate operation.

We assume the scheduler is interested in enforcing some property ψ on the

schedules in the system. Again, we leave the exact specification of this property

open; normally, it will be strongly related to the desired notion of serializability.

The only assumptions we make about ψ are the following:

• ψ holds on all empty schedules (i.e. schedules that contain no operations).

• its satisfaction is preserved under the prefix operator - if a schedule (D, τ)

satisfies ψ, so does (D, τ ′) for all τ ′ which are prefixes of τ .

53

• it is nontrivial, that is, there exists at least one schedule (D, τ) such that ψ

is false for (D, τ).

Definition 3.1.8 (Strict enforcement). A scheduler strictly enforces a property of

schedules ψ if at any point of the system’s execution, the current schedule in the

system is guaranteed to satisfy ψ.

A scheduler that strictly enforces ψ is a good thing in general, as no trans-

action’s operation ever needs to be reversed in order to guarantee that ψ still

holds. Reversing an operation usually means a transaction abort, or at least a

partial rollback. However, the following theorem tells us some compromises must

be made when choosing a concurrency control algorithm, as non-blocking and strict

enforcement are incompatible:

Theorem 3.1.9. It is impossible for a non-blocking scheduler to strictly enforce a

nontrivial property of schedules.

Proof. The proof is by contradiction. Let (D, τ) be a schedule on which the prop-

erty ψ is false – this must exist as ψ is nontrivial. Let τ ′ be the longest prefix of

τ such that (D, τ ′) does satisfy ψ – in the worst case this is the empty schedule.

Let the next operation that occurs in τ after τ ′ be o, performed by transaction

number i. We can construct a running system scenario where all the transactions

enter the waiting state after τ ′ is executed. Subsequently transaction i enters the

ready state and requests that o be performed; all other transactions block indef-

initely. If the scheduler allows o to proceed, it allows a violation of ψ, so it does

not strictly enforce it. If it does not allow o to proceed, it will block indefinitely

while transaction i is in the ready state, so it is not non-blocking.

54

We remark that Theorem 3.1.9 does not necessarily hold in a setting where

the scheduler has additional information about the transactions, such as semantic

knowledge that would allow it to determine what operations a transaction might

still perform in the future (and more importantly, to know that certain operations

will never be performed by a transaction in the future). Thus, in some restricted

settings, it may be possible to have a non-blocking scheduler that does strictly

enforce a property of schedules, but not in the general case.

In Youtopia, the non-blocking requirement cannot be dropped. This means

that strict enforcement must be relaxed. Consequently, as the system runs, some

schedules may be produced that do not satisfy the (still to be specified) property

ψ. Because of this, a verification and correction mechanism is necessary to ensure

that any violations of ψ are detected and repaired; as already mentioned, this

normally involves aborting and restarting one or more transactions.

There are two broad possibilities for when the validation can occur. First, as

in classical optimistic concurrency control, it is possible to wait until the trans-

action has terminated and then carry out validation for all the operations it has

performed. The problem with using such a scheme in Youtopia is that transactions

may never terminate. This means that for some transactions, a validation phase

might never happen. If the system were using a classical optimistic concurrency

control algorithm where each transaction maintains its private workspace until

after the validation, this would also mean that a non-terminating transaction’s

writes would never become visible to anyone else. Consequently, such an enforce-

ment mechanism is not suitable for Youtopia in general. There may, of course, be

limited cases where it is adequate; investigating those is future work.

At the other extreme is the approach where validation is performed after every

55

potentially “risky” operation, as in the classical TO (timestamp ordering) protocol.

If two transactions are discovered to have interfered in an undesirable way, one is

aborted. The number of aborts can be reduced substantially through the use of

versioning : this mechanism hides certain transactions’ writes from other transac-

tions’ reads and prevents a certain number of conflicts. This last option appears

much more suitable for Youtopia, and it is therefore where we begin developing

our concept of serializability. An interesting topic for future research would be

to investigate a hybrid approach, where validation and correction are “somewhat”

deferred – not to the end of a transaction, but to some suitable point determined

either by system demands or the transaction semantics.

3.2 Youtopia Multiversion Conflict-Serializability

We now present our definition of Youtopia Multiversion Conflict-Serializability. It

is related to classical MCSR, but with two important differences. First, our sched-

ules specify the reads intensionally; this requires a new definitional framework.

Second, we give a definition which assumes from the outset that a particular de-

sired serialization ordering on the transactions is given: we define serializability of

a schedule with respect to that ordering. In practice, when using our definition to

design real-world algorithms, it is extremely likely that such an ordering would be

natural and easy to obtain. For example, concurrency protocols such as MVTO

assign transactions priorities based on the timestamp of the first operation and

attempt to serialize with respect to those priorities. In the future, it may also be

interesting to develop a broader definition of YMCSR which would not assume a

particular serialization order.

56

A note is in order on the conventions associated with priority numbers. We

assume, as is standard, that higher -priority transactions are those with smaller pri-

ority numbers. That is, the transactions should be serialized in increasing priority

number order.

The first thing we need to do is to formalize versioning and version visibility.

In our model, each operation on a tuple creates a new version, even if the same

transaction has operated on the tuple already. (Deletions, of course, create special

versions that indicate the tuple was deleted). Thus, it is natural to have two-

component version numbers, the first being the transaction number and the second

tracking the number of writes to this tuple within the particular transaction.

Definition 3.2.1 (Version number). A version number < i, j > is a pair of num-

bers i and j, which are either nonnegative integers or the special value ∞, which

is needed for technical reasons. We also define an ordering relation ≺ on ver-

sion numbers, as follows: given two version numbers < i, j > and < k, l >,

< i, j >≺< k, l > iff (i < k ∨ (i = k ∧ j < l)). ∞ has the property that i <∞ for

every integer i.

In a multiversion schedule, we can associate each write with the version of the

tuple it produces; this is easily done by tagging the write with the version number,

so that wi(t) becomes wi(t<i,j>). If a transaction performs an abort operation, all

the versions it has created “disappear” from the database (either literally through

being removed, or through some mechanism that makes them invisible to any read

from any query).

The issue of reads is slightly more complicated, since they are specified inten-

sionally; a read is not associated with a concrete version of a particular tuple.

What we can say about a read query is that it is associated with a particular

57

transaction, and this association determines the database which is visible to the

query, as follows:

Definition 3.2.2 (Database visible to a query). Consider a query q executed by

transaction number i over database D. The part of D visible to q with respect

to i is defined as follows. For every tuple t, include the highest-numbered version

< k, l > from D such that < k, l >≺< i,∞ >.

Definition 3.2.3 (Result of a versioned read query). The result of a versioned

read query r(q) on a database D, when executed by transaction i, is the result of

evaluating q over the part of D visible to q with respect to i.

We can thus simply annotate reads with transaction numbers, as these fully

determine which database is visible to the query.

Definition 3.2.4 (Multiversion schedule). A multiversion schedule is a schedule

in which each write of tuple t, w(t), by transaction i is annotated as wi(t<i,j>) for

some j, and each read r(q) by transaction i is annotated as ri(q).

We are now ready to define conflicts for operation pairs, as a prelude to defining

YMCSR itself. In most versioned settings including ours, write-write operation

pairs do not conflict, as there is never any overwriting of values and thus all

writes commute with each other. This means all conflicts occur between pairs

of operations involving one read and one write, as explained in Definition 3.2.5.

The high-level intuition for the definition is as follows: consider the database at

the time of the second of the two potentially conflicting operations. If on this

database, the result of the read query is affected by the presence or absence of the

result of the write, then the operations are in conflict.

58

Definition 3.2.5 (Conflicting pair of operations). Let (D, τ) be a multiversion

schedule that includes operations wi(t<i,j>) and rk(q) with i < k. That is, τ has

the form τ ′ · o1 · τ ′′ · o2 · τ3, where o1 and o2 are the read and write operation (not

necessarily respectively). Define databases D′ and D′′ as explained below. o1 and

o2 conflict iff q(D′) 6= q(D′′).

If o1 is the write wi(t<i,j>), let D′ = [τ ′ · o1 · τ ′′](D), that is, the database that

exists just before the read o2 is performed. Let D′′ be identical to D′, except that

it does not include the tuple version t<i,j> (i.e. we are making the outcome of the

write invisible).

If o1 is the read rk(q), let D′ be [τ ′ ·o1 ·τ ′′](D) excluding the results of any writes

(i.e. any tuple version) produced by transaction k after rk(q) was performed. Let

D′′ = o2(D
′).

This definition is very clear in the first subcase, where the read is the second

of two operations: there is a conflict iff the result of the read would have been

different had the write not happened. Indeed, we can use this subcase to define a

reads-from (RF) relation on transactions in a schedule that keeps track explicitly

of read dependencies between transactions:

Definition 3.2.6 (Reads-from relation). Let (D, τ) be a multiversion schedule

including transactions i and j, with i > j. We define a reads-from relation, RF ,

on transactions, so that RF (i, j) iff the schedule includes a write by transaction j

followed by a conflicting read by transaction i.

The second subcase in Definition 3.2.5 applies to those situations where the

write comes second:

59

Definition 3.2.7 (Retroactively affecting a read). If a read and write operation

are in conflict within a schedule and the write occurs after the read, we say that

the write retroactively affects the read.

The reader might wonder about Definition 3.2.5 here. Clearly the conflict check

must be performed, but why should it be performed on the particular databases

we define? Understanding this case is easier if we keep in mind that our ultimate

purpose is to maintain the illusion of serial execution in priority order. That is,

the write in question is “supposed” to happen before the read. If the read happens

earlier, it is in some sense “premature”; it was performed on a database which

was “incomplete” with respect to writes by higher-priority transactions. This may

cause a problem, and it turns out that the test in Definition 3.2.5 is guaranteed

to detect a problem if it occurs (the converse is not necessarily true, as we will

explain later).

Consider the read rk(q), and consider τ ′ in Definition 3.2.5. This is the part

of the schedule containing the operations carried out on D before rk(q) happened.

Some of these writes may belong to transactions numbered l > k; their results

will not be visible to rk(q), so we can exclude them from consideration. Let τ ′k

be the schedule obtained from τ ′ by removing all operations belonging to such

lower-priority transactions. When rk(q) is posed on τ ′(D), the visible database for

the query is the same as it would be on τ ′k(D).

Once rk(q) has been performed on τ ′(D), the die is cast. We need to ensure that

this query result is the same as it would have been if rk(q) had been performed after

all transactions numbered less than k had terminated. That is, suppose we knew

that all transactions numbered m < k would eventually terminate, and moreover

we knew the future execution schedule for all these transactions; call this τ t
<k.

60

Then we need to ensure that q(τ ′K(D)) = q([τ ′k · τ t
<k](D)).

Of course, we do not know τ t
<k, nor are we ever guaranteed to know it if the

transactions do not terminate. However, if q(τ ′k(D)) 6= q([τ ′k · τ t
<k](D)), then there

is a finite prefix τ f
<k of τ t

<k such that we also have q(τ ′k(D)) 6= q([τ ′k ·τ
f
<k](D)). That

is, the change in the result of the read query will become apparent after finitely

many future operations by higher-priority transactions have occurred.

This is exactly what the conflict test in Definition 3.2.5 is checking for; it is

testing whether q(τ ′k(D)) = q([τ ′k · τ
f
<k](D), where in our case τ f

<k includes all the

writes seen since rk(q) from transactions with numbers < k. The actual database

D′ in the second subcase of Definition 3.2.5 is described somewhat differently from

[τ ′k ·τ
f
<k](D) – we allow D′ to contain versions created by transactions with numbers

greater than k. However, no such versions will be visible to rk(q) anyway, so the

two databases are equivalent for the purpose of the test.

We are now ready to define serializability. Classical serializability definitions

frequently apply only to histories, rather than schedules in general; however, the

property in the definition below can apply equally well to schedules that are not

histories. As we are very likely to deal with the latter kind of schedules in Youtopia,

it makes sense to extend the definition to include them as well.

Definition 3.2.8 (Youtopia Multiversion Conflict-Serializability). A multiversion

schedule is Youtopia Multiversion Conflict-Serializable iff it includes no writes that

retroactively affect some read, and no reads that are affected by writes of aborted

transactions.

We briefly explain the connection of this definition to classical (multiversion)

conflict serializability. Conflict serializability normally restricts the ordering of

61

conflicting pairs of operations to be the same as that in some serial schedule. In

our case, the serialization ordering is known up front; in our desired serial schedule,

all conflicting read-write pairs are ordered so that the write occurs before the read

(recall that to conflict with a read by transaction i, the write must be performed

by a transaction with number j < i). Thus any instance of a write retroactively

affecting a read is a pathological phenomenon and a serializability violation, as it

is a pair of conflicting operations that are not ordered in the same way as they

would appear in the serial schedule.

We now relate YMCSR to another classical notion – final-state serializability.

As the latter is normally defined on histories only, the result that follows is given

for Youtopia histories rather than general schedules. We also assume that no

transactions abort in the schedule – this is again standard in serializability theory,

where issues of recovery are typically separated from the properties which one tries

to enforce in a “normal” (abort-free) setting. However, this same theorem could

be proved for schedules that do involve aborts (recall that a “cleanup” mechanism

is in place to hide all versions produced by aborted transactions from future reads

as soon as the abort occurs).

Theorem 3.2.9. Let (D, τ) be a Youtopia multiversion history in YMCSR, and

assume it contains no transactions that perform the abort operation. Then (D, τ)

is final-state serializable. That is, let τ ′ be the history obtained from τ by reorder-

ing operations so that all the operations belonging to the highest-priority (lowest-

numbered) transaction come first, the second-highest-priority transaction next, and

so on (assume that the reordering preserves operation ordering within a trans-

action). Then running either schedule on D produces the same final database:

τ(D) = τ ′(D).

62

Proof. We make the standard assumption that transactions are deterministic, in

the sense that if a transaction runs twice and obtains the same results to its read

queries on both runs, it will make the same writes.

We consider small rearrangements of the operations in τ . Specifically, let o be

the first operation in τ which is “out of order” with respect to the serial ordering

of transactions. Consider the history τ ∗ obtained from τ by moving o forward

in the schedule into its “proper place”. We show that τ(D) = τ ∗(D) and that

(D, τ ∗) is in YMCSR. As τ can be transformed into τ ′ by a finite sequence of such

operations, the theorem will follow.

The simpler of the two cases occurs when o is a read operation, rk(q). Moving

the read forward will not change its answer – we are only moving it past writes

of higher-numbered transactions that were not visible to the read in the original

schedule anyway. Thus transaction k will perform the same writes as it did in τ .

We argue that no other transactions’ reads (or writes) will be changed either.

Transactions numbered < k are easy to deal with as, their reads and writes are

all already ordered before o anyway (by our assumption that o was the first out-

of-order operation). As for transactions numbered > k, this is seen through an

inductive argument. Let i be the smallest transaction number greater than k.

Transaction i reads from transactions numbered k or less; we have seen that none

of these transactions’ writes change, so nor do i’s reads, or, by our determinism

assumption, i’s writes. So, by induction, all transactions still perform the same

writes and τ(D) = τ ∗(D).

As for (D, τ ∗) belonging to MCSR, the only way this could fail would be if some

read were now retroactively violated by a write. The only read that has changed

63

its position in relation to any writes is o, and – as we have already mentioned – the

change in position was only with respect to writes by higher-numbered transactions

anyway (those can never be in conflict with o). Thus o is fine, and as no other

reads or writes have been moved, we are done.

Now suppose o is a write by transaction k. Again, it is clear that the writes

of transactions numbered <= k do not change. Let l be the smallest transaction

number greater than k, and suppose the rearrangement causes the result of some

rl(q) to change. This must mean that o used to occur after the read but has been

moved before it. However, all operations of transaction k which are subsequent to o

must still follow rl(q) in the schedule, since we have moved just one operation. From

this, it follows that in the original schedule τ , o retroactively violated the result

of rl(q) and (D, τ) was not in YMCSR - a contradiction. So, again generalizing

this to an inductive argument, no other transaction’s reads (or writes) change, and

again τ(D) = τ ∗(D).

Finally, we argue that (D, τ ∗) is still in MCSR. If not, this means some read

rl(q) is now retroactively affected by a write wm(t<m,n>). In the original τ , where

could o have been in relation to rl(q) and wm(t<m,n>)? It cannot have occurred

before the read, otherwise the retroactive violation would also be present in τ . So

o must have occurred between the two operations or after wm(t<m,n>).

Suppose it occurred between the two operations. Denote the database on which

rl(q) was originally performed (in τ) by D∗. A further set of writes by transactions

numbered < l may have occurred between the read and o; call that set W1. Also,

a set of writes may have occurred between o and wm(t<m,n>); call that set W2. We

know that neither o nor wm(t<m,n>) retroactively affected rl(q) in τ ; this tells us

that the answer to rl(q) is the same whether it is posed on any of the following

64

databases: D∗, W1(D
∗), [W1 ∪ {o}](D∗), [W1 ∪ {o} ∪W2](D

∗), [W1 ∪ {o} ∪W2 ∪

{wm(t<m,n>)}](D∗). Now, in τ ′, at the time wm(t<m,n>) is performed, the database

visible to rl(q) is still [W1∪{o}∪W2](D
∗), even though the write {o} was performed

before W1 this time. Thus we know the result of rl(q) cannot be changed by the

write wm(t<m,n>). The key observation we are using here is that in a versioned

setting, writes are completely commutative with respect to their effect on the

database.

The argument for the final subcase – o occurs after wm(t<m,n>) – is very similar.

If wm(t<m,n>) were now retroactively violating the result of rl(q) in τ ∗, then o would

have retroactively violated the result of rl(q) in τ . So we are fine in this case also,

and consequently τ ∗ is in YMCSR as required.

We note that the converse of Theorem 3.2.9 does not hold; as mentioned before,

our conflict-serializability criterion is a conservative one.

Example 3.2.10. Consider the history (D, τ) where D is the empty database and

τ is

r2(SELECT * FROM R) w1(t<1,1>) w1(t<1,2>) terminate1 terminate2

where tuple t is R(a,b,c), and the first write inserts it into the database, while the

second write deletes it. The first write retroactively affects the read by transaction

2, so the history is not in YMCSR. However, τ(D) is the same as the final database

produced in a serial execution, so the history is final-state serializable.

65

3.3 Enforcing YMCSR

In this section, we begin the discussion of how YMCSR may be enforced in practice.

When presenting our algorithms, we make the assumption that no transactions in

the system perform the commit operation. This means we only need to enforce

YMCSR itself, rather than also having to ensure the durability of those transac-

tions which have committed. Indeed, a straightforward corollary of Theorem 3.1.9

is that a nonblocking scheduler cannot enforce both durability and YMCSR, as

commits cannot be delayed. In the remainder of this chapter, then, any trans-

action, even one that has executed a terminate operation, may be aborted and

redone by the system if necessary to enforce YMCSR. We will return to this “no

durability” assumption and discuss it at greater length in Chapter 4.

The obvious non-blocking way to enforce YMCSR is to use an adaptation of

the classical MVTO (multiversion timestamp ordering) algorithm [62]. The most

general adaptation – in the sense that it makes as few design decisions as possible

– yields the algorithm template given in Algorithm 8. The algorithm makes use of

the RF ∗ relation, which is the transitive closure of the RF relation introduced in

Definition 3.2.6.

The remainder of this section explains the design decisions that must be made

to instantiate Algorithm 8 into a real, full algorithm for concurrency control.

First, we need to decide how transaction priorities are assigned. A common

practical method is to assign them based on the timestamp of the arrival into the

system of the first operation of the transaction, but this is by no means the only

option; some transactions may inherently be worthy of a higher priority, because

of factors such as the rank of the user starting the transaction or because the

66

Algorithm 8: Non-blocking scheduler template for enforcing YMCSR

choose next transaction operation o to schedule

if o is a read query q then

execute q, store it for future checks

update the RF ∗ relation appropriately

else

{suppose o belongs to transaction with priority j}

execute o

for all stored read queries q of transactions numbered i > j do

if o retroactively changes the result of q then

abort transaction k, where k is either i or j

abort any transactions numbered l such that RF ∗(l, k)

restart all just-aborted transactions with new priority numbers, larger

than any already in the system

end if

end for

end if

transaction performs a particularly “important” task in the system.

Second, in the case of a conflict between a reader and a writer, the above

template does not specify which transaction must be aborted. In standard MVTO,

writers are aborted, on the assumption that read transactions are likely to be much

more frequent and shorter, and should therefore be privileged for greater system

throughput. On the other hand, an argument can be made that it is the reader

who should be aborted, since – after all – it has lower priority. In practice, this is a

decision that must be made based on the specific system deployment and workload.

67

Indeed, there is no reason for the choice to be made consistently each time; the

algorithm can run a complex choice procedure to determine which transaction to

abort. For example, it might choose the transaction whose abort would generate

the fewest cascading aborts.

The third design decision concerns the implementation of the test for checking

whether a read and a write conflict, as described in Definition 3.2.5. This test is

necessary when checking whether a write retroactively violates a read, and when

updating the relation RF ∗ after a read. However, it is not in general easy to

carry out the test both precisely and quickly. If the read queries involved are

complex enough, evaluating it can actually require at least one query evaluation

on the database. Thus, it may be better in some cases to fall back on a coarse,

conservative approximation rather than precisely performing the conflict tests,

trading accuracy and an increase in the number of cascading aborts for time.

Finally, the first line of Algorithm 8 involves a scheduling choice among the

transactions which are currently in the ready state. Ideally, of course, the scheduler

should allow operations to run as soon as possible, while requiring as few aborts

as possible. This means that the number of conflicts must be reduced as far as

possible. If semantic knowledge is available about the transaction programs and

the algorithm has some additional information about the possible future reads

and writes, this may be helpful in scheduling. In the general case, where no such

knowledge is available, it may be possible for the scheduler to at least develop

heuristics about expected operations, using information about previous transaction

behavior in the system. Based on these heuristics, transactions less likely to conflict

can be allowed to interleave more aggressively or even run in parallel.

Also, when a transaction T enters the waiting state, the scheduler will normally

68

permit other transactions’ operations to run without waiting for T to become

ready again, as explained earlier. However, as we have mentioned, sometimes

the scheduler may choose to “wait for T a little” i.e. delay execution of other

transactions for a bounded period of time. Such a decision will depend on the

expected costs and benefits; for example, if the transaction is expected to have

short delays, the scheduler may well choose to wait. This is particularly true if

T is “worth waiting for” – because, for example, many running transactions with

lower priority than T are likely to read from the relations that T is expected to

write to.

3.4 A case study

This section is devoted to an extended case study in which we present a concrete

instantiation of Algorithm 8. For simplicity, our case study takes place in a system

where only a subset of the user operations from Chapter 2 are allowed. These

operations are tuple insertion, deletion, and a limited form of tuple modification

which we refer to as null-replacement. This is the replacement of all occurrences of

a labeled null in the database by another value – either another labeled null or a

constant. Null-replacements are interesting in that they are a kind of tuple mod-

ification that can only create LHS-violations of tgds, not RHS-violations. In the

system we consider, LHS-violations are repaired by the forward chase and RHS-

violations are repaired by a backward chase. This is an interesting scenario as it

involves potentially long chains of both insertion and deletion operations propa-

gating in the system simultaneously and interleaving, thus leading to a potentially

large amount of interference.

69

3.4.1 Modeling the chase

First, we explain how precisely an execution of a Youtopia forward or backward

chase maps onto the transaction model given in Definition 3.1.1. Since the chase

may include long stretches of reads and writes that are generated automatically,

it is important to understand what those reads and writes are going to look like;

such knowledge is instructive in itself, but it also allows us to gear our implemen-

tation to the specific semantics and execution features of the chase. Issues like the

computation of the RF ∗ relation are much easier in a setting where the kinds of

read queries that may occur are quite restricted and known in advance.

Chase steps

First, we need to model the chase process in a way that exposes the read and

write operations. To this end, we move from the model in Algorithm 1 to a model

where a chase is a sequence of steps. Each step may or may not include a delaying

(blocking) operation where input is requested from a user. Algorithm 9 gives our

model for the execution of a single chase step. Here and in the remainder of this

section, the term chase refers to any Youtopia chase, forward or backward, unless

explicitly specified otherwise.

Algorithm 9 exposes the write and read operations a chase step performs as it

is executed. The write operations occur first, at the beginning of every step; each

write operation is either a tuple insertion, a tuple deletion, or a tuple modifica-

tion which is part of a null-replacement. Subsequently, the transaction step may

perform reads for two reasons: to determine what new violations were caused by

the writes, and to correct the violation nextViol. This is explained in detail in

70

Algorithm 9: A chase step in Youtopia

perform a set W of write operations

for all tgds σ potentially violated by a write in W do

violQueue.append(new violations of σ)

end for

if violQueue contains a deterministically repairable v then

{step belongs to deterministic stratum}

nextViol := v

else

choose nextViol from violQueue

end if

generate a set W ′ of corrective writes to repair nextViol

{generation may include blocking request for user input}

for all v′ ∈ violQueue which will be repaired by W ′ do

violQueue.remove(v′)

end for

Section 3.4.1; for now, note as an example that correcting a LHS-violation requires

reading the database to determine whether it contains any tuples more specific

than the frontier tuple.

The presentation of Algorithm 9 reflects a simplifying assumption we make

about the execution of a Youtopia chase – we assume all the writes are performed

before the reads begin. This is reasonable: in the chase, the data read in a given

step is virtually certain to have been modified by the writes that were performed

at the start of the same step. Delaying the reads until the writes have completed

is therefore necessary for correctness.

71

SELECT * FROM (LHS query)

WHERE NOT EXISTS (SELECT * FROM (RHS query))

Figure 3.1: Violation query template

SELECT * FROM A, T

WHERE A.name = T.attraction AND

AND A.name = ’Geneva Winery’ AND T.company = ’XYZ’

AND NOT EXISTS (SELECT * FROM R

WHERE R.company = T.company

AND R.attraction = A.name)

Figure 3.2: Violation query example

Read queries

When a transaction executes a chase step, it poses read queries for two different

reasons: to identify new tgd violations caused by a write, and to obtain information

required for tgd violation correction. In the former case, the query to be asked for

each tgd σ has the form presented in Figure 3.1.

LHS query and RHS query are conjunctive queries whose structure is dictated

by σ and bindings by the newly written tuple. We refer to this type of query as a

violation query.

Example 3.4.1. Returning to our database in Figure 1.1, if the tuple R(XYZ,

Geneva Winery, Great!) is deleted, the query to discover violations of σ3 is

shown in Figure 3.2. This query returns all the pairs of A and T tuples which have

been affected by the deletion with respect to satisfying σ3.

A transaction may also perform queries in order to determine how to correct a

violation, with or without human help. In the case of RHS-violations, no further

reads are performed - the system or a human chooses a tuple to delete from one of

72

the already-read violation witness tuples. For LHS-violations, however, additional

reads may be performed because of the possibility of correction through unification.

Given a set of frontier tuples for a violation, the system must perform the following

queries for each frontier tuple t belonging to relation R:

• find any t′ ∈ R more specific than t

• if such t′ are found, for all labeled nulls x in t which were not freshly generated

when t was created, find all tuples in the database containing x. If the frontier

unification operation is performed on t, these tuples must be modified.

We call these types of queries correction queries.

3.4.2 The algorithm

We now explain how we resolve the design decisions indicated in Section 3.3. First,

in terms of transaction priorities, we use a timestamp ordering assignment, giving

transactions priority numbers in the order of their arrival into the system. Second,

when handling conflicts between a reader and a writer, we always choose to abort

the reader, because it is the lower-priority transaction. The way we resolve each

of the other two decisions requires more detailed discussion.

Scheduling

We first partially instantiate the scheduling policy in Algorithm 8 to place an

interleaving restriction on steps from different transactions. We assume that inter-

leavings are only permitted at the chase step granularity. That is, if a transaction

has started a chase step and is performing writes, the scheduler will allow it to

73

finish the writes and perform all the reads it requires in that step before any other

transaction may proceed with any operation.

In practice, the scheduler’s queue of transactions that are ready to take a step is

populated asynchronously, as transactions complete frontier operations and return

control to the scheduler. This means that chase steps may indeed be scheduled

while another transaction’s step is waiting for frontier operations. However, main-

taining the illusion that interleaving only occurs at chase step level as far as reads

and writes are concerned is not difficult. A chase step performs all its writes and

violation read queries before asking for user input and blocking, so those cannot

pose a problem. A step of a backward chase performs no further reads. A näıve

implementation of the forward chase step may perform some correction queries

after the user has performed a frontier operation. However, these can only be

correction queries that ask for all tuples containing a given variable, and they are

known to the system before the frontier operation is requested. Therefore, they can

be performed beforehand as well. With a suitable index mapping variable names

to tuples, the queries should not be expensive to perform, and the only remaining

thing the system needs to ensure is that such a query is not logged if the user does

not choose unification.

At a higher level, the scheduler has many options in terms of how it allows

the chase steps to interleave. It may, for example, permit chases to run an entire

deterministic stratum before scheduling a step from another transaction. As de-

terministic strata involve no delays, this is perfectly acceptable in a non-blocking

scheduler. Again, in a real-world system, the choice of a scheduling policy would

be made based on known performance and load data. In our implementation and

experiments, we have chosen a basic scheduling policy that is one of the simplest to

74

understand and implement. Our scheduler allows arbitrary step interleaving rather

than running entire deterministic strata. It uses a round-robin decision procedure

to determine which ready transaction’s step is run next; just one step is run, and

then the scheduler moves on to the next ready transaction.

Determining conflicts

As mentioned before, determining whether operation pairs conflict according to

Definition 3.2.5 and computing the RF ∗ relation can be nontrivial for queries that

are complex enough.

Correction queries are easy to handle in conflict tests without accessing the

database. This is because a given tuple write affects the answer to a correction

query either on all databases, or on none. For example, if a correction query asks

for all tuples containing variable x2, a write affects the answer iff the tuple written

contains x2.

Violation queries are more challenging; for them, the conflict test does require

accessing the database to evaluate at least one query. Fortunately, however, a write

can only change the answer to a violation query in a limited number of ways. For

example, an insert can do so in two ways. It can contribute to the creation of a join

result among relations on the LHS of a tgd, so that a new violation witness appears.

Alternatively, it can provide the last tuple that makes a tuple appear in the join of

relations on the RHS of some tgd. If the new RHS join tuple matches a previously

existing violation witness, a violation is removed. Based on the type of the write

(insert or delete) it is therefore possible to perform the conflict test by posing a

single query which combines the original violation query with information about

the new tuple. We treat tuple modifications (conservatively) as a delete followed

75

by an insert.

In this case study, when we test for conflicts to determine whether a write

retroactively affects a read, we always perform the precise conflict test. However,

when computing RF ∗ for the purpose of determining cascading aborts, we consider

three different algorithms.

When a transaction with priority number i aborts, the first näıve, strawman

algorithm (NAÏVE) also aborts all transactions numbered j > i. This is sufficient

to guarantee correctness, but is clearly not optimal.

Computing RF ∗ more carefully can be done in at least two different ways, one

more precise and more expensive than the other. As mentioned, correction queries

are the easy case: given a logged list of all previous writes, it is easy to determine

which ones affect the result of a given read. If the list is kept in memory, the

dependencies can be computed without querying the database. Violation queries,

however, cannot be processed so simply without sacrificing precision.

The simpler of our two algorithms, COARSE, does not query the database to

identify conflicts caused by violation queries. Whenever it processes a violation

query that involves a set of relations {R1, R2, · · ·Rk}, it assumes that any transac-

tion which has previously written any tuple to one of the Ris may be the source of a

conflict, and includes this transaction in RF ∗. This is a conservative overestimate

of the real RF ∗, so correctness is guaranteed.

The second algorithm, PRECISE, trades off run time for precision. PRECISE de-

termines accurately, for each violation query q, which previous writes have changed

the answer to the query, using the precise conflict test described above.

76

COARSE has linear time complexity in the number of writes performed so far on

the database by updates which may still be aborted. For PRECISE, the dominating

contribution to the complexity is the cost of the joins in the queries; these joins are

dictated by the tgds (as in Example 3.4.1). In the worst case, their time complexity

is polynomial in the size of the database and exponential in the join arity, i.e. in

the number of atoms per side of a tgd. However, since the join predicates are a

function of the tgds and thus known up front, it is possible to improve performance

by appropriate indexing and join implementation.

3.4.3 Experiments

We have implemented Algorithm 8, instantiated as described above, and used each

of NAÏVE, COARSE and PRECISE for computing RF ∗ and for determining cascading

aborts. We now present a set of experiments that compare the performance of these

three algorithms with respect to the number of cascading aborts and execution

time.

Since Youtopia’s paradigm of community database management is new and

there are no real-world datasets for us to benchmark our algorithms against, we

have used synthetic data and tgds, as explained below. Further, we needed to find

a way to simulate frontier operations. Our code does this by choosing an option

uniformly at random among all available alternatives for a frontier operation. In

practice, this has the additional advantage of making all chases terminate, even

when the set of tgds is cyclic: a unification (rather than expansion) operation is

chosen sooner or later on every forward chase path.

Our experiments are run on a database of 100 relations, each randomly gener-

77

ated to have between one and six attributes. The relations are connected by tgds;

each tgd is created by choosing a random subset of one to three relations for the

LHS and another for the RHS. Smaller sets have higher probability, as humans

are highly unlikely to create tgds with more than one or two atoms on either side.

The remaining step in tgd generation is the choice of variables in the atoms; this

is done randomly, with care taken to ensure that the tgds contain inter-atom joins

as well as constants. Any constants used come from a small (size 50) fixed set of

random strings.

Generating the initial database is performed using our own forward chase, with

simulated user interaction; it is not easy to obtain an interesting database that

satisfies an arbitrary, potentially cyclic, set of tgds using another method. We

generate ten thousand initial tuples. The relations receiving those tuples are chosen

uniformly at random, and the attribute values come from the same set of constants

that was used in tgd generation. By keeping the domain of attribute values small,

we ensure that joins between relations are highly likely to be nonempty, and that

tgds are consequently highly likely to fire if these tuples are inserted. We insert

these initial tuples into the database; each insertion sets off a forward chase which

only ends when all constraints are satisfied.

We test our algorithms in several settings which vary in the number of tgds.

We vary this number from 20 (a sparse setting) to 100 (a dense one). Settings

with denser tgds are likely to exhibit longer chase runs, more writes, and therefore

more conflicts and aborts; indeed, this is borne out by our results. In our runs,

the set of tgds we used is monotonically increasing – that is, our experiments with

40 tgds involve the tgds used for the run with 20 tgds as well as 20 others, and so

on. In all cases, the initial database is the same and satisfies all 100 tgds.

78

We show results on two workloads, each of 500 transactions. The first consists

entirely of (chases induced by) inserts, the second of eighty percent inserts and

twenty percent deletes. Each transaction in each workload is started by an insert

or delete operation generated randomly and independently. First, the receiving

relation is chosen uniformly at random. In the case of inserts, the values in the

inserted tuples are chosen with equal probability to be fresh or from the previously

mentioned set of constants. In the case of deletes, the tuple to delete is chosen

uniformly at random from the relation. In the mixed insert/delete workload, the

order of the transactions is then randomized to ensure that the runs do not in-

volve alternating large batches of inserts and deletes. As already mentioned, the

scheduling algorithm used in all our experiments uses a round-robin policy that

interleaves chases at the level of individual steps. All runs are allowed to run to

termination, and each data point is obtained as the average of 100 runs.

Our results are shown in Figures 3.3 and 3.4. The first graph of each figure

shows the total number of aborts encountered during the run. Clearly, both COARSE

and PRECISE outperform NAÏVE significantly. We only show the first few points for

NAÏVE, as the huge performance difference is apparent even with very sparse tgd

sets.

The second graph shows the total number of cascading abort requests during

each run. This is the number of times during the run that the algorithm requests

an abort even though the transaction involved is not in direct conflict with a just-

performed write. Thus, this is the number of purely cascading aborts requested.

It does not have a direct correspondence to the total number of aborts observed

during the run. This is because aborts are not performed as soon as they are

made necessary by a write, but only once control is returned to the scheduler. In

79

20 40 60 80 100

Number of Mappings

0

200

400

600

800

1000

1200

1400

1600

Ab

or
ts

COARSE
PRECISE
NAIVE

20 40 60 80 100

Number of Mappings

0

500

1000

1500

2000

Ca

sc
ad

in
g

Ab
or

t R
eq

. COARSE
PRECISE
NAIVE

20 40 60 80 100

Number of Mappings

1.4

1.6

1.8

2

2.2

Sl
ow

do
wn

 o
f P

RE
CI

SE

Figure 3.3: Results for the all-insert workload

80

20 40 60 80 100

Number of Mappings

0

200
400
600
800

1000
1200
1400
1600

Ab

or
ts

COARSE
PRECISE
NAIVE

20 40 60 80 100

Number of Mappings

0

500

1000

1500

2000

2500

Ca

sc
ad

in
g

Ab
or

t R
eq

. COARSE
PRECISE
NAIVE

20 40 60 80 100

Number of Mappings

1.5

2

2.5

3

3.5

4

4.5

Sl
ow

do
wn

 o
f P

RE
CI

SE

Figure 3.4: Results for the mixed workload

81

the meantime, abort information related to various writes performed by a chase

step is collected and collated. Transactions are frequently marked for abortion

multiple times during that phase; however, the scheduler only performs aborts

based on the consolidated information. This metric clearly shows the difference

between COARSE and PRECISE; indeed, in scenarios with lower tgd density, PRECISE

requests no cascading aborts.

The final figure shows the relative time penalty associated with the use of

PRECISE over COARSE. This is the ratio of per-transaction execution times for each

algorithm. The per-transaction execution time is obtained by dividing the total

time for the run by the number of transactions which actually ran (i.e., the original

500 plus the number of aborts). In this way, we adjust for the fact that runs with

PRECISE involve a lower number of total transaction executions. The graph shows

the relative slowdown rather than the per-transaction execution times themselves.

The actual execution time increases for each algorithm with the number of tgds,

which is not surprising, since more tgds require more read queries and more writes

to be performed. Our purpose here is orthogonal to demonstrating this increase:

we aim to show the overhead of using PRECISE instead of COARSE across a variety

of tgd density settings.

Our experiments show that COARSE and PRECISE significantly alleviate the cas-

cading abort problem. As expected, PRECISE does best, but at the cost of an

increase in execution time. In practice, we expect that the reduction in the num-

ber of aborts will be so important to Youtopia users that the increased execution

time of PRECISE will be acceptable. However, if this time overhead should prove

too large, it is also possible to use a hybrid policy combining COARSE and PRECISE

on a per-transaction basis. A transaction which is particularly important and

82

which should not be aborted spuriously – perhaps because it has already aborted

several times – can have its read dependencies determined using PRECISE, so that

it only aborts when it absolutely needs to. For less important transaction, COARSE

can be used.

We also remark that the absolute number of aborts across all our experiments

remains quite high; this underscores the need for a good high-level scheduling

policy to minimize the number of aborts that are non-cascading, i.e., due to genuine

conflicts.

83

CHAPTER 4

BEYOND SERIALIZABILITY

In Chapter 3, we explained how a community DBMS can prevent interference

between transactions by enforcing YMCSR. However, this is not always a satisfac-

tory solution. Because only non-blocking schedulers are acceptable, Theorem 3.1.9

implies that there is always a risk that some transactions will have to be aborted

when enforcing YMCSR. In many situations – even when the transactions do not

require other strong guarantees such as durability and can in principle be rolled

back – such forced aborts are very undesirable or outright unacceptable. The only

way to avoid them or reduce their number is to relax the isolation requirements on

the running transactions in some way. There is a design space to be explored that

lies between the enforcement of full serializability and the total lack of concurrency

control.

One way to reduce the need for heavyweight isolation enforcement mechanisms

is to bring the user into the picture. It is possible to build a system where a variant

of Algorithm 8 would be used only to detect conflicts, not to correct them. The

correction burden would be shifted to the user, who would examine the system’s

warning and decide whether the transactions involved required any manual inter-

vention. If the user decided that a transaction did not require an abort despite a

conflict, then the system would take their word for it. This approach could poten-

tially work well in some scenarios, where the users are very knowledgeable about

the data and transactions, but probably not in the general case. Such “man-

ual override” functionality should certainly always be available in a community

DBMS, but it is unrealistic to expect that the system could rely on it entirely, for

all conflict reconciliation.

84

What makes more practical sense is for the system to come with a set of default

policies for handling transaction interference. In traditional DBMSs, there exist

standard isolation levels [16] that allow transactions to interleave in a manner

which is “somewhat risky” from a concurrency control standpoint, in order to

improve performance. These isolation levels are well-known and frequently used

in practice, suggesting that even in OLTP-type systems with more traditional

workloads and (perhaps) stronger consistency requirements, relaxing serializability

for performance reasons is not an outlandish idea.

Developing appropriate isolation levels for Youtopia is ongoing work; in this

chapter, we present a high-level discussion of the main challenges that arise when

designing such levels for a collaborative DBMS. We also make a concrete proposal

for three isolation levels that address some of the challenges we identify.

4.1 Designing isolation levels for a collaborative DBMS

Any isolation level for a transaction is fundamentally a compromise between two

sets of constraints. The first set contains more or less explicit desiderata for “cor-

rect” transaction execution. The second specifies the concurrency control enforce-

ment mechanisms which are acceptable (or not). As enforcing stronger correctness

properties usually requires more heavyweight mechanisms, it is normally impossi-

ble to satisfy the constraints in both sets simultaneously. A hierarchy of isolation

levels, such as that in [16] or that provided by SQL implementations, defines mul-

tiple meaningful tradeoff points with respect to what can and cannot be satisfied.

We note that not all isolation level definitions are explicitly connected to en-

forcement mechanisms, and indeed the authors of [16] argue convincingly that

isolation level definitions should be implementation-independent. Instead, isola-

85

tion levels can be defined in terms of a set of pathological phenomena: each level

in the hierarchy specifies which of the phenomena will be prohibited. Still, in

any definition geared towards practical usage (rather than, say, purely theoretical

investigation of schedule properties) the choice of the specific set of pathological

phenomena to be avoided is directly motivated by the constraints on the accept-

ability of enforcement mechanisms. For example, as we have seen in Theorem

3.1.9, if blocking schedulers are not acceptable, then forced transaction aborts – a

clear example of a pathological phenomenon – cannot be avoided (at least when

attempting to enforce a nontrivial property of schedules). Thus, while isolation

level definitions should definitely be as implementation-independent as possible,

they are very closely tied to the constraints on the class of algorithms and mecha-

nisms to be used for enforcement. Consequently, the latter set of constraints must

always be kept in mind when designing isolation levels for a new system model

such as a collaborative DBMS.

Which properties are desirable for transaction execution in a collaborative

DBMS, and which enforcement mechanisms are acceptable or unacceptable? We

begin with the first question. We have already discussed transaction serializability.

Although the specific kind of serializability desired need not always be YMCSR, it

is clear that users will frequently wish to maintain the illusion of serial transaction

execution.

Another desideratum relates to abort handling. Enforcing YMCSR, as we ex-

plained in Chapter 3, requires post-abort “cleanup” that removes from the system

all traces of the writes of the aborted transactions. In the definition of YMCSR,

this is made explicit in the requirement that a transaction may not have reads

that are affected by a write from an aborted transaction. However, more relaxed

86

versions of this property may be acceptable in some cases. For example, when a

transaction aborts, it may be enough to ensure that all future reads in the system

are unaffected by its writes, while any reads that have already happened are “left

alone”. This weaker constraint has the advantage that cascading aborts are not

needed to enforce it. As we see, a single high-level desideratum (“aborted transac-

tions should be cleaned up”) does not directly formalize into a single pathological

phenomenon, but can instead yield a set of phenomena of which some or all can

be prohibited at a given isolation level. How a high-level concept is split into a set

of such phenomena is directly determined by what is enforceable by the various

classes of acceptable mechanisms.

A third property of transaction execution which we have repeatedly mentioned,

but not yet addressed, is guaranteeing durability for transactions that perform a

commit. As in classical OLTP, if a transaction actually commits, it should never

have to be rolled back and redone.

What about the constraints on enforcement mechanisms in a community

DBMS? In Chapter 3, we discussed at length the importance of non-blocking en-

forcement mechanisms and the undesirability of aborts that are forced by the sys-

tem. The versioning mechanism used in Chapter 3 may also be something that we

wish to drop. Even if there are no reasons not to have it in place, it is instructive

to understand what properties remain enforceable when it is removed.

It is interesting to examine the similarities and differences between the com-

munity DBMS desiderata and constraints which we have just presented, and those

found in traditional OLTP systems. Such a comparison is educational in itself, but

it also demonstrates that the standard isolation levels found in the literature are

unlikely to be directly applicable to a collaborative DBMS. Moreover, as we will

87

see, the inapplicability of traditional isolation levels is fundamental – it occurs for

reasons beyond the technical fact that the levels’ definitions do not carry over to

our setting directly.

Our enforcement mechanism constraints are not very unusual, and they would

not be unreasonable in an OLTP system. The only significant feature unique to

our setting is the absolute unacceptability of blocking schedulers. With respect

to our three desirable properties of transaction execution, the situation is more

complicated. Serializability is the most similar one, although there is the issue

of non-terminating transactions that must be dealt with. The statement of 3.2.9

does, however, demonstrate how to relate our serializability desideratum to the

classical one – we desire that in all those cases where transactions do terminate,

classical serializability (or an appropriate relaxation) should hold.

Post-abort cleanup issues are next. In this case, there is a significant difference

between the collaborative DBMS and classical settings: relaxing the post-abort

cleanup requirement is a very unusual thing to do in classical concurrency control.

In a collaborative DBMS, users are likely to be wiling to compromise a lot more

with respect to this particular guarantee.

The same is true for our third property – in the classical database world, all

transactions commit, and relaxing durability in any way is normally not accept-

able at all. This is why issues of durability are not even explicitly addressed when

discussing classical isolation levels. (Nonetheless, they do arise in discussions of

schedule recoverability, and some protocols – such as strict two-phase locking –

actually happen to do “double duty” and enforce both isolation levels and recov-

erability properties). In a community DBMS, on the other hand, dropping or

relaxing durability might be quite reasonable. This is quite fortunate, since – as

88

we have already mentioned – Theorem 3.1.9 implies that a nonblocking scheduler

cannot enforce both durability and YMCSR or any other nontrivial property of

schedules.

A very large set of community DBMS use scenarios does not require durability;

for example, our travel database scenario can be expected to function perfectly

well without it. Wikipedia certainly provides no durability for any (basic editing)

operation, but this does not stop it from being a very highly successful system

that is useful to millions of people. Another option acceptable in a community

DBMS but not in a classical one might introduce a limited form of durability

where a transaction’s writes persist post-commit, but the isolation level at which

it committed may retroactively change. Consider the library book order example

(Example 1.3.4), and suppose that the order transaction does commit and the

order is placed. If some data does subsequently change and retroactively affect

the order transaction’s reads, the library employees would not necessarily cancel

the order and redo it. Instead, they might well allow it to go ahead anyway. This

real-world human decision is precisely an informal version of dropping the isolation

level of the book order transaction post-commit.

4.2 Three isolation levels for Youtopia

In this section, we present the first stages of our more concrete work on Youtopia

isolation levels. We present three levels that lie along a spectrum whose end-

points are YMCSR and absolute lack of concurrency control enforcement. Each

level serves to illustrate a well-motivated tradeoff point between the constraints on

transaction execution properties and on enforcement mechanisms which we have

89

just discussed. The levels form a hierarchy; if a transaction runs at level i, it also

runs at level j for all j > i.

The presentation of the isolation levels assumes our Youtopia transaction model

and the versioned setting from Chapter 3. It also continues to also assume that

no transactions ever perform a commit operation.

The most restrictive level is based on YMCSR:

Definition 4.2.1 (Isolation Level 1). Let (D, τ) be a multiversion schedule. A

transaction number i in the schedule runs at Isolation Level 1 (serializable) iff:

• it performs no reads that are retroactively affected by a writes of a transaction

j, with j < i

• it performs no reads that are affected by a write by a transaction j which

performs an abort operation

The first bullet point in the definition can be enforced by our conflict test from

Definition 3.2.5, and the second by appropriately “cleaning up” after an aborted

transaction (removing its writes and aborting any transactions in its RF ∗ relation).

The following lemma is clear:

Lemma 4.2.2. A schedule (D, τ) is in YMCSR iff all the transactions in the

schedule run at isolation level 1.

The first obvious relaxation from level 1 is obtained by realizing that the ex-

pensive part of enforcing it is our choice to detect and correct the “premature”

reads. Retroactively affected reads are expensive to identify, and when they are

found, the affected transaction(s) must abort. Dropping this check yields the next

isolation level:

90

Definition 4.2.3 (Isolation Level 2). Let (D, τ) be a multiversion schedule. A

transaction number i in the schedule runs at Isolation Level 2 (unsafe reads per-

mitted) iff:

• it performs no reads that are affected by a write by a transaction j which

performs an abort operation

Isolation level 2 is a substantial relaxation from level 1. It is also related,

though not directly comparable to, multiversion isolation levels such as snapshot

isolation [18, 62]. It is interesting to consider whether a notion of snapshot isolation

modified to handle our intensionally specified reads might be useful as well. Our

Isolation Level 2 makes the most recent version of each tuple visible to reads. In

a snapshot-isolation-like setting, on the other hand, each transaction would only

see the most recent version of each tuple that existed at the time the transaction

started. This in itself would be easy to implement; however, intuition suggests that

in a community DBMS, where transactions may be very long-running, it is better

to make all available writes visible to a running transaction rather than forcing it

to read a potentially stale database. Moreover, the second part of the standard

snapshot isolation definition requires that transactions’ write sets be disjoint – this

is likely to be more problematic in our setting, as it is unclear when enforcement

of this property should occur for long-running transactions.

Enforcing Isolation Level 2 still requires cascading aborts. If no cascading

aborts are permitted, there is a further relaxation that can be used instead:

Definition 4.2.4 (Isolation Level 3). Let (D, τ) be a schedule. A transaction

number i in the schedule runs at Isolation Level 3 (read from non-aborted) iff the

following is true. Suppose the transaction does perform a read that is affected by a

91

write by a transaction j which performs an abort operation. The read must occur

prior to the abort.

The reason that Isolation Level 3 can actually be enforced – globally, for all

transactions in the system – without requiring aborts is given by Theorem 3.1.9.

In our multiversion setting, Isolation Level 3 is actually (associated with) a trivial

property of schedules, and such properties can be enforced strictly. The triviality

is due to our abort cleanup mechanism which is part of the system model; as soon

as a transaction aborts, its tuple versions become invisible to any future reads

automatically. Thus it is impossible for a read that happens post-abort to be

affected by any tuple version created by the aborted transaction.

On the other hand, if the versioned setting were not in place, enforcing some-

thing similar to Isolation Level 3 would become much less “trivial”. Intuitively,

it is easy to define a conflict between a read and write in a versioned setting, as

in Definition 3.2.5, because there is no “overwriting” of versions. It is sensible to

postulate that a tuple write (i.e. the creation of a new version) affects the result

of a read query on a given database iff the presence or absence of that one tuple

version in the database leads to a change in the query result. If overwriting is

permitted, however, it is much harder to describe when a write – which may have

occurred some time ago and incurred overwriting – affects a subsequent read.

The above observation also suggests that some other tradeoff points between

our constraints might be much harder to formalize and implement. For example, it

may be interesting from a pragmatic standpoint to explore that part of the design

space where where serializability is not an issue at all, but post-abort cleanup is.

That is, it would be acceptable for running transactions to interleave arbitrarily,

but any aborted transactions should incur full cleanup, including cascading aborts

92

of any “tainted” transactions. The real-world motivation for this point in the

design space is a setting where aborts are considered very serious as they occur

only due to problems like vandalism. As such, they should trigger stop-the-world

cleanups. On the other hand, transactions that are not flagged as vandalism or

otherwise dangerous can and should be allowed to proceed without much concern

for their interleaving. Conceptually, an isolation level for this scenario would sit

“between” our levels 2 and 3 above. However, defining it precisely would again also

require defining a read-write conflict without resorting to the versioning mechanism

(which presumably would not be in place if no transaction serializability of any

sort were required). Developing such a definitional framework is future work.

93

CHAPTER 5

RELATED WORK

With the rise of Web 2.0, recent years have seen a tremendous amount of in-

terest in collaborative information management, both from academic communities

and from industry. In this chapter, we do not propose to survey all of this recent

(and less recent) work. We choose instead to focus on the projects and systems

most relevant to collaborative management of structured data, and on the litera-

ture which provides explicit technical background for the research in this thesis.

We also note that the body of the thesis sometimes indicates specific papers or

systems when they are directly relevant; the presentation in this chapter does not

always duplicate those mentions.

5.1 Tgds, the chase and data integration

We have already mentioned that tgds and equivalent constraints such as GLAV

mappings [35, 49] and conjunctive inclusion dependencies [47] are well-known in

the data integration literature [39, 30, 42, 45, 63]. Chasing with tgds is a well-

studied process in general [14, 50, 25] and in the context of data integration and

exchange [30]. Recent years have seen new theoretical work investigating issues of

chase termination [52] and dealing with nonterminating chases for the purpose of

other tasks such as query answering [22]. We note that the authors of [52] also

present a method for executing a chase in a monitored fashion and controlling or

bounding its behavior to prevent nontermination, although their mechanisms are

different from the Youtopia frontier operations.

Still regarding the chase, we note that while the names of the two Youtopia

94

chase methods – the forward chase and the backward chase – may suggest a sim-

ilarity to the chase and backchase (C & B) technique [26], there is not a close

relationship between C & B and our work. In C & B, the two chases proceed

in distinct phases while ours are interleaved; moreover, C & B is a mechanism

for query optimization on a given database, while our chases serve to propagate

changes to the data.

Beyond individual constraints and formalisms, there is a growing body of work

which adapts classical data integration ideas to the community (or peer-to-peer)

setting, including substantial theoretical work [36, 23, 34]. This work has resulted

in the creation of systems like Orchestra [39], Piazza [59, 42], Hyperion [54] and

the system introduced in [45], as well as real-world scientific data sharing portals

such as BIRN [2] and GEON [4]. Among those systems, as we have indicated,

Orchestra is closest in spirit to Youtopia due to its use of update exchange; how-

ever, we do not make the same weak acyclicity assumption on tgds. As future

work on Youtopia progresses to include more data management functionality, we

anticipate that many techniques developed in the above systems may prove useful.

For example, [45] presents methods for enabling users to register new tables with

the system, and the Orchestra project has also addressed issues of disagreement

management and provenance [60] and physical implementation and storage [61] for

community DBMSs.

5.2 Sharing structured data

A large number of systems and solutions, both academic and industrial, explore

various aspects of structured data sharing by communities without explicitly posi-

95

tioning themselves as spiritual successors of classical data integration work. This

includes community information management projects such as Cimpl/DBLife [28],

MOBS [51] and Dataspaces [41], as well as some work which is not explicitly carried

out within the context of a community DBMS, but explores relevant issues.

Among the questions investigated by this body of work, we find for example

the problem of encouraging high-quality user participation to improve the data

repository [27, 24]. Work has also been carried out on making optimal use of this

human attention through the use of hybrid human/automated mechanisms [24, 43],

as well as through algorithms that can learn cleaning transformations from user

operations [15]. (Although the authors of [15] do not explicitly situate their work

within a community setting, it is clear that their algorithm could be adapted to

this type of system.)

Another challenge is bootstrapping large-scale repositories, whether through

automated methods like collecting relational data from the Internet [21], through

manual importation of data by users aided by a tool providing powerful and intu-

itive reformatting operations [53], or through hybrid human/automated methods

[24].

Whether the data in the system comes from bootstrapping or human – or

algorithmic – insertions, managing information about its provenance [20] and about

users’ beliefs as to its reliability [38] is an important challenge and has also been

explored.

Finally, another relevant question that has been investigated is facilitating data

access in a community DBMS. Fusion Tables [6] and Google Base [5] represent sig-

nificant work in designing intuitive query interfaces. Such interfaces can provide

96

SQL-like functionality, as in Fusion Tables, or enable drill-down through a combi-

nation of keyword queries with navigation on predefined views, as in Google Base.

The management of such standing views or queries in a community DBMS has

also been investigated in [46].

In the real world, several highly successful systems for sharing relational data

exist, mostly in vertical (topic-specific) settings. Two examples are the CourseR-

ank system [48] and the craft site Ravelry [9]. These systems are based – to our

knowledge – on shared DBMS technology, but a thorough understanding by the

designers of the communities’ needs has enabled them to provide very useful data

sharing systems. Both sites attract highly motivated users and this allows them to

maintain good data quality. Nonetheless, in these systems, the limitations of using

a shared DBMS sometimes become apparent in interesting ways. Schema exten-

sibility, for example, is something that is frequently desired even by nontechnical

users. For example, recent months have seen a debate on Ravelry about the site’s

(current) inability to meet users’ wishes for tables devoted to additional crafts [33].

5.3 Concurrency control

Concurrency control is a mature field of database research with a very significant

associated body of work. An extensive overview can be found in the textbook [62].

Here, we only indicate work of particular relevance to the material presented in

Chapters 3 and 4.

Multiversion concurrency control is itself a topic with a rich literature; [19] is

a seminal paper, as are [58] and [17]. MCSR specifically was studied in detail

in [40]. More references can be found in the bibliography section at the end of

97

Chapter Five in [62]. Our definition of YMCSR is also related to predicate [29]

and precision locking [44], since it brings together intensionally specified reads and

extensionally specified writes.

Isolation levels for transactions have been studied by researchers [18, 16, 31,

32] and are a standard feature in modern database systems. Indeed, ANSI-SQL

standards contain explicit definitions of the isolation levels to be supported [13].

Finally, while the Youtopia transaction model has many unique features, long-

running transactions are not unknown in other kinds of databases. Approaches for

dealing with such transactions in the literature include semantics-based solutions

like transaction chopping [57] and other methods that decompose transactions into

smaller units [37], as well as alternative mechanisms such as altruistic locking [55].

As we continue the investigation begun in Chapter 4, we expect that some of the

solutions from that body of work may prove useful to Youtopia transactions as

well.

98

BIBLIOGRAPHY

[1] Assembla. http://www.assembla.com.

[2] BIRN. http://www.nbirn.net.

[3] Geni. http://www.geni.com.

[4] GEON. http://www.geongrid.org.

[5] Google Base. http://base.google.com.

[6] Google Fusion Tables. http://tables.googlelabs.com.

[7] Google Fusion Tables Users’ Group. http://groups.google.com/group/fusion-
tables-users-group.

[8] Google Wave. http://wave.google.com.

[9] Ravelry. http://www.ravelry.com.

[10] Tripit. http://www.tripit.com/.

[11] Wikipedia help page. http://en.wikipedia.org/wiki/Help:Merging.

[12] Wiktravel.org Europe page. http://wikitravel.org/en/Europe.

[13] ANSI X3.135-1992, American National Standard for Information Systems
Database Language SQL. 1992.

[14] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Efficient optimization
of a class of relational expressions. ACM Trans. Database Syst., 4(4):435–454,
1979.

[15] Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik. Learning string
transformations from examples. PVLDB, 2(1):514–525, 2009.

[16] Patrick O’Neil Atul Adya, Barbara Liskov. Generalized isolation level defini-
tions. In ICDE, 2000.

99

[17] Rudolf Bayer, Hans Heller, and Angelika Reiser. Parallelism and recovery in
database systems. ACM Trans. Database Syst., 5(2):139–156, 1980.

[18] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil,
and Patrick E. O’Neil. A critique of ansi sql isolation levels. In SIGMOD
Conference, pages 1–10, 1995.

[19] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control
- theory and algorithms. ACM Trans. Database Syst., 8(4):465–483, 1983.

[20] Peter Buneman, Adriane Chapman, and James Cheney. Provenance manage-
ment in curated databases. In SIGMOD Conference, pages 539–550, 2006.

[21] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and
Yang Zhang. WebTables: exploring the power of tables on the web. PVLDB,
1(1):538–549, 2008.

[22] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. In KR, pages 70–80,
2008.

[23] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Logical foundations of peer-to-peer data integration. In PODS, pages
241–251, 2004.

[24] Pedro DeRose, Xiaoyong Chai, Byron J. Gao, Warren Shen, AnHai Doan,
Philip Bohannon, and Xiaojin Zhu. Building community wikipedias: A
machine-human partnership approach. In ICDE, pages 646–655, 2008.

[25] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In
PODS, pages 149–158, 2008.

[26] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence,
constraints, and optimization with universal plans. In VLDB, pages 459–470,
1999.

[27] AnHai Doan and Robert McCann. Building data integration systems: A mass
collaboration approach. In IIWeb, pages 183–188, 2003.

[28] AnHai Doan, Raghu Ramakrishnan, Fei Chen, Pedro DeRose, Yoonkyong
Lee, Robert McCann, Mayssam Sayyadian, and Warren Shen. Community
information management. IEEE Data Eng. Bull., 29(1):64–72, 2006.

100

[29] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. The
notions of consistency and predicate locks in a database system. Commun.
ACM, 19(11):624–633, 1976.

[30] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–
124, 2005.

[31] Alan Fekete. Allocating isolation levels to transactions. In PODS, pages
206–215, 2005.

[32] Alan Fekete, Shirley Goldrei, and Jorge Perez Asenjo. Quantifying isolation
anomalies. PVLDB, 2(1):467–478, 2009.

[33] Casey Forbes. Ravelry unresolved issue 1481, other fiber arts.
http://www.ravelry.com/issues/1481.

[34] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Luciano Serafini. A
robust logical and computational characterisation of peer-to-peer database
systems. In DBISP2P, pages 64–76, 2003.

[35] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans for
data integration. In AAAI/IAAI, pages 67–73, 1999.

[36] Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller, and Wang Chiew Tan.
Peer data exchange. ACM Trans. Database Syst., 31(4):1454–1498, 2006.

[37] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD Conference,
pages 249–259, 1987.

[38] Wolfgang Gatterbauer, Magdalena Balazinska, Nodira Khoussainova, and
Dan Suciu. Believe it or not: Adding belief annotations to databases. PVLDB,
2(1):1–12, 2009.

[39] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.
Update exchange with mappings and provenance. In VLDB, pages 675–686,
2007.

[40] Thanasis Hadzilacos and Christos H. Papadimitriou. Algorithmic aspects of
multiversion concurrency control. J. Comput. Syst. Sci., 33(2):297–310, 1986.

101

[41] Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles of dataspace
systems. In PODS, pages 1–9, 2006.

[42] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov. Schema
mediation for large-scale semantic data sharing. VLDB J., 14(1):68–83, 2005.

[43] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go
user feedback for dataspace systems. In SIGMOD, pages 847–860, 2008.

[44] J. R. Jordan, J. Banerjee, and R. B. Batman. Precision locks. In SIGMOD,
pages 143–147, 1981.

[45] Yannis Katsis, Alin Deutsch, and Yannis Papakonstantinou. Interactive source
registration in community-oriented information integration. In VLDB, 2008.

[46] Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer,
YongChul Kwon, and Dan Suciu. A case for a collaborative query management
system. In CIDR, 2009.

[47] Christoph Koch. Query rewriting with symmetric constraints. AI Commun.,
17(2):41–55, 2004.

[48] Georgia Koutrika, Benjamin Bercovitz, Robert Ikeda, Filip Kaliszan, Henry
Liou, Zahra Mohammadi Zadeh, and Hector Garcia-Molina. Social systems:
Can we do more than just poke friends? In CIDR, 2009.

[49] Jayant Madhavan and Alon Y. Halevy. Composing mappings among data
sources. In VLDB, pages 572–583, 2003.

[50] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implica-
tions of data dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[51] Robert McCann, Alexander Kramnik, Warren Shen, Vanitha Varadarajan,
Olu Sobulo, and AnHai Doan. Integrating data from disparate sources: A
mass collaboration approach. In ICDE, pages 487–488, 2005.

[52] Michael Meier, Michael Schmidt, and Georg Lausen. On chase termination
beyond stratification. PVLDB, 2(1):970–981, 2009.

[53] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An interac-
tive data cleaning system. In VLDB, pages 381–390, 2001.

102

[54] Patricia Rodŕıguez-Gianolli, Maddalena Garzetti, Lei Jiang, Anastasios Ke-
mentsietsidis, Iluju Kiringa, Mehedi Masud, Renée J. Miller, and John My-
lopoulos. Data sharing in the Hyperion peer database system. In VLDB,
pages 1291–1294, 2005.

[55] Kenneth Salem, Hector Garcia-Molina, and Jeannie Shands. Altruistic lock-
ing. ACM Trans. Database Syst., 19(1):117–165, 1994.

[56] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrapping pay-as-you-
go data integration systems. In SIGMOD, pages 861–874, 2008.

[57] Dennis Shasha, François Llirbat, Eric Simon, and Patrick Valduriez. Trans-
action chopping: Algorithms and performance studies. ACM Trans. Database
Syst., 20(3):325–363, 1995.

[58] Richard Edwin Stearns and Daniel J. Rosenkrantz. Distributed database
concurrency controls using before-values. In SIGMOD Conference, pages 74–
83, 1981.

[59] Igor Tatarinov and Alon Y. Halevy. Efficient query reformulation in peer-data
management systems. In SIGMOD Conference, pages 539–550, 2004.

[60] Nicholas E. Taylor and Zachary G. Ives. Reconciling while tolerating disagree-
ment in collaborative data sharing. In SIGMOD, pages 13–24, 2006.

[61] Nicholas E. Taylor and Zachary G. Ives. Reliable storage and querying for
collaborative data sharing systems. In ICDE, 2010.

[62] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann, 2002.

[63] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fagin. Data-
driven understanding and refinement of schema mappings. In SIGMOD, pages
485–496, 2001.

103

