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ABSTRACT. Transformations of the form A — C; AC2 are investigated that
transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy
matrices. C; and Cs are matrices related to the discrete Fourier transformation
or to various real trigonometric transformations. Combining these results with
pivoting techniques, in part IT algorithms for Toeplitz and Toeplitz-plus-Hankel
systems will be presented that are more stable than classical algorithms.

1. INTRODUCTION

Transformations of the form ® : A — C; AC; mapping one class of matrices with
displacement structure into another class with displacement structure appear in
quite a number of papers in different context. A classical example is the Frobenius-
Fischer transformation (see [15], [12]) transforming hermitian Toeplitz into real
Hankel matrices and so the trigonometric moment problem into the algebraic one.
The general form of such transformations is described in [12]. Another results
concerning transformations of this kind is Fiedler’s theorem [5] which claims that if
¢ and C; are any inverse Vandermonde matrices then ® maps Hankel matrices into

Lowner matrices. Recall that a Lowner matrix is a matrix of the form [:’%27} (see
1 —aj

[4]). As a particular case of this theorem one obtains Lander’s result (see [12]) which
claim that for certain inverse Vandermonde a given Hankel matrix transformes into
a block diagonal matrix. This result is related to that one of Vandermonde reduction
of Bezoutian (see [1]).

In this paper we study transformations mapping Toeplitz and Toeplitz-plus-
Hankel matrices into generalized Cauchy matrices. Recall that a matrix C' = [a;;]
is said to be a generalized Cauchy matriz if for certain n-tuples of complex numbers
c¢=(¢;)} and d = (d;)} the matrix

Ve, d)C = [(¢i — dj)ai;]7

has a rank r which is “small” compared with the order of C'. The integer r will
be called the Cauchy rank of C' (with respect to ¢ and d). Cauchy matrices in the
classical sense are matrices for which (¢; — d;)a;; = 1. Since we always consider
generalized Cauchy matrices we will omit this attribute. Lowner matrices are ma-
trices with Cauchy rank 2. We will also deal with matrices of Cauchy rank 4. In
our paper two cases of Cauchy matrices will appear: (A) ¢; # d; for all i and j,

and (B) ¢ =d.
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There are quite a few theoretical motivations to study transformations between
different classes of structured matrices. So the algebraic theory of one class can be
transferred to the other class. But the main motivation for this paper was a more
practical, numerical one. Let us explain this. The classical algorithms of Levinson
and Schur types mainly work fine if the matrix is positive definite. However, if
the matrix is indefinite they very often suffer from instability even if the matrix is
well conditioned. The reason is that all these algorithms are based on recursions
of the nested principal submatrices which may be ill conditioned. Pivoting as the
main tool to avoid instabilty for general unstructured matrices cannot be applied
to Toeplitz and related matrices since permutations of columns or rows destroys
the structure of the matrix.

Different to Toeplitz and related matrices the class of Cauchy matrices does not
have this disadvantage: Permuations of rows and columns do not destroy their
structure. On the other hand, for Cauchy matrices there exist fast algorithms for
inversion and factorization with essentially the same complexity as the classical
algorithms for Toeplitz and Hankel matrices. Concerning literature on this topic
we refer to [12], [7], [8], [10], [16], [9]. We will discuss this topic in more detail in
the second part.

Thus, it remains to find suitable transformations from Toeplitz-like into Cauchy
matrices. To our knowledge, it was first noticed in [10] that discrete Fourier trans-
formations do this job in an efficient and stable way. In [11] is was remarked
that the DFT is also convenient for transforming Toeplitz-plus-Hankel into Cauchy
matrices. This idea was further developed in [9]. In the later paper also a mixed
sine-I-cosine-II1 was used to transform real Toeplitz-plus-Hankel into Cauchy matri-
ces. Some transformation results for symmetric Toeplitz matrices appear implicitly
in papers on optimal preconditioners (see [21] and [13] for DFT and [14] for the
sine-I transformation).

The aim of the present paper is to continue the investigation in this direction.
Our main aim to give a systematic account of transformations from Toeplitz and
Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. Special attention
is paid to transformations that preserve certain properties like symmetry and real-
ness.

In Section 2 we consider transformation of Toeplitz matrices by DFT into ma-
trices with Cauchy rank 2 and in Section 3 transformations of Toeplitz-plus-Hankel
matrices by DFT into matrices with Cauchy rank 4. Section 4 is dedicated to the
transformation of real Toeplitz-plus-Hankel matrices into real Cauchy matrices. It
turns out that many common real trigonometric transformations, like sine-I-1V,
cosine-I-1V, the Hartley and the real DFT, transform real Toeplitz-plus-Hankel
matrices into matrices with Cauchy rank 4. No special advantage can be gained in
the case of a nonsymmetric Toeplitz matrix. But in the case of a real symmetric
Toeplitz matrix the sine-I, sine-II, cosine-I and cosine-II transformations map them
into the direct sum of two matrices of about half the size with Cauchy rank 2.

Since all transformations listed above are “almost” unitary the condition of the
matrix remains essentially unchanged. Furthermore, for all of these transformations
fast and stable algorithms do exist (see [17], [18], [19], [20],[23]).

The method used in Sections 2-4 is mainly straightforward computation. An
alternative approach via displacement structure is presented in Section 5. The
advantage of the displacement approach is that it can be generalized to Toeplitz-
like matrices, i.e. to matrices T for which T — STTS has a small rank, where
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S denote the forward shift. For the classical Toeplitz and Toeplitz-plus-Hankel
matrices, however, we found the direct approach simpler and more instructive.

In part Il we will present algorithms for the solution of the Cauchy systems
emerging from the transformation of Toeplitz and Toeplitz-plus-Hankel systems.
These will include the LU-factoriztion of the coresponding Cauchy matrices and
their inverses together with partial pivoting techniques.

Let us finally note two other possible applications of the results concerning trans-
formations from Toeplitz into Cauchy matrices. The first one concerns precondi-
tioners for Toeplitz matrices (see also [22]and references therein). Let U be a unitary
matrix such that for a Toeplitz matrix T, C = U~'TU is a Cauchy matrix. Con-
sider preconditioners of the form U~'DU where D is diagonal. The optimal, in the
Frobenius norm, diagonal preconditioner of C' is the diagonal of C, and hence the
optimal preconditioner for T is U ~1diag(C)U. The importance of Cauchy matrices
for iterative methods for Toeplitz methods was recognized in [14].

The second application concerns representations of Toeplitz-like matrices with
the help of trigonometric transformations. These representations are based on the
representation of the corresponding Cauchy matrices. Related results were obtained
using other methods, for example, in [6] [14], and [2]. The representations give rise
to fast matrix-vector multiplication algorithms which can be then used, for example,
in iterative solvers. This will be discussed in more detail elsewhere.

2. TRANSFORMATIONS OF TOEPLITZ MATRICES BY DFT

In this section we show how Toeplitz matrices can be transformed into generalized
Cauchy matrices with the help of complex DFT. Different to the approach in [10],
[9] we do not make explicit use of their displacement structure but give direct proofs
instead.

For A € C, let £(\) denote the column £(A) = [1 A ... A»"17 and S the matrix
of the forward shift,

0 0
1

S =
0 10

We use the fact that the matrices $¥ and (S*)T (k = 0,...,n — 1) form a basis in
the space of all n x n Toeplitz matrices.
For two complex numbers A and p with Ay # 1 we have for £ = 0,1,...,n—1
Anﬂn—k _ )\k )\n—kﬂn _ Nk
TSR (p) = ————, NS U(p) = ————. 2.1
(7t = E TS T = E (2.1
Moreover,

(NTSE LAY = Mo (n—k) and LTSN = AR (n — k).
(2.2)

Let now T = [a;_;]7 be a Toeplitz matrix. Then

n—1 n—1
! /

T=> axS*+> a8, (2.3)
k=0 k=0



4 A. W. BOJANCZYK AND GEORG HEINIG

The prime at the sum sign is according to the following convention:

m ’ ao m
ICIRES 3
k=0 k=1
We introduce the functions
n—1 ; n—l/
ap(t) =Yt a ()= a7, a(t)=a_(t)+ay(t).
k=0 k=0
Furthermore we fix two complex numbers ¢ and n with |£| = || = 1 Let ¢; denote

the n-th roots of ¢ and d; the n-th roots of n. From (2.1) we get for ¢; # d;

)" Te(dT ) = He) = J1dy) (CQ :df@f ) dj, (2.4)

where
Fty=éna_(t) —ay(t), f(t) =a_(t)—&n~ ag(t).
Furthermore, (2.2) leads to
K(ci)TTﬂ(ci_l) = na(e;) — (a'y (¢;) — al_(ei))es, (2.5)

where the prime indicates the derivative. For given n-tuple ¢ = (cg)7, we denote
by V(e) the Vandermonde matrix

1 ¢ ... c'll_1

1 ¢y ... cg_l
Vie) = .

1 ep et

If ¢ is the n-tuple of the n-th roots of ¢ (in a certain not specified order) then we
set
FO =
Vvn
Note that F(1) is the DFT in the usual sense and
F(&) = F(1)diag (1,¢1,...,c77 1.

As an immediate consequence of relation (2.4) and (2.5) we obtain the following.

V(e).

Theorem 1. Let £, be two complex numbers with |£| = |n| = 1, ¢x the n-th
roots of & and dy the n-th roots of n (k = 1,...,n). Then for a Toeplitz matriz
T = [a;—;]} the matriz C := F(&)TF(n~ "7 has Cauchy rank < 2. The entries ¢;;
of the matriz C are given by:
d; f(ei) = f(d;) :
Cij = n e —d; a7
a(e;) — %(a’_l_(ci) —a (¢))e. e =d;

Remark 2.1. For arbitrary Vandermonde matrices V(c) and V(d=1), whered™1 :=
(dih,....d7Y), the matriz C = V(e)TV(d™Y)T has Cauchy rank < 4 with respect
to c and d. This is also true for confluent Vandermonde matrices.

Remark 2.2. One gets a Cauchy matriz with Cauchy rank 2 if T is multiplied by
the inverses of Vandermonde matrices. This was first observed by M. Fiedler [5].
Since this fact seems to be not relevant for the construction of fast stable algorithm
we do not discuss it in detail.
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We now consider some special cases.

2.1. Nonsymmetric standard choice. In [10] it was proposed to choose & = 1
and n = —1. In this case we have f(t) = —f(t) = a(t). The entries of C =
F()TF(-1)T are given by
_owj a(w;) +a(ow;)
T T wi—ow;
where w; are the n-th unit roots and o = exp(7wi/n).

2.2. Hermitian Toeplitz matrices. If the Toeplitz matrix T is hermitian, i.e.
a_; = a;, it is desirable to have also an hermitian matrix after the transformation.
Therefore, it is convenient to choose & = 5 = 1. In this case we have f(t) = f(t) =

a_(t) — a4 (t). Furthermore, since in the hermitian case a4 (t) = a_(¢) we have
f(t) = —2iImay (t) . Relation (2.5) goes over into

E(wi)TTE(@) = —2Re (na4(w;) + wia’_}_(wi)).
We arrived at the following.

Theorem 2. Let T be an hermitian Toeplitz matriz. Then C =
F()TF(1)* is an hermitian matriz with Cauchy rank < 2 (with respect to ¢ = d =
w) given by C = [e;5]7,

2 Imay(w;) — Imay (wj)

Cij = ni 1 — witg; 77
—2Re (ay(w;) + %wia’_l_(wi)) 1=
The following fact concerning the matrix C is still more important for our con-
struction of fast algorithms in part II.
Corollary 1. If T is an hermitian Toeplitz matriz and D(w) = diag (w;)Y then
C= %i}"(l)T}"(l)*D is a complex symmetric matriz satisfying
D(w)C — CD(w) = ZKZ7,
where

Z =col[1 Imay (wi)]y, and K = [ _01 (1) ]

We show that hermitian Toeplitz matrices can be transformed even into real
Cauchy matrices. For this we fix a complex number ¢ with absolute value 1 different
from the n-th unit roots wy. We introduce real numbers z; by

(+wj. 2Imu(
;= i= >,
T G wf?

Then
1-— wiw; = —2i (CL‘Z + i)_l(l‘i - I‘j)(l‘j - i)_l.
This leads to the following.

Theorem 3. Let T be an hermitian Toeplitz matriz and Dy = diag ((z; i)=1ym.
Then C = DyF(1)TF(1)*D- is a real symmetric Cauchy matriz given by C =
[€i]7
11 i) —1 . o
. 1 may (w;) —Imay (wj) i
CZ] — n T — l‘j
—2(a? + 1) Re (ay (w) + Lwial (@) =]
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If we have a real symmetric Toeplitz matrix the Theorem 3 describes a complex
transformation into a real symmetric Cauchy matrix. In Section 4 we show that
such matrices can be transformed into two real symmetric Cauchy matrices of about
half the size with the help of real transformations.

2.3. Symmetric Toeplitz matrices. We discuss now a transformation that trans-
forms complex symmetric Toeplitz matrices into symmetric Cauchy matrices. Let
in Theorem 1 ¢; be the roots 0f~i =+—1land d; = cj_l. Then the d; run over all
n-th roots of —i and f(¢) = —f(t) = a(t). If now T is symmetric then we have
a(t=1) = a(t). Thus Theorem 1 goes over into the following.

Theorem 4. Let T be a complexr symmetric Toeplitz matriz. Then C = F(i)TF(i)T
is a symmetric matriz with Cauchy rank < 2 given by C = [c;;]7,

_ale) +aley)
E 1-— CiCj
where the ¢; are the n-th roots of 1.

In order to get the matrix C' in a form which is more convenient for the ap-
plication of the algorithms described in part II we use the same linear fractional
substitution as in the previous subsection. Here however it is possible to choose
¢ = 1. That means we set

_14g.
Tj =1 . i
Then the z; are reals and the entries of C' can be represented in the form

. alei) +aley) .
Thus we get the following

Corollary 2. IfT is a complex symmetric Toeplitz matriz, D(z) = diag (z;)7, D+
as in Theorem 2.5 and C' = 2iD, F()TF()T D_. Then
D(z)C +CD(z) = ZKZ7,

where

7 =col[1 a(e;)]}, K= [ ; (1)]

3. TRANSFORMATION OF COMPLEX TOEPLITZ-PLUS-HANKEL
MATRICES BY DFT

In this section we show that complex Toeplitz-plus-Hankel matrices can be trans-
formed into matrices with Cauchy rank < 4 with the help of DFT. Suppose that
A =¢% and p =¥ (¢,9 € R). Then

A T O = ) (A — 1) = 2(cos ¢ — cos ).
We apply this relation for A = ¢ = exp ¢xi and p = d; = exp ¢;i where c;, are the

n-th roots of € and d; the n-th roots of 5, || = |p| = 1. Then we obtain from (2.4),
for a Toeplitz matrix T defined by (2.3),

2eid;(cos ¢; — cos ;) l(e:) TTU(d;) = (es — d;)(G(er) — g(dj ), (3.1)

where
§(t) = &na_(t) —ay(t), g(t) =a_(t) —&nay(t),
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and a_(?) and a4 (t) are defined as in Section 2.
We consider now Hankel matrices

H = [big ;]2 Z n 1k d S¥ + bu_ 141 S5T), (3.2)

where J denotes the counteridentity,

1
J =
1
Then
(e — dj)(c:)T HU(dj) = h(c:) — h(dy),
where
- n-1,
h(t) = (bno1—gt™* — nbn_14xt*),
k=0
n—l/
h(A) =Y (bao1—gt™ ™" — Ebp_14kt¥).
k=0
Hence

2¢;d;(cos ¢; — cosp;)(c ')THE(dj) = (¢idj — 1)(%(01) — h(dj)). (3.3)

For a Toeplitz-plus-Hankel matrix A = T+ H we have now
2¢id;(cos ¢; — cos y;)e(ci)TAL(d;) = (cigles) — hle)) = (d(er) — eih(ei))d;
—ei(g(dy ") + d;h(d;)) + (d; ( 7 1)+ h(dy)).

Thus we proved the following.

Theorem 5. Let &, ) be two given complex numbers with || = |n| = 1, ¢;, d; the n-
th roots of & and 1, respectively, cos ¢; = Rec;, cosp; = Red;. Then for a Toeplitz-
plus-Hankel matriz A = T+ H, the matriz C := F(§)AF (n)T has Cauchy rank < 4
with respect to (cos ¢;)7 and (cos;)7. If & # n and {n # 1 then cos ¢; # cos;

and the entries ¢;; of C' are given by

_ plei) = qlei)d; — ciq(dy) + p(dy)
N 2ne;(cos ¢; — cos ;)d; ’

where
p(t)=tg(t) — h(t), q(t)=g(t) — th(t)
p(t)=tg(t=") + h(t), q(t)=g(t~") +th(t).

Remark 3.1. 1. The entries of C' can also be described in the cases & = 1 and
&n = 1 using the relations

n—1
/
Uei)THO(e:) = €D (n— k) (bao1—ke} ™* " 4 by_1qpef 571
k=0
and (2.5).
2. For a simple implementation it is desirable to have also cos ¢; # cos¢; for
i # j. This can be guaranteed if & and n are chosen nonreal. One possibility

is{:—n:%(l—}-i).
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3. In the case of an hermitian Toeplitz-plus- Hankel matriz the transformed ma-
triz will be hermitian again if £ = 7. We suggest to choose ¢ = —n =i (rather
than & = n = 1). With this choice we have cos ¢; = cos ; and cos ¢; # cos ¢;

fori#j.

4. REAL TRIGONOMETRIC TRANSFORMATIONS

The disadvantage for the transformation with the help of DFT is that complex
arithmetics is required also if the matrices are real. In this section we discuss
some real trigonometric transformations. These transformations, however, trans-
form Toeplitz matrices into matrices with Cauchy rank < 4 rather than 2. This
value can also be achieved for Toeplitz-plus-Hankel matrices. Therefore in this sec-
tion we derive transformation formulas for Toeplitz-plus-Hankel matrices. Later in
the section we show that these formulas can be much simplified in the case of real
symmetric Toeplitz matrices. Therefore we make all considerations for this class.
Special attention is however paid to real symmetric Toeplitz matrices where some
essential simplification can be gained.

4.1. Transformation with Chebyshev-Vandermonde Matrices. Asthe DFT
is a special Vandermonde matrix, the real trigonometric transformations are special
Chebyshev-Vandermonde matrices, up to diagonal factors.

Polynomials ug (A) (k =0, 1,...) satisfying the recursion

up+1(A) = 22 ug () — ug—1(A) (k=1,2,...) (4.1)
will be called polynomials of Chebyshev type. The Chebyshev polynomials of the
first kind T (A),

Tj (cos §) = cos ko,

have this property and satisfy the initial conditions ug = 1, uy(A) = A, and the
Chebyshev polynomials of the second kind Uy (A),

Uy (cosf) = sin(k + 1)0/sin@

also satisfy this recursion with the initial conditions ug = 1, u3(A) = 2A. If ug(A)
and uj(A) are fixed then (4.1) defines ug(A) also for negative k. In particular,
U_1=0and T_1(A) = A.

For two sequences of polynomials ug(A) and g (A) satisfying (4.1) we introduce
the vectors u(A) = (uk()\))g_l and () = (ﬂk()\))g_l. The following lemma is
crucial for the further investigation.

Lemma 1. If S denotes the matriz of the forward shift, then

Q(A—p)ﬂ(A)TSku(u) = UplUp_g—1 — UgU_1 + Up_1Ug — Up—1Up—_k
Z(A—u)ﬂ(A)TSkTu(u) = Up_gUp—1 — UQUE—1+ U_1Up — Up_f—1Up
Z(A—p)ﬂ()\)TJSku(,u) = Up_pUy — UgUp—f + U_1Up_1—k — Up_1—fU_1
2(A = u)ﬂ()\)TSkJu(u) = UpUp — UplUp + Up_1Up—1 — Up—1Uk—1-

We have

Uitn (A)ui(p)-

TEE S
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According to the recursion (4.1) we get

n—k—1
2(A = pya(A) Z ((Tight1 + Uiph—1)Ui — Uigr (Uigp1 + ui—1)) -
=0
Telescoping the latter sums we obtain the first equality. Analogously, the other
relations are verified.

A matrix of the form

U@) = [uj-1(2:)]7 =1, (4-2)

where z = (z;)7 € R™ is called Chebyshev-Vandermonde matrix. The following is
an immediate consequence of Lemma 1.

Proposition 4.1. If I](~) and U(z) are Chebyshev Vandermonde matrices then
for any Toeplitz-plus-Hankel matriz A the matriz L{( JAU(x)T has Cauchy rank
< 8.

We are looking now for special choices of u;(A) and x; for which the transformed
matrix has Cauchy rank < 4. There are many possiblities. We restrict ourselves
to those which lead to the classical sine and cosine transformations because for
them fast and stable algorithms are well known and, furthermore, they have some
additional symmetry properties that simplify the computation. In particular we
will get matrices with a 2 x 2 block structure [Cj;]% such that the Cj; have Cauchy
rank < 2. In the case of a symmetric Toeplitz we have even C12 = C21 = 0.

4.2. Sine-I Transformation. Let us deal first with the case of Chebyshev poly-
nomials of second kind, @#(\) = u(\) = U(X) = (Ux(\))a~". We introduce

T d e s T
T an yl._smn_}_1

(i=1,...,n).

The z; (i = 1,...,n) are just the roots of the polynomial U, (A). Furthermore we
denote

T; 1= COS

g iy
n+1 n+1

The matrix U (z) is related to the sine-T transform which is the matrix-vector mul-

tiplication by
5 . n
Shi= 1/ sin —2= .
n+1 n+1 Q=1

From Lemma 1 we get
200 = WUV () = Un (NUn=1(p) = Un=1(\)Un (1),

which implies U(2;)TU(z;) = 0 for i # j and 2U(z;)T U (;)
Taking into account that U,_1(z;) = (— 1)“‘1 and y?U/! (z;) =
obtain the well known fact that S = (§I)~1

It is important to observe the symmetry relations

sij :=sin =y;Uj_1(2z;5), c¢ij := cos = T;(z;).

1)

Sip = (_1)i+15i,n—k+17 Cip = (_1)ici,n—k+1-
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In particular, s;, = y;Un_1(2;) = (—1)"*1y;. Using these relations, we obtain from
Lemma 1

X

2(x; — ) yiy; Ul ) Ulz;) = sikyy — (=) yisji,

2(z; — x)yiy;U(x:)" SkTU(fﬂy) (=D siky; — visjn

2es — 2y iU ) TS (25) = (=) siwyy — (<1 sy o)

2(zi — ;) yiy; U )T SETU (25) = (=1 siey; — (= 1)+ yisje. '

From relations (4.3) we may conclude how Toeplitz-plus-Hankel matrices are trans-
formed by the sine transform except for the main diagonal. In order to evaluate
the main diagonal we differentiate the first relation in Lemma 1 with respect to y
and obtain

2U ()" S*U (2:) = Un—1(2:)Uf_g (23).-

Since
VL) = g O () = (k)T (V)

we conclude

Y Un k(@) = (=1)"*
where

tip = imisik +(n—k+ ek

Hence Z

202U (2:)T SEU (2) = . (4.4)

The same expression we get for 2y2U (z;)T S*TU (z;).
Differentiating the third relation in Lemma 1 with respect to A we obtain

297U (2:)T T S*U (21) = g2 Uy (1) = (=1)F g (4.5)
Due to symmetry or skew-symmetry of the vectors U(z;) we get the same expression
for 292U (z;)T S*JU (x;).
We consider a Toeplitz-plus-Hankel matrix A = [a;_; + biy;]5~
can be represented in the form

L. This matrix

n—1
/
A= (xS +a i ST + bu_1_kJS* + bu_14£S*J). (4.6)
k=0
We introduce the numbers
n—1 n—1

1 ! 1 ’
+ +
o= i s - = i bn— s 4.7
fi n—i—lg SikG4k 9; n+1§ Sikbn_14k (4.7)
k=0 k=0
1 n—ll 1 n—1

/
h; = Z ti(ar +a_g), l; = z tik(bn—1—k + bn—14k)
n+ i3 n+ iz (4.8)

and f; = fi" + f7, g: = g} + g7 . We arrived at the following.

Theorem 6. Let A be given by (4.6). Then the matriz SL ASL = [v;;]7 has Cauchy
rank < 4 with respect to (z;)} and the entries are given by

aly; — yzﬂ;l) oy

Vij = T —x; ' J

M
h; + (—1)Z+lli 1= _]
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where

ol = fE 4 (ST (=) + (<1
B = (1) EE 4 7 (21T g+ (1)t

Let TI denote the even-odd shuffle matrix, IT(z;)} = (21, 23, 2, #4,...). From
Theorem 5 we get now the following.

Corollary 3. If A is a Toeplitz-plus-Hankel matriz then 11T SIASIII has a 2 x 2
block structure [Cix]? where Cy, have Cauchy rank < 2.

In particular, for real symmetric Toeplitz matrix

|
-

T =lai—jli = ) k(8" + (5)7) (4.9)

Bl
I

we get the following
Theorem 7. Let T be given by (4.9). Then

C 0

T oI I _ even

7 SITsIm = [ e ]

where Ceyen = [c;‘ée“]’lﬂl and Cyqq = [cggd]TQ, my = [”T‘H], my = [%] are given by

Jap¥2q — Y2p f2
pJaq P q:p¢q

Cpq = I2p — T2q 3
hap p=yq
f2p—1y2q—1 - y2p—1f2q—1 .
codd _ - — p£q
Pq - 2]9—1 2(]—1

hapt1 p=yq

4.3. Cosine-I Transformation. We assume now that in Lemma 1 &g () = ug(A) =
Ti(A). We introduce the vector polynomials

TO) = (T(\)g ™" and  T(A) = (a6 Tk(N)5 ™,

fk:{% : k=0, n-1

where

1 @ k=1,...,n—-2

We consider these vector polynomials at the points
jm

n—1

(i=0,...,n—1).

Ij = COos

Furthermore we introduce

. Jm
;= sin
Yi n—1
and N
T .oym
— = Lizg), sij =sin = = y;Ui_1(;).

Cij ‘= COS8

Let us point out that the quantities z;, ¥;, ¢;; and s;; are different to those ones in
the previous subsection.

The vectors T'(z;) are related to the cosine-I transformation which is the matrix-
vector multiplication by
n—1
x; .
( 2)} i,j=0

n—1

)
—~
I
(S
| e |
-
Ly
)
o
wm
~
| |=t
3
| I
3
-
(S
—
3

7,7=0
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Different to the sine-I transformation C! is not symmetric and not unitary. But, as
for the sine-1 transform, the relation (C1)~! = C! holds.
We have the following symmetry relations for the ¢;; and s;g
cit = (=)' cin_1-k, sk = (1) sin_1 k.
In particular,
Tno1(2i) = cino1 = (1), Ta(z) = ein = (=1)'2;.

In order to study the action of the cosine-1 transformation to Toeplitz and
Toeplitz-plus-Hankel matrices we study their action on the powers of the shift S*.
We have to distiguish the cases: (a) k#0,n—1, (b) k=n—1,and (¢) £k = 0.

Case (a): k #0,n — 1. Applying Lemma 1 we get

200 — )TN S*T(n) (4.10)
= Ta(N)Tak-1(4) = TN pTs -1 (A) = Tooa (N Tnmi (1)

This implies

2(0 — )TN S*T (1) = (@.11)
T M Tk () = M (A) + T 1 (A) = T a (M) Tk (1)
fork=1,...,n—2.
From (4.11) we obtain now
2z — 2j)T(2:) S T(xj) = (=1)'" (2;Ti () — Teo1(2;)) — 2iTie () + T ().
In view of
Ti_1(z;5) — 2iTk(2i) = € k-1 — TiCik = YiSik
we conclude
2(z; — :L‘j)T(:Ei)SkT(CL‘j) = YiSik — (—1)i+jyjsjk (4.12)
fork=1,...,n—2.
Analogously, for k£ £ 0,n — 1,
2(2; — ;)T (2:)S*T T (2;)
2(w; — ;)T (2;) T S" T ()
2(2; — ;)T (2:)S* JT ()

(=) yisik — yysix
(=1)'wisik — (=1)"yjs5k
(=1 yisik — (=1)"yj5;k-

In order to compute the diagonal of the cosine transformed matrices we differ-
entiate (4.11) with respect to p and obtain

T(a:i)" S*T(w;) = —Tuo1 (@) Tmp—1(2i) = To(@:) Ty _j_1(2s)
+T—1 (i) T (1) (4.13)
for k =1,...,n— 1. Since T} (A) = kUg_1(A) we conclude, as long as y; # 0,
27 (2)T " T (w:) = —ein + (n — k= N ZE0 — (n— j) ==t
Due to s; 1 = is;x — yicik this implies
TiSik

tik = 2T(.Z‘Z)T5kf(l‘z) = (77, — k- 1)Cik -
Yi
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For i = 0 or 2 = n — 1 we have y; = 0. In this case #;; can be calculated directly
from (4.13) giving

= Pk ) 2(n—k—1) fori=10

Tla:)” S7T (i) = { (-1)k(n—k—1) fori=n-—1.

Furthermore,
T(2) T S*TT(2;) = (=1)'T(2:) T TS T () = (=1)'T ()T S*TT (i) = tin/2-
Case (b): &k = n — 1. In this case we obtain via direct calculation the relations

T(e)S T () = (=1)'/4, T(a) ST () = (=1)7 /4,

T(z:)S" 1T (x;) = 1/4, T(2;)JS" T (z;) = (=1)iti /4,

Case (c): k = 0. For this case we use the fact that (C!)? = I,. From this we obtain
fori £0,n—1

~ ~ n—1 1

T(x:)"T(z;) = T(SM - Z(l + (=1)"). (4.14)
Furthermore,
~ T ~ T 2n —3
T(I‘o) T(CL‘()) = T(éL‘n_l) T(l‘n_l) = 2
and
~ ~ ~ ~ 0:neven
T(20)" T(#n-1) = T(2n-1)" T(x0) = { —1/2:n odd

The last relation shows that (4.14) is valid for all ¢ # j.

In order to calculate T(IZ)TJT(Z‘J) one has only to multiply the previous ex-
pressions by (—1)7.

Now we have a complete collection of transformation formulas and a theorem
can be formulated which is completely analogous to Theorem 3.1. As a consequence
we obtain the following.

Corollary 4. If A is a Toeplitz-plus- Hankel matriz then U7 CL A(CI)TTI has a 2 x 2
block structure [Ci;]} such that the matrices C;; have Cauchy rank < 2. If A is a
symmetric Toeplitz matriz then moreover C1o2 = Ca1 = 0, i.e. the transformed
matriz is the direct sum of two matrices with Cauchy rank < 2.

4.4. Cosine-III and Sine-III Transformations. We study now the transfor-
mation of Toeplitz-plus-Hankel matrices with the cosine-IIT transformation. Due
to weaker symmetry properties of this transformation we will not get an essential
simplification for the case of a symmetric Toeplitz matrix.

With the Chebyshev polynomials of first kind Ty (A) we form the vector

TG = mTe(A)g ™,

where

e = %:k:O
1:k=1,...,n—1

and consider T()\) at the Chebyshev nodes

(27 4+ )

T: = cos
7 2n

(j=0...,n=1),
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which are the roots of T, (A). Furthermore we define

. (254 O)m
y; = sin ———
n
and (25 4 1) .
127+ 1)m .25+ )
cij = Ti(x;) = cos oy S = y;jUi(zj) = sin 5

Note that again the quantities z;, y;, ¢;j, and s;; are different to those ones in the
previous two subsections.

The vectors T(Z‘J) are related to the cosine-III transformation which is defined
as the matrix-vector multiplication by

j(2i + T 2 -
ey = \f [m )= ] =\/5 W@l
7,7=0 n :
The inverse of C1T is the matrix of the cosine-II transformation
P e n—1
CiI = \/Z [cos 71(2]_—1— 1)7T] .
n 2n 7,7=0
This follows from the equality

200 = w) TN T(1) = TN T (1) = Tea (N T (1),
which is a consequence of (4.10). From (4.10) we obtain also the equalities
200 = ) T(A\)S* T () (4.15)
= Ta )T () + Teer () = M (A) = T s (N T (1)
fork=1,...,n—1 and
. . 1
200 =TT () = TN Ta-1(p) = Taa (N T (8) = 5(A = ).
(4.16)
We have the symmetry relation
it = (—=1)'sin_k-

In particular, ¢; 1 = (—1)iyi. With these relations and ¢; 1 = ®;cir + Ys S We
conclude from (4.15)

2w — ;) T(i) ST (25) = ilsie — (—1)F sj1), (4.17)
fork=1,...,n—1 and
27 ()T (x5) = —%. (4.18)

Analogously we obtain the following relations, using the equality s; x41 = ®;six +
YiCik-

2w — ) T(2) S T(x;) = (=1 six — sj0)ys (4.19)

2wy — )T () IS T(x;) = (=1)'gicin — (=1) y;c5x (4.20)

2(x; — :L‘j)T(JJZ')SkJT(;L‘j) = (—l)jci7k_1yj — (—1)iyicj7k_1. (4.21)
Relations (4.19) and (4.21) hold for & = 1,...,n — 1 whereas (4.20) holds for
k=0,...,n—1.

Differentiating (4.15) with respect to p and putting A = g = x; we obtain
ZT(lZ)SkT(CL‘Z) = 2T(Il)5kTT(:L‘Z) = (n - k)cik. (422)
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Furthermore, after some elementary calculations one gets
W () TS T(x;) = (=1) ((n—k)sik_1 — cin/yi — six) (4.23)
27 (2;) 8% JT () (=1) (neiw/yi + (k — 1)si5-1) - (4.24)
Now with the help of relations (4.17)—(4.24) one can show how Toeplitz-plus-Hankel

matrices transform with the cosine-III transformation. In particular, we obtain the
following.

Corollary 5. If A is a Toeplitz-plus-Hankel matriz then T CIHT A(CIHI)TTT has a
2 x 2 block structure [Cy;]3 such that the matrices Ci; have Cauchy rank < 2.

Note that similar formulas hold for the sine-III transformation which is defined

by
STIT — \/7 [77] sin J( 22 L ]

4.5. Cosine-II and and Sine-II Transformations. We show now that also the

5,j=1

the cosine-II and sine-II transformations are also suitable for the transformation of
Toeplitz and Toeplitz-plus-Hankel matrices into Cauchy matrices. Because of their
symmetry properties they are convenient for symmetric Toeplitz matrices. For this
we consider the polynomials Vj (A) of Chebyshev type defined by

VEN) = Uk (N) = (U1 (V). (4.25)
Then V% (X) = 1, Vp(\) = 1. Furthermore, it is easily checked that

2k+1 s 2k41
cos 2520 sin 25120
Vit (cosB) = 726 and V. (cosf) = —; 29
cos 3 sin 3
We define ) ) )
T i .o
x; :=cos —, & :i=cos—, (;:=sin—
n 2n 2n
and
i(2k 4+ \)m .12k + ) _
Cik i= COS % = &Vlj(mi), Sik = sin % =GV (=),
In particular, ¢;,_1 = ¢jo = & and s;,_1 = —s;0 = —(;. We have the following
symmetry relations
Cin—k—1=(—1)cig, Sim—k—1 = (=1)Ts.

;From Lemma 1 we obtain now the following relations for V(\) = (Vi (A))a~1:
2 — 2)&& V()T SV (25) = (cinor— )G — (1) &i(cinm1 — ei)
2(w; — 2))&6&VE (2:)T STV (25) (= 1)“”(0 k=1 = i) — &ilCjh-1— k)
2@ — 2)6& V(@) ISV (25) = (=1 (ein-1— cin)€y — (=1)&ilej -1 — cj8)
2w — 2;)&& V' (20)T STV H () (=17 (eip-1 = )& = (=1)"&i(cin-1 — cjp)
and

2z — 2) GGV (IZ Vo (
2w — x;)GGV (CUZ)TSkTV (
)CZCJ (IZ)TJ V7 (z;
VGGV (2)TSFIV(

Cj

sig—1+ sik)G — (1)

—1)™ (si -1+ sin) G — Cilsjp—1 + k)
—1) (8ik—1+ sik)C — (=1 Gi(sj,h-1+ Sjk)
1) (sip—1+ sik) GG — (=1)'Ci(sj—1+ sj)-

Zj 8jk—1+ Sjk)

Zj

) (
) (
2(zi — 2 ) (
) (

2(z; — z; z;
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This leads to the following.

Corollary 6. If A is a Toeplitz-plus- Hankel matriz then the matrices TIT CLT A(CIYTTT
and T ST A(STHTTI have a 2 x 2 block structure [Ci;]? where the matrices C;; have
Cauchy rank < 2. If A is a symmetric Toeplitz matriz then moreover C13 = Cyy =

0, i.e. the transformed matriz is the direct sum of two matrices with Cauchy rank
< 2.

4.6. Mixed Transformations. Of course, it is possible to combine different trans-
formations. We show this for the combination of the sine-I and cosine-1 transforma-
tion. The advantage of this combination is that a symmetric Toeplitz matrix will
be transformed into the direct sum of two matrices with Cauchy rank 2. However
these two matrices are clearly not symmetric. A potential advantage of this kind
of transformation is that in the case of even order the nodes of the corresponding
Cauchy matrices are pairwise different. This leads to simpler recursions in Cauchy
solvers discussed in Part II of this paper.

Let T'(\) be defined as in Subsection 4.3 and U()) as in 4.2. According to Lemma
1 and (4.11) we have

20— W)U (TS T() (4.26)
= Un ()Tt (1) = AU (A) + U1 () = Un 1 (N T (1)
Let 2;, yi, ¢ij, sijs (4,5 = 1,...,n) be defined as in Subsection 4.2 and let

/
[

— CL‘;-ZC/U (4,7 =0,...,n—1).
i

Then we get fromi{426°

2(x; — I;)U(:EZ)TSkT(Ig) = —%;Sik+1 + Sik + (—1)i+jc;»7k_1.

Taking into account that s;r = 2;8; k41 — Y56 k+1 We conclude that

2a; — 25U ()" SFT(2)) = —cippr + (1) 4y (4.27)
fore=1,...,nand 7 =0,...,n— 1.
Analogously,
2w; — 2 U(x) " SFTT(2h) = —(=1)"Heippr+¢ey (4.28)
2wy — 25U (2y) T ISFT(2}) = (1) eipsr — (1)7¢5 44 (4.29)
2w — 2f)U ()T SFIT(2) = —(=1Veipqr+ (—1)'¢f 5y (4.30)

fore=1,...,nand 7 =0,...,n— 1.
Let us assume that the order n is even. Then z; # 2 for all i and j. For a given
Toeplitz-plus-Hankel matrix A defined by (4.6), we introduce the numbers

1

n—1 n—1
PO N U B R
; = . i, ) = . i k—10+k)
Z n?—1,= ! ”2_1k:0J

+ 1

n—1 1 n—1
1+ /
9 = —FV— Ciktibno1tr §;T = —— Cih_1bn—14k-
' vnz—lg_;) ! vn2—1,;)]’

From (4.27)-(4.30) we get the following.
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Theorem 8. Let A be given by (4.6). Then the matriz S ACL = [v;;]7 has Cauchy
rank < 4 and the entries are given by

s = it

Vij = T; — 33"7
where
af ) = ()M 4 (D - (1
B = (D)L - T+ (g - (<)

Theorem 9. Let T be given by (2.3). Then
nrsire;n = [ even ]
odd

where Ceyen = [¢ ;;e“]ml and Coaa = [ Odd]T2, my = = [%] are given by

Jap¥2q — Y2p f2
pJaq pJaq | p¢q

even __

Cpg = Top — T2q )
hap p=yq
fap—1Y2q—1 — Y2p—1f2q— L
odd __ # q
Cpqg = Tp—1— T29-1

hapy1 p=gq

4.7. Real Modifications of DFT and the Hartley Transformation. There
are some real modifications of the complex DFT which can also be used to transform
Toeplitz-plus-Hankel into Cauchy matrices. Among them is the Hartley transfor-
mations.

Let ¢; (i = 1,...,n) denote the n-th roots of 1 or —1 ordered in such a way that
car = C25—1 (0 < k< (n—1)/2) and let a; € C be given such that askasg_1 is
nonreal for all k. We introduce vectors u; = (u”)] Zo by us; = o c + a; cJ and the
matrix R, by

R = [uij-]7 -
The matrix R, is obtained from the DFT F,(1) or F,(—1) after multiplication
from the left by a permutation matrix and a block diagonal matrix with blocks

[ @ @iy ]
Q; @1 |
Clearly R, is nonsingular if aggagr_1 is nonreal.

We consider two special cases. First we choose agr_1 = 1/2 and agp = i/2.
Then we obtain the real DFT FR,, with entries cos 2ijm/n and sin 2éj7/n.

Secondly, we choose @ = (1 —1)/2. In this case we obtain a row permutation
of the discrete Hartley transformation which is, by definition, the matrix-vector
multiplication by
2ijm . 2im]"”

+ sin —— .

n n |,

As it can be checked, both the real DFT and the Hartley transformation trans-
form Toeplitz-plus-Hankel matrices into matrices with Cauchy rank < 4. Due to
the lack of symmetry properties these transform do not appear to offer any ad-

H, = |cos

ventage for transforming symmetric Toeplitz matrices. Therefore we refrain from
presenting the explicit formulas.
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4.8. More Transformations. There are more Chebyshev Vandermonde trans-
formations transforming Toeplitz-plus-Hankel matrices into matrices with Cauchy
rank < 4 which we did not include in this paper. However most of them does not
have the nice symmetry properties of the sine-I and cosine-I transformations.

For example, the cosine-IV and sine-1V transformations

G 9 9 ; n—1
Civ = \/z [cos (2i+ 1))+ 1)7]
n 4n o

p o a v n—1
SIV — \/Z [sin (ZZ + 1)(2.7 + 1)7T:|
n n 4n

0
have similar properties like the cosine-IIl and sine-III transformations. To get
the corresponding formulas one has to take, as in Subsection 4.5, the polynomials
Vki()\) = Ui(A) — (£Ug—1(N)) and to consider them at the points z; = W
Furthermore, one can consider the vectors U(A) at the roots of U, (A) — n for

n = +1, which are cos Z:L—” and cos %)l for n =1, and cos 33_”2 and cos %ﬁ for
n = —1. For general Toeplitz-plus-Hankel matrices it is recommended to combine
the cases n = 1 and n = —1. Similarly one can consider the vector U(\) at the roots
of Up(A) £ Up—1(A). In all cases one gets transformations transforming Toeplitz-

plus-Hankel into Cauchy rank < 4.

and

5. DISPLACEMENT APPROACH

We discuss now different approach to obtain the transformation results from the
previous sections. This approach is based on a quite general but very simple idea.
This idea was used in [10] and also in [9]. The approach utilizes the concept of
displacement structure.

Let U,V be two fixed matrices. The UV-displacement rank of a matrix A is by
definition the rank r of V(A) := AU — VA. If r is small compared with the order
of A then A is said to possess a UV-displacement structure. Assume that U and
V admit diagonalizations

U=QDEQr", V=0Q:D(d)Q;",
D(c) = diag (¢;)}, D(d) = diag (d;)7. Then then following is obvious.

Proposition 5.1. If A has UV -displacement rank r then C = Q;lAQl has Cauchy
rank r.

We present now a survey of the displacement operators corresponding to the
transformations discussed in Sections 2-4. In Section 2 we considered the com-
plex DFT transformation F, (€¢). The displacement operator corresponding to this
transformation is the &-cyclic shift operator

for which
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where ¢ is the n-tuple of the n-th roots of &, and ¢ is chosen in one of the several
ways described in Section 2.

In Section 3 and 4 we considered real trigonometric transfromations. The dis-
placement operator U for these transformations has the eigenvectors which are
the columns of the transpose of the matrix of trigonometric transformations. The
corresponding displacement operators are listed below.

All rows with the possible exception of the first and last two ones are of the form
[0...01010...0]. The entries which differ from the displacement operator for
the sine-I transformation are written boldface.

SIN — T COS —1
[0 1 [0 1 ]
1 0 2 0
1 2
L 0 L 0 -
SIN — IT COS — 11
[ -1 1 1 ]
1 1 0
0 1 1
L 1 -1 L 1 |
SIN — ITI COS — 111
[0 1 [0 1 1
1 0 2 0
1 1
L 0 L 0 -
SIN — IV COSs — 1V
[ -1 1 1 1
1 0 1 1 0 1
1 0 1 1 0 1
L 1 1 1 -1
HARTLEY and Real DET
0 1 1
1 0 1
U:
1 0 1
1 1 0

In the last case the transformation is not uniquely determined by the displace-
ment operator U since U has double eigenvalues.

REFERENCES

[1] G. Sansigre and M. Alvarez, On Bezoutian reduction with the Vandermonde matrix, Linear
Algebra Appl. 121:401-408 (1989)

[2] E. Bozzo and C. di Fiore, On the use of certain matrix algebras associated with discrete
trigonometric transformnsin matrix displacement decomposition, SIAM J. Matriz Anal. Appl.
16:312-326 (1995)

[3] D. Bini and V. Pan, Polynomial and Matriz Computations, vol.1, Fundamental Algorithms,
Birkhauser Basel, Boston, Berlin 1994.



20

A. W. BOJANCZYK AND GEORG HEINIG

[4] W.F. Donoghue, Monotone mairiz functions and analytic continuation. Springer-Verlag

Berlin-Heidelberg-New York 1974.

[5] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl. 58:75-95 (1984).
[6] I. Gohberg and V. Olshevsky, Circulants, displacements and decompositions of matrices,

Integral Equ. and Operator Theory 15: 730-743 (1992).

[7] 1. Gohberg, 1. Koltracht, P. Lancaster, Efficient solution of linear systems of equations with

recursive structure. Linear Algebra Appl. 80: 81-113 (1986).

[8] 1. Gohberg, T. Kailath, I. Koltracht, P. Lancaster, Linear complexity parallel algorithms for

linear systems of equations with recursive structure, Linear Algebra Appl. 88/99: 271-316
(1987).

[9] 1. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial pivoting for

matrices with displacement structure, Math.of Comp. (to appear)

[10] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices.

In The IMA Volumes in Mathematics and Its Applications, Springer-Verlag, volume 69,
Lectures presented at the IMA Workshop on Linear Algebra in Signal Processing, Minneapolis
April 1992, A. Bojanczyk and G. Cybenko, Editors, pp. 63-82.

[11] G. Heinig, Inversion of Toeplitz-like matrices via generalized Cauchy matrices and rational

interpolation. In: Systems and Network: Mathematical Theory and Applications, Akademie
Verlag 1994, vol.2, 707-711.

[12] G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators. Birkhauser

Verlag , Basel-Boston-Stuttgart 1984.

[13] T. Huckle, Some aspects of circulant preconditioners, STAM J.Sci.Sta. Comput. 14: 531-541

(1993).

[14] T. Huckle, Cauchy matrices and iterative methods for Toeplitz matrices, SPIFE, to appear.

] 1.S. Tohvidov, Toeplitz and Hankel matrices and forms, Birkhauser, Basel 1982.

[16] T. Kailath, A. Sayed Displacement structure: Theory and applications, STAM Review,

Sept.1995

[17] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes. The Art of

Scientific Computing, Cambridge University Press 1996.

[18] H. Sorensen, D. Jones, M. Heidman, and C. Burrus, Real-valued fast Fourier transform

algorithms, Signal Processing 6: 267-278 (1984).

[19] G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine

and Fourier-sine transforms, Mathematics of Computation, 56, 193:281-296 (1991).

[20] M. Tasche, Fast algorithmsfor discrete Chebyshev-Vandermonde transforms and applications,

Numerical Algorithms 5: 453-464 (1993).

[21] M. Tismenetsky, A decomposition of Toeplitz matrices and optimal circulant preconditioning,

Linear Algebra Appl 154-156: 105-121 (1991).

[22] E.E. Tyrtyshnikow, Optimal and superoptimal circulant preconditioners, STAM J. Matriz

Anal. Appl., 13: 459-473 (1992).

[23] C. Van Loan, Computational Framework for the Fast Fourier Transform, STAM, Philadelphia

1992.

ELECTRICAL ENGINEERING DEPARTMENT, CORNELL UNIVERSITY, ITHACA, N.Y. 14853, USA
FE-mail address: adamb@toeplitz.ee.cornell.edu

DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY, POB 5969,, SAFAT 13060, KuwAIlT
E-mail address: georg@math-1.sci.kuniv.edu



