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1. INTRODUCTION

The control of inventories of physical objects has been the theme of literally
thousands of technical and trade journal articles during this century. Since Harris (1915)
described the basic trade—offs that need to be made when making these control decisions,
numerous models and algorithms have been devised that indicate how basic control
parameters should be established. In his work, Harris, to our knowledge, provided the first
derivation of the economic lot size formula, or economic order quantity (EOQ) formula.
Later Raymond (1931) wrote the first full book on the topic of inventory control in which he
explained, without the aid of mathematical theory, how extensions of the now classic EOQ
problem could be implemented.

It was not until the 1950s when more serious mathematical analyses of various
inventory problems were undertaken. Whitin’s (1953) stochastic version of the EOQ model
and works by Arrow, Harris, and Marshak (1951), Dvoretzky, Kiefer, and Wolfowitz
(1952, 1953) and Arrow, Karlin, and Scarf (1958) provided the mathematical basis for
subsequent extensions of the single location model. Also see Chapter 2 of this book. The
first multi—stage models were developed at about the same time. The important works of
Clark and Scarf (1960, 1962) and the papers found in the book edited by Scarf, Gilford, and
Shelly (1963) generated considerable interest from both academics and practitioners. The
often quoted text by Hadley and Whitin (1963) and the survey paper by Veinott (1966)
provide excellent summaries of many of these early modeling efforts. While much of this
work concentrated on stochastic modeling, there was and currently is a strong interest in
developing further extensions of Harris’ basic EOQ model.

These extensions include single item, single location models that consider
backordering, finite production rates, and quantity discounts of several types, and
multi—item models that represent joint replenishment problems and constraints of many
types. Most of these single location models are discussed in some detail in Peterson and

Silver (1979). Recently, efforts in single stage modeling have focused on different issues such



as the trade—offs between setup cost reduction and inventory costs (Porteus (1985, 1986,
1987)) and the effects of process quality on inspection and lot—sizing policies (Porteus
(1986), Lee and Rosenblatt (1987), and Muckstadt (1988)).

Other important advances have come from the study of various types of multi—stage
systems. These include the extension of the EOQ model to consider serial, assembly, and
distribution systems as well as more general system structures. We will examine these other
systems in detail in subsequent sections. However, our coverage will by necessity be limited.
There are many important contributions that we will not discuss including, for example, the
extensive research on systems with non—constant demands and the research on setup cost
reduction. We also will ignore heuristics for multi—stage lot—sizing without provable
performance bounds, such as the ones developed by Blackburn and Millen (1982), Williams
(1981), Crowston and Wagner (1973), Crowston, Wagner, and Henshaw (1972), Crowston,
Wagner, and Williams (1973), Graves (1981), Jensen and Khan (1972), McLaren (1976), and
many others, some of which are listed in the references. The same applies to the joint
replenishment problem; we review only heuristics with provable performance bounds. We
refer the reader to Silver and Peterson (1985) for a discussion of other heuristics for the joint
replenishment problem.

Our purpose in this chapter is to review optimization based methods for solving lot
sizing problems for a range of serial, assembly, distribution, and other more general system
structures with constant demand rates. Furthermore, we will study only a class of
algorithms that has a provable bound on their performance. To be precise, our goal is to
present models and algorithms that can be used to determine what we call consistent and
realistic reorder intervals for each stage in each of the types of systems we have mentioned.
We have chosen to develop our presentation in terms of reorder intervals, that is, the time

between placement of orders, rather than in terms of lot size. Although the classic EOQ



model is formulated in terms of lot sizes, we believe that there are several important reasons
for formulating the model in terms of reorder intervals.

First, in many environments we have examined, we found it easier to think in terms
of planning the frequency of production rather than calculating the lot size quantities,
because the resources required to manufacture and distribute components, subassemblies,
and finished products are generally related to the number of production runs per unit of time
rather than just to the lot sizes. For example, the frequency of production dictates the
number of setups, planned production orders, requests for tooling and fixtures, and
requirements for moving batches of work—in—process inventories. It is easier to think in
terms of producing items, say either weekly, monthly, quarterly, or yearly rather than to
plan production to optimal lot sizes that indicate production should occur every 2.796
weeks for one item, 3.921 weeks for a second and /7 weeks for a third.

Second, the mathematical representation of the problem is simplified when the
model’s decision variables are reorder intervals rather than lot sizes. When the decision
variables are production lot sizes, constraints must often be stated to ensure that an
adequate supply of each component is available to produce the lot. These constraints, which
must be stated in terms of installation stock, are not always easy to work with. As a result,
the algorithm for finding the optimal lot sizes can be quite complex. Choosing the decision
variables to be the reorder intervals makes the model easy to state and solve.

Third, when the demand pattern for each item and the lead time for inventory
replenishment are known exactly, then once the reorder intervals are established it is
obviously easy to compute the corresponding lot sizes. However, in most real situations
demand forecasts change somewhat from time to time. Consequently, when there are small
variations in the demand process, it is generally easier to keep reorder intervals constant and
to adjust the lot sizes than to change the frequency of production intervals. Thus from a
practical viewpoint, this choice simplifies the subsequent scheduling task and greatly reduces

the so—called nervousness found in some MRP systems.



As mentioned, each of the models we will examine ensures that consistent production
decisions are made for each stage. By this we mean that the reorder intervals must be
determined so that a feasible and cost effective flow of material will occur from stage to
stage. Furthermore, the reorder intervals between successive stages should be planned so
that schedules can be generated that can be implemented realistically on the shop floor.
That is, a solution is not useful when it indicates that a component’s reorder interval is V3
times longer than that of the assembly into which it is placed. Consequently, we believe
that restricting attention to a certain class of solutions is desirable.

The policies considered throughout this chapter are based on ones we have observed
in practice. We began our research that led to the material we will present by studying the
production control system used in stamping plants for a major U.S. automotive
manufacturer. In that environment, we observed that demand for products (doors, body
panels, rear decks, etc.) remains relatively constant over a lengthy period of time. The
schedules determined by the production planner required each operation or component to be
produced exactly once, twice, or four times during each 4—week period. The amount
produced in each run was planned to be approximately the same. By having the time
between production runs remain constant for an operation or component, the planner could
assign a specific operation to time slots on each machine so that, for example, every fourth
week the same operation takes place at the same time on the same machine. By restricting
the production schedules to the type we have described, the planner could create schedules
relatively quickly. His objective was to choose the week, or weeks, in which to perform an
operation so that the machine utilization across the 4—week horizon was balanced. The
selection of the day and shift on which to run an operation was also guided by the desire to

balance the work across shifts, and across days of the week.



The planner also had to coordinate production among stages. To do so, he selected
reorder intervals so that production could not occur at an operation unless it also occurred at
all of the immediate successor operations. This production tactic was chosen to prevent
build up of work—in—process inventory. Thus if production at one operation occurred every
second week, then the immediate successor operations had production every week or every
second week. Policies of this type are called nested.

Scheduling operations on several hundred machines was obviously a difficult task. It
was clear to us that the planner’s effectiveness rested heavily on the fact that each operation
was scheduled to occur every week, every other week, or every fourth week. If this 1, 2, 4
type of policy had not been followed, the scheduling process would have been considerably
more time and resource consuming.

Subsequent to our automative manufacturing study, we examined production
planning systems used by manufacturers of reprographic machines, computers and
pneumatic tools. In each case we observed that these firms made similar assumptions to
those described previously when planning production. In particular, the major portion of the
products being manufactured had relatively constant demand and the firms used nested
policies. Furthermore, these firms were also using policies similar to the 1,2, 4 type. We
found, for example, in one case that production lots were equal to demand expected during
3 months, 6 months, or 1 year.

The assumptions and policies considered in this chapter are guided by these
observations. The models we will present restrict attention for the most part to policies that
are nested and stationary. By stationary, we mean that the time between production runs
at each stage or operation is constant. Although policies of this form are not necessarily
optimal (Muckstadt and Singer (1978); Williams (1982)), they are of significant practical
importance. The nestedness assumption is made primarily for ease of presentation. The

models can easily be modified to consider nonnested solutions at particular stages or



operations. More is said about this generalization in Roundy (1985a,1986) and Maxwell and
Muckstadt (1985). In section 9 we explicitly consider the effects of using nonnested policies.
Furthermore, we also consider only solutions for which each stage or operation can
produce a multiple of two (i.e., 1,2, 4,8, ..., 2k, ..., where k is a nonnegative integer)
times per reorder interval for any predecessor stage. We also assume that a base planning
period exists, such as a shift, day, week, or month, and that all reorder intervals must be an
integer multiple of this period. As we have discussed, restricting attention to such solutions
greatly simplifies the task of scheduling the actual production for each workcenter. When
limiting the choice of a solution to this restricted class of policies, the optimal objective
function value does not differ substantially from that obtained when the policy space is
unconstrained. In sections 2 and 3 we prove that, when restricting the solutions to this
class, the average cost can never be more than 6% higher than can be achieved following

K o 5k, do not have as tight a

any other nested policy. Other simple policies, such as 3
worst case bound.

The remainder of this chapter is organized as follows. In the next section we
introduce some notation and present the powers—of—two extension of Harris’ single item,
single stage EOQ problem. We then examine several different multi—stage generalizations
of the powers—of—two model. In section 3 we study a system having a serial structure. That
section contains some mathematical background that applies to all subsequent models as
well as detailed proofs showing why the average annual cost of following the powers—of—two
policy cannot exceed the cost for any other policy by more than 6%. In section 4 we
examine a system with an assembly system structure and in section 5 we discuss a model
and an algorithm for a distribution system. Section 6 contains a model of a general system
structure. All the other models described in this chapter are special cases of this model. In
section 7 we again examine a general system structure, but we also consider the effect of
constraints on available time for setup and production in each workcenter found in a

manufacturing and distribution system.



9. POWERS—OF—TWO SOLUTION FOR THE SINGLE ITEM, SINGLE STAGE
DETERMINISTIC LOT SIZING PROBLEM

The purpose of this section is to introduce some basic concepts and nomenclature and
to restrict Harris® EOQ problem to a powers—of—two lot—sizing problem. We use the single
item, single stage deterministic lot size model to develop the powers—of—two lot—sizing
approach because it is so simple and permits us to introduce concepts without cumbersome
notation. We will show how optimal powers—of—two solutions can be found and will
compare the solution to the one obtained when solving Harris’ classic EOQ problem. Many
of the ideas put forth here are basic to the more complicated ones that will be subsequently

developed in the following sections.

2.1 Harris’ EOQ Model

We begin by reviewing the classic EOQ problem. Recall that this problem is one of
determining the constant reorder quantity that minimizes the average annual cost of

purchasing and carrying inventory. The assumptions underlying this problem are as follows:

1) The demand rate A is constant and continuous. A is measured in units per year.

2) No backordering is allowed.

3) Production is instantaneous, or equivalently, the production rate is infinite.

4) A fixed cost K is incurred whenever an order is placed.

5) An inventory holding charge is incurred proportional to the on hand inventory. For
each unit held in stock for one year the holding cost is h dollars.

6) All other costs are assumed to be independent of the ordering decision.

7) The lead time is zero.

Based on these assumptions the classic EOQ lot sizing model is given by

. AK |1
z =min + 5 hQ , 1
IR (1)



where Q is the constant reorder quantity. This problem is known to be a useful
mathematical approximation for determining lot sizes. However, rather than analyzing it
directly, we choose to reformulate it in terms of reorder intervals rather than reorder
quantities, where a reorder interval is the time between successive production runs.
Obviously there is a relationship between the reorder intervals and the reorder quantities. If
T is the reorder interval, then clearly T = Q/A. Hence Problem (1) can be restated in

terms of T as follows:

.. K 1
z=min m + 5 AhT . (2)
T>0 T 2

We call this problem the economic reorder interval problem. Letting g = % Ah, its

solution is

and

7" = 2/?(; . (4)

Thus the optimal solution is to place an order every T* time units. Since the lead time is
zero, the optimal policy is obviously to place and receive an order only when the on hand
inventory level is zero.

Tt is well known that the average annual cost is relatively insensitive to the choice of
T. For example, if T = 2T*, then the corresponding average annual cost exceeds z¥ by
only 25%. The robustness of the cost to the value of T is an important factor affecting the

usefulness of the powers—of—two model.



2.2 Powers—of—Two Restriction of the Economic Reorder Interval Problem

Since the value of T can be any positive real number, the solution to Problem (2)
is often impractical to implement. For example, T* might equal 2 weeks. Typically
there are practical reasons why orders can be placed only in certain intervals, such as a day,
a week, etc. We assume a minimum reorder interval exists, which we called a base planning
period in section 1. We denote this base planning period by TL. It can be a shift, day,
week, or other appropriate time period.

We assume that the reorder interval T  must be a power of two (ie,
1,2,4,8, ..., 2k . ..., where k is a nonnegative integer) times the base planning period.
That is,

T=2" Ty, ke {0,1,..}.
As we will now see, when restricting ourselves to a policy of this form we can never have a

solution whose average annual cost exceeds z* by more than about 6%.

The powers—of—two reorder interval problem is

. K
z = min +gT (5)
¢ T0 T

T = ok

Ty, ke {0,1,...} .
To find its solution we employ a first differencing argument. Let

H(T) = 5+ gT.

Note that if T* is given by (3) and T = oT* then f(T) = % (o + %)f(’l‘*).



Since {(T) is a convex function, we find the solution to Problem (5) by finding the

smallest nonnegative integer value k for which
k+1 k
(2 . TL) > (2" - TL) .
This condition reduces to finding the smallest nonnegative integer k for which

k L7, (6)

VT

1
> =
2-Ti—§§

In what follows, we assume TL is chosen such that T* > TL' Since k 1is chosen to

satisfy (6), it is clear that

- Tp < ST (7)

Therefore, the optimal power—of—two solution must be close to T*; it must be at least .707

times T and no more than 1.41 times T*. Furthermore, observe that

(I = (2T = (/2 + H)VRE
(JT) (2T7) = ( ﬂ) g

*

=(2+-D)3
o2
v 1.062" . (8)

Since f(T) is strictly convex,
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52% . T;) < H(/2T*) ¥ 1.062*

or

NIN

*|0O
[T
—
o
(2]

Thus the powers—of—two solution has an objective function value that must be very close to
k

z*. The average cost of a powers—of—two solution is better yet. If we assume that 2

T is
uniformly distributed over the interval (T*/y2, y2T*) then the expected value of z c Jz* s
V5 (3/4+ {n2)y 1.0205.

In summary, the powers—of—two restriction of the economic reorder interval problem
produces solutions that are similar in both cost and the values of the reorder intervals to
those found when solving Problem (1). As we will observe, these results hold in even the

most general situations we will discuss. This makes the powers—of-two solutions

particularly useful, as we shall observe.

3. SERIAL SYSTEMS

Perhaps the simplest extension to the single stage economic reorder interval problem
is the serial system reorder interval problem. Rather than having a single production stage,

we now assume that there are n such stages, as displayed in Figure 1.

FIGURE 1

Graph of a Serial System

This graph indicates that each unit that is produced of a single item must go through n

distinct stages, beginning with stage n and ending with stage 1. The problem is to
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determine the reorder intervals for each stage.

The assumptions on which our analysis is performed are relatively obvious extensions
of the ones made in the previous sections and account for the presence of n rather than one
production stage. We will next introduce some notation and terminology. Some of the
notation may seem cumbersome and perhaps unnecessarily complicated to describe this
simple problem. We have chosen to introduce it here because it is more easily interpreted in
this case and will make the material in subsequent sections more easily understood.

First, we let G rtepresent the directed graph representing the serial production
system with N(G) the node set and A(G) the arc set corresponding to G. The graph G
is analogous to a bill of material network. The elements of N(G) represent the production
stages and the elements in A(G) indicate the precedence constraints implying the order in
which operations must be performed. In this serial system N(G)={1,..,n} and
A(G)={(n,n—1),(n=1,0-2),...,(2,1)}. Foreach i€N(G), A represents the total
demand rate for the units produced at stage i. Note that A need not be the same for all
stages which would allow us, for example, to consider situations in which several units at
stage j are required to produce one unit at stage j— 1. For simplicity, however, in this
section we assume ), = A forall i€ N(G).

Next, let Ti represent the reorder interval for stage i. As in the single stage model,
Ti is expressed as a powers—of—two multiple of the base planning period, TL'

The costs considered in the model are fixed setup costs Ki and holding costs hi’ for
all i€ N(G). The holding costs are incremental echelon holding costs, i.e., h; =h{ —h¢, ,
where h{ is the conventional holding cost at stage i. These echelon holding costs are
charged for stage i proportional to the inventory on hand in stage i and all its successor
stages. That is, the holding costs for stage i are charged on the inventory on hand in stages
1 through i. Lastly, welet g = hi)\/2, the average yearly echelon holding cost for stage i
when T, =1. Before developing the model, we discuss why echelon inventory holding costs

are used rather than the usual holding costs. We also discuss the form of the optimal policy.
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3.1 Echelon Inventory and Nested Policies

Let us first examine a two stage system to gain an understanding of the importance of
using echelon inventory as a basis for charging holding costs and also to establish the form of
the policies that will be used.

We restrict our attention to policies that are both stationary and nestedV, as discussed
in section 1. Although stationary and nested policies need not be optimal for all types of
production systems, they are optimal for the serial system we are now examining. To see
why a nested policy is optimal consider a two stage systern.

Suppose production occurs at time t at stage 2 while no production occurs at stage
1. Suppose that t’ >t is the first time following t that production occurs at stage 1.
Hence the inventory produced at time t at stage 2 must be held until at least time t’
before it is used at stage 1. Consider an alternative production plan in which the
production at stage 2 that occurred at t is postponed and is initiated at t’ instead. All
other production times remain unchanged. Since the number of setups in the two plans is
the same and the holding costs are lower in the second one, it is obvious that it is preferable
to produce at stage 2 only when production occurs at stage 1.

A formal proof of this assertion is easily constructed for an n stage system by
following an argument similar to the one we have stated. We do not present such a proof

but state

THEOREM 1. For an n stage serial system it is optimal to follow a nested policy.

For a proof of this result see Schwarz (1973).

We note, however, that it is possible to have production at stage i—1 without
having production at stage i. Thus Ti > Ti—l'

Returning to our two stage example, suppose that T, =1 /2 T,. Then the on—hand

inventory graphs for stages 1 and 2 are given in Figure 2. Note the
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Stage 2 Stage 1

on—hand on—hand
inventory inventory
ti | time
ime T
0 TZ 0 1
FIGURE 2

Graphs of On—Hand Inventory

shapes of these graphs. The graph for stage 1 is the usual saw—toothed curve that is found

in the single stage system. However, the graph for stage 2 is not of this form.

AT AT
Furthermore, the average on—hand inventory is not ——2—2—, but is, in this case, Tg In fact

the average on—hand inventory at stage 2 is a function of both T, and T, On the other

AT
hand, the average stock on hand at stage 1 is always ——2-1, independent of the choice of

T,. The fact that the average on—hand inventory at stage 2 depends on both T; and T,
makes it undesirable to calculate holding costs using the on—hand inventories.

Now suppose we construct the graphs for echelon stock. The echelon stock at
stage 1 is the same as the graph of on—hand inventory. The graph of stage 2 echelon

stock is quite different. The echelon stock for stage 2 consists of the stock on hand
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Stage 2 Stage 1

on—hand on—hand
inventory inventory
a c
ti | time
ime T
0 TZ 0 1
FIGURE 3

Graphs of Echelon Stock

at stage 2, the shaded area in Figure 3, plus the amount on hand at stage 1, represented by
triangles a, b, c,and d in the graph. Note that the graph of echelon stock in both stages
is saw—toothed in shape.

The average echelon inventory level at stage 2 depends only on T, A similar

statement applies to stage 1. Thus if inventory costs are charged proportional to echelon

AT AT
inventory levels, then the average costs are h2 . —7—2- and h, - -—Ql for stages 2 and 1,

respectively. This corrects the serious deficiency observed earlier when attempting to charge
holding costs based on average on—hand inventory. But what do these costs measure? How
do they compare with the holding costs based on on—hand inventory?

Returning to Figure 2, we see that holding costs based on on—hand stock are equal to

AT AT
(h1 + h2) . ——2—-1— for stage 1 and h, - 12 for stage 2. The echelon holding cost for
AT, AT, AT, AT
stage 1 is hy - —— and for stage 2 is hy -+ ——= ho AT, = h, - ——thy =
AT, ATy

hy « ——+ hy » ——. Hence the total carrying costs are the same whether they are

15



calculated using echelon or on—hand inventories. For obvious reasons we choose to use

echelon stock as the basis for calculating holding costs.
Clearly, ATi/ 2 is the average echelon stock for stage i in any serial system. It is
also true that AT,/2 is the average echelon stock for node i€ N(G) for the more general

graphs examined later in this chapter.

3.2 A Reorder Interval Model and Its Relaxation

Using the definitions, assumptions, form of the policies considered, and the echelon

inventory method for calculating holding costs, we see that the reorder interval model is

z, = minimize b [K./T. + g.T.]
9 ieN(G) i/ i 171

¢
T,=2"T), £e{0,1,..} (9)

T.2T, ;20.
This problem is a nonlinear, integer programming problem. The integer decision variable is
£. However, due to its special structure we can easily solve it even when G is an arbitrary
acyclic graph. As was the case for the single stage system, Problem (9) turns out to have a

very close relationship to its following relaxation:

z, = minimize ) K./T. +g.T]
10 iEN(G) i/ 71 171

T,2T, 420, (10)
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We now characterize the solution to Problem (10) and show its relationship to

Problem (9).

3.3 Characterizations of the Optimal Solution to Problems (9) and (10)

We begin by establishing the correspondence between the solutions to Problem (9)
and the ordered partitions of the graph G. These relationships are important for the more
general graphs we shall discuss subsequently. Consequently, we use definitions that are
more general than needed here.

Define a subgraph G’ of G to consist of a node set N(G’) ¢ N(G) together with
an arc set A(G’) ¢ A(G) and where (i,j) € A(G’) if and only if i,j € N(G’). An ordered
collection of subgraphs (G, .., GN) of G is said to be ordered by precedence if for any
1<£< k<N there does not exist a node je€ N(G,) and a node i¢€ N(Gy) such that
(j,i) € A(G). Consequently, there is no node in N(G,) that precedes any node in N(Gy),
k > £. We say that a collection of subgraphs (Gl’ Gy, - s GN) forms an ordered partition
of G if

i) the node subsets form a partition of N(G)

and ii) the collection of subgraphs is ordered by precedence.

For a serial system, an ordered partition of G has the form N(G;)={1, ..., n;},
N(Gy) ={n; + 1, ... % Y S N(Gy) = {nn_ypr , 0}

Next we define a directed cut of the subgraph G’ to be an ordered (binary)

partition (G'7,G’T) of G’

Suppose we have a subgraph G’. Consider the following relaxed problem

17



minimize % [K./T. + g.T.]
jeNn(g’) © v !

subject to

T; 2T, ;20,forall (i,i—1) e A(G"). (11)

i-1
Suppose further that all reorder intervals Ti’ i€ N(G’), must be equal; that is, Ti =T,
i€ N(G’). The optimal valueof T is

% K.]1/2

T - |[IEN(GY)

X g.
iEN(G’) !

Ifwelet K(G')=1% K, and g(G') =X g , then
ieN(G’) ieN(G")

T = [K(G)/g(G")] /2 .

Suppose next that we have a feasible solution to Problem (10), and suppose there are
N distinct reorder intervals associated with this solution. We denote these N reorder
intervals by T"(1) < T*(2) < ... < T*(N). Then for each reorder interval there must

correspond a subset of the production stages sharing that value. Let Gl’ e GN represent

N
the subgraphs that correspond to these N distinct intervals. Since U N(G;) = N(G) and
1=1

the subgraphs are disjoint, these subgraphs form an ordered partition of G. In an optimal

solution to Problem (10) we must also have (k) = [K(Gk)/g(Gk)]1/2, for k=1,..,N.
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Conversely, let (Gl’ U GN) be an ordered partition of the graph G. Also, let
T*K) = [K(G/e(GIY2 k=1,..,N, and assume T} =T*(k) for all i€N(Gy).
Then this solution is feasible to Problem (10) if T*(l)gT*(2)g...gT*(N), or

equivalently

K(Gy) . K(Cy) .y K(CGy)
5(Gy) - 8(Gy) = = (Gl

The relationship between the optimal solutions to Problem (10) and the ordered

partitions of G is given by

THEOREM 2. Suppose we have an arbitrary collection of N  reorder intervals,
T*(1), ..., TF(N). The following conditions are necessary and sufficient for these reorder

intervals to provide an optimal solution to Problem (10).

i) There exists an ordered partition (Gl’ s GN) of G such that

T*(k) = [K(G,)/8(G 1>
ii) T*(1) < T*(2) < ... < TH(N)

iii) For each k =1,...,N, there does not exist a directed cut (G;, Gf;) of Gy
for which

K(Gy) g K(GT)

g(Gp)  8(Gh)

The proof of this Theorem can be found in Jackson, Maxwell, and Muckstadt (1988).
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Any ordered partition of G that satisfies the three above conditions is an optimal
partition. These conditions also provide a means for identifying optimal solutions for the
more general graphs discussed in the succeeding sections of this chapter. The node sets
N(Gy), N(Gy), -, N(Gy) are called clusters. Note that the solution to (10) can easily be
constructed once the clusters are known. In the following section we give an algorithm that
solves (10) for a serial system by finding the clusters. In section 6 we show how a standard
network algorithm can be used to find the clusters for an arbitrary acyclic graph G.

Now suppose we are given an optimal partition Gl’ ey GN of the serial system
graph G. Let T*(k) be the corresponding optimal solution. Now let us see how we can
find the optimal powers—of—two solution to Problem (9). Let T, =T(k), ie N(Gy),
k=1, ..., N, where we find T(k) by solving

minimize i?N(Gk)[Ki/ T(k) + g;T(k)]
subject to T(k) = 2T, e {0,1,...} . (12)

T(k) is found using a first differencing approach as discussed for the single stage case. Thus

Tk) = 2£TL’ where £ is the smallest nonnegative integer for which

(1 [K(G T ,
22%57‘5(%9 =ﬁiT(k)- (13)

Observe that T (k—1) < T*(k) implies that T(k—1) < T(k), assuming that £ is chosen
using (13) for all clusters k. Therefore an optimal solution to (13) satisfies the precedence
constraint in Problem (9). Hence this solution is feasible for (9). Furthermore, by applying

the fact that there are no directed cuts for G, satisfying the conditions of part iii) of
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Theorem 2, we can show that this solution is optimal for Problem (9). The details proving

that this ordered partition is optimal can be found in Maxwell and Muckstadt (1985).

3.4 An Algorithm for Finding the Optimal Ordered Partition for a Serial System

The following algorithm can be used to find the optimal ordered partition for a serial

system. It consists of three main steps. In the first, we find the clusters, or equivalenly, an

optimal partition of G; in the second, we solve problem (10); and in the third, we solve

Problem (9). Given an arbitrary node set C, we define T*C) =[(2 K)/(E g)]
ieC ieC

1/2

ALGORITHM 1. SERIAL SYSTEMS.

STEP 1. Find an Optimal Partition of G.

a.

Set Cle{i} and ofi)~i—1 forall 1<i<m, and S«{1,2,..,n}. Set j~2.
Note: o(i) is the node that precedes i in the sequence S.

If T*(Cj) > T*(Ca(j)), go to Step 1d; otherwise, collapse Ca(j) into Cj by
setting €3« 70 u el o(j) - o(a(j)), and S - S\{o())}-

If o(j) > 0, go to Step 1b.

Set j~j+ 1. If j<m,goto Step 1b.

Re—index the clusters {Ci: ieS} so that S={1,2,.,N} andif je Ci,
kel and j<k then i< £

Comment: {Ck: ke S} are the clusters. The optimal partition is
{Gy:keS} where G is the subgraph of G induced by cX. Thus
o = N(G)).
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STEP 2. Find the Solution to Problem (10).

For each cluster Ck, keS set
k 1/2
T = TH(C) = (3 K)/(3 g 2.
ieC ieC

k

For each i€ C” set T’; = T*(k).

STEP 3. Find the Solution to Problem (12).

For each i€ C¥ set T, = 26T where 28> T*()/veTy > 257

It is sometimes desirable to impose a uniform lower and/or upper bound which

applies to all reorder intervals. Suppose we add to Problem (9) the constraint

I

2 T, <T; <2"T, V ieN(G).

L L

I/
Ifie Ck, an optimal solution to this version of (9) is obtained by selecting T, = 2_TL if

g .
T*k)<2'T T, = ofr it T*(k) 2 ZETL, and selecting T, as in Step 3 above if

L’ L
2£TL < T*(k) < 2ZTL. If this is done all claims of optimality and near—optimality made in
the sequel still apply.

An alternate procedure for performing Step 3 is found in (Roundy 1986). This
procedure has the advantage of producing policies that are within 2% of optimal, rather
than the 6% bound that results from Step 3 above. However, this procedure requires that
TL be treated as a variable. For many systems the base planning period is determined by
the times at which information is reported and acted upon, and cannot be treated as a
variable.

The relaxation (10) of problem (9) was first formulated and solved in a more general

setting by Schwarz and Schrage (1975). The system myopic policies they proposed use a

rounding scheme that is similar to Step 3, but they do not use the same values of T*.
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3.5 Analysis of Worst—Case Behavior of the Algorithm

To establish the worst case behavior of the algorithm we calculate an upper bound on
the optimal objective function value to Problem (9) and compare it to a lower bound. The
lower bound is found by solving Problem (10), as we will subsequently demonstrate. We
carry out this worst—case analysis for the serial system in detail. A similar analysis can be
performed for other graph structures. However, we will not conduct this analysis for these
cases but will only assert the conclusions that would result from such an analysis.

Suppose we have an optimal partition of G found using the algorithm described in

the previous section. Let (Gl’ s GN) represent this partition. Then
T} = T*(k) forall i€ N(Gy),
where

T (k) = [K(G,)/g(G)1 /%, and

N
iy =2 12J K(Gy) - 8(Gy) -

Recall that T(k), k =1, ..., N, represents the optimal solution to Problem (9), where

(k) =25 T,

and £ is the smallest nonnegative integer satisfying

>
2 G
V2T, 8(Gy) VI,
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Then
T_;QQS T(k) < v2T*(k) .

Let

K(G
£(T)) = —ETll‘-) +8(G) - Ty, i €N(Gy) .

Since £(-) is convex and

f [I*;g@} =5 [ﬁT*(k)} = {«/”2‘ + ;TQ‘/ K(Gy) - 8(Cy)

we have

£(T()) ¢ [ﬁ + \7;-}/ K(G,) - 8(Gy) -

Hence the solution to Problem (9) satisfies
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N
0= e 0+ g T(O))

N
< {\/ﬁ ¥ 7;} RREICORECY

so that

Z
59-5 1.06 .
10

This is the same result we obtained in the single stage model and one that holds for all the
models discussed in this chapter.

We now show that 2 is a lower bound on the long run minimum average cost
attainable for a nested policy. This result also holds for more general cases as well.

Let z(t) represent the minimal holding and setup costs incurred over an interval of
length t given a nested production plan is followed. We will show that

70 & iim z(t)/t .

i

Let ni(t) be the number of setups for stage i through time t, and let 7, represent the
time at which the kth setup occurs for stage i. We assume 7,5 =0, i€ N(G). Since the

production plan is nested,
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Tik = Ti—1.k’

for some k'’ >k, k=1, ..., ni(t).

Now let h i represent the holding cost per year for on—hand inventory held at stage
i If T, represents the sequence of setup times for stage i over the horizon of length t, we
define Ii(u; T ni(t)) to be the on—hand inventory at stage i at time u, u € [0,t], given
policy 7; and n,(t) setups over the interval of length t. Furthermore, let Ei(u; T ni(t))
represent the corresponding echelon inventory at time u, u € [0,t]. Thus the total holding

cost during the interval is

1

igN(G)h; fo L(u; 7, n,(t)) dt . (14)

As we discussed earlier, (14) can be restated as

> h tE : d | 1
iEN(G) ifo (w5 75, my(t)) dt. (15)

Let us temporarily ignore the fact that we must follow a nested policy. Since there
are ni(t) setups for stage i, it is easy to prove that the time between setups should be equal
if holding costs are to be minimized at stage i. The echelon holding costs over the planning
period for stage i, assuming equally spaced setups of length T, = t/ni(t) time units, is

giTit. Since this is a lower bound on echelon holding costs for stage i,

t
h, j{; Ei(u; 7, ni(t)) du>gTit.
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The setup cost for stage i over [0,t] is ni(t) - K, = %— K, . Thus
i

1
z(t) = minimum n.(t) - K. . (u; 7., n.(t))du),
(t) ni(t)l’lTik féN(G)( (t) - K, + by fo E;(u; 7, n,(t))du)

given 7, is nested

K.
> minimum {E {Tl + giTi} -1 T. 2 Ti—l > 0}

T, ieN(G)' i
=2z " t.
Thus 2, < Z-(%l for all t > 0 and therefore z;, < lim z(t)/t .
t-o
3.6 Summary

A number of key ideas introduced in this section will re—appear in several later
sections. For this reason we summarize some of the most important elements of the analysis
we have just described.

The problem of finding a powers—of—two stationary nested policy with minimal cost
was formulated as the nonlinear integer program, Problem (9). The variables in this
problem are the reorder intervals. A near—optimal policy was obtained by solving the
continuous relaxation of this problem, and rounding off the reorder intervals to get a
feasible, stationary, nested powers—of—two policy.

Two facts about the solution to the continuous relaxation, Problem (10), are
noteworthy. The first is that the bill of material network G is partitioned into subgraphs.

The set of nodes or stages in a given subgraph was called a cluster. All stages in a cluster
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use the same reorder interval. Local optimality implies that the reorder interval for the

stage in cluster C is [( ¥ Ki)/ ( ZCgi)]l/ 2 Thus finding the clusters is equivalent to
i€

ieC
solving Problem (9).

The second fact is that the solution to Problem (10) was shown to be a lower bound
on the average cost of any feasible policy for the original system, including policies that are
neither powers—of—two nor stationary. We showed that the cost of the feasible policy we
compute is within 6% of the solution of Problem (9). Because nested policies are optimal
in serial systems, our heuristic is guaranteed to compute a policy whose cost is at most 6%
above the cost of an optimal policy.

Optimization problems similar to Problems (9) and (10) will appear in every

section of this chapter. The relationship between them, the policies, and bounds on the cost

performance of those policies is similar in every section.

4. ASSEMBLY SYSTEMS

We next consider a multi—stage system in which a single finished product is
assembled from a set of parts Each part could be manufactured in several stages and could
also be assembled from several other parts. Such systems are called assembly systems and
have bill of material networks that are arborescences. Figure 1 is an example of a graph G
of this type of system. For ease of discussion, we assume that each node in N(G)
represents the fabrication of a part. Hence node i corresponds to the stage in which part 1

is manufactured.
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FIGURE 4

An Assembly System

We assume that each part i > 1 is consumed at a unique direct successor stage. We define
part 1 to be the finished product. It has no successor stage; instead, it is consumed by
external demand, which, as before, is constant, continuous, and must be met without
backlogging.

The other assumptions made in section 2 regarding costs and machine times hold here
as well. Furthermore, our goal is to determine reorder intervals for each part so that the

long—run average annual setup plus holding costs are minimized.

4.1 Stationarv Nested Power—of—Two Policies and Their Costs

As before, we restrict attention to stationary nested powers—of—two policies. In
section 3 we argued that nested policies are optimal for serial systems. Each stage of an

assembly system has either no external demand and a unique successor, Or N0 SuCCESSOr and
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external demand. Therefore, the same argument could be used to show that nested policies
are optimal for assembly systems.

Let us introduce some additional notation. Let s be the direct successor of
component i, D; be the set of direct predecessors of component i, Si be the set composed
of i and all of its successors, direct or indirect, and let Pi be similarly defined. We assume
without loss of generality that if je p,, then one unit of j is consumed for each unit of i
ordered.

Recall that the echelon holding cost for part i is hi and is the amount by which the
holding cost of part i exceeds the sum of the holding costs of its direct predecessors. It is
assumed that the echelon holding costs of all of the parts are positive. The echelon inventory
Ef of part i at time t is the sum of the inventories of all j, j¢€ Si‘ Using the same
argument in section 3, the total rate at which holding costs are being incurred at time t is
% h.EL.

[

Let the stages of the assembly system be numbered 1 through n. We denote the
powers—of—two policy by I = (Ti’ 1<i<n). Recall that a nested policy is a policy in
which an order is placed at the successor of stage i simultaneously with every order at i.

Hence in this case, J is nested if and only if

T, > TSi for all i. (16)

It is easy to show that an optimal policy is nested and has the following property:

THE ZERO—ORDERING PROPERTY. Orders are placed at stage i only when the inventory of i

1§ zero.
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In the sequel we will restrict attention to stationary nested powers—of—two policies
that satisfy the Zero—Ordering Property. This implies that the average cost of J can be

written as
(7)=3% (Ki/Ti + giTi) (17)
i

where g =h.A /2 and A is the demand rate.
4.2 Structural Results and Computation

The problem of finding an optimal stationary nested powers—of—two policy can
therefore be written as

minimize ? (Ki/Ti + giTi)

such that T;> T, forall i, and (18)

1

_ ol _
T, =2"T, £=0,1,2,.., Ty >0. (19)

We call this Problem (18) and solve it using the approach of section 3. The first step in

solving it is to relax (19) and solve
minimize E (Ki/Ti + giTi)
1

such that T;> T, forall i. (20)
i
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This is done for two reasons. First, it will give us a set of approximate reorder intervals that
we will round off to integer powers—of—two. Second, it will give us a lower bound on the
average cost of an arbitrary policy for this problem. The lower bound is used in evaluating
our heuristic.

As we discussed in section 3, the solution to Problem (20) partitions the network G
of Figure 1 into connected subgraphs. The nodes in these connected subgraphs are sets of
stages whose costs induce them to place orders simultaneously. As before, we call these node
sets clusters. We define the root of a cluster C to be the unique stage i€ C satisfying
CcP,.

Let C' be the cluster whose root is stage i, K(Ci) Ej?Cin be the total setup cost
for cluster i, and g(Ci) Engigj be the total echelon holding cost for cluster i. For je€ ¢!

we define K(j)= X Ky and g(j)= X 8 If itje c' and we were to partition
kernC kernC

cluster i by letting j be the root of a new cluster, the total setup cost of the new cluster
rooted at j would be K(j) and the total holding cost would be g(j). The following lemma

is the assembly system analog of Theorem 2 in section 3.

LEMMA 1. I = (T’;: 1<i<n) solves Problem (20) if and only if there is a partition of the

stages into clusters Ci that satisfies the following conditions:
C' is the node set of a connected subgraph of graph G with root i,
T; = T*(i) forall ne ¢! and for all clusters i , (21)

T*() = (K(CV)/g(C1)Y/? for all clusters i, (22)
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K(C')/g(C) 2 K(Ch)/g(CY) whenever s, € €. (23)
K(j)/g(j) < K(C)/g(C!) forall jeC, j#i. (24)

Equation (24) states that if we try to split cluster i in two by letting j be the root
of a new cluster, the constraint T’; > Tik( , k= sj , will be violated. To see this, suppose
that we split cluster i. Note that the total setup cost of the portion of cluster i that does
not contain j is K(Ci) —K(j) and the total holding cost is g(Ci) —g(j). Since
KU <KCYe(), (1) wmd () mpy tat T =K/ <
(K(0}) - KO (E(C) ) = T}, » k=5,

We are now ready to give an algorithm for computing the clusters. This algorithm is
known as the minimum violators algorithm and was developed to solve the statistical
problem of isotonic regression (Thompson (1962), Best and Chakravarty (1988)). Once the
clusters have been identified, Steps 2 and 3 of Algorithm 1 are used to compute solutions to

problems (20) and (18).

ALGORITHM 2. THE MINIMUM VIOLATORS ALGORITHM.

STEP 1. Create a singleton cluster for each component in the system. Let the set Q
initially consist of roots of all clusters other than the one containing the final product.
(Subsequently, the set Q will be the set of roots of clusters Ci for which we do not know
that (23) holds.) Let r= {1} (Subsequently, r will be the set of roots of the clusters
that solve Problem (20).).

STEP 2. If Q is empty, then stop; the clusters Ci, ier are optimal. Otherwise, find a
cluster i€ Q for which K(C')/g(C") is minimal. In the event that there is a tie, choose a

cluster C' for which |S;| is minimal. Let s; € a.
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STEP 3. Remove i from Q. I K(Cl)/g(C) 3 K(C¥)/g(C), then add i to r and go to
Step 2. If K(Ci)/g(Ci)<K(Cj)/g(Cj), then collapse cluster 1 into cluster ]
(Cjc—CjUCi) and go to Step 2.

The minimum violators algorithm can be implemented in O(nlogn) time by using an
appropriate data structure for {K(Ci) / g(Ci): i € Q}. At each iteration of the algorithm we
remove the member of this set that lexicographically minimizes (K(Ci) /g(Ci), lSil). In
many of the iterations we alter the value of one of the elements of the set. Using a heap (or
any of several other data structures), these two operations can both be performed in
O(log n) time (Aho et al. (1974)). Since the number of iterations is at most n—1, the
overall running time of the algorithm is O(nlogn). Another algorithm for computing
clusters for this problem is found in Schwarz and Schrage (1975). That algorithm can also
be implemented to run in O(n log n) time.

The proof that the Minimum Violators Algorithm computes the optimal clusters is

based on equations (21) — (24). The main ideas are as follows.

It is easily verified that the algorithm maintains the following two properties:

u C'=N(G).
ieQur
K(Ch)/g(Cl) 2 K(C)/g(Ch) forall i€ Q, je (r\{1}). (25)

Furthermore, the value of min K(Ci) / g(Ci) is nondecreasing as the algorithm progresses.
ieQ

Consequently, if K(Ci)/g(Ci) > K(Cj)/g(Cj) in Step 3, then jer, if
K(Ci)/g(Ci) < K(Cj)/g(Cj), then je QU {1}. Therefore, once i+#1 isadded to r in Step

3, no changes are made to o
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When the algorithm terminates the preceding paragraph implies that (23) holds. The
proof that (24) holds is found in Roundy (1984b). Equations (21) and (22) follow from Step
2 of Algorithm 1, which is used to compute the T;’s.

By substituting (21) and (22) into the objective function of (20), we see that the

solution to Problem (20) is

2 = 3 2/ K(CHg(C") . (26)

1€r

As was done for the serial system in section 3, it can be shown that z" is a lower bound on
the average cost of any feasible solution to the original lot sizing problem. When the reorder
intervals Ti* computed by the Minimum Violators Algorithm are rounded off to an integer
powers—of—two times TL’ the cost of the resulting policy computed is known to be within
6% of optimal or, if the roundoff procedure that treats TL as a variable is used, is within

2% of optimal.

5. DISTRIBUTION SYSTEMS

We now consider another special type of graph G called a distribution network.
Figure 5 contains an illustration of this type of network. The nodes correspond to stages,
and the arcs indicate the direction in which material flows through the system. Material
enters the system at stage 1, and moves down through the different levels of the system
until it is consumed by external demand. Each stage i>1 is supplied by a unique
predecessor stage, so the distribution network G is an arborescence.

External demand can occur at any or all of the stages. The demand rate at stage i
is positive if i has no successors in the network. Again the basic assumptions made in
section 2, and the costs defined there, apply to this case as well. Additionally, the objective

is to find a feasible policy for an infinite time horizon which approximately minimizes the
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long-run average order and holding costs. This model and similar models have been
addressed by several authors (Schwarz (1973), Graves and Schwarz (1977), Williams
(1981,1983)).

5.1 Policies

As before, we restrict ourselves to stationary nested powers—of—two policies. For the
systems of sections 3 and 4, nested policies were optimal. However for distribution systems,
optimal nested policies can be seriously sub—optimal. Suppose for example that our
distribution system consists of three stages. Stage one (the factory) supplies two outlets,
stages two and three. The factory is in Albany, outlet one is in New York City, and outlet

two is in Singapore. The Singapore outlet has very low demand and a very high order cost.

FIGURE 5

A Distribution System

For such a system it might be reasonable to place orders at the factory and at the New York

outlet on a weekly basis, and to place orders at Singapore less often, say, once every 32
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weeks. However if a nested policy were followed, an order could not be placed at the factory
unless a simultaneous order were placed at Singapore. A nested policy would incur either
high inventory costs at the factory due to a long reorder interval there, or high order costs at
the Singapore outlet due to a low reorder interval there, or both.

As this example illustrates, nested polices tend to become seriously sub—optimal
when relatively high order costs are combined with relatively low demand rates. The model
of this section is intended for use in situations where all of the stages have fairly high and
stable demands. For systems that have stages with low, stable demands and relatively high
order costs, the methods of section 9 are more appropriate. For stages that have sporadic
demand, or stages for which the inventory is replenished at pre—determined points in time
that are beyond our control, our models are not appropriate. These cases will normally be
handled by a different model, possibly one that is based on reorder points and/or order

quantities.

5.2 Formulation

As we did in section 4, we denote a stationary nested powers—of—two policy by
T = (Ti: 1<i<mn). Note that stage i>1 in the graph G 1is supplied by a unique
predecessor stage D;- The set of successor stages Si of i includes i and all stages that are
directly or indirectly supplied through stage i. Since we consider only nested policies, we

require that

T 2T forall i>1, (py,i) € A(G). (27)
1

The echelon inventory at stage i at time t is E/ic, the sum of the inventories at all
stages j, j€ Si‘ Since the echelon holding cost hi at stage 1 is given by hi = h{ —hp'
i

where h{ is the conventional holding cost at stage i, the rate at which holding costs are
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accumulating at time t is X hiEliB. The demand for the echelon inventory at stage i is
i

)‘i > 0, the sum of the external demand rates at the stages j, j€ Si‘

As before, we assume that the Zero—Ordering Property of section 4 holds, i.e., that
no stage places an order when its inventory level is positive. As in sections 3 and 4,if J is
a stationary nested powers—of—two policy that satisfies the Zero—Ordering Property, then
the echelon inventory at stage i follows the traditional sawtooth pattern with a minimum

level of zero and a maximum level of AT Therefore, the average cost incurred by J is
Eil (Ki/Ti + giTi) (28)

where g = % )\ihi as usual. Therefore the problem of finding an optimal stationary nested

powers—of—two policy can be written as

minimize: ? (X/T; + gT,) (29)
subject to: Tp. > T, forall i>1, (30)
i
4
T, =2 'Tp, £ =012, T >0. (31)

We call this Problem (29).

5.3 Solution
As in earlier sections, we relax (31), solve the resulting problem, and then round off
the reorder intervals to a powers—of—two times Ty. We will show that the relaxation of

Problem (29) can be solved by the algorithm of section 4 via a simple transformation.
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The only difference between the relaxation of (29) and Problem (20) of section 4 is
the form of the constraint (30). In both cases the constraint takes on the form T, 2 Tj
whenever  (i,j) € A(G). But here the arcs are oriented away from the root of the
arborescence, whereas in section 4 they were oriented towards the root.

We transform the relaxation of Problem (29) into an instance of Problem (20) as

follows. Let U = 1/T . Then the relaxation can be rewritten as

minimize: % (g;/U; + K;U;) (32)
i

subject to: U, 2 Up‘ forall i>1. (33)
i

This problem, which we call Problem (32), is of the form of Problem (20). The roles of the
setup cost K, and the holding cost coefficient g, have been interchanged. The orientation
of the arcs in the distribution network has been reversed to convert it into the bill of
material network of an assembly system. Thus, in the language of section 4, D, is the
successor of i. The clusters that solve Problem (32) also solve the relaxation of Problem
(29). They can be computed by applying Algorithm 2 of section 4 to Problem (32). Then
the reorder intervals that solve Problem (29) are calculated as in Algorithm 1, Steps 2 and

3.

5.4 Performance Analysis

This algorithm computes nested policies, and the ratio of the cost of an optimal
nested policy to the cost of an optimal policy can be arbitrarily high. However, the cost of
the policy computed by our algorithm can be shown to be within 6% of the cost of an
optimal nested policy or, if the base period is treated as a variable, within 2% of the cost of

an optimal nested policy.
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6. A MODEL OF GENERAL MULTI-STAGE PRODUCTION—DISTRIBUTION
SYSTEMS

In this section we present a model for establishing reorder intervals in general
multi—stage production—distribution systems. By this we mean that the graph G that
describes the system is an arbitrary acyclic directed graph.

Our analysis is based on the assumptions made in section 2. We also continue to
assume that only nested and stationary policies are of interest. Since the output rate for all
final products is assumed to be constant and continuous, we let )\i represent the stationary,
continuous demand rate for echelon stock for node (operation) i, i€ N(G). As before, h.
represents echelon holding costs, Ki represents the fixed setup costs, and g = hi/\i /2.

Based on these definitions and our assumptions, we state the general multi—stage

production—distribution system model as

minimize b [K./T. + gT.]
ieN(g) V' Tt

L
subject to T, =2'T, i € N(G),
T; 2Ty (i) € AG),
¢ integer, i€ N(G). (34)
6.1 Solving Problem (34)
Problem (34) is a large—scale, nonlinear, integer programming problem. In practical
situations, the sets N(G) and A(G) could contain many thousands of elements.

Consequently, in these cases an optimal solution to Problem (34) cannot be directly

obtained using a standard branch and bound algorithm. To circumvent this problem, we
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solve it using a two—step procedure. Before presenting the details, we discuss the objectives
and approach followed in each step.

In the first step we solve a relaxed version of Problem (34) to establish what groups
of operations must have identical reorder intervals. The mathematical formulation of this

relaxed problem, which we call Problem (35), is

minimize Y [K./T, + g.T.]
ieN(G) V' !
subject to T, 2 Tj >0, (i,j) € A(G). (35)

In Maxwell and Muckstadt (1985) it is proven that if the solution to Problem (35)
indicates that T, = Tj for (i,j) € A(G), then operations i and j share a common reorder
interval in the solution to Problem (34). However, the solution to Problem (35) may not
indicate all the operations that should have the same reorder interval in the solution to
Problem (34). For example, the solution to Problem (35) might state that T, = 1.001Tj
for some (i,j) € A(G), so that operations i and j would most likely share a common
reorder interval in the solution to Problem (34). Thus a second step is needed to find the
optimal solution to Problem (34).

The second step of the algorithm uses the solution to Problem (35) to find the

optimal solution to Problem (34). This is done using Step 3 of Algorithm 1.

6.1.1 Solving Problem (35)

THE KunN—TUuCKER CONDITIONS
The solution to Problem (35) is obtained by recognizing that its solution must
satisfy its associated Kuhn—Tucker conditions. Since Problem (35) has a strictly convex

objective function and the constraint set is convex, it has a unique optimal solution.
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Let us introduce some additional notation. Let (T’ik: i € N(G)) solve Problem (35),

and let

PG(i) = direct predecessor set for node i in graph G,
SG(i) = direct successor set for node i in graph G, and
Hij = multiplier for constraint T, > Tj in Problem (35).

Using these definitions, we can state the Kuhn—Tucker conditions as follows:

2
~KJTY +g—-3% 6.+ % 0. =0, ieN(Q), (36)
v bojeSg) Y jepg) !

TY 20, ieN(G)

. ok ; (37)
T =T 20, (i.j) € A(G)
f’ij(T? — T}f) =0, (i,j) € A(G). (39)

Observe that condition (36) implies that in any optimal solution

T’;z\/Ki/(gi— ) 7.+ % J.

. . X g..
jeSg(i) 4 jeP (1) ¥

Thus T’; is similar to the solution found for the reorder interval in the classic EOQ

problem discussed in section 2; if X ﬂ.i = X 61., then T’; equals the reorder
jeP (i) J jeSg() J
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interval in the EOQ problem. Since multiplier Gij represents the price for deviating from

the economic reorder interval, X% f.. measures the subsidy and X% f.. measures
. -y 1] P AN 1§
Jesg(l) Je G(l)
the penalty to i’s holding cost induced by i’s successor and predecessor operations,
respectively.
Also, observe that the multiplier oij corresponds to arc (i,j) € A(G) and hence

appears in exactly two constraints of the type (36). Furthermore, the sign of gij is

different in these two constraints, so that

¥
ieN(G)

..+ X .| =0. (40)
jESG(i) Y jEPG(i) Jl}

Thus, if the T’ik are chosen to be equal, we find, by summing over the constraints of type

(36), that

T = LEN(mKi] / LEN(Gfi]’

2
Let this common value of T? be represented by D(G). Assume the T’; are

i e N(G).

chosen to be equal. If there exists gij satisfying (36) and (38), all the Kuhn—Tucker
conditions will be satisfied and the optimal solution will have been obtained. Otherwise, all
the T’; cannot be equal. Finding the optimal solution to Problem (35) in this case

requires subdividing G until all the Kuhn—Tucker conditions are satisfied.

6.1.2 Directed and Maximal Cuts

The subdivisions of G are called directed cuts. A directed cut is a split of G into

two separate acyclic directed graphs, G1 and G, so that
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1. N(G) is partitioned into N(G+) and N(G ), and

2. For all (i,j) € A(G) either
(a) i,j€ N(GT), and these (i,j) constitute A(G™T),
(b) i,j€ N(G™), and these (i,j) constitute A(G ), or
(c) i€ N(GT) and je N(G™).

The directed cut reflects a partition of N(G) into two sets or clusters of nodes or
operations, N(G+) and N(G ). Each operation in N(G+) will have a reorder interval of
the same length, and each operation in N(G ) will share a common reorder interval. The
notion of a directed cut implies that conditions (38) are satisfied, that is, the common
reorder interval for operations in N(G+) must be at least as large as that for the operations
in N(G").

Define the value of a directed cut (G+,G—) to be

vat.g) = . —g.}.
(@R = 3 05/P(0) g

By definition of D(G), v(GT,G7) =% _ {g—K;/D(G)}. Suppose T*  and T*_
ieN(G ) G G

represent the common reorder intervals for the operations in N (G+) and N(G),
respectively, and suppose that T* L= T*_ = /D(G). As is clear from the definition of a
G G

directed cut, the nodes in GT precede those in G in the graph G. Because of this
property, if T* 4 s increased above yD(G) or T  is decreased below yD(G), the

G G
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FIGURE 6

Example Graph

resulting solution remains feasible. Furthermore, note that the rate of decrease of the

objective function, evaluated at T = D(G), when T* increases, is v(G+,G').

at at
Similarly, v(G‘+,G_') measures the rate of change or gradient of the objective function as

T*__ decreases. Consequently, if v(G+,G—) > 0, then the current solution cannot be
G

optimal and the T’; cannot all assume the same value in the optimal solution.

We observe that there are many possible directed cuts that can be constructed
corresponding to a graph G. Finding the best directed cut corresponds to finding the one
having the maximal value, that is, the one yielding the maximal rate of decrease in cost
evaluated at the current value of T’; = y/D(G). If the value of the maximal cut is
nonpositive, then the optimal solution is T’; = D(G) for all i e N(G).

Consider the graph G given in Figure 6. Suppose K, =4, Ky=1, K;3=6,
K4 =1, and g = 1 for all i=1,..,4. Assuming the reorder intervals are equal,
D(G) = (2 K;)/(¥ g;) = 3. Observe that there are 4 possible directed cuts associated with

this graph,
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N(GT) = {4}, NG =1{3,2,1}, +v(GT,a7) =-2/3,

N(GT) = {4, 3}, N(GT) = {2, 1}, v(G*,GT) =1/3,
N(GT) = {4, 2}, N(GT) = {3, 1}, v(G1,G7) = —4/3, and
N(GT) = {4, 3, 2}, N(G™) = {1}, v(a1,67) = -1/3.

The maximal cut (GT,G7) has value 1/3 with N(G1) = {4, 3} and N(G7) = {2, 1}.

6.1.3 Finding the Maximal Cut

The problem of finding the maximal cut for the graph G corresponding to the
solution T’; = JD(G) for all ieN(G) is related to the problem of calculating the
multipliers that satisfy the Kuhn—Tucker conditions (36). Assume there are n nodesin G
numbered 1 through n. Let a, =K,/D(G)—g for i=1,..,n. Then the multipliers
satisfying (36), given T’; = yD(G), correspond to flows in a transshipment network having
n nodes and having supply available for shipment at nodes for which a, <0 and
requirements for supply at nodes for which a; > 0. Nodes having a, =0 are transshipment
nodes. If the flow satisfying the constraints (36) also satisfies the nonnegativity
requirements (38), the graph G does not need to be subdivided; however, if no such
solution exists, then at least one ﬁi j < 0.

To determine the maximal cut, we solve a minimum flow problem on a graph G’,
which is related to G as follows.

Graph G’ has two nodes in addition to those found in G. The first new node,
which we call node 0, is a source node; the second new node, labeled node n + 1, is a sink
node. The other n nodes correspond to those found in G. Furthermore, if (i,j) € A(G),
then (i,j) € A(G’); G’ has another 2n arcs in the form (0,) and (i,n+1) for
i € N(G). Associated with each arc (i,j) € A(G’) is a lower bound, Z(i,j), on the flow Hij
over that arc. For all (i,j) € A(G), let £(i,j) = 0; for arcs of the form (0,i) € A(G"), let
£(i,j) =0; forarcs (i, n+ 1) € A(G’),1let £(i,n+1)= a; = Ki/D(F) — g
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The graph G’ corresponding to the graph G given in Figure 6 is shown in Figure 7.

The numbers on the arcs represent the lower bounds on the flows.

FIGURE 7
Graph of G’

The addition of the source node to the transshipment network ensures that a flow
that satisfies conditions related to (36) and (38) exists. In particular, by adding this

node, conditions (36) become, for each i€ N(G),

.. + X §.— % f..=a., 6. =0.
0 . . . . ’
! JEPG(l) I JESG(l) o

n
The flow v= X 00i measures the total requirement in the original transshipment network
i=1

that cannot be satisfied without reversing the orientation on at least one arc, that is, by

making at least one 0, i< 0. If v =0, then a feasible flow satisfying (36) and (38) exists.
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The sink node appended to the original network serves a different purpose. Each arc
(i,n 4+ 1) has a corresponding lower bound on its flow. If the lower bound is positive, that
is, a; > 0, then a node i has a requirement in the original network. If a, < 0, node i has
a supply in the original network. In this latter case, the negative lower bound on the arc
(i, n + 1) indicates that the natural supply orientation of this arc has been reversed. Thus
the negative lower bound indicates that a flow can exist from node n + 1 to i that cannot
exceed —a; .

By adding both the source and sink nodes, we can rewrite (36) as

6

i, n+ 0, ¢,

1+E 6~'=9'+2 9ji,0 1’n+1=a\i.

) ) 0i . . 0i —
Jesg(l) N ! JEPg(l) '

The minimum flow problem, called Problem (41), that yields the maximum cut for

the graph G is

o
v=min ¥ 001
1=1
subject to
0. + X 6..=0,.+ % g., i=1,..,n, (41)
i, n+1 jESG(i) i 0i jEPG(i) ji

> L), () € A7(G7).

The definition of D(G) implies that ¥a. = 0. Equation (41) implies that %00 =
2191,11 41 Therefore v = 0 if and only if 901 =0 and 6i,n
(38) have a solution.

1Ty for all i, i.e., (36) and
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Problem (41), like the classic maximum flow problem, can be solved efficiently for
very large graphs. An algorithm exists to solve it that is at worst of order n3. The solution

identifies the maximum directed cut as follows:
0eN(G'™),
n+1eN(G'),

v= % ) AN
ieN(G' 1) jeN(G')

> 0.

= Y a.
ieN(G'H)—{0} !

The maximal cut (G+,G_) is (G’+ — {0}, G~ —{n + 1}). Note that if v =0,

then G need not be subdivided further.

6.1.4 An Algorithm for Solving Problem (35)

The solution to Problem (35) is found using an algorithm that is based on the
concept of a directed cut. The algorithm operates as follows. To begin, assume that all
operations share a common reorder interval. Problem (41) is then solved to correspond to
this feasible solution. If v =0, the Kuhn—Tucker multipliers are nonnegative and the
solution is optimal; if not, G must be divided into graphs GT and G, which are
determined by solving Problem (41). The process is then repeated separately on GT and
G~ until no further splitting of the graphs is needed, that is, until the solutions to the
corresponding Problem (41) indicate that nonnegative multipliers exist that satisfy all the
Kuhn—Tucker conditions.

Formally, we state the algorithm as follows.
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AvrcoriTHM 3. THE DivipE AND CONQUER ALGORITHM

STEP 0. Assume all reorder intervals are identical.
STEP 1. If no directed cut (G+,G—) has a positive value, that is, if no directed cut
has ¥ | (K;/D(G) —g;) > 0, then STOP.
ieN(G
STEP 2. Find the maximal cut, by solving Problem (41), and divide G into two

separate subgraphs Gt and G~ Apply the Divide and Conquer Algorithm
to each of the graphs GT and G~

In the event that Problem (41) has more than one maximal cut, any one of the maximal cuts
may be selected in Step 2.

This algorithm constructs a set of subgraphs which we denote {Gk, 1<k <N}. The
clusters are {N(Gy), 1<k < N}. Steps 2 and 3 of Algorithm 1 are now used to obtain the
reorder intervals that solve Problem (35) and Problem (34). A proof that the Divide and
Conquer Algorithm does solve Problem (35) to optimality can be found in Maxwell and
Muckstadt (1985).

In the event that the reorder intervals T, i€ N(G) are constrained to satisfy

£ ;
2 Ty <T, <27T
the modified roundoff procedure described in section 3.4 can be used. All claims of
optimality and near—optimality made in this section apply to the constrained version of the

problem as well. This is also true of the models of sections 4, 5, 7, 8, and 9.

6.3 Computational Complexity of the Algorithm

The solution of Problem (35) is constructed by solving a sequence of minimum flow

problems — Problem (41). Each solution to Problem (41) generates either two or no leaf
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vertices. However, there can be no more than n leaf vertices in the final binary tree, where
n represents the number of nodes in G. Since the number of steps required by the
algorithm for finding the optimal solution to Problem (41) is at worst proportional to n3,

the algorithm for solving Problem (35) is an order % or less algorithm.

6.4 An Example Problem

The problem used in this section to illustrate the algorithm was obtained from a
supplier of components to the U.S. automotive industry. Figure 8 shows the product
structure graph G corresponding to this problem. The graph shows that there are 4
finished products, which correspond to nodes 1, 2, 4, and 6. Each of the 94 nodes in the
graph represents an operation. Those nodes represented by triangles indicate the acquisition
of raw materials. Squares indicate operations having positive setup times and circles
operations requiring no setup time.

Observe that G represents neither a pure assembly nor a pure distribution system.
Some raw materials are used in the production of more than one component. Some
components are used in more than one assembly or subassembly. For example, the
component completed at operation 52 is used in 8 different ways. Furthermore, the
subassembly at operation 3 requires 5 different components. Thus this graph G
represents a relatively complex production environment.

The reorder intervals for each operation were obtained using Algorithm 3. Figure 9
gives the first partition of G into GT and G~ Underlining of a leaf vertex in the
solution tree indicates that the leaf vertex is in a permanent state. Since all leaf vertices are
underlined in the tree shown in Figure 10, the optimal reorder intervals for Problem (35)
have been found. The reorder interval for operations in G~ is 0.074 years,in G T is
0.090 years,in G T is 0.106 years,in G777 is 0.118 years, in GT™t" s 0.140
years, in GT™tT i 0.167 years, and in GTT is 0.350 years. Thus, for example,

operations 76 through 80, the elements of , should have the same reorder interval
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and should be produced about once every 2 months. Note that the magnitude of the values

Q..o
of the reorder intervals correspond to an ordering of the sets G 1™"n Furthermore,

observe that the magnitude of most of these reorder intervals is similar, indicating that more
operations might share common reorder intervals in the solution to Problem (34).

This solution to Problem (35) shows that the operations should initially be divided
into 7 distinct groups. Problem (34)’s solution indicates that the operation should be
combined further. A base planning period of a day was used. The optimal solution indicates
that the operations in Gt should be on a cycle that is 128 days long. Those in
gt t1 and G777 should have reorder intervals equal to 64 days. The operations in

sets G, ¢17, G Tt and G'7 should all have the same reorder interval of 32
days.

-6 -0 fH—0-G-6-F O T
E@-5HB-B-0-8) !
< vosood — {1,
FHE-HO-@-@-OHF) .
- \an
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FIGURE 8

Product Structure Graph G
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©

FIGURE 9
Graphs G1 and G~

G-+-
.090

FIGURE 10
Optimal Solution to the Relaxed Problem
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6.5 Summary

In this section, we studied the problem of determining consistent and realistic reorder
intervals in a general production—distribution system environment. A mathematical model
was developed whose special structure permits its solution using a standard network flow
algorithm. As in earlier sections, attention was restricted to policies that are nested,
stationary, and a powers—of—two multiple of a base planning period. As before, if we follow
a powers—of—two policy, the total cost cannot be more than 6% higher than can be

achieved following any other nested policy.

7. CONSTRAINED WORK CENTERS

To this point we have assumed that the reorder intervals were chosen independent of
available resource levels. In this section we consider planning problems occurring when the
production facility is divided into work centers, each of which is assumed to have a limited
production capacity, expressed in total annual standard hours. Since the total run time of
all jobs processed through the work center is unaffected by lot sizing/reorder interval
decisions we deduct the projected total annual run time from the production capacity. The
result is an estimate of the total annual standard hours available for performing other work
center ﬁmctions, in particular, for performing setups within the work center. The remainder
of the assumptions on which we base the following model are the same as those made for the
models developed earlier in section 2 of this chapter. Notational differences are minor and
will be identified as we proceed.

We assume that each operation i in the production/distribution graph is associated
with one and only one work center. Following the concepts and the notation of section 3, we
assume that the work centers form a partition of the node set of the graph G. Let Wh
denote the subgraph of G formed from the node set N(Wh), consisting of all the operations

in work center h, and the arc set A(Wy), consisting of all arcs of the form (i,j) where
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i,je N(Wh) and (i,j) € A(G), for h=1, .., H, where H is the number of distinct work
centers. Let 7(i) index the work center associated with operation i.

Let Li denote the setup time required by operation i, measured in standard hours,
for all i€ N(G). We also assume that the setup cost for operation i 1is directly
proportional to L. This assumes that work center groupings are closely aligned with labor
classifications and that material and energy costs involved in setting up operations are not
significant. Let Cy denote the setup labor rate in work center h. By assumption, then,
Ki = chLi for all operations i in work center h, h =1, ..., H. Finally, let bh represent

the total annual time available for performing setups in work center h, h=1, ..., H.

The general (relaxed version) multiple work center capacitated planning problem that

we examine is given by

minimize D) ¢, \L/T. + g.T.
z ieN(G)[ n(i) i/ Ty + g Tl
subject to T, > Tj >0, (i,j) € A(G), (42)
) L/T.<b,, h=1,2, .., H
ieN(w,) 1T h

The powers—of—two formulation of this problem includes restrictions of the form Ti = QETL,

Le{0,1, ...}, ie N(G).
Before examining this problem, we make an observation that is the basis of the
solution procedure we will discuss. Recall the necessary and sufficient conditions given in

section 3.3 for solving the following problem:
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minimize h) (K./T. +g.T.) (43)
ieNn(g) * ' !

subject to T, 2 ’I‘j > 0, for all (i,j) € A(G).

Now suppose we have a new problem with Ki = oK, and g =fg for each i€ N(G),
>0, A>0. Suppose we have an optimal solution to Problem (43), that is, an optimal
partition (Gl’ s GN) of G. This partition is also optimal for the new problem as well.
This result easily follows from the conditions of Theorem 2 presented in section 3.3. We call
this the invariance property of the optimal partition of G. Thus the optimal partition of G
is invariant under positive scaling of both setup and holding costs. Thus uniform increases
or decreases in labor rate, overhead or interest rates do not change the optimal partition. It

may, however, change the value of the optimal reorder intervals.

7.1 Single Work Center

The case of a single work center is particularly easy to solve because of the invariance

property. The relaxed version of the capacitated single work center problem can be written

as follows:
minimize ) [cL,/T, + g.T:]
ieN(g) U b M
subject to T, 2 Tj >0, (i,j) € A(G), (44)
P L./T, <D,
ieN(W) U1

where the subscript h indexing different work centers has been dropped. We assume

c > 0.
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Let o denote the Lagrange multiplier for the capacity constraint. Dualizing this

constraint, and letting o’ = a + ¢, yields the following relaxed problem:

minimize ) [@’L./T. + g.T.]
ieN(@) Ut M
subject to T.2 Tj >0, (i,j) € A(G). (45)

We seek a value of o’ >c¢ (a>0) such that the solution to this uncapacitated problem
satisfies the omitted capacity constraint and satisfies it with equality if o’ > ¢ (a > 0).

We find the optimal solution as follows. First, find the optimal partition for Problem
(45) with o’ = c. If the associated solution satisfies the capacity constraint, then stop; the
solution is optimal for the capacitated problem. Otherwise, the capacity constraint is
binding. Based on the invariance property, the same partition is optimal for all positive
values of «’. Suppose the partition is (Gl’ vy GN). The optimal reorder intervals for

Problem (45) as a function of «’ are given by

T*(k,a') = (o L(k)/g(k))*/%, where (46)
Lk)= % L, and gky= % g, k=1,..,N. The capacity used as a function
1EN(Gy) 1eN(Gy)
of a’ isgiven by
N N / 1/
5 % L/T(oe')= 3 L()/[a'L(k)/g(k)]
k=1ieN(G) k=1

N Lg?

k=1 &
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Substituting for the left hand side in the capacity constraint and solving for a’ yields

3 Lgtn /|
k=1

ot = : (47)
b

Thus, a closed form solution is available for the single work center problem, Problem (45),
given the optimal partition for Problem (45). Note that a’* must be greater than ¢ in
the above expression because, by assumption, the constraint is violated at a’ = c¢. Clearly
the capacity used is a decreasing function of o', a’ > c.

Let U denote the capacity utilization ratio when a’ = ¢ (a = 0):

N
D> L. /T*(k,c)
k=11eN(G, )

B b

N Lgat?

= (48)
k=1 +c - Db
Rewriting (47) in terms of the utilization ratio, U:
ot = CU2,
or (49)

o = cU2—c.

Similarly, the optimal reorder intervals for the capacitated problem, {T*(k); k=1,..,N},

satisfy
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T*(k) = T*(k,0’ ™) = T (k,c) - U. (50)
The optimal reorder intervals for the relaxed version of the single work center constrained
problem are simply the natural (a = 0) reorder intervals scaled by the capacity utilization

ratio (when U > 1).

7.2 The Powers—of—Two Single Work Center Problem

Before extending the solution technique to handle multiple work centers, we consider
the relation between the relaxed version of the single work center problem and the
powers—of—two version. The powers—of—two formulation of the single work center planning

problem is given by:

minimize b [cL./T. + g.T.]
ieN(G) Ut !

subject to ) Li/Ti <h,
ieN(G)

T; < Ty (1.J) € A(G),

L
i .
T, =2 Ty, éi €{0,1,2,...}, ie N(G) .
By analogy with the uncapacitated problem discussed earlier, consider the

powers—of—two solution given by T, = T(k) for all ie N(Gy), k=1,..,N, and let
T(k) = o (k)TL, where £ (k) is the smallest value of £ satisfying

1/2
.1 | "Lk
2 ZTE{%} . (51)

59



We now investigate the feasibility and cost performance of this solution using some of the

results developed previously.

By (46) and (51), £(k) satisfies

ol (k) T (k) 5 of (-1

\/_2— * TL
so that
—‘%‘l < T(R) € 42 - THK). (52)

We examine the cost performance of the powers—of—two solution first. Let

fi(T) = i?N(Gk)[CLi/T + g;T]

= cL(k)/T + g(k)T,
the cost associated with a common reorder interval T for subgraph Gk. By convexity,
f (T(k)) < max {fk(T*(k)/ﬂ), fk(ﬁT*(k))}. Assuming the capacity constraint is binding

(U > 1), we have

£ (BTHK) = L&) 4 oarH (K
(V2T (K)) T (0 g(k)v2T" (k)

_ cL(k) K * ]
AT (kc) . U+g( W2T7 (k) - U
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VTR H%%‘ﬁ (53)
and
£(T*(k)/¥2) = VCL{KEK) ?—é{-—;‘ﬁ (54)
< £, (T (1)),
since U > 1.

Let Fb denote the cost associated with the powers—of—two solution given a capacity

of b:

N . cLi )
F, = % + g T(k
b k=pien(ay| TR T
N
= T £,(7()
k=1
N 2
< 3 yereg | 120 (55)
k=1 V20U

Suppose {T(k); k =1, ..., N} is feasible for the powers—of—two single work center problem.
Then Fb is an upper bound on the minimal cost for that problem. Let Zb denote the

minimal cost of the relaxed version of the single work center problem:
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N

CLi *
T*(k) + giT (k)

-
Il

lfk(T (k)

VELTRIE(E) [l—iUU——z} (56)

Z, can be shown to be a lower bound on the minimal cost for the powers—of—two single

work center problem using the method developed in section 3. If follows that

F

b, _(1+2U%)

"B (1 + U (57)

As U-wo this bound converges to +2. That is, the proposed powers—of—two solution
cannot exceed the solution to the relaxed version of the single work center problem by more
than 41%. Table 1 tabulates the bound for a variety of values of U. Observe that for a
20% overutilization in the constrained case (U = 1.2) the powers—of—two cost is bounded

to within approximately 12% of the cost of the solution to the relaxed problem.

62



U Bound on Fy / Zy,
1.0 1.061
1.1 1.094
1.2 1.124
1.5 1.197
2.0 1.273
5.0 1.387

TABLE 1

Cost Bound for the Powers—of—Two Solution

Next, let us turn our attention to the feasibility of the proposed powers—of—two
solution. Observe that the second condition of Theorem 2 implies that the constraints
T, > Tj (i,j) € A(G) will be satisfied by the solution {T(k); k =1, ..., N}. Using the fact
that T(k) > T*(k)/ﬁ, k=1, ..., N, worst case analysis reveals that

1§ % L/T(k)<y2-b. (58)
k=11eN(G,) '

That is, the powers—of—two solution can exceed capacity by at most 41%. This analysis
assumes that for each set G in the partition, T(k) takes on the smallest possible value.
In reality, we would expect that T(k) would be larger than T*(k) for some of the sets Gy
and smaller than Tk for others. If the number of sets in the partition is large, we would
anticipate that the powers—of—two solution would utilize roughly the same amount of

capacity as the solution to the relaxed problem.
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To illustrate, suppose  T(k) is uniformly distributed over the interval
[T*(k) /42, ﬁT*(k)]. Then the expected amount of capacity required by the powers—of—two

solution is

E 1§ > L./T(k)| = IE\DIL(k)E[l/T(k)]
k=11eN(G,) * k=1
N
= [ Y L(k)/T*(k)|v2 log 2
k=1
= b(y2 log 2), (59)

since {T*k); k=1, .., N} satisfies the constraint exactly. Assuming the

{T(k); k=1, ..., N} areindependent, then the strong law of large numbers implies

N
lim ¥ % Li/T(k)=\/§10g2-b
N-o k=1ieN(G,)

#.980 - Db.

Hence, in a probabilistic sense, for a large number of sets in the optimal partition, we would
anticipate that the powers—of—two solution would be feasible. A more rigorous analysis of
this conjecture appears impractically difficult.  Computational experience with the
algorithm, described by Jackson, Maxwell, and Muckstadt (1988), suggests that for practical

problems the powers—of—two solutions are close to feasible.
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Roundy (1986) describes an extension to this algorithm that guarantees feasibility of
the powers—of—two solution by adjusting the length of the base planning period, Ty. For
his algorithm, the cost of the powers—of—two solution cannot exceed the solution to the
relaxed version by more than 44%. In practice, the base planning period is often
determined by the information system reporting cycle and in these cases it is not easily
subject to change. For example, in most manufacturing facilities visited by the authors we
observed MRP type planning systems in which TL was either a week or a month. That
is, these planning systems generated production requirements for each week or month over
some time horizon. Thus reorder intervals were constrained to be some multiple of these

time intervals.

7.3 The Multiple Work Center Planning Algorithm

There are several ways in which the multiple work center capacitated planning
problem could be solved. We propose a technique that takes advantage of the ease by which
single work center problems can be solved. The idea behind the algorithm is that there are
two useful Lagrangian relaxations of the multiple work center problem. We propose an
iterative algorithm that alternates between these two relaxations.

One approach to using Lagrangian relaxation on the multiple work center problem is
to dualize all the capacity constraints. Let a denote the Lagrange multiplier on the
capacity constraint for work center h, h=1,.. H If ap = ap + ¢y, h=1,..,H, and
o’ denotes the vector of coefficients (ai, vy af{)’ then one possible relaxation of the

multiple work center is given by

minimize ize:N(G)[%(i)Li/Ti + Tl
subject to T, 2 Tj >0, (1,j) € A(G). (60)
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We seek a vector o’ 2 (cl, e CH) such that the capacity constraints which are omitted
from Problem (60) are satisfied by the solution to Problem (60). Furthermore, if
O‘lll > ¢y the constraint for work center h must be satisfied with equality. Unfortunately,
the optimal partition for this relaxed problem is not necessarily invariant to the choice of

4

o’ because the scaling factors are not common across all operations. Let the optimal

partition for this problem be denoted (G?/, . Gﬁ& a’)) for a given vector a’. Let the
optimal set of reorder intervals be given by {T*(k,e’);k=1,...,N(a’)} and let Uff/

denote the corresponding capacity utilization ratio for work center h:

N
T |z o Ll /T (ka)
o k=1[EN(W)NN(GE)
Uy = , (61)
bh

for h=1, ..., H.

An alternative approach to using Lagrangian relaxation on the multiple work center
problem is to dualize all the consistency constraints that link different work centers together.
That is, eliminate constraints of the form T, > Tj’ where (i,j) € A(G) and #(i) # n(j). Let

% denote the Lagrange multiplier on such a linking consistency constraint and let

k()= % 0. — % 0...
i) ieN(G) ieN(G) Y
(j,iéeA G (i,jieA G
n(j)#n(i n(i)#n(j

Then, an alternative Lagrangian relaxation of the multiple work center capacitated problem

is given by the following problem:
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minimize iEN(G)[Cn(i)Li/ T; + g T, + 5(6)T}] (62)

subject to T, 2 Tj >0, (i,j) € A(Wh),
3 L./T.<b,, h=12 .., H
ieN(w,) & h

For a given vector of multipliers, = (Hij), this latter relaxation is separable by

work center. The single work center subproblem, for a given vector 0, is given by:

minimize ) [, L:/T. + (g + &(0)T,]
ieN(Wh) h™i/ i i i i

subject to T, > Tj >0, (i,j) € A(Wh), (63)
% L./T. < by,
ieN(w,) 1T h

for work center h, h =1, ..., H.

Observe that for a given vector @, this single work center subproblem is identical in
form to the single work center problem examined previously. Letting Gy denote the
Lagrange multiplier for the single work center capacity constraint and letting
&1’1 =0q + ¢, the wuncapacitated version of the single work center subproblem can be

written:
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minimize ) [a{L./T. + (g + #(0)T.]
iEN(Wh) h™il i 1 i i

Ti 2 Tj 2 0: (i;j) € A(Wh) (64)

Therefore, by the invariance property, given an optimal partition to Problem (64) for any
value of @’, a closed form solution to the capacitated subproblem, Problem (63), is
available immediately. Denote the optimal value of the Lagrange multiplier by a;( ), a
function of # since the definition of the subproblem depends on the vector 0.

In the following, we note that if an optimal partition is available for Problem (60),
which was used to define the vector 6, then this partition induces an optimal partition on

each of the single work center uncapacitated subproblems.

THEOREM 3. For a given vector of Lagrange multipliers o’ on the work center capacity
constraints, let (G(f/, ey G%Ea,)) be an optimal partition of (60) and let @ be a
corresponding vector of optimal Lagrange multipliers on the consistency constraints linking
work centers. Let RPh( f) be the single work center capacitated problem of type (62) for
work center h which is formed using this vector . Then, the ordered partition of G,
(G(f/’ ey Gﬁia,)), induces an optimal partition on the subgraph Wh for problem
RPh(O), h=1,..,H

The proof of this theorem can be found in Jackson, Maxwell, and Muckstadt (1988).

If an optimal partition is available for Problem (60), then the solution to Problem
(62) can be obtained in closed form without explicit knowledge of the vector of multipliers,
0, on the linking consistency constraints. That is, under the conditions of the proposition,

for h=1, ..., H,
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_ , 12
ay.(0) = max {0, of [Up' 1“—¢; } - (65)
The proof of this fact can be found in Jackson, Maxwell, and Muckstadt (1988).

To this point we have specified two relaxations of the multiple work center
capacitated problem. The first relaxed problem, Problem (60), can be solved by the
modified network algorithm described in Maxwell and Muckstadt (1985), which was
discussed in section 6, for any given vector a= (al, e aH). A by—product of that
algorithm is a vector of Lagrange multipliers on all the consistency constraints
{T;> Tj; (i,j) € A(G)}. That is, the solution to Problem (60) implies the existence of a
vector of Lagrange multipliers on the constraints linking the work centers:
0= (6, 7 (i,j) € A(G), n(i) # n(j))- These multipliers can be used to define an alternative
relaxation of the problem, referred to as Problem (62). This relaxed problem is separable
and can be used to define a new vector of multipliers, @), on the capacity constraints.
The subproblems of Problem (62) and Problem (63) can be solved using Equation (65)
without explicit knowledge of the vector 4. The following algorithm is iterative in nature; it
alternates between solving (60) to get a new vector of capacity utilization ratios,

o = (U? ) e s Uﬁ ), and solving (62) to get a new vector of capacity multipliers, o.

THE MULTIPLE WORKE CENTER PLANNING ALGORITHM.

STEP 0. Pick an initial nonnegative vector al.

STEP 1. On iteration n, for vector o”, solve Problem (60) using the algorithm described
n n o
in section 6. Obtain an optimal partition, (G? Y e s Gl% (an)), and a solution {T;k }.

Let 6" denote a vector of Lagrange multipliers on the consistency constraints associated

with this solution. It is not necessary to obtain this vector explicitly.
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STEP 2. For each work center h, compute the capacity utilization ratio:

n
(o]

b L. /T%
. 1 1
o _ 1EN(Wy)

ify (66)

by

n
For a pre—specified tolerance ¢, if Uﬁ —1<e€¢ for all h such that aﬁ =0 and

n
IUff —1] <€ for all h such that aﬁ >0, h=1,..,H, then stop; the solution from

Step 1is e—optimal.

STEP 3. For each work center h, h=1, ..., H, let

oy (6%) = max {0, (ap, + ch)[Uﬁ‘n]2 —cp}- (67)

Let of " ) denote the resulting vector of Lagrange multipliers on the capacity constraints.

STEP 4. Let o®t1= oo + 7™(a(0™) — &™) where " is an appropriately chosen step size

parameter (0 < 4" < 1). Set nen+ 1 and go to Step 1.

Step 1 of the algorithm requires most of the computational effort. The computational
complexity of this problem depends on the structure of the graph G. For arbitrary acyclic
graphs the computational effort is at worst O(n4), where n is the number of nodes in the
graph. If G has a special structure, such as the ones described in other sections of this

chapter, computation time may be proportional to n log n.
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There are many possible strategies for choosing the step size +* in Step 4. To date,
we have been unable to identify a strategy that guarantees convergence of the algorithm.
However, the naive strategy of halving the current step size after a pre—specified number of
iterations was effective in the test cases reported in Jackson, Maxwell, and

Muckstadt (1988).

8. JOINT ORDER COSTS
In all earlier sections we have assumed that there is an order cost K, for stage i in
the system, and that if S is the set of items being ordered at a given point in time, then the

total order cost incurred at that point in time is % K., i.e., the order cost is a modular

i€S
function of the set of items being ordered. In many situations this is not a realistic

i)
assumption. In this section we survey several different models in which the total order cost
incurred depends in a more complicated way of the set of items being ordered at a given

point in time.

8.1 The Joint Replenishment Problem

Perhaps the simplest way in which the cost of ordering can fail to be modular is
through a joint order cost. Consider a single facility that stocks a number of different items.
Each item i has a traditional order cost Ki’ a holding cost rate hi’ and deterministic
demand which occurs at a constant continuous rate )\i . However, in addition, there is a
joint order cost KO which is incurred every time an order is placed for any item. This
order cost is in addition to the order costs for the individual items being ordered. Therefore,
if at a given point in time an order is placed for the items in the set S # ¢, the total order
cost incurred is KO + i?SKi. The objective is to schedule orders for the items over an
infinite time horizon so as to minimize the long-run average order and holding cost, while

meeting the demand for all items without shortages.
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The joint replenishment system can be viewed as a special case of the assembly
system discussed in section 4. This is accomplished by modeling the joint order cost KO as
a separate stage. Consider the assembly system illustrated in Figure 11. In this system
stages i, i>1 correspond to the items of the joint replenishment system, and stage 0
corresponds to the joint order cost. The order costs and the holding cost coefficients for
stages 121 are Ki and g = % /\ihi, respectively. For stage O the order cost is KO and

the holding cost coefficient is gq = 0.

FIGURE 11

Joint Replenishment System

For assembly systems nested policies are optimal. For the joint replenishment
system of Figure 11, the nestedness constraint implies that an order must be placed at node
0 (i.e., the joint order cost must be incurred) whenever any of the items is ordered.
Therefore for the joint replenishment system, the nestedness constraint forces the joint order
cost to be incurred at the appropriate points in time, and is a necessary condition for

feasibility.
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If the algorithms of section 4 are applied to the system of Figure 11, they will
compute policies whose cost is within 6% of optimal if a fixed base planning period is used,
and within 2% of optimal if the base planning period is a variable (Jackson, Maxwell, and
Muckstadt (1985)). However, for these systems a much simpler and more efficient algorithm
is available for solving the relaxation of the planning problem — Problem (20) of section 4.

The algorithm is given below. In Step 2 weset K/g =w if g=0.

AvrcorrTHM 4. SIMPLE JOINT REPLENISHMENT SYSTEMS

STEP 1. Sort the items so that K./g. < K| _H/g

i1 forall i>1. Set KK, g+0,

and k « 0.
STEP 2. If k=n or K/g< Kk+1/gk+1 , then go to Step 4. Otherwise go to Step 3.
STEP 3. Set kek +1. Set K-K + K, and geg+g,. Goto Step 2.

STEP 4. Set T} =yK/g for all i<k, and set T} = JK;/g for all i>k The
optimal clusters are {0,1,....k}, {k + 1}, {k + 2}, ..., {n}.

The running time of this algorithm is limited by the time required to perform the sort
in Step 1. This can be done in O(n log n) time. The algorithm is based on the idea that
the joint order cost will be incurred once every TO time units. There are two types of
items: those that order every T, time units and those that order less frequently. The
items that order less frequently do so because their natural reorder interval, based on their
own order and holding costs, is longer than TO‘ The items that order every time the joint

order cost is incurred have natural reorder intervals shorter than T,. If {i: 1<i<k} is
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the set of items that order once every T0 time units then local optimality implies that

1/2
T,=[K.+ % K)/( & g)'*

Via the transformation of section 5, the problem of finding a good nested policy for a
one—warehouse, multi—retailer inventory system can be transformed into the problem of
finding a good policy for a two—stage assembly system. The only essential difference
between a two—stage assembly system and a joint replenishment system is that assembly
systems typically have a positive holding cost coefficient associated with node 0. This can
be compensated for by changing the statement g+« 0 in Step 1to g+« g With this change,
the above algorithm can be used to find nested polices in one—warehouse, multi—retailer
distribution systems, or to find policies for two—level assembly systems. The performance
bounds obtained in sections 4 and 5 apply to two—level assembly and distribution systems,

respectively.

8.2 The Family Model

In this sub—section we consider an extension of the general lot sizing model of section
6. The system considered there is modeled by an acyclic, directed graph representing a bill
of material network G with node set N(G) and arc set A(G). Node i€ N(G)
corresponds to stage i of the system. Part i is stocked at stage i. Part i has order cost
Ki > 0, echelon holding cost rate hi > 0, and demand rate ’\i > 0. Associated with each arc
(i,j) € A(G) is a gozinto parameter 7ij . Whenever an order for q units of part j is placed
it is instantly delivered, and fyijq units of part i are simultaneously consumed.

This system, which we studied in section 6, is now enhanced by allowing order costs
to be associated with families of components. To illustrate, consider an injection molding
machine on which we produce Lego blocks. The blocks come in three different sizes and in
three different colors, making nine parts in all. There are three molds, one for each size of

block. Whenever we finish a batch of one of the nine parts the cavity in the mold needs to
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be cleaned. The cost of doing this is K o When we switch the machine from one block size
to another, the mold currently on the machine needs to be removed and another one must be
mounted. The cost of doing thisis K .

Let 1 index the parts, let k index the molds, and let Ik be the set of parts that are
produced using mold k. Let part i be produced once every Ti days, and let mold k be
loaded onto the machine once every T, days, where the T’s are powers of two. If the
batches are sequenced appropriately, the average order cost incurred per day is

Eil K C/Ti + E Km/ Ty The order intervals are constrained to satisfy T, < T, for all i€el,.

This example motivates the following extension to the model of section 6. Let F be
a collection of sets fc N(G) called families. We assume that |f] >2 for all feF.
Associated with each family fe F is an order cost K¢ > 0. We assume that the order cost
K, is incurred every time an order is placed for one or more of the items i€ f.

We model the joint setup costs K., fe F as follows. Given the bill of material
network G of section 6, we define the eztended bill of material network G’ to be the
network with node set N(G’) = N(G)UF and arcset A(G’)=A(G) U {(if):ief, feF}
The nodes fe F are referred to as order cost nodes, and the arcs (i,f), ief, fe F are
referred to as order cost arcs. The nodes in N(G) are referred to as inventory nodes, and
the arcs in A(G) are inventory arcs. Associated with each order cost node fe F is an
order cost K¢, an echelon holding cost he=0, and an echelon demand rate A,=0.
Associated with each order cost arc (i,f) is a gozinto parameter 'yij = 0. Since the order
cost K, must be incurred every time any of the items i € f is ordered, all feasible policies

satisfy

T < T, foreach ief, feF. (68)
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We say that a policy is nested on order cost arcs if it satisfies (68). All feasible polices are
nested on order cost arcs.
Following section 6, we define a stationary nested powers-oftwo policy for the

extended bill of material network G’ to be a a vector I = (T;:1 € N(G")) satisfying

L.
T, =2 'Tp, 4 integer, T positive for all i € N(G') (69)

and
T, > Tj for all (i,j) € A(G). (70)

An optimal stationary nested powers—of—two policy is found by solving

K;

minimize: c(9) = }:
i

ieN(G’)

subject to: (69), (70).

This problem is clearly of the same form as the corresponding problem is section 6, and the
algorithms presented there can be applied to it. They compute a policy whose cost is known
to be within 2% or 6% of the cost of an optimal nested policy, depending on how the
roundoff operation is performed. See Roundy (1986).

In the extended bill of material network, order cost nodes have holding cost
coefficients of zero. This leads to the concern that the solution to the relaxation of (71)
may have Tf = o for some i. If one or more stages i has order cost K, =0, then there is

also a possibility that the solution to the relaxation of (71) may have TT =0. The
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following mild conditions on an extended bill of material network G’ guarantee that all

reorder intervals in the solution to the relaxation of (71) are positive and finite.

1. G is an acyclic directed network.
2. If no arcs emanate from node i in G, then Ki > 0.
3. If no arcs lead into node i in G then g > 0.

We conclude this subsection by pointing out that order cost families can be combined
with the capacity-constrained models of section 7. To return to the injection molding
machine we discussed at the beginning of the subsection, let us now suppose that a mold can
be used on either of two different machines. It is used to make parts 1 and 2 on machine
a, and it is used to make parts 3 and 4 on machine b. We wish to model the cost of
mounting the mold on each of the machines, and also to model the fact that the mold is only
available for a limited amount of time. We can accomplish this by creating two families,
{1, 2} and {3, 4}. The cost of mounting the mold on machine a is associated with family
{1, 2}, and the cost of mounting it on machine b is associated with {3, 4}. A constrained
workcenter is created to model the availability of the molds. If the time required to clean
the mold is negligible, the workcenter consists of the families {1, 2} and {3,4}. If the
time required to clean the mold is significant, the workcenter includes the nodes 1, 2, 3,

and 4 in addition to the families {1, 2} and {3, 4}.

8.3. Multi—Ttem Distribution Systems

There are two interesting and important special cases of the model of subsection 8.2
for which extremely efficient algorithms have been developed. The first of these is a
one—warehouse, n-retailer distribution system through which I items are distributed.

Each item is stocked at each location, i.e., at the warehouse and at each retailer. Each

7



item—location pair has its own order cost, echelon holding cost rate, and demand rate. In
addition there is a joint order cost associated with each of the retailers. The order cost for
retailer j is incurred whenever an order is placed at retailer j, regardless of which items
comprise the order.

The extended bill of material network G of this system is illustrated in Figure 12.
Stages 1, 2,and 3 correspond to the inventories of items 1, 2, and 3, respectively, at the
warehouse. Stages 4, 5, and 6 correspond to the inventories of the three items at retailer
one, and items 7 through 12 correspond to the inventories at retailers two and three.
These nodes are all inventory nodes with positive order costs, positive echelon holding costs,
and positive demand rates. The arcs connecting them are inventory arcs that represent the
movement of material through the system. Their gozinto parameters are all equal to one.

Stage 13 is an order cost node that represents the joint order cost at retailer one.
Its demand rate and echelon holding cost rate are both zero, and its order cost is the joint
order cost. The arcs adjacent to 13 are order cost arcs with gozinto parameters of zero.

Stages 14 and 15 are similar.

FIGURE 12

A Three Item, Three Retailer System
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This model is clearly a special case of the family model of section 8.2, and the
algorithm of that section can be used to find a good nested policy for it. We now describe a
much more efficient O(n log n) algorithm that finds the optimal clusters for this problem.
As before, once the clusters have been found, Steps 2 and 3 of Algorithm 1 are used to obtain
the reorder intervals. See Muckstadt and Roundy (1987).

Let W ¢ N(G) be the set of nodes corresponding to the inventories of the I items
held at the warehouse (nodes 1, 2, 3 in Figure 12). Let R ¢ N(G) be the set of nodes
corresponding to the inventories held at the different retailers (nodes 4 through 12 in
Figure 12), and let J ¢ N(G) be the set of joint order cost nodes (nodes 13, 14, and 15).
Recall that s, (resp., p;) is the set of direct successors (resp., predecessors) of i in G.

The following observations are important in understanding the algorithm. The first
two observations concern the one—warehouse, multi—retailer subsystems and the joint
replenishment subsystems of RP. For a given node j € J, consider the joint replenishment
subsystem whose graph is the subgraph of G induced by the node set {j} U Py Consider the
clusters that are optimal for this subsystem, when it is considered in isolation from the rest
of G. Algorithm 4 can be used to compute these clusters. Among these clusters, let Lj be
the cluster that contains node j. Each node i€ Pj— Lj is in a singleton cluster {i}. Let

H=(3 K.)/(E g), andlet = K /g, forall reR. The key property of Lj is the
ieL, ieL,
J J

following.

OBservaTION 1. If 1€ LJ. —{j} and i€ Pj - Lj , then 77 < A<

Similarly, consider the clusters that are optimal for the one—warehouse, multi—retailer
subsystem whose graph is the subgraph induced by {w}Us_. The clusters that are
optimal for this subsystem are also computed using Algorithm 4 via the transformation of

section 5. Let V_ be the cluster that contains w,andlet 7" = (% K.)/(% g). The
- : i//\, i
ieV eV
following observation holds.
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. I w, i
OBservATION 2. If T€ S —V_ and i€V — {w}, then 7 < 7" < 7T.
The final observation is the key to understanding the algorithm used to solve RP.

OBSERVATION 3. The optimal clusters for the graph G of Figure 12 can be classified into

four types. There is a special cluster called the major cluster, abbreviated MC. Let

"MC ™ (iEMCKi)/(iEMCgi)' (72)

The other three cluster types are: The one—warehouse, multi—retailer clusters VW , WEW
for which 7" > TMC The joint replenishment clusters Lj , j€J for which 7*] < M
The one-node clusters {r} for which r € R, > ™V T vV, for any w € W; and the
one—node clusters {r} for which r € R, < M T ¢ Lj for any je€J.

Observation 3 implies that the optimal clusters and reorder intervals for G can
easily be determined once TMC is known. One way to interpret what the algorithm does is
to view it as a parametric search for TMC and MC. It first determines what nodes would
be in MC if ™™C Were infinitely large (as determined by Observation 3). The value of
TMC is then continuously lowered from o to its optimal value, and the algorithm performs
the sequence of changes in the membership of MC that Observation 3 requires. Every time
the membership of MC changes, the right—hand side of (72) is updated. The algorithm
determines that the optimal value of 7y~ has been found when (72) holds. The
algorithm has then established the optimal membership of MC.

The algorithm is given below. Step 2 requires that we solve the joint replenishment
subproblems and the one—warehouse, multi—retailer subproblems referred to in Observations

1 and 2 above.
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ALGORITHM 5. MULTIITEM, ONE—WAREHOUSE MULTI—RETAILER SYSTEMS

STEP 1.

STEP 2.

STEP 3.

STEP 4.
STEP 5.

STEP 6.

Let 7 =K r/ g, rek Sort these values and list them from the largest to
the smallest.

For all je J, solve the joint—replenishment problem formed by the graph
G({j}up j). For all w e W, solve the corresponding one—warehouse, multi—

tetailer problem over the graph G({w} Us_). Let A= ( EL K)/( EL g) for
ieL. ieL,

all jeJ and 7" = (3 K)/(Z g) forall weW.
ieV i€V

w

Insert 7 and 'rW, jeJ, we W, into the previously generated list of rr,

reR. If 7F=7", place 7 before 7" in the list. If A= 7, put 7 in the
list ahead of 7"

Set the major cluster MC = W.

cKi)/ (

Set Tar~=(3 g.). If either the list is empty or the largest
MC ™ e c’

b
M ieM
remaining number 7" on the list satisfies < TMQ o 8O to Step 6. Otherwise:
Remove the largest remaining number 7 from the list.
If neR and (wyn) € A(G) then:
i. IfneV,,set MC « MC U {n}.
ii. If n¢V,_, create the cluster {n} and set MC«~MC —{n}. (Note:
n may have entered MC via step 5d, or n may not be in MC.
If n € W, create the cluster Vn and set MC ~ MC — Vn’
If neJ,set MC+MC ULn.
Go to Step 5.
The major cluster MC has been determined. If 7~] remains on the list for
some jE€J, Lj is a cluster. If A remains on the list for some T ERNP.
and 1 ¢ Lj ,then {r} is a separate cluster. The remaining 7" on the list do

not correspond to clusters.
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The optimal clusters are MC, plus the clusters identified in Steps 4bii, 4c, and 6. As
before, once the clusters have been found the reorder intervals are computed using Steps 2
and 3 of Algorithm 1.

Some explanatory comments are in order. All w e W are initially in MC. Nodes
w € W leave MC only through Step 5¢c. By Observation 2, whenever Step 5a is executed,
we have we MC. Nodes reR leave MC only through Steps 5¢ and 5bii. By
Observation 2 and Step 5b, whenever we execute Step 5¢ we have V e MC. Nodes 1€ R
join MC only in Steps 5bi and 5d. When Step 5bii is executed, either node n has joined
MC via Step 5d, or node n is not in MC and the composition of MC does not change.

We now give a numerical example. The system consists of three items stocked at
three retailers and one warehouse. The graph for this system is displayed in Figure 12 and

the data for the problem are given in Table 2.

nodeij]t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ki143211112113251

gi8111351112261000

TABLE 2

Problem Data

The solutions to the one—warehouse, three—retailer problems and joint replenishment

problems are as follows.
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n=1  V,={147,10}, 7' =5/12,
n=2: v, = {2}, ? =4

n=3  Vy={312}, =3
n=13 Ly, ={1356}, r°=1/2
n=14 Ly, = {14789}, ' =3.
n=15 Ly ={1511}, 7> =1/3,

The list generated in Step 3 is:

nl2 14 12 3 9 4 8 7 13 10 1 15 5 6 11
Mla 3 3 3 2 2 1 1 12 1/2 5/12 1/3 1/3 1/5 1/6

The optimal clusters are:
N(G,) = {11,158} with T*(1) = I3,
N(G,) = {5,6,10,13} with T*(2) = yI/2,
MC = N(G,) = {1,4,7,14} with T*(3) = 0710,
N(G,) = {8} with T*(4) =1,
N(Gg) = {9} with T*(5) =2,
N(Gg) = {3,12} with T*(6) =3, and
N(G,) = {2} with T*(7) =2.

The second system for which an efficient solution algorithm has been developed
generalizes the multi—item, one—warehouse, multi—retailer system. In this system a number
of items are distributed through a distribution network. The locations of the distribution
network are indexed by £, 0<£< L. All goods enter the system at location L —1. Each

location £ < L —1 receives its supply of all items it stocks from a unique predecessor
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location (£ ) > £. Identifying locations with nodes and predecessor—successor relationships
with arcs yields the location arborescence illustrated in Figure 13.

The set of items stocked in the system is .7 . At location £, eachitem Je€ J has a
constant demand rate (possibly zero) and a linear echelon holding cost rate. At each
location, external demand can occur for any or all of the items. When an order for a set of
items is placed at a location £, the required amounts of inventory are instantly transferred

from location ¢(£) to location £.

FIGURE 13

The Location Arborescence

Order costs are associated with subsets f(i), 1<i<I of J called families. We

assume that

if f(i)nf(i’)# ¢ then either f(i) c f(i’) or f(i’) c (i) (73)
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Since items interact only through families, we assume without loss of generality that family
F(I) contains all of the items. For convenience we also assume that each individual item
constitutes a separate family.

To illustrate, suppose that the items stocked are 1 (ice cream), 2 (frozen meat),
and 4 (canned peas). The cost of providing a truck is incurred every time an order is
placed. This cost is associated with the family {1, 2, 4}. If either or both of items 1 and
9 are ordered, the truck will have to be refrigerated. The incremental cost of providing a
refrigerated truck is associated with the family {1,2}. In addition, there is an
administrative cost for each distinct item included in the shipment. This cost is associated
with each of the families {1}, {2}, and {4}.

For each family F(j), we define the successor f(j) of j by letting F(6(j)) be the
minimal family that properly contains the family F(j). The uniqueness of A(j) follows
from (73). The family arborescence is defined by associating nodes with families and arcs
with predecessor—successor relationships. Figure 14 shows the family arborescence for the
simple, three—item example described above.

We index the location—family pair (F(i),{) by n=i+ {I. Associated with each
such pair is an order cost le1 = Ki 4T The cost K; v is incurred at every point in
time at which an order is placed for any item in F(i) at location £. Thus,if SC J is the
set of items ordered at location £ at time t, the total order cost incurred at location £ is

¥ K! _ The extended bill of material network G of this system is defined as
Fi)ns#p e
follows. The node set of G is N(G)={i+£L:1<i<I, 0<£< L}, the set of all

location—family pairs. The arc set A(G) of G consists of all inventory arcs of the form
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FIGURE 14

The Item Arborescence
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FIGURE 15
The Extended Bill of Material Network G

86



(i + @(f)L, i + £1), and of all order cost arcs of the form (i + L1, (1) + f). G isillustrated
in Figure 15. Since I=5 and 13=3+ 2 x 5, node 13 corresponds to item 3 and
location 2. Note that the nodes in each column of Figure 15 correspond to a location and
that the nodes in each row correspond to a family.

For this system an O(LID log LI) algorithm has been developed where D is the
depth of the item arborescence depicted in Figure 14 (Roundy (1987)). For most real—world

systems D will seldom exceed five.

8.4 Models with Submodular Ordering Costs

Given a finite set of stages N let P(N*) be the set of all subsets of N*. The
function K:P(N*)-R is said the be submodular if K(S) + K(T) 2 K(SNT)+K(SuT)
for all S,T € P(N*). K is said to be monotone if 0 =K(¢) and K(S) < K(T) whenever
ScT. In this section we consider a model in which the cost of placing an order is a
monotone submodular function of the set of items being ordered.

The model we consider is an extension of the models of section 6 and subsection 8.2.
We are given a circuitless bill of material network G with node set N(G) and arc set
A(G). Each node corresponds to a stage at which a single part is stocked. As before,
echelon holding cost rates and demand rates are associated with each stage. The
assumptions that time is continuous, orders are instantly delivered, demand is deterministic
and constant, and stockouts are not allowed apply to this model as well.

The model of this subsection differs from our earlier models in that our order costs
are determined by a submodular function K mapping P(N(G)) into R. Whenever an
order is placed the total order cost incurred is K(S) where § is the set of items being
ordered at that point in time. By contrast, the systems we studied in sections 3 through 7

had order costs of the form K(S)= X K . These order costs satisfy K(S) + K(T) =
nes
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K(SUT) + K(SnT),ie., they are modular. The systems considered in sections 8.1 and 8.3

are special cases of the family model of section 8.2. In this model K(S) = ) K.
feF:InS#¢

Because K20 V {, this is a submodular order cost function. Other interesting examples of
submodular order costs are given by Zheng (1987).

The task of finding a nested powers—of—two policy for systems of this type can be
formulated as a nonlinear integer program (NIP) similar to the ones we have formulated in
earlier sections. The approach used to compute a policy is also similar to the approach we
have used in earlier sections, and the same results on the relative cost of the policies
computed apply (Queyranne (1985), Zheng (1987), Federgruen, Queyranne and Zheng
(1989)). We first relax the integrality constraints in NIP and solve a continuous
optimization problem. We then round off the resulting order intervals to powers—of—two
using Step 3 of Algorithm 1. The continuous relaxation of the NIP is solved using a direct
analog of the divide and conquer algorithm of section 6. In the divide and conquer algorithm
of section 6, a maximum flow problem was solved in each iteration. For this model a
maximal polymatroidal network flow problem is solved at each iteration.  This
polymatroidal network flow problem has special structure, and Zheng (1987) has developed a
special-purpose algorithm for solving it. The algorithm has a running time of O(n4d). Here
d is the time required to answer the following question: Given j, 1¢ j<mn, and a vector

x=(x20:1<i¢ n) that satisfies X x; < K(S) for all S c N(G), find the largest amount

i€S
by which X; can be increased without violating any of the inequalities ¥ x, < K(S),
i€S
S ¢ N(G). In practice one would hope that the systems being modeled have special structure
which allows this computation to be performed easily.
For the special case of a joint replenishment system with submodular costs, in which
the network G has no arcs, a much more efficient algorithm exists. Before describing the

algorithm we consider what the average cost of a powers—of—two policy is. Suppose that we
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are given clusters Cl’ C2, ey CN’ that all nodes i€ Ck place orders once every T(k)
days, that T(k) = 29T, €(k) integer, and that T(k)¢T(k+1) for all k. The

N
average holding cost incurred per day is clearly ) g(Ck)T(k) where, as before,
k=1

g(C) =2 g . Let T(N+1)=o and let Cy =
1ECk

U C,. On the average, once every
<k ¢

-1
1 1 . . . ~
[T(H_Tm—fﬂ days an order is placed f(;\; the items in Gy and no others.
. . = 0 = 1 1
Therefore, the der cost incurred is ¥ K(C [ - } Thus the
ereiore average orger St 1ncurr 1 o ( k) Tm m

average cost of the policy is

12( [(R(C,) — K(Cy_1))/T(k) + g(C)T(k)]
where Cj = ¢.

As before, we initially ignore the integrality constraints and compute clusters by
solving a convex, nonlinear optimization problem. In the solution to this problem, the

reorder interval for nodes in cluster Ck is
SA N R(E 1/2
T (k) = [(K(C,) — R(C,_y /8GO 2. (74)

For a given set of clusters Cl’ N CN, Cg = Ck, and for each node set

U
k<?
The function K / is itself a monotone submodular function on the subsets of C K
The algorithm used to compute the clusters is similar to the Divide and Conquer Algorithm
of section 6. It starts with all nodes in a single cluster, and successively splits clusters into

smaller clusters, until the final set of clusters has been identified. The algorithm follows.
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ALCORITHM 6. JOINT REPLENISHMENT SYSTEMS WITH SUBMODULAR OrpER COSTS

STEP 0. Set N«1, £+1, C1 - {1,2,...,11}.

STEP 1. Find a maximal vector X = (X;:i€C,) satisfying 'ESXi <K,(S) for all
i€

. / =
SCC, and X, < UY forall i€ Cy, where Uy = gK,(C))/g(Cy):
STEP 2. Set A «sat (X) where sat(X) is the (unique) maximal subset of C,
satisfying % X, = K (sat (X)).
iesat(X)

STEP 3. If A=C, then set £«{¢+1 and go to Step 4 (CE is one of the clusters).
If A#CE then set Ne&«N+1, Cm_H(-—Cm for each m > £,
Cpiq ~C,\A,and C, ~A.

STEP 4. If /=N + 1 then go to Step 5. Otherwise go to Step 1.

STEP 5. Compute T*(k) for each cluster k using (74). Then compute the reorder

intervals T, of the items using Step 3 of Algorithm 1.

The running time of this algorithm depends on the amount of time required to
perform Steps 1 and 2. In practice one would hope that the function K has special
structure which enables these computations to be performed easily. For a more complete

discussion of this model and algorithm, see Zheng (1987).

9. NON-NESTED POLICIES

In sections 3 through 8, we have restricted ourselves to stationary nested
powers—of—two policies. For the systems of sections 3 and 4, nested policies were optimal.
However for the other systems we have considered, optimal nested policies can be seriously
sub—optimal. Suppose for example that we are modeling a three—stage distribution system.
Stage one (the factory) supplies two outlets, stages two and three. The factory is in Albany,

outlet one is in New York City, and outlet two is in Singapore. The problem data is in
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Table 3 below. The time units are weeks. The demand rate A at the Singapore outlet is

very low, and the order cost K there is very high.

Stage 1 Stage 2 Stage 3
Factory New York Singapore
Order Cost 1 1 K
Demand Rate 0 2 A
Echelon Holding Cost 1 1 1
TABLE 3
Problem Data

A reasonable policy for this system is to place orders at the factory and at the New
York outlet on a weekly basis, and to place orders from Singapore approximately once every
JVKT7X > 1 weeks. However, if a nested policy were followed, an order could not be placed at
the factory unless a simultaneous order were placed in Singapore. A nested policy would
incur either high inventory costs at the factory due to a long reorder interval there, or high
order costs at the Singapore outlet due to a low reorder interval there, or both. For several
sets of problem parameters, the effectiveness of an optimal nested policy is illustrated in
Table 4. The effectiveness is the ratio of the cost of an optimal policy to the cost of an

optimal nested policy.

K == K = 32 K - o
A=1/2 96% 75% 58%
A=1/32 82% 44% 17%
A=0 73% 29% 0%
TABLE 4

Effectiveness of Optimal Nested Policies
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As this example illustrates, nested polices tend to become seriously sub—optimal
when relatively high order costs are combined with relatively low demand rates. In this
model, n retailers with order costs of K and demand rates of A have the same effect as
one retailer with an order cost of nK and a demand rate of n). Therefore no individual

retailer needs to have an uncommonly high order cost for nested policies to perform poorly.

9.1 Algorithm for One—Warehouse, Multi—Retailer Systems

Consider a single warehouse (stage 0) which supplies a number of retailers (stages
1 through n). The order cost at stage i is K., the echelon holding cost rate at stage i is
hi’ and the demand rate at retailer 1> 1 is }‘i . The bill of material network is illustrated
in Figure 16. As before, we seek to minimize the total order and inventory costs subject to

the constraint that all demand must be met without stockouts.

FIGURE 16

One Warehouse, Multi—Retailer System

In earlier sections we restricted attention to stationary nested powers—of—two policies
which satisfy the Zero—Ordering Property. In this section we drop the assumptions of
stationarity and nestedness, and study powers—of-two policies that satisfy the

Zero—Ordering Property. This means that orders are placed at equal intervals of time which
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are powers—of—two multiples of TL, and that the inventory at a stage is zero every time an
order is placed there.

Let orders be placed at stage 1 once every ’I‘i days. Let g = %hi’\i and let
gi = %hO)\i . Let T= (TO, v, T n) be a powers—of—two policy satisfying the
Zero—Ordering Property. For the purpose of computing holding costs, we separate the
inventory at the warehouse into n categories, according to the retailer to which it will be
shipped. Let hi(TO’ Ti) be the average annual cost of holding inventory at the warehouse
that is destined to be shipped to retailer i, and of holding inventory at retailer i. We will

show that
i
hi(TO’Ti) = giTi +g (TO v Ti) (75)
where V denotes the maximum.

CASE 1: Ti > TO. In this case the warehouse places an order simultaneously with every
order at the retailer. Therefore no inventory for retailer i is ever held at the warehouse,
and the only costs to be considered are the costs at the retailer. As in the familiar

single—item model,

hi(TO’ Ti) = (gi + gl)Ti )
which agrees with (75) if T; > T,

CASE 2: T;<Ty. In this case it is convenient to use the echelon method of computing
order costs. We consider only those goods that will eventually be consumed by external
demand at retailer i. The total system inventory of these goods follows the familiar

sawtooth inventory pattern with an order interval of TO . The inventory at retailer i

93



follows a sawtooth inventory pattern with order interval T, . Therefore the average cost of

holding all inventory in the system that is destined to be consumed at retailer i is
_ i
hi(TOa Ti) = giTi +8 TO )

which agrees with (75) when T, < T, .

Therefore the average cost of a powers—of—two policy is given by

K; i
(9= m+ ) lgT+e(TyvTl (76)
>0 ' i

Since we are considering powers—of—two policies satisfying the Zero Inventory Ordering

Property, the only constraint on the order intervals is

L.
T, =2 'Ty, ¢ integer, T > 0. (77)

Therefore, the problem of finding an optimal powers—of—two policy is the problem of
minimizing (76) subject to (77).

We use the same basic approach that we have used in earlier sections. We first relax
(77) and minimize (76) over all non—negative J (Roundy (1985)). We then round—off
the reorder intervals thus computed to integer powers of two. We use Step 3 of Algorithm 1
if Ty is fixed, and we use the algorithm in Roundy (1985) if T is variable. In the former
case the cost of the policy is within 6% of the minimum of (76), and in the latter case the
cost of the policy is within 2% of the minimum of (76).

Tt is possible to show that the minimum of (76) is in fact a lower bound on the
average cost of any feasible policy whatsoever. In sections 5 and 6 we computed policies

whose costs were close to the cost of an optimal nested policy, but optimal nested polices can
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be far from optimal. The policies we compute in this section have costs that are close to the
cost of an optimal policy.

What remains is to show how (76) can be efficiently minimized. The intuition
behind the algorithm is as follows. There are three kinds of retailers. Those retailers who
place orders less frequently than the warehouse does are in category G. If

g* = (T}:1<i <n) minimizes (76) then local optimality and (76) dictate that

TF =/ K,/(g; + &) > T if i€G. (78)

Those retailers who place orders more frequently than the warehouse does are in category L.

Local optimality and (76) dictate that

=/ K./g < T if i€L. (79)

1

Finally, those retailers who place orders simultaneously with the warehouse are in category

E. Local optimality and (76) dictate that they place orders once every

=K, + & KJ/[3 (g +8)+ > ¢ 80
0 0" ik ¥ ieE ! )ieL] (80)

days. The algorithm searches for sets G, L, and E that satisfy (78)— (80). It is given

below.
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ALGORITHM 7. NON—NESTED PoOLICIES FOR ONE—WAREHOUSE MULTI—RETAILER SYSTEMS

STEP 1. Calculate the reorder cycles 7/, = [Ki/(gi + gi)]l/ 2 and T, = (K,/ gi)l/ 2 and
sort them to form a nondecreasing sequence of 2n numbers. Call this sequence 5. Label
each teorder cycle with the value of i and with an indicator showing whether it is the

conventional reorder cycle 7: or the echelon reorder cycle T, .

STEP 2. Set E=G=¢, L={I,.,n}, K=Ky and H= 3 g
i>1

STEP 3. Let 7 be the largest element of S. If 72 >K/H and 7=r7; is an echelon
reorder cycle, remove 7 from S and update E, L, K, and H by E«EU({i},
LeI\{i}, K+~K+XK; and HeH+g. Then go to Step 3. If 2> K/H and 7= 1] is
a conventional reorder cycle, remove 7 from S and update E, G, K,and H by

E«E\{i}, G~GuU{i}, H-H - gi —g; and K-K-K; and go to Step 3. Otherwise,

the current sets G, L, and E are optimal. Go to Step 4.

STEP 4. Set T; = (K/H)1/2 Then T’f = '1"0k for all retailers i € E, and T’; for retailers

not in E is given by (78) and (79).

The sort in Step 1 requires O(nlogn) comparisons. All other phases of the

algorithm require a number of operations that is linear in n.

9.2 The Extended Bill of Material Network

We return momentarily to the three—node example at the beginning of section 9. In
this example, we could conceptually separate the inventory at the factory into two
categories; the inventory that will be shipped to New York and the inventory that will be

shipped to Singapore. We could then assign separate reorder intervals to these two
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categories of inventory. At the factory we could order inventory bound for New York once
per week, and order inventory bound for Singapore approximately once every yK/X weeks.
In this way we would succeed in managing the system effectively while preserving much of
the structure of stationary nested powers-of-two policies.

This is essentially what the algorithm of section 9.1 does. We can interpret it as an
algorithm which computes nested policies on a modified bill of material network. The bill of
material network in Figure 16 is modified in the following way. We split the warehouse into
n + 1 different stages, labeled 0, n+ 1, n +2,..2n. Stage 0 represents the joint order
cost at the warehouse. Stage i, 1<1i < n, represents retailer i, and stage n + i, 1<i<m,
represents the inventory at the warehouse that will be shipped to retailer i. The bill of
material network associated with this system is illustrated in Figure 17. Table 5 lists the
data associated with each stage. Note that relative to the network of Figure 17, the policies
of subsection 9.1 and Table 5 are nested. Also note that the sum of the average costs
associated with the stages corresponds to the total average cost of the policy J is given by

(76).

Stage Order Holding Cost Reorder Average
Index Cost Coefficient Interval Cost
| | Ky 0 T, K, / g
i,1<i<n K, gi T, Ki./Ti +gT;
n+i,1<i<n 0 g T,V T, g(Ty v Ty
TABLE 5

Data for the Stages
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This example illustrates our approach to overcoming the limitations of nested
policies. We transform the original bill of material network into an expanded network in
which nested policies are near—optimal. This is accomplished by partitioning the inventory
at each stage into classes according to the way in which the goods will be routed through the
system. We treat these different classes of inventories as if they were distinct stages, and
allow them to be controlled by different reorder intervals. This approach allows us to
compute policies that are known to be near—optimal for systems with general bill of material

networks.

FIGURE 17

Non—Nested Policies for One—Warehouse, Multi—Retailer Systems
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We now describe a procedure for transforming an arbitrary bill of material network
into an expanded network on which nested policies are near—optimal. Assume that we are
given a bill of material network G with node set N and arc set A. This network may
contain order cost nodes and order cost arcs (see section 8.2). The following data are
associated with the network. For each node i € N there is an order cost Ki > 0, an echelon
holding cost h. >0, and a demand rate A, 2 0. For each arc (i,j) € A there is a gozinto

coefficient Vi 2 0. This data is sufficient to define an instance of the production planning

j?
problems of sections 3 through 6 and section 8, with the exception of the submodular cost

models of subsection 8.4. We make the following assumptions.

PROPERTY 1. G is an acyclic directed graph.
PROPERTY 2. If no arcs emanate from node i in G, then Ki > 0.
PROPERTY 3. If no arcs lead into node i in G, then g > 0.

As mentioned in section 8.2, these properties guarantee that the reorder intervals will be
positive and finite.

In this subsection it is convenient to use the ezternal demand rates D, i€ N(G) for
the nodes rather than the total demand rates ;i€ N(G) that we use elsewhere. The

external and total demand rates are related via the equation

A=D.+ I . AV ieN(G).
ool (j)ea(q) VY

An arc (i,j) € A(G) is an inventory arc if %> 0, and it is an order cost arc if
% = 0. A common part node is a node with more than one emanating inventory arc, or a
node with one emanating inventory arc and with a positive external demand rate. The

constraint that a nested policy must be followed can cause trouble at common part nodes.
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The algorithm we use to transform the bill of material network is iterative in nature.
We say that node i precedes node j in a network if there is a directed path from i to j
in the network. At each iteration the procedure selects a common part node i that does not
precede any other common part node in the network. It then makes local changes to the
network by splitting node i into several different nodes, none of which is a common part
node. The algorithm terminates when no common part nodes are left.

The iterative step of the algorithm is illustrated in Figure 18. There is an order cost
associated with the family {2, 3}, which is represented by node 0. All arcs not adjacent to
node 0 are inventory arcs. Initially, node 2 is the only common part node. Nodes 2, 3,
and 4 have positive external demand rates.

The iterative step of the algorithm is as follows. Let node i be the common part
node selected (node 2 in the example). Node i is split into a number of different nodes.
For every inventory arc (i,j) emanating from node i there is a new inventory node n(i,})
(nodes 5 and 6 in the example). The inventory of i that will be used to make part j is
associated with n(i,j). Node n(i,j) inherits a copy of each arc leading into node i, and it
inherits the arc (i,j) leading out of node i. The order cost and the external demand rate
for node n(i,j) are both zero, and n(i,j) inherits the echelon holding cost rate of node i. If
D, > 0 then there is a new demand node n(i,d) (node 7 in the example). The inventory
of i that will be used to satisfy the external demand at i is associated with n(i,d). Node
n(i,d) inherits a copy of each arc leading into node i. The order cost for node n(i,d) is
zero, and n(i,d) inherits the holding cost rate and the external demand rate of node 1.
Finally, a node n(i,K) (node 8 in the example) is used to account for the order cost. The
holding cost rate and the external demand rate for node n(i,K) are zero, and n(i,K)
inherits the order cost of node i. Node n(i,K) also inherits all order cost arcs leading out
of node i. We create a new order cost arc from each new inventory node n(i,j) to node
n(i,K), and from the new demand node n(i,d) (if there is one) to node n(i,K). Figure

18(b) shows the network at the end of the iteration.
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Note that none of the nodes created during the iterative step is a common part node.
However, in the example of Figure 18, node 1 has become a common part node. The next
iteration will split node 1 into several nodes. Figure 18(c) displays the result. In this
network there are no common part nodes, so the procedure terminates. Another example of
how a bill of material network is transformed by this algorithm is given in Figure 19. In this

figure, initially all arcs are inventory arcs.

(a) G
FIGURE 18

The Transformation from G to G*

Legend: (Order Cost, Echelon Holding Cost, Ezternal Demand Rate)
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(b) End of First Iteration

(0. h1 . 0)

(c) G
FIGURE 18

The Transformation from G TO G*

Legend: (Order Cost, Echelon Holding Cost, External Demand Rate)
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(b) G*
FIGURE 19

The Networks G and G*

103



The iterative step of the algorithm preserves Properties 1 — 3 listed above, so the
algorithm produces a network and associated data that can be interpreted as a bill of
material network. Let G be the original bill of material network, and let G* be the
transformed bill of material network. Recall that in all bill of material networks, policies
must be nested on setup arcs in order to be feasible. We have discussed how inventories are
associated with the nodes of G™. Using this association, one can easily show that any
feasible policy for G corresponds to a feasible policy for G* that has the same cost, and
vice—versa. Therefore either of these networks can be used to model the system being
studied. Policies that are nested in G are nested in G*, but not vice—versa. The
advantage of G* lies in the following fact: whereas an optimal nested policy can be far
from optimal, there is always a policy that is nested in G* and is within 6% of optimal.
More precisely, the solution of the continuous relaxation of the lot sizing problem (problem
(35) of section 6) for G* is a lower bound on the cost of any feasible policy whatsoever
(Roundy (1986)). Consequently, by applying the algorithms of section 6 to G*, we can
compute a policy that is within 6% of optimal if the base planning period is fixed, and
within 2% of optimal if it is variable.

The network G* is very sparse. For example, if G has no order cost families then
each node of G* has at most two emanating arcs, so |A(G*)| < 2|N(G*)|. However, in
the worst case, |N(G¥)| is exponential in |N(G)|. Let F(G) be the set of finished
products in G, i.e., the set of stages or nodes in G that have positive external demand, and
let R, j be the number of directed paths from node i to node j in G. It can be shown

that if there are no order cost families then |N(G¥)| < |N(G)| + In

b R;..
ieN(G),jeF(G) Y
most real-world bill of material networks [Rij] is O(1). For this reason, a quick and crude
estimate of |N(G®)| is |N(G)|  (F + 1) where F is the average over all i€ N(G) of

the number of finished products that require part i. For the industrial system illustrated
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section 6, |N(G)| =94, |F(G)| =4, |N(G")| =282, |N(G)|~(F+1)=294, and
‘Rijl <2 forall i,je N(G).

Zheng (1987) has proposed using a different network G** in place of G*. The
networks G* and G** are equivalent in terms of the policies computed, their costs, and
the lower bound. The advantage of G** is that it is bipartite and has the same number of
nodes as G*. The disadvantage of G** is that it can have as many as
%x IN(G)| = [N(G*)| arcs, whereas G* has fewer then 2 x |N(G¥)| arcs.

Non—nested policies can easily be combined with submodular order costs of the type
considered in section 8.4. See Queyranne (1985), Zheng (1987), Federgruen, Queyranne and
Zheng (1989) for details.

10. OTHER EXTENSIONS
In this section we briefly describe other related research, including extensions of the
models that we have discussed and improved algorithms for computations. We begin with

extensions to the models.

10.1 Lead Times

Suppose that there is a positive, deterministic lead time for preparing a shipment at
the originating stage, for transportation from one stage to another, and for receiving the
shipment at the destination stage. We assume that these lead times are dependent only on
the two stages involved. In particular they are independent of the quantity of the order.
Lead times of this sort can often be incorporated without causing a drop in the performance
of the policies we have discussed, or a significant amount of extra computation.

For the serial, assembly, and single—item distribution systems discussed in sections 3,
4, and 5, we handle lead times by initially ignoring them. After a schedule has been
computed, the orders at each stage are simply translated forward or backward in time by an
appropriate amount. The theorems on the worst—case relative cost of the resulting schedule

still apply.
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The multi~item distribution systems discussed in subsection 8.3 can be handled
similarly. Assume that the lead time for processing and shipping an order is a function only
of the two locations involved; it is independent of which items are ordered and of the order
quantities. Once again, we initially ignore the lead times. After a schedule has been
computed, the orders at each location are translated forward or backward in time by an
appropriate amount.

For systems with arbitrary bill of material networks, such as those discussed in
sections 6 and 8.2, lead times can be handled in a similar way without causing a decrease in
system performance if the lead times are "balanced" (Roundy (1986)). This condition holds
if the bill of material network G has no cycles, but it is likely to fail for networks with
cycles unless some very special structure, such as the structure of multi—item distribution

systems, is present.

10.2 Finite Production Rates

Often a stage is a manufacturing operation, and production occurs at a finite rate.
Recently several researchers have constructed detailed models of the finiteness of the
production rate, the way in which material is transferred from one stage to another, and the
impact that this has on intervening inventories. The impact is clearly larger if the
production rates are small compared to the echelon demand rates. Schwarz and Schrage
(1975) consider an assembly system of the type discussed in section 4 under the assumption
that material is transferred from one stage to another only after a batch is completed.
Karimi (1987) studied a two—stage serial system with finite production rates and continuous
transfer of material from one stage to another. Szendrovits (1975) studied serial systems in
which a single reorder interval T is used at all stages, and material is transferred between
stages in transfer batches of size b, 1<b< T\, where A is the demand rate. Atkins,

Queyranne, and Sun (1989) have obtained policies that are within 6% of optimal for
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assembly systems with finite production rates in which the processing rate at the successor

of node n is not less than node n’s processing rate, for all n.

10.3 Bounds on the Reorder Intervals

As was mentioned earlier, any of the lot—sizing models considered herein can be
enhanced by adding the constraint

¢ 7

2 Tp <T; <2°T ¥ ieN(G).

The only change required in the algorithms is the simple alteration to the roundoff procedure
described in section 3.4. All claims of optimality and near—optimality can be shown to
apply.

In many cases one would like the lower and/or upper bound on Ti to be different for
different values of i. Recently Zheng (1987) has provided a general algorithm for solving
this problem which is similar in spirit to the divide and conquer algorithm. He has also
shown that the policies computed in this way have provably near—optimal costs. Best and
Chakravarty (1987) have developed efficient algorithms for the continuous relaxation of the

lot sizing problem for serial systems.

10.4 Fixed Batch Sizes

Anily and Federgruen (1986) have studied a multi-item, two—level system in which
the top level consists of a single stage which produces a single generic part in batches of fixed
size. The second level consists of a step in which the generic part is transformed into any of
several different parts, each of which has constant demand. Traditional holding costs apply
at all stages. Order costs are also present, but the way in which they are modeled is
non—standard. They present efficient algorithms for computing policies that are known to

be within 6% of optimal.
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10.5 Algorithms for Special Bill of Material Structures

There are several other algorithms that have been devised for solving the continuous
relaxation of the lot sizing problem (Problem (35) of section 6) for different bill of
material networks G. Some of these were developed for the problems of isotonic regression
and precedence—constrained single—machine scheduling (Roundy (1986)). For serial
networks a linear—time algorithm exists (Ayers et al. (1955), Best and Chakravarty (1987)).
For series—parallel digraphs an O(nlogn) algorithm exists (Lawler (1978)). For the
assembly system of section 4, a linear—time algorithm based on median-finding was recently
developed by Queyranne (1987). An O(nlogn) algorithm for arbitrarily directed trees has
been developed by Jackson and Roundy (1985).

10.6 FEfficient Algorithms for Systems with Fixed Bage Planning Periods

The divide and conquer algorithm of section 6 for solving the continuous relaxation
(35) of the lot sizing problem (34) can be described as follows. We first assume that all of

the stages are in a single cluster. We compute the reorder interval 7= [(¥ K,)/(Z gi)]l/ 2
i i

that this cluster would use. We then set the reorder intervals of all stages equal to 7 and
we attempt to prove that all stages are in a single cluster by finding a feasible dual solution
for (35). Dual solutions correspond to feasible flows in a certain network. If we find a
feasible solution, we know that we were correct in assuming that one cluster contains all of
the stages. If we do not find one, we find a minimal cut which divides the nodes of G into

2 > 7 and those nodes i for which T’;Z < T, where

two classes; those nodes i for which T’ik
(T’;: 1<i<n) solves (35). This information allows us to decompose the original problem
(35) into smaller subproblems of the same type.

The computations described above can be performed for any value of 7. In

particular, if T, is given and we use 7= 2£+1/ 2, the algorithm will tell us which stages 1

satisfy T’;Q > 7 and which ones satisfy T;‘z < 7. By repeating this computation for
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selected integer values of £, we can identify integers £, 1€ N(G) such that

2 T <T; <2 Ty, without ever finding the exact value of T;. The round—off

L.
procedure (Step 3 of Algorithm 1) will select T, =2 1TL, which determines our policy.
This idea is due to Zheng (1987). Assuming that the number of different values of £
that we need to consider is uniformly bounded, he has obtained improved running times for

many of the models discussed herein.
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