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Abstract

Clustering is ill-defined. Unlike supervised learning
where labels lead to crisp performance criteria such as ac-
curacy and squared error, clustering quality depends on
how the clusters will be used. Devising clustering criteria
that capture what users need is difficult. Most clustering al-
gorithms search for one optimal clustering based on a pre-
specified clustering criterion. Once that clustering has been
determined, no further clusterings are examined. Our ap-
proach differs in that we search for many alternate reason-
able clusterings of the data, and then allow users to select
the clustering(s) that best fit their needs. Any reasonable
partitioning of the data is potentially useful for some pur-
pose, regardless of whether or not it is optimal according to
a specific clustering criterion. Our approach first finds a va-
riety of reasonable clusterings. It then clusters this diverse
set of clusterings so that users must only examine a small
number of qualitatively different clusterings. In this paper,
we present methods for automatically generating a diverse
set of alternate clusterings, as well as methods for grouping
clusterings into meta clusters. We evaluate meta clustering
on four test problems, and then apply meta clustering to two
case studies. Surprisingly, clusterings that would be of most
interest to users often are not very compact clusterings.

1. Introduction

Clustering performance is difficult to evaluate [29]. In
supervised learning, model performance is assessed by
comparing model predictions to supervisory targets. In
clustering we do not have targets and usually do not know
a priori what groupings of the data are best. This hin-
ders discerning when one clustering is better than another,
or when one clustering algorithm outperforms another. To
make matters worse, clustering often is applied early during
data exploration, before users know the data well enough to
define suitable clustering criteria. This creates a chicken-or-
the-egg problem where knowing how to define a good clus-

tering criterion requires understanding the data, but cluster-
ing is one of the principal tools used to help understand the
data.

This fundamental differences between supervised and
unsupervised learning have profound consequences. In
particular, while it makes sense to talk about the “best”
model(s) in supervised learning (e.g. the most accurate
model(s)), often it does not make sense to talk about the
“best” clustering. Consider a database containing infor-
mation about people’s age, gender, education, job history,
spending patterns, debts, medical history, etc. Clustering
could be applied to the database to find groups of similar
people. A user who wants to find groups of consumers
who will buy a car probably wants different clusters than
a medical researcher looking for groups with high risk of
heart disease. In exploring the same data, different users
want different clusterings. No “correct” clustering exists.
Moreover, theoretical work suggests that it is not possible
to achieve all of the properties one might desire of cluster-
ing in a single clustering of the data [20].

Most clustering methodologies focus on finding optimal
or near-optimal clusterings, according to specific clustering
criteria. However, this approach often is misguided. When
users cannot specify appropriate clustering criteria in ad-
vance, effort should be devoted to helping users find appro-
priate clustering criteria. In practice, users often begin by
clustering their data and examining the results. They then
make educated guesses about how to change the distance
metrics or algorithm in order to yield a more useful clus-
tering. Such a search is tedious and may miss interesting
partitionings of the data.

In this paper we introducemeta clustering, a new ap-
proach to the problem of clustering. Meta clustering aims
at creating a new mode of interaction between users, the
clustering system, and the data. Rather than finding one
optimal clustering of the data, meta clustering finds many
alternate good clusterings of the data and allows the user
to select which of these clusterings is most useful, explor-
ing the space of reasonable clusterings. To prevent the user
from having to evaluate too many clusterings, the many



base-level clusterings are organized into a meta clustering, a
clustering of clusterings that groups similar base-level clus-
terings together. This meta clustering makes it easier for
users to evaluate the clusterings and efficiently navigate to
the clustering(s) useful for their purposes.

Meta clustering consists of three steps. First, a large
number of potentially useful high-quality clusterings is gen-
erated. Then a distance metric over clusterings measures the
similarity between pairs of clusterings. Finally, the clus-
terings are themselves clustered at the meta level using the
computed pairwise similarities. The clustering at the meta
level allows the user to select a few representative yet qual-
itatively different clusterings for examination. If one of
these clusterings is appropriate for the task at hand, the user
may then examine other nearby clusterings in the meta level
space.

An analogy may be helpful. Photoshop, the photo edit-
ing software, has a tool called “variations” that presents to
the user different renditions of the picture that have differ-
ent color balances, brightnesses, contrasts, and color satu-
rations. Instead of having to know exactly what tool to use
to modify the picture (which requires substantial expertise),
the user only has to be able to select the variation that looks
best. The selected variation then becomes the new center,
and variations of it are presented to the user. This process
allows users to quickly zero in on the desired image ren-
dition. The goal in meta clustering is to provide a similar
“variations” tool for clustering so that users do not have to
know how to modify distance metrics and clustering algo-
rithms to find useful clusterings of their data. Instead, meta
clustering presents users with an organized set of clustering
variations; users can select and then refine the variation(s)
that are best suited to their purposes.

The paper proceeds as follows. Section 2 defines meta
clustering. Section 2.1 describes how to generate diverse
yet high-quality clusterings. Section 2.2 describes how to
measure the similarity between clusterings and use these
similarities to cluster clusterings at the meta level. Sec-
tion 3 describes four data sets used to evaluate meta clus-
tering. Section 4 presents empirical results for these data
sets. Section 5 presents the first case study: clustering pro-
teins. Section 6 presents the second case study: clustering
phonemes. Section 7 covers the related work. Section 8 is a
discussion and summary.

2. Meta Clustering

The approach to meta clustering presented in this pa-
per is a sampling-based approach that searches for distance
metrics that yield the clusterings most useful to the user.
Algorithmic (i.e. non-stochastic) approaches to meta clus-
tering are possible and currently are being developed.

Here we break meta clustering into three steps:

1. Generate many good, yet qualitatively different, base-
level clusterings of the same data.

2. Measure the similarity between the base-level cluster-
ings generated in the first step so that similar cluster-
ings can be grouped together.

3. Organize the base-level clusterings at a meta level (ei-
ther by clustering or by low-dimension projection) and
present them to users.

These steps are described in the rest of this section.

2.1. Generating Diverse Clusterings

The key insight behind meta clustering is that in many
applications, data may be clustered into a variety of alter-
nate groupings, each of which may be beneficial for a dif-
ferent purpose. To be useful, the alternate clusterings can-
not be random partitions of the data, but must reflectgen-
uine structure within the data. We follow two approaches to
generate a diverse set of quality clusterings. In the first, we
note that k-means generates many different reasonable clus-
terings (all but the “best” of which are typically discarded)
because different random initializations of k-means often
get stuck in different local minima. In the second approach,
we apply random weights to feature vectors before cluster-
ing the data with k-means to emphasize different aspects of
the data. These approaches for finding diverse clusterings
are described in the remainder of Section 2.1.

2.1.1 Diverse Clusterings from K-Means Minima

K-means is an iterative refinement algorithm that attempts
to minimize a squared error criterion [10]. Each cluster is
initialized by setting its mean to a random point in the data
set. Each step of the iterative refinement performs two tasks.
First, the data points are classified as being a member of the
cluster with the nearest cluster mean. Second, the cluster
means are updated to be the actual mean of the data points in
each cluster. This is repeated until no points change mem-
bership or for some maximum number of iterations. When
no points change membership, k-means is at alocal mini-
mumin the search space: there is no longer a move that can
reduce the squared error. The output of k-means is typically
highly dependent on the initialization of the cluster means:
the search space has many local minima [3, 5]. In practice,
k-means is run many times with many different initializa-
tions, and the clustering with the smallest sum-of-squared
distances between cluster means and cluster members is re-
turned as the final result.

In meta clustering, however, we are interested in generat-
ing a wide variety of reasonable clusterings. The local min-
ima of k-means provide a set of easily-attainable cluster-
ings, each of which is reasonable since no point can change



Figure 1. Zipf Distribution. Each row visual-
izes a Zipf distribution with a different shape
parameter, α. Each row has 50 bars repre-
senting 50 random samples from the distrib-
ution, with the height of the bar proportional
to the value of the sample.

membership to improve the clustering. K-means can be run
many times with many different random initializations, and
each local minimum can be recorded. As we shall see in
Section 4.3, the space of k-means local minima is small
compared to the space of reasonable clusterings, so we use
an additional means of generating diverse clusterings: ran-
dom feature weighting.

2.1.2 Diverse Clusterings from Feature Weighting

Consider data in vector format. Each item in the data set
is described by a vector of features, and each dimension in
the vector is a feature that will be used when calculating the
similarity of points for clustering. By weighting features be-
fore distances are calculated (i.e. multiplying feature values
by particular scalars), we can control the importance of each
feature to clustering [33]. Clustering many times with dif-
ferent random feature weights allows us to find qualitatively
different clusterings for the data using the same clustering
algorithm.

Feature weighting requires a distribution to generate the
random weights. We consider both uniform and power law
distributions. Empirically, uniformly distributed weights
often do not explore the weight space thoroughly. Consider
the case where only a few features contain useful informa-
tion, while the others are noise. It is unlikely that a uniform
distribution would generate values that weight the few im-
portant variables highly while assigning low weights to the
majority of the variables. On the other hand, weights gen-
erated from a power law distribution can weight only a few
variables highly.

We will use a Zipf power law distribution because

there is empirical evidence that feature importance is Zipf-
distributed in a number of real-world problems [7, 14]. A
Zipf distribution describes a range of integer values from 1
to some maximum valueK. The frequency of each integer
is proportional to 1

iα wherei is the integer value andα is a
shape parameter. Thus, forα = 0, the Zipf distribution be-
comes a uniform distribution from 1 toK. As α increases,
the distribution becomes more biased toward smaller num-
bers, with only the occasional value approachingK. See
Figure 1. Random values from a Zipf distribution can be
generated in the manner of [6].

Algorithm 1 : Generate a diverse set of clusterings

Input : X = {x1, x2, ..., xn} for xi ∈ Rd, k is the
number of clusters,m is the number of
clusterings to be generated

Output : A set ofm alternate clusterings of the data
{C1, C2, ..., Cm} for which
Ci : X 7→ {1, 2, ..., k} is the mapping of each
pointx ∈ X to its corresponding cluster

begin
for i = 1 to m do

α = rand(“uniform”, [0 αmax])
for j = 1 to d do

wj = rand(“zipf”, α)
end
Xi = ∅
for x ∈ X do

x′ = x
⊙

w where
⊙

is pairwise
multiplication
Xi = Xi + {x′}

end
Ci = K-means(Xi, k)

end
end

Algorithm 1 is the procedure that generates different
clusterings. First the Zipf shape parameter,α, is drawn uni-
formly from the interval[0, αmax]. Here we useαmax =
1.5. (This allows us to sample the space of random weight-
ings, from a uniform distribution (α = 0) to a severe dis-
tribution (α = 1.5) that gives significant weight to just a
few variables.) Then a weight vectorw ∈ Rd is generated
according to the Zipf distribution with thatα. Next the fea-
tures in the original data set are weighted with the weight
vectorw. Finally, k-means is used to cluster the feature re-
weighted data set.

2.1.3 The Problem With Correlated Features

Random feature weights may fail to create diverse cluster-
ings in the presence of correlated features: weights given to
one feature can be compensated by weights given to other
correlated features.



The problem with correlated features can be avoided by
applying Principal Component Analysis [8] to the data prior
to weighting. PCA rotates the data to find a new orthogo-
nal basis in which feature values are uncorrelated. Random
weights applied to the rotated features (components) yields
a more diverse set of distance functions.

Typically, PCA components are characterized by the
variance,σi, of the data set along each component, and
components are sorted in order of decreasing variance. The
data can be projected onto the firstm of the d total com-
ponents to reduce dimensionality to am-dimensional rep-
resentation of the data. To construct a data set that captures
at least the fractionp of the variability of the original data
(where0 < p ≤ 1), m is set such that

m∑
i=1

σi/
d∑

i=1

σi ≥ p. (1)

In the remainder of the paper PCA95 refers to PCA dimen-
sionality reduction withp = 0.95.

Sometimes PCA yields a more interesting set of distance
functions by compressing important aspects of the problem
into a small set of components. Other times, however, PCA
hides important structure. Because of this, we apply random
feature weightings both before and after rotating the vector
space with PCA. This is discussed further in Section 4.2.

2.1.4 Dealing with Non-vector Data

Feature weighting only works for data in feature-vector for-
mat, but data often is available only as pairwise similarities.
This problem can be solved using MultiDimensional Scal-
ing (MDS) [10]. MDS transforms pairwise distances to a
feature-vector format to which random weights can then be
applied.

We implement MDS following [10]. Letδij be the orig-
inal distance between pointsi and j, and letdij be the
distance betweeni andj in the new vector representation.
Then the following is a sum-of-squares-error function:

J =
1∑

i<j δij

∑
i<j

(dij − δij)2

δij
. (2)

The goal is to find a configuration ofdij that minimizes
J . Starting from a random initialization, we perform a gra-
dient descent on the error functionJ . For each data point in
the new space, the gradient ofJ is calculated with respect
to that point, and the point is moved in the direction of the
negative gradient. In order to avoid local minima and speed
the search, we utilize a variable step size and randomize the
locations of the points if progress becomes slow or halts.

2.2. Clustering Clusterings at the Meta
Level

The methods in the preceding section generate a large,
diverse set of candidate clusterings. Usually it is infeasi-
ble for a user to examine thousands of clusterings to find
a few that are most useful for the application at hand. To
avoid overwhelming the user, meta clustering groups sim-
ilar clusterings together by clustering the clusterings at a
meta level. To do this, we need a similarity measure be-
tween clusterings.

2.2.1 Measuring the Similarity Between Clusterings

Several measures of clustering similarity have been pro-
posed in the literature [17, 18, 19]. Here we use a measure
of clustering similarity related to the Rand index [28]: de-
fine Iij as 1 if pointsi andj are in the same cluster in one
clustering, but in different clusters in the other clustering,
andIij is 0 otherwise. The dissimilarity of two clustering
models is defined as: ∑

i<j Iij

N(N − 1)/2
,

whereN is the total number of data points. This measure is
a metric as well. In the remainder of this paper we refer to
it as Cluster Difference.

2.2.2 Agglomerative Clustering at the Meta Level

Once the distances between all pairs of clusterings are found
using the Cluster Difference metric, the clusterings are
themselves clustered at the meta level. This meta clustering
can be performed using any clustering algorithm that works
with pairwise similarity data. We use agglomerative cluster-
ing at the meta level because it works with similarity data,
because it does not require the user to prespecify the number
of clusters, and because the resulting hierarchy makes nav-
igating the space of clusterings easier. ([13] presents one of
the few studies to examine the tradeoffs between clustering
complexity, efficiency, and interpretability.)

An alternate approach for presenting different cluster-
ings to users is to find a low-dimensional projection of the
pairwise clustering distances. For example, MDS can be
used to find principal components of the meta clustering
space from the clustering similarity data. The clusterings
can then be presented to the user in a low dimensional plot
where similar clusterings are positioned close to each other.
One problem we have found with this approach is that often
the meta level clustering space is not low in dimension, so
any low-dimensional projection of the data has significant
distortion. Although easier to visualize, this makes the 2-
dimensional projections less useful than the meta clustering
tree.



Data Set # features # cases # trueclasses # clusters # points in biggest class # features in 95 % PCA
Australia 17 245 10 10 80 10

Bergmark 254 1000 25 25 162 130
Covertype 49 1000 7 15 476 39

Letters 617 514 7 10 126 141
Protein ud format 639 N/A 20 N/A N/A

Phoneme 10 990 15,11 15 N/A 9

Table 1. Description of Data Sets

3. Data Sets

We evaluate meta clustering on six data sets. For each
data set we also classify points using labelsexternalto the
clustering. We will call these test classifications the auxil-
iary labels. The labels are intended as an objective proxy
for what users might consider to be good clusterings for
their particular application. In practice, users may have
only a vague idea of the desired clustering (and thus may
not be able to provide the constraints necessary for semi-
supervised clustering [9, 32]). Or users may have no idea
what to expect from the clustering. The auxiliary labels are
meant to represent one clustering users might find useful. In
no way are they intended to represent an exclusive ground
truth for the clustering. If such a classification existed, su-
pervised learning would be more appropriate. Instead, the
auxiliary labels are intended to represent a clustering that is
good for one application, while acknowledging many appli-
cations with other good clusterings exist.

The Australia Coastal data is a subset of the data avail-
able from the Biogeoinformatics of Hexacorals environ-
mental database [27]. The data contain measurements from
the Australia coastline at every half-degree of longitude and
latitude. The features describe environmental properties of
each grid cell such as temperature, salinity, rainfall, and soil
moisture. Each variable was scaled to have a mean of zero
and a mean absolute deviation of one. The auxiliary la-
bels are based on the “Terrestrial Ecoregions of the World”
available from [15].

The Bergmark data was collected using 25 focused web
crawls, each with different keywords. The variables are
counts in a bags-of-words model describing the web pages.
The auxiliary labels are the 25 web crawls that generated
the data.

The Covertype data is from the UCI Machine Learning
Repository [26]. It contains cartographic variables sam-
pled at30 × 30 meter grid cells in four wilderness areas
in Roosevelt National Forest in northern Colorado. Data
was scaled to a mean of zero and a standard deviation of
one. The true forest cover type for each cell is used as the
auxiliary labels.

The letters data is a subset of the isolet spoken letter data
set from the UCI Machine Learning Repository [26]. We
took random utterances of the letters A, B, C, D, F, H, and
J in these proportions: A: 109 B: 56 C: 126 D: 59 F: 49

H: 62 J: 53. Each utterance is described by spectral co-
efficients, contour features, sonarant features, pre-sonarant
features, and post-sonarant features. The spoken letters are
the auxiliary labels.

The Protein data is the pairwise similarities between 639
proteins. It was created by crystallographers developing
techniques to learn relationships between protein sequence
and structure. This data is used as a case study in Section 5.

The Phoneme data is from the UCI Machine Learning
Repository [26]. It records the 11 phonemes of 15 speakers.
This data is used as a case study in Section 6.

See Table 1 for a summary of the data sets.

4. Experimental Results

In this section we present empirical results on four test
problems used to develop meta clustering. First, in Sec-
tion 4.1 we show the effect of Zipf random weighting of
feature vectors. In Section 4.2 we compare results between
using PCA prior to clustering with not using PCA. In Sec-
tion 4.3 we compare k-means with weighted feature vec-
tors to the local minima found by k-means on unweighted
data. Then in Section 4.5 we show the results of agglom-
erative hierarchical clustering at the meta level. The results
demonstrate the importance of generating a diverse set of
clusterings when the clustering objective is not well defined
prior to clustering.

We examine two clustering performance metrics. The
first is compactness. Compactness is defined as:

∑k
i=1 Ni

∑Ni−1

j=1

∑Ni

k=j+1
djk

Ni(Ni−1)/2

N
, (3)

wherek is the number of clusters;Ni is the number of
points in theith cluster;djk is the distance between points
j andk, andN =

∑k
i=1 Ni. Compactness measures the av-

erage pairwise distances between points in the same cluster.
Regardless of the feature weighting used in clustering, com-
pactness is always measured relative to the original data
set. In most of the traditional clustering algorithms such
as k-means and hierarchical agglomerative clustering, the
optimization criterion is closely related to this measure of
compactness.

The second clustering performance metric is accuracy,
which is measured relative to the auxiliary labels for each



data set. Again, the auxiliary labels are only a proxy for
what a specific user might want in a particular application.
They do not represent a single “true” classification of the
data, as different users may desire different clusterings for
alternate applications. Accuracy is defined as:

∑k
i=1 max(Ci|Li)

N
, (4)

whereCi is the set of points in theith cluster; Li is the
labels for all points in theith cluster, andmax(Ci|Li) is the
number of points with the plurality label in theith cluster
(if label l appeared in clusteri more often than any other
label, thenmax(Ci|Li) is the number of points inCi with
the labell).

Determining the number of clusters in a data set is chal-
lenging [25]. Indeed, the “correct” number of clusters de-
pends on how the clustering will be used. For simplicity,
we make the unrealistic assumption that the desired number
of clusters is predefined. It is easy to extend meta clus-
tering to explore the number of clusters as well: in addi-
tion to k-means local minima and various variable weight-
ing, clusterings can be generated with different numbers of
clusters. Our similarity metric can accommodate cluster-
ings with different numbers of clusters, so the meta-level
clustering will still group similar clusterings together, even
if they have different numbers of clusters.Using a fixed k
helps to demonstrate how effective the methods we present
are at generating diverse clusterings.

4.1. Effect of Zipf Weighting

In Figure 2 each point in the plots represents an en-
tire clustering of the data. The scatter plots in each row
show clusterings generated by weighting features with Zipf-
distributed random weights with different shape parameters
α for the four test data sets. For this figure we test Zipf dis-
tributions withα = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, and
1.50.

Note that for differentα values, feature weightings ex-
plore different regions of the clustering space. In all data
sets that we test, as theα value increases, feature weighting
explores a region of lower compactness. We also observe
an interesting phenomenon that some of the most accurate
clusterings are generated when applying feature weighting
with higherα values. In particular, highα in the Covertype
data set reveals a cloud of more accurate (and much less
compact) clusterings which do not show up at lowα values.

In the first row, whenα = 0.00, the Zipf distribution is
equivalent to a uniform distribution. It is clear that a uni-
form distribution alone is insufficient to explore the cluster-
ing space.

4.2. Feature Weighting Before and After
PCA

Figure 3 shows scatter plots of clusterings generated by
weighting features with Zipf-distributed random weights
for the four test problems. Each point in each plot represents
an entire clustering of the data. The x-axis is the compact-
ness of the clusterings (as defined in Section 4). The y-axis
is the accuracy of the clusterings using the auxiliary labels.
The top row shows clusterings generated by random Zipf
weighting applied to the features. The second row shows
clusterings generated by Zipf weighting on the components
of PCA95.

Although there is correlation between compactness and
accuracy, the correlation is not perfect. On non-PCA Aus-
tralia, for example, the most accurate clustering is mod-
erately compact but is clearly not the most compact clus-
tering: 55% of the clusterings are more compact than the
most accurate one. On non-PCA Letter, the association be-
tween compactness and accuracy is stronger; the most accu-
rate clusterings are nearly the most compact. On non-PCA
Covertype, however, the most accurate clusterings are not
the most compact ones. In fact, for the most accurate clus-
terings there is a weak inverse relationship between com-
pactness and accuracy.

For Australia, Bergmark, and Letter, PCA95 yields more
diverse clusterings – the figures extend further to the lower
right while maintaining clusterings in the upper left. In
particular, for Bergmark, PCA95 generates more compact,
high accuracy clusterings. For Covertype, however, PCA95
yields less diverse clusterings and completely eliminates the
cloud of high-accuracy clusterings. Because PCA yields
more diverse clusterings on some problems, and less diverse
clusterings with other problems, we generate clusterings by
applying Zipf weighting both before and after PCA95. The
3rd row in the figure shows clusterings generated both ways.
It is the union of the clusterings in rows 1 and 2. Combining
clusterings generated with these two methodologies yields
the most diverse set of clusterings across a variety of prob-
lems.

The bottom row of Figure 3 shows histograms of the
compactness of the clusterings. The most compact clus-
terings are on the left sides of the histograms. The arrow in
each figure marks the most accurate clustering within each
distribution. In Australia and Covertype, the most accurate
clusterings do not occur in the top half of the most com-
pact clusterings. In Bergmark and Letter, the most compact
clusterings occur 20-30% down in the distribution. Note
that standard clustering techniques would never have found
these most accurate clusterings. Looking at the extreme
leftmost points in each plot, it is clear that the most com-
pact clustering is significantly less accurate than the most
accurate clustering. Since there exist reasonable clusterings



Figure 2. Accuracy vs. compactness for Zipf-weighted sequences for the Australia, Bergmark, Cover-
type, and Letter data sets. Each point is a full clustering.

which are more accurate than the most compact clustering,
we conclude that the usual method of searching for only the
most compact clustering can be counterproductive. It is im-
portant to explore the space of reasonable clusterings more
thoroughly.

4.3. Local Minima vs. Feature Weighting

Figure 4 shows scatter plots of clusterings generated
using k-means, comparing weighting features with Zipf
distributed random weights versus without using feature
weighting for the four test problems. The x-axis is the com-
pactness of the clusterings (as defined in Section 4). The
y-axis is the accuracy of the clusterings using the auxiliary
labels. The top row shows the union of clusterings gener-
ated by random Zipf weighting applied to the original fea-
ture vector and the clusterings generated by Zipf weight-
ing on orthogonalized components of PCA95. The bottom
row shows the clusterings generated using iterated k-means
where each point is the result of a different random initial-
ization.

For Australia, Bergmark, and Letter, weighting features
yields more diverse clusterings – the figures extend further
to the lower right, while retaining points in the upper left.
For Covertype, not applying feature weighting fails to dis-
cover the cloud of more accurate (yet not compact) clus-

terings. For Australia, different random initialization of
k-means without feature weighting manages to find more
clusterings in the upper left corner (both accurate and com-
pact).

4.4. Other Clustering Methods

For a thorough comparison, we also apply other cluster-
ing approaches to the four data sets: hierarchical agglomer-
ative clustering (HAC) [21], EM-based mixture model clus-
tering [22], and two types of spectral clustering [23, 1].
HAC is implemented using three different linkage crite-
ria: single (min-link), complete (max-link), and centroid
(average-link) [21]. The EM-based mixture model cluster-
ing estimates Gaussian mixture models using the EM al-
gorithm. The result for the EM-based mixture model clus-
tering is the highest accuracy from multiple runs with dif-
ferent initialization. For both the spectral clustering meth-
ods, we also report the highest accuracy from multiple runs.
Spectral clustering requires an input similarity matrixS,
whereS = exp(−||xi − xj ||/σ2). To obtain a variety
of results, we used different values of the shape parame-

ter, σ = max{||xi−xj ||2}
2k/8 , for k = 0, .., 64. The clusterings

obtained from other methods fall within the range of cluster-
ings generated from k-means with random feature weight-
ing. Across the four data set the spectral method proposed



Figure 3. Accuracy vs. compactness for Zipf-weighted clusterings before PCA (1st row), after PCA95
(2nd row), the union of non-PCA with PCA95 (3rd row), and the histograms (4th row) of the compact-
ness of the clusterings found in the 3rd row for the four data sets. Each point is a full clustering.
The arrows on the histograms indicate the location of the most accurate clustering, and the number
above is the percent of clusterings more compact than the most accurate one.

by [1] has the best performance, though it (and the other
alternative clustering methods) are always outperformed by
at least one clustering found with the metaclustering tech-
nique using kmeans for the base-level clusterings. We are
currently investigating random feature weighting with other
clustering techniques (in addition to k-means) to create di-
verse base-level clusterings.

4.5. Agglomerative Clustering at the Meta
Level

In this section we cluster the clusterings at the meta level
using agglomerative clustering with the average link crite-
rion described in [21] and show that clusterings near each

other at the meta level are similar, and clusterings far from
each other at the meta level are qualitatively different.

Figure 5 shows the meta level clustering trees for two
data sets, Australia and Letter. Each node in the clustering
tree is colored by accuracy. Yellow indicates low accuracy.
Blue indicates high accuracy. Note that clusterings of sim-
ilar accuracy tend to be grouped together at the meta level
even though meta clustering has no information about ac-
curacy. The results suggest that groups of clusterings at the
meta level reflect aspects of the base-level clusterings that
might be important to users.

Figure 6 shows four representative clusterings of the
Australia data set selected from the meta clustering tree.



Figure 4. Accuracy vs. compactness for Zipf-weighted clusterings (top row) and iterated k-means
(bottom row) of the four data sets: Australia, Bergmark, Cover Type, and Letters. Each point is a full
clustering of the data. The top row also includes the accuracy and compactness of other popular
clustering methods marked with special symbols.

Figure 5. Meta level clustering trees for Aus-
tralia (left) and Letter (right). Color (yellow
to blue) indicates to accuracy (low to high).
(The meta clustering dendrograms are much
easier to interpret if viewed in color.)

The clusterings on the left were selected as two very similar
(but not identical) clusterings from one region of the tree,
while the two on the right were selected to be distinct from
each other and from the two on the left. Each represents a
different, reasonable way of clustering the data set. Once
again we see that clusterings close to (far from) each other
at the meta level are similar to (different from) each other.

Figure 7 shows compactness (Equation 3) vs. the number
of clusters for hierarchical agglomerative clustering at the
meta level for the four data sets. These plots can be used to
detect structure at the meta level; jumps in the curves indi-
cate merges between groups of dissimilar clusterings. The
Australia, Covertype, and Letter data sets exhibit signifi-
cant structure at the meta level. However, in the Bergmark
data set, little structure at the meta level is observed. (Meta

clustering can be useful even in the absence of significant
structure at the meta level since clustering at the meta level
will still group similar clusterings together, making explor-
ing the space of clusterings easier.)

5. Case Study: Protein Clustering

In this section we apply meta clustering to a real protein
clustering problem. The protein data consists of pairwise
distances between 639 proteins. The distance between each
pair of proteins is computed by aligning 3-D structures of
each protein and computing the mean distance in angstroms
between corresponding atoms in the two structures.

This data was created by crystallographers developing
automated techniques to learn relationships between pro-
tein sequence and structure. For their work they need to find
groups of proteins containing as many proteins with similar
structure as possible. To achieve this goal, and also to better
understand the data, the developers employed a number of
techniques including clustering, MDS, univariate, and mul-
tivariate statistical analysis. In the course of their work they
generated and tested a large variety of hand-tuned cluster-
ing criteria before finding satisfactory clusterings. After
a month of effort, the two largest homogeneous groups of
proteins (less than 1.25 angstrom mean distance between
aligned atoms) discovered contained 28 and 30 proteins.

We apply meta clustering to the same data to try to au-
tomatically find sets of proteins similar to those the experts
found manually. For this data we only have pairwise dis-
tances between proteins, not a feature-space, so we can-



Figure 6. Alternate clusterings for the Australia data set. Each point is colored and numbered by
cluster membership. The two clusterings on the left are similar, but not identical, while the two on
the right are distinct from each other and from the two on the right. All four are reasonable ways
of clustering Australia. (NOTE: Although the figures include numbers visible in black and white, the
figures are much easier to interpret in color.)

Figure 7. The compactness plot of the hierarchical agglomerative clustering at the meta level of the
union of non-PCA with PCA95 of the Australia, Bergmark, Covertype, and Letter data sets.

not apply random Zipf weighting directly to the original at-
tributes. Instead, we use the MDS method described earlier
in Section 2.1.4 to convert the pairwise distance matrix to a
vector space, and then apply random Zipf weighting.

We apply the meta clustering method described in Sec-
tion 2.1.2 using random Zipf weighting with Zipf shapes se-
lected uniformly on the range (0.0,1.5). For each weighting
we run iterated k-means to find clusterings (local minima).
We repeat this process 5000 times, yielding 5000 different
clusterings of the protein data. The left plot in Figure 8
shows the number of points in the largest cluster satisfying
the 1.25 angstrom constraint, plotted as a function of clus-
tering compactness. Note that although the majority of clus-
terings found by meta clustering do not have large clusters
with 30 or more points, meta clustering has found a number
of clusterings that contain clusters with more than 30 points.
The largest homogeneous cluster found by meta clustering
contains 48 proteins, 60% more than the experts were able
to find using manually guided methods. In a few hours meta

Figure 8. Meta Clustering of the Protein Data

clustering finds better clusterings than could be found man-
ually with a month of work. The compactness histogram in
the right of the Figure 8 shows that the “optimal” clustering
had mediocre overall compactness, falling near the middle
of the distribution of clustering compactnesses.

An examination of compactness (see Section 4.5) as a
function of the number of clusters for agglomerative clus-
tering at the meta level shows large jumps, suggesting struc-
ture at the meta level, i.e., meta clustering has found qual-



itatively different ways of clustering the protein data that
cluster together at the meta level. If users needed cluster-
ings that satisfied different criteria, it is likely that groups
of alternate clusterings have already been found by meta
clustering that would perform well according to these other
criteria.

The clustering goal used in this case study (clusterings
smaller than 1.25 angstroms containing many points) was
not known in advance when crystallographers began work-
ing with this data. This criterion emerged only after exam-
ining the results of many clusterings. Optimizing directly
to this criterion is not straightforward. Meta clustering au-
tomatically finds a diverse set of clusterings, a few of which
have the desired property, without knowing the criterion in
advance and without optimizing directly to that criterion.

6. Case Study: Phoneme Clustering

In this section we apply meta clustering to a phoneme
clustering problem. The data set contains 15 different
speakers saying 11 different phonemes 6 times each (for
a total of 990 data points). For this data set, we consider
users interested in identifying either speakers or phonemes
and evaluate the clusterings based on both of these criteria.

Compactness Speaker ACC Phoneme ACC
All 2.66 0.291 0.405

MC1 2.86 0.296 0.400
MC2 2.91 0.264 0.369
MC3 2.75 0.307 0.379
MC4 3.25 0.291 0.242
MC5 3.44 0.247 0.309
MC6 3.15 0.287 0.355
MC7 3.59 0.191 0.364
MC8 3.37 0.217 0.323
MC9 3.83 0.244 0.248
MC10 3.49 0.202 0.248
MC11 3.05 0.266 0.292
MC12 3.31 0.333 0.275
MC13 2.97 0.243 0.431
MC14 3.84 0.182 0.220
MC15 3.08 0.233 0.374
MC16 3.45 0.212 0.445

Table 2. Meta Clustering Aggregation of the
Phoneme data set

Meta clustering successfully finds clusterings that are ac-
curate for each criterion. Figure 9 shows the scatter plots
of clusterings (top two rows) and the meta level cluster-
ing dendrograms (bottom row) colored with respect to the
two accuracy measures (identifying speakers and recogniz-
ing phonemes). In the scatter plots of compactness and ac-
curacy (top row), there is a small cloud of clusterings with
high accuracy and medium compactness. If the task were
to identify speakers, the most accurate clustering occurs at

Figure 9. Accuracy vs. compactness scatter
plots for the two accuracy measures (identi-
fying speakers vs. recognizing phonemes)
(1st row), scatter plot of the two accuracy
measures (2nd row), meta level clustering
dendrograms colored by accuracy in the two
measures. Yellow indicates low accuracy.
Blue is high accuracy. (The dendrorgams are
much easier to interpret if viewed in color.)

38% in the compactness distribution, i.e. the most accurate
clustering for this criterion is not one of the more compact
clusterings. For the task of identifying phonemes, the most
accurate clustering does not even occur in the top half of the
most compact clusterings and falls at 53% in the compact-
ness distribution.

In the scatter plot of the two accuracy measures (sec-
ond row), there is a weak inverse correlation between the
task of identifying speakers and identifying phonemes. The
most accurate clustering for identifying speakers is gener-
ated from applying Zipf weighting with the shape parameter
set at0.25 to the before-PCA data. The most accurate clus-
tering of identifying phonemes is generated from applying
Zipf weighting with the shape parameter set at1.25 to the
PCA data. This confirms the need to sample a variety of
Zipf weighting parameters and to explore PCA space.

For comparison, the scatter plots in Figure 9 show the



consensus clustering found using the cluster aggregation
method proposed in [24] (marked with a green “+” in the
figures). This is the clustering that represents the consensus
of all found clusterings. As expected, the consensus clus-
tering is very compact (because less compact clusterings of-
ten disagree with each other, but the most compact cluster-
ings often agree thus forming a strong consensus). Note,
however, that the consensus clustering is not as compact as
the most compact clusterings found by meta clustering, and
also not very accurate on either the speaker identification or
phoneme recognition tasks.

Again we use agglomerative clustering at the meta level
to group similar clusterings. Figure 9 shows two copies
of the same meta level clustering dendrogram (bottom
row) colored by accuracy on the speaker identification and
phoneme recognition tasks. Asterisks under the dendro-
grams indicate groups of clusterings that have significantly
different accuracy for the two different tasks. Users may
examine different clusterings by clicking on a clustering in
the dendrogram, allowing users to zero-in on regions that
appear promising.

If a user selects a cluster of clusterings in the meta level
dendrogram (as opposed to a single base-level clustering),
they can examine either the most central clustering in this
branch of the dendrogram, or can examine a consensus clus-
tering formed from the clusterings in the branch. The pink
dots in the scatter plots represent consensus clusterings that
a user might select.1

Table 2 shows the compactness for the 16 meta-level
consensus clusterings (the pink dots in Figure 9), as well as
the consensus clustering forall clusterings. The accuracy of
the consensus clusterings on both the speaker identification
and phoneme recognition task also are shown. The most
accurate clusterings are shown in bold face. Once again
note that the consensus clustering for all clusterings is not
as accurate on either task as the clusterings found by meta
clustering. Meta clustering is more likely to find clusterings
of the data that might be useful to users for different tasks.

7. Related Works

[2] presents a very different algorithm for finding alter-
nate clusterings of the data. In this approach a probability
matrix that defines the likelihood of jumping from one point
to another is used to generate a random walk. The tran-
sition probability is defined as a function of the Euclidean
distance between each pair of points. The random walk al-
lows particles to transition between instances according to
the transition probability. Instead of clustering the data di-
rectly, distributions of the locations of the particles are clus-

1We use the meta level clusterings found fork = 16 because examina-
tion of compactness vs. number of clusters for the meta-level agglomera-
tive clustering indicated that there were 16 natural meta-level clusters.

tered. Gaps in the eigen values indicate potentially good
partitionings. At any random walk step with a local maxi-
mum eigen gap, the partition that maximizes this gap is re-
ported. One of the ways in which this approach differs from
meta clustering is that it uses a fixed method for measuring
the distance between instances (euclidean distance). Also,
the method only generates one clustering for each K. (All
of the clusterings found with meta clustering in this paper
are for a single fixed K.)

A number of ensemble clustering methods improve per-
formance by generating multiple clusterings. We mention
only a few here. The cluster ensemble problem is formu-
lated as a graph partitioning problem in [30] where the goal
is to encode the clusterings into a graph and then partition
it into K parts with the objective of minimizing the sum of
the edges connecting those parts.

[11] proposes a different cluster ensemble method where
both clusters and instances are modeled as vertices in a bi-
partite graph. Edges connect instances with clusters with
a weight of zero or one depending on whether the in-
stance does or does not belong to the cluster, thus capturing
the similarity between instances and the similarity between
clusters when producing the final clustering.

Another cluster ensemble method was proposed by [16]
where the objective of the final clustering is to minimize
the disagreement between all the clusterings and the final
clustering. This final clustering is the one that agrees with
most of the clusterings. In this framework, the clustering
aggregation problem is mapped to the correlation cluster-
ing problem where we have objects and distances between
every pair of them and the goal is to produce a partition that
minimizes the sum of the distances inside each partition and
maximizes the sum of the distances across different parti-
tions.

Instead of partitioning, [24] used agglomerative cluster-
ing to produce the final clustering after generating a similar-
ity matrix from many base-level clusterings. Cluster aggre-
gation was formulated as a maximum likelihood estimation
problem in [31] where the ensemble is modeled as a new set
of features that describe the instances and the final cluster-
ing is produced by applying K-means while solving an EM
problem. Linear programming was used in [4] to find the
relation between the clusters in the different clusterings and
the clusters of the final clustering. Simulated annealing and
local search was used in [12] to find the final clustering.

The main difference between these ensemble methods
and meta clustering is that most ensemble methods combine
the clusterings they find into a one final clustering because
their goal is to find a better, single, very compact cluster-
ing. Because the most compact clusterings are not neces-
sarily the most useful clusterings, meta clustering does not
attempt to combine different clusterings into one clustering.
Instead, it groups different clusterings into meta clusters to



allow users to select the clustering that is most useful for
them.

8. Summary

Searching for the single best clustering may be inappro-
priate: the clustering that is “best” depends on how the clus-
ters will be used and the data may need to be clustered in
different ways for different uses. When clustering is used
as a tool to help users understand the data, an appropriate
clustering criterion cannot be defined in advance.

The standard approach has been for users to try to ex-
press in the distance metric the notion of similarity appro-
priate to the task at hand. This is awkward. Having to define
the clustering distance metric, and then refine it when the
clusters found are not what you want, is akin to having to
modify your word processing software when the formatting
it generates is not what you wanted. Few of the many poten-
tial users of clustering are adept at defining distance metrics
and at understanding the (often subtle) implications a dis-
tance metric has on clustering. Even clustering researchers
have difficulty modifying distance metrics to achieve bet-
ter clusterings when the first metric they try does not work
adequately.

In this paper we used auxiliary labels not available to
clustering to measure clustering accuracy. We use accu-
racy as a proxy for users who have unspecified goals and
intended uses of the clusterings. This allows an objective
evaluation of meta clustering. Experiments with four test
problems show that meta clustering is able to automatically
find superior clusterings. Surprisingly, in these experiments
we find only modest correlation between clustering com-
pactness and clustering accuracy. The most accurate clus-
terings sometimes are not even in the most compact 50% of
the clusterings. This reinforces our belief that searching for
a single, optimal clustering is inappropriate when correct
clustering criteria cannot be specified in advance. Instead,
it is more productive to focus clustering on finding a large
number of good, qualitatively different clusterings and al-
low users (or some form of post processing) to select the
clusterings that appear to be best.

Experiments with a phoneme clustering problem showed
that the clustering that is good for one criterion can be very
suboptimal for another criterion. Different clusterings may
be needed by different users. Meta clustering automati-
cally found good (different) clusterings for each criterion.
Experiments with a protein clustering problem provide a
case study where meta clustering was able to improve clus-
tering quality 60% above the best that could be achieved
by human experts working with this data. Meta cluster-
ing achieved this improvement fully automatically in less
than a day of computation. We believe the results demon-
strate that meta clustering can make clustering more use-

ful to non-specialists and will reduce the effort required to
find excellent clusterings that are appropriate for the task at
hand.
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Appendix

The Zipf feature weighting method in coupling with
Kmeans has performed better than other clustering meth-
ods that we evaluated. In this section we evaluate the per-
formance of the Zipf feature weighting method in coupling

spectral clustering. Here is the spectral method proposed by
[1] in summary:

1. Compute the similarity matrixS ∈ Rn×n where

Sij =
{

exp(−||xi − xj ||/σ2) if i 6= j;
0 if i = j.

2. Compute the matrix

L = D
1
2 SD

1
2 ,

whereD is the diagonal matrix whoseDii =
∑

j Si,j

3. Let 1 = µ1 ≥ µ2 ≥ ... ≥ µK be theK largest
eigenvalues ofL and u1, u2, ..., uK the correspond-
ing normalized eigenvectors. Form the matrixU =
[u1u2...uK ]

4. Form the matrixY from U by re-normalizing each of

U ’s rows to have unit length,Yij = Uij/
√∑

j U2
ij

5. Treating each row ofY as a point inRK , cluster them
into K clusters vis Kmeans.

The Zipf weighting vector is applied to the original data
set before we compute the similarity matrixS. For each
Zipf weighting, we repeat the spectral clustering method

with different values ofσ = max{||xi−xj ||2}
2i/4 where i =

0, 2, 4, ..., 32.






