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Abstract

We give fast parallel algorithms for recognizing and representing comparability graphs.
the graphs that can be transitivelv oriented. and interval graphs. the intersection graphs of
intervals along the real line. Under the CRCW PRAM model, both algorithms use O(n®)
processors in Olog n) time to check if a graph belongs to the desired class, and if it does then
a valid representation of the graph can be produced. The algorithms gain their efficiency by
using fast algorithms for finding the modular decomposition of a graph. Both problems were

known to be in VC. but the known algorithms require more time than ours does.
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1 Introducticn

Interval and comparability graphs are useful models in a varietv of applications (see 9 ). partic
ularly scheduling problems. Both polvnomial-time and V(" algorithis are known for recognizing
these graphs. and representing them in terms of partial orders. Kozen ef al. 8 and Helibold
and Mavr 6 gave parallel algorithms for solving these problems on comparabilitv graphs. Their
algorithms required at least Q(n') processors and Q(log® n) time. We improve these bounds to
O(n?) processors and O(log n) time on a CRCW-PRAM.

Klein (7 designed an () processor, O(log? n) time algorithin for recognizing and rep-
resenting interval graphs. His algorithmn is an eficient parallelization of Booth and Lueker’s
sequential algorithm (1. Our algorithim uses O(logn) time and O(n*) processors. We improve
upon the running time of Klein's algorithm at the cost of using more processors. His method
takes advantage of the fact that interval graphs are also chordal graphs. graphs with no induced
cvcle of length more than three. On the other hand. onur method is based on the fact that the
complement of an interval graph is a comparability gr.ph. Previous algorithms based on rthis
approacn 4.8 have been inefficient in comparison to chordal graph-based methods, but we give
a sequential algorithm for the problem that runs in O(n?) time. nearly as fast as Booth and

Lueker’s algorithm.

A kev step in our method is an efficient algorithm for finding the modular decomposition
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of a graph. This modular decomposition is also useful in succintly representing all the valid

representations of an interval or comparability graph.

2 Definitions

We let G = (V, E) denote a graph in the usual wav with n = 17 and m - F. FE. The
complementary graph of (. (/. contains as edges £ all edges not present in (7. Manv definitions
and results below are svinmetric in £ and £°: in the statement of such results. we use the letter

F to represent either £ or £, and F" ro represent the other.
The notion of a transitive orientation is important for both comparabilitv and interval graphs.

Definition 2.1 A transitive orientation of (; is a subsct T of E such that

1. for each uv = E, either uwec -~ [ or cu - T but not both:

2. ifuv,vw e T, then uw - T.

The graph G is called a comparability graph if there erists a transitive orientation of it.

Definition 2.2 Graph GG is an interval graph if there is a collection T of intervals along the real
line where ecach interval corresponds to a verter of (G such that I, 1. = O if and only if u and

v oare adjacent vertices in (5.

We will find it useful to perform a modular decomposition when recognizing comparability

and interval graphs.

Definition 2.3 A module is a set = of vertices that are indistinguishable by the vertices outside

the set: v.e.. any verter in V. — A is either adjacent to all vertices of A or to none of them.

Modules are formed from maller submodules in three wavs: parallel. series. and neighborhood

modules.

Definition 2.4 Parallel modules wre the disjoint union of a collection of submodules. Series
modules are the disjoint union of a collection of submodules. plus edges between every pair of
vertices in different modules is joined by an edge. In a neighborhood module. the graph induced

by the submodules is both connected and complement-connected.

Definition 2.5 A modular decomposition of (i is a tree whose nodes are modules of (7. Fer-
ery vertex of G is a leaf in this decomposition tree. A parent node in this tree contains all of
its children as submodules. The children of a paralle! module form a marimal set of connected
submodules. The submodules of a series module form a maxrimal set of complement-connected
graphs. The children of a neighborhood module are marimal proper submodules of the neighbor-
hood module.

The modular decomposition of a comparabilitv graph is called the Gallai decomposition.
after Tibor Gallai 3. Booth and Lueker’s PQ-tree representation (see 1 ) mostly consists of
a modular decomposition of interval graphs. The Gallai decomposition and PQ-tree succintlv

provide all the possible representatious of comparability and inter.al graphs, respectivelv.



3 Comparability graph recognition

Our algorithm for comparability graph recognition and orienration is a more efficient version of
the one proposed bv Kozen. Vazirani, and Vazirani 8. Their algorithm first finds the Gallai
decomposition. and then transitively orders the graph. We give an algorithm that can find
the modular decomposition of a graph on a concurrent-read concurrent-write parallel random-
access machine (CRCW PRAM with arbitrarv resolution of write conflicts) in O(logn) time
using O(n?) processors. Several researchers (see 107) have shown that anv graph has a unique

modular decomposition

In the following definition. directing we in one direction forces us to direct u'v’ in the “same”

direction ii we are to obtain a traunsitive ordering of (7.

Definition 3.1 For uv. o'v'  F. define uv_u'v' if either

[.u = u and oo’ = F°, or

2. v = ¢ and uwd = F°.

" Let /% be the reflerive transitive closure of .. The % class of we is denoted we and is
called the implication class of uv. The set v vie 15 called the color class of uv. The set of
vertices touched by edges of uv is denoted by V owv . Note that = and = * are defined on edges

in E€ as well as those in E.

Definition 3.2 For uv, v'v' = F. define we - u'c" if either

[.u o andve’ £ vu ur’ . oor
2.0 -0 and wd' £ owe vl
Let - * be the reflexive transitive closure of . The  *-class of ue is denoted by Twe . The

set of vertices touched by edges of uv s denoted Voue .

!

Definition 3.3 A subset AV is called normal if for all uw > A and voo' = A0 ur = u'e
Normal sets and modules are related by the following lemma.

Lemma 3.1 Every normal set of (i also forms a module of (v, though not necessarily a series.

parallel, or neighborhood module.

Two lemmas of Kozen ¢t al. are useful in characterizing normal sets.
Lemma 3.2 V]uv! is the smallest normal set containing u and v.
Lemma 3.3 If A. B are normal, then either A~ B.B -~ A or 4 B 0.

By using these lemmas. thev had characterized the normal sers of a graph. and shown when a

graph has no nontrivial normal snbsets.

Theorem 3.1 The following are all the normual subsets of (;:



[. singletons {u}. u«}
2o Viwe uye oV

Theorem 3.2 A graph i has no nontrivial normal subsets if and only if one of the following

conditions holds:

[. (G is a clique;

2. (s totally disconnected:

2. G contains at least four vertices and has eractly two color classes, one cach in B and £7.

These three cases correspond to <eries. parallel. and neighborhood modules respectivelv. Kozen.
Vazirani, and Vazirani gave the following algorithin as part of an algorithm to orient compara-
bility graphs. In fact their algorirthm can be used to compute the modular decomposition ot anv
graph. The steps of the algorithm are:

. Determine all classes wue and wv for all pairs of vertices u and v.
2. Find all normal sets.

3. Create the tree of normal sets, ordered by inclusion.

We give a more efficient implementation of their algorithm.

Theorem 3.3 The modular decomposition of a graph can be found in Ologn) time on a
CRCW-PRAM with O(n?) processors.

Proof: The forcing relations . and - are svinmetric. so we find their transitive closure bv
graph connectivity algorithms L1 . This graph has O(n”) edges becanse each uv is onlv adjacent
to vertices which contain v and v. We can check two normal sets for inclusion by checking if thev
contain a vertex in common, and which set has larger size. Bv a previous lemma we know that
two normal sets cannot just partially intersect. Either one of them must contain the other. or
they are disjoint. The bottleneck in the algorithm is the first step, which uses Of n?) processors

and O(logn) time. |

The process of finding the niodular decomposition of a comparabilitv graph is the dominant
one in the parallel algorithins for orienting a comparability graph. Applving our algorithm also
gives a more efficient algorithm for orienting a graph than rhe one given by Helmbold and Mavr
6! did. Their algorithm required the nse of O(n*) processors becans thev fonnd a maximal
independent set during their algorithm. More efficient algorithms are now known for finding
maximal independent sets 5 so Helmbold and Mavr's algorithm can be made to run with onlv

O(n’) processors. but even these improved versions require at least O(log? n) time.

4 Interval graph recognition

We can check if a graph is an interval graph by wsing a result of Gilmore and Hoffman 4 :



Lemma 4.1 A graph (i is an interval graph if and only if it does not contain an induced cycle

of length four and its complement is a comparability graph.

A special tvpe of partial order arises when we transitively order the complement of an interval

graph.

Definition 4.1 An interval order - of V7 is a partial order satisfying:
a eb y=a y.b r

for all a,b, e,y = 1.
Fishburn (Theorem 2.6 of 2 j has shown that everv interval order has an interval representation:

Lemma 4.2 (V. ) is an intcrval order if and only iof there s a mapping F- from V' ointo closed
intervals along the real line such that for all roy - Vo y if and only if the right endpoint of

& s interval is less than the left endpoint of y's interval.

The transitive orientation of the complement of an interval graph must be an interval order, else
te]

the interval graph itself would contain and induced four-cvele.
With respect to an interval representation we introduce the following notation:

Definition 4.2 We say r y if the left endpoint of »'s interval is less than the left «ndpoint
of y's interval.  Likewise we say v - = y if the same slatement is true of the right intereal

endpoints.
Fishburn ( Theorem 2.5 of 2!) proved another useful result:

Lemma 4.3 If (V, ) is an interval order, then the rciation  partitions Vo ointo the left con-
gruence classes A, ..., A,,. Likewise, = partitions V' into the same number of right congruenee
classes By, ....B,,. Furthermore, if each of these partitions is sorted in increasing order. then
for L i m all the left endpoints of vertices in A, precede all the right endpoints of vertices
in B;, yet for | _ i - m all the right endpoints of vertices in B, precede all the left endpoints of

vertices in A; .

Instead of computing these congruence classes by just comparing left endpoints with left end-
points, and right ones with right ones, we can just check the number of vertices which precede

and follow a given vertex in the interval order.

Theorem 4.1 [f (V. ) is an interval order, then vertices v and y will be in the same left
congruence class if and only if every verter o that is less than r is also less than y. and rice
versa. Similarly, v and y will be in the same right congruence class if and only if v and y are

both less than the same set of vertices.

Proof: [If r and y are in the same left congruence class. then bv the previous lemma they
are greater than the same set of right congruence classes. Ii thev belouged to different left
congruence classes, then the larger of the two vertices, sav ». would be greater than some right
congruence class that y is not greater than. The proof of the other half of the theorem proceeds

symmetrically. 1

This theorem vields a construciive wav of finding an interval representation corresponding

to a given interval order. We can even more quickly compute the congruence classes by noting



that to find s left congruence class we onlv have to count the number of vertices less than r.

rather than actuallv maintaining this set.

The algorithm for interval graph recognition and representation consists of the following

steps:

. Check if the complement of (/ is a comparaoility graph. If not. then (7 is not an interval

graph. Otherwise, transitivelv orient the edges of the complement.

2. Compute the left and right congruence classes by counting the nuniber of vertices less than

and greater than each vertex.
3. Construct the interval representation from the equivalence classes.

. Find the interval corresponding to this representation. Check to see if it is the same as (/.

[f not. then (7 is not an interval graph because it contains an induced four-cvele.

Theorem 4.2 The interval graph recognition and representation algorithm runs in O(logn)
time using O(n?) processors on a C'RCW-PRAM.

Proof: The first step uses O(logn) time and O(n?) processors. The congruence classes can be
found with only O(m) processors, as can the interval representation. Checking that the interval
representation is valid requires O(n?) processors it we compare adjacency matrices. If instead
we first check to see if the number of edges is the same in both graphs. and later compare edges.
then we onlv need O(rn) processors. The performance of the algorithin is dominated by the

calculations of the first step. |

We can also get an O(n?) time sequential version of this algorithw for interval graph recog-
nition. There are faster sequential algorithms known for interval graph recognition. e.g. 1.
but none of these algorithms is based on the fact that the complement of an interval graph is a
comparabilitv graph. Spinrad 12 has shown that the edges of a graph can be oriented in O(n”)
time such that this orientation is a valid orientation if and onlv if the graph is a comparability
graph. Since our check to see it the graph reallv is an interval graph also works in O(m) time.

we can do the entire recognition and representation in quadratic time.

5 An example

We give an example showing these two algorithms at work on the graph in Figure 1.

Viwe  {achoeld} when uov - {acboeodbiu = ¢
The normal sets of this graph are: V' we  {a.b.eod o} when v - {a.b.c.d}

Voue  {acbecdoe fogy when w- {f.g}

One possible wayv of ordering the (‘omplmne-rit is shown in Figure 2. Given this ordering we com-
a b ¢ d e f ¢
pute the number of vertices which precede and follow each vertex. precede 1 1 2 3 1 0 6
follow 32 L 1L 1 6 0

Only three values appear in both the precede and follow lists. Therefore, this interval graph
has exactly three maximal cliques. The interval representation corresponding to this information

appears in Figure 2.
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Figure 1: Example interval graph
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Figure 2: Its interval representation
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