Nuprl as a General Logic*

Robert L. Constable
Douglas J. Howe

TR 89-1021
June 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This research was supported in part by NSF grant CCR-8616552 and ONR grant NO00O14-88-K-0409.

Nuprl as a General Logic*

Robert L. Constable Douglas J. Howet

Abstract

Study of the architecture and design of proof development sys-
tems has become important lately as their use has spread and become
closely tied to programming environments. One of the central issues is
how to provide a general framework for defining and using a variety of
logics in such systems; in particular, whether it is better to start with
a simple core system, such as the typed A-calculus with dependent
function types, or start with a very rich theory providing a formalized
metatheory. The first approach is exemplified by the Edinburgh LF.
Here we illustrate the second approach by showing how to use Nuprl
as a framework for defining logics in the style of the LF. Central to the
viability of the second approach is a method of showing that the en-
coding of user defined logics in Nuprl is faithful. This paper presents
a new semantic method to solve the problem. The method is applica-
ble to the LF as well, and seems simpler than the syntactic methods
that previously were used and which seem to hinder the use of rich
theories as logical frameworks.

1 Introduction

It is known that the lambda calculus with dependent function types mod-
els the deductive apparatus of numerous logical systems [3,7]. There are
proposals for using such a calculus as the basis of a computer system for

*This research was supported in part by NSF grant CCR-8616552 and ONR grant
N00014-88-K-0409

t Authors’ address: Department of Computer Science, Cornell University, Ithaca NY
14853

1.1 Overview of the Syntactic Method

The LF approach to defining logics is to present the syntax of the lan-
guage and the inference rules in terms of typed constants. Type constants
represent the syntactic categories of the language, and term or formula
constructors are represented by constants that are typed as functions over
these type constants. For example, the implication connective builds a new
proposition, D(p)(¢), from propositions p and q. If the type of propositions
is denoted o, then D has the type o — o0 — o. Next, judgements of the
form H - G, meaning that G is provable from H, are interpreted as types,
H — G. The universal judgement that G is provable for all objects z in the
type ¢ of individuals is interpreted as a dependent function type z:1 — G.
Another notation for this type is I z:4. G. Rules of proof are also typed
constants. For example, one can consider the type true(p) for any p € o
to be the type of all proofs of the proposition p. Then the implication
introduction rule can be defined by the constant DI of type:

p:o— q:0 — (true(p) — true(q)) — true(D(p)(q)).

According to this approach, a proof of a proposition such as p D (¢ D p)
will be given by an expression built up from rule constants and having type

true(p D (¢ D p)).

1.2 Implementations

For many kinds of inference system it is a straightforward exercise to write
down the syntax and proof rules in a language providing dependent func-
tion types. Systems having such a language include Automath, Nuprl, and
Griffin’s implementation of LF. The interesting point is whether this defi-
nition can be used by the system to present a useable implementation of a
logic. Automath does not provide an interactive environment, so the ques-
tion does not apply. The implementation of LF essentially provides only an
editor. We believe that it is an interesting point that the Nuprl editing and
inference mechanisms apply directly to the logics defined in the manner
of LF. Thus Nuprl is not only an environment for a specific built-in logic,
namely constructive type theory, but also an environment for logics defined
in it.

2 The Classical Predicate Calculus in Nuprl
2.1 Background

Nuprl is a large system, but only a small fragment is needed to understand
its role as a logical framework. First, the dependent function space con-
struction is written as z: A — B (although later we will switch to the
more familiar Il z: A. B). When z does not occur in B, the ordinary func-
tion space construction A — B can be used. The definitions and theorems
that define the predicate calculus are displayed in a library. A library can
contain three kinds of objects: definitions, theorems and tactics.

Definitions are used to build a surface syntax. For example, we can
make a definition that will allow applications of the implication constant
to appear as P D Q. Theorems have the form >> type-ezpression. Thus
in Nuprl a proposition is a type. Proofs of theorems give rise to objects,
called eztractions or eztracted terms, that inhabit the type. These objects
can be referred to later in the library via the term term_of (name), where
name is the name of the theorem.

The inference rules of Nuprl deal with sequents, which are objects of the
form

H,, H,, ..., Hy >> P

where P is a type and where each Hi; is either a type or a variable declaration
of the form z: T for z a variable and T a type. The H; are referred to as
hypotheses, and P is called the conclusion of the sequent.

To define the predicate calculus in Nuprl, we construct a contezt, i.e.
a collection of declarations that certain constants have certain types. We
do this by constructing a sequence of theorems whose statements are types
and whose extractions are the constants we want declared.! We then di-
rect Nuprl to assume that these theorems are proven. For example, the
theorem corresponding to the declaration of the implication constructor
has statement >> o->0->0 and extraction a constant that is displayed as
D. A future version of Nuprl will provide for a more direct and structured
treatment of contexts.

1The declaration could be made more direct, but it is convenient to treat the constants
as extractions.

otherwise, a subgoal is generated that has conclusion true(B) and as a
new hypothesis true(A), where A and B are obtained by matching. Other
subgoals are generated, but they are all membership subgoals (e.g., to show
that 4 € o) and such subgoals are proved automatically by the tactic
Autotactic which is invoked after most top-level tactic invocations (an
application of the autotactic is via a definition and is indicated in a proof
tree by “...”). Note that in general type-checking is not decidable in
Nuprl. This is not so significant here since the autotactic can, in practice,
deal with the bulk of the typechecking requirements, and in particular can
prove any typing subgoal that falls within the Nuprl subset corresponding
to LF.

For the constant DE for implication elimination we have the theorem
>> P:o -> Q:0 ->PDQ ->P ->Q,
and corresponding tactic
let impE = make_elimrule ‘impE_‘ [] ;;.

The tactic imp_E takes an integer argument i, and attempts to match the
pattern true(A D B) against the i** hypothesis of the sequent. If suc-
cessful, two non-membership subgoals are generated. One has the same
conclusion and true(B) as a new hypothesis, and the other has true(A4)
as the conclusion.

For the existential quantifier constant 3, we have >> (i->0)->0, and
for its elimination rule:

>> P:(i->0) -> Q:0 => 3P -> (x:i -> P(x) -> Q) -> Q
let some E = make_elim_rule ‘someE_‘ [] ;;.

Here are some theorems proved in this context:
> P:o => Q:0 => PO (QDP)
> P:(i->0) -> Q:(i->0) -> a:i ->
(Vx. P(x)DQ(x)) D P(a) DO Q(a)
> P:(i->0) -> =Vx. =-P(x) O 3Ix. P(x)

We show the second of the three steps of the proof of the first of these
theorems. Note that the construction of the predicate calculus proof, in
terms of the constants declared in the context, is completely implicit.

7

Open-endedness

The usual semantics of Nuprl’s type theory is constructed roughly as fol-
lows. For a more detailed account see [2] and [1]. We start with a collection
T of closed terms. The notion of type does not enter at this stage; there is
only one syntactic category, so that any term constructor can take arbitrary
terms as arguments. The term constructors include those of the untyped
A-calculus, various data constructors (such as pairing), and constructors
such as I z : A. B that will be used to form type expressions. Next we
define an evaluation relation on 7. We will write a «— b when a is the value
of b (that is, b evaluates to a). Evaluation has the property that if a — b
then a «— a. Restricted to the untyped A-calculus, evaluation corresponds
to weak head-reduction.

The final stage in the construction of Nuprl’s semantics is to build a
type system by picking a collection of terms to denote types and associating
with each such term a set of terms and an equivalence relation on the set.
These types are defined with an inductive construction, and terms are put
into types if they have the appropriate behaviour under evaluation. For
example, if Int — T then T is defined to be a type whose members are
all terms ¢ such that n «— ¢t where n is one of Nuprl’s constant terms
representing an integer. Also, if the terms A and B have been defined as
types, then the term A — B will also be a type, and a term ¢ will be a
member of A — B exactly when (ignoring equality) for every term a in the
type A the term ¢(a) is in the type B.

One of the important points here concerning Nuprl’s inference system
is that it reflects the idea that all that is important about functions is their
extensional character; in particular, if f € A — B then it can be inferred
that for every a € A, f(a) € B, but not that f must evaluate to a term of
the form Az.b. This allows us to extend Nuprl’s set of terms and evalua-
tion relation to incorporate constants representing new functions. Another
important point is that although Nuprl has a type U; which denotes the
collection of all (“small”) types, none of Nuprl’s rules restrict U; to contain
only the types put in it by the semantics. This allows us to extend the
semantics with an arbitrary collection of new base types.

We now proceed to construct an extended Nuprl semantics based on a
given collection of new base types and functions over these types. Nuprl
has a large collection of type constructors, most of which are uninteresting

o true — b, and either 0 « ¢ and a is False or 1 « ¢ and a is True.

A type system over T is a partial function ¢ from 7 to the set of partial
equivalence relations? over 7 such that o(T') is defined if and only if there
is a T' « T where o(T") is defined, and such that if o(T') is defined then
o(T)(a,b) if and only if there are a’ — a and b’ « b with o(T)(a’, b").

Suppose o is a type system over 7. Inductively define a type system
o' = F(o) as follows.

o If True — T then o/(T) = {(a,b)|r ~ a,b}
If False — T then o/(T) = 0.

If k4 « T for some A € A, then ¢/(T) is the set of all (a,b) such
that k, «— a, b for some z € A.

IfIz:A.B « T where 0'(A) is defined, and where for every a and
a’ such that o'(A)(a, a’), 0'(B[a/z]) and o'(B[a’'/z]) are defined and
equal, then o'(T) is

{ (6,%) | o'(4)(a,a") = o'(B[a/z])(b(a), b'(a")) }.
o Otherwise, if o(T) is defined then o/(T) = o(T).

We can now define our desired type system by iterating F. Define
o1 = F(0). Suppose o, is defined. Define o(T) to be the set of all (4, A’)
such that 0,(A) and o,(A’) are defined and equal, if U, — T; o(T)is oa(T)
otherwise. Define 0,41 = F(0). The type system we want is 7 = |J, o,. It
is straightforward to show that 7 is in fact a type system and that 7 = F(7).
We say that a term T is a type if 7(T) is defined, and that two types T
and T' are equal if 7(T) = 7(T’). When T is a type we write a € T and
a =a’' € T for 7(T)(a,a) and 7(T)(a, a’) respectively. We can prove that
if T is a type then T € U; for some i, and if A € U; and B € A — U, then
(Iz:A.B) € U,.

For S € A, define the term rep(S) as follows. For A € A, rep(A) is x4,
and rep(S$; — S;) is rep(S;) — rep(S;). (Note that we use the same notation
here for the set-theoretic function space and the Nuprl function type; we
similarly overload “€”). The important properties of the type system 7 are
given in the following three theorems.

2 A partial equivalence relation is a transitive symmetric relation.

11

of C[true(p)] in the type system 7. We show that p is true in the model
M of Th over A by “instantiating” the context C[-] with particular terms
of 7. With the variable i we associate the term x,; with o, & Bool and
with the variable true we associate the constant true. We will only give a
few examples of how to associate terms with the other components of C[-].
With 3 we associate kz, where f3 € (A — Bool) — Bool is a function such
that f3(g) = 1 if and only if g(a) = 1 for some a € A. By Theorems 2 and 3

Kt € (K4 = £Bool) = K Bool

Finally, with 3F we associate t = (A p ¢ z g. r). By Theorem 2 we have

t € Ip:ikg— KBoot- I q:kpoor. I z:true(ky(p)).
Mg: (Mz:x4. true(p(z)) — true(q)) . true(q).

This can be seen as follows. Suppose there are closed terms p, ¢, z, and ¢
such that p € k4 — KBool, § € KBool, T € true(rs(p)) and

g € Iz:4. true(p(z)) — true(q).

Since the type true(xs(p)) has a member, we must have that «; «— &z (p),
and so there must be some a € x, such that k; « p(a). The term g(a)(r)
is thus a member of true(q), and so r must also be a member.

For each of the variables in the context C[-] we have associated a term of
the correct type, and so by applying the term ¢ successively to all of these
terms we get a member of

true(plea/i, £ Bool/ 05 - - -])-

This means that $[x,/1,...] must evaluate to x,. Since the terms we associ-
ated with the logical connectives in C[-] represent the usual truth functions
for first-order logic, it follows that p is true in M. For example, if p is
Jz. q(z), for ¢ a predicate symbol of Th?, then

K1 — (kg(Az. k50 (2)))

3We have not included function or predicate symbols in Th, but doing so presents no
difficulty.

13

FEztraction. Suppose we are defining a formal system F whose basic
form of judgement is ¢ € T for terms ¢t and types T. If one is using the
type system of F to represent logic, then one will often wish to show that
a type has a member, and in doing so it would be convenient not to have
to provide the explicit construction of the term. This can be accounted for
in Nuprl by deriving new forms of the rules to deal with assertions of the
form

Yt:term. te T.

To construct a proof of T' where the term construction is implicit, one states
the goal in the above form and uses the new forms of the rules (definitions
can also be used hide the references to t). From the resulting Nuprl proof
can be extracted a pair whose components are a term t of F and the F-proof
that t € T.

References

[1] S. F. Allen. A non-type theoretic definition of Martin-Lof’s types.
In Proceedings of the Second Annual Symposium on Logic in Computer
Science, pages 215-221. IEEE, 1987.

[2] S. F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Lan-
guage. PhD thesis, Cornell University, 1987.

[3] A. Avron, F. A. Honsell, and I. A. Mason. Using typed lambda cal-
culus to implement formal systems on a machine. Laboratory for the
foundations of computer science technical report, Edinburgh Univer-
sity, 1987.

(4] R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

[5] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P.
Seldin and J. R. Hindley, editors, Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 589-606. Academic Press, 1980.

[6] T.G. Griffin. An environment for implementing formal systems. Tech-
nical report, Computer Science Department, Cornell University, 1987.

15

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif

