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My thesis studies identification and estimation in network formation models.

First, I study what can be learned from pairwise stable networks. Pairwise sta-

bility of a network gives strong identification power when I consider the proba-

bility that the observed network is pairwise stable. I propose a semiparametric

maximum score estimator which is simple and computationally feasible. I ap-

ply the empirical model to social and economic networks in rural India, and

find homophily patterns in village networks.

Second, I propose a structural model of multigraph formation, where 1) in-

dividuals determine multiple types of links simultaneously; 2) all networks in-

teract with each other; and 3) one or more networks are endogenous but not si-

multaneous. I extend the notion of pairwise stability to a multigraph, and show

that the structural model is equivalent to a multinomial choice model. The pres-

ence of endogenous but not simultaneous networks is a source of an incomplete

econometric model. Relying on partially identified econometric models, I char-

acterize the sharp identification region of parameters by a finite set of moment

inequalities. I apply the model to village networks and find that friendship af-

fects risk sharing and favor exchange networks in the same direction.

The last chapter studies an empirical model of network formation in the U.S.

airline industry and investigates the size of network externalities. I assume that

each airline builds a network that satisfies a weak notion of stability. That is, no



airlines want to deviate from their current networks by a single route change.

In this framework, I can use an entry game to investigate the airline industry

and include network measures in the profit function to estimate network exter-

nalities. I find that when I control for the number of one-stop flights the effect

of hub-size is larger than the case without considering one-stop flights.
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CHAPTER 1

INTRODUCTION

Economic agents form many different types of networks and make important

decisions based on those networks. Economists have been interested in the the-

oretical analysis of strategic network formation. However, the literature on the

empirical models of strategic network formation has not been fully established.

My thesis contributes to the literature by studying identification and estimation

problems in the models of strategic network formation. Furthermore, I propose

a structural model of multigraph formation which can capture the richness of

our social interactions. I focus on stable networks and multigraphs to solve the

well-known problem of the curse of dimensionality in the network formation

models. I employ recently developed econometric techniques such as partial

identification and simulation methods and apply them to the data on social and

economic networks.

As a starting point, I first study what can be learned from a single pairwise

stable network in the second chapter. Recent literature on empirical models

of strategic network formation confronts problems such as the curse of dimen-

sionality and multiple equilibria. To solve these problems, I consider the prob-

ability that the observed network is pairwise stable, instead of the probability

that a certain equilibrium outcome is observed. Pairwise stability of a network

and the assumption of myopic agents contained in it give strong identification

power when I consider the probability that the observed network is pairwise

stable. I propose a semiparametric maximum score estimator which is simple

and computationally feasible. I apply the empirical model to social and eco-

nomic networks in rural India, and find that individuals have caste homophily
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in all types of village networks.

The third chapter proposes a structural model of multigraph formation,

where 1) individuals determine two or more types of links simultaneously; 2)

all networks interact with each other in the sense that the structure of one net-

work affects an individual’s utility from the other networks; and 3) one or more

networks are endogenous but not simultaneous from the econometrician’s per-

spective. I extend the notion of pairwise stability of a single network in Jackson

and Wolinsky (1996) to a multigraph, and show that the structural model is

equivalent to a multinomial choice model under pairwise stability of a multi-

graph. The presence of endogenous but not simultaneously determined net-

works is a source of an incomplete econometric model. Relying on the recent

development of partially identified econometric models, I characterize the sharp

identification region of utility parameters by a finite set of moment inequalities

and conduct inference. I apply the model to village networks in rural India and

find that friendship affects the formation of risk sharing and favor exchange

networks in the same direction. On the other hand, the empirical evidence for

caste homophily in risk sharing and favor exchange networks is inconclusive.

The last chapter studies an empirical model of network formation in the U.S.

airline industry and investigates the size of network externalities. I define the

entry of an airline carrier in a market as an operation of a direct flight in that

market. With this definition of entry, being an incumbent is equivalent to the

formation of a link on the airline network. I assume that airline carriers build

a network that satisfies a weak notion of stability which is similar to pairwise

stability in the usual social network settings. An airline’s decision in each mar-

ket, which is derived from an entry game against other airline carriers, provides

2



positive profits given the rest of the network. That is, no airlines want to de-

viate from their current networks by a single route change at a time. In this

framework, the econometrician can use a typical entry game in the literature

to investigate the airline industry. In addition, under this assumption of stable

networks, I include various network measures in post-entry profit function and

estimate network externalities. From the recent Airline Origin and Destination

Survey data, I find that when I control for the number of one-stop flights the

effect of hub-size is larger than the case without considering one-stop flights.
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CHAPTER 2

STRUCTURAL ESTIMATION OF PAIRWISE STABLE NETWORKS: AN

APPLICATION TO SOCIAL NETWORKS IN RURAL INDIA

2.1 Introduction

Individuals form a social network based on their socioeconomic characteristics.

While economists have proposed many theoretical models of strategic network

formation, their empirical counterparts have not been fully established. The re-

tarded progress of the development in empirical network formation models is

due to the following reasons. First of all, it is well-known that games of strategic

network formation often exhibit multiple equilibria. Second, externalities nat-

urally appear in the network formation models. That is, the link decision of a

pair of individuals affects other pairs’ link decisions and vice versa. Finally, net-

work formation models suffer from the curse of dimensionality. As the number

of individuals grows, the number of all possible network configurations grows

exponentially. Since these three difficulties arise simultaneously, identification

and estimation of network formation models are intimidating. For example,

counting all possible equilibria and corresponding network configurations with

large number of players is often impossible even in a very simple network for-

mation game. In order to solve these problems, this chapter considers pairwise

stability of a network. I propose an empirical model of strategic network for-

mation, and show that pairwise stability of a network introduced by Jackson

and Wolinsky (1996) provides strong identification power. Also, pairwise sta-

bility makes estimation procedures very simple. Finding these two advantages

of pairwise stability is the main contribution of this chapter. I apply the model

4



to village data in rural India, and find that individuals have strong caste ho-

mophily.

Recent literature on the structural econometrics of games has been dealing

with identification problems due to the presence of multiple equilibria. Bjorn

and Vuong (1984) first describe the problem of multiple equilibria in a labor par-

ticipation game between husband and wife. Bresnahan and Reiss (1990, 1991b)

investigate an entry game in which the presence of multiple equilibria is com-

monplace. They obtain point identification by taking the number of firms in

a market as an outcome variable with an assumption of a homogeneous prod-

uct across firms. Tamer (2003) distinguishes incomplete econometric models

with incoherent economic models. The entry game where multiple equilib-

ria are present is an example of incomplete econometric models. He shows

that there is still identification information in incomplete models and that point

identification of parameters can be achieved with additional conditions such

as exclusion restrictions. He also employs a partial identification approach to

construct bounds for parameters in case that no exclusion restrictions are avail-

able. After Tamer (2003), many authors consider the identification problem due

to multiple equilibria. See Ciliberto and Tamer (2009), Bajari, Hong, and Ryan

(2010), Beresteanu, Molchanov, and Molinari (2011), and Kline (2012) among

others. Although it is ideal to apply a partial identification approach to net-

work formation games, the use of such approaches is limited due to the curse

of dimensionality. More specifically, it is often infeasible to compute all possible

equilibria in a network formation game. Hence, I suggest a similar approach to

that of Bresnahan and Reiss to obtain the point identification of structural pa-

rameters. I focus on the probability that an observed network is pairwise stable,

instead of the probability that a certain equilibrium network is observed. The

5



necessary conditions for pairwise stability of a network are strong enough to

point identify the utility parameters in the model. Since I am interested in max-

imizing the probability that the observed network is pairwise stable, potential

other pairwise stable networks are irrelevant to the empirical work, which will

be explained later with more details.

This chapter also contributes to the growing literature on the empirical mod-

els of a strategic network formation. Currarini, Jackson, and Pin (2009) pro-

pose various indices to measure the degree of homophily within a network.

They also develop a search-based model of friendship formation that explains

segregation patterns in a social network. They find that the type sensitivity

of preferences and bias in matching together explain the observed homophily

patterns among U.S. adolescents. Christakis, Fowler, Imbens, and Kalyanara-

man (2010) empirically predict what network will be formed based on observed

characteristics of individuals as well as link-specific variables. They propose a

sequential game of strategic network formation among myopic agents, and use

two-step Bayesian MCMC methods to estimate structural parameters. Their

model is limited since the resulting network is not necessarily stable. Also, it

requires the augmentation of the history of meetings since the meeting history

among individuals is not observed. Mele (2010) employs a directed friendship

formation and uses the stochastic best response dynamics (see Blume 1993) to

achieve a unique prediction of the network formation game. However, it is

more reasonable to consider friendship as a relationship under mutual con-

sents. Sheng (2012) employs a simultaneous-move link announcement game

first proposed by Myerson (1991, p448). She focuses on subnetworks, and uses

a partial identification approach to obtain an outer region of parameters. How-

ever, adopting pairwise stability as necessary conditions for an equilibrium in

6



the simultaneous-move link announcement game may lead a misspecification

problem.1 To my knowledge, no previous papers in the literature fully utilize

pairwise stability of a network as a stability notion to obtain the point identifi-

cation of the utility parameters.

While the existing papers which impose a particular type of games, the ap-

proach in this chapter is immune to the different types of games as long as ob-

served networks are pairwise stable. The econometrician do not have enough

knowledge about the type of a network formation game (static, dynamic, or

combined). I impose neither a potentially unrealistic game nor its equilibrium

concept. Nevertheless, I provide a consistent estimator for the utility parameters

under pairwise stability of a network. The estimation procedure uses a semi-

parametric maximum score estimator first proposed by Manski (1975, 1985).

The estimator is semiparametric in the sense that no distributional assumption

is imposed on the unobservables. In the literature on the empirical models of

strategic network formation, the distribution of unobservables is often assumed

to be logistic. The semiparametric approach has an advantage since it is robust

to the distributional assumption prevalent in the literature. To the best of my

knowledge, a maximum score estimator is first proposed in this chapter for the

empirical models of strategic network formation. 2

In an empirical application, I apply the model to social networks in rural

India. I use the “Social Networks and Microfinance” data collected by Baner-

jee, Chandrasekhar, Duflo, and Jackson.3 The results in this chapter show that

1For the simultaneous-move link announcement game, an appropriate equilibrium concept
is pairwise Nash equilibrium (PNE). Pairwise stability is a necessary condition for PNE. How-
ever, the existence of PNE is not guaranteed in general. This non-existence may need a misspec-
ification problem.

2Maximum score estimator has been proposed in the empirical matching models. See Fox
(2008).

3Abhijit Banerjee; Arun Chandrasekar; Esther Duflo; Matthew Jackson,
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individuals have strong homophily in many different characteristics. Lazars-

feld and Merton (1954) first introduced the term homophily which defines the

tendency of individuals in a society to bond with similar others. The structural

model in this chapter allows a researcher to find different segregation patterns

by the types of social networks. Individuals may borrow money from those

who are similar in a certain characteristic, while they may ask help to others

that are different in the characteristic. I am mostly interested in how a social

class, or more specifically caste, affects the formation of different types of net-

works: friendship, borrowing money, give-advice, etc. I find that village indi-

viduals have strong caste homophily. I also show that different characteristics

are important in the formation of different types networks.

The rest of the chapter is organized as follows. Section 2 describes a strategic

network formation model. Section 3 provides discussion on network formation

games and pairwise stability of a network. Section 4 solves the identification

problem by using pairwise stability of a network. Section 5 explains the estima-

tion method and how the structural model is connected to typical parametric

models such as probit. Section 6 collects data explanation, estimation results

and economic interpretations. Section 7 concludes.

2.2 Set Up

A network formation process consists of a meeting technology, preferences, and

a network formation game. While a meeting technology governs the opportu-

nity of forming a link, the network formation game and the preferences of indi-

2011-08, Social Networks and Microfinance, http://hdl.handle.net/1902.1/16559
UNF:5:4EmgOYAQGaoQugFowckNfA== Jameel Poverty Action Lab [Distributor] V5 [Version]
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viduals determine actual link formation decisions given a set of opportunities.

This section describes a meeting technology, preferences and their relation.

2.2.1 A Network

Let m = 1, · · · ,M be an index for villages. Individuals in village m are indexed

by i = 1, · · · ,Nm. The number of individuals in each village is fixed. Let Nm

be the set of individuals in village m. For ease of exposition, I will omit the

village index m unless necessary. A social network formed by the individuals

is represented by an adjacency matrix A, where the ith row and jth column

element of A is written as;

ai j =


1 , if i and j are friends

0 , otherwise.
(2.1)

I set aii = 0 for all i. A link between two individuals is undirected, so if i nomi-

nates j as a friend, then j also thinks i as a friend. Alternatively, a network can

be represented by a set of links as one can see in graph theory. With a slight

abuse of notations, I use the same A to denote the set of links. For example, if a

network is composed of a single link between i and j, A = {i j}. In terms of ma-

trix notation, this network A has ai j = a ji = 1, and zeroes in all other positions.

The alternative notation from graph theory makes it easy to introduce pairwise

stability of a network.
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2.2.2 Meeting Technology

Consider how to distinguish a meeting from a linking. First, I distinguish an

initial meeting between a pair from meetings which occur after the first meeting.

I assume that individuals in a village know each other. Thus, the probability of

the initial meeting between i and j is one for all i and j. The assumption is not

harmful when a village is not very large.

Now consider a meeting technology given that all individuals in a village

know each other. If two individuals meet very often due to some common ac-

tivities or environments, they are more likely to be friends. In that case, meeting

technology is the major factor of forming a link. However, it is hard to dis-

tinguish whether some contextual variables (e.g. age) play a role in meeting

technology or a role in preferences. For example, consider a high school student

who has all friends with the same age. There are two possible explanations.

She may choose her friends based on preferences to age, or she has few chances

to meet people with different ages. In order to rule out such problems, I limit

the meeting technology in the model to a completely random meeting. Thus,

an individual i’s probability of meeting j is identical across i and j, conditional

on contextual variables. Under the random meeting technology, I conclude that

meeting opportunities do not have any prediction power for network formation.

Although I admit that variables such as age and gender give rise to differences

in meeting, it is hard to identify the roles of such variables in both the meeting

technology and preferences simultaneously.
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2.2.3 Preferences

After imposing a process of completely random meetings, I define individual

i’s utility function. An individual’s utility of forming a network in this chapter

has a similar form to ones in the existing literature. Let xi be an L × 1 vector of

observed characteristics of i, and X be an L × K matrix of the observed charac-

teristics of all individuals. The utility function of agent i by forming a network

A is written as4

Ui(A|X, ε; θ) =

N∑
j=1

ai j(ui j + εi j) +
∑

j

ai j

∑
k

∆ikaika jk. (2.2)

The first term in (2.2) represents the sum of intrinsic values of i’s friends to

i. In particular, ui j + εi j is j’s intrinsic value to i, where ui j is observed to the

econometrician, but εi j is not. Assume that εi j is independent and identically

distributed across all individuals and pairs. The intrinsic value ui j depends on

i’s characteristics as well as j’s. That is,

ui j = α0 + α1x j,l + · · · + αLx j,L +

L∑
l

βl(xi,l − x j,l)2. (2.3)

As in Christakis et al. (2010), the utility function (2.3) captures homophily effects

with respect to the lth individual characteristic by βl. If it is negative, individuals

prefer similar types of friends over different ones, and vice versa. The term ∆ik in

the right hand side of (2.2) is an additional utility from having a mutual friend

k. There may exist heterogeneity in ∆ik, but I assume ∆ik = ∆ for all i and k

4The previous version of this chapter employed the distance-based utility which can be
found in the connections model of Jackson and Wolinsky (1996). The distance-based utility
may be more realistic, but it leaves the problem of the existence of a pairwise stable network
unsolved without a strong assumption. See Appendix B for more detail.
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when estimating it.5 I also assume ∆ik ≥ 0. The non-negative utility from having

mutual friends is intuitive, and also guarantees the existence of a pairwise stable

network. I will show the existence result later. I use θ = (α′, β′, ∆) to denote the

collection of all parameters.

I denote A− i j as a network obtained by severing a link between i and j from

A, if ai j = 1 for A. Likewise, A + i j denotes a network obtained by adding a link

i j to A. Then, i’s marginal utility of j is6

Ui(A + i j|X, ε; θ) − Ui(A − i j|X, ε; θ) = ui j + εi j + ∆
∑

k

aika jk. (2.4)

When it is not confusing, I sometimes use mui j and mud
i j to denote the marginal

utility and its deterministic parts, respectively.

2.3 Network Formation Games

2.3.1 Games and Pairwise Stability

Before I discuss pairwise stability (PS) of a network, I discuss a network forma-

tion game first. Although the notion of pairwise stability does not depend on a

particular network formation process, a researcher may want to consider one.

Here, I give an example of network formation games, which is a simultaneous-

move link announcement game of complete information proposed by Myer-

son (1991). In this game, players announce link formation decision with the

5One would consider ∆ik as a random coefficient to capture unobserved heterogeneity. It
may be an interesting way to extend the model, but I leave it as a future study.

6Note that if i j ∈ A, A + i j = A. Also, if i j < A, A − i j = A. Thus, (2.4) is true regardless of ai j.
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other N − 1 players. Let Yi = {0, 1}N−1 denote the set of actions of i, and

yi = (yi1, · · · , yi,i−1, yi,i+1, · · · , yiN) ∈ Yi be the generic vector of an action for player i.

Let y = (y1, · · · , yN) ∈ Y = ×Yi and y−i = (y1, · · · , yi−1, yi+1, · · · , yN) ∈ Y−i = × j,iY j be

the set of actions of all players and that of all other players except i, respectively.

Since the link formation is based on mutual agreement, the resulting network A

is such that for all i and j,

ai j =


1 , if yi j = y ji = 1

0 , otherwise.
(2.5)

The Nash equilibrium of the game is an equilibrium strategy profile yNE that

satisfiesUi(ANE |X, ε; θ) = Ui(yNE
i |y

NE
−i , X, ε; θ) ≥ Ui(yi|yNE

−i , X, ε; θ) for all yi and i.

Nash equilibrium networks are network configurations, or graphs ANE corre-

sponding to the NE strategies. Nash equilibrium of the network formation game

may not be unique even in a two-player game. When the number of players be-

comes larger, counting the number of all Nash equilibria and corresponding

networks is often impossible. Thus, the econometrician cannot make a predic-

tion by using NE conditions. In this context, the advantages of pairwise stability

arise.

Pairwise stability of a network is first introduced by Jackson and Wolinsky

(1996). Pairwise stability of a network is a stability notion rather than a solution

concept of network formation games. This is important since a stability notion

does not require imposing a particular game, while an equilibrium solution con-

cept does. The set of all pairwise stable networks contains all pairwise stable

network configurations that are outcomes of possibly many different games.

Hence, different pairwise stable network configurations may be outcomes of
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different games. Imposing a particular game may not generate all sets of pair-

wise stable networks. Bloch and Jackson (2006) point out that pairwise stability

is not based on a non-cooperative game. Suppose that the econometrician im-

poses a noncooperative game and tries to identify parameters with pairwise sta-

bility. In this case, the observed network may not correspond to the equilibrium

network of the game. This may result in a misspecification problem.

Now I introduce pairwise stability. As I mentioned above, I use A to re-

fer both an adjacency matrix and a graph (i.e. A = {i j|ai j = 1, and j > i}).

The value of graph A is simply the aggregation of individual utilities, or U =∑
i Ui(A|X, ε; θ). For simplicity, I use Ui(A) to abbreviate Ui(A|X, ε; θ), whenever

there is no confusion. The formal definition of pairwise stability of a network is

as follows.

Definition (Jackson and Wolinsky (1996)) The graph A is pairwise stable with re-

spect to U if

(i) for all i j ∈ A, Ui(A) ≥ Ui(A − i j) and U j(A) ≥ U j(A − i j), and

(ii) for all i j < A, if Ui(A) > Ui(A + i j) then U j(A) < U j(A + i j).

Now, when observing a network A with ai j = 1, I can infer that

Ui(A|X, ε; θ) ≥ Ui(A − i j|X, ε; θ)

and

U j(A|X, ε; θ) ≥ U j(A − i j|X, ε; θ).

(2.6)
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Also, I can infer from some ai j = 0 that

if Ui(A + i j|X, ε; θ) > Ui(A|X, ε; θ),

then U j(A + i j|X, ε; θ) < U j(A|X, ε; θ).
(2.7)

The above conditions are exactly the same conditions as pairwise stability de-

fined in Jackson and Wolinsky (1996).

I point out a few things. First, the benefit of employing pairwise stability

of a network is that it takes into account both link formation and severance

without imposing a strong assumption as explained in Jackson and Wolinsky

(1996). These link formation and severance conditions give a prediction power

in empirical applications. Second, pairwise stability contains the assumption of

myopic agents. When a pair of individuals tries to deviate from the current net-

work, they do not consider future changes in the network. Finally, I recognize

that my approach has a limitation. If the econometrician is interested in pre-

dicting a network given different set of individuals, I cannot tell what network

configuration would be realized without imposing a network formation game.

However, when the econometrician tries to impose a particular game, he or she

has to be careful because pairwise stability notion is not an equilibrium solution

concept. In this case, one may want to consider a stronger solution concept than

NE, e.g. pairwise Nash equilibrium (PNE, see Bloch and Jackson 2006). I leave

this for future studies.
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2.3.2 The Existence of Pairwise Stable Networks

The existence of pairwise stable network is not guaranteed in general. Jackson

and Watts (2001, 2002a) prove that there exists either a closed cycle of networks

or a pairwise stable network. In this subsection, I summarize the theoretical

results in the literature on pairwise stability of a network, and discuss which

results are applicable to the case in this chapter.

Lemma 2.3.1. (Jackson and Watts (2002a)) There exists at least one pairwise stable

network or closed cycle of networks. Consequently, if there are no cycles, then there

exists at least one pairwise stable network.

Proof. See Jackson and Watts (2002a).

Based on the lemma, if one can rule out a cycle of networks, a pairwise stable

network must exist. Jackson and Watts (2001, 2002a) also give conditions under

which no closed cycles of networks exist. In order to discuss the conditions,

it is necessary to introduce the concepts of adjacency and no indifference in

Jackson and Watts (2002a). Two networks A and A′ are called adjacent if they

differ by one link. The utility function U exhibits no indifference if for any two

adjacent matrices A and A′ either A defeats A′ or A′ defeats A. Suppose that

i j ∈ A. Network A is said to defeat A− i j if Ui(A) > Ui(A− i j) and U j(A) > U j(A− i j).

Likewise, A − i j defeats A if either Ui(A − i j) ≥ Ui(A) or U j(A − i j) ≥ U j(A).

Let AN be the set of all graphs with N agents. If a potential function can

be found, then there are no cycles. Theorem 1 in Jackson and Watts (2002a)

formally states it.
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Lemma 2.3.2. (Theorem 1 in Jackson and Watts (2002a)) Fix U. If there exists a func-

tion W : AN → R, such that “A defeats A′⇔W(A) > W(A′), where A and A′ are

adjacent.”, then there are no cycles. Conversely, if U exhibits no indifference, then

there are no cycles only if there exists a function W : AN → R, such that “A defeats

A′⇔W(A) > W(A′), where A and A′ are adjacent.”.

Proof. See Jackson and Watts (2002a).

It is difficult to find a function W(·) under the current utility specification of

(2.2). There are a couple of papers that provide different models to find a poten-

tial function and the existence of equilibria. Mele (2010) employs directed link

formation and shows that there exists a potential function with similar utility

function to (2.2). The existence of a potential function relates to the existence

and the uniqueness of a stationary distribution. Accordingly, the Markov pro-

cess of the stochastic best response dynamics converges to a unique stationary

distribution. Although directed network formation can happen in some appli-

cations, it is more realistic to consider the network formation to be undirected

in friendship networks. If one considers the other person as a friend but not

vice versa, their friendship would not last long. As a consequence, the network

will change, and the stability is not guaranteed. Under undirected link forma-

tion it is difficult to find a potential function without allowing for utility transfer

between individuals. Sheng (2012) uses a transferable utility model of an undi-

rected link formation and shows the existence of a potential function.

I employ a slightly simple utility specification in this chapter, and apply

theorems in Hellmann (2009) and Hellmann (2012) to prove the existence of

pairwise stable networks. Hellmann (2012) shows that there exists at least one
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pairwise stable network if the utility function is ordinal convex and exhibits

strategic complementarity. For the definitions of ordinal convexity and strate-

gic complementarity, see Appendix A.1. Also, if the utility function is ordinal

concave and satisfies the ordinal substitute property, there exists a unique pair-

wise stable network. If ∆ik ≥ 0, I show the existence of a pairwise stable network.

Sheng (2012) also has similar results with a slightly different utility function.

Proposition 2.3.3. Consider the utility function (2.3). If ∆ik is non-negative for all i

and k, then there exists a pairwise stable network for all ε.

Proof. See Appendix A.1.1.

2.4 Identification

2.4.1 Identification Power from Pairwise Stability

In this subsection, I describe how I obtain the identification of utility parameters

in the model under pairwise stability of a network. The identification procedure

is carried out in three steps. First, I show that the link decision ai j of a pair i

and j is uniquely determined given the rest of network A−i j. Second, I show

how pairwise stability of a network rules out simultaneity between ai j and A−i j.

Finally, I provide parametric identification results in the next subsection.

I recall that pairwise stability of a network is a stability notion rather than

a solution concept. Pairwise stability of a network implies that no pairs of in-

dividuals have an incentive to deviate from the current network configuration.

For example, consider an arbitrary network A. Let A−i j be the network of all
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pairs of individuals except the pair i and j. If the network A satisfies pairwise

stability, then all pairs do not want to deviate from their current link decisions.

Thus, by fixing the rest of the network A−i j, pairwise stability of a network gives

conditions (2.6)-(2.7) for all N(N − 1)/2 pairs. Note that the conditions for each

pair are satisfied given that other pairs’ link decisions are fixed.

Recall the utility function and the marginal utility:

Ui(A|X, ε; θ) =

N∑
j=1

ai j(ui j + εi j) + ∆
∑

j

ai j

∑
k

aika jk, (2.8)

and

Ui(A + i j|X, ε; θ) − Ui(A − i j|X, ε; θ) = ui j + εi j + ∆
∑

k

aika jk. (2.9)

For notational simplicity, I denote ti j =
∑

k

aika jk. Then, ai j = 1 is equivalent to

ui j + εi j + ∆ti j > 0

and

u ji + ε ji + ∆ti j > 0.

(2.10)

Putting the unobserved variable to the left hand side yields

εi j > −ui j + ∆ti j

and

ε ji > −u ji + ∆ti j.

(2.11)
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Likewise ai j = 0 provides

εi j ≤ −ui j − ∆ti j

or

ε ji ≤ −u ji − ∆ti j.

(2.12)

Since there are N(N − 1)/2 pairs of individuals, I have N(N − 1)/2 sets of inequal-

ities. Let yi be

yi =


1 , if εi j > −ui j − ∆ti j

0 , otherwise.
(2.13)

Then ai j = 1 if (yi, y j) = (1, 1) and zero otherwise. Figure 2.1 shows that pairwise

stability provides a unique prediction for the link decision of two individuals

regardless of the regions of εi j and ε ji. Figure 2.1 also compares pairwise sta-

ble outcomes with Nash equilibrium outcomes.7 A link is formed by a mutual

agreement, while the severance of a link can be done unilaterally. If j never

wants to form a link, then i’s decision does not matter for ai j. Second, in the

center region of ε, NE predicts (yi, y j) = (1, 1) or (0, 0). In this case, pairwise sta-

bility implies that i and j always choose (1, 1), or ai j = 1, since they are better off

by deviating from (0,0). Hence, for any values of ε = (εi j, ε ji), pairwise stability

predicts a unique outcome for a single pair’s link decision ai j given the rest of

network A−i j and X.

Next, I have to deal with the problem of simultaneity between ai j and A−i j.

Although I have shown that pairwise stability provides a unique prediction for

the two-player link formation game, i’s marginal utility of j still depends on

decisions A−i j of other pairs. The main advantage of pairwise stability comes at

7In the figure, for ease of exposition I simplify the model such that ∆ti j > 0.
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−u ji − ∆ti j −u ji

−ui j − ∆ti j

−ui j

εi j

ε ji

PS: ai j = 0

NE: (0,0)

PS: ai j = 0

NE: (0,1), (0,0)

PS: ai j = 0

NE: (0,1), (0,0)

PS: ai j = 0

NE: (1,0), (0,0)

PS: ai j = 1

NE: (1,1), (0,0)

PS: ai j = 1

NE: (1,1), (0,0)

PS: ai j = 0

NE: (1,0), (0,0)

PS: ai j = 1

NE: (1,1), (0,0)

PS: ai j = 1

NE: (1,1), (0,0)

Figure 2.1: NE vs. pairwise stable outcome in two by two link formation
game

this point. At the end of subsection 2.3.2, I have briefly mentioned the implicit

assumption of myopic agents contained in pairwise stability. From the next

paragraph, I will explain it with more detail.

According to Jackson and Watts (2001), a network is pairwise stable if and

only if it has no improving paths emanating from it.

Definition (Jackson and Watts (2001)) An improving path from a network A to a

network A′ is a finite sequence of networks A1, A2, · · · , AK with A1 = A and AK = A′

such that for any k = 1, · · · , K either

(i) Ak+1 = Ak − i j for some i j such that Ui(Ak − i j) ≥ Ui(Ak), or
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(ii) Ak+1 = Ak + i j for some i j such that Ui(Ak + i j) > Ui(Ak) and U j(Ak + i j) > U j(Ak)

They explained that ‘an improving path is a sequence of networks that might be ob-

served in a dynamic process where agents are myopically adding and deleting a link’.

Consider a dynamic game of network formation. If an observed network is

pairwise stable, it does not have an improving path. Equivalently, players do

not have an incentive to add and/or delete a link myopically under the pair-

wise stable network. In addition, when a pair i j makes a deviation decision,

the pair compares utility from the current network A with utility from A + i j (or

A − i j) only. The rest of the network A−i j is given when they make a decision.

In other words, rather than taking into account A−i j as other pairs’ decisions, i

and j consider A−i j as a fixed structure, since they are myopic. Hence, there is

no simultaneity between ai j and A−i j.

I formally state the above argument below. In the literature, the econometri-

cian is often interested in the probability that the outcome A is observed given

X and θ, or Pr(A|X, θ). In network formation games this probability is

Pr(A|X; θ) = Pr(A is chosen|A is PS, X; θ) Pr(A is PS|X; θ) (2.14)ˆ
ε

{1[A is chosen|A is PS, X, ε; θ]

×1[A is PS|X, ε; θ]} dF(ε). (2.15)

In this chapter, I am interested in probability of a different type of an outcome;

the likelihood that A is pairwise stable. Since I focus on a different outcome

variable, this idea is similar to one in Bresnahan and Reiss (1990) where they are

interested in the number of firms rather than an equilibrium outcome in each

market. I am interested in maximizing the following likelihood.
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Pr(A is PS|X; θ) =

ˆ
ε

1[A is pairwise stable|X, ε]dF(ε). (2.16)

According to the assumption of myopic agents in pairwise stability, I rewrite

the indicator term in equation (2.16) as

1[A is PS|X, ε; θ] = 1[(a12, · · · , aN−1,N) is PS|X, ε; θ] (2.17)

=
∏

i j

1[ai j is PS|A−i j, X, ε; θ]. (2.18)

Equation (2.18) is derived from (2.17) due to the assumption of myopic agents. If

the econometrician considers pairwise stability as a solution concept of a game

(which is not correct), deviation of a link decision of a pair, say a′12 would change

the decisions of other pairs a−12 = (a13, · · · , aN−1,N). However, as I explained

above, pairwise stability and the myopic agents assumption make other pairs

decisions A−i j fixed. It is a very important implication of pairwise stability of a

network for empirical applications.

Note that when maximizing the likelihood Pr(A is PS|X; θ), other pairwise

stable networks are irrelevant. Regardless of the number of pairwise stable

networks and the selection probability Pr(A is chosen|A is PS, X; θ), I can obtain

point identification from Pr(A is PS|X; θ). To be more specific, consider a dy-

namic process of network formation. A particular network is always observed

given a history of meetings which may not be observed. Hence, other pairwise

stable networks that cannot be realized under the current formation process are

all irrelevant.
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2.4.2 Identification

In this subsection, I prove the identification of the structural parameters in (2.2)

and (2.3). Let θ ∈ Θ collect all parameters. i.e. θ = (α0, · · · , αL, β1, · · · , βL, ∆).

Pr(A is PS|X; θ) =

ˆ
ε

1[A is PS|X, ε]dF(ε)
ˆ
ε

∏
i j

1[ai j is PS|A−i j, X, ε; θ]dF(ε)

=

ˆ
ε

∏
i j

{
(pi j)ai j(1 − pi j)1−ai j

}
dF(ε), (2.19)

where pi j = Pr(mui j > 0 and mu ji > 0|X, A−i j, ε). Also let the (2L + 2) × 1 vector xi j

of explanatory variables in (3.2) be

xi j = (1, x j,1, · · · , x j,L, (xi,1 − x j,1)2, · · · , (xi,L − x j,L)2, ti j)′, (2.20)

and I use X to denote the space of X

Let θ0 be the utility parameter. Define

Xθ = {X ∈ X : Pr(A is PS|X, θ)

, Pr(A is PS|X, θ0)} . (2.21)

If Pr(X ∈ Xθ) > 0, then there is no observationally equivalent θ to θ0. Thus, θ0 is

point identified.

Definition θ0 is point identified relative to Θ if Pr (X ∈ Xθ) > 0

Assumption (i) (Support conditions) At least two elements of xi j, say x1 j and
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x2 j have full support, and corresponding parameters are non zero. Furthermore

fx1 |x2=x is strictly positive for all x.

(ii) (Scale normalization) θ is normalized to have ‖θ‖ = 1.

(ii) (Location normalization) εi j is i.i.d. and has a continuous and strictly

increasing distribution function Fε with med(ε|x) = 0.

(iv) (Linear independence) There exists no proper linear subspace of R(2L+2)

having probability 1 under Fx.

Unlike typical binary choice models, I need at least two explanatory variables

with full support. Briefly speaking, when ai j = 1, it requires two marginal utili-

ties to be positive simultaneously. In order to satisfy this condition, I need two

explanatory variables with full support. Also, the support of two variables must

be independent. Note that they are not necessary condition, and the conditional

full support assumption is testable in practice. From the location normalization

assumption, I have

Pr(A is PS|X; θ) =
∏
j>i

∏
i

{ˆ ˆ
(pi j)ai j(1 − pi j)1−ai jdF(εi j)dF(ε ji)

}
=

∏
j>i

∏
i

[{
Pr(mud

i j > 0|X, A−i j) Pr(mud
ji > 0)|X, A−i j

}ai j

×
{
1 − Pr(mud

i j > 0|X, A−i j) Pr(mud
ji > 0)|X, A−i j

}1−ai j
]
.(2.22)

From (2.22), I can rewrite Xθ as

X̃θ =
{
(xi j, x ji) ∈ X̃ × X̃ : Pr(mui j > 0 and mu ji > 0|xi j, x ji; θ)

, Pr(mui j > 0 and mu ji > 0|xi j, x ji; θ0)
}
, (2.23)
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where X̃ is a space for xi j. Showing Pr[(xi j, x ji) ∈ X̃θ] > 0 is enough for point

identification.

Proposition 2.4.1. Let the utility function satisfy the form of (2.3), (2.8) and (2.18).

Suppose that Assumption 1 holds. Then, the parameter vector θ is point identified.

Proof. See Appendix A.1.3.

Identification of parameters crucially depends on the existence of two full sup-

port explanatory variables. This condition may not meet in practice. When the

econometrician does not have such explanatory variables, he or she is still able

to obtain partial identification of parameters. For instance, Komarova (2012)

provides a recursive method to obtain an outer region of parameters. I leave

this as a future study.

2.5 Estimation Methods

2.5.1 Maximum Score Estimator

The estimation procedure is semiparametric since I do not impose parametric

distributional assumptions on the unobserved characteristics. Maximum score

estimator is first proposed by Manski (1975, 1985). Let mud
i j(θ) be the determinis-

tic component of Ui(A−i j + i j|X, ε; θ)−Ui(A−i j|X, ε; θ), and θ0 be the true parameter

vector. Then, mud
i j(θ0) represents the true value of marginal utility of i if i form a
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link to j given X and A−i j;

mud
i j(θ0) = ui j,0 + ∆0

∑
k<Ni(A)

aika jk. (2.24)

Define the population score function as

S (θ0) = E
[
ai j × 1{mud

i j(θ0) > 0} × 1{mud
ji(θ0) > 0}

+(1 − ai j) ×
(
1 − 1{mud

i j(θ0) > 0} × 1{mud
ji(θ0) > 0}

)]
= Pr(ai j = 1 and {mud

i j(θ0) > 0} ∩ {mud
ji(θ0) > 0})

+ Pr(ai j = 0 and {mud
i j(θ0) ≤ 0} ∪ {mud

ji(θ0) ≤ 0}). (2.25)

and the sample score function as

S M(θ) =
1
M

∑
m

(
Nm

2

)−1 Nm∑
i=1

Nm∑
j>i

[
ai j × 1{mud

i j(θ) > 0} × 1{mud
ji(θ) > 0}

+(1 − ai j) ×
(
1 − 1{mud

i j(θ) > 0} × 1{mud
ji(θ) > 0}

)]
. (2.26)

The maximum score estimator is

θ̂MS E = arg max
θ

S M(θ). (2.27)
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Equivalently, I can rewrite (2.25) as

S̃ (θ0) = E
[∣∣∣ai j − 1{mud

i j(θ0) > 0} × 1{mud
ji(θ0) > 0}

∣∣∣]
= Pr(ai j = 0 and {mud

i j(θ0) > 0} ∩ {mud
ji(θ0) > 0})

+ Pr(ai j = 1 and {mud
i j(θ0) ≤ 0} ∪ {mud

ji(θ0) ≤ 0})

= 1 − S (θ0).

The maximum score estimator minimizes the sample analogue of S̃ (θ0).

2.5.2 Asymptotics

The asymptotic argument on this version of maximum score estimator is the

number of villages M. The number of pairs,
(

Nm
2

)
= Nm(Nm − 1)/2 and the number

of individuals Nm remain fixed. I do not use the number of pairs (or individu-

als) in a village as an asymptotic argument due to following reasons. First, the

model in this chapter implicitly assumes that people in a village had a chance

to know each other. Hence, I utilize non connected pairs (ai j = 0) as well as

existing links (i j such that ai j = 1) for estimation. If village population becomes

very large, it may be true that some pairs of individuals are not connected due

to no chance of a meeting. Furthermore, as the number of people goes to infin-

ity, I may not guarantee the existence of a pairwise stable network. For these

reasons, I use M as an asymptotic argument. Consistency of the estimator is a

simple extension of Manski (1985), and I do not pursue it here.
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2.5.3 Connection to Parametric Models

One may notice that the model in this chapter is similar to parametric binary

choice models. e.g. probit or logit models. Indeed, equation (2.22) is similar to

the likelihood function of parametric binary choice models except: 1) it has the

product of two probabilities in each term, and 2) I do not specify the distribution

of unobservables. I can rule out the former difference by considering transfer-

able utility models. Employing pairwise stability with transferable utility gives

the following conditions. ai j = 1 if mui(A + i j) + mu j(A + i j) > 0, and ai j = 0 if

mui(A + i j) + mu j(A + i j) ≤ 0. In addition, one may assume εi j = ε ji. Then, pi j in

(2.22) can be written as

Pr(εi j ≥ −α0 − α
′ x̄i j −

∑
βl(xil − x jl)2 − ∆ti j|A−i j; θ), (2.28)

where x̄i j is the average characteristics of i and j. Finally, if one imposes a distri-

butional assumption (e.g. Normal), the model is equivalent a parametric binary

choice model.8 In this sense, pairwise stability a network gives a rationale to

the applied econometrician to use logit or probit model for link level predic-

tions. However, one must be careful on imposing these assumptions (transfer-

able utility, εi j = ε ji, and a distributional assumption). For example, it may not

be natural to assume transferable utility in friendship network formation.

8Khan (2010) shows the observational equivalence between semiparametric binary choice
model and heteroskedastic probit/logit models.
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2.6 Data and Empirical Results

2.6.1 Data

I use the “Social Networks and Microfinance” data set collected by Abhijit

Banerjee, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson. They

collect the data from 75 villages in rural areas in Karnataka, which is an area

of southern India. According to Banerjee, Chandrasekhar, Duflo, and Jackson

(2012), and Jackson, Rodriguez-Barraquer, and Tan (2012), the average popula-

tion per village is about 900, and over a half of households were surveyed. Also,

the eligible members and their spouse in each household are surveyed. They

construct a total of 14 social networks; 1) Close non-relatives, 2) Close relatives,

3) Visit-go, 4) Visit-come, 5) Borrow money from, 6) Lend money to, 7) Give

advice, 8) Ask for advice, 9) Borrow kerosene or rice from, 10) Lend kerosene

or rice to, 11) Temple-company, 12) Medical-help (MH), 13) Intersection of rela-

tionships, 14) Union of relationships (ALL). I use the individual-level network

data.

One of my main interests is how individuals care about social class (caste or

sub caste) of others when forming a network. For this reason, I consider only

villages where the proportion of its majority caste is less than 95% of the total

population. 22 villages are qualified under this criterion. I first construct four

social networks among those 8 networks. Visit network (VISIT), Money net-

work (MONEY), Advice network (ADV) and Kerosene-Rice network (KERICE)

are the unions of 3) and 4), 5) and 6), 7) and 8), and 9) and 10), respectively.

Then, I use a total of 7 networks: close non-relatives (or friendship network, FR

henceforth), MONEY, VISIT, ADV, KERICE, MH, and ALL networks. I do not

30



use network 11 and 13, since they exhibit relatively small number of links. Table

2.1 shows descriptive statistics.

Friend Money Kero-rice Visit Advice Medic All

# of links 13603
1.80%

14234
1.89%

15472
2.05%

17342
2.30%

11256
1.49%

11630
1.54%

29593
3.92%

same caste 12033 12781 13987 15381 10325 10755 25468
different 1570 1453 1485 1961 931 875 4125

Table 2.1: Descriptive Statistics for Individual Networks

2.6.2 Estimation Results

I use the maximum score estimator, (2.27). Since the objective function is discon-

tinuous, I use a global optimization method. Fox (2008) and Fox and Santiago

(2008) suggest the differential evolution algorithm for maximum score estima-

tion. The algorithm is proposed by Storn and Price (1997) and appropriate for

this type of problems. They provide a MATLAB code, devec3.m for imple-

menting the algorithm. Even with this algorithm, I had to try a lot of popula-

tion members to make sure convergence, since the algorithm has a stochastic

feature. Tables 2.2-2.6 show the results.
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Friendship 95% CI Money 95% CI
constant -0.1735** (-0.2183, -0.0883) -0.3824** (-0.4813, -0.3659)

α’s for x j
Gender 0.3171** (0.2285, 0.3686) 0.6452** (0.6412, 0.7933)

Age 0.0011** (0.0010, 0.0013) 0.0006** (0.0002, 0.0007)
Religion -0.1150** (-0.1646, -0.0781) 0.0014 (-0.0158, 0.0927)

Education 0.0071** (0.0048, 0.0116) 0.0055** (0.0025, 0.0095)
Village Native -0.0238 (-0.0532, 0.0357) -0.1282** (-0.1849, -0.0730)

Work -0.0789** (-0.1353, -0.0330) -0.1908** (-0.2806, -0.1782)
Caste -0.0093 (-0.0506, 0.0108) 0.0312 (-0.0117, 0.0782)

β’s on (xi − x j)2

Gender 0.0154 (-0.0208, 0.1914) 0.0066 (-0.0382, 0.1654)
Age -0.1365** (-0.1630, -0.0209) -0.2835** (-0.3500, -0.2093)

Religion -0.6102** (-0.8064, -0.5816) -0.1894** (-0.2722, -0.0424)
Education -0.1148** (-0.1338, -0.0186) -0.2358** (-0.2857, -0.1485)

Village Native -0.5943** (-0.7549, -0.5494) -0.1761** (-0.2265, -0.0140)
Work -0.1450 (-0.1765, 0.0337) -0.2865** (-0.3556, -0.1478)
Caste -0.2138** (-0.2498, -0.0385) -0.2446** (-0.2993, -0.0911)

∆ 0.1575** (0.1066, 0.1878) 0.2020** (0.1694, 0.2492)

Table 2.2: Estimation Results for Friendship and Money Networks.

(**: significant at 5%, *: significant at 10%)
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Kerosene-Rice 95% CI Visit 95% CI
constant -0.3592** (-0.4483, -0.3063 ) -0.4344** (-0.5493, -0.3961)

α’s for x j
Gender 0.5460** (0.5053, 0.6677) 0.3899** (0.2975, 0.4683)

Age 0.0007** (0.0004, 0.0008) 0.0008** (0.0005, 0.0009)
Religion -0.0690** (-0.1179, -0.0022) 0.0178** (0.0025, 0.1056)

Education 0.0096** (0.0071, 0.0164) 0.0086** (0.0063, 0.0139)
Village Native -0.0999** (-0.1831, -0.0557) -0.0629** (-0.1252, -0.0077)

Work -0.0830** (-0.1529, -0.0288) 0.0434** (0.0272, 0.1216)
Caste 0.0476** (0.0127, 0.1023) -0.0035* (-0.0035, 0.0838)

β’s on (xi − x j)2

Gender -0.0030 (-0.0639, 0.1546) -0.0328 (-0.0896, 0.1178)
Age -0.2452** (-0.3134, -0.1823) -0.4581** (-0.5785, -0.4437)

Religion -0.3286** (-0.4563, -0.2354) -0.3984** (-0.5369, -0.3131)
Education -0.1528** (-1919, -0.0620) -0.2565** (-0.3095, -0.1718)

Village Native -0.2670** (-0.3374, -0.1559) -0.3815** (-0.4978, -0.2846)
Work -0.3869** (-0.4992, -0.2928) -0.1523 (-0.1825, 0.0410)
Caste -0.2741** (-0.3387, -0.1394) -0.1646** (-0.1988, -0.0106)

∆ 0.2388** (0.1878, 0.2939) 0.1435** (0.0979, 0.1749)

Table 2.3: Estimation Results for Kerosene-Rice and Visit Networks

Advice 95% CI Medical Help 95% CI
constant -0.1480** (-0.1775, -0.0427) -0.2663** (-0.3369, -0.1957)

α’s for x j
Gender 0.3609** (0.2894, 0.4232) 0.4681** (0.4166, 0.5721)

Age 0.00055** (0.00026, 0.00063) 0.0008** (0.0006, 0.0010)
Religion -0.1292** (-0.1841, -0.0807) -0.0812** (-0.1229, -0.0330)

Education 0.0078** (0.0059, 0.0124) 0.0046** (0.0011, 0.0082)
Village Native -0.1425** (-0.2410, -0.1019) -0.0192 (-0.0657, 0.0468)

Work 0.0222 (-0.0203, 0.1190) -0.1509** (-0.2466, -0.1172)
Caste -0.0176 (-0.0685, 0.0051) 0.0450** (0.0188, 0.0886)

β’s on (xi − x j)2

Gender -0.3845** (-0.5464, -0.3146) 0.1212** (0.1071, 0.3405)
Age -0.3690** (-0.4725, -0.3036) -0.1599** (-0.1914, -0.0538)

Religion -0.1014 (-0.1782, 0.0615) -0.5375** (-0.7287, -0.5147)
Education -0.3059** (-0.3871, -0.2452) -0.2006** (-0.2457, -0.1061)

Village Native -0.2813** (-0.3630, -0.1560) -0.2870** (-0.3578, -0.1589)
Work -0.4120** (-0.5257,-0.3269 ) -0.0781 (-0.0949, 0.1045)
Caste -0.3747** (-0.4662, -0.2698) -0.4207** (-0.5272, -0.3115)

∆ 0.1812** (0.0989, 0.2132) 0.2082** (0.1541, 0.2544)

Table 2.4: Estimation Results for Advice and Medical-help Networks
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All 95% CI
constant -0.1335 (-0.1476, 0.0684)

α’s for x j
Gender (male=1) 0.2356** (0.1368, 0.3004)

Age 0.0009** (0.0006, 0.0011)
Religion -0.1198* (-0.1676, 0.0083)

Education -0.0016 (-0.0051, 0.0089)
Village Native -0.0492 (-0.1146, 0.0173)

Work -0.0236 (-0.0756, 0.0663)
Caste 0.0111 (-0.0449, 0.0818)

β’s on (xi − x j)2

Gender) -0.1116** (-0.2313, -0.0202)
Age -0.2650** (-0.3413, -0.1999)

Religion -0.1289 (-0.2190, 0.0550)
Education -0.5499** (-0.7080, -0.5834)

Village Native -0.2244** (-0.3311, -0.1320)
Work -0.4813** (-0.6374, -0.4189)
Caste -0.4659** (-0.6019, -0.3840)

∆ 0.0920* (-0.0011, 0.0946)

Table 2.5: Estimation Results for All Network

I also report the 95% confidence interval for each parameter. The confidence

interval is obtained by subsampling. I draw 200 subsamples in which 10% of

pairs are randomly chosen from the original data, and run the maximum score

estimation for each subsample. The 95% confidence intervals are constructed

according to Politis and Romano (1994) and Politis, Romano, and Wolf (1999).

Consider the estimates of α’s. The constant α0 is negative and significant

in most types of networks except ALL network (insignificant). Among the pa-

rameters on the opponents’ characteristics, individuals prefer having male in-

dividuals in all types of networks.Those who have more education are more

attractive in most networks, but the magnitude is relatively small. Individuals

prefer friends who are not currently working, and also tend to borrow or give

money to those who are not working. The latter may seem counter intuitive.
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Caste is significant in KERICE, VISIT, and MH networks, but its sign differs by

networks. Interestingly, α’s are less significant in ALL network. I may conclude

that aggregation of all types of links may reduce the effects of a single charac-

teristic of opponent individuals.

I focus more on β which captures preferences to homophily. The coefficient

βcaste is negative and significant in all types of social networks. The results in-

dicate that individuals have strong preference to homophily in caste. However,

caste does not seem to be the strongest factor for the segregation patterns of

the networks. Indeed, religion is the strongest for FR, and VISIT networks, and

work status is the strongest for MONEY, KERICE, and ADVICE networks. It

makes a sense that individuals strongly prefer ones with similar work status in

favor exchange networks. Overall, most β’s are negative and significant, but

βgender is insignificant in most networks. Also, I find that βgender is positive in MH

(medical help) network. I conjecture that female members may play an impor-

tant role in medical treatments in rural areas. Unlike α, β is significant in ALL

network. Aggregation of different types of links does not reduce homophily.

The additional utility ∆ from having mutual friends is large and significant

in all types of networks. The effect of one additional mutual friend is almost as

strong as that of βcaste in most networks, and at least about a half of βcaste in all

types of networks (except ALL network).

2.7 Conclusion

I use the notion of pairwise stability to identify and estimate the preferences

on network formation. Pairwise stability not only facilitates the identification
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of the model but also delivers a computationally feasible way to estimate the

structural parameters. I propose a semiparametric maximum score estimator

for strategic formation of a network. The results from the semiparametric max-

imum score estimation show that individuals have strong caste homophily for

all types of networks. The size of caste homophily slightly differs by the types

of networks.
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CHAPTER 3

A STRUCTURAL MODEL OF MULTIGRAPH FORMATION: FAVOR

EXCHANGE AND SOCIAL NETWORKS IN VILLAGES

3.1 Introduction

This chapter proposes a structural model of multigraph formation. A multigraph

is a graph or a network where a set of nodes can have different types of links, or

relations.1 Each type of relation can be considered as a single network. I use a

multigraph to describe a structure where a set of economic agents form two or

more types of links with each other. The model in this chapter has three main

features. First, a set of economic agents determine many but not necessarily all

types of links simultaneously. Second, all networks interact with each other in

the sense that the structure of one network affects an individual’s utility from

the other networks. Finally, one or more networks are endogenous but not si-

multaneously determined from the econometrician’s perspective.

Forming a multigraph is a commonplace phenomenon among economic

agents. For example, people in a village have friendship and risk sharing part-

nerships, exchange favors, go to temple together, etc. Also, a transportation sys-

tem among cities can be described as a multigraph. A city pair can be connected

by many different transportation methods such as highways, trains, flights, etc.

In this chapter, I consider a multigraph resulting from the strategic decisions of

economic agents in a village setting, and I estimate the utility parameters of the

1For the mathematical definition, see, for example, Chartrand, Lesniak, and Zhang (2011)
and many others. In the economics literature, the term multigraph has been rarely used. Chan-
drasekhar and Jackson (2012) use multiplexing to describe individuals’ behavior to form multi-
ple types of links and a multigraph to denote a multiple-link structure due to multiplexing.
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strategic formation of that multigraph.

The main difficulties of estimating structural parameters in the strategic for-

mation of a multigraph are twofold. First, it is well-known that network forma-

tion games often exhibit multiple equilibria. Even in single-network formation

models, the number of potential equilibria grows exponentially as the number

of agents grows. If I allow for multiple types of links, the number of poten-

tial equilibria is even larger.2 Counting and checking all possible equilibria is

infeasible even with a small number of nodes. Second, multigraph formation

features simultaneity in various dimensions. Such simultaneity includes the

externalities generated by the formation of a given relationship as well as the

endogenous determination of multiple types of relationships at once. As in a

single-network case, externalities exist in the sense that the link decision of a

pair affects other pairs’ decisions. Moreover, agents may determine multiple

types of links at the same time. For example, if an agent were to refuse to par-

ticipate in one type of exchange, say the exchange of money, this refusal may

result in the severance of other types of favor exchange relationships, and vice

versa. There may also exist unobserved heterogeneity that affects two or more

networks even when those networks are not simultaneously determined.

In order to deal with these problems, I first extend the notion of pairwise sta-

bility of a single network to the framework of a multigraph. Pairwise stability of

a network, proposed by Jackson and Wolinsky (1996), is a stability notion rather

than an equilibrium solution concept. In addition, it contains the assumption

of myopic agents. That is, individuals do not consider future changes in the

network when they deviate. As shown in the previous chapter, pairwise stabil-

2When a single type of link is possible, the number of potential equilibria is 2N(N−1)/2. If I
allow for multiple types of links, the number is now 2S×N(N−1)/2. Note that the order of conver-
gence is still exponential in N2, although the magnitude is bigger.
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ity and the myopic agent assumption make other potential equilibria irrelevant

when estimating utility parameters. I will explain why the other equilibria are

irrelevant later in Section 5.1. The result in the previous chapter is also appli-

cable to the multigraph framework. When the econometrician considers a com-

munity network structure where externalities are often limited, pairwise stabil-

ity and its myopic agent assumption are especially well-suited. Under pairwise

stability of a multigraph, I show that the structural model of multigraph forma-

tion is equivalent to a typical multinomial choice model.

When there are no endogenous (but not simultaneous) networks, a typical

multinomial choice model, e.g. multinomial probit, can be applied. However,

when an endogenous network is present, it prevents point identification of util-

ity parameters and becomes a source of an incomplete econometric model, i.e.

an econometric model predicts more than one outcome for some or all values

of unobservables. I employ recently developed techniques for partially identi-

fied econometric models, especially random set theory (Beresteanu, Molchanov,

and Molinari (2011) and Galichon and Henry (2011), BMM11 and GH hereafter,

respectively) to obtain the sharp identification region of the parameter vector

through a finite set of moment inequalities. The characterization of the sharp

identification region in this chapter does not require an excluded instrument.

I conduct inference using an estimation method developed by Andrews and

Soares (2010), AS henceforth. Since this chapter describes very detailed proce-

dures to implement the estimation method, it provides practical guidance to the

applied econometrician.

I apply the model to village networks in rural India and use the ‘Social Net-

works and Microfinance’ data collected by Banerjee, Chandrasekhar, Duflo, and
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Jackson.3 In a village, individuals form many different types of relations. I fo-

cus on four networks. Two of these are favor exchange networks: (1) borrowing

and lending money, or equivalently risk sharing, and (2) borrowing and lend-

ing kerosene or rice. The other two are social networks: (3) friendship and (4)

kinship. Investigating the formation of favor exchange networks, I consider

friendship and kinship as an underlying structure in a village.

The two main empirical questions in this chapter are as follows: (1) What

is the effect of friendship on the formation of a risk sharing network? and (2)

Do individuals have caste homophily when forming a risk sharing network?

At first glance, one may think that simply running a dyadic regression of risk

sharing on friendship and caste would give reasonable estimates. However,

there are a few sources of bias in such an estimation procedure. First, ignoring

other favor exchange networks such as borrowing or lending rice can bias the

estimate if individuals diversify their partners across different favors. Second,

it is very likely that the econometrician may not observe several characteris-

tics, such as personality, that affect both friendship and risk sharing networks.

This endogeneity is another source of potential bias. In many cases, including

this chapter’s application, the econometrician does not have access to a valid

instrument for the friendship network. The structural model in this chapter is

suitable to both problems mentioned above since it allows for simultaneous de-

termination of different types of networks and the endogeneity of a friendship

network. Although the parameters are partially identified, I find that friendship

affects the formation of risk sharing and other favor exchange networks in the

same direction. However, the empirical evidence for caste homophily in risk

3Abhijit Banerjee; Arun Chandrasekar; Esther Duflo; Matthew Jackson,
2011-08, Social Networks and Microfinance, http://hdl.handle.net/1902.1/16559
UNF:5:4EmgOYAQGaoQugFowckNfA== Jameel Poverty Action Lab [Distributor] V5 [Version]
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sharing and favor exchange networks is inconclusive.4

Related Literature

First, this chapter is related to the literature on strategic network formation.

There are many types of theoretical models of strategic network formation in the

literature. Myerson (1991) proposes a simultaneous link announcement game.

Jackson and Wolinsky (1996) study pairwise stability and efficiency of networks.

Bala and Goyal (2000) present a one-sided and non-cooperative link-formation

model. Watts (2001) and Jackson and Watts (2002b) examine a dynamic network

formation and stochastic evolution of networks. Bloch and Jackson (2006) and

Calvó-Armengol and İlkılıç (2009) investigate relations between stability and

equilibrium concepts in network formation. This chapter contributes to the the-

ory literature by proposing pairwise stability of a multigraph (PSM), which will

be defined in Section 3. It is a simple extension of the notion of pairwise stability

of a single network in Jackson and Wolinsky (1996) to a multigraph setting.

In addition to the theoretical models, many researchers study empirical

models of strategic network formation. Currarini, Jackson, and Pin (2010) pro-

pose a search-based model of friendship formation which identifies the role of

preference and bias in matching. Christakis, Fowler, Imbens, and Kalyanara-

man (2010) try to empirically predict what network will be formed given link-

specific variables as well as observed characteristics of individuals. Their model

generates a network that may not be stable. Mele (2010) establishes a dynamic

game of directed network formation, where individuals form a link according to

4Homophily is the tendency to bond with similar individuals in a society (Lazarsfeld and
Merton 1954)
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a stochastic best response dynamic (See Blume 1993). Based on random match-

ing and utility maximization, the game generates a Markov chain of networks,

and he proves the existence of a unique stationary distribution. Unlike Chris-

takis et al. (2010), Mele (2010)’s model is a directed network formation, so it

may not correspond to the formation of a friendship network, where mutual

consents are important. Sheng (2012) employs a simultaneous-move link an-

nouncement game and uses pairwise stability of a network as a necessary con-

dition for equilibrium. She focuses on subnetworks to reduce the number of

equilibria, and applies a partial identification approach.5 In the previous chap-

ter, I use pairwise stability as a stability notion and achieve point identification

of model parameters by checking pairwise stability conditions. This chapter ex-

tends the approach of the previous chapter to the multigraph framework. To

the best of my knowledge, a structural model with simultaneously determined

networks has not been studied in the literature. The model in this chapter is

widely applicable to many different settings where a multigraph is present.

This chapter also contributes to the econometrics literature on discrete choice

models with endogenous explanatory variables, as well as on the practical im-

plementation of partial identification methods. The presence of endogenous

explanatory variables is a commonplace problem in practice. I focus on the sit-

uation where the econometrician has no access to a valid instrument excluded

in the structural equation. I build on the recently developed use of random

set theory in partial identification to characterize the sharp identification region

of model parameters. The use of random sets in econometrics was first pro-

posed by Beresteanu and Molinari (2008). They study a class of models where

5Other recent papers in empirical models of strategic network formation include, for ex-
ample, Boucher and Mourifié (2012), Koenig (2012), Miyauchi (2012) and Leung (2013) among
many others.
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the sharp identification region can be represented by a transformation of the

Aumann expectation of a properly defined random set. BMM11 further de-

velop a tractable characterization of the sharp identification region for incom-

plete econometric models with convex moment predictions. They show various

examples of such models including simultaneous move games of complete and

incomplete information which admit multiple equilibria with mixed strategies.

Beresteanu, Molchanov, and Molinari (2012), BMM12 henceforth, revisit previ-

ous problems in the literature, e.g. best linear prediction with interval data, and

illustrate the benefits of using random set theory. Chesher, Rosen, and Smolin-

ski (2011), CRS henceforth, apply random set theory to multinomial choice mod-

els where endogenous explanatory variables are present. This chapter is similar

but different from CRS since I consider a situation where no excluded instru-

ments are available for an endogenous variable. The model in this chapter is

also similar to that of Chesher and Rosen (2012), in the sense that they cover a

case that exogenous variables are included in the structural equation. However

they do not consider the case with no excluded instruments distinctively. As in

BMM11, BMM12, GH, and CRS, the random set approach that I take yields that

the parameter vector is defined by a finite set of moment inequalities. To reduce

the number of moment inequalities I use the notion of core determining class

first proposed by GH.

Inference in partially identified econometric models recently received much

attention in the literature. AS propose a new class of confidence sets and tests,

which uses generalized moment selection (GMS), for models in which parame-

ters are defined by moment inequalities and equalities. The GMS procedure has

a correct asymptotic size in a uniform sense. I follow their estimation method

to construct confidence sets for the sharp identification region of the model
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parameters. The present chapter has a similar spirit to that of Ciliberto and

Tamer (2009) in the sense that I take the recently developed partial identifica-

tion methodology to investigate empirical questions in detail.

Finally, the empirical results in this chapter contribute to the development

economics literature on risk sharing and favor exchange networks. There is

an extensive literature on risk sharing and favor exchange networks in devel-

oping countries. Fafchamps (1992) describes that social networks play an im-

portant role in informal risk sharing. Townsend (1994) finds that individuals

cannot achieve full insurance in villages. Fafchamps and Lund (2003) show that

risk sharing is limited by the extent of social network. De Weerdt and Dercon

(2006) find that risk sharing occurs through a social network within one’s vil-

lage. Thus, the structure of social networks is very important for individuals,

poor households as well as policy makers when dealing with many types of

risks such as an epidemic and famine in developing areas.

There are a few studies whose empirical questions are closely related to

mine. De Weerdt (2002) investigates what determines a risk sharing network

by employing a dyadic logit regression. He finds that kinship, geographical

proximity, mutual friends as well as some observed characteristics affect the for-

mation of risk sharing network. However, his model takes into account neither

the potential endogeneity of friendship nor the simultaneity of other favor ex-

change relationships. Hence, his estimation results may suffer from endogene-

ity bias. Fafchamps and Gubert (2007) find that geographic proximity possibly

correlated with kinship and friendship plays an important role in the formation

of a risk sharing network. Recently, Kinnan and Townsend (2012) investigate

the effect of kinship on a risk sharing network. This chapter differs from the
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existing papers in the literature in the following ways. First, the model incorpo-

rates the simultaneous determination of different types of favor exchange rela-

tionships. Second, I investigate the role of friendship links in the formation of

a risk sharing network by allowing for the endogeneity of friendship. Since the

model in this chapter allows for endogeneity and simultaneity, I provide con-

sistent and more credible estimates for the effect of friendship as well as other

observed characteristics, e.g. caste, on the formation of a risk sharing network.

Structure of the Chapter

The rest of the chapter is organized as follows. Section 2 describes the multi-

graph framework, and provides categorization of different types of networks. I

introduce pairwise stability of a multigraph, and discuss the existence of a pair-

wise stable multigraph in section 3. Section 4 explains how pairwise stability of

a multigraph reduces the structural model to a multinomial choice model. Sec-

tion 5 addresses identification and estimation. Section 6 investigates the empiri-

cal application to village networks. Section 7 discusses all empirical results, and

Section 8 concludes. All proofs and detailed estimation procedures are placed

in the Appendix B.
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3.2 Multigraph

3.2.1 Categorization of Networks

A set of economic agents often form many types of networks, or a multigraph.

When the econometrician analyzes the strategic formation of a network, say A1,

he or she needs to carefully account for the other networks. First, this is because

some of the other networks are determined simultaneously with A1. To see this,

consider a dynamic process of a multigraph formation where a pair is chosen

at each period and revises links decision between them. At each opportunity

of link-revision, a pair of individuals may revise two or more types of links si-

multaneously. Second, there may exist networks that are not simultaneously

determined but endogenous to A1, in the sense that an unobserved variable is

correlated with both A1 and that network.6 Finally, some networks might be

strictly exogenous. In this section, I explain the structure of a multigraph with

an example of networks in villages. Note that labeling which network is exoge-

nous, endogenous or simultaneous depends on the context, or more specifically

on the network of main interest. In this section, I use A1 to denote a network that

the econometrician is interested in. Below I define the other networks relative

to A1.

Exogenous network: A network Aex is strictly exogenous if the structure

of A1 does not affect the formation of Aex, and Aex is statistically independent

with an unobserved variable. For example, suppose that the econometrician is

6Manski (1993) uses ‘correlated effects’ to denote a tendency that individuals behave simi-
larly to others due to facing similar characteristics or environment. In my case, a network is
endogenous (but not simultaneous) to A1 due to unobserved characteristics. In this sense, my
classification of ‘endogenous network’ and ’simultaneous network’ is similar to his ‘correlated
effects’ and ’endogenous effects’, respectively.
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interested in the strategic formation of a risk sharing network in a village. The

underlying kinship network among the villagers is strictly exogenous.

Endogenous (but not simultaneously determined) network: A network Aen

is endogenous but not simultaneously determined with A1 if the structure of A1

does not affect Aen, but there exists an unobserved variable which affects both A1

and Aen. If Aen is taken as exogenous in an econometric model, the endogeneity

bias will occur. For example, consider the village example again. A friendship

network among village individuals is always endogenous but might not be si-

multaneously determined with the risk sharing network A1. One may think

friendship and risk sharing network are determined simultaneously. However,

the rationale to put friendship into this category is as follows. Although re-

jecting mutual insurance or asking risk sharing may lead to the severance of

friendship, one or a couple of such events is unlikely to break up the friend-

ship, especially in a developing area. When the econometrician considers the

dynamic formation of a risk sharing network with the assumption of myopic

agents, it is reasonable to assume that friendship is a fixed structure among the

individuals given the short period of the time frame. However, it is not strictly

exogenous, since there may exist a variable unobserved to the econometrician,

which is correlated with both networks A1 and Aen. Personality can be a good

example of such an unobserved variable. Hence, the friendship network is en-

dogenous to the risk sharing network in a village.

Simultaneous network: A network Asim is simultaneously determined with

A1 if agents (or pairs) determine their relationships on Asim and A1 at the same

time or in a negligible lag of time. Moreover, a link decision of an individual

or a pair in Asim affect their utility of forming a link in A1, and vice versa. In
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this case, Asim and A1, or link decisions on those networks should be considered

jointly as an outcome variable. In the village example, different types of favor

exchange networks can fall into this category. Also, a network which represents

relatively instant relations can be simultaneously determined. More specifically,

a network of borrowing or lending kerosene or rice, and a network of provid-

ing or receiving medical help can be determined simultaneously with the risk

sharing network. These types of relationships are relatively more instant or

spontaneous, so the severance or formation of one such relationship may result

in the severance or formation of the others immediately. Hence, it is reasonable

to put such networks together as an outcome variable.

3.2.2 Set-up

Let m = 1, · · · ,M be an index for communities or villages. Let i = 1, · · · , nm

be an index for individuals in village m. I use N =
∑M

m=1 nm as the number of

all individuals in the data, and i j = 12, 13, · · · , (nm − 1)nm to denote unordered

pairs of individuals i and j. Let As,m be a type-s network among nm individuals

for s = 1, · · · , S , where S is finite and small. With a slight abuse of notation, I

also use As,m as an nm by nm adjacency matrix with its (i, j)th element a(s)
i j . That

is,

a(s)
i j =


1, if i and j have a type-s relation.

0, otherwise.

All networks are undirected in the sense that if i nominates j as a friend for ex-

ample, then j also views i as a friend. Let i js be the link between i and j on the

sth network, i.e. a type-s link between i and j. Let Gm = {As,m, s = 1, · · · , S }
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collect all networks in a village m, thus it is a multigraph. Links in a multigraph

may be simultaneous, endogenous and exogenous to each other as explained

in Section 2.1. For simplicity, I omit the village index m until necessary. Let A1

be the network of the econometrician’s main interest. I use Y = {A1, · · · , Ap}

to denote simultaneously determined networks with A1, including A1 itself,

where p is the number of all simultaneously determined networks. Similarly,

W = {Ap+1, · · · , Ap+q} and V = {Ap+q+1, · · · , AS } are endogenous (but not simulta-

neous) and exogenous networks, respectively. I am interested in estimating util-

ity parameters of forming Y given the other networks W and V , and observed

individual characteristics X. A set of links, Yi j = (a(1)
i j , · · · , a(p)

i j )′ denotes the links

decision of i and j on Y . Let Yi j be the set of all possible Yi j’s, e.g. if p = 2 (two

simultaneously determined networks), Yi j = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Individual i’s utility from a simultaneously determined multigraph Y given

the rest of the multigraph is

Ui(Y |W, V, X, ε) =

n∑
j=1

 p∑
s=1

a(s)
i j u(s)

i j +

p∑
t,s

p∑
s=1

a(s)
i j a(t)

i j δ
(s,t)
i j

p∑
r,s,t

p∑
t,s

p∑
s=1

a(s)
i j a(t)

i j a(r)
i j δ

(s,t,r)
i j + · · · +

p∏
s=1

a(s)
i j δ

(1,··· ,p)
i j

 , (3.1)

where

u(s)
i j = u(s)(Wi j, Vi j, Xi j, Y−i j, ε

(s)
i j ),

δ(s,t)
i j = δ(s,t)(Wi j, Vi j, Xi j, Y−i j, ε

(s,t)
i j ),

δ(s,t,r)
i j = δ(s,t,r)(Wi j, Vi j, Xi j, Y−i j, ε

(s,t,r)
i j )

...

δ
(1,··· ,p)
i j = δ(1,··· ,p)(Wi j, Vi j, Xi j, Y−i j, ε

(1,··· ,p)
i j )
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In the above expression, the base utility u(s)
i j , s = 1, · · · , p captures i’s utility from

j when i has a type-s relationship with j. It may include the cost of maintain-

ing a link. Additional utilities, δ(s,t)
i j , δ(s,t)

i j , · · · , δ
(1,··· ,p)
i j capture the effects of having

multiple relationships (s, t), (s, t, r), · · · , (1, · · · , p), respectively with a partner j.

Both the base and additional utilities may depend on the following components:

a pair i j’s current relations in the underlying multigraph structure (W, V), ob-

served characteristics and externalities due to other pairs’ decisions Y−i j. All ob-

served characteristics are collected in a κx×
(

N
2

)
matrix X = (X′12, · · · , X

′
n−1,n)′, where

Xi j is an κx × 1 vector of observed characteristics for i and j. The term ε(s)
i j is a

match-specific unobserved variable for type-s relation, and ε(s,t)
i j is for both type-

s and type-t relations. These variables are public information to individuals but

unobserved to the econometrician. These unobserved variables can be viewed

as a personality match between i and j. This personality match differs across re-

lations, and there are additional unobserved components when they are linked

in multiple relations. Note that εi j’s are match-specific, i.e. εi j = ε ji. The assump-

tion of the match-specific unobservables implies that the unobserved variables

affect both i and j’s utility in the same way. For example, different personality

between two individuals affects their utility in the same way.7

Note that the utility function (3.1) is very flexible and has very few restric-

tions. Utilities from different individuals and base utilities across different net-

works are additively separable. However, the utility function is able to capture

a rich set of non-additive structures across individuals as well as different net-

works, since the base utility u(s)
i j depends on Y−i j that contains other pairs’ deci-

sions in the type-s network as well as other types of networks. Thus, it can cap-

7The assumption can be relaxed to that of both match- and individual- specific unobserv-
ables, i.e. εi j , ε ji. However, the latter assumption gives rise to an additional computational
burden. Briefly speaking, the estimation procedure requires drawing twice larger dimension of
unobservables, since the estimation relies on the method of simulated moments.
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ture utility from having a three people triad or a four people rectangle within the

same type or across different types of relations. The additional utility δ(s,t)
i j from

multiple relations allows non-additive separability across networks. Finally, the

base utility and the additional utilities allow for non-additively separable unob-

servables.

Let Y (−s)
i j = (a(1)

i j , · · · , a(s−1)
i j , a(s+1)

i j , · · · , a(p)
i j ) be the current links decision of i

and j except type-s relation. Let mu(s)
i ( j|Y (−s)

i j , W, V, X, ε) = mu(s)
i ( j|Y (−s)

i j ) be indi-

vidual i’s marginal utility of forming a type-s link with j versus not forming one

given that their other relationships are Y (−s)
i j .

Example (Two simultaneous determined networks in a multigraph, i.e. p = 2)

Individual i’s utility from a multigraph Y is

Ui(Y |W, V, X, ε) =

n∑
j=1

[
a(1)

i j u(1)
i j + a(2)

i j u(2)
i j + a(1)

i j a(2)
i j δ

(1,2)
i j

]
(3.2)

Individual i’s marginal utility from having the first relationship given that they

already have the second relationship is

mu(1)
i ( j|0) := mu(1)

i ( j|a(2)
i j = 0) = u(1)

i j

Other marginal utility terms can be written analogously. The sum of marginal

utilities mu(s)
i (·) + mu(s)

j (·) is written as, for example,

mu(1)
i ( j|0) + mu(1)

j (i|0) = u(1)
i j + u(1)

ji . (3.3)
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3.3 Pairwise Stability of a Mutigraph

3.3.1 Definition

In this section, I focus only on simultaneously determined networks Y . Recall

that Yi j = (a(1)
i j , · · · , a(p)

i j )′ is the current links decision of i and j in Y . For example,

consider there are two types of relationships in Y , say risk sharing (s = 1) and

borrowing or lending rice (s = 2). If individuals i and j have both risk sharing

and friendship in a current multigraph Y , then Yi j = (1, 1). Now, let Y + Y ′i j

be a multigraph which adds links between i and j in Y ′i j toY , and Y − Yi j be

a multigraph which deletes links between i and j in Yi j from Y .8 Those two

multigraphs differ from Y by links involved with a pair i j only. I extend the

notion of pairwise stability of a single network to the multigraph framework as

follows.

I provide pairwise stability of a multigraph with transferable utility (PSMt)

in this section and pairwise stability of a multigraph without transferable utility

(PSMnt) in Appendix B.2.

Definition (PSM with transferable utility) Let Ui(Y) be i’s utility from a multigraph

Y . Let Yi j be the current link decisions of i and j in Y . A multigraph Y satisfies pairwise

stability of a multigraph with transferable utility (PSMt) if the following conditions

hold for all i and j.

Ui(Y) + U j(Y) ≥ Ui(Y − Yi j + Y ′i j) + U j(Y − Yi j + Y ′i j) for all Yi j, Y ′i j(, Yi j) ∈ Yi j.

Condition (i) means that when i and j have a set of relations Yi j, it must be

8If some links in Y ′i j are already present in Y , I add non-existing ones only.
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as beneficial as the other sets of relations in terms of the sum of their utilities.

Condition (ii) tells that when i and j have no relations, it must provide the sum

of utilities of i and j strictly higher than having at least one relation. Both PSMt

and PSMnt provide conditions under which no pairs of individuals want to

deviate from their current set of relationships. For example, suppose there are

only two simultaneously determined relations: friendship and risk sharing. If i

and j currently have friendship and risk sharing relationship, then none of the

following combinations- friendship only, risk sharing relationship only, and no

relationships- give higher utility than the current one.

The notion of pairwise stability of a multigraph has a benefit in practice since

it provides a tool to investigate interactions among different types of networks

or relations. The non-deviation conditions from the current set of relations pro-

vide a preference ordering as I will show in Section 4. The inequality conditions

corresponding to the preference ordering provide identification information for

the utility parameters. Since the preference ordering is across different relations,

it provides identification information for interactions among different relations,

or networks.

If a type-s network As in a multigraph Y satisfies PSM, it is not only pairwise

stable by itself but also pairwise stable jointly with other simultaneously deter-

mined networks {A1, · · · , As−1, As+1, · · · , Ap}. In this sense, when two or more

networks are simultaneously determined, PSM is not only stronger than pair-

wise stability of a single network, but also stronger than pairwise stability of all

the single networks considered one at a time. Although it is a stronger stabil-

ity notion, conditions for the existence of a pairwise stable multigraph are not

more restrictive than those of a single pairwise stable network. I will discuss the
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existence of a pairwise stable multigraph in the following section.

3.3.2 Existence

The results on the existence of a pairwise stable multigraph in this section rely

on the results of Jackson and Watts (2001, 2002b). First, I introduce a few defi-

nitions which extend similar ones from Jackson and Watts (2001, 2002b) to the

multigraph framework. Then, I establish conditions of U under which a pair-

wise stable multigraph exists by Proposition 1 and 2.

Definition (i) (a cycle) A set of multigraphs C form a cycle if for any Y ∈ C and

Y ′ ∈ C there exists an improving path connecting Y to Y ′.

(ii) (a closed cycle) A cycle C is a closed cycle if no multigraph in C lies on an

improving path leading to a multigraph that is not in C.

(iii) (defeated) A multigraph Y is defeated by Y ′ = Y−Yi j +Y ′i j if Ui(Y ′) > Ui(Y)

and U j(Y ′) > U j(Y) in the non-transferable utility case, and Ui(Y ′) + U j(Y ′) >

Ui(Y) + U j(Y) in the transferable utility case.

Proposition 3.3.1. Fix U. Suppose that Ui(Y) , Ui(Y − Yi j + Y ′i j) for all i, Y , Yi j and

Y ′i j , Yi j. Then, there exists at least one pairwise stable multigraph or a closed cycle of

multigraphs.

Proof. See Appendix B.1.1.

Consider a case that Y ′ differs from Y by a pair i j’s links decision only. If indi-

viduals i and j receive different utilities from those two multigraphs, then there
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is either a pairwise stable multigraph or a closed cycle of multigraph. The as-

sumption of no ties restricts utilities between Y and Y ′ = Y−Yi j +Y ′i j, but does not

restrict utilities from two arbitrary multigraphs in general. If two multigraphs,

Y and Y ′′, differ by two or more pairs’ links, they can still have a tie for some

individuals involving the difference in Y and Y ′′.

From Proposition 1, a pairwise stable multigraph exists if and only if there

are no cycles. The following proposition provides conditions under which such

cycles are ruled out.

Proposition 3.3.2. Fix U. Suppose that Ui(Y) , Ui(Y − Yi j + Y ′i j) for all i, Yi j and

Y ′i j , Yi j. If there exists a function ω : Y → R such that [Y ′ defeats Y]⇔[ω(Y ′) > ω(Y),

and Y and Y ′ are different with respect to a single pair’s link decision only.], then there

are no cycles. Therefore, there exists at least one multigraph which is pairwise stable.

Proof. See Appendix B.1.2.

Proposition 2 tells that cycles are ruled out if there exists a function which rep-

resents the incentives of individuals with respect to any changes involving a

single pair only. When utility is transferable, by restricting externalities in u(s)
i j

and u(s,t)
i j , I can find a function ω(·) under the utility specification (3.1).

Assumption 3.1. (i) Externalities from Y−i j in u(s)
i j are additively separable and

affect the base utility u(s)
i j , for all s = 1, · · · , p, only linearly through

∑
k a(t)

ik a(t)
jk , t =

1, · · · , p. That is,

u(s)
i j := u(s)(Wi j, Vi j, Xi j, ε

(s)
i j ) +

p∑
t=1

γ(t,s)
∑

k

a(t)
ik a(t)

jk , s = 1, · · · , p (3.4)
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(ii) The additional utilities from multiple relations do not depend on Y−i j.

Assumption 3.1.(i) restricts that the base utility depends only on the number

of mutual partners between i and j across relations. For example, the number

of mutual risk sharing partners between i and j affects not only i’s base utility

from having j as a risk sharing partner but also i’s base utility from having j as

a partner in relations other than risk sharing. Assumption 1. (ii) implies that

other pairs’ decisions in Y are already considered in the base utility and do not

have an additional impact on having multiple relations.

Proposition 3.3.3. Let Ui be defined as (3.1). Suppose that Assumption 1 holds. Then,

there exists at least one pairwise stable multigraph with transferable utility.

Proof. See Appendix B.1.3.

By Proposition 3.3.3, at least one pairwise stable multigraph exists. Note that

Proposition 3.3.3 holds for any finite number of relationships in a multigraph

when the following conditions are satisfied. (1) An individual’s base utility has

an additive form across different links, (2) externalities can be represented by the

form of the equation
∑

k a(s)
ik a(s)

jk , and (3) the additional utility of having multiple

relations does not depend on the rest of the multigraph Y−i j . Note that these

conditions are sufficient but not necessary.

I can find a potential function ω(·) only when utility is transferable. When

utility is non-transferable, the existence of a pairwise stable multigraph may

depend on the sign and the magnitude of the externalities. Hellmann (2012)

provides conditions for the existence of a pairwise stable network with non-

transferable utility. His results may be extended to the multigraph framework,

but I leave it as a future study.
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Before moving on to the next section, I discuss briefly the uniqueness of a

pairwise stable multigraph. As in the single network case, the set of pairwise

stable multigraphs, say PSM, given a utility function U is not a singleton in

general. A particular formation process may not generate all pairwise stable

multigraphs in PSM. It is also possible that some formation processes may not

generate a pairwise stable multigraph, or may not produce a particular pairwise

stable multigraph of interests. To see this, consider a dynamic process of multi-

graph formation where a pair is chosen at each period and revise their links.

The sequence of meetings among pairs is crucial to determine the configura-

tion of a pairwise stable multigraph. Different meeting sequences can generate

different pairwise stable multigraphs. However, under the same meeting se-

quence, agents always form the same pairwise stable multigraph. Note that

if the econometrician is interested only in utility parameters, then knowledge

about the history of meeting is not required. Consequently, other pairwise stable

multigraphs in PSM are irrelevant, since those multigraphs are not outcomes

of the multigraph formation process which generates the observed multigraph.

I will discuss this with more details in Section 3.5.1.

3.4 A Multinomial Choice Model under PSMt

3.4.1 A Multinomial Structure under PSMt

From this section, I set p = 2 to simplify the model for ease of explanation.

When p is bigger than two but still small, the results in this section can be easily
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extended with only several more steps.9 I also assume that the utility of forming

a multigraph is transferable.

PSM provides no-deviation conditions for each pair. When there are a total

of p simultaneous networks, the cardinality of Yi j (the set of all possible links

between i and j) is 2p. Hence, PSM provides 2p − 1 no-deviation conditions for

each pair. When p = 2, there are only four possible combinations of link types

for each pair of agents. Once one of four combinations, say ‘type-1 link only’, is

chosen by i and j, PSM provides the following 22 − 1 conditions; (1, 0) % (0, 0),

(1, 0) % (0, 1) and (1, 0) % (1, 1).10

Recall that mu(s)
i ( j|Y (−s)

i j = a(t)
i j ) is i’s marginal utility from a type-s link with j,

when they have relations a(t)
i j . In addition, let mu(1,2)

i ( j) be i’s marginal utility by

adding both types of links at the same time. I describe how to construct moment

inequalities under PSM with transferable utility.

First, consider the case that i and j choose Yi j = (a(1)
i j , a(2)

i j ) = (1, 1). It implies

that (1, 1) is weakly preferred to any other combinations, (0, 1), (1, 0), and (0, 0).

Hence, I have

[(1, 1) % (0, 1)] ⇒ mu(1)
i ( j|a(2)

i j = 1) + mu(1)
j (i|a(2)

i j = 1) ≥ 0, (3.5)

[(1, 1) % (1, 0)] ⇒ mu(2)
i ( j|a(1)

i j = 1) + mu(2)
j (i|a(1)

i j = 1) ≥ 0, (3.6)

[(1, 1) % (0, 0)] ⇒ mu(1,2)
i ( j) + mu(1,2)

j (i) ≥ 0 (3.7)

9Even when p is large, the results in this section can be extended. However, practical imple-
mentation can be difficult. For example, when p = 20, there are more than a million choices for
each pair.

10I use the weak preference relation % in the sense that utility of one choice is as great as that
of the others. When the distribution of ε is absolutely continuous, this discretion is unnecessary.
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When i and j choose (a(1)
i j , a(2)

i j ) = (1, 0), similarly there are following three

conditions:

[(1, 0) % (1, 1)] ⇒ mu(2)
i ( j|a(1)

i j = 1) + mu(2)
j (i|a(1)

i j = 1) ≤ 0, (3.8)

[(1, 0) % (0, 1)] ⇒ mu(1)
i ( j|a(2)

i j = 0) + mu(1)
j (i|a(2)

i j = 0)

≥ mu(2)
i ( j|a(1)

i j = 0) + mu(2)
j (i|a(1)

i j = 0), (3.9)

[(1, 0) % (0, 0)] ⇒ mu(1)
i ( j|a(2)

i j = 0) + mu(1)
j (i|a(2)

i j = 0) ≥ 0. (3.10)

The case of (a(1)
i j , a(2)

i j ) = (0, 1) is symmetric to the above. That is,

[(0, 1) % (1, 1)] ⇒ mu(1)
i ( j|a(2)

i j = 1) + mu(1)
j (i|a(2)

i j = 1) ≤ 0, (3.11)

[(0, 1) % (1, 0)] ⇒ mu(1)
i ( j|a(2)

i j = 0) + mu(1)
j (i|a(2)

i j = 0)

≤ mu(2)
i ( j|a(1)

i j = 0) + mu(2)
j (i|a(1)

i j = 0), (3.12)

[(0, 1) % (0, 0)] ⇒ mu(2)
i ( j|a(1)

i j = 0) + mu(2)
j (i|a(1)

i j = 0) ≤ 0. (3.13)

Finally, when a pair i j chooses (a(1)
i j , a(2)

i j ) = (0, 0), I have

[(0, 0) % (1, 1)] ⇒ mu(1,2)
i ( j) + mu(1,2)

j (i) ≤ 0, (3.14)

[(0, 0) % (1, 0)] ⇒ mu(1)
i ( j|a(2)

i j = 0) + mu(1)
j (i|a(2)

i j = 0) ≤ 0, (3.15)

[(0, 0) % (0, 1)] ⇒ mu(2)
i ( j|a(1)

i j = 0) + mu(2)
j (i|a(1)

i j = 0) ≤ 0. (3.16)
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Since each pair makes a decision among multiple (2p) alternatives, and the

set of relations chosen gives the maximum sum of utilities among all alterna-

tives, the model has a multinomial structure. However, the model is not ex-

actly a typical multinomial choice model, e.g. multinomial probit, because the

marginal utilities depend on on Y−i j and may have non-additively separable εi j.

3.4.2 A Multinomial Choice Model under PSMt

In the end of Section 3.3.2., I briefly mentioned the benefits of using pairwise

stability of a multigraph. In this section, I will show that the structural model

is equivalent to a typical multinomial choice model under PSMt and additional

assumptions. It will be done through three steps. First, I impose additive sep-

arability of εi j and demonstrate that for any values of εi j ∈ R2p−1, a set of links

of a pair is uniquely determined given the rest of the multigraph and observed

characteristics. Second, I show that all pairs’ links decisions are separate from

each other due to the additional assumption of myopic agents. Finally, I explain

the irrelevance of other pairwise stable multigraphs.

Assumption 3.2. (i) εi j is additively separable.

(ii) ε is a continuously distributed r.v. with everywhere positive density w.r.t.

Lebesgue measure.

(iii) εi j = (εi j,1, εi j,2, · · · , εi j,2p−1) is i.i.d. across pairs, but not i.i.d. across the

alternatives.

Assumptions 3.2.(i) and 3.2.(ii) are not strong assumptions. The i.i.d. assump-

tion rules out the role of unobserved individual personality in multigraph for-
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mation. It is a strong assumption, but prevalent in the literature of empirical

network formation, e.g. Christakis et al. (2010). From Assumption 3.2.(i), the

base utility and the additional utility are written as

u(s)
i j := u(s)(Wi j, Vi j, Xi j) +

p∑
t=1

γ(t,s)
∑

k

a(t)
ik a(t)

jk + ε(s)
i j ,

and

δ(s,t)
i j := δ(s,t)(Wi j, Vi j, Xi j) + ε(s,t)

i j .

Then, the sum of marginal utilities in (3.5)-(3.16) are written as, for example,

mu(1)
i ( j|a(2)

i j = 1) + mu(1)
j (i|a(2)

i j = 1) = u(1)(Wi j, Vi j, Xi j) + u(1)(Wi j, Vi j, X ji)

+2
2∑

t=1

γ(t,s)
∑

k

a(t)
ik a(t)

jk + δ(s,t)(Wi j, Vi j, Xi j)

+δ(s,t)(Wi j, Vi j, X ji) + 2ε(1)
i j + 2ε(1,2)

i j .

For notational simplicity, I use εi j(Yi j) to denote the sum of unobservables which

corresponds to Yi j, for example, εi j(1, 1) = ε(1)
i j + ε(2)

i j + ε(1,2)
i j . Then, I have

mu(1)
i ( j|a(2)

i j = 1) + mu(1)
j (i|a(2)

i j = 1) = u(1)(Wi j, Vi j, Xi j) + u(1)(Wi j, Vi j, X ji)

+2
2∑

t=1

γ(t,s)
∑

k

a(t)
ik a(t)

jk + δ(s,t)(Wi j, Vi j, Xi j)

+δ(s,t)(Wi j, Vi j, X ji)

+2εi j(1, 1) − 2εi j(0, 1). (3.17)

The right hand side of (3.17) is the same form as that of a typical multinomial

choice model.
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Now consider a dynamic process of multigraph formation as in Sections 3.2

and 3.3.2. In the process, a pair of individuals is chosen at each period, and

the pair revises its current links given the current multigraph. The link for-

mation (or revision) in each period occurs as a two people cooperative game.

When they revise, they do not consider the future changes in the multigraph,

i.e. agents are myopic. Hence, a pair chooses a set of links Yi j, which maximizes

the sum of their utilities given Wi j, Vi j, Xi j, Y−i j and εi j. Lemma 1 shows that there

is a unique prediction for each Yi j given Wi j, Vi j, Xi j and Y−i j for all realizations

of εi j ∈ R2p−1.

Lemma 3.4.1. The utility function is defined as (3.1). Let Assumption 2 hold. Then,

given Wi j, Vi j, Xi j and Y−i j, each pair’s links decision Yi j is uniquely determined under

PSMt for all values of εi j ∈ R2p−1,

Proof. Consider only the case with p = 2 for ease of exposition. It can be easily

seen that the following four regions of ε corresponding to (3.5)-(3.7), (3.8)-(3.10),

(3.11)-(3.13), and (3.14)-(3.16) are disjoint and compose R3.

Once the rest of the multigraph is fixed, each pair’s links decision Yi j is uniquely

predicted given Wi j, Vi j and Xi j for any realizations of εi j. However, Lemma

1 does not mean that a pairwise stable multigraph Y is uniquely determined

given W, V and X for all ε = (ε12, · · · , εn−1,n). This result is noticeably different

from that of a two by two simultaneous-move entry game in the literature (see

for example, Tamer (2003)), where multiple equilibria, i.e. multiple predicted

outcomes, occur for some regions of unobservables. In the link formation game,

all n(n − 1) pairwise outcomes are uniquely determined. It is mainly because of

the nature of the game. In the link formation game of a pair, two individuals

compare the sum of their utilities across alternatives and choose one that gives
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the maximum utility. In the entry game, on the other hand, two firms separately

make an entry decision in a market without cooperation.

The remaining problem is the simultaneity among al pairs’ links decisions,

(Y12, Y13, · · · , Yn−1,n). At this point the benefit of pairwise stability of a multi-

graph arises. When checking pairwise stability of a multigraph, I do not need

to consider no-deviation conditions for a set of individuals larger than a pair.

Checking pairwise stability of each pair’s current links decision Yi j only requires

comparison of utilities between Y and Y−Yi j +Y ′i j. Hence, if a multigraph is pair-

wise stable, it is possible to consider the multigraph as if it is formed by myopic

agents. This assumption of myopic agents makes all pairwise decisions separate

across pairs. To see this, consider a pair i j with current links Yi j on a multigraph

Y . In order to form pairwise stable relations Yi j, the pair i j has to check the dif-

ference between Ui(Y −Yi j +Y ′i j)+U j(Y −Yi j +Y ′i j) and Ui(Y)+U j(Y) for all Y ′i j , Yi j.

This comparison does not take into account future changes in the rest of the

multigraph Y−i j. In other words, the pair i j compares the sum of their utilities

from Y −Yi j +Yi j with the sum of utilities from Y . Thus, the rest of network Y−i j is

fixed when they make a decision, and there is no simultaneity among Yi j’s. The

utility parameters in the strategic formation of a multigraph can be obtained by

checking pairwise stability conditions for each pairwise decision Yi j separately,

given Wi j, Vi j, Xi j and Y−i j.

Finally I discuss the irrelevance of other pairwise stable multigraphs in the

set of all pairwise stable multigraphs, say PSM. Since pairwise stability of a

multigraph is not an equilibrium solution concept, the set PSM is not a set of

equilibrium multigraphs. Rather, it is a set of multigraphs that are outcomes

of many different games. For the dynamic process of multigraph formation ex-
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plained in Section 3.3.2, a multigraph has a corresponding history of meetings.

Given a specific history, the same multigraph is always realized. By the implicit

assumptions of the dynamic formation process and the independence between

meeting and preference, other pairwise stable networks corresponding to dif-

ferent histories are irrelevant to the identification of the utility parameters.11

Now, if there are no endogenous variables, the identification problem is re-

duced to that of multinomial choice models. If one imposes a distributional

assumption on ε such as the normal or the logistic distribution, the parameter

vector θ is point-identified under suitable location and scale normalizations.12 I

consider the case with an endogenous variable formally in the next section.

3.5 Identification and Estimation

3.5.1 Identification with an Endogenous Explanatory Variable

and No Instruments

I have shown that under pairwise stability of a multigraph, the structural model

of strategic multigraph formation is equivalent to a multinomial choice model.13

This section focuses on the identification and the estimation of the multinomial
11One may consider a simultaneous move game of multigraph formation. However, the si-

multaneous move game may not generate the observed multigraph, or even it may not have
an equilibrium multigraph which is pairwise stable. To see this, one may require an extension
of pairwise Nash equilibrium to the simultaneous move game of multigraph formation. The
existence and the uniqueness of pairwise Nash equilibrium and corresponding multigraphs are
interesting future research areas.

12For example, if εi j is i.i.d. normal across pairs and alternatives with zero-mean and variance-
covariance matrix I2p−1 , θ is point-identified.

13The notations used in this section follow ones in BMM12 and CRS.
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choice model. I build the analysis in this subsection on CRS. For ease of exposi-

tion, let14

Ñ =

M∑
m=1

(
nm

2

)
, the number of all pairs,

Wi j = (a(p+1)
i j , · · · , a(p+q)

i j )′, endogenous relations between i and j,

Zi j = (V ′i j, X′i j, Y ′−i j)
′, the collection of all exogenous variables,

where

Vi j = (a(p+q+1)
i j , · · · , a(S )

i j )′, exogenous relations between i and j,

Xi j = (x1,i, · · · , xκx,i, x1, j, · · · , xκx, j)
′, the observed characteristics of i and j,

Y−i j = (a(1)
−i j, · · · , a

(p)
−i j)
′, other pairs’ links decisions in Y.

Recall that Yi j = (a(1)
i j , a(2)

i j , · · · , a(p)
i j )′. Let y be its generic (vectorized) value. The

model satisfies the following assumptions.

Assumption 3.3. (i) (Y, W, Z, ε) is defined on a probability space (Ω, F , P). The

support of Yi j is a finite set Y. The support of (W, Z, ε) isW×Z× R2p−1.

(ii) The true data generating processes, F0
Y,W |Z and F0

W |Z, are identified by the

sample.

(iii) ε and Z are statistically independent. No excluded instrumental vari-

ables are available for W.
14From this section, I use Y , W and Z as generic random variables or random vectors for Yi j,

Wi j and Zi j.
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ε

−θw − θzz

−θzz

(0, 1) (1, 1)

(Y,W) = (0, 0) (1, 0)

Figure 3.1: An Example of a Binary Choice Model When θw > 0

Define the structural equation g as

g(w, z, ε; θ) =
∑
y∈Y

y × 1
[

min
k∈Y, k,y

{
Ui(y|w, z, ε; θ) + U j(y|w, z, ε; θ)

−Ui(k|w, z, ε; θ)) − U j(y|w, z, ε; θ)
}
> 0

]
.

That is, g(·) generates a pairwise stable outcome y for each pair given w, z and ε,

which provides the maximum sum of utilities to a pair of individuals, compared

to other alternatives y′. Now, define a random set

Qθ(ε, z) ≡ {(Y, W) : g(W, z, ε; θ) = Y} .

In other words, it is a set-valued random variable which represents model pre-

dictions. Let the inverse function of Qθ(ε, z) be

Eθ(Y, W, z) ≡ {ε : g(W, z, ε; θ) = Y} .

Since Y and W are random variables, the inverse function is also a random set.

For example, consider a simple case where Y = {0, 1} and W = {0, 1}. The

sum of utilities of a pair is simplified as Ui(Yi j = 1|w, z, ε) + U j(Yi j = 1|w, z, ε) =

θww + θzz + ε. Hence, y = 1{θww + θzz + ε > 0}. Due to the endogeneity of W, the

model predicts multiple outcomes for all regions of ε. For example, in Figure

67



3.1, when θw is positive, the random set Qθ(ε, z) takes multiple values of (Y, W),

e.g. Qθ(ε, z) = {(0, 0), (1, 1)}when ε ∈ [−θw − θzz, −θzz].

Let Sel(Qθ) and Sel(Eθ) be all selections of Qθ and Eθ, respectively. Then, a

parameter vector θ is in the identification region if and only if the model predic-

tion associated with a parameter vector θ contains the observed outcome. That

is, (Y, W) ∈ Sel(Qθ). From the inverse relation between Qθ(ε|z) and Eθ(Y, W, z), I

have

(Y, W) ∈ Sel(Qθ) ⇔ ε ∈ Sel(Eθ).

Let C(R2p−1) be the collection of all closed subsets of R2p−1. For any F ∈ C(R2p−1),

let Pε(F) be the probability of the event {ε ∈ D} corresponding to a probability

distribution Pε. By the Artstein’s inequality Artstein (1983), a candidate distri-

bution of ε, Pε is the distribution of Sel(Eθ) if and only if

Pε(F|Z = z) ≥ Pr[Eθ(Y, W, z) ⊆ F; F0].

That is, the probability distribution of the unobservables ε dominates the

(lower) probability distribution of the random set Eθ(Y, W, z). From the statis-

tical independence between ε and Z, I have

Pε(F) ≥ Pr[Eθ(Y, W, z) ⊆ F; F0]. (3.18)

The right hand side probability is equal to the sum of the probabilities Pr[Y =

y|W = w, Z = z; F0] corresponding to all sets Eθ(Y, W, z) contained entirely within
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F. When W is continuous, it can be written as

Pr[Eθ(Y, W, z) ⊆ F; F0] =

ˆ

w∈W

∑
y∈Y

1[Eθ(y, w, z) ⊆ F] Pr[Y = y|W = w, Z = z; F0]


dF0

W |Z(w|z).

When W is discrete,

Pr[Eθ(Y, W, z) ⊆ F; F0] =
∑
w∈W

∑
y∈Y

{
1[Eθ(y, w, z) ⊆ F] Pr[Y = y|W = w, Z = z; F0]

}
×Pr(W = w|Z = z; F0)

)
, (3.19)

All duples (θ, Pε) in the identification region must satisfy the inequality

(3.18) for all z. The advantage of using random sets is that the random set theory

provides the sharpness of the identification region, which will be explained in

Proposition 3.5.1. In addition, the above inequality (3.19) can be written con-

cisely with the containment functional (or the capacity functional) as in (3.18).

See Appendix B.1.4., for the definitions of a random closed set, the containment

and capacity functionals. I characterize the sharp identification region of admis-

sible duples (θ, Pε) as in BMM12 and CRS.

Proposition 3.5.1. Let Assumptions 3.1-3.3 hold. Then, the sharp identification region

for (θ, Pε) associated with F0
Y |W is given by

H[(θ, Pε)] =
{
(θ, Pε) ∈ Θ × P| Pε(F) ≥ Pr[Eθ(Y, W, z) ⊆ F; F0],

∀F ∈ C(R2p−1) a.e. z ∈ Z
}
. (3.20)
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Proof. See Appendix B.1.5.

One may already notice that it is infeasible to check the inequalities in (3.20)

for all closed subsets in R2p−1. However, I only need to consider the inequality

for a finite number of sets F. One naive way to construct such a class of sets

is as follows. Since (Y, W, Z) takes only a finite number of values, I construct a

class C1(θ) = {Eθ(Y, W, z) : y ∈ Y, w ∈ W, given z ∈ Z}. This class, however,

does not take into account all regions of unobservables which provide the sharp

identification information. Hence, I consider a bigger class that is all possible

unions of Eθ(Y, W, z)’s. Let this power set of Eθ(Y, W, z)’s be C2(θ). The sharp

identification region is obtained by considering all closed sets in C(θ). However,

it is not the smallest class. The smallest class is defined as the core determining

class by GH. The core determining class significantly reduces the number of sets

for which the set of moment inequalities characterize the sharp identification

region. In order to obtain the core determining class, the following sets will be

eliminated among the sets in C2(θ): the entire set, the empty set, non-connected

sets and duplicated sets. Proposition 3.5.1, which is similar to Theorem 2 in

CRS, provides a way of finding the core determining class.

Definition (Molchanov and Molinari, 2013) A family of closed setsM is said to

be a core determining class for a random closed set E if any probability measure

µ satisfying the inequalities

µ(F) ≥ P(E ⊂ F)

for all F ∈ M, is the distribution of a selection of E.

Proposition 3.5.2. Let Assumptions 3.1-3.3 hold. Define C1(θ) = {Eθ(Y, W, z) : y ∈
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Y, w ∈ W, and z ∈ Z}. Then all connected unions of sets in C1(θ) except R2p−1 yield

the core determining classM(θ).

Proof. See Appendix B.1.5.

Then, the sharp identification region is written as

H[(θ, Pε)] =
{
(θ, Pε) ∈ Θ × P|Pε(D) ≥ Pr[Eθ(Y, W, z) ⊆ F; F0],

∀F ∈ M(θ) a.e. z ∈ Z} . (3.21)

This size reduction is important. Suppose that the cardinality of Z is K. There

are 2(p+q) possible values of (Yi j, Wi j) since p and q are the number of simultane-

ous and endogenous networks, respectively. Then, the econometrician should

consider the power set of those 2(p+q) sets, which is of cardinality 22(p+q) . Even

with rather small p and q, the power set can be very large. For example, let

p = 2 and q = 1. Then, there are a total 28 = 256 sets in C2(θ). Even if I ex-

clude the entire set and the empty set, there are still 254 sets. The cardinality of

Z is often very large, since it is the number of all possible values of exogenous

variables. For example, if one includes five binary variables in Z, then K = 32.

In that case, there are 254 × 32 = 8128 moment inequalities, and computation

becomes burdensome. Furthermore, some sets in C2(θ) are duplicated, so that

the corresponding moments are perfectly collinear. This collinearity may pre-

vent the use of existing inference methods for moment inequality models. In

my empirical application, I find that the core determining classM(θ) has a total

of 36 sets as opposed to 254. Note that it is more than a 85% reduction.
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3.5.2 Estimation Methods

Estimation of partially identified models has been studied extensively in the

recent econometrics literature, for example, Manski and Tamer (2002), Imbens

and Manski (2004), Chernozhukov, Hong, and Tamer (2007), Beresteanu and

Molinari (2008), Romano and Shaikh (2008), Rosen (2008), Stoye (2009), AS and

Andrews and Barwick (2012). I adopt the estimation method developed by AS.

In this section I explain how the structural model in this chapter fits into the

framework of AS.

The moment inequalities in the model are written as

EF0[m(Y, W, Z; θ)] ≥ 0,

where

m(Y, W, Z; θ) = (m1,1(Y, W, z1; θ), · · · , m1,L(Y, W, z1; θ),

m2,L(Y, W, z2; θ), · · · ,mK,L(Y, W, zK; θ))′

is the K × L dimensional vector of moments. Note that K is the cardinality of

Z, and L is the cardinality of the core determining class M(θ). I impose the

following assumptions.

Assumption Assumption 3.4. (i) θ ∈ Θ ⊂ Rd, where d is the dimension of θ,

(ii) {(Yi j, Wi j, Zi j : ∀i j} are i.i.d. under F0,

(iii) σ2
F,k,l(θ) = varF(mk,l(Y, W, Z; θ)) ∈ (0, ∞) for k = 1, · · · , K and l = 1, · · · , L,
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(iv) EF |mk,l(Y, W, Z; θ)/σF,k,l(θ)|2+δ < ∞ for some δ > 0 for all k = 1, · · · , K and

l = 1, · · · , L.

(v) ε ∼ N(0, Σε).

Note that Assumption 3.4. (i), (iii) and (iv) are not restrictive, and that Assump-

tion 3.4. (ii) holds due to the myopic agent assumption. From Assumption 3.4.

(v), the distribution of the unobservable is known up to a finite vector of pa-

rameters, and this satisfies the framework of AS. Under Assumption 3.4, I em-

ploy the method of AS for estimating the structural parameter θ in the model.15

Their method can be applied to models where parameters are defined by mo-

ment inequalities and/or equalities. It does not require point identification of

parameters. I will explain detailed estimation procedures corresponding to the

empirical application in Section 3.7 and Appendix B.4. One can also find the

estimation procedures and asymptotic properties of the estimator in AS.

3.6 Empirical Application

3.6.1 Village Networks: Risk Sharing, Kerosene-rice, Friend-

ship and Kinship Networks

It has been recognized in the literature that individuals share risk within a vil-

lage through an underlying social network. Fafchamps (1992) describes that

social networks play an important role in informal risk sharing. Fafchamps and

15Actually, I estimate both θ and Pε, especially the variance-covariance matrix Σε of ε. I as-
sume that the distribution of ε belongs to a parametric family. For the sake of exposition, Σε is
subsumed into θ at least in this section.
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Lund (2003) show that risk sharing is limited by the extent of a social network.

De Weerdt (2002), Fafchamps and Gubert (2007) and Kinnan and Townsend

(2012) find some evidence on the positive effects of social proximity, mostly kin-

ship ties, on the formation of risk sharing relationships. For the role of friend-

ship, De Weerdt (2002) shows that the number of mutual friends is one of the

determinants of the formation of a risk sharing network. To my knowledge,

however, no papers empirically investigate the effect of a friendship tie between

two individuals on the formation of their risk sharing partnership. Also, endo-

geneity of friendship has not been controlled for in the literature. Hence, my

first goal in the empirical study is to investigate the effects of friendship on the

formation of a risk sharing network by allowing for endogeneity of friendship.

My conjecture is that an underlying social network plays a substantial role in the

formation of a risk sharing network even after controlling for its endogeneity.

This is because friendship can facilitate the formation of a risk sharing partner-

ship by providing low costs of maintaining a risk sharing partnership. The low

costs may include implicit costs such as low monitoring costs and easy punish-

ment as well as low transaction costs.

The second empirical question focuses on interactions between risk shar-

ing and other favor exchange relationships such as gift exchange, borrowing or

lending rice, medical help, etc. One reasonable conjecture may be that villagers

exchange different types of favors with the same set of people. For example

individual i may borrow money from j who provides a medical help to i. On

the other hand, it is also possible that individuals want to diversify their favor

exchange partners by the types of favors. One may want to borrow money from

older individuals but exchange gifts with individuals with similar ages. Thus,

I am interested in whether villagers are more inclined to aggregate different
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types of favor exchange relationships, or more inclined to diversify them. Note

that the proposed structural model is well-suited for this problem. The term

δ(s,t)(W, V, X) captures whether one of the two opposite directional incentives

dominates the other, although I cannot separately identify each of them.

Finally, I investigate the role of caste in the formation of risk sharing and

favor exchange networks. Estimation results from a single network formation

model indicate that individuals have strong caste homophily when forming a

risk sharing network. See the previous chapter. However, I conjecture that caste

affects risk sharing network formation only indirectly through an underlying

friendship network. Hence, if I allow for the endogeneity of friendship, the

previous result may change. Economic theory predicts that individuals want

to share their risk with those who have different characteristics, especially oc-

cupation, age, wealth, etc. It is reasonable to consider caste to belong to this

type of variables. On the other hand, economic theory also predicts that in-

dividuals have homophily when risk sharing, since social proximity facilitates

risk sharing. In the data, friendship is correlated with caste difference, and thus

without controlling for friendship, the coefficient on caste suffers from selection

bias. However, the endogeneity of friendship has precluded including it into

empirical models in the literature. The structural model in this chapter not only

controls for friendship but also allows for its endogeneity. Therefore, I can con-

sistently estimate the role of caste in the formation of a risk sharing network.

Also, a similar argument applies to a favor exchange network.
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3.6.2 Data

I use the data set of “Social Networks and Microfinance” collected by Abhi-

jit Banerjee, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson.

They collect the data from 75 villages in rural Karnataka, a state in South West

India. According to the data description in Banerjee et al. (2012) and Jack-

son, Rodriguez-Barraquer, and Tan (2012), the average population per village

is about 900, and over a half of households were surveyed. Also, the eligible

members and their spouse in each household are surveyed. There are a total

of 14 social networks; (1) Close non-relatives, (2) Close relatives, (3) Visit-go,

(4) Visit-come, (5) Borrow money from, (6) Lend money to, (7) Give advice, (8)

Ask for advice, (9) Borrow kerosene or rice from, (10) Lend kerosene or rice to,

(11) Temple-company, (12) Medical-help, (13) Intersection of relationships, (14)

Union of relationships. In the data set both household and individual-level net-

works are available, but I focus on the individual-level networks only. I use

the ‘close non-relative (1)’ network as a friendship (FR) network, and combine

the networks (5) and (6) above to construct the risk sharing network (RS). For

the other favor exchange network, I combine the networks (9) and (10) to have

‘kerosene-rice network (KR)’. ‘Combining’ means that i and j have a link in a

new network if they form a link in one or both of the original networks. I use

(2) as a kinship (KIN) network.

Although the data set contains several individual characteristics, I only use

the difference in caste between each pair. The reason is mostly computational

efficiency. As I include more explanatory variables, the number of moment in-

equalities grows rapidly. For example, if I include one more binary explanatory

variable, the number of moment inequalities doubles. After including the caste
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difference, I have 1296 (= 36×36) moment inequalities. Note that I already have

three other exogenous variables in Z: kinship network, the number of mutual

risk sharing partners, and the number of mutual favor exchange partners. Since

I am interested in how individuals care about the difference in social classes

when forming risk sharing and favor exchange networks, I consider only vil-

lages that have the proportion of its majority caste less than 95%. 54 villages are

qualified under this criterion.16

The final data set contains a total of 13,096 individuals within the 54 vil-

lages. Technically, 85,746,060 pairs are possible among the 13,096 individuals.

However, I do not consider inter-village pairs. Although individuals may have

a relationship with those who live in different villages, the data set does not

contain information about inter-village links. Due to the data unavailability, I

consider only intra-village pairs, and there are a total of 1,733,961 such pairs.

Another issue in the data is that all networks are very sparse. For exam-

ple, only 1.74% of pairs of all individuals are linked as risk sharing partners.

Based on the size of population of each village (900 on average), it is unreal-

istic to consider all non-connected pairs as an outcome of strategic decisions.

Many pairs of individuals are not connected maybe because they have not met

at all. However, I do not know the fraction of pairs that have met before. In

order to deal with this problem, I use the geodesic distance, or the shortest path

length between two individuals in network (14)- the network of union of rela-

tionships - as a measure for meeting opportunity. I use four sets of pairs, which

have respectively the geodesic distance less than or equal to one, two, three, and

infinity. Table 3.1 shows the distribution of the geodesic distance in the data. In-

16The list of villages is as follows: 3˜5, 9, 14, 15, 17, 21, 24˜26, 28˜30, 32, 34˜36, 38˜40, 42, 44˜55,
and 58˜77.
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Geodesic Distance 1 2 3 4 5+
Number of Pairs 60,426 342,349 804,560 461,196 65,430

% 3.48% 19.74% 46.40% 26.60% 2.77%

Table 3.1: The Distribution of Geodesic Distance

evitably, classifying pairs as having met before or not by their geodesic distance

is somewhat arbitrary. To gauge this arbitrarity, I currently pursue a sensitivity

analysis.

I provide several descriptive statistics which show the fractions of pairs

that form different combinations of relationships. Tables 3.2-3.4 focus on two

relationships, and Table 5 on more than three relationships. From Table 3.2,

it is apparent that more than one third of risk sharing partnerships and fa-

vor (kerosene or rice) exchange partnerships respectively are formed without

friendship. However, it may be because of kinship which has been considered

as one of the most important determinant of risk sharing in the literature. After

excluding those pairs who build their risk sharing and/or favor exchange on

a kinship tie, there are still 14,542 pairs. These 14,542 pairs form a risk shar-

ing or favor exchange relationships with neither friends nor relatives. See rows

2, 3, and 6 in Table 3.5. 17 Table 3.3 shows that about 43% of pairs form only

one of the two relationships- RS and KR. From these results, I conjecture that

individuals may have an incentive to diversify their favor exchange partners.

RS\ FR 0 1 KR \ FR 0 1
0 1,695,066 8,718 0 1,691,909 9,390
1 10,406 19,771 1 13,563 19,099

Table 3.2: Descriptive Statistics: Number of Pairs across Two Networks (1)

17Note that there are still many pairs that are considered as both friends and relatives although
the questionnaires are designed to avoid such answers.
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RS\ KR 0 1
0 1,693,817 9,967
1 7,482 22,695

Table 3.3: Descriptive Statistics: Number of Pairs across Two Networks (2)

RS\ KIN 0 1 KR \ KIN 0 1
0 1,695,812 7,972 0 1,694,335 6,964
1 14,701 15,476 1 16,178 16,484

Table 3.4: Descriptive Statistics: Number of Pairs across Two Networks (3)

3.7 Multinomial Probit without Controlling for Endogeneity

In the empirical application, I use a parametric form for individual i’s base util-

ity from j by having a type-s relationship, or u(s)(Wi j, Vi j, Xi j; β(s)). That is,

u(s)(Wi j, Vi j, Xi j;β(s)) = β(s)
0 +

κx∑
k=1

β(s)
1,k(xk,i − xk, j)2 +

S∑
t=p+1

β(s)
2,t−pa(t)

i j . (3.22)

Hence, the base utility u(s)
i j depends on the difference in characteristics between

i and j. The coefficient β(s)
1,k captures the homophily effects of the kth characteris-

tics, and β(s)
2,t−p captures the effects of the tth endogenous or exogenous network.

For computational purposes, I assume that the additional benefit

δ(s,t)(Wi j, Vi j, Xi j) of having both relationships is homogeneous across pairs and

does not depend on either W or V . That is,

δ(s,t)(Wi j, Vi j, Xi j) = δ(s,t). (3.23)
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Types Number of Pairs Percent
Risk Sharing Only 4,267 0.25

Kerosene-Rice Only 6,415 0.37
Friendship Only 6,786 0.39

Kinship Only 6,204 0.36
Risk Sharing, Kerosene-Rice Only 3,859 0.22

Risk Sharing, Friendship Only 2,507 0.14
Risk Sharing, Kinship Only 663 0.04

Kerosene-Rice, Friendship Only 1,836 0.11
Kerosene-Rice, Kinship Only 1,672 0.10

Friendship, Kinship Only 97 0.01
RS, KR, FR Only 4,068 0.23

RS, KR, KIN Only 1,617 0.09
KR, FR, KIN Only 44 0.00
RS, KR, FR, KIN 13,151 0.76

None 1,680,775 96.93
Total 1,733,961 100

Table 3.5: Descriptive Statistics: Number of Pairs with Multiple Relations

The number of mutual partners in type-s network is simplified as

h(s)
i j =



0 , if
∑

k
a(s)

ik a(s)
jk = 0,

1 , if
∑

k
a(s)

ik a(s)
jk = 1,

2 , otherwise.

By plugging equation (3.23) into the utility function (3.1), individual i’s utility

from A1 (risk sharing) and A2 (kerosene-rice) is written as

Ui(Y |W, V, X, ε; θ) =

N∑
j=1

a(1)
i j (u(1)(Wi j, Vi j, Xi j;β(1)) + h′i jγ

(1))

+

N∑
j=1

a(2)
i j (u(2)(Wi j, Vi j, Xi j;β(2)) + h′i jγ

(2))

+

N∑
j=1

a(1)
i j a(2)

i j δ
(1,2) + εi j{(a

(1)
i j , a

(2)
i j )}, (3.24)
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I use the following variables from the data.

Yi j = (a(RS )
−i j , a(KR)

−i j )′, RS and KR exchange between i and j.

Wi j = a(FR)
i j , friendship tie between i and j.

Vi j = a(REL)
i j , kinship tie between i and j.

Xi j = (castei − caste j)2, caste difference between i and j,

where the variable castei takes one if i belongs to the general caste, and zero

otherwise. Since I only include caste difference between i and j, the base utility

u(s)
i j from a type-s link is

u(s)(Wi j, Vi j, Xi j;β(s)) = β(s)
0 + β(s)

1 (castei − caste j)2 + β(s)
2,1a(FR)

i j + β(s)
2,2a(REL)

i j .

Under this utility specification, the average of marginal utilities of i and j

from forming a type-1 link, when type-2 link is not present, is

1
2
{mu(1)

i ( j|0) + mu(1)
j (i|0)} = β(1)

0 + β(1)
1 (castei − caste j)2 + β(1)

2,1a(FR)
i j + β(1)

2,2a(REL)
i j

+γ(1)
1 h(1)

i j + γ(1)
2 h(2)

i j + εi j(1, 0) − εi j(0, 0). (3.25)

When type-2 link is present, the average of marginal utilities is

1
2
{mu(1)

i ( j|1) + mu(1)
j ( j|1)} = β(1)

0 + β(1)
1 (castei − caste j)2 + β(1)

2,1a(FR)
i j + β(1)

2,2a(REL)
i j

+γ(1)
1 h(1)

i j + γ(1)
2 h(2)

i j + δ(1,2) + εi j(1, 1) − εi j(0, 1). (3.26)

Since only an order among the sum of marginal utilities across alternatives mat-
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ters, I use the average of marginal utilities (3.25) when conducting inference.

Before implementing estimation of the structural model with endogenous

friendship, I run an independent multinomial probit model using mprobit in

STATA, which has i.i.d. errors across alternatives, i.e. Σε = I3. I run the model

with four different specifications. For the first two specifications, I restrict the

additional benefit of having both relationships δ(1,2)(Wi j, Vi j, Xi j) to be homoge-

neous across pairs, i.e. δ(1,2)(Wi j, Vi j, Xi j) = δ(1,2). The next two specifications

allow for heterogeneity in δ(1,2)(Wi j, Vi j, Xi j). That is,

δ(1,2)(Wi j, Vi j, Xi j) = δ0 + δ1(castei − caste j)2 + δ2,1a(FR)
i j + δ2,2a(REL)

i j + δ3,1h(1)
i j + δ3,2h(2)

i j .

(3.27)

For each case, one specification does not include friendship a(FR)
i j , while the other

includes it. Table 3.6 shows the estimation results.

Friendship: With the specifications that restrict δ(1,2)(Wi j, Vi j, Xi j), friendship

gives positive utility to both risk sharing and favor exchange relationships. On

the other hand, if I do not impose the restriction on δ(1,2)(Wi j, Vi j, Xi j), friend-

ship gives negative utility to both risk sharing and favor exchange relationships

when each pair forms only one of those relationships. Friendship provides posi-

tive utility for risk sharing and favor exchange networks only when a pair builds

both relationships together. In sum, if two individuals are friends, they are less

likely to form only one of two relationships, risk sharing and favor exchange.

Caste: Interestingly, the coefficient on the variable ‘caste difference’, or

(castei − caste j)2 is positive and significant for the risk sharing network, but

negative and significant for the favor exchange network in all four specifica-

tions. That is, individuals have caste homophily when they exchange kerosene
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and/or rice, but they prefer different caste for money. The coefficient on caste

difference for having both relationships is negative, so individuals have caste

homophily when forming both relationships together.

Relative: The variable ‘relative’ has very similar effects as friendship. It

gives negative utility when a pair has a single relationship but it gives positive

utility when they have both relationships. The negative effect of being a relative

on having only a single relationship is very strong for both risk sharing and fa-

vor exchange relationships. From this result, I conjecture that if two individuals

have a kinship, then they have a strong incentive to have many different types

of mutual agreements with each other rather than only a single one.

Other variables: The number of mutual partners in risk sharing and favor

exchange respectively give positive utility to risk sharing, favor exchange and

both relationships. Mutual partners in one relation is a strong determinant of

having the same relation, but a relatively weak determinant for having the other

relation. The additional benefits of having multiple relationship under the ho-

mogeneity restriction is positive and significant.

3.8 Analysis Accounting for Endogeneity of Friendship

The first step for estimation of the structural model with endogeneity is to find

the core determining classM(θ). I describe how to obtain the core determining

class in Appendix B.3.

Next, I construct a set of moment inequalities corresponding to the sets in

M(θ). Let l be an index for sets in the core determining classM(θ), and k be an
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index for z. For each zk and Fl, I have

E(mk,l(Y, W, z; θ)|z = zk) = Pε(Fl) −
∑
w∈W

∑
y∈Y

(1[Eθ(y, w, zk) ⊆ Fl]

×Pr[Y = y|W = w, Zi j = zk; F0] Pr[W = w|Z = zk; F0]
)
.

The unconditional moment E(mk,l(Y, W, z; θ)) is written as

E(mk,l(Y, W, z; θ)) =

Pε(Fl) −
∑
w∈W

∑
y∈Y

(1[Eθ(y, w, zk) ⊆ Fl]

×Pr[Yi j = y|Wi j = w, Zi j = zk; F0] Pr[Wi j = w|Zi j = zk; F0]
)}

×Pr[Zi j = zk; F0].

The corresponding sample moment for a pair i j is

mi j,k,l(Y, W, z; θ) =

1[εi j ∈ Fl] −
∑
w∈W

∑
y∈Y

(
1[Eθ(y, w, zi j) ⊆ Fl]

×1[Yi j = y|Wi j = w, Zi j = zk; F0]1[Wi j = w|Zi j = zk; F0]
)}

×1[Zi j = zk; F0].

For simplicity, I denote mi j,k,l(θ) = mk,l(yi j, wi j, zi j; θ). I compute

mi j(θ) = (m1,1(θ), · · · , mL,1(θ), m1,2(θ), · · · , mL,κZ (θ))′.

Then, I take the sample average over all pairs and get the K × L by 1 vector of
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sample moments,

mi j(θ) = (mi j,1,1(θ), · · · , mi j,L,1(θ), mi j,1,2(θ), · · · , mi j,L,κZ (θ))′.

I also compute the estimator Σ̂Ñ(θ) of the variance-covariance matrix of mi j(θ).

For the test statistic, I use the modified method of moments (MMM) test

statistic. That is,

S (
√

Ñm̄Ñ(θ), Σ̂Ñ(θ)) =

K∑
k=1

L∑
l=1

[
√

Ñm̄k,l,Ñ(θ)/σ̂k,l]2
−,

where σk,l is the ((k − 1)L + k)th element of Diag(Σ̂Ñ(θ))1/2.

The estimation procedure is summarized below. (i) Draw R = 100 unob-

servables for each observation (Ñ by 300 matrix) from N(0, I3). These draws

stay fixed over all repetitions. (ii) Draw the 18 by 1 parameter vector θ0

from the uniform distribution on [−10, 10]18. The parameter vector includes

five elements of a three by three matrix var(ε). It is not six but five due to

the scale normalization, i.e. var(ε1) = σ2
1 = 1. (iii) I pre-multiply ε by Λ,

where Λ is the Cholesky decomposition of Σε, i.e. Σε = ΛΛT . (iv) For each

value of θ0, compute the sample moments m̄Ñ (36 × 36 = 1296 by 1 vector)

and their sample variance-covariance matrix Σ̂Ñ (1296 by 1296). (v) Compute

the test statistic S (
√

Ñm̄Ñ(θ0), Σ̂Ñ(θ0)). (vi) Draw B number of nonparamet-

ric bootstrap samples. In the empirical application, I use B = 100 for com-

putational efficiency. (vii) Recenter the bootstrap samples: Compute M∗

Ñ,b
=

Ñ1/2(D̂∗
Ñ,b

(θ0))−1/2(m̄∗
Ñ,b

(θ0) − m̄Ñ(θ0)) and Ω̂∗
Ñ,b

= (D̂∗
Ñ,b

(θ0))−1/2Σ̂∗
Ñ,b

(θ0)(D̂∗
Ñ,b

(θ0))−1/2,

where D̂∗
Ñ,b

(θ0) = Diag(Σ̂∗
Ñ,b

(θ0)). (viii) Implement the generalized moment se-
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lection (GMS) procedure: If Ñ1/2m̄n, j(θ0)/σ̂n, j(θ0) > κn = (ln Ñ)1/2, eliminate the

corresponding moments from (M∗

Ñ,b
(θ0), Ω̂∗

Ñ,b
(θ0)) and denote (M∗∗

Ñ,b
(θ0), Ω̂∗∗

Ñ,b
(θ0)).

(ix) Compute S (M∗∗

Ñ,b
(θ0), Ω̂∗∗

Ñ,b
(θ0)). (x) If S (

√
Ñm̄Ñ(θ0), Σ̂Ñ(θ0)) > ĉÑ,1−α, then reject

θ0, where ĉÑ,1−α is the 1 − α quantile of {S (M∗∗

Ñ,b
(θ0), Ω̂∗∗

Ñ,b
(θ0)), b = 1, · · · , B}.

To find a confidence set for the identification region, I use simulated anneal-

ing with many different starting values. For each iteration, I save the value of

objective function QÑ(θ) = S (m̄Ñ , Σ̂Ñ) − ĉÑ,1−α. After many iterations, I collect all

parameter values that satisfy QÑ(θ) ≤ 0, and these values comprise the 1 − α%

confidence set. I project the confidence set for each parameter to obtain confi-

dence intervals.18

Estimation Results

I provide confidence intervals for parameters in the sharp identification region

in Table 3.7. The confidence intervals are obtained by projecting the confidence

18Alternatively, I rely on support vector machine (SVM) approach in Bar and Molinari (2013)
to obtain a confidence set and the estimated sharp identification region. Bar and Molinari (2013)
use SVM to compute the estimated identification region and corresponding confidence region. I
repeat the above steps for a total T number of parameter vectors drawn uniformly. For each tth
draw of the parameter vector, let dt = 1 if θt is not rejected, and −1 otherwise. I save the results
in {(dt, θt), t = 1, · · · , T }, and this becomes the training data for an SVM. Next, I run the SVM
with the package libsvm in R to get the 95% confidence region {θ ∈ Θ : f̂ (θ) =

∑T
t=1 α̂tdtK(θ, θt) +

β̂svm ≥ 0}, where K(·, ·) is the Gaussian kernel (the default option in libsvm). For the confidence
interval of each scalar-valued component of θ, I solve the optimization problems

min θk

s.t. f̂ (θ) ≥ 0,

and

max θk

s.t. f̂ (θ) ≥ 0.

The results from the SVM will be provided soon.
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set of the sharp identification region of parameters for each parameter. Ta-

ble 3.7 shows that all confidence intervals include zero. However, this is not

surprising. As shown by Chesher and Rosen (2013), in the presence of an en-

dogenous explanatory variable, if one does not impose a structure between an

instrument and an endogenous variable, the sharp identification region is com-

posed of two separate regions whose projection covers zero. See for example,

Appendix B.5. Nevertheless, a few interesting results emerge from the estima-

tion exercise. First, compared to the multinomial probit model, all of confidence

intervals from the structural model include the point estimates of parameters

from the multinomial probit model.

95% CI
Risk Sharing intercept [-1.1345, 1.1060]

friendship [-0.9022, 1.9584]
caste difference [-1.4220, 1.0025]
kinship [-1.9960, 3.7901]
mutual RS partners [-0.8286, 1.1871]
mutual FV partners [-1.4085, 0.4146]

Kerosene or Rice intercept [-1.8675, 0.8126]
friendship [-0.9284, 1.7274]
caste difference [-0.9869, 1.4099]
kinship [-1.0308, 3.3371]
mutual RS partners [-1.4884, 1.4435]
mutual FV partners [-1.2236, 1.0060]

Both intercept [-2.7208, 0.6705]
friendship [-1.5301, 3.2381]
caste [-2.4089, 2.1096]
kinship [-2.9427, 4.4427]
mutual RS partners [-2.3159, 1.5129]
mutual FV partners [-1.6189, 1.0427]

additional utility from both [-0.9195, 1.0491]

Table 3.7: Projection of 95% CIs for the Sharp Identification Regions of Pa-
rameters

Second, when I restrict the sign of β(1)
f riend in the risk sharing network to be

positive, β(2)
f riend for kerosene-rice is estimated to be positive as well. Similarly, if I
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β(1)
f riends < 0 β(1)

f riends > 0
Risk Sharing intercept [-0.5268, 1.1060] [-1.1345, 0.8782]

friendship [-0.9022, -0.0815] [0.0060, 1.9584]
caste difference [-1.4220, 1.0025] [-1.3880, 0.9011]
kinship [-0.7369, 2.0000] [-1.9960, 3.7901]
mutual RS partners [-0.4923, 0.8254] [-0.8286, 1.1871]
mutual FV partners [-0.4985, 0.4146] [-1.4085, 0.3115]

Kerosene or Rice intercept [-1.6538, 0.8126] [-1.8671, 0.3222]
friendship [-0.9284, -0.0044] [0.0023, 1.7274]
caste difference [-0.9869, 1.4099] [-0.2759, 1.1740]
kinship [0.8944, 3.3371] [-1.0308, 1.3696]
mutual RS partners [-0.4904, 1.2870] [-1.4884, 1.4435]
mutual FV partners [-1.2236, 0.4173] [-0.9158, 1.0060]

Both intercept [-1.1694, 0.4639] [-2.7208, 0.6705]
friendship [-1.5301, -0.1048] [0.1189, 3.2381]
caste [-2.4089, 2.1096] [-1.1835, 1.5939]
kinship [0.5686, 4.4427] [-2.9427, 4.2320]
mutual RS partners [-0.3088, 1.1074] [-2.3159, 1.5129]
mutual FV partners [-1.6056, 0.5784] [-1.6189, 1.0427]

Table 3.8: Projection of 95% CIs for Parameters when β(1)
f riends < 0 and

β(1)
f riends > 0

restrict the sign of β(1)
f riend to be negative, the sign of β(2)

f riend again is estimated to be

the same as the sign of β(1)
f riend. Although I cannot draw a strong conclusion about

the effects of friendship on the formation of risk sharing and favor exchange

networks, I have strong evidence that friendship affects both networks in the

same way. See Table 3.8.

Figure 3.2 shows another interesting result. In the computational illustra-

tions of the sharp identification region in Appendix E, the true parameter lies

in the larger region when the sharp identification region is given by two com-

ponents. In Figure 3.2, I find that the region with positive β(1)
f riend and β(2)

f riend is

larger than the negative region. One may therefore conclude that the effects of

friendship on both risk sharing and favor exchange networks are more likely to

be positive.
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Figure 3.2: The Projected Confidence Region for (β(1)
f riend, β

(2)
f riend)

The role of caste in the formation of risk sharing and favor exchange net-

work remains indeterminate. I cannot reject the hypothesis that individuals

have caste homophily when forming a risk sharing network or a favor exchange

network. The results are not favorable to the hypothesis, either.

I cannot find strong evidence on interactions between two simultaneously

determined networks. In particular, the number of mutual partners in one net-

work does not affect the formation of the other type of relationship. However,

the results may be due to data limitations. For example, there may exists mea-

surement errors, and/or the questionnaires may not be enough to reflect the

true network, etc. Finally, I impose restrictions β(1)
rel > 0 and β(2)

rel > 0, and see

whether there is a change in significance. I find no parameters that are signifi-

cant under the restrictions. See Table 3.9.
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95% CI
Risk Sharing intercept [-1.1345, 1.1060]

friendship [-0.9022, 1.2465]
caste difference [-1.4220, 1.0018]
relative [0.5163, 3.7901]
mutual RS partners [-0.5279, 1.1871]
mutual FV partners [-1.1061, 0.2883]

Kerosene or Rice intercept [-1.7254, 0.8126]
friendship [-0.7536, 1.4957]
caste difference [-0.9869, 1.4099]
relative [0.1708, 3.2353]
mutual RS partners [-0.5607, 1.2870]
mutual FV partners [-1.2236, 1.0060]

Both intercept [-2.7208, 0.6705]
friendship [-1.5301, 2.4607]
caste [-2.4089, 2.1096]
relative [1.0808, 4.4427]
mutual RS partners [-0.7800, 1.3078]
mutual FV partners [-1.6189, 0.9036]

Table 3.9: Projection of 95% CIs for Parameters when β(1)
rel > 0 and β(2)

rel > 0

Risk Sharing Kerosene or Rice Both
Risk Sharing 1 [-1.9516, 1.2448] [-1.3954, 1.2480]
Kerosene or Rice [0.6740, 4.5173] [-1.2907, 2.8282]
Both [1.5430, 6.7667]

Table 3.10: 95% Confidence Interval for Covariance Matrix of ε

I also estimate the variance-covariance matrix of the unobservables. See Ta-

ble 3.10. The confidence intervals are relatively wide especially for variances.

I cannot rule out independence of ε across alternatives. However, I am able to

reject the hypothesis that ε from different alternatives have an identical distri-

bution since var(ε3) = 1 does not belong to the 95% confidence interval. The

estimate for var(εi j(1, 1)) seems larger than var(εi j(1, 0)) and var(εi j(0, 1)).
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3.9 Conclusion

In this chapter I have studied a structural model of multigraph formation. A

multigraph can be decomposed into simultaneous, endogenous and exogenous

networks. I propose the notion of pairwise stability of a multigraph and show

that the structural model of multigraph formation is equivalent to a multinomial

choice model under PSM with myopic agents. PSM provides a relatively simple

way to identify the structural parameters in the strategic formation of a multi-

graph. When endogenous networks are present, however, the model parame-

ters are not point-identified. I therefore build on the recently developed partial

identification methods to characterize the parameters’ sharp identification re-

gion and conduct inference. In my empirical application, I find that friendship

affects the formation of risk sharing and favor exchange networks in the same

direction. However, the empirical evidence for caste homophily is inconclusive.

There are a few interesting extensions for further research. First, the struc-

tural model proposed in this chapter is widely applicable to many other settings

in social interaction models. For example, a network of a risky behavior, e.g.

crime, sexual contact, etc., and the transformation of a network from one period

to the other period fit into the framework of the model in this chapter. Further-

more, the analysis of a discrete choice model with an endogenous variable and

no instruments can provide a new approach for many economic applications.

Second, it may be interesting to extend the analysis to the linear-in-means so-

cial network model, where peer effects are present through an underlying social

network. By applying the econometric method in this chapter, one can solve po-

tential bias due to the endogeneity of a social network. Finally, the model in this

chapter allows the econometrician to recover utility parameters of multigraph
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formation, but it does not predict an entire multigraph configuration for differ-

ent realizations of exogenous variables and/or networks. It may be interesting

to incorporate a particular multigraph formation process into the model and

predict what multigraph will be formed as a counterfactual analysis.
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CHAPTER 4

ESTIMATING NETWORK EXTERNALITIES IN THE U.S. AIRLINE

INDUSTRY

4.1 Introduction

This chapter studies network formation in the U.S. airline industry, and inves-

tigates the size of network externalities. The U.S. airline industry has experi-

enced dramatic changes since the Airline Deregulation Act was enacted in Oc-

tober 1978. Major airlines have transformed their networks into hub-and-spoke

networks after the deregulation act allowed them to choose their own routes

and fares. The hub-and-spoke network is ‘a system of connection arranged

like a chariot wheel in which all transportation moves along spoke routes con-

nected to a hub airports at the center’.1 Unlike the legacy airline carriers such

as United Airlines and Delta Airlines, Southwest Airlines has built a point-to-

point network in which air travelers can fly directly from their origin to destina-

tion. Southwest Airlines made a huge success with its point-to-point network

in combination of other strategies such as using a single type of aircrafts. More

recently, the industry has experienced airline alliances, the advent of low cost

carriers (LCCs), mergers among airlines, etc. Delta Airlines has once filed for

bankruptcy in 2005, and American Airlines in November 2011. Many other air-

line carriers have also been suffered from a huge amount of loss in recent years.

I conjecture that airline carriers have been facing these difficulties due to neg-

ative network externalities. For example, operating a route between two cities

1This definition follows one in Wikipedia. See http://en.wikipedia.org/wiki/Spoke-
hub distribution paradigm
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may provide positive profits for the market, but it may not for other markets

that share one of those two cities.2 Regarding airline networks, economists have

investigated advantages and disadvantages of employing a hub-and-spoke net-

work for the last two decades. They measure ‘airport presence’ or ‘hub-size’

as the number of direct flights departing from or arriving at an airport and use

it as a profit shifter in empirical models. However, hub-size does not perfectly

represent each airline’s network topology. Indeed, the effects of hub-size are a

mixture of positive and negative network externalities. To my knowledge, no

papers in the literature consider those two effects of opposite directions.

As a first step of estimating network externalities in the U.S. airline indus-

try, I assume that each airline builds a network which satisfies a weak notion of

stability. That is, no airlines want to deviate from their current networks by a

single route change at a time. By maintaining this stability, airlines form each

link (route) in their network by playing an entry game. Consequently, the defi-

nition of entry in this chapter is an operation of a direct flight in a market which

is defined as a city pair. Then, I use an entry game as a link (route) formation

framework for the network formation of airline carriers.

The stability notion gives different and more reasonable interpretation on

why the econometrician can include network measures that capture competi-

tiveness of an airline’s network in the post-entry market-level profit function

which will be defined later. Each airline considers just one market at a time and

maintain stable network. Hence, many network measures derived from the rest

of its network can be taken into account. I include various types of network

variables including the number of one-stop flights and average hub-size, into

the post-entry profit function. Since these various network variables are present

2I use city, area and airport interchangeably.
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in the profit function, the econometrician can estimate the size of network ex-

ternalities by investigating an entry game across markets.

In terms of an empirical model for an entry game, I revisit the empirical

model of Berry (1992) and estimate the size of network externalities with various

network. I use the Airline Origin and Destination Survey (DB1B) for the second

quarter of 2013. I focus on the five largest airline carriers: American, Delta,

Southwest, United and US Airways. From the recent data, I find that when I

control for the number of one-stop flights the effect of hub-size is larger than

the case without considering one-stop flights.

This chapter is related to the literature on airline markets and airline network

formation. Many authors have targeted the U.S. airline industry since it has not

only several interesting features such as government regulation and deregula-

tion, but also publicly available data sets through the Bureau of Transportation

Statistics. Borenstein (1989) first studies the importance of airport presence in

the U.S. airline industry. Berry (1992) proposes an empirical model of entry

that incorporates firm competitiveness. His model is a close benchmark of this

chapter. Applying the network formation theory to the airline industry has been

also interesting direction in the existing literature. In the literature on network

formation, Jackson and Wolinsky (1996) define a notion of pairwise stability a

network. The stability notion that I impose for an airline network is similar

(but not the same) to pairwise stability of a network. A series of papers by

Hendricks, Piccione, and Tan (1995, 1997, and 1999) propose a basic analytic

model of network competition in the airline industry, and characterize equilib-

rium conditions under which a certain network topology such as a hub-and-

spoke network is realized. In the empirical models, however, to the best of my
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knowledge, there are very few attempts to include the entire network structure

into an empirical model, although the networks of airlines are observed by the

econometrician.

This chapter also stems from the large literature on entry games and appli-

cations.3 Bresnahan and Reiss (1990) assume homogeneity in the interaction ef-

fects and focus on the number of firms in a market as a dependent variable to ob-

tain a point identified model. Berry (1992) imposes two ordered-entry assump-

tions to find an unique equilibrium and estimate a complicated model with the

method of simulated moments. Jia (2008) proposes an empirical model which

allows for correlation across different markets. Ciliberto and Tamer (2009) em-

ploy a partial application approach and allow for heterogeneity in interaction

effects, and apply their model to the airline industry. Bajari et al. (2010) estimate

an equilibrium selection mechanism in discrete games including entry games.

Beresteanu, Molchanov, and Molinari (2011) provide an approach to sharp in-

ference for models with convex moment inequalities including an entry game.

Recently, dynamic entry games have been studied by many authors. See Bajari

et al. (2010) and Aguirregabiria and Mira (2010) for a survey. Aguirregabiria

and Ho (2010, 2012) propose a dynamic model and apply to the airline industry.

They include a variable hub size in both demand and production side of the

model to capture network externalities. In addition to air. In addition to airline

industries, there are a lot of applications to various industries. For example, Jia

(2008) and Grieco (2010) study the discount stores industry.

This chapter is organized as follows. Section 2 discusses network structures

in the U.S. airline industry. Section 3 sets up the empirical model. Data expla-

3The literature on entry games and applications to the airline industry is strongly related to
each other.
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nation and descriptive statistics are provided in Section 4. Section 5 explains

the detailed estimation methods. Section 6 collects all the estimation results and

Section 7 concludes.

4.2 Network Structures in the U.S. Airline Industry

4.2.1 Industry Overview

There are several interesting features in the industry, such as the dominance of

hub-and-spoke networks, the emergence of so-called low cost carriers. In addi-

tion, the industry faces frequent mergers and airline carriers build alliances with

each other. Economists have also been interested in government subsidies and

regulations. In this section, among many issues I focus on network structures of

the U.S. airline carriers.

Hub-and-spoke networks are common characteristics of the airline indus-

try not only in the North American markets but also in other regions of the

world. In the U.S. markets, Delta Airlines first started the system at its first

hub of Hartsfield-Jackson Atlanta International Airport (ATL) in 1955. After its

invention of the new paradigm, combining with the deregulation of the U.S.

airline industry in 1978, the new system has been adopted by many other car-

riers. Currently, major airlines in the United States typically have 3 to 8 hubs

except Southwest Airlines, which intends to provide ‘point-to-point’ networks

although it has hub-like airports.4 Delta has a network which is more concen-

4Indeed, Southwest Airlines has more than forty destinations from airports such as Chicago-
Midway, Las Vegas, Baltimore-Washington, Phoenix and Denver. Some authors (e.g. Aguirre-
gabiria and Ho (2012)) classified these airports as its hubs.
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trated on several hubs such as Detroit, Atlanta, Salt Lake City, Minneapolis,

etc. On the other hand, the network of Southwest has a lot of direct links

among their destinations. Virgin America, which is relatively new in the in-

dustry, builds a hub-and-spoke network with only two hubs (SFO and LAX).

Airlines build hub-and-spoke networks since the system is considered to give

airlines benefits of lower entry costs and variable costs. On the other hand, it has

drawbacks on demand side since passengers have to transfer at a hub airport in

order to go to their final destinations, and it obviously increases traveling time.

If there is an unexpected delay due to weather or maintenance of airplanes, the

increase of traveling time could be extreme.

Although most existing studies indicate that the hub-and-spoke network

gives benefits of lower sunk costs, or an irreversible part of entry costs, and

the entry deterrence advantage, several U.S. airlines have shown their behav-

iors which do not seem to be supportive to the literature. The most remarkable

example is the huge success of Southwest Airlines with its point-to-point net-

work.5 Unlike to other airlines in the industry, Southwest Airlines has been

trying to connect its operating cities with direct flights instead of stopping once

at a hub airport.

In most existing literature, hub-size has been used as a variable in order to

identify the effects of airport presence of an airline on its and others’ profits.

If an airline have a pure hub-and-spoke network, the bigger hub size would

deter other airlines’ entry decision. Additionally, all city pairs, or markets do

not have a substitute from its own. For example, consider an airline that uses

Chicago as a hub and operates a direct flight in Boston-Chicago market. Because

5A point-to-point transportation system is a system where a plane travels directly to a desti-
nation, rather than going through a central hub.(from Wikipedia)
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the airline constructs a pure hub-and-spoke network, there is no substitute with

one-stop flights of its own to the route Boston-Chicago. If passengers in Boston

want to travel to other cities except Chicago with the airline, they have to stop

at Chicago with no other choices. In turn, the large hub-size at Chicago brings

only positive externalities through complementarity built in one-stop flights. In

this case, the econometrician can precisely identify the effects of hub-size of the

airline on its profits. By contrast, let us imagine a network on which an airline

has more than one hubs. For example, United Airlines uses San Francisco and

Washington DC as its hubs. Consider a passenger who wants to travel from

Hartford, CT to San Francisco, CA. She might contemplate between buying a

direct flight or one-stop flight which stops at Washington DC. There may also

exist other airports such as Denver or Chicago at which she can change her flight

without changing airlines. She can choose where to transfer because United has

large airport presence at not only San Francisco International airport but also

many different airports. Then, the large hub size (at San Francisco) has another

effect that it increases the number of substitutes, and in turn, the substitutability

may decrease profits from its direct flight between San Francisco and Washing-

ton DC.

To summarize, if airlines employ different network architectures, then the

marginal effect of airport presence, or hub-size could have different economic

implications. Mostly, the marginal effects include both positive (complementar-

ity, lower entry costs, entry deterrence effects, etc) and negative (more substi-

tutes from its own) sides. I incorporate each airline’s network structure through

the adjacency matrix, and separately estimate the negative effects of large air-

port presence and its positive effects. This approach brings more precise inter-

pretation of the effects of hub-size as well as the effects of different network
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# of Markets Entered AA DL UA US WN
Entry (direct flight only) 491 449 1074 1406 812

Entry (regardless of transfer) 2112 3039 2861 2807 1829

Table 4.1: Number of Markets Served by Airlines with Different Entry Def-
initions

architectures.

4.2.2 Entry Decision and Network Formation

In this chapter, I define entry in a market as operating a direct flight in that mar-

ket. In the literature, Berry (1992) and Ciliberto and Tamer (2009) define entry as

an operation of a flight between two areas (or airports) regardless of the num-

ber of transfers. With their definition, an airline is classified as an incumbent

in a market where the airline serves two endpoint areas. From Table 4.1, I find

substantial differences in the number of entry for all airlines. The number of

markets served by airlines in their definition is about two to seven times larger

than when using only direct flights. For example, the previous definition counts

3039 markets for Delta, which makes Delta as an incumbent in about 86% of to-

tal markets, which is not reasonable. In the literature, the recent papers, e.g.

Aguirregabiria and Ho (2010, 2012), define entry same as in this chapter.

There are a few benefits to define entry in this chapter. First, when the econo-

metrician wants to include network variables as a firm-specific profit shifter, the

previous definition may cause an simultaneity problem. For example, hub-size

and the dependent variable of an entry decision are simultaneously determined.

When I define entry as operating a direct flight, I can rule out such simultaneity.

Second, the econometrician can estimate the size of network externalities pre-
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cisely. With the entry definition in this chapter, the effects of network variables

are the exact size of spillovers from a network measure to the other part (e.g. a

link, or a route) of the network. Once the inclusion of such network variables

in the profit function has a ground, the econometrician can estimate the size of

network externalities consistently.

Finally, I impose a restriction on each airline’s network. In order to estimate

the effects of network variables such as hub-size, previous papers in the litera-

ture employ a couple of different approaches. One approach is a partial equilib-

rium proposed in Berry (1992). He argues that it is reasonable to consider each

market separately due to computational difficulties. The other approach is that

airlines consider their network in the previous period as given, and make their

entry decisions for each market.

In this chapter, I suggest a new approach for this problem. I assume that

each airline builds a network which satisfies a weak notion of stability. That is,

no airlines want to deviate from their current networks by a single route change

at a time. This notion of stability is similar to pairwise stability introduced by

Jackson and Wolinsky (1996) in the sense that the strength of stability. However,

I do not call it pairwise stability, since the deviation is not based on the incentive

of a pair of nodes (here, areas). A network is formed by one agent, or an airline,

so it is not the same as pairwise stability. I formally state the assumption of

stable airline networks.

Assumption Each airline builds a stable network in the sense that no airlines

want to deviate from their current networks by a single route change at a time.

Airline carriers build stable networks, and the formation of each route is based
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on an entry game. With the assumption, I can include network variables as a

measure of firm’s competitiveness in a market. It is because each airline does

not consider a deviation which involve two or more routes at the same time.

This assumption is reasonable since the number of possible deviations with two

routes is already very large. In addition, when an airline tries to deviate, it has to

take into account how its competitors will respond. Given the large number of

competitors in the market, to make optimal decision in this setting is infeasible.

An alternative approach is a revealed preference approach. The approach

takes the current network configurations of firms as a NE equilibrium, and then

any deviation from the current network would give smaller or equal profits to

the firm which makes the deviation. I do not pursue the approach in this chapter

and leave it as a future study. See Ellickson, Houghton, and Timmins (2013) for

the application of this approach in the discount store industry.

4.3 Model

Let n = 1, . . . , N be an index for airlines. Let Yn = (V, En) be a network of airline

n, where V = {1, · · · , C} is the set of all cities, and En is the set of airline n’s

routes. With a slight abuse of notations, the network Yn can be viewed as an

adjacency matrix. That is, Yn can be written as a C by C matrix, where its ith row

and jth column element yn,i j takes value one if airline n operates a direct flight

in the city pair (i, j). There are a total of C cities, so the number of city pair is

M = C(C − 1)/2. Recall that this chapter only considers operating a direct flight

as an entry in a market. We denote yn = (yn,12, yn,13, · · · , yn,C−1,C)′ as a vector of

firm n’s decisions across all markets (city pairs).
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In terms of modeling firm n’s profit function, I follow Berry (1992) and Cilib-

erto and Tamer (2009). Let the post-entry profit function for firm n in market i j

be πn,i j(y−n,i j; θ), where y−n,i j is a vector of entry decisions of other firms except n

and θ is a finite vector of parameters.

Each market i j is defined by a vector of its characteristics Xi j such as average

population of a city pair, and the the rest of all networks except yn,i j and y−n,i j.

The profit function πn,i j is written as

πn,i j = X′i jβ +
∑
q,n

∆qyq,i j + γ′ f (yn,−i j) + ηn,i j. (4.1)

The parameter ∆l captures the interaction effects, and it is often considered as

negative. That is, if other airlines are operating a direct flight, firm n’s profit is

more likely to decrease. The (vector valued) function f (·) measures each firm’s

competitiveness in terms of its rest of the network. For example, f (·) can be a

vector of the average number of routes from and to the endpoint airports i and j,

and the number of one-stop flights between i and j. The last term ηn,i j is a profit

shifter of firm n in market i j, which is unobserved by the econometrician. This

unobserved variable is decomposed into two components: the market-specific

unobservable ε0,i j and the firm- and market- specific unobserved heterogeneity

εn,i j. These unobservables are distributed with i.i.d standard normal distribu-

tion. As in Berry (1992) , I impose a traditional constraint on ηn,i j such that

var(ηn,i j) = 1, and corr(ηn,i j, ηl,i j) = ρ for all n, q and i j such that n , q. Thus, I can

decompose ηn,i j as

ηn,i j =
√

1 − ρ2εn,i j + ρε0,i j.

In the literature, it has been shown that the model is not point-identified and
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has a computational burden even in a two players entry game. See Bresnahan

and Reiss (1991a), Berry (1992) and Tamer (2003).6 Hence, as a starting point

of investigating the size of network externalities, I employ the following two

assumptions. First, I assume that the interaction parameter ∆q is homogeneous

across firms. Then the post-entry profit depends only on the number of incum-

bents rather than the identity of incumbents. Bresnahan and Reiss (1990) first

impose this homogeneity. Under this assumption the profit function becomes

πn,i j = X′i jβ + ∆
∑
q,n

yq,i j + γ′ f (yn,−i j) +
√

1 − ρ2εn,i j + ρε0,i j. (4.2)

With a slight modification, I follow Berry (1992) to make the post-entry profit

depend on the number of incumbents in market i j, or Ni j through ln(Ni j). That

is,

πn,i j = X′i jβ + ∆ ln(Ni j) + γ′ f (yn,−i j) +
√

1 − ρ2εn,i j + ρε0,i j. (4.3)

Second, in terms of the order of entry, I assume that the most profitable firms

move first. Berry (1992) uses the same assumption as one of two types of or-

dered entry assumptions in his paper. These two assumptions allow the econo-

metrician easy to compute a sequential-move equilibrium and to estimate the

model.

The main interest of this chapter is the set of parameter γ = (γ1, · · · , γK)′.

The parameter γk captures the effect of the kth characteristics of airline n’s net-

work, or network externalities corresponding to the kth network measure. As I

mentioned earlier, examples include the average degree of i and j in a network,

or equivalently the average hub size, the number of airline n’s one-stop flights,
6It is an interesting direction for further studies to employ partial identification method as

in Ciliberto and Tamer (2009) and Beresteanu et al. (2011) to obtain heterogeneous competitive
effects.
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eigenvector centrality and so on. By doing so, I can separately estimate the ef-

fect of airport presence (hub size) conjectured as positive and the potentially

negative effects of having one-stop flights.

4.4 Data

4.4.1 Market Data

The data mainly comes from the Airline Origin and Destination Survey (DB1B).

Since I want to investigate the most recent trend of the U.S. airline industry, I

use the data of the second quarter of 2013, which is the latest data available.

The DB1B data provides a 10% random sample of flight tickets with variables

such as distance flown, non-stop distance, fare, the number of passengers, oper-

ating, reporting and ticketing carriers, origin, connecting and destination cities.

The DB1B data for the second quarter of 2013 has 6,018,517 observations corre-

sponding to 45 carriers that sold tickets in the period. More detailed description

of each variable used for estimation is as follows.

• Origin and Destination Airports: Each market is defined as a non-

directional city pair. From the Annual Estimates of the Population of

Metropolitan and Micropolitan Statistical Areas: April 1, 2010 to July 1,

2011 (CBSA-EST2011-01), I narrow down the number of areas. I rank the

top 100 metropolitan statistical areas (MSAs) by population size. Then,

I match 100 largest population areas with their corresponding airports.

Among these 100 areas, 16 areas do not have a large enough airport, or

they are very close to other larger metropolitan areas. I use the criterion
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of the number of enplanement for ‘large enough’. If one area has only

one airport and the airport has less than 300,000 annual enplanement, I

do not count it in. Also, some areas share airports with their neighboring

areas. For example, Springfield, MA has Westover Metropolitan Airport,

but its number of operations is very small to exceed a certain threshold

to be considered as one separate area. It is more likely that people in the

area share Bradley International Airport with those who live in Hartford-

West Hartford-East Hartford, CT. Hence I ruled out such areas from the

list. However, when I consider the population size for the corresponding

airports, I do not add the number of population of excluded area to neigh-

boring areas. I also excluded Honolulu, HI due to its special geographic

characteristics.

After these arrangements, a total of 84 areas remain separately. Tables

5-6 describe those 84 areas and their population and corresponding air-

ports with IATA (the International Air Transport Association) abbrevia-

tions. A total of 105 airports belong to the selected areas. I sometimes

use the largest city in each area to indicate the area that the city belongs

to. For example, I use New York or NY for the New York-Northern New

Jersey-Long Island area.

• Markets: As I mentioned earlier, markets are defined as a non-directional

city pair. Since there are 84 areas, the number of city (area) pairs, or mar-

kets is 84 × (84 − 1)/2 = 3486.

• Airline Carriers: There is another issue in classifying firms. It is the large

number of incumbents and potential entrants of the industry in the second

quarter of 2013. There are a total of 45 ticketing carriers in that quarter. I

first pick five major airlines: American Airlines, Delta Airlines, Southwest
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Airlines, United Airlines and US Airways. There are several middle- and

small- sized carriers such as Alaska Airlines. I pick five middle-sized carri-

ers: Alaska Airlines, Jet Blue, Virgin America, Frontier Airlines and Spirit

Airlines. AirTran Airways and Hawaiian Airlines are also in this category.

However, I consider tickets sold by AirTran as if those tickets were sold

by Southwest due to their recent merger. Hawaiian Airlines rarely sells a

ticket in those markets. The portion of tickets sold by the rest of the airline

carriers is less than 5%, so I do not take into account those small airlines.

Since I study the networks of airline carriers, I focus on those five major

airlines. I combine other five firms and call it mid-sized airlines. That is,

for each market, I find one of those five airlines, which has the largest air-

port presence, as a competitor for the other five major airlines. Hence, in

each market there are a total of six potential entrants and incumbents.

I use the following airline codes: American Airlines (AA), Delta Air-

lines (DL), United Airlines (UA), US Airways (US) and Southwest Airlines

(NW). I use MD for the mid-sized airlines.

• Entry Decisions of Airlines: An incumbent of a market is an airline which

is operating non-stop flights between two cities, regardless of directions,

frequency and the size of aircrafts. There are three possible ways to count

incumbent firms from DB1B data: operating, reporting, and ticketing car-

riers. I use ‘ticket carrier’ shown in non-stop flight tickets as an indicator

of an incumbent of a city pair. With this criterion, strictly speaking, en-

try in a market means that an airline sells a ticket (rather than operating

a direct flight) for the market. I use ticketing carrier since there are a few

markets in which a subsidized airlines of a major airline carrier operates,

for example American Eagle Airlines. Moreover, some such small airlines
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are operating different flights as multiple major airline carriers. For exam-

ple, ExpressJet Airlines operates as AA, DL and UA. By using the ticketing

carrier criterion, I can easily verify the major airline for which those flights

of subsidized airlines operate.

• Population: This variable comes from the Annual Estimates of the Pop-

ulation of Metropolitan and Micropolitan Statistical Areas: April 1, 2010

to July 1, 2011 (CBSA-EST2011-01), I take average population of two end-

point areas, and use it as a demographic variable.

• Income per capita and income change: These variables comes from the

census data.

• Non-stop Distance: The non-stop distance between two airports can be

found in DB1B data. When there are two or more airports in a statistical

area, I use the average distance over all possible combinations. For exam-

ple, from New York to Dallas, I take average distance over all 8 airports

combinations: JFK-DAL, JFK-DFW, EWR-DAL, DWR-DFW, LGA-DAL,

LGA-DFW, ISP-DAL and ISP-DFW. For some markets for which DB1B

data does not contain their distances, I obtain the missing distance from

http://www.webflyer.com/travel/mileage calculator/.

4.4.2 Network Measures

I include the following network variables as a measure of each airline’s compet-

itiveness in a market. Table 4.2 provides descriptive statistics for the variables

explained in this section. First, airport presence or hub-size, hubsizen,i j is mea-

sured by the average number of airports which airline n flies from or to the
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endpoint airports of market i j. In a mathematical expression, it is written as

Hubsizen,i j =
1
2

∑
k,i, j

(yn,ik + yn, jk).

Since DB1B provides a ticket data, the number of direct destinations of firm i

from an airport can be collected. I use the average of hub size of firm i at origin

and destination airports as one of the measures for airport presence of firm n.

The variable City2 is a dummy variable which takes value one if an airline

operates both areas, and zero otherwise. This is another measure for airport

presence of firm n.

City2n,i j = 1[
∑
k,i

yn,ik ≥ 0] × 1[
∑
k, j

yn, jk ≥ 0].

The number of one-stop flights between area i and j is obtained by squaring

each firm’s adjacency matrix Yn. Note that this is the maximum possible number

of one-stop flights of airline n in a market. In a mathematical expression, the

ith row and jth column element of Y2
n represents all possible one-stop flights

between city i and j. That is,

Onestopn,i j = Y2
n,i j =

∑
k

yn,ikyn, jk.

Note that this is not necessarily a practical number of one-stop flights due to the

following reasons. First, some markets are too close to have one-stop flights. For

example, there are many possible one-stop routes of major airlines for LA-San

Diego. In an extreme case, one could fly from LA to New York and then New
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AA DL UA US WN
Average # of one-stop flights 1.0843 2.3812 2.5932 8.0138 1.652

Average hub-size 11.69 10.69 25.57 33.48 19.33
Sum of “City2” 2701 3321 3403 3403 2145

Table 4.2: Descriptive statistics: one-stop flights, hub-size, City2

York to San Diego. However, the non-stop distance of the market is short, so

this type of one-stop routes may not be attractive. On the other hand, it is still

possible that one would take a flight from LA to Phoenix and then next flight

from Phoenix to San Diego if the price is reasonable.7 Hence, I cannot rule out

all possible one-stop flights. Rather, I try to reduce this problem by controlling

for the distance between two areas.

Second, airlines may not sell one-stop flight tickets for a certain markets. Or,

even if airlines sell a ticket, no sales are realized in the period. In this case, the

econometrician cannot observe those one-stop flights from the data. For these

reasons, the number of one-stop flights derived from airline networks is not

a perfect measure, but I consider it as a good proxy after controlling for the

distance.

Finally, I include the eigenvector centrality (also called Bonacich centrality)

as a firm’s competitiveness measure in the profit function. The eigenvector cen-

trality of an area i in airline n’s network can be obtained from the following

equation.

Ynvn = λnvn,

where λn is the largest eigenvalue of Yn and vn is the corresponding right eigen-

vector to λ. The ith element of vn, i.e. vn,i, is the eigenvector centrality of area i in

7In addition, there are a small portion of people who want to collect mileage with a minimum
amount of spending. If a one-stop flight gives much higher mileage relative to its price, they
would not mind flying through the one-stop flights.
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airline n’s network. This eigenvector centrality measures how influential each

area is in the network. I conjecture that if two areas are more influential in an

airline’s network, the airline is more likely to operate a direct flight to connect

those two areas.8

4.5 Estimation

The estimation procedure in this chapter follows Berry (1992). Although Berry

(1992) explains the estimation method, it is still worth reviewing the procedure

and explaining potential computation problems for practice. The estimation

relies on the method of simulated moments (MSM) introduced by McFadden

(1989) and Pakes and Pollard (1989).

First, draw R set of unobserved variables ε(r)
i j = (ε(r)

i j,0, ε
(r)
i j,1, · · · , ε

(r)
i j,N)′, r =

1, · · · , R for all i j, from the independent and identically distributed standard

normal distribution. In practice, I use R = 20, 100. It is important that this R

set of unobservables remain fixed throughout the estimation process. For each

draw of unobservables, compute π(r)
n,i j for each firm and each market, where the

superscript (r) indicates the rth simulation error. Note that minimization algo-

rithm starts with a pre-specified starting values of parameters. It is also impor-

tant to try many starting values to obtain a global minimum. Next, compute the

equilibrium number of firms n̂(Wi j, θ, ε
(r)
i j ) corresponding to each simulation er-

ror, and the estimated equilibrium number of firms N̂i j = 1
R

∑
r n̂(Wi j, θ, ε

(r)
i j ). The

estimated market error is then computed as ε̂0,i j(θ) =
∑

q yq,i j − N̂i j.

The next step is to find an order of entry for each market. Let q(n, Wi j, θ, ε
(r)
i j )

8Estimation with eigenvector centrality will be studied later.
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be the ranking of firm n in market i j corresponding to the rth simulation. Then,

the estimated probability that firm n is an incumbent in market i j is P̂n,i j =

1
R

∑
r p̂n(Wi j, θ, ε

(r)
i j ), where p̂n(Wi j, θ, ε

(r)
i j ) = 1[n̂(Wi j, θ, ε

(r)
i j ) ≥ q(n, Wi j, θ, ε

(r)
i j )]. Fi-

nally, the estimated firm- and market- specific error ε̂n,i j is obtained by ε̂n,i j(θ) =

yl,i j − P̂n,i j.

Now, I compute the moments. Let gi j(θ) be the i jth sample moment such that

gi j(θ) =
[
ε̂0,i j(θ)H0(Wi j)′, ε̂1,i j(θ)H1(Wi j)′, · · · , ε̂N,i j(θ)HN(Wi j)′

]′
,

where H(Wi j) is a vector of functions of instruments, or exogenous variables. For

the market-specific component ε̂0,i j(θ), I use four market-specific variables, the

Herfindahl indices in terms of the number of one-stop flights and hub-size, and

the sum of dummy variables for operating both cities across all airline carriers.

For each firm’s unobservable profit shifter, ε̂n,i j(θ), I use the observed charac-

teristics of that firm corresponding to the profit function specifications in ad-

dition to the variables mentioned above. Hence, the number of total moments

is 7 + (K + 7) × N, where K is the number of parameters for firm characteris-

tics. This number is bigger than the dimension of parameter vector to assure

identification.

The objective function is written as

Q(θ) = G(θ)′ΩG(θ),

where G(θ) = [ε0(θ)H0(W)′, ε1(θ)H1(W)′, · · · , εN(θ)HN(W)′]. Let GM(θ) =

113



1
M

∑
j,i

∑
i gi j(θ)′. Then, the sample objective function is written as

QM(θ) = GM(θ)′ΩGM(θ), (4.4)

where V is an weighting matrix. In order to estimate θ̂MS M, I first use an iden-

tity matrix as Ω and find θ̃ that minimize the above objective function. Then,

compute the estimated weighting matrix

Ω̂ =
1
M

∑
j,i

∑
i

(
gi j(θ̃) −GM(θ̃)

) (
gi j(θ̃) −GM(θ̃)

)′
.

Next, plug Ṽ into the equation (4.4), and obtain θ̂MS M that minimize the objective

function.

To obtain the asymptotic variance of θ̂MS M, I use the formula in Pakes and

Pollard (1989). They show that

√
M(θ̂MS M − θ)⇒ N(0, (Γ′Γ)−1Γ′VΓ(Γ′Γ)−1),

where Γ is the derivative matrix of G(θ), V is the variance-covariance matrix of

G(θ). Following Pakes and Pollard (1989), I use

Γk,M(θ) =
√

M
{
GM(θ̂ +

√
Mek) −GM(θ̂)

}

as an estimator for the kth column of Γ, and

V̂M = (1 +
1
R

)
1
M

∑
j,i

∑
i

(
gi j(θ̂) −GM(θ̂)

) (
gi j(θ̂) −GM(θ̂)

)′
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Variable Estimate
Population -0.3085

(0.4134)
Income per capita 2.9411***

(1.1439)
Growth rate -2.8889**

(1.3692)
Distance 0.0015

(0.0026)
Hub-size 0.0081

(0.0080)
City2 9.2581***

(2.0570)
δ -5.1108***

(1.5191)
ρ 0.6291

(1.0613)
Constant 0.2202

(4.0961)
# of markets 3486

Table 4.3: Results when entry is defined as in Berry (1992)

10%, ** 5%, *** 1% level of significance. Standard errors in parenthesis

as an estimator for V . Note that (1+ 1
R ) is multiplied to adjust estimation precision

error due to simulation.

4.6 Results

As a benchmark, I use the entry definition of Berry (1992) and estimate the

model. Since the definition of entry include one-stop flights, I did not include

the number of one-stop flights in the post-entry profit function. Although I have

tried to use similar specification to one in Berry (1992), some variables differ due

to data limitation.

Table 4.3 shows the estimation results. Note that I use the DB1B data for

the second quarter of 2013, and Berry (1992) use the data for the second quarter
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of 1980. Since more than three decades have passed, it is reasonable to expect

several changes in estimate. Especially, compared to Berry (1992), the signs of

coefficients on population and constant have been changed, but they are not

significant. The changes may also be originated from including more market

specific variables such as income per capita and the income growth rate. More

interestingly, the effect of hub-size turns out to be small and insignificant. This

result provides another reason for me to include other network variables to sep-

arate positive and negative network externalities. The number of firms in a mar-

ket has large negative effects and significant as expected. The coefficients on the

variable City2 and the number of firms in a market are large in magnitude and

significant.

Now, I run the empirical model with the definition of entry provided in this

chapter. I use two different specifications, one of which is the same as the pre-

vious one. As we have seen in Table 1, there are huge gap in the number of

markets served by airlines between two different entry definitions. Hence, it is

reasonable to expect obtaining different estimation results from those in Table

4.2.

Table 4.4 shows the results. In the second column of the table, the coefficients

on the market-specific variables have been changed substantially. The signs of

those coefficients are all different from Table 4.3 and significant. The network

variables, hub-size and City2 give positive profits and significant. The coeffi-

cients δ on the number of firms in a market becomes positive. This result seems

counter-intuitive. I conjecture that it may be because a large market provides

large profits.

When I include one-stop flights in the profit function (the third column), the
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Variable Without One-stop With One-stop
Population 0.2327*** 0.6113

(0.0563) (1.9971)
Income per capita -1.7500*** 2.3449***

(0.5124) (0.2565)
Growth rate 1.3522* -1.3088

(0.7076) (1.4957)
Distance 0.0002 -0.0052***

(0.0012) (0.0001)
One-stop -0.0493

(0.0879)
Hub-size 0.0894*** 0.2057***

(0.0157) (0.0333)
City2 0.8058** 0.3952

(0.3911) (0.5235)
δ 0.8257*** 0.9813

(0.2066) (0.8210)
ρ 0.3156*** -0.4058

(0.0813) (1.2239)
Constant -1.7488** 0.6113

(0.8064) (1.9971)
# of markets 3486

Table 4.4: Results when entry is defined as operating a direct flight

10%, ** 5%, *** 1% level of significance. Standard errors in parenthesis

estimation results are much different from the model specification (the second

column) without one-stop flights. It may be because firm-specific profit shifters

take some amount of explanation power of market-specific variables. The most

interesting result is that the magnitude of the coefficient on hub-size becomes

more than two times larger, and that of City2 variable becomes about a half

and insignificant. On the other hand, the coefficient on one-stop flights is neg-

ative although it is insignificant. As I mentioned earlier in Section 4.2, when

the model includes the variable hub-size alone, it could contain both positive

and negative effects. By adding the variable, one-stop, it seems that the nega-

tive effect of having one-stop flights is decomposed from hub-size. In terms of

magnitude of those two coefficients, having approximately four one-stop flights

between two areas cancels out the positive effects of two flights from or to one
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of two endpoints airports, or cancels out the positive effects of one flight from

both endpoints airports. Again, the number of firms in a market has a positive

effect in this specification, but insignificant.

4.7 Conclusion

I estimate network externalities in the U.S. airline industry with an entry game

and the weak notion of a stable network. The stability notion allows the econo-

metrician to include various network measures as a firm’s competitiveness into

the post-entry profit function. I focus on the decomposition of the negative ef-

fects and the positive effects of having large airport presence. I find that the

effect of hub-size is positive and lager in magnitude when I include one-stop

flights compared to when the one-stop variable is not included. This result sug-

gests that negative externalities is very likely to exist. For more precise esti-

mation results, an empirical model with heterogeneous competitive effects is

recommended as a further study.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proofs

A.1.1 Proof of Proposition 2.3.3

Before proving the proposition, I introduce a couple of definitions from Hell-

mann (2012). Let AN be the complete network (the network with all possible

links), andA be the set of all possible network configurations. Let Li(A) := {i j ∈

A| j ∈ N} be the set of player i’s links in A. I use L−i(A) := A\Li(A) to denote the set

of links in A except individual i’s links, and mui(A + l, l) to denote i’s marginal

utility of adding a set of new link l to A. It is either a set of links or a single link.

The ordinal convexity (concavity) of U in own links is defined as below.

Definition (Definition 5 in Hellmann (2012)) A utility function Ui of player i is

ordinal convex (concave) in own links if ∀A ∈ A, ∀li ⊆ Li(AN −A), and ∀i j < A+ li,

(i) mui(A + i j, i j) ≥ 0 =⇒ (⇐=) mui(A + li + i j, i j) ≥ 0,

(ii) mui(A + i j, i j) > 0 =⇒ (⇐=) mui(A + li + i j, i j) > 0.

Another definition from Hellmann (2012) is the ordinal strategic complements

(substitutes) property.

Definition (Definition 6 in in Hellmann (2012)) A utility function Ui of player i

satisfies the ordinal strategic complements (substitutes) property if for all A ∈ A

and any set of links l−i ⊆ L−i(AN − A) it holds that
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(i) mui(A + i j, i j) ≥ 0 =⇒ (⇐=) mui(A + l−i + i j, i j) ≥ 0,

(ii) mui(A + i j, i j) > 0 =⇒ (⇐=) mui(A + l−i + i j, i j) > 0.

Lemma A.1.1. (Theorem 1 in Hellmann (2012)) Suppose a profile of utility functions

U = (U1, · · · , UN) satisfies ordinal convexity in own links and the ordinal strategic

complements property. Then:

(i) There does not exist a closed improving cycle.

(ii) There exists a PS network.

According to the above lemma, if U = (U1, · · · , UN) satisfies ordinal convexity

in own links and the ordinal strategic complements property, then there exists

a pairwise stable network. Thus, to show the existence of a pairwise stable net-

work, it is enough to show that the utility function satisfies those two properties.

First consider the ordinal convexity in own links. From (2.2), I get mui(A +

i j, i j) = ui j + εi j + ∆
∑

k<Ni(A) aika jk. Likewise, mui(A + li + i j, i j) = ui j + εi j +∑
k<Ni(A+li) ∆ikaika jk. Let Ã = A + li and ãi j be the i, jth element of Ã. Then, I

know that a jk = ã jk for all j, k , i, since li is a set of links which i must involve

in. Also, I can easily see that ãi j ≥ ai j for all i and k, since A + li is simply a

network which adds extra links of i to A. Hence,
∑

k<Ni(A+li) aika jk ≥
∑

k<Ni(A) aika jk.

I know that ∆ik ≥ 0 for all i and k, and its magnitude does not depend on the

underlying network structure. Thus,
∑

k<Ni(A+li) ∆ikaika jk ≥
∑

k<Ni(A) ∆ikaika jk, and

mui(A + li + i j, i j) ≥ mui(A + i j, i j). If mui(A + i j, i j) ≥ 0 then mui(A + li + i j, i j) ≥ 0.

The strict inequality relation also holds. Therefore, Ui satisfies ordinal convexity.

Similarly, by letting Ã = A + l−i I can easily verify that
∑

k<Ni(A+l−i) aika jk =∑
k<Ni(Ã) ãikã jk ≥

∑
k<Ni(A) aika jk. Hence, if mui(A+i j, i j) ≥ 0 then mui(A+l−i+i j, i j) ≥ 0.
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It is also true for the strict inequality relation. Therefore, Ui satisfies ordinal

strategic complements property. By Lemma 3, there exists a pairwise stable net-

work, and the existence does not depend on the realization of ε. Q.E.D.

A.1.2 Proof of Proposition 2.4.1

Proof. For the ease of exposition, define

x1 = (1, x1 j, · · · , xl j)

x2 = (1, x1i, · · · , xli)

z = ((x1i − x1 j)2, · · · , (xli − xl j)2).

Let w1 = (x1, z), w2 = (x2, z), and θ = (α, β), where β includes ∆ to make notation

simpler. X̃θ can be rewritten as

X̃θ = {(w1,w2) ∈ X × X : x1α + zβ < 0 ≤ x1α0 + zβ0,

and x2α + zβ < 0 ≤ x2α0 + zβ0}

Let xk and xm be explanatory variables with full support. I use x−k and α−k to de-

note regressors except xk and its corresponding coefficients, respectively. Define

x−k,m and α−k,m analogously. Without loss of generality, let α0,k > 0. The other

case is symmetric. I have three cases to consider.

(i) Case αk < 0:
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x1α + zβ < 0 ≤ x1α0 + zβ0 and x2α + zβ < 0 ≤ x2α0 + zβ0 (A.1)

x1,−kα−k + zβ + x1kαk < 0 , 0 ≤ x1,−kα0,−k + zβ0 + x1kα0k,

x2,−kα−k + zβ + x2kαk < 0 and 0 ≤ x2,−kα0,−k + zβ0 + x2kα0k.

Equivalently,

x1k > −
x1,−kα−k + zβ

αk
, x1k ≥ −

x1,−kα0,−k + zβ0

α0k
,

x2k > −
x2,−kα−k + zβ

αk
and x2k ≥ −

x2,−kα0,−k + zβ0

α0k
.

From the full support condition of xk, probability that the above inequalities

hold is strictly positive. Thus, Pr[(xi j, x ji) ∈ X̃θ] > 0, and θ0 is point identified.

(ii) Case αk = 0:

Solving (A.1) now gives

x1,−kα−k + zβ < 0 , x1k ≥ −
x1,−kα0,−k + zβ0

α0k
,

x2,−kα−k + zβ < 0 and x2k ≥ −
x2,−kα0,−k + zβ0

α0k
.

x1,−k,mα−k,m + zβ + x1mαm < 0 , x1k ≥ −
x1,−kα0,−k + zβ0

α0k
,

x2,−k,mα−k,m + zβ + x2mαm < 0 and x2k ≥ −
x2,−kα0,−k + zβ0

α0k
.
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x1,−k,mα−k,m + zβ + x1mαm < 0 , x1k ≥ −
x1,−kα0,−k + zβ0

α0k
,

x2,−k,mα−k,m + zβ + x2mαm < 0 and x2k ≥ −
x2,−kα0,−k + zβ0

α0k
. (A.2)

Solving the above inequalities for x1m and x2m respectively gives conditions for

x1m and x2m. Since fxm |xk=x has full support for all x, probability that the four

inequalities in (A.2) hold simultaneously is strictly positive. Thus, Pr[(xi j, x ji) ∈

X̃θ] > 0, and θ0 is point identified.

(iii) Case αk > 0:

Solving (A.1) now gives

x1k < −
x1,−kα−k + zβ

αk
, x1k ≥ −

x1,−kα0,−k + zβ0

α0k
, (A.3)

x2k < −
x2,−kα−k + zβ

αk
and x2k ≥ −

x2,−kα0,−k + zβ0

α0k
. (A.4)

Since θ is not a scalar multiple of θ0, two bounds in (A.3) and (A.4) are not the

same. Hence, the above inequalities provide an interval only if the following

conditions hold.

−
x1,−kα0,−k + zβ0

α0k
< −

x1,−kα−k + zβ
αk

and −
x2,−kα0,−k + zβ0

α0k
< −

x2,−kα−k + zβ
αk

I rewrite the first inequality as

x1,−k,mα0,−k,m + zβ0 + x1,mα0m

α0k
>

x1,−kα−k + zβ + x1mαm

αk
.
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Solving this for x1,m gives

x1m > (
x1,−kα−k + zβ

αk
−

x1,−k,mα0,−k,m + zβ0

α0k
)/(
α0m

α0k
−
αm

αk
),

or

x1m < (
x1,−kα−k + zβ

αk
−

x1,−k,mα0,−k,m + zβ0

α0k
)/(
α0m

α0k
−
αm

αk
),

I can solve the second inequality A.4 for x2m and get similar results. Since fxm |xk=x

has full support for all x, there always exists xk, xm and x−k,m such that

−
x1,−kα0,−k + zβ0

α0k
< x1k < −

x1,−kα−k + zβ
αk

,

and

−
x2,−kα0,−k + zβ0

α0k
< x2k < −

x2,−kα−k + zβ
αk

.

Hence, Pr[(xi j, x ji) ∈ X̃θ] > 0, and θ0 is point identified.

A.2 Distance Based Utility

A.2.1 Model with Distance-Based Utility

In this appendix, I discuss the model specification under distance-based util-

ity. Individual’s utility of a network has a close framework to the one in the
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connections model of Jackson and Wolinsky (1996). Let xi be an L × 1 vector of

observed characteristics of i. X is an L × N matrix of observed characteristics of

all individuals. The utility function of agent i by forming a network A is written

as;

Ui(A|X, ε; θ) =

N∑
j=1

ai j(ui j − c + εi j) +
∑

j

ai j

∑
k<Ni(A)

a jkδvik, (A.5)

where Ni(A) denotes the set of individuals in which individuals have a direct

link with i under the current network configuration A. One can also call this set

as the neighborhood of i. i.e.

Ni(A) = {k ∈ N| aik = 1} . (A.6)

The base utility ui j has the same form as (2.3), and c is the cost of maintaining

link. I specify the linear cost function for simplicity. The second term exhibits

utility from indirect friends, or friends of friends. The decay parameter δ ∈ (0, 1]

represents the decreasing rate of benefits with respect to the distance between i

and k.

I simplify the intrinsic value vik of indirect friend k to i as vik = uik/nik, where

nik is the number of common friends of i and k. By doing so, I equally distribute

the benefits from indirect friends equally to all of common friends of i and j.

For example, if Paul gives uPaul,Tom amount of utility to Tom as being a friend of

Tom’s friend, it will be divided by nPaul,Tom, or the number of common friends of
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Paul and Tom. Individual i’s marginal utility of j is

Ui(A + i j|X, ε; θ) − Ui(A − i j|X, ε; θ) = ui j − c + εi j + δ
∑

k<Ni(A)

a jk
uik

nik
. (A.7)

Note that I cut off one’s utility from indirect friends after friends of friends.

The reason is mostly computational. Computation of this marginal utility re-

quires counting all possible paths of length two from i to j’s neighbors. This

computation is burdensome once I include indirect friends with length more

than two. Intuitively, an individual knows friends of her friends, but he or she

may neither know nor care about friends of friends of her friends and so on.

Thus, I do not consider friends of friends of friends in i’s utility.

A.2.2 Existence of a Pairwise Stable Network

There are a few differences in distance-based utility. First, the utility function

(A.5) allows i’s utility of an indirect friend k, or vik to depend on both i and j’s

characteristics. Second, the utility function has a form of distance-based utility,

so that I can estimate the decay parameter δ and the cost c of having a friend.

In spite of these advantages, the utility specification is limited since it does not

guarantee the existence of pairwise stable networks. If I restrict vik = ν ≥ 0 in

(A.5), then I can show that there exists at least one pairwise stable network.

Proposition A.2.1. Consider the utility function (2.3). If vik = ν ≥ 0 for all i and k,

then for all ε there exists at least one pairwise stable network .

Proof. Proving the proposition is similar to the proof of Proposition 2.3.3. Ac-
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cording to Lemma A.1.1 above, if U = (U1, · · · , UN) satisfies ordinal convexity

in own links and the ordinal strategic complements property, then there exists

a pairwise stable network. Thus, it is enough to show that the utility function

satisfies those two properties.

First consider the ordinal convexity in own links. From (2.8) and (2.18), I

get mui(A + i j, i j) = ui j − c + εi j + δν
∑

k<Ni(A) a jk. Likewise, mui(A + li + i j, i j) =

ui j − c + εi j + δν
∑

k<Ni(A+li) a jk. Since a jk ∈ A + li greater than equal to a jk ∈ A for all

j and k, mui(A + i j, i j) ≤ mui(A + li + i j, i j). Thus, the utility profile U is convex

in own links. Second, I consider the strategic complements property. Suppose

mui(A+i j, i j) = ui j−c+εi j+δν
∑

k<Ni(A) a jk ≥ 0. The marginal utility of adding a link

i j to A + l−i can be computed as mui(A + l−i + i j, i j) = ui j − c + εi j + δν
∑

k<Ni(A+l−i) a jk.

Since A + l−i has at least as many links as A,
∑

k<Ni(A+l−i) a jk ≥
∑

k<Ni(A) a jk. Thus,

mui(A + l−i + i j, i j) ≥ 0. The strong inequality part holds similarly. Hence, the

utility profile U satisfies the strategic complements property, and therefore a

pairwise stable network exists.

Although the restriction νik = ν ≥ 0 guarantees the existence of a pairwise stable

network, I do not impose it. Instead, I use the following proposition to guaran-

tee the existence of a pairwise stable network.

Proposition A.2.2. Fix X and θ. For any network A, there always exists a set EA

of ε = (ε12, ε13, · · · , ε1N , ε23, · · · , εN−1,N) with Pr(ε ∈ EA|X; θ) > 0 such that A is

pairwise stable.

Proof. Pick an arbitrary network A. Since X and θ are fixed, the deterministic

parts of marginal utilities for all pairs are fixed. That is, the first three terms on
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the RHS of the below equation are fixed:

Ui(A + i j|X, ε; θ) − Ui(A − i j|X, ε; θ) = ui j − c + δ
∑

k<Ni(A)

a jk
uik

nik
+ εi j. (A.8)

Let mud
i ( j|A, X; θ) = ui j − c + δ

∑
k<Ni(A) a jk

uik
nik

. I know this term is bounded. If

ai j = 1, then for εi j ∈ (−mud
i ( j|A, X; θ), ∞) , ∅, i’s marginal utility of j given

X and A−i j is positive. Likewise for ε ji ∈ (−mud
j (i|A, X; θ), ∞) , ∅, j’s marginal

utility of i given X and A−i j is positive. So, ai j = 1 is pairwise stable for (εi j, ε ji) ∈

E1
i j = (−mud

i ( j|A, X; θ), ∞) × (−mud
j (i|A, X; θ), ∞).

If ai j = 0, then for εi j ∈ (−∞, −mud
i ( j|A, X; θ)) , ∅ and ε ji ∈

(−∞, −mud
j (i|A, X; θ)) , ∅ i′s marginal utility and j’s marginal utility are non-

positive, respectively. Thus, for (εi j, ε ji) ∈ E0
i j =

{
(−∞, −mud

i ( j|A, X; θ)) × R
}
∪{

R × (−∞, −mud
j (i|A, X; θ))

}
, ai j = 0 is pairwise stable. Let EA = ×i jE

ai j

i j . It is trivial

that EA is nonempty. Therefore, for all ε = (ε12, ε13, · · · , ε1N , ε23, · · · , εN−1,N) ∈

EA, A is pairwise stable.

Proposition A.2.2 states that for any observed network there exists a region of

unobserved variables in which the network is pairwise stable. In other words,

instead of restricting the utility function, I may restrict the stochastic structure

of the model to guarantee the existence of pairwise stable networks. Point iden-

tification can be obtained similarly to the results of Proposition 2.4.1. I omit the

proof of identification for this reason.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proofs

B.1.1 Proof of Proposition 3.3.1

In order to prove the proposition, I introduce the following definitions: adja-

cency, an improving path, and a maximal cycle. The following definitions ex-

tend corresponding definitions (under the same name) in Jackson and Watts

(2002b) to the multigraph framework.

Definition (Extended definitions from Jackson and Wolinsky (1996) and Jack-

son and Watts (2002b))

(i) (adjacent) If two multigraphs Y and Y ′ differ by only one pair’s decision

Yi j and Y ′i j, they are adjacent.

(ii) (an improving path) An improving path from a multigraph Y to a multi-

graph Y ′ is a finite sequence of adjacent multigraphs Y = Y1, · · · , YK = Y ′

such that for any k ∈ 1, · · · , K − 1, Yk+1 = Yk − Yk,i j + Y ′k,i j for some i j such

that Ui(Yk+1) + U j(Yk+1) > Ui(Yk) + U j(Yk) in the case of transferable utility, and

Ui(Yk+1) > Ui(Yk) and U j(Yk+1) > U j(Yk) in the case of nontransferable utility.

(iii) (a maximal cycle) A cycle C is a maximal cycle if it is not a proper subset

of a cycle.

Proof. (Proposition 3.3.1) Consider an arbitrary multigraph Y0. If Y0 is pairwise
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stable, the result is established. So, suppose not. Now, since Y0 is not pairwise

stable, it lies on an improving path. So, there is a pair that wants to deviate from

Y0 to its adjacent multigraph Y1. Note that each pair’s deviation is uniquely de-

termined for each Y0 since there is no tie between adjacent multigraphs in terms

of utility. This unique determination is a key to make the case of a multigraph

similar to that of a single network. If the improving path ends at a multigraph YT

(i.e. no pairs want to deviate from YT ), then YT is a pairwise stable multigraph.

Hence, the result is established. If the path does not end, it must hit the original

multigraph Y0 since the number of possible multigraph configurations is finite.

Therefore, there exists at least one pairwise stable multigraph or a closed cycle

of multigraphs.

B.1.2 Proof of Proposition 3.3.2

Proof. I use the contra-positive to prove the proposition. Suppose that there is a

cycle, {Y = Y0, Y1, · · · , YK = Y}. For the sake of contradiction, suppose that there

exists a potential function ω(·). Without loss of generality, Y0 is a multigraph

that lies on a cycle. Then, ω(Y) = ω(Y0) < ω(Y1) < · · · < ω(YK) = ω(Y). This makes

a contradiction. Therefore, if there exists ω(·), then there are no cycles, and at

least one pairwise stable multigraph exists.

B.1.3 Proof of Proposition 3.3.3

Proof. I prove the case of two types of links in Y . When there are more than

two networks, I just need to check more cases. When there are two networks,
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I have three cases to consider: (1) Yi j = (0, 0) and Y ′i j = (1, 0), (2) Yi j = (1, 0) and

Y ′i j = (0, 1), and (3) Yi j = (0, 0) and Y ′i j = (1, 1), other cases are symmetric with one

of those three. Let ũ(s)
i j := u(s)(Wi j, Vi j, Xi j, εi j). Define

ω(Y) =

n∑
i

∑
j,i

a(1)
i j ũ(1)

i j +
∑

i

∑
j

a(1)
i j

1
2
γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk + γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk


+

n∑
i

∑
j,i

a(2)
i j ũ(2)

i j +
∑

i

∑
j

a(2)
i j

γ(1,2)
∑
k,i, j

a(1)
ik a(1)

jk +
1
2
γ(2,2)

∑
k,i, j

a(2)
ik a(2)

jk


+

n∑
i=1

a(1)
i j a(2)

i j δ
(1,2)(Wi j, Vi j, Xi j, εi j).

Case 1. Yi j = (0, 0) and Y ′i j = (1, 0)

Individual i’s marginal utility of forming the first type relationship with j is

Ui(Yi j = (1, 0)) − Ui(Yi j = (0, 0)) = ũ(1)
i j + γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk + γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

The sum of i and j’s marginal utilities, say mui j, is

mui j = ũ(1)
i j + ũ(1)

ji + 2γ(1,1)
∑
k,i, j

a(1)
ik a(1)

jk + 2γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

Now consider ω(Y ′) − ω(Y).

ω(Y ′) − ω(Y) = ũ(1)
i j + ũ(1)

j j + 2 ×
1
2
γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk + 2γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

+2 ×
1
2
γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk .

Note that the first two lines are the sum of the marginal utilities of i and j except
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multiplying 1
2 to γ(s)

1

∑
k,i, j a(1)

ik a(1)
jk . The last term is the sum of the additional utility

(or disutility) that the rest of individuals receive due to the change in i and j’s

relationships. Hence, the difference in the sum of i and j’s marginal utilities is

the same as the difference in ω(Y).

Case 2. Yi j = (0, 1) and Y ′i j = (1, 0)

First,

Ui(Yi j = (1, 0)) − Ui(Yi j = (0, 1)) = ũ(1)
i j − ũ(2)

i j + γ(1,1)
∑
k,i, j

a(1)
ik a(1)

jk + γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

−γ(1,2)
∑
k,i, j

a(1)
ik a(1)

jk − γ
(2,2)

∑
k,i, j

a(2)
ik a(2)

jk .

mui j = ũ(1)
i j − ũ(2)

i j + ũ(1)
ji − ũ(2)

ji + 2γ(1,1)
∑
k,i, j

a(1)
ik a(1)

jk + 2γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

−2γ(1,2)
∑
k,i, j

a(1)
ik a(1)

jk − 2γ(2,2)
∑
k,i, j

a(2)
ik a(2)

jk .

Consider ω(Y ′) − ω(Y).

ω(Y ′) − ω(Y) = ũ(1)
i j − ũ(2)

i j + ũ(1)
ji − ũ(2)

ji + 2 ×
1
2
γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk + 2γ(2,1)
∑
k,i, j

a(2)
ik a(2)

jk

−2γ(1,2)
∑
k,i, j

a(1)
ik a(1)

jk − 2 ×
1
2
γ(2,2)

∑
k,i, j

a(2)
ik a(2)

jk

+2 ×
1
2
γ(1,1)

∑
k,i, j

a(1)
ik a(1)

jk − 2 ×
1
2
γ(2,2)

∑
k,i, j

a(2)
ik a(2)

jk .

Again, ω(Y ′) − ω(Y) is equal to the sum of the marginal utilities of i and j.

Case 3. Yi j = (0, 0) and Y ′i j = (1, 1)

132



In this case, I consider two separate cases: Yi j = (0, 0) and Y ′i j = (1, 0), and

Yi j = (0, 0) and Y ′i j = (0, 1). By Case 1 and symmetry, ω(Y ′) − ω(Y) is the same

as the sum of marginal utilities, since the term
∑n

i=1 a(1)
i j a(2)

i j δ
(1,2)(Wi j, Vi j, Xi j, εi j)

only affects i and j’s utilities. The difference ω(Y ′) −ω(Y) is the sum of marginal

utilities of i and j. Therefore, by Proposition 2, there exists at least one pairwise

stable multigraph

B.1.4 Definitions in Random Set Theory

Definitions in this appendix follow from GH, BMM12, Chesher and Rosen

(2013) and Molchanov and Molinari (2013). Let C be the collection of all closed

sets. A random closed set is a measurable map Q : Ω 7→ C, from the probability

space to the collection of closed sets {F ∈ C : F ∩ D , ∅} for all D ∈ K .

Definition A map Q from a probability space (Ω, F , P) to C is called a random

closed set if its inverse function Q−(D) satisfies,

Q−(D) = {ω : Q(ω) ∩ D , ∅} ∈ F

for each compact set D ⊂ Rd.

Let K be the collection of all compact sets. The capacity functional and the

containment functional are defined as follows.

Definition (i) A functional TX(D) : K → [0, 1] given by

TX(D) = P(X ∩ D , ∅), D ∈ K ,
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is called the capacity functional of X.

(ii) A functional CX(F) : C → [0, 1] given by

CX(F) = P(X ⊂ F), F ∈ C,

is called the containment functional of X.

B.1.5 Proof of Proposition 3.5.1

Proof. Since all admissible duples (θ, Pε) are in H[(θ, Pε)], I only need to prove

that a duple (θ′, P′ε) which is not admissible by the model is not in H[(θ, Pε)].

First, from Theorem 2.1. in BMM12, I obtain the equivalence between contain-

ment functional and capacity functional. Hence, I can write the sharp identifi-

cation region as

H[(θ, Pε)] =
{
(θ, Pε) ∈ Θ × P| Pε(F) ≤ Pr[Eθ(Y, W, z) ∩ F , ∅; F0],

∀F ∈ C(R2p−1) a.e. z ∈ Z
}
.

Then, the sharpness is due to the Artstein’s inequality. see Artstein (1983), Nor-

berg (1992), or Molchanov (2005).
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B.1.6 Proof of Proposition 3.5.2

Proof. Recall the sharp identification region (3.20)

H[(θ, Pε)] =
{
(θ, Pε) ∈ Θ × P| Pε(F) ≤ Pr[Eθ(Y, W, z) ⊆ F; F0],

∀F ∈ C(R2p−1) a.e. z ∈ Z
}
.

First, I want to rule out sets that are not the union of sets in C1(θ) = {Eθ(y, w, z) :

y ∈ Y, w ∈ W, and z ∈ Z}. Let T1 be an arbitrary set which is not a union

of sets in C1(θ). I can find the largest possible union of sets in C1(θ), which

is a subset of T1. Denote the largest possible union F1. From Assumption

3.2.(ii), the distribution of ε is continuous, and ε has everywhere positive den-

sity. Hence, Pε(F1) ≤ Pε(T1). Now consider Pr[Eθ(Y, W, z) ⊆ T1; F0] and

Pr[Eθ(Y, W, z) ⊆ F1; F0]. If Eθ(y, w, z) is a subset of T1, then it is also a subset

of F1 since F1 is the largest possible union. So, I have

Pε(T1) ≥ Pε(F1) ≥ Pr[Eθ(Y, W, z) ⊆ F1; F0] = Pr[Eθ(Y, W, z) ⊆ T1; F0],

Thus, Pε(F1) ≥ Pr[Eθ(Y, W, z) ⊆ F1; F0] is not informative. Therefore I can rule

out sets that are not the unions of sets in C1(θ).

Next, I want to rule out non-connected sets among the unions of sets in C1(θ).

Pick an arbitrary non-connected union T2. Without loss of generality, suppose

E1 and E2 are non-connected, and T2 = E1 ∪ E2. For E1 and E2, I know

Pε(E1) ≥ Pr[Eθ(Y, W, z) ⊆ E1; F0],

Pε(E2) ≥ Pr[Eθ(Y, W, z) ⊆ E2; F0].
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Also, I have

Pε(T2) ≥ Pr[Eθ(Y, W, z) ⊆ T2; F0]

= Pr[Eθ(Y, W, z) ⊆ E1; F0] + Pr[Eθ(Y, W, z) ⊆ E2; F0],

by construction of the containment functional, i.e.

Pr[Eθ(Y, w, z) ⊆ F; F0] =
∑
w∈W

∑y∈Y (1[Eθ(y, w, z) ⊆ F]

×Pr[Y = y|W = w, Z = z; F0]
)

Pr(W = w|Z = z; F0)
}
.

Since E1 and E2 are disjoint, Pε(T2) = Pε(E1) + Pε(E2). Hence, I have

Pε(T2) ≥ Pr[Eθ(Y, W, z) ⊆ T2; F0]

⇔

Pε(E1) + Pε(E2) ≥ Pr[Eθ(Y, W, z) ⊆ E1; F0] + Pr[Eθ(Y, W, z) ⊆ E2; F0].

The last inequality is not informative.

Finally, it is trivial that the union of sets in C1(θ), which constitute R2p−1 is not

informative. Therefore, all connected unions of sets in C1(θ) except Rp−1 consist

the core determining class.
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B.2 Pairwise Stability of a Multigraph with Non-transferable

Utility

Definition (PSM with non-transferable utility) Let Ui(Y) be i’s utility from a multi-

graph Y . The value of the a multigraph is V(Y) =
∑

i Ui(Y). Let Yi j be the current link

decisions of i and j in Y . A multigraph Y satisfies pairwise stability of a multigraph

with non-transferable utility (PSMnt) if the following conditions hold for all i and j.

(i) For Yi j , (0, · · · , 0), Ui(Y) ≥ Ui(Y − Yi j + Y ′i j) and U j(Y) ≥ U j(Y − Yi j + Y ′i j) for

all Y ′i j(, Yi j) ∈ Yi j.

(ii) For Yi j = (0, · · · , 0), if Ui(Y + Y ′i j) > Ui(Y), then U j(Y + Y ′i j) < U j(Y) for all

Y ′i j ∈ Yi j.

Condition (i) indicates that the set of current relations Yi j between i and j is at

least as beneficial as the other sets of relations for both i and j. The deviation

from the current set of relations Yi j , (0, · · · , 0)′ requires that at least one of

i and j strictly prefers the alternative Y ′i j, and that the other individual is at

least indifferent. When a pair i j has no relations in Y , i.e. Yi j = (0, · · · , 0)′,

the condition (ii) provides that the formation of a relation or a set of relations

between i and j requires only indifference between Yi j = (0, · · · , 0)′ and Y ′i j ,

(0, · · · , 0)′.
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B.3 Core Determining Class

In this appendix, I explain how to obtain a core determining class in practice.

With the utility function (3.24), C2(θ), or the power set of C1(θ) = {Eθ(y, w, z) : y ∈

Y, w ∈ W, and z ∈ Z} has cardinality equal to 28 = 256. The cardinality of Z is

K = 22 × 32 = 36. Without using the core determining class, the econometrician

would have to compute 36 × 256 = 9216 moments. I find sets in the core de-

termining class as follows. First, I denote the eight Eθ(y, w, z)’s as {E1, · · · , E8}.

I construct the adjacency matrix Gθ among {E1, · · · , E8} based on the connect-

edness of each pair (Ei, E j). That is, Gθ,i j = 1 if Ei and E j are connected, and

zero otherwise. Then, among those 28 sets, I delete non-connected sets and du-

plicated sets based on Gθ. Finally, I delete the entire set R3 and the empty set.

Note that this process should be done with respect to the value of θ, or more

specifically β(1)
3 and β(2)

3 .

The core determining class differs by the value of the parameter vector θ.

More precisely, it depends on the coefficients on the endogenous explanatory

variable, i.e. β(1)
3 and β(2)

3 . There are 8 possible cases with respect to the values of

β(1)
3 and β(2)

3 . For a given value of Z = z, I first denote E1, · · · , E8 as follows. E1 =

Eθ((0, 0), 0, z), E2 = Eθ((0, 0), 1, z), E3 = Eθ((1, 0), 0, z), E4 = Eθ((1, 0), 1, z), E5 =

Eθ((0, 1), 0, z), E6 = Eθ((0, 1), 1, z), E7 = Eθ((1, 1), 0, z), and E8 = Eθ((1, 1), 1, z).

• Case 1. β(2)
3 < β(1)

3 < 0.

Figure B.1 shows how the area of unobservables is divided into 8 differ-

ent regions. Table B.4 shows the adjacency matrix Gθ for Case 1, which

characterizes the connectedness of Ei’s. The core determining class M(θ)

is described in Table B.2.
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Figure B.1: Regions of Unobservables Corresponding to Eθ(y, w, z) given z
when β(2)

3 < β(1)
3 < 0.

There are other 7 more cases corresponding to (β(1)
3 , β(2)

3 ). They are as

follows.

Case 2: β(1)
3 < β(2)

3 < 0,

Case 3: β(2)
3 > β(1)

3 > 0.

Case 4: β(1)
3 > β(2)

3 > 0,

Case 5: β(1)
3 < 0 < β(2)

3 , and β(1)
3 + β(2)

3 > 0,
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E1 E2 E3 E4 E5 E6 E7 E8

E1 0 1 0 0 0 0 0 0
E2 1 0 1 0 1 0 1 0
E3 0 1 0 1 0 0 0 0
E4 0 0 1 0 1 0 1 0
E5 0 1 0 1 0 1 0 0
E6 0 0 0 0 1 0 1 0
E7 0 1 0 1 0 1 0 1
E8 0 0 0 0 0 0 1 0

Table B.1: The adjacency matrix G(θ) when β(2)
3 < β(1)

3 < 0.

E1 E2 E3 E4 E5 E6 E7 E8

F1 � � � � � �

F2 � � � � � �

F3 � � � � �

F4 � � � � � �

F5 � � � � �

F6 � � � �

F7 � � � � � �

F8 � � � � �

F9 � � � �

F10 � � � � �

F11 � � � �

F12 � � �

F13 � � � �

F14 � � �

F15 � �

F16 �

F17 � � � � � �

F18 � � � � �

E1 E2 E3 E4 E5 E6 E7 E8

F19 � � � �

F20 � � � � �

F21 � � � �

F22 � � �

F23 � � � �

F24 � � �

F25 � �

F26 �

F27 � � � �

F28 � � �

F29 � �

F30 �

F31 � � �

F32 � �

F33 �

F34 � �

F35 �

F36 �

Table B.2: The core determining classM(θ) when β(2)
3 < β(1)

3 < 0.

Case 6: β(1)
3 < 0 < β(2)

3 , and β(1)
3 + β(2)

3 < 0,

Case 7: β(2)
3 < 0 < β(1)

3 , and β(1)
3 + β(2)

3 > 0,

and Case 8: β(2)
3 < 0 < β(1)

3 , and β(1)
3 + β(2)

3 < 0.

B.4 Detailed Estimation Procedures

In this appendix, I explain the estimation procedure with more details.
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B.4.1 Drawing Parameters

For the simulated annealing procedure, I draw more than 500 initial values

of θ from Uni f (−1, 1) in order to make sure that all regions in Θ are visited

by simulated annealing. I set the lower and upper bounds for simulated

annealing to be -5 and 5, respectively for each parameter. For the SVM

procedures, I first draw T values of the 18 dimensional parameter vector

from U(−5, 5). The parameter vector has 18 elements since it includes five

parameters in Λ, or the Cholesky decomposition of Σε, i.e. Σε = ΛΛ′. Note

that I have only five parameters from Σε, since scale normalization is done

by setting var(ε1) = 1.

After drawing parameters, a core determining class will be computed for

each parameter draw. Before I start the estimation procedures, I construct

8 core determining classes corresponding to the 8 different cases shown in

Appendix B.3.

B.4.2 Simulation of Unobservables

Since I do not observe ε, I need to simulate R = 100 sets of ε. I draw

ε = (ε1, ε2, ε3)′ from N(0, I3). Then I multiply the Cholesky decomposition

matrix Λ. This type of simulation is based on the method of simulated

moments (MSM) proposed by McFadden (1989) and Pakes and Pollard

(1989). I fix ε during all estimation procedure.

Next, I compute a total of 1296 moments m(r)
i j for each observation i j and

rth simulation. That is,

m(r)
i j (θ) = (m(r)

i j,1,1(θ), m(r)
i j,1,2(θ), · · · , m(r)

i j,1,36(θ), · · · , m(r)
i j,k,l(θ), · · · , m(r)

i j,36,36(θ))′,
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where

m(r)
i j,k,l(θ) = 1[ε(r)

i j ∈ Fl] −
∑
w∈W

∑
y∈Y

{1[Eθ(y, w, z) ⊆ Fl]

×1[Yi j = y|Wi j = w, Zi j = zk]1[Wi j = w|Zi j = zk]
}
.

I take the sample average of {m(r)
i j (θ), r = 1, · · · , R} over the unobservable

draws for each i j. That is,

mi j(θ) = (mi j,1,1(θ), mi j,1,2(θ), · · · , mi j,1,36(θ), · · · , mi j,k,l(θ), · · · , mi j,36,36(θ))′,

where

mi j,k,l(θ) =
1
R

R∑
r=1

{1[ε(r)
i j ∈ Fl] −

∑
w∈W

∑
y∈Y

{1[Eθ(y, w, z) ⊆ Fl]

×1[Yi j = y|Wi j = w, Zi j = zk]1[Wi j = w|Zi j = zk]
}
.

I still do not use a notation m̄ at this stage, since I have not taken the sample

average over pairs.

B.4.3 Computing Sample Moments and Test Statistic

I take the sample average over pairs as

m̄Ñ(θ) = (m̄Ñ,1,1(θ), m̄Ñ,1,2(θ), · · · , m̄Ñ,1,36(θ), · · · , m̄Ñ,k,l(θ), · · · , m̄Ñ,36,36(θ))′,
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m̄Ñ,k,l(θ) = Ñ−1
M∑

m=1

nm∑
j>i

nm−1∑
i=1

1
R

R∑
r=1

{1[ε(r)
i j ∈ Fl]

−
∑
w∈W

∑
y∈Y

{1[Eθ(y, w, z) ⊆ Fl]

×1[Yi j = y|Wi j = w, Zi j = zk]1[Wi j = w|Zi = zk]
}
,

where Ñ =
∑M

m=1

(
nm
2

)
. I also compute the variance-covariance matrix Σ̂Ñ(θ)

of mi j(θ). In practice, I only need to compute the variance of each mi j,k,l(θ).

Σ̂Ñ(θ) = Ñ−1
M∑

m=1

nm∑
j>i

nm−1∑
i=1

(mi j(θ) − m̄Ñ(θ))(mi j(θ) − m̄Ñ(θ))′.

From AS, I have several choices of functions for computing the test statis-

tic. For computational efficiency, I choose S 3 in AS, which is

S 3(m, Σ)) =

J∑
j=1

[m j/σ j]2
−,

where σ j is the square root of jth diagonal element of Σ, and

[x]− =


x , if x ≤ 0

0 , otherwise.

Then, the test statistic TÑ(θ0) is defined as

TÑ(θ0) = S 3(
√

Ñm̄Ñ(θ), Σ̂Ñ(θ))

=

K∑
k=1

L∑
l=1

[
√

Ñm̄Ñ,k,l(θ)/σ̂k,l]2
−,
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where K = 36 and L = 36 in practice.

B.4.4 Bootstrap and Moment Selection

I determine the generalized moment selection (GMS) critical value

ĉÑ(θ0, 1 − α) by bootstrapping.

First, I simulate B = 100 (nonparametric i.i.d) bootstrap samples.

{Y∗i j,b, W∗
i j,b, Z∗i j,b, ε

∗
i j,b, ∀i j ≤ Ñ}, where ε∗i j is the R set of unobservables drawn

at the first stage.

Compute

M∗

Ñ,b(θ0) =

K∑
k=1

L∑
l=1

[
√

Ñm̄∗Ñ,k,l(θ)/σ̂k,l]2
−,

Ω̂∗Ñ,b(θ0) = D̂∗−1/2
Ñ

(θ0)Σ̂∗Ñ(θ0)D̂∗−1/2
Ñ

(θ0),

for all b = 1, · · · , B, where D̂∗
Ñ

(θ0) is the diagonal matrix of Σ̂∗
Ñ

(θ0).

Next, I determine whether Ñ1/2m̄Ñ,k,l(θ0)/σ̂Ñ,k,l(θ0) > κÑ = (ln Ñ)1/2 for each

(k, l)th sample moment. Eliminate the elements in (M∗

Ñ,b
(θ0), Ω̂∗

Ñ,b
(θ0)) for

all b = 1, · · · , B that correspond to the moments that satisfy the above

condition. Then the resulting statistics are denoted by (M∗∗

Ñ,b
(θ0), Ω̂∗∗

Ñ,b
(θ0))

for b = 1, · · · , B

Finally, I take the critical value ĉÑ(θ0, 1− α) to be the 1− α sample quantile

of {S
(
M∗∗

Ñ,b
(θ0), Ω̂∗∗

Ñ,b
(θ0)

)
: b = 1, · · · , B}. If Tn(θ0) ≤ ĉÑ(θ0, 1 − α), then θ0

should be included in the 1 − α confidence set.

I repeat the above procedures for all values of parameters drawn in Ap-

pendix B.4.1., when using SVM. For simulated annealing, these proce-
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dures are repeated until the optimization process ends.

B.5 Computational Examples of the Identification Region

In this appendix, I illustrate the computation of the sharp identification

region of parameter vector with the similar settings of CRS. Since the

purpose of this appendix is to see how the sharp identification region

looks like, I just focus on a binary outcome variable: y ∈ {0, 1}. I con-

sider two cases of binary choice models with κw = 2 and κw = 4. Let

U(y = 1|w, z; θ) = α + βw + γz + v, where θ = (α, β, γ)′. The joint distri-

bution of Y and W given Z = z is specified as ordered probit for W given

Z = z and multinomial logit for Y given W = wk and Z = z. Then,

F0(Y = 1, W = wk|Z = z) =
exp(α + βwk + γz)

1 + exp(α + βwk + γz)

(
Φ(

ck − d1z
d2

) − Φ(
ck−1 − d1z

d2
)
)
,

and

F0(Y = 0, W = wk|Z = z) =
1

1 + exp(α + βwk + γz)

(
Φ(

ck − d1z
d2

) − Φ(
ck−1 − d1z

d2
)
)
,

where c0 = −∞ and cκw = ∞. The unobservable ε has the iid Type 1 extreme

distribution. I set d1 = d2 = 1, and α = 0, β = 1, and γ = −0.5.

Example κw = 2.

The supports of w and z are as follows: w ∈ {−1, 1}, and z = {−1, 1}. For the

three parameters, I construct a grid of approximately 930,000 values and

plot the sharp identification region. When β approaches to zero, i.e. the

model has no endogenous explanatory variable, the sharp identification
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Figure B.2: The sharp identification region of θ when κw = 2

region of γ becomes the empty set. Figure 3 shows the sharp identification

region.

Example κw = 4.

The supports of w and z are as follows: w ∈ {−1, −1/2, 1/2, 1}, and

z = {−1, 1}. c = (−∞, −1/2, 0, 1/2, ∞). Again, for the three parameters,

I construct a grid of approximately 1.2 million values and plot the sharp

identification region. As β approaches to zero, i.e. the model has no en-

dogenous explanatory variable, the sharp identification region of γ shrinks

to the empty set. Figure B.3 shows the sharp identification region.

As Figures B.2 and B.3 indicate, the sharp identification regions include

both negative and positive values for each parameter. From this perspec-

tive, it may not be strange that the confidence intervals in the estimation

results of the empirical application include both negative and positive val-

ues for all parameters.
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Figure B.3: The sharp identification region of θ when κw = 4
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 The Lists of Markets and Airports

Metropolitan Statistical Areas Population Airports
New York-Newark-Jersey City, NY-NJ-PA 19,567,410 JFK, EWR, LGA, ISP
Los Angeles-Long Beach-Anaheim, CA 12,828,837 LAX, BUR, LGB, SNA
Chicago-Naperville-Elgin, IL-IN-WI 9,461,105 ORD, MDW
Dallas-Fort Worth-Arlington, TX 6,426,214 DAL, DFW
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 5,965,343 PHL
Houston-The Woodlands-Sugar Land, TX 5,920,416 HOU, IAH
Washington-Arlington-Alexandria, DC-VA-MD-WV 5,636,232 DCA, IAD, BWI
Miami-Fort Lauderdale-West Palm Beach, FL 5,564,635 MIA, FLL
Atlanta-Sandy Springs-Rosewell, GA 5,286,728 ATL
Boston-Cambridge-Newton, MA-NH 4,552,402 BOS, MHT
San Francisco-Oakland-Hayward, CA 4,335,391 SFO, SJC, OAK
Detroit-Warren-Dearborn, MI 4,296,250 DTW
Phoenix-Mesa-Scottsdale, AZ 4,192,887 PHX, IWA
Seattle-Tacoma-Bellevue, WA 3,439,809 SEA
Minneapolis-St. Paul-Bloomington, MN-WI 3,348,859 MSP, STC
San Diego-Carlsbad, CA 3,095,313 SAN
St. Louis, MO-IL 2,787,701 STL
Tampa-St. Petersburg-Clearwater, FL 2,783,243 TPA, PIE
Denver-Aurora-Lakewood, CO 2,543,482 DEN
Pittsburgh, PA 2,356,285 PIT
Portland-Vancouver-Hillsboro, OR-WA 2,226,009 PDX
Charlotte-Concord-Gastonia, NC-SC 2,217,012 CLT
Sacramento-Roseville-Arden-Arcade, CA 2,149,127 SMF
San Antonio-New Braunfels, TX 2,142,508 SAT
Orlando-Kissimmee-Sanford, FL 2,134,411 MCO, SFB, DAB

Table C.1: 84 Metropolitan Statistical Areas and Corresponding Airports,
2011
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Metropolitan Statistical Areas Population Airports
Cincinnati, OH-KY-IN 2,114,580 CVG
Cleveland-Elyria, OH 2,077,240 CLE
Kansas City, MO-KS 2,009,342 MCI
Las Vegas-Henderson-Paradise, NV 1,951,269 LAS
Columbus, OH 1,901,974 CMH
Indianapolis-Carmel-Anderson, IN 1,887,877 IND
Austin-Round Rock, TX 1,716,289 AUS
Virginia Beach-Norfolk-Newport News, VA-NC 1,676,822 ORF
Nashville-Davidson–Murfreesboro–Franklin, TN 1,670,890 BNA
Providence-Warwick, RI-MA 1,600,852 PVD
Milwaukee-Waukesha-West Allis, WI 1,555,908 MKE
Jacksonville, FL 1,345,596 JAX
Memphis, TN-MS-AR 1,324,829 MEM
Oklahoma City, OK 1,252,987 OKC
Louisville/Jefferson County, KY-IN 1,235,708 SDF
Hartford-West Hartford-East Hartford, CT 1,212,381 BDL
Richmond, VA 1,208,101 RIC
New Orleans-Metairie, LA 1,189,866 MSY
Buffalo-Cheektowaga-Niagara Falls, NY 1,135,509 BUF
Raleigh, NC 1,130,490 RDU
Birmingham-Hoover, AL 1,128,047 BHM
Salt Lake City, UT 1,087,873 SLC
Rochester, NY 1,079,671 ROC
Grand Rapids-Wyoming, MI 988,938 GRR
Tucson, AZ 980,263 TUS
Tulsa, OK 937,478 TUL
Fresno, CA 930,450 FAT
Bridgeport-Stamford-Norwalk, CT 916,829 HPN
Albuquerque, NM 887,077 ABQ
Albany-Schenectady-Troy, NY 870,716 ALB
Omaha-Council Bluffs, NE-IA 865,350 OMA
Bakersfield, CA 839,631 BFL
Knoxville, TN 837,571 TYS
Greenville-Anderson-Mauldin, SC 824,112 GSP
Allentown-Bethlehem-Easton, PA-NJ 821,173 ABE

Table C.2: 84 Metropolitan Statistical Areas and Corresponding Airports,
2011 (Continued)
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Metropolitan Statistical Areas Population Airports
El Paso, TX 804,123 ELP
Baton Rouge, LA 802,484 BTR
Dayton, OH 799,232 DAY
McAllen-Edinburg-Mission, TX 774,769 MFE, HRL
Columbia, SC 767,598 CAE
Greensboro-High Point, NC 723,801 GSO
Akron, OH 703,200 CAK
North Port-Sarasota-Bradenton, FL 702,281 SRQ
Little Rock-North Little Rock-Conway, AR 699,757 LIT
Charleston-North Charleston-Summerville, SC 664,607 CHS
Syracuse, NY 662,577 SYR
Colorado Springs, CO 645,613 COS
Wichita, KS 630,919 ICT
Cape Coral-Fort Myers, FL 618,754 RSW
Boise City-Nampa, ID 616,561 BOI
Madison, WI 605,435 MSN
Des Moines-West Des Moines, IA 569,633 DSM
Jackson, MS 567,122 JAN
Augusta-Richmond County, GA-SC 564,873 AGS
Scranton–Wilkes-Barre–Hazleton, PA 563,631 AVP
Harrisburg-Carlisle, PA 549,475 MDT
Palm Bay-Melbourne-Titusville, FL 543,376 MLB
Chattanooga, TN-GA 528,143 CHA
Spokane-Spokane Valley, WA 527,753 GEG

Table C.3: 84 Metropolitan Statistical Areas and Corresponding Airports,
2011 (Continued)
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