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Abstract. Jacobi methods for computing the singular value decomposition
(SVD) of a matrix are ideally suited for multiprocessor environments due to their
inherent parallelism. In this paper we show how a block version of the two-sided
Jacobi method can be used to compute the SVD efficiently on a distributed
architecture. We compare two variants of this method that differ mainly in the degree
to which they diagonalize a given subproblem. The first method is a true block
generalization of the scalar scheme in that each off-diagonal block is completely
annihilated. The second method is a scalar Jacobi algorithm reorganized in such a
manner that it conforms to the block decomposition of the problem. We have
performed experiments on the Loosely Coupled Array Processor (LCAP) system at
IBM Kingston which for the purposes of this article can be viewed as a ring of up to
ten FPS-164/MAX array processors. These experiments show that the block Jacobi
algorithm performs very well on a distributed system, especially when the processors
have vector processing hardware. As an example, we were able to achieve a sustained
performance of 159 MFlops on a 960X720 SVD problem using eight processors. A
surprising outcome of these experiments is that the determining factor for the
performance of the algorithm on high-performance architectures is the subproblem

solver, not the communication overhead of the algorithm.
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1. Introduction. The singular value decomposition (SVD) of an m X n matrix A
(m=n) is a very versatile and stable decomposition [17]. In the SVD we seek
orthonormal matrices U € R™*™ and V € R"*" such that

UTAV = diag(o, ,....0,)

The o; are called the singular values of A; the columns of U and V are called left and
right singular vectors, respectively. It is usually assumed that 0; =...=0,=0, but we

do not insist on this normalization.

In the scalar Jacobi algorithm for a square matrix A we repeatedly compute

sine-cosine pairs ¢1 , sy and cg, sg such that

c, S

L. (1.1)
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The elements a;; are usually chosen in a cyclic-by-row ordering, but other orderings
are possible if one incorporates a threshold criterion into the algorithm, i.e. no
rotations are generated if-a;; is already sufficiently small. For details see [16] and [26].
Parallel SVD algorithms using scalar Jacobi rotations have recently received much

attention for real-time signal processing on systolic arrays [7,20, 24].

For coarse-grained high-performance environments, it is well known that block
algorithms are advantageous [5,12]. Given a rXr matrix block, the cost of data
movement is O(r%), whereas typically O(r®) operations are performed using these data.
Dongarra and Sorensen [14] call this “surface-to-volume effect” and is important in
high performance environments where the data transfer rate is low compared to the
arithmetic speed due to a memory hierarchy or an explicitly parallel architecture.
Furthermore block algorithms typically lead to programs that are rich in matrix-
vector and matrix-matrix operations. The regularity of these operations ensures
excellent performance on machines with special vector hardware - almost a standard

feature in current high-performance architectures. For an overview see [13].

To set the stage for the block Jacobi algorithm, consider A as a kXk block
matrix (A;), i,j = 1,...,k. The ith block column of A is denoted by A;. It is not required
that the blocks be square or all of the same size. The idea behind the two-sided block
Jacobi approach is to make A block diagonal by solving a series of subproblems. To
measure how close A is to the desired block diagonal form, we define OFF(A) as the
Frobenius norm of the off-diagonal blocks,

OFF(A) = sari( X 14, 1)
1)

We consider A to be block-diagonal if



OFF(A) = OE|Alp.

Once A is block diagonal, it is straightforward to compute the SVD of A by computing
the SVD of each diagonal block.

To decrease OFF(A) we repeatedly consider two-by-two block subproblems S;;

of the form
A.A.
_ uw oy (1.2)
i [ A A
JE
We can choose orthogonal matrices W;; and Z;; such that for
B; Bij T
=W S..
B B. vyoyoy
BT
we have
2 2 2
i < y 1.
IB,E+IB I <6 (A 2414, 1) (1.3)

for some fixed 0=<0<1. If B is the matrix that we obtain by updating block rows and
block columns i and j of A with W;;T and Z;; respectively, then it is not hard to see that

OFF(B)* < OFF(AY —(1 —62)(||Aij B +1A .12
F JUF

So by solving a judiciously chosen sequence of two-by-two block subproblems we will
be able to reduce A to block diagonal form. The most common sequence is the cyclic-
by-row ordering [17, p. 299], but as will be seen later it is not suitable for parallel

algorithms.

Another SVD Jacobi method is the one-sided Jacobi method, originally
described by Hestenes [18]. By implicitly applying the two-sided Jacobi method just
described to A™A, this algorithm computes an orthonormal nX n matrix V such that

Q@=AV =lq,,...q,]

is an m X n matrix with orthogonal columns g;. The short form of the SVD of A is then

obtained by setting
o, =gl .i=1,..n (1.4)
l 12 2

and scaling the columns of Q

U=QD~', where D = diag@,...,0 ). (1.5)

The one-sided Jacobi method requires somewhat less work than the two-sided one.
Luk (1980) implemented it on the ILLIAC IV. More recently, Berry and Sameh [3]

performed numerical experiments with a scalar Hestenes scheme on an eight



processor Alliant FX/8 shared-memory multiprocessor machine. They found it to be
faster than the LINPACK routines yet somewhat less accurate. We chose the two-
sided approach as it is perfectly stable, handles rank deficiency, computes left and
right singular vectors, and can easily be modified to solve the symmetric eigenvalue

problem.

The paper is organized as follows. Section 2 introduces the parallel block Jacobi
algorithm. In the next section we discuss the subtleties and difficulties associated
with solving subproblem (1.2). Section 4 describes the two different approaches that
we implemented. In section 5 we give a brief overview of the LCAP system and

present our experimental results. Conclusions are offered in the final section.

2. The Block Jacobi Method on a Multiprocessor. The block Jacobi method
has been studied in detail by several researchers [23,25]. The method proceeds in
sweeps. In a sweep, each subproblem S;; is solved exactly once. To guard against
pathological cases (see section 3) and ensure convergence of the algorithm, it is
necessary to incorporate a threshold criterion into the algorithm. Following Van Loan
[25], we skip solving the S;; subproblem if

= 2 2 (2.1
ny=sartlA, P + 14, P) <

for a positive subproblem threshold t.

For a given ordering

(1,715 Jr) , r = sR(E—1)

of the off-diagonal index pairs, the block Jacobi algorithm on one processor is
described by Algorithm 1. For simplicity, we have assumed that the order in which
subproblems are solved is the same in each sweep. The threshold criterion (2.1)
ensures that in each sweep OFF(A) is diminished by at least rxsqrt(1-8%) and by
choosing t<¢||A||p/k, the termination criterion OFF(A) <e||A|lr is eventually satisfied.
In practice this algorithm converges quadratically as might be expected from the
quadratic convergence of the scalar algorithm. Note that this algorithm does not sort
the singular values but if that is required, it can be done in time that is negligible to
the overall cost of the algorithm [1,2].

If we have p = }k processors available, we distribute A,U and V such that each
processor holds two block columns (assume & even from now on). Each processor now
has enough information to solve the subproblem that is defined by the two block
columns of A it holds. The updates (2.2) can also be performed concurrently as each
processor holds the required columns of A, U and V. Only for the update (2.3) each

processor has to receive the W;’s of each other processor since rows of A are



Algorithm 1. Given a subproblem threshold v < ¢ || A ||r /k , the following
algorithm computes orthogonal U and V such that OFF(UT A V) = ¢ || A |p. The
original A is overwritten with UT A V.

Ueln; Vel
while OFF(A) > ¢ | A|lpdo
forl = 1to k(k-1)/2do
@, )) < Gy, J1)
if u; =vthen
Solve subproblem §;;yielding Z;; and W;.
[Ai ,AJ](—[AL :Aj]Zij
(U;,Ujl1< U, U; 1 Wy (2.2)
[Vi,Vj]<—[ Vi,Vj]Zij
foreach q € {1,...,k} do

A; A;
A;q - W, T A;-q (2.3)
end foreach
end if
end for
end while

distributed over all the processors. Then we have to redistribute block columns among

processors in order to solve a different set of subproblems in the next step.

To complete a sweep, we have to solve each of the p(k—1) subproblems once.
Each partition of the set {1,..,k} in pairs of two defines a rotation set, i.e. a set of p=1%k
subproblems that can be solved concurrently. By convention the ith processor P;
solves the subproblem defined by the ith tuple. The computations associated with one
rotation set are referred to as a stage. A parallel ordering for a given distributed
architecture is an ordering of subproblems such that a sweep is completed in (k—1)
stages. A parallel ordering is optimal for a given architecture if the redistributing of
columns between stages requires only nearest-neighbour communication and each
processor exchanges only one set of block columns between stages. Each processor has
to exchange at least one set of block columns as otherwise it would solve the same

subproblem again.

Various parallel orderings have been suggested for different topologies. Luk
and Park [21] give a framework for several previously known orderings on a linear
array of processors using a “caterpillar track” scheme. However, the linear array does

not seem to allow for an optimal ordering. For a hypercube, Bischof [6] suggested an



optimal parallel ordering. Since we were to perform our experiments on a ring
architecture, we chose an optimal ordering for a ring suggested by Eberlein [15]. We
demonstrate this ordering by going through one sweep for a 10-by-10 block matrix

distributed over 5 processors.

Assuming that initially processor P; contains block columns 2i—1 and 2i, i =

1,...,5, we have the set-up shown in Fig. 1.a.

1 3 3| 5 3| 7 j| 9
a) 2 / 4 6 8 10
Py Py P; Py P;
1 2 3 5 7

b)

Fig. 1. The Eberlein Ring Ordering

So the first rotation set is

(1,2),(3,4), (5,6), (7,8), (9,10).
To prepare for the next stage, we shuffle block columns as indicated by the arrows in

Fig. 1.a obtaining rotation set

(1,9),(2,4), 3,6), (5,8), (7,10).
Now we shuffle block columns as indicated by the arrows in Fig.1.b. This leads to

rotation set

(1,4), (2,6), (3,8),(5,10), (7,9).
To generate the remaining rotation sets we alternate between these two ways for
shuffling columns. The remaining subproblems are then solved in the following order

where next to each stage it is denoted whether it resulted from a shuffle according to
Fig..l.aor 1.b.

(1,7) (4,6),(2,8),(3,10),(5,9) a
(1,6), (4,8),(2,10),3,9),(5,7) b
(1,5),(6,8),(4,10),(2,9),3,7) a
(1,8),(6,10),(4,9),(2,7,3,5) b



(1,3),(8,10),(6,9),(4,7,(2,5 a
(1,10, (8,9),(6,7),(4,5),(2,3) b

At this point we are finished with one sweep and to generate the first rotation set for
the next sweep we shuffle according to Fig.1.a to generate subproblems

(1,2),(10,9), (7,8), (6,5), (4,3)
and from there we continue as described. This example shows that this method for
generating the subproblems in a sweep conforms to our definition of an optimal
parallel ordering: We generate & —1 rotation pairs and every processor exchanges
only one set of block columns between each rotation set. Due to the ring topology we
only communicate between neighbours at any point. The orderings generated by this
method differ from sweep to sweep, but every 2k rotations all block columns are back

in their original position.

3. Importance of the Subproblem Solver. How we solve the subproblem
(1.2) can have a dramatic effect on the convergence speed of the algorithm. A brief
example illustrates this. Suppose A is a square symmetric matrix partitioned into
four equal sized square blocks and distributed over two processors. The structure of A
is as shown in Fig. 2. Here “e” stands for a block with small norm, “%” is a block of
non-negligible norm and blocks denoted by “®” are large in terms of norm with regard

to the e-blocks. The current subproblems are emphasized by a black box.

o ¢ *x &
e © £ €
* o ¢
£ & e @
Py Py

Fig. 2. Initial Configuration

Let P be the permutation that exchanges the first and second block row of a
2X 2 block matrix. The subproblems in P; and Py are almost block diagonal. So
orthogonal transformations W=Z close to the identity I or close to P will solve either
of the subproblems. Now if we let W;=Z; close to I solve the subproblem in P; and
Wao=2Z3 close to P solve the subproblem in Py, then after the update A has the

structure shown in Fig. 3.

If we exchange block columns according to Fig.l.a and (for purposes of
exposition) also exchange block rows accordingly, the structure of Fig. 3 remains
preserved. Again a U; = Vj close to the identity can solve the subproblem in Py, a
Uqa=V3 close to the block permutation P can solve the subproblem in Ps. Applying
these transformations to A again leads to the structure of Fig. 2. It remains preserved
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Fig. 3. After the First Stage

when we shuffle block columns and block rows according to Fig.1.b. So throughout a
sweep, we have essentially not diminished OFF(A) as the block * has not been
reduced in a subproblem. This situation can continue for quite a number of sweeps
until we eventually skip a subproblem due to the subproblem threshold criterion (2.1)
and break this vicious cycle. But of course the overall convergence of the algorithm
will be immeasurably slow.

To avoid this difficulty, our subproblem solver tries to compute orthogonal
transformations that are close to the identity. In the scalar setting where we compute
Givens rotations

c s
( ) withc = cosy, s =siny
-s ¢
choosing a close-to-identity transformation means choosing a small rotation angle .
It is well known [16,22] that this choice is crucial for convergence of the scalar
algorithm.

4. Two Different Block Jacobi Methods. Our first method is a true block
method. It regards A as a square block matrix (possibly with rectangular blocks) and
then uses a variant of the Chan SVD algorithm to diagonalize a given subproblem at
each step. Thus the off-diagonal blocks are fully annihilated. The alternative method
first reduces A to square form by applying a pipelined block QR algorithm based on
the WY representation [5]. Then a regrouped scalar Jacobi algorithm is applied to the
resulting square matrix. We apply one full scalar cyclic-by-row Jacobi sweep to the
subproblems in the very first rotation set in every sweep. For all other subproblems,
we generate Jacobi rotations only for the elements in the off-diagonal blocks.

To illustrate the first method, consider a subproblem S with 4-by-2 blocks.
Using a variant of the SVD algorithm proposed by Chan [8] , we compute orthogonal
matrices W and Z such that

wisz=x



is diagonal. For the flop counts we assume that S is an r X ¢ matrix. The included flop
counts are estimates for the distribution of work in the algorithm. As high-

performance computers usually have seperate adder and multiplier units, each

multiplication and addition is counted as a separate flop.

Step 1:

Step 2:

Step 3:

Step 4:

Use Householder transformations to compute an orthogonal matrix @
such that

1]
=]

Q'S =

C OO OO O K
DO OOO O K K
QOO XK OO K M
QO X K OO K X

[
|

The very first subproblem in each processor requires

2
4r2c— 2rc2+ 5 c3

flops. Thereafter the diagonal blocks of S are diagonal and exploiting

this fact we need only

5
3r2c - 2cm + gc3

flops.

Move the nonzero rows of R together and compute the SVD

XXXX

0xxx
U'looxx |Z2=2Z

000x

using Householder bidiagonalisation and QR iteration. The
bidiagonalisation requires 16/3 ¢3 flops, the QR iteration typically
requires 7¢3 flops.

Permute off-diagonal entries of U and Z close to 1 in modulus to the
diagonal to make U and Z close to identity transformations. This step
typically requires just O(c?) flops, a small overhead which we can ignore

in our flop count.

Letting U = (U3)) , ij = 1,2 with square blocks partitioned conforming to
the block column partitioning of S, we set



0 I O
w=Q Ua1 0 Ugg
0 0 O

This matrix-matrix multiplication requires 2rc* flops.

Computing a “split” R in step 1 together with step 3 guarantees that the W computed
in step 4 will be close to the identity. Note that off-diagonal blocks A;; that have been
zeroed in one subproblem will be filled in later when another subproblem updates
block rows and columns i or j of A. Of course we suggested only one of many ways how
to solve a rectangular subproblem. We chose this approach since in the QR
factorisation we can exploit the fact that diagonal blocks are diagonal and because we
can use the matrix-matrix multiplication hardware to execute step 4 very efficiently.
Bischof and Van Loan [4] consider some other methods to solve a rectangular
subproblem. Since this algorithm treats every off-diagonal block like a macro-element
_of a kX k matrix subjected to a scalar Jacobi method in that it fully annihilates it,
ample experience with the scalar algorithm [7, 17, 25] suggests that it will take
O(logk) = O(logp) sweeps to converge.

For the second method, we first reduce A to square form (unless m = n) by a
pipelined block QR algorithm based on the WY representation [5]. A detailed
description of this algorithm will be reported elsewhere. The WY representation

allows us to write the product

Q =P; P

of [ nX n Householder matrices in the form

Q=I+WY"
where both W and Y are nX[. Application of @ is then just two matrix-matrix
multiplications, the operation of choice for processors with vector capabilities. In the
pipelined block QR algorithm, each processor computes the QR factorization of a block
column it contains. At the same time, it generates the WY factors determined by the
Householder vectors reducing this subproblem. Once the subproblem is solved, it
sends the WY factors to the right neighbour. It then receives and forwards p—1 WY
factors generated by other processors and applies these to the block columns it houses
until it is its turn again to solve the next subproblem and generate the next WY pair.

While accumulating the WY factors, it computes the decomposition

A=Q

H ] 4.1)
0

where H is an nX n square matrix. This reduction requires approximately
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2 1
—(2m2n— —n3)
b

flops on the average per processor and the transmission of

4mn—2n2

words per processor.

We then compute the SVD of H using a blocked scalar Jacobi method. In the
very first rotation set in each sweep, every processor applies one scalar cyclic-by-row
Jacobi sweep to its subproblem. In every other rotation set we apply Jacobi rotations

only to the off-diagonal block, i.e. for a 4X 4 subproblem, we generate point rotations

(1,3),(1,4), (2,3), (2,4).
We call this an off-diagonal Jacobi sweep. So our subproblems are of the form (1.1) and
a variant of algorithm USVD in [7] is used in computing the Givens rotations. Since
algorithm USVD performs point threshholding in solving subproblems of the form
(1.1), the block thresholding criterion (2.1) can be omitted. If the subproblem is a ¢ X¢c
matrix, then applying a full Jacobi sweep and accumulating the rotations costs 12¢2

flops, an off-diagonal sweep half as much.

It is easy to see that using this scheme every scalar subproblem (1.1) in H is
solved exactly once during each sweep. This shows that we are applying one full scalar
Jacobi sweep to H during each sweep. Except for the different ordering, this is much
like the “AB supersweep” regime suggested by Schreiber [24]. Hence we expect this

algorithm to take O(logn) sweeps until convergence.

After we have computed the SVD
H=UZV"

of H, we permute the block columns back into their original positions by exploiting
the 4p-cyclicity of the Eberlein ordering and then update

Q<Q

Uuo l (4.2)
01

to complete the SVD of A. The update of @ requires 2n2 m/p flops and the transmission
of

2
n
2(p—-1)—
p

words per processor.

The main difference between these two methods is the degree of
diagonalization we achieve in each subproblem. While the first approach always fully



diagonalizes a subproblem. the second just applies one scalar Jacobi sweep to the
whole matrix during each sweep. So in fact we are not even guaranteed that condition
(1.2) will be satisfied in every subproblem. The threshold criterion (2.1) or
alternatively point threshholding within the subproblem solver guarantees
convergence, though. It is also clear that the second method will be more efficient
whenever m is sufficiently larger than n although we expect it to take more sweeps to

converge.

5. Numerical Results on the LCAP-1 System at IBM Kingston. The
LCAP-1 system (LCAP is an acronym for Loosely Coupled Array Processors) consists
of ten Floating Point Systems FPS-164/MAX processors connected by bulk memories
manufactured by Scientific Computing Associates (SCA) and by two FPS buses. A
simplified diagram of LCAP-1 is given in Fig. 4; the host machine is an IBM 3090
mainframe and is not shown here. For a detailed description see [10].

’ FPS-164/MAX Array Processors SCA Bulk Memories

— Bulk Memory - FPS 164 connection —— FPSBus

Fig. 4. The LCAP-1 System at IBM Kingston

The bulk memories can be used as a mailbox for message passing, as shared memory
between processors and as fast out-of-core memory local to a processor. Together with
the rich topology of the system, this provides for a very high degree of flexibility. The
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user can easily make use of the bulk memories through precompiler directives in his
Fortran code. Different users can share the system through the use of a scheduler.

The FPS-164 is a general-purpose 64-bit attached scientific processor. It
contains a pipelined floating-point unit allowing a theoretical peak performance of 11
MFlops. The FPS-164 can be augmented with so-called MAX boards. These boards are
special purpose hardware performing only a limited number of operations, yet those
at great speed [9]. The MAX boards are especially well suited for matrix-matrix
multiplication and this is the only feature we are using; here each MAX board adds
another 22 MFlops. Each FPS-164 on LCAP-1 is equipped with two MAX boards so
the theoretical peak performance of LCAP-1 is 550 MFlops.

For the implementation of our SVD algorithm we regarded LCAP-1 as a ring of
processors where processors do not share memory and communicate through message
passing using the SCA memories. There are two types of communication required by
the parallel version of Algorithm 1. Associated with each rotation set is a broadcast.
Each processor must receive the orthogonal transformation of every other processor.
This is accomplished in a merry-go-round fashion. The orthogonal matrices are passed
around the ring and are applied to the block columns of A local to a processor at each
“stop”. We also use this broadcast to transmit convergence and threshhold
information by piggybacking it onto the orthogonal matrix. After the update, the
block columns have to be redistributed around the ring and here we exploit the

nearest neighbour topology of the ring by using the Eberlein shuffle.

Let us now summarize the computational cost of our algorithms per processor.
Assume we are solving an m X n problem on p=2 processors and that the first method
requires sub, subproblems, our second method subs subproblems until convergence.
Further define

sub

sweep. =
P 2p—-1

Note that sweep; is the number of sweeps required for convergence in the given
method. Subproblems are of size r X ¢ in the first method and of size ¢ X ¢ in the second
method.

Using the first subproblem algorithm described in the previous section, we

spend

1
f1 =4r% +16¢ + (subl—l)(3r2c + 11 -6-03)

sub

flops to solve the subproblem. The block column updates (2.2) and (2.3) require
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1 — 2 2 2
fblock = 2sub1((m— N+ mr +nc”+(m—-rrc)
flops. Communication requires the transmission of

1

— 2
w, =2 sub, (p—1)r

words for the merry-go-round broadcast and
1 =
Wohutfte = sub1 (mc+ mr+ nc)
words for the Eberlein shuffle.

For the second method, steps (4.1) and (4.2) require approximately

2 . 1
f2 == (2m?n + mn? = =n®
qr p 3
flops as well as the transmission of
1 .
w2 =2(2mn-— —nz)
qr

p
words. We spend

su

p = 12 sweep, + 6(sub2 - sweep2)) c

flops to solve the subproblem. The block column updates require
2 _ 2, 2
fblock = 4sub2((n —oc“+nc?)
flops. Communication requires the transmission of
2 _ 2
Wy d= 2 subZ(p— 1)c
words for the merry-go-round broadcast and

ws2hufﬂe =3 sub2 nc

words for the Eberlein shuffle. In situations where block columns are not in the
processors they started out in, we use the fact that the Eberlein ordering is 4p-cyclic to
permute columns back into their original positions by doing a few extra Eberlein

shuffles at the end.

For both methods, we have

fsub < fblock

in most cases. Thus the algorithm is ideally suited for a parallel architecture where
each node has special vector hardware. The reason is that block column updates (2.2)
and (2.3) are straightforward matrix-matrix multiplications - the operation

guaranteed to exploit fully the vector processing capability. Furthermore
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. 1
f;ub = O(—E ) 6.1
14
fi — O(.l.. ) (5.2)
block — D
wljroad + wsihufﬂe =0@) (5.3)

for fixed m and n and i =1,2. So for a problem of fixed size an increase in the number of
processors shifts the computational load from solving the subproblem to updating the
block columns. This is desirable as we expect the block column updates to execute
much faster in the presence of a vector unit. The communication time should stay

about the same with perhaps a slight penalty for issuing more sends and receives.

Our experiments on the LCAP-1 system led to some surprises. We mention that
our code was written entirely in Fortran-77, using the assembler-coded BLAS and
matrix-matrix multiplication routines available in the FPS mathematics library. The
code was compiled with the apftn64 compiler under release G, using optimization
level 3. We performed a series of tests with large matrices on up to ten processors. The

p 2 3 4 6 8 | 10
960 X720 ~ | = | = |2010 1350|1270
960 X 480 - | — |1190| 975 | 813 | 716
960 % 240 — | - | 474 | 481 | 405 | 360

528 X528 1660 | 1370 | 1020 | 772 | 613 -
528X 264 381 | 3256 | 270 | 256 - -
528 X120 123 | 130 | 119 | 102 - -

a) Method 1
p 2 3 4 6 8
960X 720 - - - 632 | 449
960X 480 - - 315 212 171
960X 240 - - 57 43 40

528 X528 570 | 372 | 242 | 166 | 126
528 X264 137 | 86 63 56 -

528 X120 17 13 11 12 -

b) Method 2
Table 1: Total Execution Time in Seconds
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test data were generated randomly with a uniform distribution on the interval [0,1].
In some sense this is the worst case for the Jacobi method as the diagonal blocks of the

matrix are small compared to the rest of the matrix.

To assess computational performance, let My, be the sustained MFlop rate per
processor including communication overhead. Mg, and Mo, are the MFlop rates of
the subproblem solver and the block column updates, respectively and T¢op, is the
average transfer rate in MBytes/sec. Table 1 shows the total execution time required
by the two methods. Due to technical difficulties we were not able to perform the ten
processor runs for method 2. It is apparent that the second method is by far superior in
in that it performs up to ten times faster than the first method. Note the slow-down for
the 528 X 128 problem as we move from 4 to 6 processors.This is a common observation
when too small a problem is solved on too many processors. Table 2 shows how many

sweeps were required for convergence in method 1. It seems that not only the number

p 2 3 4 6 8 | 10
960X 720 - | = | = |110]107|114
960 480 | = |91 ] 97 |105]|112
960 X 240 | - | 84| 92| 97102

528 X528 7.0 | 9.2 9.4 | 104 | 108 -
528X 264 6.7 8.0 84 | 99 - -

528 X120 6.3 | 7.4 8.1 8.6 - -

Table 2: Sweeps Taken Until Convergence in Method 1

of processors, but also the size of the problem play a role in determining the number of
sweeps required. It also turned out that method 2 does not require significantly more
sweeps until convergence. Letting

sweep,
R =

sweep |

be the ratio between the number of sweeps required in the two methods, we observe a
mean of 1.04 and a standard deviation of 0.24 for R. The maximum value for R was

1.49. Furthermore, the ratio R decreases for fixed p. This conforms to our

R:O(logn>'

\logp

expectations, which predicted

Since the subproblem solver for method 2 is cheaper method 2 requires fewer flops
than method 1. The observed flop ratios are shown in Table 3.
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Table 3: Observed flop ratio —tg

So the additional work we invested in diagonalizing every subproblem did not pay off.
The measurements in Table 4 demonstrate that method 2 is very efficient. For

tot

p 2 3 4 6 8
960X 720 - - - | 1.55 | 1.57
960< 480 - - 2.8 3.0 3.2
960 X240 - - 11.3 | 12.6 | 13.2
528 X 528 1.57 | 1.53 | 1.68 | 1.75 | 1.76
528 X264 2.2 2.7 2.8 3.2 -
528 X120 10.1 | 124 | 142 | 15.2 -

fl

p 2 3 4 6 8
960 X 720 - - - | 193|194
960 480 - - | 166|168 159
960 X 240 - | - |139]|125| 102
528x528 |12.2 | 16.0 | 16.6 | 16.2 | 16.0
528264 | 115 | 124|128 | 99 | -
528x120 | 109|101 | 87 | 57 | -

Table 4: Sustained MFlop Rate per Processor in Method 2

example we are able to achieve a sustained performance of 159 MFlops on eight
processors. This is made possible by the reliance of our algorithm on matrix-matrix
multiplication. Furthermore the execution rate of method 2 is higher than that of
method 1 in most cases. Letting

be the ratio of the execution rates, we observe a mean of 1.49 and a standard deviation
of 0.66 for MR. Maximum and minum values were 2.7 and 0.6, respectively. A closer
look reveals that MR increases with p for a fixed-sized problem. Method 2 executes
slower only in the 960X 240 and 528 X 128 cases. This stems from a degradation in the
performance of the block column updates due to shorter vector length. Table 1 shows

that method 2 is nonetheless far superior.

tot
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We also realize that in most cases My, decreases as the number of processors
increases, contrary to what the inspection of (5.1) - (5.3) had suggested. This is in spite
of the fact that the transfer rate is always very high: it varies between 4 and 12
MBytes/sec per processor resulting in a very low communication overhead for the
algorithm. A closer look at the timing data revealed that most of the communication
time is spent in the broadcast and that here the effective transfer rate increases with
the number of processors. Apparently the synchronisation overhead decreases; when
there are more processors, they spend less time waiting for each other and so the

transfer rate does not deteriorate.

To better understand why M;,; decreases, we take the 960X 480 problem as
representative example and look at the effect that the different parts of the algorithm
have on the overall performance in Table 5. Here ptq;, ptsub, Ptblock, Plcom @nd ptrest are
the percentages of the total execution time spent on the pipelined QR factorization,
the subproblem, the block column updates, communication and the rest of the code,
respectively. Table 5 shows us the critical importance of the subproblem solver. First

Muy | Myiock | Teom | Ptsub | Ptblock | Ptcom
3.6 374 54 65.8 | 26.8 5.9

2.8 32.1 2.7 516 | 294 | 17.0

[o < I N N ]

2.1 31.4 3.7 50.1 | 30.5 | 16.9
10 1.7 28.0 5.2 479 | 33.7 | 149
a) Method 1

Mgr | Msup |Mpiock | Tcom | Plgr | Ptsub |Ptslock | Pteom

232 | 58 | 337|108 | 74 | 505 | 356 | 4.8

20.1 5.1 31.2 | 11.1 8.5 38.1 | 42.2 8.3

19.2 | 46 | 275 | 10.1 83 | 29.6 | 469 | 11.7
b) Method 2

Table 5: Execution Profile of the 960 X480 Problem

|| ~]T

we notice that the Jacobi SVD subproblem solver executes much faster than our
version of the Chan SVD. This stems from the fact that the Chan SVD algorithm is
quite complicated. The pipelined architecture of the FPS-164 executes vector floating-
point operations quickly, but control flow instructions and subroutine calls are very
expensive in comparison. The simple Jacobi code, unlike the Chan SVD, does not
suffer from these effects to the same extent. For the same reason, the performance of
the Jacobi solver deteriorates much more gracefully as the subproblem size decreases.
So the shift in the computational load from subproblem to block column updates is

reflected in method 2, where the percentage of execution time spent on the
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subproblem decreases from 51% to 30%. On the other hand, the decline in execution
rate mostly offsets the shift in computational load for method 1 and here ptg,; only
drops from 66% to 48%, much less than what we had expected. This again shows that
counting flops is an unreliable measure of performance in high performance
environments. Also note that the block column updates and the QR algorithm

executed very quickly due to their reliance on matrix-matrix multiplication.

Comparing our parallel algorithm with the one-processor case, we observed the
performance shown in Table 6. It shows the total execution time for the LINPACK

problem size LINPACK SVD Modified Chan SVD
528 X264 156 114
528 X120 48 30

Table 6: Execution Time in Seconds for the Uniprocessor Case

SVD [11] using the assembler-coded BLAS from the APMATHG64 library and for the
subproblem solver of method 1 on a 528 X264 and 528 X120 problem. All other
problems were too big to fit into the memory of one processor. A comparison with
Table 1 shows that our reliance on matrix-matrix multiplication in the parallel code
has paid off handsomely. OQur second method is quite competitive with the one-
processor case and certainly a good choice for problems that are too big to fit into the

memory of one processor.

6. Conclusions. Our experiments have shown that the two-sided Jacobi
method is indeed well suited for distributed systems with vector nodes. We achieve
very high execution speed and communication overhead stays low. What limits the
computational performance is not the communication overhead but the subproblem
solver. We compared two versions of the block Jacobi method that mainly differed in
the degree to which they diagonalize a given subproblem. The first method is a true
block generalization of the scalar scheme in that each off-diagonal block is completely
annihilated. The second method is a scalar Jacobi algorithm reorganized so that it
conforms to the block decomposition of the problem. The comparison of the two
methods shows that we want to spend as little work as possible in the subproblem
solver. Even highly optimized, it will be the slowest part of the code. Unfortunately,
investing more flops to make the subproblem more diagonal is not rewarded by an
adequate reduction in the number of sweeps required for convergence. This suggests
that the performance of the blocked version of a scalar Jacobi SVD will be difficult to

surpass.
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