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Network time synchronization is an important aspect of sensor network opera-

tion. It is often achieved by synchronizing the clock of each node in the network to

the clock of some reference node. However, it is well known that synchronization

error accumulates over multiple hops. This scalability problem presents a challenge

for large-scale, multi-hop sensor networks with a large number of nodes distributed

over wide areas.

In this thesis we develop the use of spatial averaging as an approach to miti-

gating the effects of the scalability problem. We first develop a cooperative syn-

chronization technique using spatial averaging that can achieve “perfect” synchro-

nization in the limit of an infinitely dense network. We show that it is possible to

maintain a perfect timing signal with equispaced zero-crossings that occur at inte-

ger values of the reference time. Second, we study the benefits of cooperative time

synchronization using spatial averaging in networks of finite density. We present

a protocol that uses spatial averaging to reduce error accumulation in large-scale

networks and show that synchronization performance can be significantly improved

by increasing network density.
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CHAPTER 1

INTRODUCTION

1.1 Time Synchronization and High Density Networks

The problem of time synchronization is the task of giving all elements of the sys-

tem a common time scale on which to operate. This common time scale is usually

achieved by periodically synchronizing the clock at each element to a reference

time source so that the local time seen by each element of the system is approxi-

mately the same. Time synchronization plays a vital role since it allows the entire

system to cooperate and function as a cohesive group. This is particularly impor-

tant for a variety of tasks such as synchronizing event detection, data fusion, and

coordinating wake and sleep cycles. Due to its importance, the problem of time

synchronization has been around for a long time [1], but a different type of net-

work is presenting new challenges and opportunities for network synchronization

techniques.

Modern ad hoc sensor networks represent a type of network that often does not

have any infrastructure. This means that nodes can be deployed over some area

and then are required to organize and synchronize using only network resources.

This is very different than networks such as the internet where an infrastructure

can be established using resources outside the network. For example, every node

in the internet may only be a few hops away from a time server and these time

servers can be synchronized using out-of-network resources such as GPS signals

or WWVB radio broadcasts [2]. However, even though ad hoc sensor networks

present a new synchronization challenge, they may also have characteristics that

are beneficial.
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Recent advances in ad hoc sensor networks are beginning to enable the deploy-

ment of large-scale networks with high node density. For example, a hardware

simulation-and-deployment platform for wireless sensor networks capable of simu-

lating networks that have on the order of 100,000 nodes was recently developed [3].

As well, for many years the Smart Dust project sought to build cubic-millimeter

motes for a wide range of applications [4]. Also, there is work in progress on

the drastic miniaturization of power sources [5]. These developments, and many

others, indicate that future networks may have extremely large numbers of nodes

deployed over wide areas. The question we consider is whether or not the density

of future networks can be used to address synchronization issues that plague ex-

isting techniques. In particular, we study the scalability problem in the context of

high density networks.

1.2 Synchronization and the Scalability Problem

Many techniques have been proposed for synchronizing sensor networks [6, 7, 8, 9,

10]. These techniques rely on nodes exchanging packets with timing information.

Using the exchanged timing information, each node can then estimate clock offset

and maybe clock skew. However, all of these traditional synchronization techniques

suffer from an inherent scalability problem—synchronization error accumulates

over multiple hops. Consider the situation illustrated in Fig. 1.1. Let us assume

that we wish to establish a global time scale for this network where node 1 contains

the reference time. Nodes 2 and 3 can estimate their synchronization parameters,

i.e. clock skew and offset, directly from node 1. This means that nodes 2 and

3 will have an estimate of the clock of node 1, but recall that the estimates will

have errors. Node 4, on the other hand, is outside the broadcast domain of node

2



1 so it must estimate its clock skew and offset relative to node 1 through the use

of timing information from nodes 2 and 3. However, since the timing information

provided by nodes 2 and 3 regarding the clock of node 1 will have errors, the skew

and offset estimates made by node 4 will be further corrupted by timing errors.

1

2
3

4

Figure 1.1: In the above figure, assume node 1 has the reference time and all nodes

want to be synchronized to this clock. Nodes 2 and 3 are in the broadcast domain of

node 1. However, node 4 must be synchronized through nodes 2 and 3.

This accumulation of error over multiple hops poses a problem as sensor net-

works are deployed over larger and larger areas. The number of hops required to

communicate across the network increases; thus, the synchronization error across

the network increases. One possible way to avoid the scalability problem is to use

a few nodes with powerful radios to limit the number of hops required to commu-

nicate timing information across the network. However, this technique does not

address the fundamental scalability problem of errors accumulating over multiple

hops. In addition, this technique places the burden of time synchronization on a

few special nodes and is bad for fault tolerance. It would be desirable to develop

synchronization techniques for large-scale, multi-hop networks that do not rely on

special nodes for synchronization. It is our belief that high density networks may

provide a new alternative to mitigating the scalability problem.
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1.3 Motivation for Cooperation

The scalability problem is an inherent part of all synchronization algorithms since

estimation errors will inevitably accumulate over multiple hops. In order to reduce

the effect of this problem, we need to find ways to reduce the synchronization

error at each hop. There are two primary ways to accomplish this. The first is

to collect more timing information. With more timing data, nodes can generally

make a better estimate of clock skew and clock offset. For example, RBS [6] and

FTSP [10] both let nodes collect many timing data points before estimating clock

skew and clock offset. A timing data point provides a node with the time at a

reference clock at a specific time in its local time scale. With more data points,

synchronization error will decrease. This technique is essentially doing a time

average to estimate clock skew and clock offset. However, increasing the number

of data points is not necessarily practical since it would significantly increase the

amount of network traffic and the time needed to synchronize the network.

The second primary approach is to improve the quality of the timing data point.

For example, TPSN [8] and FTSP use a MAC layer time stamping technique that

is more accurate than that employed in RBS. However, we believe that there is a

fundamentally new technique for improving data point quality that has not been

considered before. This new idea is to use spatial averaging to improve data point

quality. Even though we may not have a large number of timing data points that

occur at different points in time, in a high density network we may have a large

number of surrounding nodes. Instead of only doing a time average to estimate the

clock skew and clock offset, perhaps we can also do a spatial average to improve

these estimates. For example, for a given node i, many surrounding neighbors will

have timing information about the global clock since we want to synchronize the

4



entire network. Therefore, it seems reasonable that the information from many

surrounding nodes should somehow be able to help improve the skew and offset

estimates of node i.

An image A network

Figure 1.2: When conventional spatial averaging ideas, such as those employed in image

processing applications, are applied to networks, communication becomes a bottleneck.

However, it is important to realize that our spatial averaging idea is much more

involved than simply collecting more timing information from many surrounding

nodes. Existing techniques often do collect information from many neighbors since

a particular node may obtain each timing data point from a different neighbor.

However, this existing approach is essentially a direct extension of conventional

spatial averaging concepts. Consider spatial averaging in image processing appli-

cations where, for a given pixel, it is possible to use surrounding pixels to de-noise

the image through spatial averaging. If such a concept is used in a network, the

first thing that we notice is that timing information needs to be collected by each

node (Fig. 1.2). This means that communication becomes a bottleneck. If node

density is increased and if a given node wants to utilize the timing information

in more neighbors, then the amount of network traffic will grow. This increase in

communication traffic is clearly not desirable.

Our goal is to develop a new concept for spatial averaging in which it is possi-
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ble to decouple network density and the network traffic used for synchronization.

Such a technique would make it possible to improve synchronization performance

through increased node density without placing additional communication burden

on the network.

1.4 Pulses for Spatial Averaging

The question then becomes how we can actually implement this idea of spatial

averaging. Packet exchanges used in existing synchronization protocols are well

suited for time averaging, but are not easily adapted for spatial averaging. As a

result, we turn to studies of synchronization in other fields for motivation.

Emergent synchronization properties in large populations have been the object

of intense study in the applied mathematics ([12, 13]), physics ([14, 15, 16, 17, 18,

19, 20]), and neural networks ([21, 22]) literature. These studies were motivated

by a number of examples observed in nature:

• In certain parts of south-east Asia, thousands of male fireflies congregate in

trees and flash in synchrony at night [23].

• Pacemaker cells of the heart on average cause 80 contractions a minute during

a person’s lifetime [24].

• The insulin-secreting cells of the pancreas [25].

For further information and examples, see [26, 27, 28, 29], and the references

therein.

A number of models have been proposed to explain the emergence of synchrony,

but perhaps one of the most successful and well known is the model of pulse-coupled

6



oscillators by Mirollo and Strogatz [26], based on dynamical systems theory. Con-

sider a function f : [0, 1] → [0, 1] that is smooth, monotone increasing, concave

down (i.e., f ′ > 0 and f ′′ < 0), and is such that f(0) = 0 and f(1) = 1. Consider

also a phase variable φ such that ∂φ/∂t = 1
T
, where T is the period of a cycle.

Then, each element in a group of N oscillators is described by a state variable

xi ∈ [0, 1] and a phase variable φi ∈ [0, 1] as follows:

• In isolation, xi(t) = f(φi(t)).

• If φi(t) = 0 then xi(t) = 0, and if φi(t) = 1 then xi(t) = 1.

• When xi(t0) = 1 for any of the i’s and some time t0, then for all other

1 ≤ j ≤ N , j 6= i

φj(t
+
0 ) =





f−1(xj(φj(t0)) + εi), xj(φj(t0)) + εi ≤ 1

1, xj(φj(t0)) + εi > 1,

where t+0 denotes an infinitesimal amount of time after t0. That is, oscillator i

reaching the end of a cycle causes the state of all other oscillators to increase

by the amount εi, and the phase variable to change accordingly.

The state variable xi can be thought of as a voltage. Charge is accumulated over

time according to the nonlinearity f and it discharges once it reaches full charge,

resetting the charging process. Upon discharging, it causes all other charges to

increase by a fixed amount of εi, up to the discharge point. For this model, it

is proved in [26] that for all N and for almost all initial conditions, the system

eventually becomes synchronized.

In [30], this convergence to synchrony result was extended to networks that

were not fully connected. Kuramoto [31] further generalizes the convergence re-

sult in [26] for identical oscillators subject to small noise and small coupling in

7



asymptotically large populations. Senn and Urbanczik [32] were then able to es-

tablish conditions on the heterogeneity of N non-leaky integrate-and-fire neurons

that guarantee a convergence to a fully synchronous state.

The convergence to a synchronous state is clearly desirable for synchroniza-

tion in networks and, thus, recently there has been much work in applying these

mathematical models of natural phenomena to engineered networks. In [33], theo-

retical and simulation results suggested that such a technique could be adapted to

communication and sensor networks. Experimental validation for the ideas of [26]

was obtained in [34] where the authors implemented the Reachback Firefly Algo-

rithm (RFA) on TinyOS-based motes. They were able to successfully show that a

network of nodes started in arbitrary initial conditions would eventually become

synchronized.

What we notice about these pulse-coupled oscillator models is that the behav-

ior of a node is influenced by many neighbors. This characteristic seems to suggest

that pulses are a mechanism through which spatial averaging may be used. How-

ever, the problem with these emergent synchronization results is that the funda-

mental theory assumes all nodes are nearly the same and, thus, these convergence

techniques are not ideal for nodes with arbitrary clock skew. For example, re-

sults from [33] and [34] show that the convergence results may partially hold when

nodes have approximately the same firing period, but the authors of [34] explain

that clock skew will degrade synchronization performance.

As a result, we draw ideas from both traditional networking techniques and

pulse-coupled oscillator models. As in existing synchronization protocols, each

node will still use the time averaging of a sequence of timing data points to estimate

its skew and offset relative to the reference time scale. However, spatial averaging
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through the use of pulses will be used to improve each timing data point received

by the node. Recall that in traditional techniques, each timing data point is

constructed with information from only one neighboring node. In our technique

that incorporates spatial averaging, the timing data point will be constructed with

timing information from many neighboring nodes. This means that the timing

data point will be significantly less noisy, thus improving the overall skew and

offset estimates. Since our technique uses information from many neighboring

nodes, we call the method cooperative time synchronization.

As a final note, different types of cooperation have been considered for other as-

pects of wireless network operation. In extracting information from a deployed net-

work, nodes may be able to cooperatively transmit information [35],[36],[37],[38].

As well, cooperation can be effectively employed in broadcasting information to

the deployed network [39],[40].

1.5 Spatial Averaging Example

To see how it is actually possible to achieve spatial averaging using pulses, let us

consider an example. Assume each node in a network has a sequence of m timing

data points that occur at integer values of the reference time. This means that

each node has a vector of m time values in its local clock that are known to be

occurring at consecutive integer values of the reference time. Using this vector of

times, each node can estimate the next integer value of the reference time in its

own time scale. Each node will then transmit a pulse at that estimated time. Any

node j in the network will then see the following aggregate signal generated by

9



pulses sent from nodes surrounding node j:

Aj,N(t) =
N∑

i=1

AiKj,ip(t− τ0 − Ti)

where

• p(t): transmitted pulse

• τ0: the desired pulse transmit time (integer value of reference time)

• Ti: random timing error

• Kj,i: amplitude loss in the signal transmitted by the ith node

• Ai: scaling constant

Is it possible to use this aggregate signal Aj,N(t) to provide improved timing data?

τ 0+T2

τ 0+T1 τ 0

A 1K j,1

A 2K j,2

* assume that   max |p(t)| = 1

Figure 1.3: Two pulses are transmitted and the pulse transmission times (zero-crossings)

do not coincide with the ideal transmission time τ0 due to timing errors. The aggregate

may provide a zero-crossing closer to τ0.

If we further assume that p(t) is odd shaped and the zero-crossing is the pulse

transmission time, then an aggregate signal with two pulses will be the sum of

the shifted pulses shown in Fig. 1.3. We see that the pulse transmission times do

not coincide with the ideal transmission time τ0 due to timing errors, but it seems

very likely that the aggregate signal will make a zero-crossing much closer to τ0. If

this is indeed the case, then perhaps the aggregate zero-crossing will provide much

better information about the location of τ0.
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Figure 1.4: Left: The basic transmitted pulse. Middle: The aggregate signal with

more pulses makes a zero-crossing close to the ideal transmission time at the center of

the x-axis. Right: The aggregate signal with even more pulses makes an even better

zero-crossing.

It turns out that under certain conditions, the aggregate signal does provide a

zero-crossing that is much closer to τ0. As shown in Fig. 1.4, if each node transmits

an odd-shaped pulse and the zero-crossing is the transmission time, then with

increasing numbers of pulses, the aggregate signal makes a zero-crossing closer and

closer to τ0. Therefore, we see that by taking the aggregate signal zero-crossing we

can get a better approximation of the ideal transmission time. Using a sequence

of these observations would then allow us to make an improved estimate of clock

skew. Thus, we see that it is possible to construct aggregate signals that provide

improved timing information and use a collection of these observations to estimate

synchronization parameters.

1.6 Summary of Contributions

This thesis develops a comprehensive understanding of the use of spatial averaging

in time synchronization. We consider all aspects of the system from proposing

a general system model to developing a synchronization protocol for cooperative

time synchronization using spatial averaging.
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In Chapter 2 we begin by establishing a general system model for large-scale,

high density networks. The random pathloss and delay models are designed with

high density networks specifically in mind. We also show that the model is in

fact a generalization of the popular Mirollo and Strogatz model for pulse-coupled

oscillators.

Using the proposed general system model, we begin the study of cooperative

time synchronization in Chapter 3 by considering spatial averaging in asymptoti-

cally dense networks. Since spatial averaging should allow for better synchroniza-

tion when nodes have a larger number of neighbors, in an infinitely dense network,

some sort of perfect synchronization should be possible. In Chapter 3 we show

that perfect synchronization is indeed possible in the limiting case. We find that

it is possible for the network to cooperatively generate a time synchronization sig-

nal that specifies the integer values of the reference time which can be seen by

every single node in the network. Thus all nodes will have a common sequence of

synchronization events.

The asymptotic synchronization technique is modified for networks with a fi-

nite number of nodes and in Chapter 4 we study the synchronization performance

through the use of simulations. We find that synchronization can not be main-

tained simply by using the asymptotic technique in finite sized networks. However,

introducing minimal feedback will allow the network to remain synchronized.

In Chapter 5, we provide a characterization of the performance improvement

achievable by using spatial averaging in networks with a finite number of nodes. In

that chapter, nodes are synchronized by estimating their skew and offset relative to

the reference clock. Through the use of analysis and simulations, we show that the

mean squared error of the skew and offset estimates can be significantly decreased

12



by increasing the number of cooperating nodes.

Finally, in Chapter 6, we discuss the generality of cooperative time synchroniza-

tion and stress the fact that cooperative time synchronization through the use of

spatial averaging provides an alternative technique for improving synchronization

performance. It allows for a new trade-off between synchronization performance

and node density and this new ability will provide added flexibility in designing

future networks. Future research directions are also considered in Chapter 6.
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CHAPTER 2

GENERAL SYSTEM MODEL

2.1 Introduction

The first step in studying the use of spatial averaging to improve time synchroniza-

tion is the development of a system model for modeling large-scale, high density

networks. There are four key components of the model: the clock, the pathloss

model, the propagation delay model, and the pulse-connection function. Existing

pulse-coupled oscillator models do not have a concept of a clock, but since we

want to allow our nodes to be able to use many pulse arrivals over time, a clock is

necessary. Our clock model comes from models used in networking applications.

The signal magnitude is essential for our study of cooperative time synchroniza-

tion since we are using observations from the aggregate signal. It is reasonable

to expect that the aggregate signal magnitude affects the observed statistic, so

we model pathloss. Propagation delay is of interest since in networks where the

nodes have large transmission ranges, propagation delay becomes non-negligible.

We want to study the affects of propagation delay on spatial averaging so we need

a way to quantify the delay. Lastly, the pulse-connection function allows us to

design the behavior of the nodes.

In Section 2.2 we first develop a clock model that describes the clock at any node

in terms of a reference clock. Next, we develop two signal propagation models, one

that only captures signal magnitude (Section 2.3) while the other describes both

signal magnitude and propagation delay (Section 2.4). The propagation models are

designed to work especially well for high density networks. The pulse-connection

function is described in Section 2.5. In Section 2.6, we show that our model is
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a generalization of the Mirollo and Strogatz pulse-coupled oscillator model. This

means that our model is a generalization of existing models and is not only of

interest for the study of our cooperative synchronization technique; the model

allows for the study of a larger class of synchronization problems.

2.2 Clock Model

We consider a network with N nodes uniformly distributed over a fixed finite area.

The behavior of each node i is governed by a clock ci that counts up from 0. The

introduction of ci is important since it provides a consistent time scale for node i.

By maintaining a table of pulse-arrival times, node i can utilize the arrival times

of many pulses over an extended period of time.

The clock of one particular node in the network will serve as the reference time

and to this clock we wish to synchronize all other nodes. We will call the node

with the reference clock node 1 and the clocks of other nodes are defined relative

to the clock of node 1. We never adjust the frequency or offset of the local clock

ci because we wish to maintain a consistent time scale for node i.

The clock of node 1, c1, will be defined as c1(t) = t where t ∈ [0,∞). Taking

c1 to be the reference clock, we now define the clock of any other arbitrary node i,

ci. We define ci as

ci(t) = αi(t− ∆̄i) + Ψi(t), (2.1)

where

• ∆̄i is an unknown offset between the start times of ci and c1.

• αi > 0 is a constant and for each i, αi ∈ [αlow, αup] where αup, αlow > 0 are

finite. This bound on αi means that the frequency offsets between any two
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nodes can not be arbitrarily large.

• Ψi(t) is a stochastic process modeling random timing jitter.

It is important to note that node 1 does not have to be special in any way; its

clock is simply a reference time with which to define the clocks of the other nodes.

This means that our clock model actually describes the relative relationship of all

the clocks in the network by using an arbitrary node’s clock as a reference.

2.3 Pathloss Only Model

2.3.1 A Random Model for Pathloss

For the study of cooperative time synchronization, nodes cooperatively generate

signals for synchronization. Thus, we will be particularly interested in the ag-

gregate signal magnitude at a receiving node and not so much in the particular

signal contribution from each surrounding node. With this in mind, we can de-

velop a random model for pathloss that, for dense networks, gives the appropriate

aggregate signal magnitude at any receiving node j. Such a model is ideal for our

situation since we are studying high density networks.

We start with a general pathloss model K(d), where 0 ≤ K(d) ≤ 1 for all

distances d ≥ 0, that is non-increasing and continuous. K(d) is a fraction of the

transmitted magnitude seen at distance d from the transmitter. For example, if

the receiver node j is at distance d from node i, and node i transmits a signal

of magnitude A, then node j will hear a signal of magnitude AK(d). We derive

K(d) from a power pathloss model since any pathloss model captures the average

received power at a given distance from the transmitter. This average received

power is perfect for modeling received signal magnitudes in our problem setup
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since we are considering dense networks. Due to the large number of nodes at

any given distance d from the receiver, using the average received magnitude at

distance d as the contribution from each node at that distance will give a good

modeling of the amplitude of the aggregate waveform.

The random pathloss variable Kj will be derived from K(d). To understand

how Kj and K(d) are related, we give an intuitive explanation of the meaning of

Kj as follows: the Pr[Kj ∈ (k, k + ∆)] is the fraction of nodes at distances d from

node j such that K(d) ∈ (k, k+∆), where ∆ is a small constant. This means that,

roughly speaking, for any given scaling factor Kj = k, fKj
(k)∆ is the fraction

of received signals with magnitude scaled by approximately k, where fKj
(k) is

the probability density function of Kj. Thus, if we scale the transmit magnitude

A from every node i by an independent Kj, then as the number of nodes, N ,

gets large, node j will see NfKj
(k)∆ signals of approximate magnitude Ak, and

this holds for all k in the range of Kj. This is because taking a large number of

independent samples from a distribution results in a good approximation of the

distribution.

Thus, this intuition tells us that scaling the magnitude of the signal transmitted

from every node i by an independent sample of the random variable Kj gives an

aggregate signal at node j that is the same magnitude as a signal generated using

K(d) directly. Even though the signals from two nodes at the same distance from

a receiver have correlated magnitudes, we do not care about the signal magnitude

from any particular node. We only care that, for any given scaling factor k, an

appropriate fraction of the signals received at node j are scaled by k. For a receiving

node j, we choose therefore to work with the random variable Kj instead of directly

with K(d) because, for the goals of this thesis, doing so has two major advantages:
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(a) we can obtain desirable limit results by placing very minimal restrictions on

the distribution of the Kj’s (and hence on K(d)) and (b) we can apply the strong

law of large numbers to carry out our analysis.

2.3.2 Definition of Kj

From the above intuition we can define the cumulative distribution function of Kj

as

FKj
(k) = Pr(Kj ≤ k) =





0 k ∈ (−∞, 0)

AT−A(j,r̄(k))
AT

= 1− A(j,r̄(k))
AT

k ∈ [0, 1]

1 k ∈ (1,∞)

(2.2)

where

• AT is the total area of the network,

• A(j, a) is the area of the network contained in a circle of radius a centered

at node j,

• r̄(k) = sup{d : K(d) > k}.

From the above discussion we see that the distribution of Kj is only a function of

node j, the receiving node. We illustrate the relationship among node j, K(d),

r̄(k), and FKj
(k) in Fig 2.1. We sometimes write Kj,i with i used to index each

node surrounding node j. For a given j, Kj,i’s are independent and identically

distributed (i.i.d.) with a cumulative distribution function given by (2.2) for all i.

We assume that Kj has the following properties:

• Kj is independent from Ψl(t) for all j, l, and t.
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• 0 ≤ Kj ≤ 1, 0 < E(Kj) ≤ 1, and Var(Kj) ≤ 1.

The requirements on the random variable Kj places restrictions on the model K(d).

Any function K(d) that yields a Kj with the above requirements can be used to

model pathloss.

Cumulative Distribution Function of Kj

Kj
F   (k)

k
1k

1

total area: AT

r(k)

r(k)

AT

r(k)
r(k)A(j,       )

node j

Network Area
d

K(d)

Pathloss Function

k0 1

1−

shaded area:  
A(j,       )

Figure 2.1: An illustration of the cumulative distribution function FKj (k) is shown in

the bottom-right figure. For a given scaling value k ∈ [0, 1], FKj (k) is defined to be

1− (A(j, r̄(k))/AT ), where the relationship between r̄(k) and k is shown in the top-right

figure. The area A(j, r̄(k)) and its relation to node j is shown in the top-left figure.

2.4 Delay and Pathloss Model

In this section we develop a more complex model to simultaneously model propa-

gation delay and pathloss. This leads to the joint development of the delay random

variable Dj and a corresponding pathloss random variable Kj.
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2.4.1 Correlation Between Delay and Pathloss

Since we want to develop a model for both pathloss and time delay, we start by

keeping the pathloss function K(d) defined in Section 2.3. The general delay model

assumes a function δ(d) that models the time delay as a function of distance. δ(d)

describes the time, in terms of c1, that it takes for a signal to propagate a distance

d. For example, if node i and node j are distance d0 apart, then a pulse sent by node

i at time c1 = 0 will be seen at node j at time c1 = δ(d0). We make the reasonable

assumption that δ(d) is continuous and strictly monotonically increasing for d ≥ 0.

As with the pathloss only model, we want to define a delay random variable

Dj for each receiving node j. Recall that this means for every node j there is

a random variable Dj associated with it since, in general, each node j will see

different delays. There is a correlation between the delay random variable Dj and

the pathloss random variable Kj. This correlation arises for two main reasons.

First, since in Section 2.3 we define K(d) to be monotonically decreasing and

continuous, it is possible for K(d) = 0 for d ∈ [R,∞), R > 0. This might be the

case for a multi-hop network. In this situation, there will be a set of nodes whose

transmissions will never reach node j (i.e. infinite delay) even though according to

δ(d) these nodes should contribute a signal with finite delay. Second, a small Kj

value would represent a signal from a far away node. As a result, the corresponding

Dj value should be large. Therefore, keeping these two points in mind, we proceed

to develop a model for both pathloss and propagation delay.
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2.4.2 Definition of Dj and Kj

We define the cumulative distribution function of Dj as

FDj
(x) = Pr(Dj ≤ x) =





0 x ∈ (−∞, 0)

A(j,r′(x))
AT

x ∈ [0, δ(R)]

a(x− δ(R)) + A(j,R)
AT

x ∈ (δ(R), δ(R + ∆R)]

1 x ∈ (δ(R + ∆R),∞)

(2.3)

where r′(x) = sup{r : δ(r) ≤ x}, ∆R > 0 is a constant, R = sup{d : K(d) > 0},
and

a =
1− A(j,R)

AT

δ(R + ∆R)− δ(R)
.

Recall that A(j, a), defined in Section 2.3, is the area of the network contained in

a circle of radius a centered at node j and AT is the total area of the network.

Note that R can be infinite.

Using the delay random variable Dj with the cumulative distribution function

in (2.3), we define Kj as

Kj = K(δ−1(Dj)), (2.4)

where K(·) is the deterministic pathloss function from Section 2.3 and δ−1 :

[0,∞) → [0,∞) is the inverse function of the deterministic delay function δ(·).
Note that δ−1(·) exists since δ(·) is continuous and strictly monotonically increas-

ing on [0,∞).

2.4.3 Intuition Behind Dj and Kj

To understand the distribution of Dj, we need to consider the definition of Kj

as well. Recall that a signal arriving with delay Dj is scaled by the pathloss
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random variable Kj. Let us consider the cumulative distribution in two pieces,

x ∈ [0, δ(R)] and x ∈ (δ(R),∞). The case for x ∈ (−∞, 0) is trivial. First,

for x ∈ [0, δ(R)], the probability that Dj takes a value less than or equal to x is

simply the fraction of the network area around node j such that the nodes are at

distances d with δ(d) ≤ x. The intuition is the same as that for the development

of Kj in Section 2.3. Second, for x ∈ (δ(R),∞), the situation is more complex.

Note that a transmitted signal from a node at distance d ∈ (R,∞) from j will

arrive at node j with infinite delay since K(d) = 0 for d ∈ (R,∞). Since any

delay values in x ∈ (δ(R),∞) correspond to distances d = δ−1(x) ∈ (R,∞), the

corresponding scaling value will be zero because Kj and Dj are related by (2.4).

As a result, it does not matter what delay values we assign to the fraction of the

network area outside a circle of radius R centered at node j as long as their delay

value x is such that δ−1(x) ∈ (R,∞). Thus, we can arbitrarily choose a constant

∆R value and construct a piecewise linear portion of the cumulative distribution

function of Dj on x ∈ (δ(R),∞). The probability that Dj ∈ (δ(R),∞) will be the

fraction of the network area outside a circle of radius R around node j. And since

Dj ∈ (δ(R),∞) will have a corresponding Kj value that is zero, this fraction of

nodes will not contribute to the aggregate waveform at node j. It is clear that the

correlated Dj and Kj random variables work together to accurately model a signal

arriving with both pathloss and propagation delay. An illustration of how K(d),

δ(d), node j, and FDj
(x) are related can be found in Fig. 2.2.

We require that Dj is bounded, has finite expectation, and has finite variance

for all j. Note that Dj ≥ 0 by the requirement that δ(d) ≥ 0. As well, since the

cumulative distribution in (2.3) is continuous, and often absolutely continuous, we

assume that Dj has a probability density function fDj
(x). When we write Dj,i,
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Figure 2.2: From the top-left and bottom-left figures, we can see how K(d) determines

the set of nodes surrounding node j that will contribute to the aggregate waveform at

node j. This contributing set of nodes is related to FDj (x) through δ(d) and this is

illustrated in the top-right and bottom-right figures.

the i indexes each node surrounding node j. Thus, the Dj,i’s are independent and

identically distributed in i for a given j and have a cumulative distribution given

by (2.3). Using the Kj and Dj developed in this section to simultaneously model

pathloss and propagation delay, respectively, we will be able to closely approximate

the received aggregate waveform at any node j as N becomes large.

To summarize, we see that our choice of the pathloss and delay random variables

will depend on what we want to model. If we only consider pathloss and not

propagation delay, then we will use the random variable Kj defined in Section 2.3.

If we account for both pathloss and delay, then we will use the delay random
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variable Dj in this section (Section 2.4) and the pathloss random variable Kj

defined by (2.4).

2.5 Synchronization Pulses and the Pulse-Connection Func-

tion

The exchange of pulses is the method through which the network will maintain

time synchronization. Each node i will periodically transmit a scaled pulse Aip(t),

where Ai is a constant and p(t), in general, can be any pulse. We call the interval of

time during which a synchronization pulse is transmitted a synchronization phase.

What each node does with a set of pulse arrival observations is determined by

the pulse-connection function Xci
n,i for node i. The pulse-connection function is a

function that determines the time, in the time scale of ci, when node i will send its

nth pulse. It can be a function of the current value of ci(t) and past pulse arrival

times. This function basically determines how any node i reacts to the arrival of

pulses.

2.6 An Example: Pulse-Coupled Oscillators

The system model that we presented thus far is powerful because it is very general.

It is in fact a generalization of existing models and to show this we specialize

it to the pulse-coupled oscillator model proposed by Mirollo and Strogatz [26].

Therefore, the results presented in that paper will hold under the simplified version

of our model. We see that our more general model allows the study of a larger

class of synchronization problems in networks that communicate via pulses.
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2.6.1 Model Parameters for Pulse-Coupled Oscillators

In setting up the system model, Mirollo and Strogatz make four key assumptions:

• Pathloss Model: The first assumption is that there is all-to-all coupling

among all N oscillators. This means that each oscillator’s transmission can

be heard by all other oscillators. Thus, for our model we ignore pathloss, i.e.

K(d) = 1, to allow any node’s transmission to be heard by each of the other

N − 1 nodes.

• Delay Model: The second assumption is that there is instantaneous coupling.

This assumption is the same as setting δ(d) = 0. In such a situation we would

use our pathloss only model.

• Synchronization Pulses: The third key assumption made in [26] is that there

is non-uniform coupling, meaning that each of the N oscillators fire with

strengths ε1, . . . , εN . We modify the parameters in our model by making

node i transmit with magnitude Ai = εi. They also assume that any two

pulses transmitted at different times will be seen by an oscillator as two

separate pulses. In our model, we may choose any pulse p(t) that has an

arbitrarily short duration and each node will detect the pulse arrival time

and pulse magnitude.

• Clock Model: The fourth important assumption made by Mirollo and Stro-

gatz is that the oscillators are identical but they start in arbitrary initial

conditions. We simplify our clock model in (2.1) by eliminating any timing

jitter, i.e. Ψi(t) = 0, and making the clocks identical by setting αi = 1 for

i = 1, . . . , N . We leave ∆̄i in the model to account for the arbitrary initial
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conditions. We also assume that the phase variable in the pulse-coupled os-

cillator model increases at the same rate as our clock. That is, the time it

takes the phase variable to go from zero to one and the time it takes our

clock to count from one integer value to the next are the same.

Now that we have identical system models, what remains is to modify our model

to mimic the coupling action detailed in [26]. This is accomplished by defining a

proper pulse-connection function Xci
n,i.

2.6.2 Choice of Pulse-Connection Function

To match the coupling action in [26], we choose Xci
n,i(z

ci
k,i, z

ci
k−1,i, . . . , z

ci
1,i, x

ci
n−1,i) that

is a function of pulse receive times and also the time of node i’s (n − 1)th pulse

transmission time. zci
k,i is the time in terms of ci that node i receives its kth pulse

since its last pulse transmission at xci
n−1,i. In this case, Xci

n,i will be a function

that updates node i’s nth pulse transmission time each time node i receives a

pulse. Let Xci
n,i(k)

∆
= Xci

n,i(z
ci
k,i, z

ci
k−1,i, . . . , z

ci
1,i, x

ci
n−1,i) where it is node i’s nth pulse

transmission time after observing k pulses since its last pulse transmission. Node

i will transmit its pulse as soon as Xci
n,i ≤ ci(t) where ci(t) is node i’s current

time. As soon as the node transmits a pulse at Xci
n,i the function will reset and

become Xci
n+1,i(0) = xci

n,i + 1. The node is now ready to receive pulses and at its

first received pulse, the next transmission time will become Xci
n+1,i(1). Xci

n,i will

thus be defined as

Xci
n,i(k) = Xci

n,i(k − 1)− [f−1(εj + f(zci
k,i − xci

n−1,i))− (zci
k,i − xci

n−1,i)] (2.5)

for k > 0 and

Xci
n,i(0) = xci

n−1,i + 1 (2.6)
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where the pulse received at zci
k,i is a pulse of magnitude εj and the function f :

[0, 1] → [0, 1] is the smooth, monotonic increasing, and concave down function

defined in [26].

Equations (2.5) and (2.6) fundamentally say that each time node i receives a

pulse, node i’s next transmission time will be adjusted. This is in line with the

behavior of the coupling model described by Mirollo and Strogatz since each time

an oscillator receives a pulse, its state variable is pulled up by ε thus adjusting the

time at which the oscillator will next fire. To see how equations (2.5) and (2.6)

relate to the coupling model in [26], let us consider an example with two pulse

coupled oscillators. Consider two oscillators A and B illustrated in Fig. 2.3. In

Fig. 2.3(a), we have that oscillator A is at phase q and oscillator B is just about
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c
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Figure 2.3: We illustrate the connection between the pulse-coupled oscillator coupling

model and our clock model. In (a), oscillator B is just about to fire and oscillator A has

phase q. In (b), oscillator B fires and increases the phase of oscillator A by d. This d

increase in phase effectively decreases the time at which A will next fire. We capture this

time decrease by decreasing the firing time of our node by an amount d. Thus, oscillator

A and our node will fire at the same time.

to fire. Below the pulse-coupled oscillator model we have a time axis for node i
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corresponding to our clock model going from time xci
n−1,i to xci

n−1,i + 1. Our time

axis for node i models the behavior of oscillator A, so we want node i to behave

in the same way as oscillator A under the influence of oscillator B. If oscillator B

did not exist, then the phase variable q will match our clock in that q reaches 1

at the same time our clock reaches Xci
n,i(0) = xci

n−1,i + 1 and oscillator A will fire

at the same time node i fires. In Fig. 2.3(b), oscillator B has fired and has pulled

the state variable of oscillator A up by ε. This coupling has effectively pushed the

phase of oscillator A to q + d and decreased the time before A fires. In fact, the

time until oscillator A fires again is decreased by d. We can capture this coupling

in our model since we can calculate the lost time d. The time at which oscillator

B fires is zci
1,i and it is clear that d = f−1(ε + f(zci

1,i − xci
n−1,i)) − (zci

1,i − xci
n−1,i).

Thus, if the time that oscillator A will fire again is decreased by time d due to the

pulse of B, then we adjust our node firing time by decreasing the firing time to

Xci
n,i(1) = xci

n−1,i + 1 − d. This is exactly the expression in (2.5) for k = 1. This

relationship between our chosen pulse-connection function and the pulse-coupled

oscillator coupling model can be easily extended to N oscillators.

We can see, therefore, that the pulse-coupled oscillator model proposed by

Mirollo and Strogatz in [26] is a special case of our model. Our model generalizes

this pulse-coupled oscillator model by considering timing jitter, pulses of finite

width, propagation delay, non-identical clocks, and an ability to accommodate

arbitrary coupling functions.

2.7 Conclusion

In this chapter we have set up a model that will be used for studying spatial

averaging in dense networks. The clock model will serve as the basis for all the
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networks that we study. The random variables Kj and Dj for pathloss and delay,

respectively, will be used extensively in Chapter 3 to study spatial averaging in

asymptotically dense networks. The deterministic function K(d) will be central to

studying spatial averaging in finite sized networks in Chapter 5.
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CHAPTER 3

COOPERATION IN ASYMPTOTICALLY DENSE NETWORKS

3.1 Introduction

Intuitively, spatial averaging takes advantage of the large number of neighboring

nodes in order to improve synchronization performance; more neighbors should

yield better performance. As a result, it would make sense that in the limit of an

infinite number of neighbors, the network would be able to achieve some sort of

“perfect” synchronization. In this chapter, we show that an asymptotically dense

network can achieve perfect synchronization in the sense that every single node,

regardless of distance from the reference clock, can see a sequence of equispaced

zero-crossings that occur at integer values of the reference time. The sequence of

zero-crossings acts as a perfect sequence of synchronization events.

Just as we could specialize our general model to the pulse-coupled oscillator

model of Mirollo and Strogatz in Section 2.6, we start this chapter in Section 3.2

by specializing the model for our proposed synchronization technique. We begin

under the assumption of no propagation delay and develop the synchronization

technique in two steps. Step 1, we determine the desired properties of the aggregate

waveform. In Section 3.3, we specify the model for Ac1
j,N(t), the received waveform

at any node j. With this signal reception model, in Section 3.4, we prove that given

certain characteristics of the model, Ac1
j,N(t) has very useful limiting properties.

Step 2, we actually engineer the waveform with the desired properties. We design

estimators (i.e., the pulse connection function) in Section 3.5 that give Ac1
j,N(t) the

desired properties and show how Ac1
j,N(t) can be effectively used for synchronization.

Synchronization with propagation delay is considered separately in Section 3.6.
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3.2 System Setup

For our synchronization technique, we specialize the general model by making the

following assumptions on αi and Ψi(t) for i = 1 . . . N :

• A characterization of {αi} is given by a known function fα(s) with s ∈
[αlow, αup] that gives the percentage of nodes with any given α value. Thus,

the fraction of nodes with α values in the range s0 to s1 can be found by

integrating fα(s) from s0 to s1. We assume that |fα(s)| < Gα, for some

constant Gα. We keep this function constant as we increase the number of

nodes in the network (N →∞). Given any circle of radius R that intersects

the network, the nodes within that circle will have αi’s that are characterized

by fα(s). R is the maximum d such that K(d) > 0. This means that the set

of nodes that any node j will hear from will have its αi’s characterized by

a known function. Note that R can be infinite, and in that case, any node

j hears from all nodes in the network. Fundamentally, fα(s) means that as

we increase node density, the new nodes have α parameters that are well

distributed in a predictable manner.

• Ψi(t) is a zero mean Gaussian process with samples Ψi(t0) ∼ N (0, σ2), for

any t0, and independent and identically distributed samples for any set of

times [t0, . . . , tk], k a positive integer. We assume σ2 < ∞ and note that σ2

is defined in terms of the clock of node i. We assume that Ψi(t) is Gaussian

since the RMS (root mean square) jitter is characterized by the Gaussian

distribution [41].

We maintain the full generality of the pathloss model from Section 2.3. Propaga-

tion delay using the model in Section 2.4 is considered in Section 3.6. Note that
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throughout this work we assume no transmission delay or time-stamping error.

This means that a pulse is transmitted at exactly the time the node intends to

transmit it. We make this assumption since there will be no delay in message

construction or access time [6] because our nodes broadcast the same simple pulse

without worrying about collisions. Also, when a node receives a pulse it can de-

termine its clock reading without delay since any time stamping error is small and

can be absorbed into the random jitter.

3.3 Signal Reception Model

For our proposed synchronization technique, the aggregate waveform seen by node

j at any time t is

Ac1
j,N(t) =

N∑
i=1

AmaxKj,i

N
p(t− τo − Ti), (3.1)

where Ac1
j,N(t) is the waveform seen at node j written in the time scale of c1 and

Ai = Amax/N for all i. Amax is the maximum transmit magnitude of a node and

we scale the transmit magnitude by 1/N for two reasons. First, as nodes become

smaller, their transmission magnitudes will likely decrease. Second, the 1/N factor

keeps the total network power bounded as we let N go to infinity. Ti is the random

timing error suffered by the ith node, which encompasses the random clock jitter

and estimation error. This model says that each node i’s pulse transmission occurs

at the ideal transmit time τ0 plus some random error Ti.

There are two comments about (3.1) that we want to make. First, note that

even though we sum the transmissions from all N nodes in (3.1), we do not assume

that node j can hear all nodes in the network. Recall from the pathloss model

that if we have a multi-hop network, then there will be a nonzero probability that
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Kj,i = 0. Thus, node j will not hear from the nodes whose transmissions have zero

magnitude. Second, it may be possible that the nodes assume there are N̄ = vN

nodes in the network while the actual number of functioning nodes is N . In this

case, each node will transmit with signal magnitude Ai = Amax/(vN) and (3.1)

will have a factor of 1/v. Other than for this factor, however, the theoretical results

that follow are not affected.

To model the quality of the reception of Ac1
j,N(t) by node j, we model the recep-

tion of a signal by defining a threshold γ. γ is the received signal threshold required

for nodes to perfectly resolve the pulse arrival time. If the maximum received sig-

nal magnitude is less than γ then the node does not make any observations and

ignores the received signal waveform. We assume that γ ¿ Amax.

In this chapter we will assume that p(t) takes on the shape

p(t) =





q(t) −τnz < t < 0

0 t = 0, t ≤ −τnz, t ≥ τnz

−q(−t) 0 < t < τnz

(3.2)

where τnz > 0 is expressed in terms of c1. We assume q(t) > 0 for t ∈ (−τnz, 0),

q(t) 6= 0 only on t ∈ (−τnz, 0), supt|q(t)| = 1, and q(t) is uniformly continuous

on (−τnz, 0). Thus, we see that p(t) has at most three jump discontinuities (at

t = 0,−τnz, τnz). τnz should be chosen large compared to maxi σ
2
i , i.e. σ2

i << τnz,

where σ2
i is the value of σ2 translated from the time scale of ci to c1. This way,

over each synchronization phase, with high probability a zero-crossing will occur.

For each node, the duration in terms of c1 of a synchronization phase will be

2τnz. Note that we assume τnz is a value that is constant in any consistent time

scale. This means that even though nodes have different clocks, identical pulses

are transmitted by all nodes. We define a pulse to be transmitted at time t if
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the pulse makes a zero-crossing at time t. Similarly, we define the pulse receive

(arrival) time for a node as the time when the observed waveform first makes a

zero-crossing. A zero-crossing is defined for signals that have a positive amplitude

and then transition to a negative amplitude. It is the time that the signal first

reaches zero.

For the exchange of synchronization pulses, we assume that nodes can transmit

pulses and receive signals at the same time. This simplifying assumption is not

required for the ideas presented here to hold, but simplifies the presentation. We

mention a way to relax this assumption in Section 3.5.4.

In (3.1) and in the discussions above, we have focused on characterizing the

aggregate waveform for any one synchronization phase. That is, (3.1) is the wave-

form seen by any node j for the synchronization phase centered around node 1’s

transmission at t = τ0, τ0 a positive integer. We can, however, describe a synchro-

nization pulse train in the following form,

Āc1
j,N(t) =

∞∑
u=1

N∑
i=1

AmaxKj,i

N
p(t− τu − Ti,u), (3.3)

where τu is the integer value of t at the uth synchronization phase, and Ti,u is

the error suffered by the ith node in the uth synchronization phase. We seek to

create this pulse train with equispaced zero-crossings and use each zero-crossing as

a synchronization event. An illustration of such a pulse train is shown in Fig. 3.1.

For simplicity, however, most of the theoretical work is carried out on one synchro-

nization phase.
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t=3t=2t=1 time

Figure 3.1: An illustration of a pulse train with equispaced zero-crossings. The pulse

at each integer value of t is an instance of Aj,∞(t) = limN→∞Ac1
j,N (t) so we see three

instances of Aj,∞(t) in the above figure with zero-crossings at t = 1, 2, 3. We can control

the zero-crossings of Aj,∞(t) and choose to place it on an integer value of t. As a result,

we can use these zero-crossings as synchronization events since they can be detected

simultaneously by all nodes in the network.

3.4 Desired Structural Properties of the Received Signal

In this section, we characterize the properties of Ti that give us desirable properties

in the aggregate waveform. From (3.1), the aggregate waveform seen at each node

j in the network has the form

AN(t) =
1

N

N∑
i=1

AmaxKip(t− τ0 − Ti) (3.4)

We have dropped the j and c1 for notational simplicity since in this section we

deal solely with the received waveform at a node j in the time scale of c1. As we

let the number of nodes grow unbounded (N → ∞), the properties of this limit

waveform can be characterized by Theorem 1. These properties will be essential

for asymptotic cooperative time synchronization. As a note, in Theorem 1 we

present the case for Gaussian distributed Ti but similar results hold for arbitrary

zero-mean, symmetrically distributed Ti with finite variance.

Theorem 1 Let p(t) be as defined in equation (3.2) and Ti ∼ N (0, σ̄2

α2
i
) with σ̄2 > 0

a constant and σ̄2

α2
i

< B < ∞ for all i, B a constant. Also, let Ki be defined as in

Section 2.3 and be independent from Ti for all i. Then, limN→∞ AN(t) = A∞(t)

has the properties
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• A∞(τ0) = 0,

• A∞(t) > 0 for t ∈ (τ0 − τ, τ0), and A∞(t) < 0 for t ∈ (τ0, τ0 + τ) for some

τ < τnz.

• A∞(t) is odd around t = τ0, i.e. A∞(τ0 + ξ) = −A∞(τ0 − ξ) for ξ ≥ 0

• A∞(t) is continuous. 4

The properties outlined in Theorem 1 will be key to the synchronization mechanism

we describe. We see that τ0 + Ti is the transmission time of the ith node, so when

we develop the pulse-connection function it will be important to make sure that

every node’s timing error satisfies the conditions on Ti. The specific value of σ̄2

will be determined by our choice of the pulse-connection function. Before we

prove Theorem 1 in Section 3.4.2 we develop and motivate a few important related

lemmas.

3.4.1 Polarity and Continuity of A∞(t)

At time t = τ1 6= τ0, we have that

AN(τ1) =
N∑

i=1

AmaxKi

N
p(τ1 − τ0 − Ti) =

N∑
i=1

1

N
M̄i(τ1),

where M̄i(τ1)
∆
= AmaxKip(τ1 − τ0 − Ti). We have the mean of M̄i(τ1) being

E(M̄i(τ1)) = AmaxE(Ki)

∫
p(τ1 − τ0 − ψ)fTi

(ψ)dψ,

where fTi
(ψ) is the Gaussian pdf

fTi
(ψ) =

1
σ̄
αi

√
2π

exp

{
− (ψ)2

2 σ̄2

α2
i

}
.
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It is clear that the M̄i(τ1)’s, for different i’s, do not have the same mean and do

not have the same variance since the two quantities depend on the αi value. Since

the αi’s are characterized by fα(s) (defined in Section 3.2), we write the Gaussian

distribution for T as

fT (ψ, s) =
1

σ̄
s

√
2π

exp

{
− (ψ)2

2 σ̄2

s2

}
.

and M̄i(τ1) is in fact a function of s as well, denoted M̄i(τ1, s). Using fT (ψ, s) and

M̄i(τ1, s), the notation makes it clear that we can average over the αi’s that are

characterized by fα(s). We use the results of Lemmas 1 and 2 to prove the polarity

result for A∞(t) in Section 3.4.2.

Lemma 1 Given the sequence of independent random variables M̄i(τ1) with τ1 <

τ0, E(M̄i(τ1)) = µi, and Var(M̄i(τ1)) = σ2
i . Then, for all i,

γ2 > µi > γ1 > 0 (3.5)

σ2
i < γ3 < ∞, (3.6)

for some constants γ1, γ2, and γ3 and

lim
N→∞

1

N

N∑
i=1

M̄i(τ1) = η(τ1) > 0

almost surely, where

η(τ1) =

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds

= AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(τ1 − τ0 − ψ)fT (ψ, s)dψfα(s)ds. 4
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Lemma 2 Given the sequence of independent random variables M̄i(τ1) with τ1 >

τ0, E(M̄i(τ1)) = µi, and Var(M̄i(τ1)) = σ2
i . Then, for all i,

γ2 < µi < γ1 < 0

σ2
i < γ3 < ∞,

for some constants γ1, γ2, and γ3 and

lim
N→∞

1

N

N∑
i=1

M̄i(τ1) = η(τ1) < 0

almost surely, where

η(τ1) =

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds. 4

The results of Lemma 1 and Lemma 2 are intuitive since given that p(t) is odd

and the Gaussian error distribution is symmetric, it makes sense for A∞(t) to have

properties similar to an odd waveform. Since the proofs of the two lemmas are

very similar, we only prove Lemma 1. The proof can be found in Appendix A.1.

Knowing only the polarity of A∞(t) is not entirely satisfying since we would

also expect that the limiting waveform be continuous. The proof of Lemma 3 is

left for Appendix A.2.

Lemma 3 Using p(t) in (3.2),

A∞(t) = lim
N→∞

1

N

N∑
i=1

AmaxKip(t− τ0 − Ti) = lim
N→∞

1

N

N∑
i=1

M̄i(t) = η(t)

is a continuous function of t, where

η(t) =

∫ αup

αlow

E(M̄i(t, s))fα(s)ds

= AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(t− τ0 − ψ)fT (ψ, s)dψfα(s)ds. 4

38



3.4.2 Proof of Theorem 1

We can proceed in a straightforward manner to show that A∞(τ0) = 0. For t = τo,

AN(τ0) =
N∑

i=1

AmaxKi

N
p(τ0 − τ0 − Ti) =

1

N

N∑
i=1

AmaxKip(−Ti) =
1

N

N∑
i=1

Mi,

where Mi , −AmaxKip(Ti).

Since our goal is to apply some form of the strong law of large numbers, we

first examine the mean of Mi. We have that E(Mi) = −AmaxE(Ki)E(p(Ti)).

Furthermore,

E(p(Ti)) =

∫ ∞

−∞
p(ψ)fTi

(ψ)dψ = 0,

since p(ψ) is odd and fTi
(ψ) is even because it is zero-mean Gaussian. Thus,

E(Mi) = 0.

We next consider the variance of Mi:

Var(Mi) = E(M2
i )− E2(Mi) = A2

maxE(K2
i p

2(Ti))

= A2
maxE(K2

i )E(p2(Ti)) < A2
max < ∞,

where we have used the fact that E(K2
i ) ≤ 1 and |p(t)| ≤ 1.

From the preceding discussion we see that the Mi’s are a sequence of zero

mean, finite (but possibly different) variance random variables. From Stark and

Woods [42], we know that if
∑∞

i=1 Var(Mi)/i
2 < ∞, then we have strong conver-

gence of the Mi’s:

1

N

N∑
i=1

Mi → E(Mi),

with probability-1 as N →∞. But it is easy to see that

∞∑
i=1

Var(Mi)

i2
<

∞∑
i=1

A2
max

i2
= A2

max

π2

6
< ∞,
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so the condition is satisfied. As a result,

AN(τ0) =
1

N

N∑
i=1

Mi → 0,

as N →∞.

We have that A∞(t) is continuous from Lemma 3. Thus, next we need to show

that A∞(t) > 0 for t ∈ (τ0 − τ, τ0), and A∞(t) < 0 for t ∈ (τ0, τ0 + τ) for some

τ < τnz. We show the case for t = τ1 ∈ (τ0 − τ, τ0) by simply applying Lemma 1.

Since Lemma 1 holds for all τ1 < τ0, there clearly exists a τ such A∞(t) > 0 for

t ∈ (τ0 − τ, τ0). The case for t ∈ (τ0, τ0 + τ) comes similarly from Lemma 2.

Lastly, it remains to be shown that A∞(t) is odd around t = τ0. This, however,

is evident from the form of η(t). Since fT (ψ, s) is even in ψ about 0 and p(ψ) is odd

about 0, it is clear that
∫∞
∞ p(t− τ0−ψ)fT (ψ, s)dψ as a function of t is odd about

τ0. Thus, η(t) is odd around τ0. This then completes the proof for Theorem 1.

4

3.5 Time Synchronization in Asymptotically Dense Net-

works

3.5.1 The Use of Estimators in Time Synchronization

In Section 3.4 we determined the structural properties of Ac1
j,N(t) so that the lim-

iting waveform will have specific desired properties. Now the task is to actually

construct such an aggregate waveform and use it for synchronization. If we can

show that as N → ∞ we can recover deterministic parameters that allow for

time synchronization, then this result would provide a rigorous theoretical foun-

dation showing that spatial averaging leads to perfect synchronization in the limit
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of infinitely dense networks. To simplify the study, we focus on the steady-state

time synchronization properties of asymptotically dense networks. In particu-

lar, we develop a cooperative technique that constructs a sequence of equispaced

zero-crossings seen by all nodes which allows the network to maintain time syn-

chronization indefinitely given that the nodes start with a collection of equispaced

zero-crossings. Starting with a few equispaced zero-crossings allows us to avoid

the complexities of starting up the synchronization process but still allows us to

show that spatial averaging can be used to average out timing errors. If we are

able to maintain a sequence of equispaced zero-crossing indefinitely using coopera-

tive time synchronization, then it means that spatial averaging can average out all

uncertainties in the system as we let node density grow unbounded. This recovery

of deterministic parameters is our desired result. Here, we overview the estimators

needed for cooperative time synchronization.

Let tck
n,i be the time, with respect to clock ck, that the ith node sees its nth pulse.

In dealing with the steady-state properties, we start by assuming that each node i

in the network has observed a sequence of m pulse arrival times, tci
n−1,i, . . . , t

ci
n−m,i,

that occur at integer values of t, m is an integer. Recall that tci
n−1,i, . . . , t

ci
n−m,i is

defined as a set of m pulse arrival times in the time scale of ci. Therefore, even

though tci
n−1,i, . . . , t

ci
n−m,i occur at integer values of t (the time scale of c1), these

values are not necessarily integers since they are in the time scale of ci. Note also

that in our model the pulse arrival time is a zero-crossing location. Using these m

pulse arrival times, each node i has two distinct, yet closely related tasks. The first

task is time synchronization. To achieve time synchronization, node i wants to use

these m pulse arrival times to make an estimate of the next integer value of t. This

estimator can then be extended to estimate arbitrary times in the future which
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gives node i the ability to synchronize to node 1. The second task is that node i

needs to transmit a pulse so that the sum of all pulses from the N nodes in the

network will create an aggregate waveform that, in the limit as N →∞, will give

a zero-crossing at the next integer value of t. This second task is very significant

because if the aggregate waveform gives the exact location of the next integer value

of t, then each node i in the network can use this new zero-crossing along with

tci
n−1,i, . . . , t

ci
n−m+1,i to form a set of m zero-crossing locations. This new set can

then be used to predict the next zero-crossing location as well as node i’s next

pulse transmission time. Recall that determining the pulse transmission time is

the job of the pulse-connection function Xci
n,i. With such a setup, synchronization

would be maintained indefinitely. The zero-crossings that always occur at integer

values of t would provide node i with a sequence of synchronization events and

also illustrate how cooperation is averaging out all random errors.

The waveform properties detailed in Theorem 1 play a central role in accom-

plishing the nodes’ task of cooperatively generating an aggregate waveform with

a zero-crossing at the next integer value of t. From (3.4), if the arrival time of

any pulse at a node j is a random variable of the form τ0 + Ti, where τ0 is the

next integer value of t and Ti is zero-mean Gaussian (or in general any symmetric

random variable with zero-mean and finite variance), then Theorem 1 tells us that

the aggregate waveform will make a zero-crossing at the next integer value of t.

This idea is illustrated in Fig. 3.2.

Thus, for achieving time synchronization in an asymptotically dense network

we need to address two issues. First, we need to develop an estimator for the

next integer value of t given a sequence of m pulse arrival times that occur at

integer values of t. We will call this estimator the time synchronization estimator,
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Figure 3.2: Theorem 1 is key in explaining the intuition behind spatial averaging. The

pulse Amaxp(t − τ0) is shown in the left figure, with τ0 = 1 and Amax = 1. On the

right we have a realization of AN (t) (N = 400), and we assume that Kj,i = 1 (no path

loss) and Ti ∼ N (0, 0.01) for all i. As expected from Theorem 1, we notice that the

zero-crossing of the simulated waveform is almost exactly at t = 1.

denoted as V ci
n,i. It uses tci

n−1,i, . . . , t
ci
n−m,i to determine when the next integer value

of t occurs, in the time scale of ci. Two, we need to develop the pulse-connection

function Xci
n,i such that node i’s transmitted pulse will arrive at a node j with the

random properties described in Theorem 1.

3.5.2 Time Synchronization Estimator

Let us explicitly model the time at an integer value of t in terms of the clock of

node i. Assume τ0 is an integer value of t and at this time, node i will observe its

nth pulse. Thus, from (2.1) we have that

tci
n,i = αi(τ0 − ∆̄i) + Ψi(τ0). (3.7)

The equation makes use of the clock model of node i (2.1) to tell us the time at

clock ci when node 1 is at τ0, where τ0 is an integer in the time scale of c1. We are

also starting with the assumption that the zero-crossing occurring at an integer
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value of t is observed by node i at this time.

For the time synchronization estimator, node i will seek to estimate the next

integer value of t in the time scale of ci given tci
n−1,i, . . . , t

ci
n−m,i. Recall that we

assume Ψi(t) is a zero mean Gaussian process with independent and identically

distributed samples Ψi(t) ∼ N (0, σ2), for any t. Since we’re assuming that the

zero-crossings at node i occur at consecutive integer values of t, from (3.7) we see

that T = [tci
n−m,i, . . . , t

ci
n−1,i]

T is a jointly Gaussian random vector. The random

variable tci
n−m,i is Gaussian with tci

n−m,i ∼ N (αi(τ0 −m − ∆̄i), σ
2) for some set of

parameters ϑ = [αi, τ0 −m, ∆̄i]. We notice that

Eϑ(t
ci
n−m+1,i) = αi(τ0 −m + 1− ∆̄i) = αi(τ0 −m− ∆̄i) + αi.

Since each noise sample is independent, we see that the distribution of T parame-

terized by ϑ can be written as T ∼ N (M, Σ) where

M =




αi(τ0 −m− ∆̄i)

αi(τ0 −m− ∆̄i) + αi

αi(τ0 −m− ∆̄i) + 2αi

...

αi(τ0 −m− ∆̄i) + (m− 1)αi




and Σ = σ2I.

As a result, for any m consecutive observations, we can simplify notation by

using the model

Y = Hθ + W, (3.8)

where Y = [Y1 Y2 . . . Ym]T = [tci
n−m,i tci

n−m+1,i . . . t
ci
n−1,i]

T and

θ =




θ1

θ2


 =




αi(τ0 −m− ∆̄i)

αi



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with

H =




1 1 1 . . . 1

0 1 2 . . . m− 1




T

and W = [W1 . . .Wm]T . Since Ψi(t) is a Gaussian noise process, W ∼ N (0, Σ)

with Σ = σ2I.

With the linear model in (3.8), node i can make an estimate of the next integer

value of t by making a uniformly minimum variance unbiased (UMVU) estimate

of θ1 +mθ2. From [45] we know the maximum likelihood (ML) estimate of θ, θ̂ML,

is given by

θ̂ML = (HT Σ−1H)−1HT Σ−1Y = (HTH)−1HTY.

This estimate achieves the Cramer Rao lower bound, hence is efficient. The Fisher

information matrix is I(θ) = HT H
σ2 and θ̂ML ∼ N (θ, σ2(HTH)−1). This means that

θ̂ML is UMVU.

Again from [45], the invariance of the ML estimate tells us that the ML estimate

for φ = g(θ) = θ1 + mθ2 is φ̂ML = θ̂1ML + mθ̂2ML. First, it is clear that φ̂ML =

Cθ̂ML, where C = [1 m]. As a result, we first see that Eθ(φ̂ML) = CEθ(θ̂ML) =

θ1 + mθ2 so φ̂ML is unbiased. Next, to see that φ̂ML is also minimum variance we

compare its variance to the lower bound. First we have

Varθ(φ̂ML) = Cσ2(HTH)−1CT =
2σ2(2m + 1)

m(m− 1)
.

The extension of the Cramer Rao lower bound in [45] to a function of parameters

tells us that

Eθ(‖ĝ − g(θ)‖2) ≥ G(θ)I−1(θ)GT (θ)

with G(θ) = (∇θg(θ))T . In this case, G(θ) = [1 m] so the lower bound to the
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mean squared error is

G(θ)I−1(θ)GT (θ) =
2σ2(2m + 1)

m(m− 1)
.

As a result, we see that φ̂ML is UMVU. Since φ̂ML is the desired estimate of where

the next pulse arrival time will be, it is the time synchronization estimator. Thus,

V ci
n,i(Y) = C(HTH)−1HTY. (3.9)

Note that

V ci
n,i(Y) = φ̂ML ∼ N

(
φ,

2σ2(2m + 1)

m(m− 1)

)
. (3.10)

has a variance that goes to zero as m →∞.

3.5.3 Time Synchronization with No Propagation Delay

We now need to develop the pulse-connection function so that the conditions for Ti

in Theorem 1 are satisfied. Recall we are developing the synchronization technique

under the assumption of no propagation delay, i.e. δ(d) = 0. Given a sequence

of m pulse arrival times, the time synchronization estimator V ci
n,i given in (3.9)

gives each node the ability to predict the next integer value of t. What remains

to be considered is the second part of the synchronization process: developing a

pulse-connection function Xci
n,i such that the aggregate waveform seen by a node j

will have the properties described in Theorem 1.

Let us first consider the distribution of V ci
n,i. From (3.10), we have that

V ci
n,i(Y) ∼ N

(
αi(τ0 −m− ∆̄i) + mαi,

2σ2(2m + 1)

m(m− 1)

)
.

Using (2.1), we can translate V ci
n,i(Y) into the time scale of c1 as

V ci
n,i(Y) = αi(V

c1
n,i(Y)− ∆̄i) + Ψi

46



which gives

V c1
n,i(Y) =

(V ci
n,i(Y)−Ψi)

αi

+ ∆̄i.

This means that

V c1
n,i(Y) ∼ N

(
τ0,

σ2

α2
i

(
1 +

2(2m + 1)

m(m− 1)

))
. (3.11)

Under our assumption of δ(d) = 0, any transmission by node i will be instanta-

neously seen by any node j. As a result, the random variable V c1
n,i(Y) will be seen

as the pulse arrival time at node j, in the time scale of c1.

Due to the assumption of no propagation delay, defining Xc1
n,i(Y)

∆
= V c1

n,i(Y)

will give us the desired properties in the aggregate waveform. To see this, let us

compare the distribution of Xc1
n,i(Y) in (3.11) to the assumptions of Theorem 1.

Since τ0 is the ideal crossing time in the time scale of c1, we have

Xc1
n,i(Y) = τ0 + Ti.

Therefore, we see that

Var(Ti) =
σ2

α2
i

(
1 +

2(2m + 1)

m(m− 1)

)
=

σ̄2

α2
i

,

where σ̄2 from Theorem 1 is

σ̄2 = σ2

(
1 +

2(2m + 1)

m(m− 1)

)
.

We have shown that using the pulse connection function Xc1
n,i(Y)

∆
= V c1

n,i(Y) satisfies

the conditions of Theorem 1. Thus, all the results of the theorem apply.

As a result, we have established a time synchronization estimator V c1
n,i(Y) and

a pulse-connection function Xc1
n,i(Y). In the case of δ(d) = 0, we have that

Xc1
n,i(Y)

∆
= V c1

n,i(Y), or in the time scale of ci, Xci
n,i(Y)

∆
= V ci

n,i(Y). When each
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node in the network uses the pulse-connection function Xci
n,i(Y) we have a result-

ing aggregate waveform that has a zero-crossing at the next integer value of t as

N → ∞. This fact follows from applying Theorem 1. Thus, we have an asymp-

totic steady-state time synchronization method that can maintain a sequence of

equispaced zero-crossings occurring at integer values of t. An interesting feature

of this synchronization technique is that no node needs to know any information

about its location or its surrounding neighbors.

3.5.4 No Simultaneous Transmission and Reception

Before ending this section, let us comment on the assumption of simultaneous

transmission and reception. One way to relax this assumption is to divide the

network into two disjoint sets of nodes, say the odd numbered nodes and the even

numbered nodes, where each set is still uniformly distributed over the area. Then,

the odd nodes and the even nodes will take turns transmitting and receiving. For

example, the odd numbered nodes can transmit pulses at odd values of t and the

even numbered nodes will listen. The even numbered nodes will then transmit

pulses at the even values of t and the odd numbered nodes will listen. With

such a scheme, nodes do not transmit and receive pulses simultaneously, but can

still take advantage of spatial averaging. The odd numbered nodes will see an

aggregate waveform generated by a subset of the even numbered nodes and the

even numbered nodes will receive a waveform cooperatively generated by the odd

numbered nodes. Let us take a more detailed look at this scheme.

In Fig. 3.3 we assume that τ0 is an even integer value of t and use m = 3. Each

even numbered node will use the aggregate signals occurring at τ0− 5, τ0− 3, and
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τ 0 −5 τ 0 −3 τ 0 −1 τ 0

Aggregate signals generated by even numbered nodesAggregate signals generated by odd numbered nodes

Figure 3.3: In the above figure, we assume τ0 is an even integer value of t and m = 3.

Therefore, each even numbered node will turn on its receiver to receive the aggregate

signal arriving at times τ0−5, τ0−3, and τ0−1. Using these three received times, it can

then estimate the time of τ0. Thus, the aggregate signal occurring at τ0 is cooperatively

generated by the even numbered nodes and is received by the odd numbered nodes.

τ0 − 1 to estimate τ0 and cooperatively generate the aggregate signal at τ0. The

odd numbered nodes will then use the aggregate signals occurring at τ0−4, τ0−2,

and τ0 to generate the aggregate signal at τ0 + 1. Therefore, the odd and even

numbered nodes can take turns transmitting and receiving signals and nodes never

need to simultaneously transmit and receive.

Of course, such a setup would require a modification of the estimators used

by the nodes. For an arbitrary ideal transmission time τ0, nodes will receive a

vector of m observations Y with Y[l + 1] = αi(τ0 + 1 − 2(m − l) − ∆̄i) + Ψi for

l = 0, 1, . . . ,m−1. With such a mechanism, the H matrix in equation (3.8) would

change to

H =




1 1 1 . . . 1

0 2 4 . . . 2(m− 1)




T

and θ becomes

θ =




θ1

θ2


 =




αi(τ0 + 1− 2m− ∆̄i)

αi


 .

To estimate the location τ0 in the time scale of ci, we can proceed as in Sec-
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tion 3.5.2:

θ̂ML = (HT Σ−1H)−1HT Σ−1Y = (HTH)−1HT Y

will be distributed θ̂ML ∼ N (θ, σ2(HTH)−1) and θ̂ML is UMVU. This leads to

the UMVU estimate φ̂ML = Cθ̂ML, where C = [1 2m − 1], and E(φ̂ML) =

CE(θ̂ML) = θ1 +(2m−1)θ2. In this case, the variance of φ̂ML will be Varθ(φ̂ML) =

Cσ2(HTH)−1CT , and thus we have that

V ci
n,i(Y) = φ̂ML ∼ N

(
αi(τ0 + 1− 2m− ∆̄i) + (2m− 1)αi,

σ2(2m + 1)(2m− 1)

m(m− 1)(m + 1)

)
.

Converted to the time scale of c1 we have

V c1
n,i(Y) ∼ N

(
τ0,

σ2

α2
i

(
1 +

(2m + 1)(2m− 1)

m(m− 1)(m + 1)

))
. (3.12)

Comparing equations (3.11) and (3.12), we see that they have the same form.

As a result, we can again set Xci
n,i(Y)

∆
= V ci

n,i(Y) and achieve cooperative time

synchronization.

3.6 Time Synchronization with Propagation Delay

We now extend the ideas of cooperative time synchronization to the situation where

signals suffer, not only from pathloss, but also propagation delay. It turns out that

the effect of propagation delay can also be addressed using the concept we have

been using throughout this thesis — spatial averaging.

In this section, we use the pathloss and propagation delay model detailed in

Section 2.4. We introduce a time delay function δ(d). For generality, we explicitly

model a multi-hop network where we have a K(d) function that is zero for d greater

than some distance R, i.e. K(d) = 0 for d > R. Such a model implies that the

aggregate signal seen at any node j is influenced only by the set of nodes inside
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a circle of radius R centered at node j. With this we can effectively divide the

network into two disjoint sets, a set of interior nodes and a set of boundary nodes.

An interior node j is defined to be a node whose distance from the nearest network

boundary is greater than or equal to R. A boundary node is thus defined to be a

node that is a distance less than R away from the nearest network boundary.

We make this distinction since the synchronization technique for each set of

nodes is different. Please note that if a pathloss function where K(d) = 0 for

d > R is unreasonable, then we simply choose R to be infinite and consider all

nodes in the network to be boundary nodes.

Using the propagation delay model, Dj,i will obviously modify the general re-

ceived aggregate waveform seen at any node j. In fact, equation (3.1) will now be

written as

Ac1
j,N(t) =

N∑
i=1

AmaxKj,i

N
p(t− τo − Ti −Dj,i). (3.13)

For N large, this model will give an accurate characterization of the aggregate

waveform seen at node j. From equation (3.13), we see that propagation delay

introduces asymmetries in the aggregate signal. We will try to fix the asymmetries

and then use spatial averaging.

3.6.1 Conceptual Motivation

From equation (3.13), it is clear that the aggregate waveform will not have a

zero-crossing at τ0 for every node j because of the presence of the Dj,i random

variables. Therefore, to average out propagation delay, the idea we employ is

to have each node introduce a random artificial time shift that counteracts the

effect of the time delay random variable. More precisely, we want to introduce
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another random variable Dfix such that Dfix + Dj will have zero mean and a

symmetric distribution. At the same time, we assume each node knows K(·) and

δ(·) and will also introduce an artificial scaling factor Kfix = K(δ−1(−Dfix)) to

simplify the analysis of the aggregate waveform. This means that instead of using

the scaling factor Ai = Amax/N , each node i will scale its transmitted pulse by

Ai = AmaxKfix/N . For the motivation in this section, let us assume that node j

is an interior node.

To find the distribution of Dfix, we consider the following. Dj has density

fDj
(x) and let fDfix

(x) be the density of Dfix. Since Dj and Dfix are independent,

we know that the density of DT = Dfix + Dj, fDT
(x), will be the convolution of

fDj
(x) and fDfix

(x). Therefore, by the properties of the convolution function, if

we set fDfix
(x)

∆
= fDj

(−x), then we have that fDT
(x) is symmetric, i.e. fDT

(x) =

fDT
(−x). As well, since Dj has finite expectation, it is easy to see that E(DT ) = 0.

Given a sequence of m zero-crossings that we know to be occurring at integers

of t, we can still use V c1
n,i(Y) (from (3.9) in the time scale of node 1) as the time

synchronization estimator. However, with propagation delay, the pulse-connection

function will now be Xc1
n,i(Y) = V c1

n,i(Y)+Dfix,i = τo +Ti +Dfix,i. With Dfix,i and

Kfix,i included, we can rewrite equation (3.13) as

Ac1
j,N(t) =

N∑
i=1

AmaxKfix,iKj,i

N
p(t− τo − Ti −Dfix,i −Dj,i). (3.14)

Note that each node takes an independent sample of Dfix so Dfix,i are i.i.d. for all i.

It is important to see that since Dj has the same distribution for all interior nodes

j, equation (3.14) holds for every node j that is an interior node. This means that

for the network to cooperatively generate the waveform in (3.14) each transmit

node i needs to have the following additional knowledge: (1) the distribution of

Dfix whose density is fDfix
(x)

∆
= fDj

(−x), where j is an interior node, and (2)
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the functions K(·) and δ(·) to generate Kfix. With this knowledge, we can use

equation (3.14) to study the aggregate waveform seen at any interior node j. In

fact, we find that the aggregate waveform has limiting properties that are similar

to those outlined in Theorem 1. These properties are described in Theorem 2.

Theorem 2 Let p(t) be as defined in equation (3.2) and Ti ∼ N (0, σ̄2

α2
i
) with σ̄2 > 0

a constant and σ̄2

α2
i

< B < ∞ for all i, B a constant. Kj,i and Dj,i are defined as

in Section 2.4 and Dfix,i with density fDfix
(x)

∆
= fDj

(−x) is independent from

Dj,i. Kfix,i = K(δ−1(−Dfix,i)) and let Dj,i, Dfix,i, and Ti be mutually indepen-

dent for all i. Then, for any interior node j with Ac1
j,N(t) as defined in (3.14),

limN→∞ Ac1
j,N(t) = Ac1

j,∞(t) has the properties

• Ac1
j,∞(t) is odd around t = τ0, i.e. Ac1

j,∞(τ0 + ξ) = −Ac1
j,∞(τ0 − ξ) for ξ ≥ 0,

• Ac1
j,∞(τ0) = 0. 4

The proof of Theorem 2 is left for Appendix A.3.

From the arguments so far, it seems that time synchronization with delay, at

least for interior nodes, can be solved simply by modifying the pulse-connection

function Xc1
n,i(Y) and changing the scaling factor to Ai = AmaxKfix/N . Theorem 2

tells us that the limiting aggregate waveform makes a zero-crossing at the next

integer value of t and the waveform is odd. Thus, we can use this zero-crossing

as a synchronization event and maintain synchronization in a manner identical

to the technique used in the situation without propagation delay. This, however,

unfortunately is not the case. In order to implement the above concept, we need

to find the random variable, Dci
fix, in the time scale of ci, that corresponds to Dfix
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such that

(V ci
n,i(Y) + Dci

fix)
c1 =

V ci
n,i(Y) + Dci

fix −Ψi

αi

+ ∆̄i

= V c1
n,i(Y) +

Dci
fix

αi

= V c1
n,i(Y) + Dfix.

This means that we need Dci
fix/αi = Dfix. However, each node i cannot find Dci

fix

that satisfies this since it does not know its αi.

3.6.2 Time Synchronization of Interior Nodes

Since the ith node does not know its own value of αi, to do time synchronization

with propagation delay we can have each node estimate its αi value. However, this

estimate will not be perfect and we may no longer have the symmetric limiting

aggregate waveform described by Theorem 2. This means that the center zero-

crossing might occur some ε away from τ0, τ0 an integer value of t. However,

steady-state time synchronization can be maintained if the network can use a

sequence of m equispaced zero-crossings that occur at t = τ0−m + ε, τ0−m + 1 +

ε, τ0 −m + 2 + ε, . . . , τ0 − 1 + ε, where τ0 is an integer value of t, to cooperatively

generate a limiting aggregate waveform that has a zero-crossing at τ0 + ε. In such

a situation, the network will be able to construct a sequence of equispaced zero-

crossings and maintain the occurrence of these zero-crossings indefinitely. The idea

is the same as in the case without propagation delay, but the only difference here

would be that the zero-crossings do not occur at integer values of t. Let us give a

more formal description of this idea.

Using notation from Section 3.5.2, we start with the assumption that each
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interior node i has a sequence of m observations that has the form

αi(τ0 −m + l + ε− ∆̄i) + Ψi, (3.15)

where l = 0, 1, . . . , m − 1 and ε is known. To develop the time synchronization

estimator V ci
n,i(Y) and the pulse-connection function Xci

n,i(Y), we consider the ob-

servations made by each node. If we assume that each node knows the value of ε,

the vector of observations can be written as in (3.8)

Y = H̄θ + W,

where the matrix H̄ in this case is

H̄ =




1 1 1 . . . 1

ε 1 + ε 2 + ε . . . m− 1 + ε




T

.

Using this model, we can follow the development in Section 3.5.2 to find the the

time synchronization estimator

V ci
n,i(Y, ε) = C(H̄T H̄)−1H̄TY, (3.16)

where C = [1 m]. This estimator will give each node the ability to estimate

the next integer value of t. Note that the variance of the time synchronization

estimator is

Varθ(V
ci
n,i(Y, ε)) = Cσ2(H̄T H̄)−1CT = σ2

(
2(2m + 1)

m(m− 1)
+

12ε(ε− 1−m)

(m− 1)m(m + 1)

)
.

(3.17)

Using the time synchronization estimator, we can choose the pulse-connection

function as

Xci
n,i(Y) = V ci

n,i(Y, ε) + α̂iDfix = V ci
n,i(Y, ε) + Dci

fix, (3.18)
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where each time node i makes the estimate V ci
n,i(Y, ε) it also estimates α̂i as

α̂i = C̄(H̄T H̄)−1H̄TY,

C̄ = [0 1]. We find that α̂i ∼ N (αi, 12σ2/((m − 1)m(m + 1))). Since, from

Section 3.6.1, we know we want Dci
fix/αi = Dfix, we have set Dci

fix

∆
= α̂iDfix. Notice

that since Dci
fix is simply a realization of Dfix multiplied by node i’s estimate of

αi, node i can use the realization of Dfix and find Kfix = K(δ−1(−Dfix)).

With our choice of Xci
n,i(Y) in (3.18), we see that

(V ci
n,i(Y, ε) + Dci

fix)
c1 = V c1

n,i(Y, ε) + ZiDfix = τ0 + Ti + ZiDfix,

where Zi ∼ N (1, 12σ2/(α2
i (m − 1)m(m + 1))), and τ0 + Ti = V c1

n,i(Y, ε). Because

of the random factor Zi, we see that DT = ZiDfix + Dj is no longer a symmetric

distribution. As a result, the limiting aggregate waveform

Ac1
j,∞(t) = lim

N→∞
Ac1

j,N(t) = lim
N→∞

N∑
i=1

AmaxKfix,iKj,i

N
p(t− τo − Ti − ZiDfix,i −Dj,i)

(3.19)

may not have a zero-crossing at t = τ0.

Thus, if we can find an ε such that each node i using a set of observations of the

form (3.15) allows the network to cooperatively generate the waveform in (3.19)

that has its zero-crossing occurring at t = τ0 + ε (in the time scale of c1), then we

have steady-state time synchronization. This is because the network would be able

to use a sequence of m observations to generate the next observation that gives

the same information as any of the previous observations. Thus, by always taking

the m most recent observations, the process can continue forever and maintain

synchronization. Each node i would need to know distribution of Dfix, the value

of ε, and the functions K(·) and δ(·). Therefore, we find that steady-state time
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synchronization of the interior nodes is possible under certain conditions. As a

note, no interior node needs to know any location information.

3.6.3 Time Synchronization of Boundary Nodes

Before we consider the synchronization of boundary nodes, we note that the key

requirement for each boundary node i is to have a pulse-connection function given

in equation (3.18). The reason that this must be the pulse-connection for every

boundary node i is because the analysis for the interior nodes assumes that the

aggregate waveform seen by any interior node j is created by pulse transmissions

occurring at a time determined by (3.18). Since the aggregate waveform seen

by some interior nodes are created by pulse transmissions from boundary nodes,

each boundary node must have the appropriate pulse-connection function. This

requirement, however, proves to be extremely problematic and reveals a limitation

of the elegant technique of averaging out timing delay when we come to boundaries

of the network.

The problem comes because Dfix + Dj,i already does not have a symmetric

distribution if j is a boundary node. Recall that fDfix
(x) = fDj

(−x) when j is an

interior node and fDj
(x) = fDl

(x) when j and l are both interior nodes. However,

fDj
(x) 6= fDl

(x) when j is an interior node and l is a boundary node. As a result,

Dfix + Dj,i is no longer symmetric if j is a boundary node. In fact, it is clear

that the distribution of Dfix + Dj,i is a function of node j’s location near the

boundary. Because of this additional asymmetry, let us assume for a moment that

the sequence of zero-crossings observed by boundary node i occur εi away from an

integer value of t. That is, if every node in the network, including the boundary

nodes, transmitted a sequence of pulses where each pulse was sent according to
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(3.18), then boundary node i would observe the sequence of observations

αi(τ0 −m + l + εi − ∆̄i) + Ψi, (3.20)

where l = 0, 1, . . . , m− 1 and εi is known.

This boundary node i could then use the time synchronization estimator given

by (3.16) but where the matrix H̄ is now replaced with H̄i

H̄i =




1 1 1 . . . 1

εi 1 + εi 2 + εi . . . m− 1 + εi




T

.

Thus, for this boundary node i we have

V ci
n,i(Y, εi) = C(H̄T

i H̄i)
−1H̄T

i Y.

In this case, however, the variance of the time synchronization estimator depends

on εi

Varθ(V
ci
n,i(Y, εi)) = σ2

(
2(2m + 1)

m(m− 1)
+

12εi(εi − 1−m)

(m− 1)m(m + 1)

)
.

The fact that the variance depends on εi is the root of the problem. The pulse-

connection function

Xci
n,i(Y) = V ci

n,i(Y, εi) + α̂iDfix,

is not the same as that given by (3.18).

To correct for this, we can make the strong assumption that each boundary

node i knows is own αi. We address the reasoning behind this assumption in

Section 3.6.4. If we use this assumption, then each boundary node i can get an

observation sequence of the form (3.15) simply by adding αi(ε − εi) to each of

the m observations of the form given in (3.20), where we assume that node i

knows both ε and εi. With such an observation sequence, boundary node i will
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have the time synchronization estimator (3.16) and, more importantly, the pulse-

connection function (3.18). Thus, maintaining time synchronization for the case

of propagation delay would be possible.

What we have then is that boundary node synchronization would require only

the boundary nodes to know their αi parameters. With this strong assumption

only for the boundary nodes, the network is effectively synchronized. Even though

the boundary nodes do not see the same zero-crossing as the interior nodes, they

can calculate this time and thus have all the required synchronization information.

3.6.4 The Boundary Node Assumption

The assumption that each boundary node i knows αi is a strong assumption. Even

though the fraction of nodes that are boundary nodes is small for large, multi-hop

networks, we believe that the assumption is still very artificial. The main reason we

make the assumption is that it allows us to give an elegant presentation of the main

concept of this chapter which is to use spatial averaging to average out errors in

the network. Throughout this chapter we have used spatial averaging to average

out inherent errors present in the nodes. We were able to average out random

timing jitter that is present in each node and provide the network with a sequence

of zero-crossings that can serve as synchronization events. We then applied this

technique to averaging out the errors introduced by time delay. To this end we

were partially successful in that the interior nodes can average out these errors

assuming the boundary nodes have additional information. But this is of interest

since the goal of this chapter is to understand the theory of spatial averaging for

synchronization and discover its fundamental advantages and limitations.
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3.7 Conclusion

In this chapter, the asymptotic study has allowed us to understand the fundamental

capabilities and limitations of spatial averaging. We have shown that in the limit of

an asymptotically dense network, there is a cooperative synchronization technique

that can construct a sequence of equispaced zero-crossings that occur at integer

values of the reference time when there is negligible propagation delay. Since every

single node in the network, regardless of the node’s distance from the reference

clock, can see the same sequence of zero-crossings, we find that the zero-crossings

effectively function as a common synchronization signal for the entire network.

Therefore, we see that the use of spatial averaging can indeed maintain perfect

synchronization in an asymptotically dense network and spatial averaging is ideally

suited for networks with negligible propagation delay. However, spatial averaging

has limitations due to the asymmetries introduced by propagation delay.
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CHAPTER 4

ASYMPTOTIC SYNC TECHNIQUE IN FINITE DENSITY

NETWORKS

4.1 Introduction

Even though the results in Chapter 3 are for asymptotically dense networks, they

may still approximately hold for networks that have high, but still finite, node

densities. In this chapter, we explore how well a synchronization technique based

on the asymptotic synchronization method of Chapter 3 can synchronize a network

with a finite number of nodes. In Section 4.2 we lay out the system model and

in Section 4.3 we describe a synchronization protocol based on the asymptotic

synchronization technique of the previous chapter. The implementation of the

simulator is described in Section 4.4 and the simulation results are presented in

Section 4.5.

4.2 System Setup

As in Chapter 3, each node will periodically transmit a scaled version of the pulse

p(t) to achieve and maintain synchronization. Using p(t) from (3.2) with

q(t) =





1 t ∈ (−τnz, 0)

0 otherwise

we get that p(t) takes on the shape

p(t) =





1 −τnz < t < 0

0 t = 0, t ≤ −τnz, t ≥ τnz

−1 0 < t < τnz

(4.1)

61



for some τnz > 0 and τnz is expressed in terms of c1.

Similar to (3.1), the aggregate waveform seen by node j is

Ac1
j,ηk

(t) =

ηk∑
i=1

AmaxKj,i

ηk

p(t− τo − Ti), (4.2)

where Ac1
j,ηk

(t) is the waveform seen at node j written in the time scale of c1. Ti

is the random timing jitter suffered by the ith node. The only difference is the

use of ηk instead of N . The reason for ηk is that not all N nodes in the network

will initially be transmitting when the synchronization process starts. At first,

node 1 will be the only node broadcasting synchronization pulses. Following that,

the nodes in the broadcast domain of node 1 will join in transmitting pulses.

Eventually, all N nodes in the network will be broadcasting and we will have the

situation in (3.1). However, during the transient startup processes, the number of

transmitting nodes changes. Details of the protocol are described in Section 4.3.

To model the quality of the reception of Ac1
j,ηk

(t) by node j, we model the

reception of a signal by defining a threshold γ. γ is the minimum received maximum

signal magnitude required for nodes to perfectly resolve the pulse arrival time. If

the maximum received signal magnitude is less than γ then the node does not

make any observations and ignores the received signal waveform. We assume that

γ << Amax, where Amax is the maximum transmit magnitude of a node.

As a reminder, the expression in (4.2) is the synchronization waveform for

one synchronization phase. The goal of the synchronization protocol will be to

construct a synchronization pulse train similar to (3.3) that has the form

Āc1
j,ηk

(t) =
∞∑

q=1

ηk,q∑
i=1

AmaxKj,i

ηk,q

p(t− τq − Ti,q),

where ηk,q is the number of contributing nodes at the qth synchronization pulse, τq

is the integer value of t that is the ideal transmission time of the qth synchronization
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pulse, and Ti,q is the jitter suffered by the qth synchronization pulse of ith node.

4.3 Synchronization Protocol

We consider a network of N nodes, uniformly distributed over a fixed area. We

extend the synchronization process for asymptotically dense networks from Sec-

tion 3.5 for a network with a finite number of nodes and node 1 at the center of

the network.

Synchronization will be achieved in the following manner. Node 1 will start

transmitting pulses at some integer value of the reference time and continue to

transmit pulses at integer values of t. After the initial m pulses, the set of nodes

in the broadcast domain of 1, not including node 1, will make an estimate using

the time synchronization estimator V ci
n,i (3.9) of the location of the (m+1)th pulse

and transmit at that time. The set of nodes in the broadcast domain of node 1

will be called R1. The nodes in R1 will then use its most recent m observations to

estimate the time of pulse m + 2. The R1 nodes will continue in this manner. The

nodes that can hear the aggregate transmissions from R1 and node 1, the R2 nodes,

will begin their own predictions and transmissions after observing m pulses. This

propagation will then continue until all nodes in the network hear signals. Fig 4.1

illustrates this propagation.

When a new set of nodes first begin to transmit, say Rj, they send out a packet

of information following their first pulse that has the integer value of t at which the

pulse occurred. If we call this value v, then when nodes Rj+1 start transmitting,

they will know that the pulse they just sent occurred at about t = v + m. The

Rj+1 nodes will send this value out in a packet after the first pulse. This will let

all nodes not only see a common sequence of zero-crossings, but also tell the nodes
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R    Nodes1

R    Nodes2

R    Nodes3

R    Nodesk

N nodes in unit area

node 1

Figure 4.1: The above figure illustrates the propagation of the synchronization pulses

starting from node 1 at the center of the network with N nodes uniformly distributed

over the area. The R1 nodes hear the pulses from node 1 and the R2 nodes hear the

aggregate signal from node 1 and the nodes in R1. This propagation continues beyond

the Rk nodes until all nodes in the finite area can hear synchronization pulses.

at what time each zero-crossing occurred at. The one other piece of information

contained in the packet is a count, q, of how many hops out from node 1 the

synchronization has gone. For example, node 1 will send q = 1. After m pulses,

node 1 will internally increment its value, q + 1 = 2. It will then continue to

increment q every m pulses. The R1 nodes will increment their own internal value

of q every m pulses they see. When the R1 nodes start sending their pulses, they

will have q = 2 and this is the value they send with the data packet they broadcast

to the R2 nodes. The importance of q is so that nodes can approximately scale

their signal amplitudes to conserve power by keeping the aggregate amplitude

controlled. All transmitting nodes will scale their transmit amplitude by 1/ηq−1.
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ηq−1 is the number of nodes transmitting when the number of hops out from node

1 is q. In this chapter we assume ηq is known for all q, but in reality it will be

estimated using the transmission range of the set of nodes
⋃q−1

i=0 Ri and the density

of the network. This scaling by ηq occurs only after the initial m transmissions

by node 1. Node 1 initiates the synchronization mechanism by making m pulse

transmissions at magnitude Amax. After that, node 1 will scale its transmissions

along with all other transmitting nodes. Since we consider finite area networks,

the nodes would know at most how many hops are required to cover the entire

network. We say that all nodes are transmitting when q = qT , for some qT known

by all nodes. Note that the scaling by ηq−1 is part of the transient start-up process

that starts the synchronization processes. After this initial setup processes, the

amplitude that the nodes need to transmit will be scaled by 1/N . Since the scaling

factor of 1/N goes to zero as N →∞, we get that the more nodes we have in the

network (for a fixed area), each node will need to consume less power.

It is important to note that the packet distribution overhead is only for the

initial startup phase. After all nodes in the network have been been synchronized,

the network only needs to emit synchronization pulses to maintain synchroniza-

tion. In terms of energy consumption, the fact that only synchronization pulses are

required means very little energy will be consumed to maintain synchronization.

A pseudo-code description of the synchronization protocol is given in Table 4.1.

Note that the algorithm does not apply to node 1. Node 1 will initiate the syn-

chronization phase with m transmissions at magnitude Amax and then scale its

transmissions in the same way other nodes do. However, node 1 never adjusts its

transmissions and simply transmits a pulse at the appropriately scaled magnitude

at every integer value of t.
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Table 4.1: The synchronization algorithm for each node i, i 6= 1

TimeSync (observation length m > 1)

observe pulse arrival time;

if (first observed pulse)

{ receive packet and set v, q values; };

while (pulse arrived)

{ if (m or more arrival times in memory)

{ keep only m most recent & discard

all other arrival times;

use last m arrivals to estimate

next pulse transmission time tp;

if (q < qT)

{ transmit pulse (Amaxp(t))/ηq−1 at time tp; };

else {transmit pulse (Amaxp(t))/N at time tp; };

if (first pulse transmitted)

{ transmit packet with v + 1, q; };

};

observe pulse arrival time;

if (# pulses received is multiple of m)

{ set q = q + 1; };

set v = v + 1;

};

66



The mechanism so far is nearly identical to the process outlined in Section 3.5

for asymptotically dense networks. In applying it to finite sized (N < ∞) networks,

we introduce a small amount of feedback into the system to prevent small errors

from accumulating. Node 1 is the only node in the network that can observe the

aggregate waveform and have access to the reference clock. We define a tolerance

factor, %, such that if node 1’s observed zero-crossing is more than % from the ideal

zero-crossing, then it informs all nodes in the network to adjust their estimate. %

is defined as

% =
maximum allowed distance between ideal and observed zero-crossing

time between synchronization pulses
,

where all times are defined in terms of c1. It is clear that % is defined in the design

of the system so each node knows its value.

When node 1 notices that % has been exceeded, it sends a one bit feedback

to all nodes. That bit will tell nodes whether the observed zero-crossing occurred

before or after the ideal zero-crossing location. If the observed occurred before

the ideal, then each node will delay all m of its observations by an adjustment

factor. If the observed zero-crossing occurred after the ideal, each node will shift

all of its observations earlier in time by an adjustment factor. This means that if,

for example, the observed zero-crossing occurred early, then by having each node

delay its set of m observations, the next estimate made by each node will occur

later. Since all nodes are making a later estimate, the next aggregate waveform

zero-crossing should be delayed as well, bringing it closer to the ideal zero-crossing

time. For each node i the adjustment factor is calculated as

node i adjustment factor

= %× |difference between most recent two observation times|.
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Note that these calculations are all done by node i in terms of its own time scale.

It is important to stress that this added feedback does not in any way affect

the asymptotic properties of the synchronization mechanism. In an asymptotically

dense network, the extra feedback and correction mechanism will simply not be

needed. It is added only to make the asymptotic synchronization mechanism robust

for networks of finite size.

4.4 Simulator Implementation

As mentioned, we study the synchronization problem in the asymptotically dense

regime since it closely approximates the behavior of networks with large, but still

finite, densities. As a result, an obvious question is how well the limiting regime

actually approximates finite density networks. In an effort to answer this ques-

tion, we implement a simulator to study the performance of our synchronization

mechanism on finite density networks.

The time synchronization simulator is implemented in MATLAB and initial-

izes by running the function NodeGen to generate the set of N nodes uniformly

distributed over a circular area. N is calculated as N = density × area. NodeGen

generates an N × 5 matrix with any node i’s x and y coordinate, its distance from

node 1 (assumed to be at the center of the circle), and the parameters αi and ∆̄i

for its clock. αi and ∆̄i are generated as samples from a Gaussian distribution. In

the simulations performed we always use the following:

area = 30 αi ∼ N (0, 0.01) ∆̄i ∼ N (0, 0.1).

After NodeGen, the simulator executes as illustrated in Fig. 4.2, and each function

is described below.
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ZeroCrossingDetector

TxRangeFinder

Estimator

TimeScaleChange

WaveGen

DetermineObservations

Figure 4.2: Block diagram illustrating the structure of the simulator. Data flow follows

the arrows and the most important functions are the ones surrounded by a solid box.

WaveGen generates the aggregate waveform seen by all nodes. ZeroCrossingDetector

finds the zero-crossing of the aggregate waveform and DetermineObservations finds

each node’s observation of the zero-crossing. Estimator takes each node’s observations

and makes the estimate of where that node should next make a pulse transmission.

The information is then passed back to WaveGen. The functions TimeScaleChange and

TxRangeFinder in the dotted boxes are key supporting functions.

Estimator: This function takes from DetermineObservations the N ×m

matrix which contains each node i’s observations in terms of ci (recall that m is the

number of observations each node makes before it starts estimating the next zero-

crossing time). If node i has m observations then the function makes the estimate

of the next integer value of t. Estimator outputs an N × 1 vector that contains

the zero-crossing estimates for the nodes that are making pulse transmissions and

a place holder value for nodes that are not.

TimeScaleChange: Since node i’s estimate in the output of Estimator is

in the time scale of ci, TimeScaleChange changes the value into the time scale of

c1. This is done, for the ith node using tout = (tin − Ψi)/αi + ∆̄i, where tout is in
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the N × 1 output of TimeScaleChange and tin comes from Estimator. Ψi is the

Gaussian random jitter of ci and we use Var(Ψi) = 0.01 for all i.

WaveGen: This function generates the waveform using Amax and the pulse

p(t) described in (4.1). To simplify waveform generation, we assume that there is

no amplitude loss in the waveform. Amplitude loss is accounted for in calculating

the transmission range however. Node transmission times come from the output

vector of TimeScaleChange. For all simulations we assume:

τnz = 0.2 Amax = 8 Kj,i = 1.

ZeroCrossingDetector: ZeroCrossingDetector takes the waveform gen-

erated by WaveGen and finds the zero-crossing.

DetermineObservations: This function takes the zero-crossing value, which

is in the time scale of c1, and translates it into the time of ci for each node i that is

making observations. This conversion is done using (2.1). DetermineObservations

knows which nodes are making observations since it obtains the current trans-

mission range from TxRangeFinder. This function also implements the feed-

back/adjustment mechanism. For simulations we set the tolerance factor to be

% = 0.05.

TxRangeFinder: This function finds the transmission range of the nodes

that are currently transmitting. It assumes K(d) to be

K(d) =





1 d < ε
√

εβ

dβ d ≥ ε

It approximates the range of the aggregate waveform generated by nodes in a

circular area by partitioning the circle into vertical sections of width 0.01. Each

section is then assumed to generate an equivalent waveform originating on the
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x-axis. These equivalent waveforms are then summed to determine the distance

from node 1 at which the aggregate amplitude first drops below γ. For simulations

we use

β = 2 ε = 0.1 γ = 0.2.

It uses the output of TimeScaleChange to determine the transmitting nodes and

thus the circular area of transmitting nodes.

The parameters m and density are not specified above because they are varied

throughout the simulations.

4.5 Simulation Results

Before presenting the results of the simulations, we first describe how we measure

the performance of the synchronization mechanism. Recall that ideally we would

want all nodes to transmit a synchronization pulse at the exact same time. This

means that in the ideal situation, when we translate each node i’s estimate of

the next zero-crossing location into the time scale of node 1 it should be the

next integer value of t. The output of TimeScaleChange is used to measure the

performance of the synchronization mechanism since it gives each node i’s estimate

in the time scale of c1. Thus, ideally all values would be the next integer value of

t. In reality, this is not the case and we use a measure, which we call the average

squared distance or ASD, to quantify the average distance of the nodes’ estimates

from the ideal integer time of c1. The ASD is calculated as follows:

ASD =
1

N̄

N̄∑
i=1

(t̂c1i − t0)
2,

where N̄ ≤ N is the number of nodes currently making estimates, t0 is the next

integer value of t, and t̂c1i is the ith estimating node’s estimate of t0 in the time
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scale of c1. Note that the ASD measures the performance of the time synchroniza-

tion estimator of all nodes in network since the goal of the time synchronization

estimator is to predict the next integer value of t.

The first simulation result that we present in Fig. 4.3 serves as motivation for
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Figure 4.3: Left: A plot of ASD versus time for the synchronization mechanism without

feedback. The results were averaged over 10 runs. We see that synchronization is held for

a period of time but not indefinitely. Right: A plot of ASD versus time for the synchro-

nization mechanism with feedback. We note that ASD is bounded and synchronization

can be maintained indefinitely.

the modified synchronization mechanism that includes feedback. We see in the first

figure of Fig. 4.3 that for m = 10, 15, 20, synchronization is maintain over a period

of time. If fact, for m = 20, synchronization is maintained for over seventy time

units. On average, as seen in the first figure of Fig. 4.3, the larger the m value the

longer synchronization can be maintained. However, in all cases synchronization is

eventually lost. This is due to the fact that small errors in the aggregate waveform

zero-crossing location accumulate. For example, if an observed zero-crossing arrives

late, then the next aggregate waveform zero-crossing may arrive late as well since

all nodes are making an estimate using the delayed zero-crossing. Thus, these
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errors accumulate and eventually the aggregate waveform zero-crossing may drift

significantly away from the integer values of t. Note that the peaks and troughs in

the ASD plot are a result of the simulator. The simulator looks for the zero-crossing

in an interval around each integer value of t. As a result, when the zero-crossing

drifts so much that the nodes can longer observe the zero-crossing in the preset

interval, then huge errors will result. If no zero-crossing is observed, the nodes

are set to simply increment their last observed pulse arrival time by one and use

that as a new observation. Thus, the zero-crossing may reappear and drive down

the ASD. Nonetheless, as soon as the ASD starts spiking, the zero-crossing has

effectively drifted significantly away from the integer values of the reference time.

By introducing feedback we can correct this drifting zero-crossing. An illustra-

tion of ASD versus time for the mechanism with feedback is presented in the second

figure of Fig. 4.3. There we run the simulation once and notice that in all cases

the ASD is bounded and synchronization is maintained indefinitely. In Fig. 4.4

we zoom in on the second figure of Fig. 4.3 and notice the “sawtooth” waveform

for m = 10 and m = 15. Each “tooth” coincides to one time that the feedback

triggered by node 1 adjusted each node’s observations. In fact, the simulator tells

us that for m = 10 there were six corrections, m = 15 had four, and m = 20 so far

did not require any corrections to the node observations.

Another key property of the synchronization mechanism with feedback is that

it performs well for a wide range of network sizes. In Fig. 4.5 we plot the ASD

versus time for network sizes varying from N = 300 (density=10, area=30) to

N = 18300 (density=610, area=30). In steady-state all nodes are transmitting

and we notice that the ASD curve for the 300 node network is at most 0.0005

greater than the ASD curve for the 18300 node network. This means that on
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Figure 4.4: A plot of ASD versus time for the synchronization mechanism with feedback.

We notice a “sawtooth” waveform for m = 10, 15 and each “tooth” occurs at a time where

a correction was made.

average the ASD varies only by at most 0.0005 for network sizes in this range

and thus the mechanism is well suited for network sizes as small as a few hundred

nodes. Of course, as expected, the mechanism must make more active corrections

based on feedback from the network. In fact, we find that the average number of

corrections made for the 150 time units of the simulation was 18.2 for N = 300

and 2.9 for N = 18300. As a result, even though the mechanism performs well for

networks of only a few hundred nodes, it does require more active adjustments on

the part of the mechanism. Such a result is in line with our comment at the end of

Section 4.3 since in the limit as N → ∞ the feedback and correction mechanism

will not be needed.
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Figure 4.5: A plot of ASD versus time for the synchronization mechanism with feedback

for different network sizes. Each plot was averaged over 500 runs. In steady-state we see

that the mechanism performs well for a wide range of network sizes since the difference

in ASD for a network of N = 300 nodes and a network of 18300 nodes is at most 0.0005.

4.6 Conclusion

Through the use of simulations, in this chapter we have shown that a synchro-

nization technique based solely on the asymptotic technique of Chapter 3 can not

maintain synchronization indefinitely. However, a minor modification of the tech-

nique that allows the reference node to communicate a single bit of information to

the rest of the nodes in the network allows the network to remain synchronized.

The problem with applying an asymptotic technique to networks with a finite

number of nodes is that we do not have any sort of analytical characterization of

how well the finite sized network is synchronized. The only sort of characterization

we have so far comes from simulation results and the tolerance factor % from the

synchronization protocol. Also, most existing network synchronization techniques
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synchronize the network by having each node estimate its clock skew and clock

offset relative to a reference clock. Thus, in the next chapter we address these

issues by characterizing the improvement in skew and offset estimates when spatial

averaging is used.

76



CHAPTER 5

COOPERATION IN FINITE DENSITY NETWORKS

5.1 Introduction

In Chapter 3 we analytically studied the asymptotic properties of cooperation us-

ing spatial averaging. Since these analytical results do no provide any information

about how spatial averaging will perform in finite density networks, in Chapter 4

we provided some simulation results to understand how the asymptotic synchro-

nization technique performs in networks of finite density. However, no attempt is

made to analytically characterize synchronization performance.

In this chapter, we develop a cooperative synchronization protocol to estimate

clock skew and clock offset in networks of finite density and we seek to analyti-

cally characterize how synchronization performance improves as a function of the

amount of cooperation. We set up the system model in Section 5.2 and describe

the synchronization protocol in Section 5.3. To analyze the performance of the

protocol, we first start by studying its performance in a Type I basic cooperative

network. Type I network analysis is provided in Section 5.4 and simulations are

presented in Section 5.5. Using our understanding from a Type I network, we

proceed to study Type II general networks. Type II analysis is in Section 5.6 and

simulations are in Section 5.7. Lastly, we compare the performance of cooperative

and non-cooperative synchronization techniques in Section 5.8.

5.2 System Setup

To develop the system model, we need to consider the new challenges we face in

studying finite density networks. We first realize that for finite density networks,
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the distribution of the random observation (i.e. zero-crossing) needs to be charac-

terized. In the infinite density situation the observation was deterministic, but it

is now random in the finite density case. Second, we actually need to characterize

the distribution of functions of the observations since the observations are used

to make estimates. Third, we see that the zero-crossing is extremely difficult to

characterize. As a result, for our finite density network study, we will develop a

simpler observation and spatial averaging model.

For pulse transmissions, each node i in the network can transmit short pulses

p(t) for time synchronization. These are short duration pulses, i.e. ultra wideband

pulses, and for our purposes we consider them to be delta functions δ(t). The

particular choice of p(t) is not important. For the purposes of studying cooperative

time synchronization, we assume a node receiving the pulse can uniquely determine

a pulse arrival time, pulses sent from different nodes do not overlap, and a node

seeing multiple pulses can identify the different pulse arrival times.

t1 t2 t3 t4 t5 t6t1 t2 t3 t5 t6t4τ 0 τ 0

Figure 5.1: The zero-crossing observation (left) and the sample mean of pulse clusters

(right) are different implementations of the spatial averaging concept.

The observation will now be the sample mean of clusters of pulses instead

of a zero-crossing (Fig. 5.1). The important thing to realize, however, is that

the two techniques are simply different approaches to the same spatial averaging

concept. In both cases, the key property of the pulse transmission time is that

it is symmetric about the ideal transmission time τ0. With an increasing number
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of pulse transmissions, we know that the zero-crossing converges to τ0. Similarly,

with more pulse transmissions, we know that the sample mean converges to the

true mean, which is τ0. Thus, we see that the underlying idea of spatial averaging is

exactly the same for the two different aggregate signals. However, using the sample

mean instead of the zero-crossing provides us with a more analytically manageable

setup.

The remainder of the system setup is similar to what we considered before. We

assume a network with a large number of nodes uniformly distributed over a wide

area. No assumptions are made on the type of nodes. This can be a homogeneous

network of identical nodes or a network composed of a variety of different types

of sensor nodes. Since the network is deployed over a large area, this is a multi-

hop network and a large number of hops are required to send information across

the network. The nodes do not have the capability to communicate with devices

outside the network, i.e. nodes do not have GPS receivers.

The important assumption that we do maintain, however, is that the network

has high node density. That is, each sensor node can receive signals from a large

number of neighbors. It is important to realize that this assumption does not

significantly limit the applicability of cooperative time synchronization. For any

given network, we can always artificially construct a dense network by deploying

a large number of nodes whose sole purpose is to aid in time synchronization.

We again assume that node 1 contains the reference clock and every node in

the network is to be synchronized to this clock. We use the general clock model

described in Section 2.2.

Lastly, we simplify the signal propagation model by assuming that each node

has a transmission range of R. This comes from using K(d) in the pathloss only
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model (Section 2.3) and assuming that a received signal must have an amplitude

greater than or equal to some threshold γ. Since all nodes transmit the same

pulse, transmission range R is therefore the distance at which the signal amplitude

drops below the required threshold. This means that a node j must be within a

distance R from a transmitting node i in order to hear pulses from node i. Note

that the assumption of a circular transmission region is made only to simplify

the illustration of spatial averaging. The synchronization protocol proposed in

Section 5.3 does not require this assumption and most of the results in this work will

hold under more realistic conditions [43, 44]. Since we are dealing with sensor nodes

who have short transmission distances, we further assume that propagation delay

is negligible. We make this assumption since from [10] we know that propagation

delay is less than 1µs for distances up to 300 meters.

5.3 Synchronization Protocol

To start synchronization, the reference node, node 1, will send a sequence of m

pulses that are d seconds apart. Since we assume the nodes have impulse radio

transmitters, each pulse is extremely narrow in time. The values of d and m are

parameters of the protocol that are established before deploying the network so

the values are known by all nodes in the network. Therefore, in the time scale of

node 1 the pulses are transmitted at times τ0, τ0 + d, . . . , τ0 + d(m − 1), where τ0

is the time at which the synchronization process started. Let node 1 be the only

element of the R0 nodes.

The nodes that are in the broadcast domain of node 1 will hear this sequence

of m pulses. We call these nodes the R1 nodes and each node i ∈ R1, i ≥ 1,

will be denoted by node 1i. The vector of pulse arrival times observed by node 1i
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Pulse clusters observed by node 2i

+dm +d(m+2)+d(m+1) +d(2m−1)

Figure 5.2: A node 2i in R2 has clock c2i. This node will see clusters of pulse arrivals

that are transmitted from a group of nodes in the set R1. These clusters arrive at node

2i around times τ0 + dm, τ0 + d(m + 1), . . . , τ0 + d(2m− 1) in the time scale of node 1,

c1.

will be denoted Y1i. Each node 1i will be able to estimate its clock skew since it

knows that node 1 transmitted these pulses d seconds apart. Each node 1i will also

predict, in its own time scale, when times τ0 +dm, τ0 +d(m+1), . . . , τ0 +d(2m−1)

will occur in the time scale of node 1 and transmit m pulses, one at each predicted

time. This means that each node 1i will transmit a pulse approximately at times

τ0 +dm, τ0 +d(m+1), . . . , τ0 +d(2m−1) in the time scale of node 1. When the R1

nodes each transmit their sequence of m pulses, the nodes that can hear a subset

of the R1 nodes, the R2 nodes, will observe clusters of pulses around the times

τ0 + dm, τ0 + d(m + 1), . . . , τ0 + d(2m − 1) since each node 2i can hear many R1

nodes (Fig. 5.2). In fact, we make sure each node 2i can hear a cluster by requiring

the node to observe at least N̄ pulses in each cluster. If a node 2i sees less than

N̄ pulses in a cluster, then it will not make observations. Each node 2i, a node

i ∈ R2, will note the arrival time of each pulse in the kth cluster, k = 1, . . . ,m, and

take the sample mean of these times to be its kth observation. Node 2i’s vector of

observations will be denoted as Y2i. Using these m observations, any node 2i will

be able to estimate its clock skew since it knows that these observations should
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be occurring d seconds apart. As well, it will be able to predict in its local time

scale when times τ0 + d(2m), τ0 + d(2m + 1), . . . , τ0 + d(3m− 1) will occur in the

time scale of the reference time. Node 2i will then transmit a pulse at each of

those predicted times. This processes will repeat until all nodes in the network

have an estimate of their clock skew. Notice that the R1 nodes are not required

to observe N̄ pulses in each cluster since they will always only receive a sequence

of m pulses from node 1. Node 1 can simply broadcast a special packet to its

surrounding nodes to identify the R1 nodes. An illustration of the process can be

found in Fig. 5.3 and note that nodes will remain silent for the remainder of the

synchronization process after transmitting their m pulses.

R2 R1R3

R    (node 1)0

Network Area

Figure 5.3: For increasing i, the Ri nodes are progressively farther and farther away from

reference node 1, the R0 node. Each node in the set Ri receives its timing information

from a group of nodes in set Ri−1.

The cooperation occurs when a node ki in Rk, k > 1, can take a sample

mean of a cluster of pulse arrivals. Recall that each cluster will have at least

N̄ pulses. Since each pulse transmission will be corrupted by random estimation

errors from a node in the set Rk−1, by taking the average of a number of pulse

82



arrivals, some of the random error can be averaged out. This in turn will allow for

better synchronization performance.

So far, each node in the network has the ability to estimate its clock skew rela-

tive to the reference clock. To obtain the clock offset, the Rk nodes will broadcast

a packet of information to the Rk+1 nodes, k ≥ 0. This packet will contain the

value of τ0 and a number q denoting the number of hops out from node 1. For

example, node 1 will transmit the value of τ0 and q = 0 to the R1 nodes. The

R1 nodes will then send τ0 and q = 1 to the R2 nodes. In general, the Rk nodes

will send τ0 and q = k to the Rk+1 nodes. Any node ki will then know that its

first observation approximately occurred at time τ0 + dmq in the time scale of the

reference time, where the value of q is the one received from set Rk−1.

We now describe how any node ki can estimate its clock skew, clock offset,

and its m pulse transmission times. From (2.1), we know that there is a linear

relationship between the reference clock c1 and the clock of node ki, cki. Node

ki will have a set of m observations denoted by the m × 1 vector Yki, where the

elements of the vector are ordered from the earliest observation time to the latest

observation time. Node ki will estimate its clock skew as

α̂ki = C̄(HTH)−1HTYki (5.1)

and clock offset as

∆̂ki = C̃(HTH)−1HTYki − (τ0 + dm(k − 1)), (5.2)

where C̄ = [0 1], C̃ = [1 0] and

H =




1 1 1 . . . 1

0 d 2d . . . (m− 1)d




T

(5.3)
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Table 5.1: The synchronization protocol for each node ki, k > 1

Cooperative Time Sync

wait for pulse arrivals, at least N̄

per cluster;

while (number of arrival clusters < m) {

record arrival time of all pulses;

listen for packet with τ0 and q values;

};

for each (pulse arrival cluster j) {

Yki[j] = sample mean of cluster;

};

skew α̂ki = C̄(HTH)−1HTYki;

offset ∆̂ki = C̃(HTH)−1HTYki − (τ0 + dmq)

for (l from 0 to m− 1) {

transmission time Xcki
l+1,ki(Yki) = Cl(HTH)−1HTYki;

transmit pulse at Xcki
l+1,ki(Yki);

};

while (transmitting pulses) {

send a packet with values τ0 and q + 1;

};

Note that in the calculation of the clock offset ∆̂ki, the term τ0 + dm(k− 1) is the

time in the time scale of c1 that node ki should receive its first pulse. Node ki has
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used the τ0 and q = k − 1 parameters sent to it from the Rk−1 nodes. Node ki

will also estimate its own m pulse transmission times using the pulse-connection

function

Xcki
l+1,ki(Yki) = Cl(H

TH)−1HTYki, (5.4)

where Cl = [1 d(m + l)], for l = 0, 1, . . . , m− 1. Xcki
l+1,ki(Yki) is the transmission

time of node ki’s (l + 1)th pulse. A pseudo-code description is given in Table 5.1.

Note that the pulse-connection function in (5.4) is essentially the same as the

one used in the infinite density case with no propagation delay (3.9). They both

make unbiased estimates of the ideal pulse transmission time. The only real dif-

ference is that a node using (3.9) estimates only the next pulse transmission time

while a node using (5.4) estimates the next m pulse transmission times.

5.4 Type I Node Deployment — Analysis

The analysis of the protocol described in Section 5.3 is difficult since, in general,

different nodes see different observations. As shown in Fig. 5.4, node (k + 1)i

and node (k + 1)j see different nodes from Rk and they see different numbers of

nodes. This means that their observations are different, but may potentially be

correlated. As a result, the complexity in characterizing the observations made by

different nodes in the network make analyzing the protocol difficult. We, therefore,

breakdown the analysis by analyzing the protocol in two types of networks: Type

I basic cooperative networks and Type II general networks. This section and

Section 5.5 focus on Type I networks while Section 5.6 and Section 5.7 focus on

Type II networks.
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extent of Rk

node (k+1)i

node (k+1)j

Figure 5.4: Node (k+1)i and node (k+1)j have different observations that are possibly

correlated.

5.4.1 Network Setup

The most basic and fundamental deployment of nodes that effectively employs

cooperative time synchronization is the case where all N̄ nodes at any given hop

contribute to the signals observed at the next hop. This Type I deployment is

illustrated in the top of Fig. 5.5 where each set of nodes Ri, i ≥ 1, have N̄ nodes.

We see that every single node in Ri is in the broadcast domain of every node in

Ri−1. Note that if we let N̄ = 1, then the network becomes a non-cooperative

network where timing information is communicated from one node to the next

(bottom of Fig. 5.5). Thus, the Type I network is a generalization of the simple

non-cooperative situation.
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R1 R2 R3

node 1 node 2 node 3 node 4

node 1

Figure 5.5: Top: A Type I network deployment. Node 1 (R0 node) initiates synchroniza-

tion and the N̄ nodes in set Ri, i ≥ 1, convey timing information to set Ri+1. Bottom:

A non-cooperative network.

5.4.2 Analysis

Due to the scalability problem, we would expect synchronization error to grow as

timing information from node 1 (the R0 node) is communicated to a node in the

Rk set of nodes, k > 0. Therefore, it is of particular interest to quantify how the

mean squared error of the skew and offset estimates change as a function of the

hop number k. Looking at the structure of the basic cooperative network in the

top of Fig. 5.5, we notice that the skew and offset estimates at a node ki must

be dependent only on the estimates made by the nodes in Rk−1. Therefore, to

understand the synchronization error growth over multiple hops, we need the dis-

tribution of the estimates made by the nodes in Rk as a function of the distribution

of the estimates made by the nodes in Rk−1. Theorem 3, below, provides us with

this characterization.

In the statement of the theorem we use el to be the column vector of all zeros

87



except for a one in the lth position and

H̄ =




H 0 . . . 0

0 H . . . 0

...
...

. . .
...

0 0 . . . H




,

where H is from (5.3). Also, αki and ∆̄ki are the clock model parameters from

(2.1) for node ki.

Theorem 3 Assume a Type I basic cooperative network and the synchronization

protocol from Section 5.3.

1. Given the distribution of the 2N̄ × 1 vector of estimates made by the Rk−1

nodes,

ˆ̄θk−1 ∼ N (µ̄k−1, Σ̄k−1),

the distribution of the 2N̄ × 1 vector of estimates made by the Rk nodes,

ˆ̄θk ∼ N (µ̄k, Σ̄k),
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is found as follows: ˆ̄θk has mean vector

µ̄k = E(ˆ̄θk)

= E(Ak
ˆ̄θk−1 + Bk)

= Akµ̄k−1 + Bk

=




αk1(τ0 + (k − 1)md− ∆̄k1)

αk1

αk2(τ0 + (k − 1)md− ∆̄k2)

αk2

...

αkN̄(τ0 + (k − 1)md− ∆̄kN̄)

αkN̄




(5.5)

and covariance matrix

Σ̄k = Cov(ˆ̄θk) = Σmk
+ AkΣ̄k−1A

T
k (5.6)

for

Σmk
= (H̄T H̄)−1H̄T ΣW̄k

((H̄T H̄)−1H̄T )T

ΣW̄k
= QkΣΨ̃k−1

QT
k + σ2IN̄m

Qk =




αk1Im

αk2Im

...

αkN̄Im




ΣΨ̃k−1
=

σ2

N̄2

N̄∑
i=1

1

α2
(k−1)i

Im
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where

Ak = Dk




1
α(k−1)1

dm
α(k−1)1

0 0 . . . 0 0

0 1
α(k−1)1

0 0 . . . 0 0

0 0 1
α(k−1)2

dm
α(k−1)2

. . . 0 0

0 0 0 1
α(k−1)2

. . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1
α(k−1)N̄

dm
α(k−1)N̄

0 0 0 0 . . . 0 1
α(k−1)N̄




Dk =
1

N̄




αk1 0 αk1 0 . . . αk1 0

0 αk1 0 αk1 . . . 0 αk1

αk2 0 αk2 0 . . . αk2 0

0 αk2 0 αk2 . . . 0 αk2

...
...

...
...

. . .
...

...

αkN̄ 0 αkN̄ 0 . . . αkN̄ 0

0 αkN̄ 0 αkN̄ . . . 0 αkN̄




Bk = Dk




∆̄(k−1)1

0

∆̄(k−1)2

0

...

∆̄(k−1)N̄

0




−




αk1∆̄k1

0

αk2∆̄k2

0

...

αkN̄∆̄kN̄

0




.
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The initial conditions are

µ̄1 =




α11(τ0 − ∆̄11)

α11

α12(τ0 − ∆̄12)

α12

...

α1N̄(τ0 − ∆̄1N̄)

α1N̄




and Σ̄1 = σ2(H̄T H̄)−1.

2. The skew estimate and offset estimate for node ki can be found as

α̂ki = eT
2(i−1)+2

ˆ̄θk (5.7)

and

∆̂ki = eT
2(i−1)+1

ˆ̄θk − (τ0 + dm(k − 1)) (5.8)

for i = 1, 2, . . . , N̄ and k ≥ 1. 4

The proof of Theorem 3 is found in Appendix B.1. Note that since the estimates

of skew and offset are unbiased, the variance is the mean squared error. Also, since

the distribution of ˆ̄θk is available, the distribution of α̂ki and ∆̂ki can be found. In

fact, the variance of α̂ki can be found in element (2(i−1)+2, 2(i−1)+2) of Σ̄k in

(5.6) and the variance of ∆̂ki can be found in element (2(i− 1) + 1, 2(i− 1) + 1).

The mean of α̂ki is the (2(i− 1) + 2)th element of µ̄k in (5.5) and the mean of ∆̂ki

can be found as the (2(i− 1) + 1)th element minus the offset τ0 + dm(k − 1).

From the statement of Theorem 3, we see that the distribution of the estimates

made by the Rk nodes, ˆ̄θk, is completely determined from the distribution of ˆ̄θk−1.
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This recursive nature comes from the fact that the parameters estimated by the Rk

nodes is only dependent on the estimates made by the Rk−1 nodes. The relationship

between ˆ̄θk−1 and ˆ̄θk can be intuitively understood in two steps. First, ˆ̄θk−1 is the

vector of synchronization parameters estimated by the nodes in Rk−1. Therefore,

these estimates will establish the synchronization parameters for the Rk nodes

since the Rk−1 nodes communicate timing information to the Rk nodes. The

synchronization parameters for Rk are found as

θ̄k = Ak
ˆ̄θk−1 + Bk.

Second, the Rk nodes will use the timing information from the Rk−1 nodes to make

an unbiased estimate of the parameters θ̄k, which gives us ˆ̄θk. In fact, the two terms

that are added to give us Σ̄k in equation (5.6) represent the two steps. AkΣ̄k−1A
T
k

is the error from step 1, the error propagated to Rk from Rk−1. Σmk
is the error

from step 2, the estimation error at Rk.

Since any node ki’s skew and offset estimates are found as affine transforms of ˆ̄θk

in (5.7) and (5.8), respectively, we see that any estimation errors made by the Rk−1

nodes will be propagated to the Rk nodes’ estimates of clock skew and clock offset.

However, the intuitive understanding of cooperative time synchronization comes

from realizing that the matrix Ak takes an “average” over ˆ̄θk−1 thus mitigating

the errors made by any particular node (k − 1)i. As a result, the synchronization

parameters communicated to the Rk nodes will be less noisy and, therefore, the

skew and offset estimates made by a node ki will have less error. We would, thus,

expect the variance of the estimates to decrease with increasing N̄ . Notice that

our Type I network analysis does not explicitly utilize the circular transmission

region with radius R.
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5.5 Type I Node Deployment — Simulations

In Fig. 5.6 we illustrate the MATLAB simulation results for two 20 hop networks,

one with N̄ = 2 and the other with N̄ = 4. The following parameters were used:

R = 1

d = 5

m = 4

σ = 0.01

For each network, a set of N = 20N̄ +1 nodes were first placed in a Type I network

deployment. Each node’s skew parameter was then generated using αi = |Xi| for

Xi ∼ N (1, 0.005), independently for each node i. Node 1 was assumed to have

α1 = 1. The cooperative time synchronization protocol was then run 5000 times

using the deployed network. At each hop, the 5000 skew and offset estimates of one

chosen node were used to generate the simulated skew and offset estimate variance

curves shown in Fig. 5.6. The theoretical variance value of the chosen node at each

hop was computed using the recursive expression found in (5.6). In Fig. 5.7, we

illustrate a similar plot using N̄ = 3 and N̄ = 6 with σ = 0.05.

In Fig. 5.6, we first clearly see that the simulated skew and offset variance

values nicely match the predicted theoretical variance values. As well, the expected

decrease in skew and offset variance as N̄ increases from 2 to 4 is immediately

noticeable. In fact, in both the skew variance and offset variance curves, we have

an approximate halving of the variance values as we double N̄ from 2 to 4. Also

expected, is that the variance values at each hop depend on the particular values

of αi, i = 1, . . . , N . This dependence on the αi values result in the jagged skew

and offset variance curves seen in Fig. 5.6. The N̄ = 2 network had αi values
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Figure 5.6: Var(α̂k1) is plotted in the top figure and Var(∆̂k1) is plotted in the bottom

figure as a function of k.

ranging from 0.9073 to 1.1342, while the N̄ = 4 network had skew values ranging

from 0.8339 to 1.1669. Similar observations also hold for Fig. 5.7 where the N̄ = 3

network had αi values ranging from 0.8465 to 1.1544, while the N̄ = 6 network

had skew values ranging from 0.8310 to 1.1636.
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The problem with having the variance curves depend on the actual skew values

is that the exact performance of cooperative time synchronization is dependent

on the network realization. However, we find that for αi values that are close to

and centered around 1, the variance curves follow the trend established by the

theoretical variance curves for αi = 1, all i. This can be seen in Fig. 5.6 where we

have also plotted the theoretical curves using αi = 1 for all i for N̄ = 2 and N̄ = 4.

Again in Fig. 5.7, we see that the simulated skew and offset variance curves follow

the trend established by the theoretical variance curves for αi = 1, all i, for both

N̄ = 3 and N̄ = 6. As a result, the situation where αi = 1, all i, can be used

to study the the performance improvement of cooperative time synchronization

without dealing specifically with the skew values of individual nodes.

Therefore, to get a better understanding of how cooperative time synchroniza-

tion improves synchronization performance, let us simplify the recursive expression

in (5.6) for the special case where αi = 1 for all i and find a non-recursive expression

for skew and offset variance. The first thing to note is that under the assumption of

αi = 1 for all i, Ak = A and Σmk
= Σm are no longer dependent on k. Therefore,

writing out the recursive expression for Σ̄k (5.6), we have

Σ̄k =
k−2∑
i=0

AiΣm(AT )i + Ak−1Σ̄1(A
T )k−1. (5.9)

Using (5.9), Corollary 1 gives us the non-recursive expression for skew and offset

variance.

Corollary 1 For a basic cooperative network with αi = 1, all i, α̂ki and ∆̂ki have

the following mean and variance:

E(α̂ki) = 1
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Figure 5.7: Var(α̂k1) and Var(∆̂k1) are plotted. In this figure, σ = 0.05.

E(∆̂ki) = −∆̄ki

Var(α̂ki) =
12σ2

d2(m− 1)m(m + 1)

(
1 +

2(k − 1)

N̄

)
(5.10)
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Var(∆̂ki) =
2σ2(2m− 1)

m(m + 1)
+

σ2

N̄

[
4(k − 1)(2m− 1)

m(m + 1)

+(k − 1)2

(
− 12

(m + 1)
+

12m

(m− 1)(m + 1)

)

+
1

3
(k − 2)(k − 1)(2k − 3)

12m

(m− 1)(m + 1)

]
(5.11)

where k is a positive integer. 4

The proof of Corollary 1 is found in Appendix B.2. Note that the skew and

offset variance expressions are only a function of k and not i. The theoretical

skew and offset variance of the ith node at the kth hop (node ki) can be found in

elements (2(i−1)+2, 2(i−1)+2) and (2(i−1)+1, 2(i−1)+1), respectively, of Σ̄k

in (5.9). However, the skew variance values in elements (2(i− 1) + 2, 2(i− 1) + 2),

i = 1, . . . , N̄ , are all equal and the offset variance values in elements (2(i− 1) + 1,

2(i − 1) + 1), i = 1, . . . , N̄ , are also equal when we assume that αi = 1 for all

i. As a result, we can consider the skew and offset variance at a hop k without

specifying a particular node. Notice also that, besides the sign change in the mean

of the offset estimate, the skew and offset estimates are unbiased estimates of the

clock parameters of node ki.

The theoretical skew and offset variance curves from (5.10) and (5.11), respec-

tively, are compared to simulated skew and offset variance curves in Fig. 5.8. The

same parameters used in Fig. 5.6 were used to generate Fig. 5.8 except we assume

that αi = 1 for all i. We have plotted the skew estimate variance and offset vari-

ance as a function of hop number for 15 hops and the plots are generated using

1000 runs. This is done for N̄ = 1, 2, 4, 8 and it is immediately clear that as N̄

increases, the variance values of the skew and offset estimates decrease. Also, we

see that every time N̄ is doubled, the variance values are approximately halved.

This comes from the 1/N̄ factor in both (5.10) and (5.11) and is expected since
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Figure 5.8: Var(α̂ki) and Var(∆̂ki) are plotted as a function of k under the assumption

of αi = 1 for all i. Variance values for skew and offset estimates decrease approximately

as 1/N̄ .

every node takes the sample mean of N̄ pulses to be an observation. The variance

of the observation error decreases like 1/N̄ because it is a sample mean and, thus,

it is not surprising that the skew and offset variance values also approximately

decrease like 1/N̄ .
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5.6 Type II Node Deployment — Analysis

5.6.1 Network Setup

Nodes will not generally be clustered together as in a basic cooperative network,

but be deployed in a more random manner. As a result, to study general network

deployments, we will consider a Type II situation where nodes are uniformly de-

ployed with density ρ over a circular region of radius LR with node 1 at the center.

In such a setup, at any hop k, k ≥ 2, a node ki in the Rk nodes will see at least N̄

nodes from the Rk−1 set of nodes. However, the exact number of observed nodes

will depend on node ki’s location in the region occupied by the Rk nodes.

An illustration of a Type II deployment is shown in Fig. 5.9. We note that the

R0 node (node 1) is placed at the center of the disk and the R1 nodes occupy a

circular region of radius R. However, the region occupied by the Rk nodes for k ≥ 2

is a ring centered around node 1 with a ring thickness of dmax,k. For increasing k,

the distance from node 1 to the inner circular boundary of the region occupied by

the Rk set of nodes increases.

5.6.2 Analysis

To study a Type II network, we could carry out an analysis similar to the one we

did for the Type I basic cooperative network. Assuming we know the location of

all nodes for a given network deployment over the circular region of radius LR, we

would be able to determine the neighbors of each node and then readily extend the

Type I analysis to this Type II network. The primary change that would occur in

the analysis is the determination of the affine transform

ˆ̄θk 7→ θ̄k+1 = Ak+1
ˆ̄θk + Bk+1.
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Figure 5.9: A Type II network deployment. Nodes are deployed with uniform density

ρ and node 1 is at the center of the network.

However, there are two issues that arise in determining the transform matrix Ak+1

and vector Bk+1.

First, since Rk and Rk+1 will most likely have different numbers of nodes, we

immediately see that Ak+1 will be a 2|Rk+1| × 2|Rk| matrix and Bk+1 will be a

2|Rk+1| × 1 vector, where |Rk| is the cardinality of set Rk. This means that the

length of vector ˆ̄θk will change with every hop.

Second, for any node (k + 1)i in Rk+1, the set of cooperating nodes in Rk will

be different. Thus, Ak will also reflect this difference. Therefore, every time we

move from hop k to k + 1, the correlation structure of ˆ̄θk will change.

Together, these two points suggest that even though it is possible to carry out

the full analysis, the complexity would make the resulting expressions depend on

the particular network realization and not provide significant insight into the prob-

lem. In fact, it would be nearly impossible to visualize the result without carrying

out a numerical evaluation. Since our goal is to comprehend the impact of spatial
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averaging on general networks, we choose to proceed directly with simulations and

compare the results with our analytical expressions for Type I networks.

In the following analysis, we develop a basic understanding of what we would

expect to see in the simulation results that are presented in Section 5.7. We assume

that the number of nodes in any given area of the Type II network is proportional

to the area. The reason is that for uniformly deployed nodes with density ρ, aver-

aging over all network realizations will give us that the average number of nodes

in an area A is Aρ. Note that even though the analysis and simulation results for

Type II networks use the assumption of a circular transmission range of R, the

simulation results in Section 5.7 still provide valid insight when realistic transmis-

sion regions [43, 44] are assumed since the figures illustrate synchronization error

as a function of hop number. Therefore, regardless of the shape of the transmission

region, a node at hop k will have received the appropriate synchronization infor-

mation and, thus, our simulation results reflect its synchronization performance.

Estimation of L̄

Our first consideration is to estimate the number of hops, L̄, required to commu-

nicate timing information from node 1 to the edge of the network a distance LR

away. In order to do this, we need a way to quantify dmax,k. In Fig. 5.10, we

illustrate dmax,2 and see that dmax,2 is determined by having the intersection of the

two radius R circles contain an average of N̄ nodes. This is because if we increase

dmax,2, then nodes at this increased distance will not see N̄ nodes on average and,

thus, not be considered an R2 node. However, dmax,k > dmax,2, for k > 2, because

the ring occupied by the Rk nodes increases in size for increasing k. We can see

this in Fig. 5.11 and realize that dmax,k can be slightly larger since the circles to not
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need to intersect as much to have an area that contains an average of N̄ nodes. As

a result, we choose to be conservative and let dmax
∆
= dmax,2 approximate dmax,k for

all k. This means that our estimate of L̄ using dmax will be greater than or equal

to the number of hops required to reach a distance of LR when the differences in

dmax,k are considered.

R

R    nodes1

R    nodes2

d max,2

R

2h

area = A

Figure 5.10: An illustration of dmax,2.

Let A be the area of the intersection of the two radius R circles in Fig. 5.10

and we have from [48] that

A = 2

(
R2 cos−1

(
R− h

R

)
− (R− h)

√
2Rh− h2

)
. (5.12)

Since A contains N̄ nodes, we have that

A = N̄/ρ. (5.13)

From (5.12) and (5.13) we can numerically determine h thus giving us

dmax = R− 2h. (5.14)

As a result, we need L̄ to satisfy

R + (L̄− 1)dmax ≥ LR
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which means that

L̄ =

⌈
R(L− 1)

R− 2h
+ 1

⌉
. (5.15)

R    nodesk

d max,k+1

Rradius > R

Figure 5.11: dmax,k > dmax,2 for k > 2 since the ring occupied by the Rk nodes

increases in size with increasing k. Thus, less overlap between the two circles is

needed to have an average of N̄ nodes in the intersection.

Comparison to Type I Networks

We will compare the Type II network simulation results to the Type I analytical

results. This comparison will allow us to carry over the intuition regarding spatial

averaging that we have developed for the basic cooperative network. However,

Type I and Type II networks differ primarily in that Type I networks assume all

nodes will observe N̄ neighbors from the previous hop while any node in a Type

II network will only see at least N̄ nodes. Thus, if we want to compare Type I

and Type II plots, we need to establish some meaningful choices of the number of

cooperating nodes for use with expressions (5.10) and (5.11).

Looking at (a) of Fig. 5.12, we see that if a node ki in the region occupied

by the Rk nodes is at the circular boundary farthest from node 1 (outer circular

boundary), then it will likely hear only N̄ nodes from Rk−1. That is, there are
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Figure 5.12: (a) Node ki at the outer circular boundary of the Rk set of nodes. (b)

Node ki at the inner circular boundary of the Rk set.

N̄ = A1ρ nodes in area A1. Recall that N̄ is the minimum number of Rk−1 nodes

any node ki will hear. However, looking at (b) in Fig. 5.12, a node ki at the circular

boundary closest to node 1 (inner circular boundary) in the Rk region will hear

many more nodes. In fact, a node ki at the boundary between Rk−1 and Rk will

hear the largest average number of nodes N̄max(k) = A2ρ. Since N̄ and N̄max(k)

is the range of the number of cooperating nodes seen by a node in Rk, it would

make sense to plot Type I expressions (5.10) and (5.11) using these two values.

However, N̄max(k) varies with k. In Fig. 5.13 we illustrate the regions occupied by

the Rk nodes for k = 1, k > 1, and k >> 1 overlayed on top of each other and in

each situation, we see that the set of nodes in Rk seen by a node at the boundary

between the Rk nodes and the Rk+1 nodes is different for changing values of k.

However, it is clear that the area of intersection always falls inside a semicircle of

radius R. As a result, we will approximate N̄max = maxk:k≥2 N̄max(k), by upper

bounding the maximum area of intersection with the area of the semicircle. This
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means that

N̄max ≈ ρ
πR2

2
. (5.16)

Thus, in comparing Type II and Type I results, we will use N̄ and N̄max in (5.16)

with both (5.10) and (5.11)

R    nodes, k>>1k

R    nodes, k>1k

R    nodes1

maxd

R

node (k+1)i

Figure 5.13: The regions occupied by the Rk nodes for k = 1, k > 1, and k >> 1

overlayed on top of each other. The region of nodes seen by a node at the inner

circular boundary of Rk+1 changes with k.

Using N̄ with (5.10) and (5.11) will provide a curve that tends to be higher than

the Type II simulated curves for two main reasons. First, since N̄ is the minimum

number of nodes in Rk−1 that a node ki in Rk will hear and we know that a

larger number of cooperating nodes will result in decreased estimation variance,

the variance values computed using N̄ will tend to be higher. Second, even if a

node ki in Rk hears N̄ nodes from Rk−1, each of those N̄ nodes did not necessarily

only hear N̄ nodes from Rk−2. Thus, the skew and offset estimates made by each

of those N̄ nodes in Rk−1 whose transmissions are being heard by node ki may

have a variance that is less than predicted by (5.10) and (5.11) using N̄ . The
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improved skew and offset estimates made by the nodes in Rk−1 will thus lead to

a lower estimation variance for node ki even though node ki hears only N̄ from

Rk−1.

Using N̄max with (5.10) and (5.11) will provide a curve that tends to be lower

than the Type II simulated curves for two similar reasons. First, since N̄max is the

average number of nodes heard by a node at the inner circular boundary of Rk,

k ≥ 2, and all other nodes in Rk will on average hear fewer nodes, a Type I curve

using N̄max will tend to yield lower values. Second, not all nodes in Rk−1 make

their estimates using a signal cooperatively generated by N̄max nodes. In fact,

most nodes in Rk−1 observe fewer than N̄max nodes. As a result, the lower quality

estimates made by some of the Rk−1 nodes will cause the estimation variance of

the Rk nodes that hear N̄max from Rk−1 to be greater than predicted by (5.10) and

(5.11) using N̄max.

Synchronization Performance and Node Density

The third issue we want to address in analyzing a Type II network deployment is

how to decrease synchronization error when we know that the number of hops L̄

required to communicate timing information from node 1 to the edge of the network

a distance LR away is determined by N̄ . Given a fixed R, we can start with some

N̄ and ρ. Using (5.12), (5.13), and (5.14), we can determine the value of dmax and,

hence, from (5.15) the number of hops L̄ required to send timing information from

node 1 to the edge of the network. In order to decrease synchronization error at a

distance LR from node 1, we need to increase N̄ . However, only increasing N̄ will

decrease dmax and increase L̄. Therefore, we need to increase both N̄ and ρ. From

(5.12) and (5.13), we see that if N̄/ρ is kept constant, then h will be constant.
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If h is constant, then so is dmax. As a result, by increasing node density, we

can increase the minimum number of cooperating nodes N̄ and therefore decrease

synchronization error.

5.7 Type II Node Deployment — Simulations

In the following simulation results, we have assumed that all nodes in the network

have no clock skew, i.e. αi = 1 for all i. From Section 5.5 we know that general

αi values result in variance curves that follow the trends established by curves

generated using αi = 1. As a result, using αi = 1 for all i allows us to study the

benefits of spatial averaging without considering effects that are dependent on the

particular network realization.

5.7.1 Comparison to Type I Results

To being the study of cooperative time synchronization in general networks, we

deploy a network for Simulation 1 with the parameters in Table 5.2. The simula-

tion results are displayed in Fig. 5.14. In each run, a new network of nodes was

uniformly deployed over a circular area of radius LR = 5 and the MATLAB simu-

lator implemented the cooperative time synchronization protocol. Besides plotting

the Type I comparison curves described in Section 5.6.2, we also plot the sample

variance of the best performing node and the worse performing node. In each run,

the node in Rk that sees the fewest number of nodes from Rk−1 is considered the

worse performing node while the node in Rk that sees the largest number of nodes

from Rk−1 is the best performing node. For the lth run, the fewest number of

nodes seen by a node in Rk is denoted X
(l)
min(k) while the largest number of nodes

seen by a node in Rk is denoted X
(l)
max(k). The skew and offset estimate of the best
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Table 5.2: Simulation 1 Parameters

ρ 19.10

N̄ 4

R 1

L 5

d 2

m 4

σ 0.01

Number of Runs 5000

and worst performing node at each hop is recorded and the sample variance over

the 5000 runs is plotted.

The top figure in Fig. 5.14 illustrates the sample skew variance curves of the

worst and best synchronized node along with the Type I curves for comparison.

The bottom figure in Fig. 5.14 illustrates the clock offset estimate sample variance.

Note that using equation (5.15) and the parameters in Table 5.2, we find that

L̄ = 7. From the simulations, we also see that 7 hops are required to traverse the

network. In fact, only 7.32% of the networks required more than 7 hops to reach

all nodes in the network.

As predicted in Section 5.6.2, we clearly see in Fig. 5.14 that the worst case

variance and the best case variance are sandwiched between the Type I comparison

curves. Also, as expected, the skew and offset variances do not closely follow

the upper and lower Type I comparison curves. The worst case skew and offset

variance follow the upper comparison curve for the first 2 hops and then begin do
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Figure 5.14: Simulation 1. Top: Sample variance for the skew estimate of a Type II

network along with Type I comparison curves. Bottom: Sample variance of the offset

estimate along with Type I comparison curves.

deviate from the curve. As mentioned in Section 5.6.2, this is because the nodes

contributing to the worst performing node may have received signals from more

than N̄ nodes. Similarly, the best case skew and offset variance follow the lower

comparison curve for the first 2 hops before deviating. This is because many of
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the nodes contributing signals to the best performing node made their estimates

using a signal cooperatively generated by less than N̄max nodes. Also of interest is

the steep decrease in the worst case skew and offset variance at hop k = 7. This

is due to the fact that on average, the distance from the outer circular boundary

of the R6 region to the network boundary is much less than dmax. As a result,

the R7 region is smaller and Xmin(7) will be larger than N̄ . Table 5.3 shows the

Xmin(k) = 1
5000

∑5000
l=1 X

(l)
min(k) and Xmax(k) = 1

5000

∑5000
l=1 X

(l)
max(k) values and we

see that Xmin(6) = N̄ = 4, but Xmin(7) is nearly twice Xmin(6).

Table 5.3: Xmin(k) and Xmax(k) for Fig. 5.14

k Xmin(k) Xmax(k)

1 1 1

2 4.00 27.56

3 4.00 29.36

4 4.00 31.86

5 4.00 33.50

6 4.00 34.60

7 7.77 35.32

We also note that Xmax(k) increases from 27.56 for k = 2 to 35.32 for k = 7.

Using (5.16), however, we find that N̄max = 30. The reason Xmax(k) increases with

each hop and does not equal N̄max is because Xmax(k) is a different statistic. N̄max

approximates the average number of Rk−1 nodes seen by a node ki at the inner

circular boundary of Rk. However, X
(l)
max(k) is the largest number of nodes seen by

any node ki in Rk for the lth network realization. Therefore, X
(l)
max(k) is actually
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an ordered statistic since it takes the largest number of nodes seen by a node at

hop k. Xmax(k) is thus the mean of the ordered statistic. Therefore, we would not

expect N̄max and Xmax(k) to be the same. Also, Xmax(k) increases with k since

as the circumference of the circular ring occupied by Rk increases, there are more

nodes at the boundary between Rk and Rk−1. Since there are more nodes at the

boundary, there are also more opportunities to find the largest number of nodes

seen by a node ki. Thus, the maximum number of nodes would tend to be larger.

Note that, not considering the effects at the network boundary, Xmin(k) = N̄

because the definition of the protocol specifies the minimum to be N̄ and it is

nearly always the actual minimum number of observed nodes.

Table 5.4: Simulation 2 Parameters

ρ 7.47

N̄ 2

R 1

L 9

d 2

m 3

σ 0.01

Number of Runs 5000

To see that a similar behavior holds for different parameters and larger net-

works, we consider Simulation 2 (Fig. 5.15) with parameters shown in Table 5.4. As

in Fig. 5.14, we see in Fig. 5.15 that the worst case skew and offset variance values

follow the upper comparison curve for the first two hops before deviating away.
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Similarly, the best case skew and offset variance values deviate from the lower

comparison curve after two hops. However, the sample variance values clearly fall

between the comparison curves over the 12 hops required to synchronize the larger

network.
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Figure 5.15: Simulation 2. Top: Comparison curves with the skew variance for a larger

Type II network. Bottom: Comparison curves with the offset variance.

One thing to note about Simulation 2 is that using its parameters in Table 5.4
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with equation (5.15), we find that L̄ = d12.36e = 13. However, from the figure we

have only plotted 12 hops. The reason for this discrepancy is that in the 5000 runs

used to generate the sample variance values of Fig. 5.15, 4999 of the runs required

13 or more hops to traverse the network while one run needed only 12 hops. As a

result, even though we have plotted the results using the fewest number of hops,

we see that L̄ still gives a very good estimate of the number of hops required to

cover the network.

5.7.2 Synchronization Performance and Node Density

Table 5.5: Simulation 1b Parameters

ρ 23.87

N̄ 6

R 1

L 5

d 2

m 4

σ 0.01

Number of Runs 5000

Next, we want to improve synchronization performance by increasing node

density. Starting with the parameters for Simulation 1, we increase the minimum

number of cooperating nodes to N̄ = 6 while keeping N̄/ρ = 0.25 constant. There-

fore, for Simulation 1b (Table 5.5), ρ = 23.87 and we plot the simulation results

in Fig. 5.16. Comparing Fig. 5.14 and Fig. 5.16, it is clear that Fig. 5.16 yields
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Figure 5.16: Simulation 1b. The Type I comparison curves and the Type II sample

skew and offset variance curves are lower as compared to Fig. 5.14 when N̄ and ρ are

increased. More cooperation yields improved synchronization performance.

improved skew and offset variances, thus showing that increased node density and

larger N̄ values indeed improve synchronization performance in Type II networks.

In Table 5.6 we show Xmin(k) and Xmax(k) for Fig. 5.16. Note that there is only

a slight decrease in the worst case skew and offset variance curves at hop k = 7
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since in this simulation, we have that Xmin(7) = 6.57 is only slightly larger than

Xmin(6) = N̄ = 6.

Table 5.6: Xmin(k) and Xmax(k) for Fig. 5.16

k Xmin(k) Xmax(k)

1 1 1

2 6.00 34.01

3 6.00 34.64

4 6.00 37.64

5 6.00 39.50

6 6.00 40.80

7 6.57 41.70

Similarly, for Simulation 2b (Table 5.7) we have increased the density ρ and

the minimum number of cooperating nodes N̄ of Simulation 2. In Fig. 5.17, we

see that by increasing N̄ to 3 from 2 and increasing the density ρ to 11.20, we can

significantly decrease the skew and offset variance. The variance of the worst and

best synchronized nodes are still between the upper and lower Type I comparison

curves, but it is immediately clear that the upper comparison curve is significantly

lower than in Fig. 5.15 and the lower comparison curve has also decreased.

Another very effective way to visualize how increasing ρ and N̄ can decrease

skew and offset variance is to choose one test node in the network and consider

how its skew and offset variance decreases as the network density and number of

cooperating nodes are increased. In Simulation 3 (Table 5.8), we placed a test

node at distance LR = 2.2 from node 1 and simulated its skew and offset variance
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Table 5.7: Simulation 2b Parameters

ρ 11.20

N̄ 3

R 1

L 9

d 2

m 3

σ 0.01

Number of Runs 4000

as we increased ρ and N̄ . N̄ took on values ranging from 1 to 10 and we adjusted

ρ accordingly to keep N̄/ρ = 0.15 fixed. The results are plotted in Fig. 5.18 and

we clearly see that as N̄ increases along with ρ, the skew and offset variance of

this test node decreases. Also, from Section 5.6.2, we know that since we keep

N̄/ρ constant, the number of hops required to reach the test node stays the same

as we increase N̄ . Therefore, since the test node is at L̄ = 3 for every value of N̄ ,

we have also plotted the upper and lower Type I comparison curves for the skew

and offset variance at hop k = 3 to illustrate how the comparison curves change

in relation to the simulated variance curves. In Fig. 5.18, the simulated skew and

offset variance curves of the test node fall between the Type I upper and lower

comparison curves.

It is clear that by keeping the ratio N̄/ρ constant while increasing N̄ and ρ

allows us to reduce the synchronization error at each hop while keeping the number

of hops required to synchronize the network, L̄, constant. The variance of the skew
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Figure 5.17: Simulation 2b. Compared to Fig. 5.15, the skew and offset variance values

are decreased due to an increase in N̄ and ρ.

and offset estimates is decreased by increasing the minimum number of cooperating

nodes.

Furthermore, from the simulations in this section, we find that the upper and

lower Type I comparison curves provide a good reference for the performance of

Type II networks. We have established that the best and worst case variance values
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Table 5.8: Simulation 3 Parameters

N̄/ρ 0.15

N̄ [1 2 4 6 8 10]

R 1

L 2.2

d 1

m 2

σ 0.01

Number of Runs 5000

for the Type II skew and offset estimates fall between the upper and lower Type

I comparison curves. As the density of the network and N̄ are both increased,

the comparison curves will shift downwards and become closer together. Thus, we

would expect the variance of the Type II network estimates to change similarly

with increasing N̄ and ρ.

5.7.3 Changing N̄ With Fixed Node Density

We have seen from Section 5.7.2 that increasing node density ρ and increasing the

minimum number of cooperating nodes N̄ can yield significant synchronization

performance. However, another question is what happens when ρ is kept constant

but N̄ is increased.

The question we consider in this section is what happens to the skew and offset

estimate variance of a test node at the edge of the network (distance LR away from

node 1) as we increase N̄ . This situation is unclear because it involves a complex
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Figure 5.18: Simulation 3. Variance of the skew and offset estimates of the test node

fall between the Type I comparison curves and decrease with increasing N̄ and ρ.

interaction among three factors:

(a) Different locations inside Rk.

(b) Increasing N̄ .

(c) Increasing number of hops, k.
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Factor (a) tends to increase the skew and offset variance. As N̄ is increased

and ρ is fixed, from (5.13) we see that A will increase. This will result in a larger

h value and, hence, a decrease in dmax from (5.14). This means that each Rk

ring will decrease in size and a test node that is in a fixed location will move

closer to the outer circular boundary of Rk. By moving towards the outer circular

boundary, however, the test node is seeing on average fewer nodes from Rk−1 and

will therefore tend to have a larger skew and offset variance.

Factor (b) tends to decrease the skew and offset variance since increasing N̄

means more cooperation and less estimation error. As a result, even if the test

node remains in set Rk, factors (a) and (b) make it unclear how the skew and offset

variance will change.

Factor (c), on the other hand, also tends to increase the skew and offset vari-

ance. As we increase N̄ , it is possible to decrease dmax enough so that the test node

goes from being in the set Rk to being in the set Rk+1. Since synchronization error

increases with each hop, there tends to be an increase in synchronization error.

Table 5.9: Simulation 4 Parameters

ρ 44.21

N̄ [2 4 6 8 10 12 14 16 18]

R 1

L 2.4

d 2

m 4

σ 0.01

Number of Runs 6000
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Figure 5.19: Simulation 4. The skew variance (top) and the offset variance (middle)

of a test node at distance LR from node 1 is plotted as a function of changing N̄ . The

average number of hops required to reach the test node (bottom) increases from 3 hops

to 4 as N̄ increases.

In Simulation 4 (Table 5.9), we simulated the variance of the skew and offset

estimate of a test node located a distance LR = 2.4 away from node 1. We fixed

the network density at ρ = 44.21. We increase N̄ from 2 to 18 in increments of

2 nodes. The top plot in Fig. 5.19 shows how the skew variance changes with

varying N̄ while the middle plot illustrates how the offset variance varies with N̄ .

The bottom figure shows the average number of hops required to reach the test

node at distance LR = 2.4. It is clear in the last plot that the number of hops to

reach the edge of the network increases from 3 hops to 4 hops as N̄ increases.

Looking at the plot of the skew variance in Fig. 5.19, we first note that factor

(c) does not impact the skew variance. As the number of hops required to reach

the chosen node increases from 3 to 4 at N̄ values 8 to 12, we see that the skew

variance actually decreases. This means that the skew variance is generally driven
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by factor (b) where increasing N̄ values decrease the skew variance. However, we

also see that when the test node is close to the inner circular boundary of an Rk

region, there is an increase due to factor (a). We see that there is an increase in

skew variance from N̄ = 2 to N̄ = 4 when the test node is near the inner circular

boundary of R3. Similarly, we see an increase from N̄ = 14 to N̄ = 16 when

the node is near the inner circular boundary of R4. Nonetheless, generally as N̄

increases, the skew variance decreases.

The behavior for the offset variance plot at the middle of Fig. 5.19 is very

different. The first thing we note is that factor (c) plays a dominant role. When N̄

is increased from 8 to 12 there is a very noticeable increase in the offset variance,

which coincides with the increase from 3 hops to 4 hops required to reach the test

node at distance LR = 2.4. Factor (b), on the other hand, dominates factor (a)

when the node is in the same region Rk. From N̄ = 2 to N̄ = 8, while the node

is in R3, we see a consistent decrease in offset variance due to the increase in N̄ .

Similarly, from N̄ = 12 to N̄ = 18 while the test node is in R4, there is a consistent

decrease in offset variance. However, note that the improvement in offset variance

due to factor (b) from N̄ = 2 to N̄ = 8 is completely wiped out by the variance

increase due to factor (c) when N̄ increases from 8 to 12. Therefore, there is no

overall decrease in offset variance.

It makes sense for factor (c) to have more of an impact on the offset variance

since we know that the offset variance grows at a rate faster than linear while

the skew variance grows linearly with the number of hops. Thus, an extra hop

will have a larger impact on the offset variance than on the skew variance. The

question then becomes, if we increase the rate at which the skew variance grows,

will we still see the general trend of decreasing skew variance with increasing N̄
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and fixed ρ?

Table 5.10: Simulation 5 Parameters

ρ 44.21

N̄ [2 4 6 8 10 12 14 16 18]

R 1

L 2.4

d 1

m 2

σ 0.01

Number of Runs 8994
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Figure 5.20: Simulation 5. The skew variance (top), offset variance (middle), and aver-

age hop number required to reach a distance LR = 2.4 (bottom) is shown for changing

N̄ . In this figure, d = 1 and m = 2.

For Simulation 5 (Table 5.10), we keep all parameters the same except we set
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d = 1 and m = 2 to increase the rate at which the skew variance grows with hop

number. In Fig. 5.20, again with the skew variance we see that an increase in hop

number, factor (c), does not affect the variance values. Skew variance decreases

when the transition from 3 hops to 4 hops occurs. Thus, again we see that factor

(b) is what primarily drives down the skew variance as N̄ increases. However,

factor (a) also impacts the variance by slightly increasing the variance value at

certain points while the test node is within a single Rk region. Nonetheless, the

general trend of decreasing skew variance when N̄ increases still holds.

Also, a behavior similar to Fig. 5.19 is seen in the offset variance curve in

Fig. 5.20. Factor (a) has very little affect on the offset variance while the test node

is either in R3 or R4. In fact, factor (b) generally drives down the offset variance

while the node is in R3 from N̄ = 2 to N̄ = 8 and while the node is in R4 from

N̄ = 12 to N̄ = 18 with only minor increases in the variance due to factor (a).

The increase in offset variance is again driven by factor (c), an increase in hop

number. We see, however, that there is still no overall increase or decrease in the

offset variance since the affects of the different factors cancel each other out.

So we see that increasing N̄ while keeping a constant ρ yields different behavior

for the skew and offset variances. While increasing N̄ does not yield any general

improvements in the offset variance, it does give a general decrease in the skew

variance. However, it is important to realize that even though some performance

gains can be achieved simply by increasing N̄ and not increasing node density ρ at

the same time, this technique is severely limited by how much N̄ can be increased.

As N̄ is increased, it becomes harder for the network to synchronize since each

node is required to see more neighbors. At a certain point, the synchronization

protocol will terminate before synchronizing all nodes in the network since not all
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Table 5.11: Simulation 6 Parameters

ρ 44.21

N̄ [16 18 20 22 24 26 28 30]

R 1

L 2.4

d 2

m 4

σ 0.01

Number of Runs 600

nodes are able to hear the required N̄ neighbors. For example, in Simulation 6

(Table 5.11), we take the same network as in Simulation 4 and consider how often

the cooperative synchronization protocol fails to synchronize all the nodes in the

network for larger values of N̄ and a fixed node density ρ. We see in Fig. 5.21

that for 600 randomly deployed Type II networks, at N̄ = 16 all networks were

completely synchronized while at N̄ = 18 only 0.33% of the networks failed to

have all nodes synchronize. However, for even larger N̄ values, the percentage of

networks whose nodes are not all synchronized increases quickly and by N̄ = 24,

98.5% of the networks are not fully synchronized. Of course, the largest N̄ value

that can be chosen will depend on the requirements of the network. If, on average,

only 90% of the nodes in the network need to be synchronized, then we see that N̄ =

18 will achieve this requirement 100% of the time and N̄ = 20 will still meet this

requirement 99% of the time. Also, in general, the higher the density ρ, the larger

the N̄ value can be while still meeting synchronization percentage requirements.
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Nonetheless, N̄ and ρ both need to be increased in order to consistently improve

synchronization performance and ensure that the required percentage of the nodes

in the network are synchronized.
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Figure 5.21: Simulation 6. With fixed node density ρ, increasing N̄ will eventually lead

to networks where the required percentage of nodes are not always synchronized.

5.7.4 Summary of Simulation Results

From the simulation results of this section, we find that given parameters R, d, and

m and density ρ, the first task is to choose the number of cooperating nodes N̄ .

From Section 5.7.3, we find that N̄ should be chosen as large as possible while still

guaranteeing that the desired percentage of the network is always synchronized.

The reason for this is that as N̄ increases, the general trend is for the skew variance

of any specific node to decrease. Thus by choosing N̄ as large as possible, the skew

variance of any node in the network tends to be minimized.

To further improve synchronization performance of the network, node density ρ

and the minimum number of cooperating nodes N̄ can be increased while keeping
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N̄/ρ constant. From Section 5.7.2, we clearly see that the skew and offset variance

of all nodes in the network will decrease significantly with increasing ρ and N̄ .

5.8 A Comparison to Non-Cooperative Synchronization

Traditional, non-cooperative network synchronization techniques generally com-

municate timing information from node to node. That is, each timing data point

obtained by any given node comes from one neighboring node. This is in con-

trast to our cooperative synchronization technique where each timing data point

is constructed using information from many neighboring nodes. Before we com-

pare cooperative and non-cooperative synchronization, let us look at three existing

synchronization techniques from the view point of scalability.

5.8.1 Traditional Synchronization Techniques

Reference Broadcast Synchronization (RBS)

Reference Broadcast Synchronization [6] eliminates transmitter side uncertainties

by synchronizing a set of receivers with one another. For example, consider three

sensor nodes. An arbitrary node first broadcasts a reference packet to the surround-

ing nodes. The two receiving nodes use this packet arrival as a synchronization

event and exchange this timing information with each other. Each receiving node

now has the reference packet arrival time in its own time scale and the time scale of

the other receiving node. With this pair of times, the node can calculate the clock

offset between its local clock and the clock of the other node. This idea can be ex-

tended to use a sequence of reference packets. After the receiving nodes exchange

all the timing information, they will each have a collection of data points. Each
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data point is a pair of times telling the node when a particular reference packet

arrived at the two receiving nodes. A least-squares linear regression is performed

to estimate clock skew and clock offset. As a result, the receiving nodes can be

synchronized to each other. RBS is also extended to networks with multiple hops

so nodes that do not see a common reference packet can still be synchronized. This

is done by using using a series of time scale conversions.

Whenever two nodes are synchronized, estimates of clock skew and clock offset

are made. These estimates have inherent errors and the authors of [6] find that

the synchronization error at each hop is Gaussian. Since the error at each hop is

independent, they expect that the variance will grown linearly with the number of

hops. The experimental results that are presented support this claim.

Timing-sync Protocol for Sensor Networks (TPSN)

The Timing-sync Protocol for Sensor Networks [8] operates in two phases. The first

phase is the level discovery phase where the network is organized into a hierarchial

structure. Each node in the network is assigned a level and it can communicate

with at least one node in the level below it. The root node is assigned level 0.

The second phase is the synchronization phase where a node in level i will initiate

a handshake with a node in level i − 1. All levels will carry-out the handshake

and it involves two packet exchanges with time stamping occurring at the medium

access control (MAC) layer. The packet exchanges only estimate clock offset. Due

to the improved time stamping technique, synchronization performance can be

better than that of RBS.

As expected, synchronization error will also increase with each hop. In the

case of TPSN, the error comes from two sources. The first source of error is
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the error in estimating clock offset. The second source of error stems from clock

skew. Since TPSN does not explicitly estimate clock skew, after the estimate of

clock offset between any two nodes, the skew of the clocks will immediately cause

the nodes to loose synchronization. The experimental results in [8] do not show

synchronization error increasing significantly with hop number. Ganeriwal et al.

attribute this to the magnitude and sign of the random error averaging out over

many realizations of the synchronization protocol. The scalability problem is more

clearly seen in the standard deviation or variance of the synchronization error,

but these metrics were not carefully studied in [8]. Nonetheless, the authors do

explain that synchronization error does increase with each hop. Their simulation

results in [11] show that synchronization error is a non-decreasing function of hop

distance.

Flooding Time Synchronization Protocol (FTSP)

The Flooding Time Synchronization Protocol [10] achieves synchronization with

single packet broadcasts. For example, one-hop synchronization can be achieved

by having a root node broadcast timing information to surrounding nodes. The

timing packets that are broadcast are time stamped using an improved medium

access control (MAC) layer time stamping technique. The nodes that receive

this sequence of timing packets can use these to estimate both clock skew and

clock offset relative to the root node. These synchronized nodes then proceed to

broadcast timing packets to nodes beyond the broadcast domain of the root node.

This process can continue for larger multi-hop networks. FTSP improves upon

TPSN by explicitly estimating clock skew, improving upon the time stamping

technique, and removing the need for a hierarchial structure.
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FTSP attempts to compensate for or eliminate the send, access, interrupt han-

dling, encoding, decoding, and receive time errors, but does not account for propa-

gation delay. Even with addressing all these sources of error, synchronization error

is still seen to grow with the number of hops. Experimental work in [10] finds that

the average per-hop synchronization error was in the range of one microsecond.

5.8.2 Analytical Comparison

We have established that cooperative time synchronization using spatial averaging

can effectively decrease synchronization error as the network density and number

of cooperating nodes are increased. We also know that traditional synchronization

techniques are non-cooperative and that generally each timing data point received

by a node comes from one neighboring node. Let us now compare cooperative time

synchronization to a particular non-cooperative case.

We notice that in increasing node density, we have increased the total power

usage in the network since we have added more nodes. As a result, it is not

necessarily surprising that better synchronization performance can be obtained.

Let us, therefore, briefly consider the synchronization performance of cooperative

time synchronization and synchronization without cooperation when total network

power remains constant.

In Section 5.4.1 we mentioned that a Type I basic cooperative network is a

generalization of a non-cooperative network. Thus, using these two networks,

we will compare cooperative time synchronization to a particular case of non-

cooperative synchronization. Without cooperation, let us look at L + 1 nodes in a

line starting with node 1 on the left and node L+1 on the right (top of Fig. 5.22).

The skew and offset estimate variance at node L + 1 can easily be found using
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Figure 5.22: The top network is an illustration of the non-cooperative network while

the bottom network is a basic cooperative network.

(5.10) and (5.11) with N̄ = 1 and k = L. Node 1 and node L + 1 are a distance

LR apart and we can compare this to a basic cooperative network where each node

i, i = 2, . . . , L in the no cooperation network is replaced by a set of N̄ nodes in

the set Ri−1 (bottom of Fig. 5.22). Therefore, in both cases it takes L hops to

send information from node 1 to node L + 1, but in the no cooperation case the

intermediate hops are single nodes while in the cooperative case the intermediate

hops are clusters of nodes.

In the case of cooperation, each intermediate cluster of nodes has N̄ nodes

transmitting synchronization pulses. As a result, if we assume the power usage

of each node is normalized to one, then the power used by each set of nodes Rj,

j = 1, . . . , L−1, is N̄ . To give the non-cooperative network the same total network

power, each intermediate node is assigned power N̄ instead of 1. This means that

nodes 2 through L in the non-cooperative network will now transmit N̄m pulses

instead of just m pulses. To keep the time required to synchronize the network

from growing with N̄ , each node will now send a pulses every d/N̄ seconds instead

of one every d seconds. Note that these changes to the non-cooperative network

do not apply to node 1, which still transmits m pulses d seconds apart.
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Let us now consider the skew and offset estimate variance of node L + 1 in the

cooperative network and the non-cooperative network. First, for the cooperative

network, it is clear that node L + 1 is actually a node in the set RL. As a result,

its skew and offset estimate variances are found in (5.10) and (5.11), respectively,

for k = L. For the non-cooperative network, we start with expressions (5.10) and

(5.11) with N̄ = 1 and k = L. Then we replace m with N̄m and d with d/N̄ to

get

Var(α̂L) =
12σ2

d2(m− 1)m(m + 1)
(5.17)

+
12σ2

(
d
N̄

)2
(N̄m− 1)N̄m(N̄m + 1)

(2(L− 1))

Var(∆̂L) =
2σ2(2m− 1)

m(m + 1)
(5.18)

+σ2

[
4(L− 1)(2N̄m− 1)

N̄m(N̄m + 1)

+(L− 1)2

(
− 12

(N̄m + 1)
+

12N̄m

(N̄m− 1)(N̄m + 1)

)

+
1

3
(L− 2)(L− 1)(2L− 3)

12N̄m

(N̄m− 1)(N̄m + 1)

]

Note that the first term of Var(α̂L) and Var(∆̂L), the term that is the variance at

hop 1, still uses d and m instead of d/N̄ and N̄m because node 1 sends m pulses

d seconds apart.

From (5.10), we find that the rate of skew variance growth (the slope) for the

cooperative case can be simplified to

2
12σ2

d2m(m2 − 1)N̄
. (5.19)

Similarly, from (5.17) we find that the rate of skew variance growth for the non-

cooperative case simplifies to

2
12σ2

d2m(N̄m2 − 1
N̄

)
. (5.20)
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Looking at the ratio of (5.20) to (5.19), we get the ratio of non-cooperative to

cooperative error growth rate

η =
N̄m2 − N̄

N̄m2 − 1
N̄

=
m2 − 1

m2 − 1
N̄2

. (5.21)

We notice from (5.21) that for N̄ ≥ 1, η ≤ 1, which means that the skew error

growth rate for cooperative time synchronization is slightly higher than that of

non-cooperative synchronization for the same network power.

For the offset variance, we see that the dominant term in both (5.11) with

k = L and (5.18) is the L3 term. As a result, the dominant offset error term for

cooperative synchronization simplifies to

2

3
σ2 12m

N̄(m2 − 1)
. (5.22)

Similarly, the dominant offset error term for non-cooperative synchronization sim-

plifies to

2

3
σ2 12m

N̄m2 − 1
N̄

. (5.23)

Comparing, the two terms, we easily see that (5.22) is greater than or equal to

(5.23) when N̄ ≥ 1.

From this analysis, we see that cooperative time synchronization performs

nearly as well as non-cooperative synchronization when total network power is

kept constant. Spatial averaging is only slightly less efficient at averaging out syn-

chronization error than collecting more timing data points. Fig. 5.23 illustrates

the skew and offset variance as a function of hop number for cooperation and no

cooperation. It is clear that cooperative synchronization has a higher variance

than non-cooperative synchronization for hops k > 1 when the two networks have

the same power. Even though cooperation using spatial averaging yields slightly
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Figure 5.23: Skew and offset variance for cooperative synchronization and non-

cooperative synchronization when network power is kept constant. The following pa-

rameters were used: m = 4, d = 5, σ = 0.01, and N̄ = 4.

more error accumulation per hop than no cooperation, in the limit as N̄ → ∞,

both synchronization procedures yield zero error accumulation.

In a more general setup where cooperating nodes may be uniformly distributed

over an area and every receiving node hears at least N̄ nodes, we can clearly expect

cooperative time synchronization to again yield a higher skew and offset variance

that non-cooperative synchronization. In fact, the performance gap between coop-

erative synchronization and non-cooperative synchronization when the cooperative

network is uniformly distributed will be larger since the available power is spread

out over a larger area when cooperation is used and this additional power can not

be used as efficiently to communicate timing information across the network.

Therefore, what we have is that cooperative time synchronization using spatial

averaging can be only slightly less efficient than increasing the power in nodes and

using non-cooperative time synchronization. Thus, cooperation provides a very
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powerful alternative to reducing synchronization error that has two key benefits

over non-cooperative techniques. First, since cooperative time synchronization

using spatial averaging does not require increasing the power available to the nodes,

it provides an alternative to improving synchronization performance when it is not

practical or cost effective to build more powerful nodes. Instead of deploying more

powerful nodes, network designers can simply deploy a higher density network.

Cooperation through spatial averaging therefore provides a fundamentally new

trade-off between density and performance. Second, since node transmissions are

tightly clustered and there are always only m clusters per hop, as the number

of nodes in the network increases, network traffic does not significantly increase.

This is different than in the non-cooperative case where the number of timing data

points increases. By using an aggregate signal, spatial averaging is able to decouple

synchronization performance and the amount of network traffic.

As a final comment, if the signals cooperatively transmitted by the nodes were

able to coherently add up in the channel, then for bounded network power, co-

operation will improve synchronization performance as node density increases. In

such a case, cooperative time synchronization would be superior to no cooperation.

This is the case for asymptotic time synchronization in Chapter 3.

5.9 Conclusion

In this chapter we proposed a cooperative time synchronization protocol using

spatial averaging and quantified the synchronization performance improvement

for networks with finite node density. Due to the complexity of directly analyzing

the performance of the protocol for finite density networks, we approached the

analysis in two parts. First, we analyzed the synchronization protocol in a Type I
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basic cooperative network. Type I networks assume that all N̄ nodes in the set Rk

are in the broadcast domain of all N̄ nodes in Rk−1. With the Type I network, we

were able to analytically quantify the synchronization performance of the synchro-

nization protocol. Second, we analyzed the synchronization protocol in Type II

general networks using simulations and the analytical results developed for Type I

networks. We find that increasing node density allows us to decrease synchroniza-

tion error in general networks and that comparison curves based on Type I results

allow us to characterize the synchronization performance improvement.
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CHAPTER 6

CONCLUSION

6.1 Forms of Cooperation

It is important to stress the fact that spatial averaging is in reality a very general

concept. May different approaches can be taken to take advantage of the properties

of spatial averaging.

In Chapter 5, we focus on using the sample mean of a cluster of pulses as a tim-

ing data point. This means that the statistic we are employing is the sample mean

of the transmission times of neighboring nodes. One benefit of using this particu-

lar statistic is that we can analytically quantify the synchronization improvement

for a basic cooperative network over many hops. We are able to show that in

such a Type I deployment, the variance of the skew and offset estimates decrease

approximately as 1/N̄ . These analytical results were then used to understand the

synchronization performance in Type II general networks.

However, the sample mean is not the only statistic that can be used to im-

plement the idea of spatial averaging. In Chapter 3 and Chapter 4, timing data

points are constructed using a statistic that is closer to a median. Nodes coop-

eratively transmit odd-shaped pulses with a single zero-crossing in the middle.

Each timing data point observed by a receiving node is the zero-crossing of the

aggregate waveform. Since the aggregation of the signals is not the same as taking

the sample mean of the pulse transmission times of surrounding nodes, the static

used for spatial averaging is clearly very different. Due to the complexity of the

pulse transmission model, the actual statistic is not exactly the median, but much

closer to the median than a sample mean. With such a statistic, we are still able
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to illustrate the asymptotic benefits of spatial averaging by showing that all error

in the aggregate waveform zero-crossing location can be eliminated. The difficulty

with this particular statistic is that an analytically tractable study for networks

with a finite number of nodes is extremely difficult.

As a result, from this thesis we see that there can be different approaches

to spatial averaging. The advantages can be realized through the use of a true

sample mean or a statistic that more closely resembles the median. In fact, any

statistic that reduces the error in the data can be used to realize the advantages of

spatial averaging. Each chosen statistic may yield different rates of improvement

for increasing numbers of cooperating nodes, but spatial averaging improvements

will be realized. Hopefully this generality of spatial averaging allows the further

development and implementation of practical cooperative time synchronization

protocols.

6.2 A New Trade-Off

The fundamental benefit of spatial averaging is that it provides a new trade-off be-

tween synchronization performance and node density. Without spatial averaging,

synchronization performance could be improved only by collecting more timing

data points or improving the data point quality through improved time stamping.

However, utilizing spatial averaging allows the density of the network to influence

synchronization performance. Using spatial averaging provides a new dimension

over which to average out synchronization errors.

This provides much added flexibility in the deployment of sensor networks. As

individual sensors become cheaper and are massed produced, large numbers of

cheap sensors will become readily available. However, this also means that the
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ability to customize the capability of the sensors will also be more limited. As a

result, if a network can not be adequately synchronized given the existing resources

of the sensors, it may be extremely expensive to provide additional resources to

each sensor. However, with the use of spatial averaging, the performance of the

network could be improved simply by deploying additional sensors. Thus, coop-

erative time synchronization through the use of spatial averaging allows network

designers to directly benefit from the economies of scale involved in mass producing

large numbers of cheap nodes. Spatial averaging allows network synchronization

performance to improve with higher node density.

6.3 Future Research Directions

It is important to note that the concept of spatial averaging is very general and the

cooperative techniques proposed in this thesis are but a few ways in which to take

advantage of it. Our protocols show that techniques using spatial averaging can

be designed. Even though the proposed protocols have certain limitations, such

as requiring access to the physical layer, they allow us to successfully illustrate

the performance improvement achievable using spatial averaging. Future work

should focus on other approaches to spatial averaging. For example, it would be

desirable to develop a cooperative technique using spatial averaging that achieves

performance gains while needing only access to the data link or network layer.

The trade-off introduced by the use of spatial averaging should also be further

considered. In this thesis we showed that it is possible to improve synchronization

performance by increasing node density. It would be extremely beneficial to be able

to improve the performance of other network characteristics simply by increasing

node density. Such a scalable network would be a network whose performance can
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be enhanced by increasing the number of nodes in the network. This would mean

that future networks could take advantage of the large numbers of inexpensive

nodes that we expect to be readily available in the coming years.
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APPENDIX A

LIMIT WAVEFORM PROPERTIES

A.1 Proof of Lemma 1

Here, we prove Lemma 1 in Section 3.4.1. To show (3.5), we consider

E(AmaxKip(τ1 − τ0 − Ti)) = AmaxE(Ki)E(p(τ1 − τ0 − Ti))

= AmaxE(Ki)

∫
p(τ1 − τ0 − ψ)fTi

(ψ)dψ

= −AmaxE(Ki)

∫
p(ψ − (τ1 − τ0))fTi

(ψ)dψ

Since τ1 < τ0, we have that τ1 − τ0 < 0 implying that p(ψ) is shifted to the

left and the zero-crossing of p(ψ) occurs at a negative value. p(ψ) is odd about

its zero-crossing and fTi
(ψ) is symmetric about zero and strictly monotonically

increasing on (−∞, 0] for all positive finite variance values. Thus, it is clear that

∫
p(ψ − (τ1 − τ0))fTi

(ψ)dψ < 0 which makes E(AmaxKip(τ1 − τ0 − Ti)) > 0.

Now, the expectation will vary with the variance of Ti and the variance will

range from a positive upper bound of σ̄2/α2
low < B to a positive lower bound

of σ̄2/α2
up, where recall that σ̄2 is a value determined by our choice of the pulse

connection function. If we consider
∫

p(ψ − (τ1 − τ0))fTi
(ψ)dψ to be a function

of the variance of Ti, then we see that it is bounded and continuous on the com-

pact domain [σ̄2/α2
up, σ̄

2/α2
low]. Since we showed in the previous paragraph that

E(AmaxKip(τ1 − τ0 − Ti)) > 0 whenever Ti has a nonzero finite variance, clearly

E(AmaxKip(τ1 − τ0 − Ti)) > 0 when Var(Ti) ∈ [σ̄2/α2
up, σ̄

2/α2
low]. Thus, it is clear

that γ1 and γ2 exist and (3.5) is shown.
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To show (3.6), we consider

Var(AmaxKip(τ1 − τ0 − Ti))

= E(A2
maxK

2
i p

2(τ1 − τ0 − Ti))− E2(AmaxKip(τ1 − τ0 − Ti))

≤ A2
maxE(K2

i )E(p2(τ1 − τ0 − Ti))

≤ A2
maxE(K2

i )

≤ A2
max

where the second to last inequality follows from the fact that E(p2(τ1 − τ0 − Ti))

is upper bounded by 1. The last inequality follows since E(K2
i ) ≤ 1 by the fact

that 0 ≤ Ki ≤ 1. Thus, we have shown (3.6).

Next we define Sn = M̄1(τ1) + · · · + M̄n(τ1) and mn = E(Sn) = µ1 + . . . + µn.

From [46] we have the following theorem

Theorem 4 The convergence of the series

∑ σ2
i

i2

implies that the strong law of large numbers will apply to the sequence of inde-

pendent random variables M̄i(τ1). That is, again from [46], for every pair ε > 0,

δ > 0, there corresponds an N such that

Pr

{ |Sn −mn|
n

< ε; n = N, N + 1, . . . , N + r

}
> 1− δ

for all r > 0. 4

We have shown (3.6) so we have σ2
i < γ3 < ∞. Thus

lim
N→∞

N∑
i=1

σ2
i

i2
≤ lim

N→∞

N∑
i=1

γ3

i2
= γ3

π2

6
.
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and we have convergence by the direct comparison test. Therefore, we can apply

Theorem 4 and get that for any pair ε > 0, δ > 0, we can find an N such that

Pr

{∣∣∣∣
Sn

n
− mn

n

∣∣∣∣ < ε; n = N,N + 1, . . . , N + r

}
> 1− δ (A.1)

for all r > 0.

By (3.5) we have that γ2 > µi > γ1 > 0. Thus, we can clearly see that

mn

n
> γ1.

Furthermore, since we keep the function fα(s) constant as we increase the number

of nodes in the network we get that mn/n converges to a constant η(τ1) given by

η(τ1) = AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(τ1 − τ0 − ψ)fT (ψ, s)dψfα(s)ds

=

∫ αup

αlow

E(M̄i(τ1, s))fα(s)ds.

The above expression comes from the fact that since each µi = E(M̄i(τ1)) is a

function of αi, mn/n will converge to the average of the µi over fα(s), the function

that characterizes the set of αi’s. Therefore, given any ε, we can find an N ′ such

that ∣∣∣∣
mn

n
− η(τ1)

∣∣∣∣ < ε (A.2)

for all n > N ′. Note that since (mn/n) > γ1, we have that η(τ1) ≥ γ1. Since
∣∣∣∣
Sn

n
− η(τ1)

∣∣∣∣ <

∣∣∣∣
Sn

n
− mn

n

∣∣∣∣ +

∣∣∣∣
mn

n
− η(τ1)

∣∣∣∣,

using (A.1) and (A.2) we have

Pr

{∣∣∣∣
Sn

n
− η(τ1)

∣∣∣∣ < 2ε; n = N ′′, N ′′ + 1, . . . , N ′′ + r

}
> 1− δ.

for all r > 0, where N ′′ = max{N,N ′}. Thus, we have

lim
N→∞

1

N

N∑
i=1

M̄i(τ1) = η(τ1) > 0

almost surely. This completes the proof of Lemma 1. 4
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A.2 Proof of Lemma 3

Here we prove Lemma 3 in Section 3.4.1. First, we start by finding an analytical

expression for |A∞(t)− A∞(to)|. From the proof of Lemma 1 we have that

A∞(t) = AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
p(t− τ0 − ψ)fT (ψ, s)dψfα(s)ds.

Therefore, |A∞(t)− A∞(to)| can be written as

|A∞(t)− A∞(to)|

= |AmaxE(Ki)

∫ αup

αlow

∫ ∞

−∞
[p(t− τo − ψ)− p(to − τo − ψ)]fT (ψ, s)fα(s)dψds|

≤ Amax

∫ αup

αlow

∫ ∞

−∞
|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)fα(s)dψds

= Amax

∫ αup

αlow

∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|
|p(t− τo − ψ)− p(to − τo − ψ)|

×fT (ψ, s)fα(s)dψds,

where E(Ki) ≤ 1. The change in the limits of integration in the last equality

comes from the fact that p(t − τo − ψ) − p(to − τo − ψ) = 0 outside of ψ ∈
[−τnz + to− τ0− |t− to|, τnz + to− τ0 + |t− to|]. This is the maximum interval over

which p(t− τo −ψ)− p(to − τo −ψ) can be non-zero. There is no need to take the

absolute value of fT (ψ, s) and fα(s) since they are always non-negative.

Our second step is to bound the inner integral. Before doing so, we first show

that the inside integral is in fact Riemann integrable. For any given t and to, the

inside integral is taken over a closed interval. Over a closed interval, we know from

Strichartz [47] that any bounded function that is continuous except at a finite

number of points is Riemann integrable. Furthermore, also from [47] we know

that the sums and products of continuous functions are continuous. As well, if a

function is continuous then the absolute value of that function is also continuous.
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p(t) has at most D = 3 locations at which it is discontinuous and over any open

interval not containing a discontinuity, p(t) in (3.2) is uniformly continuous since

q(t) is uniformly continuous. fT (ψ, s) has D′ = 0 discontinuities in ψ for a given s

since it is Gaussian for any s. And since s ∈ [αlow, αup], |fT (ψ, s)| ≤ GT for all ψ

and s (GT occurring when ψ = 0 and s = αup). Thus, since p(t) and fT (ψ, s) are

continuous except at a finite number of points, we see that for given s, t, and t0

|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)

is also continuous in ψ except at a finite number of points (at most D′ + 2D

points). This function is also bounded since the product of two bounded functions

is bounded. As a result, we see that the integral is Riemann integrable over any

closed interval.

We now proceed to bound from above the value of this integral by first bounding

the maximum value of the integral assuming no discontinuities and then introduc-

ing another term that bounds the maximum area contributed by the discontinu-

ities. If we ignore the discontinuities and assume p(t) is uniformly continuous, for

any m1 > 0 there exists a n > 0 such that

|t− to| < 1

n
⇒ |p(t)− p(to)| < 1

m1

,

for all t and to. As a result, p(t− τo−ψ)− p(to− τo−ψ) can be made as small as

desired by choosing the proper n thus giving us p(t−τo−ψ)−p(to−τo−ψ) < 1/m1

for all ψ for an appropriate choice of n.

Furthermore, we note that |p(t− τo − ψ)|fT (ψ, s) ≤ GT because |p(t)| ≤ 1 and

|fT (ψ, s)| ≤ GT . The maximum possible jump at a discontinuity in the function

|p(t − τo − ψ) − p(to − τo − ψ)|fT (ψ, s) is thus 2GT and for any |t − to|, the

maximum area contributed by each discontinuity is 2GT |t − to|. As a result, for
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all D′ + 2D discontinuities, the maximum area contribution will be no more than

2GT |t− to|(D′ + 2D).

We can, therefore, bound the inner integral as

∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|
|p(t− τo − ψ)− p(to − τo − ψ)|fT (ψ, s)dψ

≤
∫ τnz+to−τ0+|t−to|

−τnz+to−τ0−|t−to|

GT

m1

dψ + 2GT |t− to|(D′ + 2D)

=
GT

m1

(2τnz + 2|t− to|) + 2GT |t− to|(D′ + 2D)

= 2
GT

m1

τnz + 2
GT

m1

|t− to|+ 2GT |t− to|(D′ + 2D),

where |t− to| < 1/n.

What we have is that if |t− t0| < 1/n then

|A∞(t)− A∞(to)|

≤ Amax

∫ αup

αlow

(
2
GT

m1

τnz + 2
GT

m1

|t− to|+ 2GT |t− to|(D′ + 2D)

)
fα(s)ds

≤ AmaxGα(αup − αlow)

(
2
GT

m1

τnz + 2
GT

m1

|t− to|+ 2GT |t− to|(D′ + 2D)

)

since |fα(s)| < Gα (defined in Section 3.2). We define Ā as

Ā = AmaxGα(αup − αlow).

Now, for the third step of our proof we make

|A∞(t)− A∞(to)|

≤ Ā

(
2
GT

m1

τnz + 2
GT

m1

|t− to|+ 2GT |t− to|(D′ + 2D)

)

<
1

m
,

for any choice of m > 0. We do this by making each of the three terms less than

1/(3m).
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For the first term we want

2ĀGT τnz

m1

<
1

3m
.

We solve and get

m1 > 6mĀGT τnz.

Since for any value of m1 > 0 we can find an n > 0, this condition can be satisfied.

For the third term we want

2ĀGT (D′ + 2D)|t− to| < 1

3m
.

This gives us

|t− to| < 1

6ĀGT (D′ + 2D)m
.

Since the only requirement is |t− to| < 1/n for n chosen by any given m1 > 0, we

can always choose |t− to| as small as desired. Thus, this condition can be satisfied.

With the second term we want the condition

2ĀGT

m1

|t− to| < 1

3m

which means that

|t− to|
m1

<
1

6mĀGT

.

Again, this condition can be satisfied since we can choose m1 as large as we want

and |t− to| as small as we want as long as |t− to| < 1/n for a given m1.

Thus, for any m > 0, we first choose m1 > 6mĀGT τnz. Then, we find an

n′ > 0 such that |t − to| < 1/n′ implies that |p(t) − p(to)| < 1/m1 for all t and

to if we remove the discontinuities in p(t). Then, if necessary, n′ is increased

to n so that |t − to| < 1/n implies that |t − to| < 1/(6ĀGT (D′ + 2D)m) and

|t − to|/m1 < 1/(6mĀGT ). If no increase is necessary, then n = n′. With this
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choice of n > 0, |A∞(t) − A∞(to)| < 1/m. As a result, for any m, we can find an

n such that |t − to| < 1/n implies that |A∞(t) − A∞(to)| < 1/m. Thus, A∞(t) is

continuous.

This completes the proof for Lemma 3. 4

A.3 Proof of Theorem 2

Here we prove Theorem 2 in Section 3.6.1. Let us start by writing (3.14) as

Ac1
j,N(t) =

N∑
i=1

AmaxKfix,iKj,i

N
p(t− τo − Ti −Dfix,i −Dj,i) =

N∑
i=1

1

N
M̃i(t, s),

where M̃i(t, s)
∆
= AmaxKfix,iKj,ip(t − τo − Ti − Dfix,i − Dj,i). Recall that the

dependence on s comes from the fact that the density of Ti is a function of αi

which is characterized by fα(s). This notation is analogous to the notation used

in Section 3.4.1. Following the steps in the proof of Lemma 1 (Appendix A.1), we

can quickly show that the limiting aggregate waveform at node j will take on the

form

η(t) =

∫ αup

αlow

E(M̃i(t, s))fα(s)ds, (A.3)

where

E(M̃i(t, s))

= Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0

g(−y)g(x)p(t− τ0 − ψ − y − x)

×fDj
(x)fDfix

(y)fT (ψ, s)dxdydψ,

with g(·) = K(δ−1(·)). Therefore, we can prove Theorem 2 in two steps:

• To show that η(t) is odd about τ0, we need to show that E(M̃i(t, s)) is odd

in t about τ0, i.e. E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0.
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• To show a zero-crossing at τ0, show that E(M̃i(τ0, s)) = 0.

These two steps come directly from the form of η(t) in (A.3).

We first show that E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0. Using

the fact that Kfix = K(δ−1(−Dfix)) = g(−Dfix) and Kj,i = g(Dj,i), we have the

following:

E(M̃i(τ0 + ξ, s))

= E
(
Amaxg(−Dfix)g(Dj,i)p(ξ − [Ti + Dfix + Dj,i])

)

(a)
= −E

(
Amaxg(−Dfix)g(Dj,i)p(−ξ + [Ti + Dfix + Dj,i])

)

= −Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0

g(−y)g(x)p(−ξ + [ψ + y + x])

×fDj
(x)fDfix

(y)fT (ψ, s)dxdydψ

(b)
= Amax

∫ −∞

∞

∫ 0

∞

∫ −∞

0

g(z)g(−u)p(−ξ − [w + z + u])

×fDj
(−u)fDfix

(−z)fT (−w, s)dudzdw

(c)
= −Amax

∫ ∞

−∞

∫ 0

−∞

∫ ∞

0

g(−u)g(z)p(−ξ − [w + u + z])

×fDj
(z)fDfix

(u)fT (w, s)dzdudw

= −E
(
Amaxg(−Dfix)g(Dj,i)p(−ξ − [Ti + Dfix + Dj,i])

)

= −E(M̃i(τ0 − ξ, s)),

where (a) follows because p(t) = −p(−t) and at (b) we did a change of variables

with u = −x, w = −ψ, and z = −y. (c) follows from fT (x, s) = fT (−x, s) and

fDj
(x) = fDfix

(−x). We thus have E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0− ξ, s)) for ξ ≥ 0.

E(M̃i(τ0, s)) = 0 can now be shown as follows. Using the just proven fact

that E(M̃i(τ0 + ξ, s)) = −E(M̃i(τ0 − ξ, s)) for ξ ≥ 0, setting ξ = 0 gives us

E(M̃i(τ0, s)) = −E(M̃i(τ0, s)). This implies that E(M̃i(τ0, s)) = 0.

This completes the proof for Theorem 2. 4
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APPENDIX B

FINITE NODE DENSITY NETWORKS

B.1 Proof of Theorem 3

Node 1 begins the synchronization processes by transmitting a sequence of pulses

at times τ0 + ld, for l = 0, . . . , m − 1. For simplicity, assume that τ0 and d are

integer values. Note that since node 1 transmits these pulses in its own time scale

c1 (the reference time), the pulses will occur at integer values of t. Using the clock

model in (2.1), any node 1i, i = 1, . . . , N̄ , in the R1 set of nodes will get a vector

of observations Y1i, where Y1i[1] = α1i(τ0− ∆̄1i) + Ψ1i,1 and the (l + 1)th element

of Y1i is Y1i[l + 1] = α1i(τ0 − ∆̄1i) + ldα1i + Ψ1i,l+1. This can also be written as

Y1i = Hθ1i + W1i, (B.1)

where

θ1i =




θ1i,1

θ1i,2


 =




α1i(τ0 − ∆̄1i)

α1i




with H as in (5.3) and W1i = [W1i,1, . . . , W1i,m]T . Since Ψ1i,l+1 is an independent

Gaussian random variable for each l, W1i ∼ N (0, Σ1i) with Σ1i = σ2Im. As

mentioned, this set of observations is for any node 1i in the set of R1 nodes.

Since we have N̄ R1 nodes, we can write the vector of observations made by all

R1 nodes as

Ȳ1 = H̄θ̄1 + W̄1 (B.2)
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where

Ȳ1 =




Y11

Y12

...

Y1N̄




, θ̄1 =




θ11

θ12

...

θ1N̄




, W̄1 =




W11

W12

...

W1N̄




and

H̄ =




H 0 . . . 0

0 H . . . 0

...
...

. . .
...

0 0 . . . H




Note that W̄1 ∼ N (0, σ2IN̄m). This way we have Ȳ1 as the vector of observations

made by all R1 nodes and we can make a UMVU (uniformly minimum variance

unbiased) estimate of θ̄1 by taking

ˆ̄θ1 = (H̄T H̄)−1H̄T Ȳ1 ∼ N (
µ̄1, Σ̄1

)
,

where

µ̄1 = θ̄1, Σ̄1 = σ2(H̄T H̄)−1. (B.3)

It is easy to see that

(H̄T H̄)−1 =




(HTH)−1 0 . . . 0

0 (HTH)−1 . . . 0

...
...

. . .
...

0 0 . . . (HTH)−1




(B.4)

and

(HTH)−1 =




2(2m−1)
m(m+1)

−6
dm(m+1)

−6
dm(m+1)

12
d2(m−1)m(m+1)


 . (B.5)
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This establishes the initial conditions for the theorem. ˆ̄θ1 is a 2N̄×1 column vector

where the subvector made up of the (2(i− 1) + 1)th and (2(i− 1) + 2)th elements,

i = 1, . . . , N̄ , is θ̂1i = (HTH)−1HTY1i. Therefore, any node 1i’s skew estimate

(5.1) and offset estimate (5.2) can be found from ˆ̄θ1 as

α̂1i = eT
2(i−1)+2

ˆ̄θ1 (B.6)

and

∆̂1i = eT
2(i−1)+1

ˆ̄θ1 − τ0 (B.7)

where el is the column vector of all zeros except for a one in the lth position.

Each node 1i can now make an estimate of the next appropriate integer value

of t, in this case t = τ0 + md, by making a minimum variance unbiased estimate

of θ1i,1 + mdθ1i,2 = α1i(τ0 − ∆̄1i) + mdα1i. This can be done with the estimator

τ̂1i = θ̂1i,1 + mdθ̂1i,2 = C0θ̂1i

where C0 = [1 md]. This will then be node 1i’s estimate of the next appropriate

integer value of t in its own time scale c1i.

From (5.4), every node 1i will then transmit a sequence of m pulses occurring,

in the time scale of c1i, at Xc1i
l+1,1i(Y1i) = τ̂1i + ldθ̂1i,2, for l = 0, . . . ,m − 1. Using

the clock model (2.1), we find that in the time scale of c1 these pules occur at

(τ̂1i + ldθ̂1i,2)c1 =
τ̂1i + ldθ̂1i,2 −Ψ1i,l+1

α1i

+ ∆̄1i

=
τ̂1i

α1i

+ ∆̄1i + ld
θ̂1i,2

α1i

− Ψ1i,l+1

α1i

.

Any node 2j in the R2 set of nodes that can hear node 1i will thus get a sequence

of pulses

Ỹ2j[l + 1] = α2j

((
τ̂1i

α1i

+ ∆̄1i + ld
θ̂1i,2

α1i

− Ψ1i,l+1

α1i

)
− ∆̄2j

)
+ Ψ2j,l+1,
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where l = 0, . . . , m− 1.

In this Type I network deployment every node 2j hears the same set of N̄

nodes and takes the sample mean of each cluster of pulses for its observation, we

can express the actual vector of observations made by node 2j as

Y2j[l + 1] =
N̄∑

i=1

α2j

N̄

((
τ̂1i

α1i

+ ∆̄1i + ld
θ̂1i,2

α1i

− Ψ1i,l+1

α1i

)
− ∆̄2j

)
+ Ψ2j,l+1,

where l = 0, . . . , m−1. Note that since these pulse arrivals are clustered, we assume

that for a given cluster, each pulse arrival is corrupted by the same jitter. Thus,

receiver side jitter Ψ2j,l+1 is an independent sample for every l, but takes the same

value for each i. This models the fact that clock errors occurring in a small time

window are highly correlated while errors farther apart in time are independent.

We can rewrite this simply as Y2j[l +1] = α2j((τ1 + ldα̃1− Ψ̃1,l+1)− ∆̄2j)+Ψ2j,l+1,

where

τ1
∆
=

1

N̄

N̄∑
i=1

τ̂1i

α1i

+ ∆̄1i α̃1
∆
=

1

N̄

N̄∑
i=1

θ̂1i,2

α1i

Ψ̃1,l+1
∆
=

1

N̄

N̄∑
i=1

Ψ1i,l+1

α1i

.

Since every node 2j will see the same N̄ nodes, this means that every node 2j will

have the same τ1 and α̃1. Therefore, τ1 and α̃1 are now fixed, and it can be easily

found that 


Ψ̃1,1

Ψ̃1,2

...

Ψ̃1,m




∼ N
(

0, ΣΨ̃1

)

where

ΣΨ̃1
=

σ2

N̄2

N̄∑
i=1

1

α2
1i

Im.

Node 2j’s vector of observations can also be written in a linear form similar to
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(B.1), Y2j = Hθ2j + W2j, where

θ2j =




θ2j,1

θ2j,2


 =




α2j(τ1 − ∆̄2j)

α2jα̃1




with H as in (5.3) and W2j = [W2j,1 . . .W2j,m]T .

W2j = α2j




Ψ̃1,1

...

Ψ̃1,m




+




Ψ2j,1

...

Ψ2j,m



∼ N (0, Σ2j)

with

Σ2j = σ2
(
1 +

α2
2j

N̄2

N̄∑
i=1

1

α2
1i

)
Im.

The vector of observations made by all R2 nodes can be written in a manner similar

to (B.2),

Ȳ2 = H̄θ̄2 + W̄2

where

Ȳ2 =




Y21

Y22

...

Y2N̄




, θ̄2 =




θ21

θ22

...

θ2N̄




, Q2 =




α21Im

α22Im

...

α2N̄Im




W̄2 =




W21

W22

...

W2N̄




= Q2




Ψ̃1,1

...

Ψ̃1,m




+




Ψ21,1

...

Ψ21,m

...

Ψ2N̄,1

...

Ψ2N̄,m



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This means that W̄2 ∼ N (0, ΣW̄2
), where

ΣW̄2
= Q2ΣΨ̃1

QT
2 + σ2IN̄m.

The R2 nodes will estimate θ̄2 as

ˆ̄θ2 = (H̄T H̄)−1H̄T Ȳ2 (B.8)

∼ N (
θ̄2, (H̄

T H̄)−1H̄T ΣW̄2
((H̄T H̄)−1H̄T )T

)
.

However, for analysis, this does not give us the complete distribution of ˆ̄θ2 since

θ̄2 is a function of ˆ̄θ1. Therefore, we first consider how θ2j is a function of ˆ̄θ1. We

find that

θ2j =




α2j(τ1 − ∆̄2j)

α2jα̃1




=




α2j(
1
N̄

∑N̄
i=1

τ̂1i

α1i
+ ∆̄1i − ∆̄2j)

α2j
1
N̄

∑N̄
i=1

θ̂1i,2

α1i




=




α2j(
1
N̄

∑N̄
i=1

θ̂1i,1+mdθ̂1i,2

α1i
+ ∆̄1i − ∆̄2j)

α2j
1
N̄

∑N̄
i=1

θ̂1i,2

α1i




=
α2j

N̄

N̄∑
i=1

(



1
α1i

dm
α1i

0 1
α1i







θ̂1i,1

θ̂1i,2


 +




∆̄1i

0




)
− α2j




∆̄2j

0


 (B.9)

Using (B.9) we have

θ̄2 = A2
ˆ̄θ1 + B2, (B.10)
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where

A2 = D2




1
α11

dm
α11

0 0 . . . 0 0

0 1
α11

0 0 . . . 0 0

0 0 1
α12

dm
α12

. . . 0 0

0 0 0 1
α12

. . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1
α1N̄

dm
α1N̄

0 0 0 0 . . . 0 1
α1N̄




,

B2 = D2




∆̄11

0

∆̄12

0

...

∆̄1N̄

0




−




α21∆̄21

0

α22∆̄22

0

...

α2N̄∆̄2N̄

0




,

for

D2 =
1

N̄




α21 0 α21 0 . . . α21 0

0 α21 0 α21 . . . 0 α21

α22 0 α22 0 . . . α22 0

0 α22 0 α22 . . . 0 α22

...
...

...
...

. . .
...

...

α2N̄ 0 α2N̄ 0 . . . α2N̄ 0

0 α2N̄ 0 α2N̄ . . . 0 α2N̄




.
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Using (B.8) and (B.10), the distribution of ˆ̄θ2 can now be found.

µ̄2 = E(ˆ̄θ2)

= E(E(ˆ̄θ2| ˆ̄θ1))

= E(θ̄2)

= E(A2
ˆ̄θ1 + B2)

=




α21(τ0 + md− ∆̄21)

α21

α22(τ0 + md− ∆̄22)

α22

...

α2N̄(τ0 + md− ∆̄2N̄)

α2N̄




(B.11)

Using the decomposition

Cov(ˆ̄θ2) = E(Cov(ˆ̄θ2| ˆ̄θ1)) + Cov(E(ˆ̄θ2| ˆ̄θ1)),

we have from (B.8) and (B.10)

Σm2 = E(Cov(ˆ̄θ2| ˆ̄θ1)) = (H̄T H̄)−1H̄T ΣW̄2
((H̄T H̄)−1H̄T )T

Cov(E(ˆ̄θ2| ˆ̄θ1)) = Cov(θ̄2) = A2Σ̄1A
T
2 ,

giving us

Σ̄2 = Cov(ˆ̄θ2) = Σm2 + A2Σ̄1A
T
2 . (B.12)

Thus, the distribution of ˆ̄θ2 is

ˆ̄θ2 ∼ N (µ̄2, Σ̄2).
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ˆ̄θ2 is again a 2N̄×1 column vector where the subvector made up of the (2(i−1)+1)th

and (2(i − 1) + 2)th elements, i = 1, . . . , N̄ , is θ̂2i = (HTH)−1HTY2i. Therefore,

as in (B.6) and (B.7), any node 2i’s skew estimate (5.1) and offset estimate (5.2)

can be found from ˆ̄θ2 as

α̂2i = eT
2(i−1)+2

ˆ̄θ2 (B.13)

and

∆̂2i = eT
2(i−1)+1

ˆ̄θ2 − (τ0 + dm). (B.14)

Each node 2i will now be able to transmit a sequence of m pulses occurring,

in the time scale of c2i, at Xc2i
l+1,2i(Y2i) = τ̂2i + ldθ̂2i,2, for l = 0, . . . , m − 1, where

τ̂2i = θ̂2i,1+mdθ̂2i,2. Repeating the same process we carried out for the observations

of any node 2j with any node 3j, we can find that

ˆ̄θ3 ∼ N (µ̄3, Σ̄3)

where similar to (B.11) we have

µ̄3 = E(ˆ̄θ3)

= E(A3
ˆ̄θ2 + B3)

=




α31(τ0 + 2md− ∆̄31)

α31

α32(τ0 + 2md− ∆̄32)

α32

...

α3N̄(τ0 + 2md− ∆̄3N̄)

α3N̄




(B.15)

and similar to (B.12) we have

Σ̄3 = Cov(ˆ̄θ3) = Σm3 + A3Σ̄2A
T
3 . (B.16)
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for

Σm3 = E(Cov(ˆ̄θ3| ˆ̄θ2)) = (H̄T H̄)−1H̄T ΣW̄3
((H̄T H̄)−1H̄T )T

Cov(E(ˆ̄θ3| ˆ̄θ2)) = Cov(θ̄3) = A3Σ̄2A
T
3 .

In this case

ΣW̄3
= Q3ΣΨ̃2

QT
3 + σ2IN̄m

for

Q3 =




α31Im

α32Im

...

α3N̄Im




ΣΨ̃2
=

σ2

N̄2

N̄∑
i=1

1

α2
2i

Im

and

A3 = D3




1
α21

dm
α21

0 0 . . . 0 0

0 1
α21

0 0 . . . 0 0

0 0 1
α22

dm
α22

. . . 0 0

0 0 0 1
α22

. . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1
α2N̄

dm
α2N̄

0 0 0 0 . . . 0 1
α2N̄



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where

D3 =
1

N̄




α31 0 α31 0 . . . α31 0

0 α31 0 α31 . . . 0 α31

α32 0 α32 0 . . . α32 0

0 α32 0 α32 . . . 0 α32

...
...

...
...

. . .
...

...

α3N̄ 0 α3N̄ 0 . . . α3N̄ 0

0 α3N̄ 0 α3N̄ . . . 0 α3N̄




.

Continuing this procedure, we can find the distribution of ˆ̄θk for the Rk nodes

as

ˆ̄θk ∼ N (µ̄k, Σ̄k)

where similar to (B.15) we have

µ̄k = E(ˆ̄θk)

= E(Ak
ˆ̄θk−1 + Bk)

=




αk1(τ0 + (k − 1)md− ∆̄k1)

αk1

αk2(τ0 + (k − 1)md− ∆̄k2)

αk2

...

αkN̄(τ0 + (k − 1)md− ∆̄kN̄)

αkN̄




and similar to (B.16) we have

Σ̄k = Cov(ˆ̄θk) = Σmk
+ AkΣ̄k−1A

T
k .
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for

Σmk
= E(Cov(ˆ̄θk| ˆ̄θk−1)) = (H̄T H̄)−1H̄T ΣW̄k

((H̄T H̄)−1H̄T )T

Cov(E(ˆ̄θk| ˆ̄θk−1)) = Cov(θ̄k) = AkΣ̄k−1A
T
k .

In this case

ΣW̄k
= QkΣΨ̃k−1

QT
k + σ2IN̄m (B.17)

for

Qk =




αk1Im

αk2Im

...

αkN̄Im




ΣΨ̃k−1
=

σ2

N̄2

N̄∑
i=1

1

α2
(k−1)i

Im

and

Ak = Dk




1
α(k−1)1

dm
α(k−1)1

. . . 0 0

0 1
α(k−1)1

. . . 0 0

...
...

. . .
...

...

0 0 . . . 1
α(k−1)N̄

dm
α(k−1)N̄

0 0 . . . 0 1
α(k−1)N̄



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Bk = Dk




∆̄(k−1)1

0

∆̄(k−1)2

0

...

∆̄(k−1)N̄

0




−




αk1∆̄k1

0

αk2∆̄k2

0

...

αkN̄∆̄kN̄

0




.

where

Dk =
1

N̄




αk1 0 αk1 0 . . . αk1 0

0 αk1 0 αk1 . . . 0 αk1

αk2 0 αk2 0 . . . αk2 0

0 αk2 0 αk2 . . . 0 αk2

...
...

...
...

. . .
...

...

αkN̄ 0 αkN̄ 0 . . . αkN̄ 0

0 αkN̄ 0 αkN̄ . . . 0 αkN̄




As in (B.13) and (B.14), any node ki’s skew estimate (5.1) and offset estimate

(5.2) can be found from ˆ̄θk as

α̂ki = eT
2(i−1)+2

ˆ̄θk

and

∆̂ki = eT
2(i−1)+1

ˆ̄θk − (τ0 + dm(k − 1)).

This concludes the proof of Theorem 3. 4
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B.2 Proof of Corollary 1

First, let us consider the mean of node ki’s skew and offset estimates. Under the

assumption of αi = 1 for all i, from (5.5), (5.7), and (5.8) we have that

E(α̂ki) = eT
2(i−1)+2E(ˆ̄θk) = αki = 1

E(∆̂ki) = eT
2(i−1)+1E(ˆ̄θk)− (τ0 + dm(k − 1)) = −∆̄ki.

Using (B.4) and (B.5), Σ̄1 in (B.3) is known. Using αi = 1 for all i, from (B.17)

we have that ΣW̄k
= ΣW̄ becomes the N̄m× N̄m matrix

ΣW̄ = σ2




(1 + 1
N̄

)Im
1
N̄
Im . . . 1

N̄
Im

1
N̄
Im (1 + 1

N̄
)Im . . . 1

N̄
Im

...
...

. . .
...

1
N̄
Im

1
N̄
Im . . . (1 + 1

N̄
)Im




, (B.18)

which gives Σm = (H̄T H̄)−1H̄T ΣW̄((H̄T H̄)−1H̄T )T . It can also be easily found

that Al is the 2N̄ × 2N̄ matrix

Al =
1

N̄




1 lmd 1 lmd . . . 1 lmd

0 1 0 1 . . . 0 1

...
...

...
...

. . .
...

...

1 lmd 1 lmd . . . 1 lmd

0 1 0 1 . . . 0 1




(B.19)

for integer values of l ≥ 1 and we use A0 = I2N̄ .
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Using (B.18), we find Σm to be the 2N̄ × 2N̄ matrix

(H̄T H̄)−1H̄T ΣW̄((H̄T H̄)−1H̄T )T

= σ2




a(HTH)−1 b(HTH)−1 . . . b(HTH)−1

b(HTH)−1 a(HTH)−1 . . . b(HTH)−1

...
...

. . .
...

b(HTH)−1 b(HTH)−1 . . . a(HTH)−1




= Σm

where

a = 1 +
1

N̄
(B.20)

b =
1

N̄
(B.21)

Letting (HTH)−1 from (B.5) be

(HTH)−1 =




s11 s12

s21 s22




and using (B.19), we can find the (1,1) element and (2,2) element of AlΣm(Al)T

to be

AlΣm(Al)T (1, 1)

=
σ2

N̄

[(
a + (N̄ − 1)b

)(
s11 + lmd(s12 + s21) + (lmd)2s22

)]
(B.22)

AlΣm(Al)T (2, 2)

=
σ2

N̄

[(
a + (N̄ − 1)b

)
s22

]
(B.23)

for l ≥ 1. Likewise, we can find the (1,1) element and (2,2) element of AlΣ̄1(A
l)T

to be

AlΣ̄1(A
l)T (1, 1) =

σ2

N̄

[
s11 + lmd(s12 + s21) + (lmd)2s22

]
(B.24)

AlΣ̄1(A
l)T (2, 2) =

σ2

N̄
s22 (B.25)
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for l ≥ 1, where Σ̄1 is from (B.3).

Therefore, using (B.20) and (B.21) with (B.22) and (B.24) gives us element

(1,1) of Σ̄k from (5.9) to be

Σ̄k(1, 1) = σ2s11 +
σ2

N̄

[
2(k − 1)s11

+(k − 1)2

(
md(s12 + s21) + (md)2s22

)

+
1

3
(k − 2)(k − 1)(2k − 3)(md)2s22

]
(B.26)

Similarly, using (B.20) and (B.21) with (B.23) and (B.25) gives us element (2,2)

of Σ̄k from (5.9) to be

Σ̄k(2, 2) = σ2s22

(
1 +

2(k − 1)

N̄

)
(B.27)

Simplifying (B.27) and (B.26) yields equations (5.10) and (5.11), respectively. This

concludes the proof of Corollary 1. 4
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Diversity, and Topology of Networks of Integrate and Fire Oscillators. Physical
Review E, 62(4):5565-5570, 2000.

[20] A. Herz and J. J. Hopfield. Earthquake Cycles and Neural Reverberations:
Collective Oscillations in Systems with Pulse-Coupled Threshold Elements.
Physical Review Letters, 75(6):1222-1225, 1995.

[21] E. M. Izhikevich. Weakly Pulse-Coupled Oscillators, FM Interactions, Syn-
chronization, and Oscillatory Associative Memory. IEEE Trans. Neural Net-
works, 10(3):508-526, 1999.

[22] L. S. Smith, D. E. Cairns and A. Nschwitz. Synchronization of Integrate-and-
Fire Neurons with Delayed Inhibitory Lateral Connections. In Proc. Interna-
tional Conference on Artificial Neural Networks (ICANN), 1994.

[23] J. Buck and E. Buck. Synchronous Fireflies. Scientific American, 234:74-85,
1976.

[24] J. Jalife. Mutual Entrainment and Electrical Coupling as Mechanisms for
Synchronous Firing of Rabbit Sinoatrial Pacemaker Cells. J. Physiol., 356:221-
243, 1984.

[25] A. Sherman, J. Rinzel and J. Keizer. Emergence of Organized Bursting in
Clusters of Pancreatic Beta-Cells by Channel Sharing. Biophys. J., 54:411-
425, 1988.

[26] R. E. Mirollo and S. H. Strogatz. Synchronization of Pulse-Coupled Biological
Oscillators. SIAM J. Appl. Math., 50(6):1645–1662, 1990.

[27] S. Strogatz. Sync: The Emerging Science of Spontaneous Order. Theia, 2003.

167



[28] M. K. McClintock Menstrual Synchrony and Suppression. Nature, 229:244-
245, 1971.

[29] T. J. Walker. Acoustic Synchrony: Two Mechanisms in the Snowy Tree
Cricket. Science, 166:891-894, 1969.

[30] D. Lucarelli and I. Wang. Decentralized Synchronization Protocols with Near-
est Neighbor Communication. In Proc. SenSys’04, Baltimore, Maryland, 2004.

[31] Y. Kuramoto. Collective Synchronization of Pulse-Coupled Oscillators and
Excitable Units. Physica D, 50:15-30, 1991.

[32] W. Senn and R. Urbanczik. Similar Non-Leaky Integrate-and-Fire Neurons
with Instantaneous Coupling Always Synchronize. SIAM J. Appl. Math.,
61(4):1143–1155, 2000.

[33] Y. Hong and A. Scaglione. A Scalable Synchronization Protocol for Large
Scale Sensor Networks and its Applications. IEEE Journal on Selected Areas
in Communications (JSAC), 23(5):1085-1099, May 2005.

[34] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. Firefly-
Inspired Sensor Network Synchronicity with Realistic Radio Effects. In Proc.
SenSys’05, San Diego, CA, November 2005.

[35] B. Barriac, R. Mudumbai and U. Madhow. Distributed Beamforming for
Information Transfer in Sensor Networks. In Proc. International Symposium
on Information Processing in Sensor Networks (IPSN), Berkeley, CA, 2004.

[36] H. Ochiai, P.Mitran, H. V. Poor and V. Tarokh. Collaborative Beamforming
for Distributed Wireless Ad Hoc Sensor Networks. IEEE Transactions on
Signal Processing, 53(11):4110-4124, 2005.

[37] A. Hu and S. D. Servetto. dFSK: Distributed Frequency Shift Keying Modu-
lation in Dense Sensor Networks. In Proc. IEEE Int. Conf. Communications
(ICC), Paris, France, 2004.

[38] A. Scaglione and Y. W. Hong. Opportunistic Large Arrays: Cooperative
Transmission in Wireless Multihop Ad Hoc Networks to Reach Far Distances.
IEEE Transactions on Signal Processing, 51(8):2082-2092, August 2003.

[39] I. Maric and R. D. Yates. Cooperative Multihop Broadcast for Wireless Net-
works. IEEE J. Selected Areas in Communications, 22(6):1080-1088, August
2004.

[40] B. Sirkeci-Mergen, A. Scaglione and G. Mergen. Asymptotic Analysis of Mul-
tistage Cooperative Broadcast in Wireless Networks. IEEE Transactions on
Information Theory, 52(6):2531-2550, June 2006.

168



[41] N. Roberts. Phase Noise and Jitter: A Primer for Digital Design-
ers. http://www.eedesign.com/showArticle.jhtml?articleID=16501598,
2003.

[42] H. Stark and J. Woods. Probability, Random Processes, and Estimation The-
ory for Engineers. Prentice Hall, Inc., 2nd edition, 1994.

[43] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker.
Complex Behavior at Scale: An Experimental Study of Low-Power Wireless
Sensor Networks. In Technical Report UCLA/CSD-TR 02-0013, Computer
Science Department, UCLA, July 2002.

[44] J. Zhao and R. Govindan. Understanding Packet Delivery Performance in
Dense Wireless Sensor Networks. In Proc. 1st International Conf. on Embed-
ded Networked Sensor Systems, Los Angeles, CA, 2003.

[45] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory.
PTR Prentice Hall, Inc., 1993.

[46] W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley & Sons, Inc., 1968.

[47] R. S. Strichartz. The Way of Analysis. Jones and Bartlett Publishers, 2000.

[48] E. W. Weisstein. Circular Segment. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/CircularSegment.html

169


