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Abstract 

 
House flies are important vectors of a number of animal and human pathogens, 

thus controlling them is of great importance.  Commercial insecticide control of house 

flies is limited to a few chemicals, and the development of resistance to these chemicals 

is an ongoing concern.  Therefore, finding new effective insecticides is critical.   

Spinosad is a relatively new promising insecticide that was released in 2005 for 

house fly control.  It is derived from the bacterium Saccharopolyspora spinosa.  It is 

highly effective against pest species and is thought to have a unique mode of action.  A 

resistant laboratory house fly strain was developed and studies indicate the resistance 

mechanism is unique, recessive, and located on autosome 1.   

Although house fly resistance to spinosad has been developed in the laboratory, 

resistance in field populations has not been characterized.  In this study I monitored 

spinosad resistance at several dairy, hog and poultry farms over the summers of 2004 and 

2005.  Results showed that there was a variation in baseline susceptibility between 

different field sites, but no development of resistance was observed.  Due to limitations of 

insecticide bioassays, developing a more sensitive resistance detection method and 

identifying the gene responsible for resistance will be important for future monitoring 

programs. 

As part of an important step in determining the gene for resistance, I linked a 

number of nicotinic acetylcholine receptor (nAChR) subunits to a particular house fly 

autosome.  Spinosad toxicity is due to interactions with nAChRs and is associated with 

autosome 1.  Of the four genes analyzed, two (Mdα5 and Mdα6) were associated with 
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autosome 1, one (Mdα2) was associated with autosome 2, and one gene association 

(Mdβ3) was not determined.   

Lastly, I assessed the fitness effects of spinosad resistance on mating competition.  

I found that a laboratory susceptible strain had a mating advantage over a laboratory 

spinosad resistant strain. 
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Chapter 1: Introduction

 

1.1 Importance of the House Fly and its Control 

House flies are important vectors of diseases.  They have been found to carry and 

transmit the deadly bacteria Escherichia coli O157:H7 (Iwasa et al. 1999, Sasaki et al. 

2000), and are likely vectors for over sixty five human and animal intestinal diseases 

(Greenberg 1965).  A more recent study found that house flies act as mechanical vectors 

of Vibrio cholerae, the pathogen responsible for cholera (Fotedar 2001). Therefore, the 

control of house fly (Musca domestica L.) populations is of extreme importance.   

 The most common method for control of house flies is through the use of 

insecticides.  Over the past seventy years, a variety of chemicals have been used to 

control house flies including chlorinated hydrocarbons, organophosphates, carbamates 

and pyrethroids (Shono et al. 2004).  Today, commercial house fly control is limited to a 

few organophosphates, one carbamate (methomyl), pyrethrins and two pyrethroids .  

Unfortunately, house fly populations can rapidly evolve resistance to insecticides, which 

limits our ability to control them. 

Resistance in house flies has become a global problem (Pospischil et al. 1996, 

Keiding 1999, Cao et al. 2006).  This problem is exemplified with the widespread 

resistance to organophosphates (OPs) and pyrethroids.  OP resistance is prevalent and 

aptly summarized in Keiding’s review (1999).  A house fly survey in 1999 showed that 

resistance to permethrin in particular has increased since 1987 in New York dairies 

(Kaufman et al. 2001).  In certain New York poultry facilities, resistance has severely 

decreased the efficacy of permethrin, cyfluthrin and pyrethrins (Scott et al. 2000). 
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1.2 General Background on Insecticide Resistance in House Flies 

 Resistance to insecticides has been documented in over four hundred arthropod 

species (Georghiou and Mellon 1983).  This phenomenon arises from three causes: target 

site insensitivity, metabolic detoxification and/or decreased penetration (Oppenoorth 

1982). 

 Resistance to organophosphate insecticides, for example, is often the result of 

target site insensitivity.  Organophosphates inhibit the enzyme acetylcholinesterase 

(AChE), which hydrolyzes the neurotransmitter acetylcholine (Eldefrawi 1985).  House 

fly resistance to these insecticides is a result of insensitivity of AChEs to the compounds 

through mutations in the gene coding for the enzyme (Tripathi and O'Brien 1973, Kozaki 

et al. 2001, Walsh et al. 2001).  Insecticide resistance through increased metabolic 

detoxification, primarily from P450 monooxygenase or esterase activity, is one of the 

most important mechanisms of insecticide resistance (Oppenoorth 1985).  Pyrethroid 

resistance in both field and lab populations of the house fly is primarily due to increased 

levels of a P450 (Scott and Georghiou 1986) specifically, CYP6D1 (Wheelock and Scott 

1990, 1992, Zhang and Scott 1996, Kasai and Scott 2000). Lastly, decreased penetration 

has been found to be a resistance mechanism in pyrethroid and organophosphorous 

resistant laboratory strains (Plapp and Hoyer 1968, Scott and Georghiou 1986, Shono et 

al. 2002) . 
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1.3 How We Control Resistance 

 As outlined by Georghiou (1983), resistance management takes on three main 

forms: moderation, saturation and multiple attack.  With the moderation tactic, one sprays 

as little as possible so as not to push the population to resistance.  If the selection pressure 

is kept at a minimum, susceptible alleles will remain in the population and thus dilute any 

possible resistance alleles.  A saturation tactic is used if strongly controlling the pest is 

absolutely essential, such as in ornamental crops.  Basically a high dose is used so as to 

kill individuals with both susceptible and resistance alleles. In multiple attack, different 

insecticides with different mechanisms of action are rotated or mixed.  Use of insecticides 

in rotation is often the only practical resistance strategy.  However, the lack of new 

insecticides, especially those acting on novel target sites, is a major limitation to 

resistance management.   

 

1.4 Spinosad Insecticide 

 Spinosad is a relatively new insecticide (Saunders and Bret 1997), introduced by 

DowAgroSciences in 1997 for control of lepidopteran pests (Salgado et al. 1998).  It is a 

fermentation product of the bacterium Saccharopolyspora spinosa.  Spinosyns A and D 

are the two most active components, spinosyn A being the dominant metabolite (Kirst et 

al. 1991).  Spinosad is unique in its class due to its high level of activity, which is 

comparable to synthetic insecticides (Bret et al. 1997b).  Much like other natural 

insecticides, spinosad easily degrades under sunlight.  Half lives for spinosyns A and D 

are 1.6 to 16 days and less than 7 days, respectively, depending on light exposure 

(Saunders and Bret 1997, Thompson et al. 2002).  Studies of spinosad interaction with 
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the soil suggested that there is no concern of leaching (Thompson et al. 2002).  The 

chemical does not have any detrimental impacts to non-target predators, but may pose 

sub-lethal problems for parasitoids (Williams et al. 2003). 

Spinosad is thought to have a unique mode of action.  Exposure to spinosad 

produces involuntary muscle contractions and tremors followed by paralysis (Salgado 

1998).  This suggests that the chemical interacts with the nervous system, causing over 

excitement and death.  Manduca spp. ganglia show greater sensitivity than M. domestica 

L. or American cockroach (Periplaneta americana), consistent with greatest efficacy 

against lepidoptera (Salgado et al. 1998).  The toxicity of spinosad is due primarily to 

interactions with nicotinic acetylcholine receptors (nAChRs) with a secondary site of 

action being GABA receptors (Salgado 1997, Salgado and Sparks 2005).  Spinosad 

resistant laboratory house flies were not cross-resistant to other insecticides, supporting a 

unique resistance mechanism.  This resistance mechanism was linked to autosome 1 

(Shono and Scott 2003). 

Although house fly resistance to spinosad has been selected for in the laboratory, 

resistance in field strains has not been characterized.  The gene responsible for this 

resistance, as well as any fitness costs associated with resistance, are similarly unknown.  

These are all areas that the following research report will explore. 
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Chapter 2: Research Goals

 

 In this study, I examined questions regarding spinosad resistance in M.  domestica 

L.  Three general areas of interest were examined: 1) The monitoring of resistance in the 

field. 2) Identification of nicotinic acetylcholine receptor subunits that might play a role 

in spinosad resistance. 3) The fitness effects of spinosad resistance.  

The driving question behind the first area of interest was: Does spinosad 

resistance develop quickly in the field?  One preliminary indication that it might, arose 

when a field-collected strain was selected in the lab to >150 fold resistance after 10 

generations (Shono and Scott 2003).  Since 10 field generations could easily pass over 

the course of a summer, I hypothesized that we would see a similar rapid development of 

resistance in field populations that were controlled using spinosad at dairy farms over one 

summer.   

Much evidence suggests that resistance is due to a modification in the target site.  

It is first of all known that the toxicity of spinosad is due primarily to interactions with 

nAChRs (Salgado 1997).  Also, metabolic detoxification, which is a common cause of 

insecticide resistance, does not play a role in spinosad resistance in the house fly (Zhao et 

al. 2002, Shono and Scott 2003).  The most recent evidence indicates that spinosad 

resistance can be induced in Drosophila melanogaster through deletion of Dα6 nAChR 

subunit (Perry et al. 2007a).  All these supporting details led me to the question; what is 

the modification in the house fly nicotinic acetylcholine receptor that causes resistance?  

This was an important question, as determining a molecular basis for resistance would be 

useful in monitoring resistance in field populations.  Since the location of the resistance 
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was already linked to autosome 1 (Shono and Scott 2003), linking potential resistance 

genes to a particular autosome would be useful in further identifying good candidate 

resistance genes.  Linkage analysis would be an important preliminary step in the process 

of determining which gene mutation results in resistance.   

The last area of interest is the fitness effects of spinosad resistance. The key 

question I wanted to examine was, how does spinosad resistance impact life history traits 

such as mating?  Previous mating competition studies, in the Culex pipiens mosquito for 

example, have shown that insecticide resistance comes at a cost (Berticat et al. 2002).  I 

hypothesized that I would similarly observe susceptible males out-competing resistant 

males.  Understanding the relationship between resistance and life history could be 

important in assessing the weaknesses of resistant field populations.
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Chapter 3: Resistance Monitoring in the Field

 

Note: This chapter has been accepted for publication (Deacutis et al. 2007), and thus the 

work of other individuals must be credited.  In 2004, the Florida house flies were 

collected by Christopher J. Geden, the New York house flies were collected by C. 

Reasor, and the North Carolina house flies were collected by Wes D. Watson.  In 2005, 

Alec C.  Gerry collected the house flies from California, and Donald A. Rutz collected 

the flies from New York.  The feeding bioassays were conducted by Cheryl A. Leichter.   

 

3.1 Introduction 

House flies, M. domestica L. (Diptera: Muscidae), are major pests in and around 

dairy, poultry and hog facilities.  Given that resistance to organophosphate and pyrethroid 

insecticides in house flies in the USA is widespread (Scott et al. 1989, Scott et al. 2000, 

Kaufman and Rutz 2001, Kaufman et al. 2001, Darbro and Mullens 2004) there is an 

urgent need for new insecticides that are effective against this pest. 

Spinosad is a new and highly promising insecticide, derived from the soil 

actinomycete S. spinosa.  In 2005, spinosad was made available for control of house flies 

in the USA.  Spinosad acts at the nicotinic acetylcholine receptor and has efficacy against 

a wide range of insects, including house flies (Bret et al. 1997a, Scott 1998, Salgado and 

Sparks 2005).  Recently, field collected house flies were selected for resistance (in the 

laboratory), which developed a strain of house fly (NYSPINR) that had high levels of 

resistance to spinosad (Shono and Scott 2003).  This indicates that there is potential for 

the evolution of resistance following repeated use of spinosad in the field.  Isolation of 
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the NYSPINR strain required only ten generations of selection, suggesting resistance 

might be able to evolve in as little a one season.  However, there is no information about 

the baseline susceptibility of field populations of house flies to spinosad, and no method 

in place for resistance monitoring.   

The goals of this study were to identify an effective bioassay method for detection 

of spinosad resistant house flies, to survey for baseline susceptibility to spinosad in field 

collected house flies (i.e.  determine variability between populations) in 2004 and 2005, 

and to determine if we could detect any increase in the frequency of resistant individuals 

at three dairies in California and three dairies in New York following a season of 

spinosad use (2005). 

 

3.2 Materials and Methods  

3.2.1 House flies 

Two reference (laboratory) strains of house flies were used for comparison of 

topical, residual and feeding bioassays (below).  CS (Hamm et al. 2005) is a strain 

broadly susceptible to insecticides and NYSPINR is a spinosad-resistant strain (Shono 

and Scott 2003).  To produce flies that were heterozygous for spinosad resistance (for 

bioassays) we crossed NYSPINR females and susceptible aabys males, a mutant strain 

containing morphological markers (Hamm et al. 2005), and en masse. 

In 2004 (prior to spinosad use), six different strains of house flies (M.  domestica 

L.) were collected at various dairy (Alachua County, Florida; Schuyler and Tompkins 

Counties, New York), poultry (Sullivan and Wayne Counties, New York) and hog (Wake 

County, North Carolina) facilities in the Eastern United States.  The levels of resistance 
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to permethrin, cyfluthrin, pyrethrins, dimethoate, tetrachlorvinphos and methomyl in 

house flies from the Schuyler County dairy and Wayne County poultry facility have been 

previously reported (Scott et al. 2000, Kaufman et al. 2001). 

In 2005, house flies were collected from four dairies (P, M, H and C) in Tompkins 

County New York and from four dairies in San Diego (DV), San Bernardino (AM and 

BJ) and Riverside (BS) Counties, California.  These facilities were chosen because we 

they were willing to participate in this study, they were within collecting distance, and 

because they represented two geographically distant regions (California and New York).  

Two collections were made at each dairy.  The first collection was made before spinosad 

was used (“pre-season”).  A second collection was made at the end of the season (“post-

season”), but while flies were still abundant.  In New York, the dairies applied up to 6 

applications of spinosad, except for the H dairy that served as our no spinosad control.  In 

California, dairies applied spinosad 4-5 times, except for the DV dairy which served as 

our no spinosad control.   

House fly larvae were reared on medium containing 2.3 liters of water, 0.5 kg calf 

manna (Manna Pro Corp, St.  Louis, Missouri), 90 g bird and reptile little wood chips 

(Northeastern Products Corp, Warnersburg, New York), 0.8 kg wheat bran (Agway; 

Ithaca, New York), and 50 g dried active baker’s yeast (ICN Biomedicals, Costa Mesa, 

California).  Adult flies were raised on a mixture of powdered milk and white granulated 

sugar (1:1 ratio by volume) as well as water, ad libitum. 

3.2.2 Bioassays 

Three bioassay methods were evaluated in this study:  topical application to the 

thoracic notum in 0.5 μl of acetone (Shono and Scott 2003), residual exposure in glass 
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jars (Hamm et al. 2005) and feeding.   For feeding assays, spinosad (spinosyns A and D 

(88.5% purity) from Dow AgroSciences, Indianapolis Indiana) was applied (0.25 ml in 

acetone solution) to individual cubes of sugar (Domino Dots, Tate and Lyle, London, 

United Kingdom).  Treated cubes were allowed to dry for at least three hours.  One cube 

of sugar was placed into a 180 ml Sweetheart waxed paper cup with 20 flies and a 2.5 cm 

dental wick soaked in water.  Cups were covered with nylon tulle and secured with 

rubber bands.  All bioassays were conducted with 3-5 d old female flies held at 25°C. 

Mortality was assessed after 48 hr with flies that were ataxic being scored as dead.  

For determination of LD50 or LC50 values using the laboratory strains, a minimum of four 

doses (or concentrations), giving >0% and <100% mortality, were used for each 

replication and the entire bioassay was replicated a minimum of three times.  Bioassay 

data were pooled and analyzed by standard probit analysis (Finney 1971), as adapted to 

personal computer use by Raymond (Raymond 1985) using Abbott's (Abbott 1925) 

correction for control mortality. 

Field collected flies were tested within four generations of being collected.  Field 

collected flies were bioassayed by topical application at the LD99, 3 X LD99 and 10 X 

LD99 of the susceptible strain.  Controls were treated with acetone.  CS flies were 

periodically tested side-by-side with the field collected flies.  Percent mortality was arc-

sine transformed and pairwise differences were evaluated using Students t-test. 
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3.3 Results and Discussion 

Spinosad was toxic to house flies by feeding, exposure to a residue, and topical 

application (Table 3.1).  The NYSPINR strain was resistant to spinosad by all three 

methods (Table 3.1). These results are consistent with target site insensitivity being the 

mechanism of resistance (Scott 1990), as was previously suggested (Shono and Scott 

2003).  Considering the cost (supplies, etc.), efficiency (time per assay) and heterogeneity 

of response (i.e. slope) between the three bioassay methods, we chose to use topical 

application (low cost, time efficient and a low heterogeneity of response) at three 

diagnostic doses to monitor resistance in field populations of house flies. 

To generate baseline data for the effectiveness of spinosad against field collected 

house flies, we determined the percent survival at three diagnostic concentrations 

(susceptible strain LD99, 3 X LD99 and 10 X LD99) by topical application.  Susceptibility 

of the different house fly strains to spinosad varied between collection sites (Figure 3.1).  

At the susceptible strain LD99, survival ranged from 1% (Alachua Co., Florida) to 61% 

(Wayne Co., New York), with all except one facility having <30% survival.  At 3X LD99, 

survival ranged from 0% (three sites) to 2% (Wayne Co., New York).  There were no 

survivors from any strain at 10 X LD99.  The higher percent survival at the Wayne Co.  

New York site (at the LD99 and 3 X LD99) suggests that there may be populations of 

house flies against which spinosad is less effective.  Flies from the Florida dairy were 

highly susceptible, with few survivors at any dose.  Although the highest percent survival 

was seen at two dairies, there was no correlation between type of facility and percent 

survival.     

 15



 Evaluation of the New York dairies in 2005, prior to the use of spinosad, showed 

variability in response to spinosad similar to what was seen in 2004 with percent survival 

ranging from 16-21% at the susceptible strain LD99 (Figure 3.2).  However, survival of 

flies from the four California dairies was lower, ranging from 0.5-3.0%.  Following the 

use of spinosad for fly control during 2005, there was no indication that resistance was 

evolving (Figure 3.2).  To the contrary, the survival following a season of spinosad use 

was significantly lower at two of the collection sites.  It is unknown why the flies 

collected in California were more sensitive (in most cases) than flies collected in New 

York.   

To evaluate the sensitivity of our resistance monitoring bioassay for detection of 

homozygous and heterozygous resistant individuals, we evaluated survival of NYSPINR 

and F1 (NYSPINR females x aabys males) house flies.  The NYSPINR strain had nearly 

100% survival at the LD99 and 3 x LD99 doses, while the F1 had 19% and 0% survival at 

these doses, respectively (Figure 3.1).  Thus, the homozygous resistant house flies 

(NYSPINR) are readily detected, but the heterozygous resistant house flies (NYSPINR x 

aabys F1) are indistinguishable from field collected house flies that have never been 

exposed to spinosad (Figure 3.1).  The highly recessive nature of this resistance 

(combined with inherent variability in the bioassay with field collected flies) will make it 

very difficult to detect heterozygous resistant individuals (at least when they are present 

at low frequencies) in field populations. 

 Our results indicate that there is variation in susceptibility to spinosad in flies 

collected from different sites.  While selection of field collected house flies produced a 

highly resistant strain of house fly following eight generations of selection (Shono and 
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Scott 2003), we did not detect a decrease in percent survival at the diagnostic dose at any 

site following one season of use.  Spinosad works at a novel target site (Salgado and 

Sparks 2005) and resistance in the house fly is highly recessive (Shono and Scott 2003) 

which would be expected to slow the rate of evolution of resistance in field populations 

(Georghiou 1983).  However, spinosad must be used judiciously and periodic monitoring 

of resistance should continue.  Spinosad resistance is highly recessive and heterozygous 

individuals can not be readily detected (especially against the normal variation that exists 

in populations) using insecticide bioassays.  Given this limitation, it will be important to 

identify the gene (and allele) responsible for spinosad resistance so that a more sensitive 

detection method can be developed. 
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Table 3.1.  Comparison of spinosad toxicity to susceptible (CS) and resistant (NYSPINR) 

strains of house fly by three bioassay methods. 

 CS  NYSPINR 

METHOD LC50 OR LD50 (CI) SLOPE (SE)  LC50 OR LD50 RR 

TOPICAL 0.054A (0.049-0.058) 5.8 (0.9)  >10B >150 

FEEDING 2.85C (2.53-3.30) 3.0 (0.3)  >1000D >300 

RESIDUE 0.064E (0.038-0.108) 3.1 (1.6)  >60 F  >900 

 

aLD50 in units of μg/fly at 48 hr (Shono and Scott 2003). 

bLess than 50% mortality at 10 μg/fly. 

c LC50 in units of μg/g at 48 hr. 

d Less than 50% mortality at 1,000 μg/g. 

eLC50 in units of μg/cm2 at 48 hr. 

fLess than 50% mortality at 60 μg/cm2. 
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Chapter 4: Linkage Analysis

 

4.1 Introduction 

The nicotinic acetylcholine receptor (nAChR) is a ligand gated ion channel that 

plays an essential role in the fast excitatory neurotransmission at cholinergic synapses in 

the insect central nervous system (Lester et al. 2004), (Gundelfinger and Schulz 2000).  

The nAChRs are composed of five subunits, typically two α and three non-α  subunits, 

but receptors composed of only α subunits are known (Couturier et al. 1990); (Marshall et 

al. 1990).  

 The toxicity of spinosad is due primarily to interactions with nAchRs (Watson 

2001), and spinosad resistance is associated with autosome 1 (Shono and Scott 2003).  

Thus, associating the receptor subunit genes of M. domestica L. serves as an important 

step in determining the gene that confers resistance. 

Several other linkage analyses have been completed using techniques similar to 

the ones used below.  One study linked house fly acetylcholineesterase, which is 

competitively inhibited by organophosphorate and carbamate insecticides, to autosome 2 

(Kozaki et al. 2002).  Another study associated a phenobarbital induction factor of 

CYP6D1, a cytochrome P450 monooxygenase, to autosome 2 (Liu and Scott 1997). 

 

4.2 Materials and Methods 

4.2.1 House fly Crosses and Phenotypes

Linkage analysis was performed by the association of gene polymorphisms 

(between aabys and OCR) with the five recessive mutant markers of the aabys strain 
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(Kozaki et al. 2002).  Female aabys were crossed with male OCR to produce F1 flies 

heterozygous for all five autosomes.  The F1 males were then backcrossed to aabys 

females.  The offspring were sorted according to phenotype.  Thirty-two phenotypes 

resulted, five of which were used to conduct the linkage analysis, being heterozygous at 

only one chromosome, as indicated by the absence of a recessive morphological marker.  

Flies that were heterozygous for one of each autosome (I-V) were denoted as 

+/ac;ar/ar;bwb/bwb;ye/ye;snp/snp,  ac/ac;+/ar;bwb/bwb;ye/ye;snp/snp, 

ac/ac;ar/ar;+/bwb;ye/ye;snp/snp, ac/ac;ar/ar;bwb/bwb;+/ye;snp/snp, 

ac/ac;ar/ar;bwb/bwb;ye/ye;+/snp, respectively.   

 

4.2.2 Genomic DNA extraction and sequence analysis 

Genomic DNA was extracted from individual male house flies using the quick fly 

genomic DNA prep method (www.fruitfly.org).  Briefly, a male fly was homogenized in 

400 ml of buffer A (100 mM Tris-HCl, pH 7.5, 100 mM EDTA, 100 mM NaCl, and 

0.5% SDS).  The homogenate was incubated at 65°C for 30 min, followed by 10-min 

incubation on ice after being mixed with 0.8 ml of LiCl/KAc solution (4.3 M LiCl and 

1.43 M KAc).  The mixture was centrifuged at 14,000g for 15 min at 25°C.  DNA was 

precipitated from the supernatant by addition of isopropanol, and then pelleted by 

centrifugation at 14,000g for 15 min at 25°C.  The DNA pellet was washed with 70% 

ethanol and dissolved in 150 ml of TE buffer. 

Sequences were sequenced at the Cornell Biotechnology Resource Center using 

an Applied Biosystems Automated 3730 DNA Analyzer. Sequences were aligned using 

the Lasergene MegAlign program (Clustal W method) and electropherograms were 

 22



analyzed using the Chromas program.  Electropherogram figures were created using 

Sequencher. 

 

4.2.3 Mdα2 Polymorphisms  

For Mdα2, genomic DNA was extracted from 12 aabys and 19 OCR parental 

individuals, 10 F1 individuals, and at least three individuals from each previously stated 

backcross phenotype.  Genomic DNA fragments (1,379 bp from aabys and 1,362 bp from 

OCR) were amplified using the Advantage® 2 polymerase mix (BD Bioscience 

Clontech) with a forward primer gM2VIIF1 (Table 4.1) and a reverse primer gM2VIIIR2 

using the following thermal cycler program: 1 cycle of 95°C for 1 min, 30 cycles of 95°C 

for 30 s, 64°C for 30 s and 72°C for 2 min, and a final extension at 72°C for 7 min.  The 

PCR product was purified using QIAquick PCR purification kit (Qiagen, Valencia, CA) 

and then sequenced using primer mdnachra2f2 (Table 4.1).  
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Table 4.1.  Primer Sequences 
 Primer Name Gene Sequence (5'-3') 

gM6F5  Mdα6 CAAGGCCGATGATGAGGCTGAGCT 

gM6R4  Mdα6 CAGAACTGTCACTGTGGCTATTATTG 

gM2VIIF1  Mdα2 GCACCTTGAGCGGCTACAAC 

gM2VIIIR2  Mdα2 GACGGAGCCTCGCCCAGTATC 

mdnachra2f2  Mdα2 AAGCAATCACGGCAAGGGCATC 

gM5IF1  Mdα5 GAACCGCATTGTCACAAACCGCAC 

5’M5Race8  Mdα5 GTGGTGGTGGTGGCAGCGATGGAG 

MB3F0  Mdβ3 ACAATAATCTACGGCAGTCGGGTC 

MB3R3  Mdβ3 ATCCTACACCGAATAGACAATGG 

5’MBRace1 Mdβ3 GTACATCGAAGAGTAGCGTTGAAGTTGGA 
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4.2.4 Mdα5 Polymorphisms  

For Mdα5, genomic DNA was extracted from 10 aabys and 9 OCR parental 

individuals, 3 F1 individuals, and 3 individuals from each of the five backcross 

phenotypes.  Genomic DNA fragments (613 bp from aabys and 625 bp from OCR) were 

amplified using the Advantage® 2 polymerase mix (BD Bioscience Clontech) with a 

forward primer gM5IF1 and a reverse primer 5’M5Race8 (Table 4.1) using the following 

thermal cycler program: 1 cycle of 95°C for 1 min, 30 cycles of 95°C for 30 s, 64°C for 

30 s and 72°C for 1 min, and a final extension at 72°C for 1 min.  The PCR product was 

purified using QIAquick PCR purification kit (Qiagen, Valencia, CA) and then 

sequenced with the same primers used for amplification. 

 

4.2.5 Mdα6 Polymorphisms 

Genomic DNA was extracted from 10 aabys and 9 OCR parental individuals, 11 

F1, and at least 3 individuals from each of the five backcross phenotype.  A genomic 

DNA fragment from intron 10 (188-bp in aabys and 192-bp in OCR) was amplified using 

the 2x ReddyMixTM PCR master mix (ABgene House, Epsom, UK) with primers gM6F5 

and gM6R4 (Table 4.1) using the following thermal cycler program: 1 cycle of 95°C for 

1 min, 30 cycles of 95°C for 30s, 64°C for 30s and 72°C for 30s, and a final extension at 

72°C for 7 min.  The PCR product was purified using QIAquick PCR purification kit 

(Qiagen, Valencia, CA) followed by sequencing with the same primers used for 

amplification.  When analyzing the backcross sequences, the reverse sequence was 

primarily used since several insertions/deletions in the alleles made it relatively easier.  

For this reason, the reverse electropherograms are presented in analysis.  
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4.2.6 Mdβ3 Polymorphisms  

Genomic DNA was extracted from 1 aabys and 1 OCR parental individual.  For 

this analysis, most of the gene was first amplified using forward primer MB3F0 and 

reverse primer MB3R3  (Table 4.1) and Advantage® 2 polymerase mix (BD Bioscience 

Clontech) with the following thermal cycler program: 1 cycle of 95°C for 2 min, 30 

cycles of 95°C for 30s, 64°C for 30s and 72°C for 2 min, and a final extension at 72°C 

for 5 min.  The PCR product was purified using QIAquick PCR purification kit (Qiagen, 

Valencia, CA) followed by sequencing using the same primers used for amplification as 

well as an additional primer 5’MBRace1, which started in the middle of the gene so as to 

obtain the full gene sequence. 

 

4.3 Results and Discussion 

 

4.3.1 Linkage of Mdα2

 Two alleles in aabys were identified, denoted as A (accession no.  DQ393143) 

and B (accession no.  DQ393144), and two alleles in OCR were identified, denoted as B 

(accession no.  DQ393145) and C (accession no.  DQ372064).  Their alignment report 

can be viewed in Figure 4.1.  Allele A was unique to the aabys strain and allele C was 

unique to the OCR strain.  Allele A was the most common in aabys flies, whereas allele 

C was the most common in OCR flies (Table 4.2).  When determining which autosome 

Mdα2 was on, I looked for the one phenotype, out of the five isolated, that gave us 

individuals heterozygous for Mdα2.  Since both strains shared a common allele, allele B, 

I could not count the genotype AB as definitively heterozygous, nor the genotype BC.  
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Only the presence of the AA genotype reliably indicated that the individual was 

homozygous, and could not be heterozygous at the gene of interest.  The genotype CC 

would not be found, since aabys was used for the backcross.  Genotype AA was present 

in the phenotypes heterozygous for autosome 1, 3, 4 and 5.  No AA genotype was found 

in those heterozygous for autosome 2 (ac/ac;+/ar;bwb/bwb;ye/ye;snp/snp).  Additional 

individuals from this phenotype were genotyped to confirm the absence of AA 

individuals.  Not only this, but the OCR allele C was found only in individuals 

heterozygous for autosome 2 (Table 4.3).  These results indicate that Mdα2 is present on 

autosome 2 (Table 4.4), which is consistent with Drosophila/Musca homology maps 

(Foster et al., 1981). 
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Figure 4.1.  Alignment report of the three alleles found for Mdα2.  The boxed regions are 

areas of difference between the alleles.
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Table 4.2.  Mdα2 allele summary.   

Allele Strain  Frequency Accession Number 

A aabys 0.833 DQ393143 

B aabys 0.167 DQ393144 

B OCR 0.132 DQ393145 

C OCR 0.868 DQ372064 
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Table 4.3.  Observed frequencies of the various Mdα2 genotypes in backcross (♀ aabys  

x ♂ F1 (♀ aabys x ♂ OCR)) individuals.   

 Mdα2 alleles 

Phenotype AA AB BB CA BC 

+;ar;bwb;ye;snp (n=3) 1.00 0 0 0 0 

ac;ar;+;ye;snp (n=3) 1.00 0 0 0 0 

ac;ar;bwb;+;snp (n=3) 0.67 0.33 0 0 0 

ac;ar;bwb;ye;+ (n=3) 1.00 0 0 0 0 

ac;+;bwb;ye;snp (n=10) 0 0.1 0.1 0.5 0.3 
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Table 4.4.  Linkage analysis for Mdα2. 

 
Phenotype Number of individuals homozygous for A allele 

+;ar;bwb;ye;snp 3/3 

ac;+;bwb;ye;snp 0/10 

ac;ar;+;ye;snp 3/3 

ac;ar;bwb;+;snp 2/3 

ac;ar;bwb;ye;+ 3/3 
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4.3.2 Linkage of Mdα5 

 One allele was identified in each strain.  The aabys strain had the unique allele D 

(accession no. EF203214), and the OCR strain had the unique allele E (accession no. 

EF203215), thus the frequency of these alleles in their respective strain was 1.  The 

alleles had several sites that differed from each other, as exemplified by the alignment 

report in figure 4.2.  The resulting sample electropherograms for F1 and backcross 

individuals, Figures 4.3, 4.4, 4.5, offered several reliable polymorphisms that 

differentiate between a heterozygote (DE) and homozygote (DD).  When examining the 

backcross phenotypes, it was found that only individuals heterozygous for autosome 1 

(+/ac;ar/ar;bwb/bwb;ye/ye;snp/snp) were also heterozygous for Mdα5, with the 

genotype DE (Table 4.5).  All other backcross phenotypes were homozygous for the 

aabys allele D.  This is evident in the electropherograms, where the 

+/ac;ar/ar;bwb/bwb;ye/ye;snp/snp (Figure 4.4) individual resembles the heterozygous F1 

individual (Figure 4.3) and the other backcross individuals (Figure 4.5) are all 

homozygous.  This indicates that Mdα5 is located on autosome 1. 
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Figure 4.2.  Alignment report for allele D (aabys) and allele E (OCR) in Mdα5.  The 

boxes indicate differences between the two alleles.  The grey shaded region represents the 

area illustrated by the electropherograms in figures 4.3, 4.4, and 4.5. 
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Allele D 
Allele E 
F1

 Figure 4.3.  Representative electropherogram segment of a forward sequence of an F1 (♀ 

aabys x ♂ OCR) individual.  Yellow boxes indicate polymorphisms used to assess 

genotype. 

 

 

Allele D 
Allele E 
BC

 Figure 4.4.  Representative electropherogram of a forward sequence of a backcross 

individual with +;ar;bwb;ye;snp phenotype.  Yellow boxes indicate polymorphisms used 

to assess genotype. 

 

 

Allele D 
Allele E 
BC

Figure 4.5.  Representative electropherogram of a forward sequence of a backcross 

individuals with ac;+;bwb;ye;snp, ac;ar;+;ye;snp, ac;ar;bwb;+;snp and ac;ar;bwb;ye;+ 

phenotypes.  Yellow boxes indicate polymorphisms used to assess genotype. 
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Table 4.5.  Linkage analysis for Mdα5. 

 Individuals with alleles 
 

Phenotypes DE DD 

+;ar;bwb;ye;snp 3/3 0/3 
ac;+;bwb;ye;snp 0/3 3/3 
ac;ar;+;ye;snp 0/3 3/3 
ac;ar;bwb;+;snp 0/3 3/3 
ac;ar;bwb;ye;+ 0/3 3/3 
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4.3.3 Linkage of Mdα6

Two alleles were found in the aabys strain, denoted as allele F (accession no. 

DQ498139) and G (accession no. DQ498140) at a frequency of 0.79 and 0.21, 

respectively.  One allele was found in the OCR strain, denoted as H (accession no.  

DQ498141).  Their sequences and alignment can be viewed in Figure 4.6.  This resulted 

in two heterozygous possibilities for F1s (FH and GH, only FH observed, Figure 4.7). In 

the backcross individuals, three heterozygotes were possible (FH, GH and FG), two of 

which were observed.  The FH (observed, Figure 4.8) and GH (not observed) genotypes 

would be the result of an aabys and OCR allele, whereas the FG genotype (observed, 

Figure 4.10) would be a result of the two aabys alleles.  Two homozygotes were possible, 

FF and GG, one of which was observed (Table 4.6, Figure 4.9).  Both homozygotes 

would be the result of two aabys alleles.  Homozygotes of OCR alleles could not be 

observed since the aabys and OCR F1 was backcrossed to aabys, not OCR.  Genotyping 

the five backcross phenotypes resulted in allele H only being present in individuals 

heterozygous for autosome 1 (+/ac;ar/ar;bwb/bwb;ye/ye;snp/snp) (Table 4.7).  This 

indicates that Mdα6 is present on autosome 1.  Recent studies on the homologous subunit 

gene, Dα6 in D. melanogaster, indicated that a mutation in this subunit would be 

sufficient to confer high levels of spinosad resistance (Perry et al. 2007a), but data on 

resistance in the house fly has shown that although Mdα6 is located on autosome 1, it is 

not responsible for resistance in laboratory strains (Gao et al. 2007b). 
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Figure 4.6.  Alignment report of alleles H, F and G.  The boxes indicate differences 

between the three alleles.  The grey shaded region represents the area illustrated by the 

electropherograms in figures 4.7, 4.8, 4.9, and 4.10.  
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Allele H 
Allele F 
F1

Figure 4.7.  Representative electropherogram segment of a reverse sequence of an F1 (♀ 

aabys x ♂ OCR) individual.  Yellow boxes indicate polymorphisms unique only to a 

heterozygote containing the OCR H allele.  The genotype is FH. 

 

 

Allele H 
Allele F 
BC

Figure 4.8.  Representative electropherogram segment of a reverse sequence of a 

backcross individual with +;ar;bwb;ye;snp phenotype.  Yellow boxes indicate 

polymorphisms unique only to a heterozygote containing the OCR H allele.  The 

genotype is FH. 

 

 

Figure 4.9.  Representative electropherogram segment of a reverse sequence of a 

backcross individuals with ac;+;bwb;ye;snp, ac;ar;+;ye;snp, ac;ar;bwb;+;snp and 

ac;ar;bwb;ye;+ phenotypes.  Yellow boxes indicate areas where a nucleotide unique to 

the OCR H allele is absent.  The genotype is FF. 
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Allele F 
Allele G 
BC

Figure 4.10.  Representative electropherogram segment of a reverse sequence of a 

backcross individuals with ac;+;bwb;ye;snp, ac;ar;bwb;+;snp and ac;ar;bwb;ye;+ 

phenotypes.  Yellow boxes indicate areas where a nucleotide unique to the OCR H allele 

is absent.  The genotype is FG, and although it is a heterozygote, it is a variant 

completely derived from aabys. 
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Table 4.6.  Summary of observed genotypes for each phenotype.  Note the absence of the 

Mdα6 H allele in individuals heterozygous for autosomes 2,3,4 and 5. 

 Individuals with alleles 
 

Phenotypes FH GH FG FF GG 
+;ar;bwb;ye;snp 3/3         
ac;+;bwb;ye;snp     1/3 2/3   
ac;ar;+;ye;snp       3/3   
ac;ar;bwb;+;snp     3/5 2/5   
ac;ar;bwb;ye;+     1/6 5/6   
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Table 4.7.  Linkage Analysis for Mdα6. 

Phenotype Number of individuals with Mdα6 H allele 

+;ar;bwb;ye;snp 3/3 

ac;+;bwb;ye;snp 0/3 

ac;ar;+;ye;snp 0/3 

ac;ar;bwb;+;snp 0/5 

ac;ar;bwb;ye;+ 0/6 
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4.3.4 Linkage of Mdβ3

 Analysis of Mdβ3 revealed that it does not contain any introns (Gao et al. 2007).  

Regardless, the gene was sequenced and examined for polymorphisms between aabys and 

OCR in the exon region.  Two alleles were found, alleles J (accession no. EF203216) and 

K (accession no. EF203221), but neither was unique to aabys nor OCR.  Their sequences 

and alignment can be viewed in Figure 4.11.  No reliable polymorphisms were found 

between the aabys and OCR strains, making it impossible to determine the linkage 

analysis with this sequence information. 
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Figure 4.11.  Alignment report of alleles J, from aabys, and K, from both aabys and OCR.  

Boxes indicate areas that differ between the two alleles. 
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Figure 4.11.  Continued. 
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Figure 4.11.  Continued
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Chapter 5: Mating Competition

 

5.1 Introduction 

 The evolution of a population of organisms to some selective pressure usually 

comes with a fitness cost, such that the evolved population is less fit in its previous 

environment (Fisher 1958).  Over the past few decades, resistance to insecticide has been 

documented as having fitness costs, which may include reduced reproductive success 

(Ferrari and Georghiou 1981).  Reproductive disadvantages in a number of insects, such 

as reduced paternity (Higginson et al. 2005) and reduced ability to compete against 

susceptible males (Berticat et al. 2002), have been documented. 

 Understanding the fitness effects of spinosad resistance is an important 

component of understanding how the resistance may progress in the field. This study 

focused on the fitness effects of spinosad insecticide resistance in the house fly, M. 

domestica L..  We examined a key fitness component, mating success, using two 

methods. 

 One method used visual observation to determine whether individual female flies 

mated with a resistant male or susceptible male. Since females typically mate only once 

(Riemann et al. 1967), the first male seen mating with her will likely be the only male she 

mates with and thus sire her offspring. The other method used a spinosad bioassay to 

determine whether a mated female’s offspring were resistant or susceptible, and from this 

deduce which male she mated with. 
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5.2 Materials and Methods  

Two house fly strains were used, aabys, a susceptible strain with recessive mutant 

markers, and rspin, a spinosad resistant strain with recessive mutant markers, which aside 

from the resistance, is highly related to aabys (Shono and Scott 2003).  Both strains were 

reared under identical conditions to help maintain uniformity in size. 

House fly larvae were reared on medium containing 2.3 liters of water, 0.5 kg calf 

manna (Manna Pro Corp, St.  Louis, MO), 90 g bird and reptile little wood chips 

(Northeastern Products Corp, Warnersburg, NY), 0.8 kg wheat bran (Agway; Ithaca, 

NY), and 50 g dried active baker’s yeast (ICN Biomedicals, Costa Mesa, CA).  The 

adults were raised on powdered milk + white granulated sugar (1:1 ratio by volume) and 

water, ad libitum.   

  

5.2.1 Mating competition assays: Visual observation method 

When adult flies began to emerge, the containers were cleared of any flies and 

placed in a 16°C chamber overnight.  The flies were then allowed to warm and emerge 

over a period of time not greater than 6 hours.  The virgin flies were sorted by gender and 

kept in the biochamber until ready to assay. 

 Flies were assayed from 4-6 days old.  Male flies were painted with a dot of 

Sharpie “paint” (red or silver) on the dorsal part of their thorax at least 1 day prior to 

mating competition assay.  Only flies with fully expanded wings were used.  On the day 

of the assay, one female (either rspin or aabys) was paired with a painted rspin and aabys 

male.  The two males were paired according to size, with their sizes being as similar as 

possible in order to eliminate size as a potential factor in mating competition.  To control 
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for paint color, reciprocal pairings were made.  Both aabys and rspin females were 

matched with a pair of males.  The trio was placed in a 20 ml scintillation vial topped 

with bridal veil secured with a rubber band and observed every fifteen minutes for at least 

three hours.  The flies typically mated for longer than fifteen minutes, so if a mating 

occurred, it was observed.  The vials were initially kept in a humid box, but this was not 

enough to slow dehydration so in later trials the opening of the vial was plugged with 

cotton moistened with water and wrapped in bridal veil.  The vials were placed under a 

lamp during observation and a pair of flies was scored as mating only if the female’s 

ovipositor was drawn into the male. 

 

5.2.2 Mating competition assays: Spinosad topical bioassay method 

 To ensure female virginity, emerging flies were sorted by gender every six hours.  

Approximately 200 each of rspin males, rspin females and aabys males were collected.  

These were kept in separate containers with food and water for two days, and labeled by 

day of emergence and gender.   

On the second day after emergence, individual flies were weighed.  A collection 

of 15 rspin males were compared with 15 aabys males.  Pairs of males were assigned 

based on their closeness in weight.  Each pair of males was placed into a cup with a small 

amount of food and a scintillation vial filled with distilled water and a cotton wick.  

Rspin females were also weighed, and placed in a cup with the two males, although their 

weight was not aligned with that of the males.  Each group of 15 cups was considered a 

set, and 4 sets (A, B, C and D) were assembled over 3 days.  A total of 63 trios were 

assembled (18 trios in set A). 
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Each trio of flies was left undisturbed for three days.  On the third day, the female 

was removed and placed in a paper drinking cup with media.  She was allowed to lay 

eggs on the media for three days, or until she died, whichever came sooner.   

The offspring from these cups were allowed to emerge into larger containers that 

held food and water.  Both males and females were topically assayed with spinosad when 

they were 3-5 days old.  In the assays, 20 flies, or as many as had emerged, were placed 

in a 180 ml Sweetheart waxed paper cup with food.  A diagnostic dose of 2.50 x10-1µg of 

spinosad per fly was topically applied to the fly’s thoracic notum using 0.5µl of 

0.500mg/ml acetone solution.  The cup was covered in bridal veil and water soaked 

cotton was placed on top.  Flies were held at 25°C.  Mortality was assessed after 24 hrs 

with flies that were ataxic being scored as dead. 

 

5.3 Results and Discussion 

 

5.3.1 Mating competition assays: Visual observation method 

Initial experiments showed that assaying the flies at a consistent age is very 

important.  Delaying the emergence using chilling techniques affected the willingness to 

mate.  The flies must be assayed at 5 days of age.  Flies used at 4 and 6 days did not 

mate. Other laboratory studies have found that wild type flies will readily mate at these 

ages (unpublished data), so this high sensitivity to age is likely due to the strain being 

mutant and highly inbred.  The paint did not appear to have an impact on the flies’ 

willingness to mate, based from the paint vs. no paint trial. 
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 Sixteen trios mated out of 43 when flies were aged 5 days (Table 5.1).  According 

to Fisher’s Exact Test (P = 0.49) there were no differences in mating ability.  The flies 

were not very responsive, however, and were all part of the same trial conducted on one 

day, so further trials are needed. Part of the reason for the low responsiveness is that the 

flies began to suffer from dehydration after about 2 hours. 

 In order to confirm or reject a mating fitness cost associated with spinosad 

resistance using this method, further trials will be needed.  To conduct further trials, a 

strict procedure will need to be developed, as the flies are extremely sensitive to age 

variables, dehydration and other unknown factors.  When assayed, the flies must be 5 

days old and must be provided with a water source.  These complications prompted the 

spinosad topical bioassay method, which avoids many post-emergence variables. 

 

5.3.2 Mating competition assays: Spinosad topical bioassay method 

This method was developed in order to avoid variables that hindered the previous 

experiment.  It has the added benefit of more accurately predicting mating success 

through the measure of offspring production, as mating may not necessarily predict 

fertilization or offspring survivorship.  Also, the flies were given a couple days to mate, 

which is much more realistic than the few hour window of time in the observational 

experiment.   

I was confident that using a topical bioassay on the F1 offspring would accurately 

indicate whether the father was rspin or aabys.  Previous experiments with topical 

spinosad bioassays have shown that there is enough resolution between homozygous 

resistant (RR) and heterozygous (SR) to accurately determine which male a female house 
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fly mated with (Deacutis et al. 2007).  Since spinosad is a recessive trait (Shono and Scott 

2003), the experiment was conducted using only the resistant, rspin females so that the 

possible resulting offspring were either SR or RR.  Using susceptible females would 

result in SS offspring, which would be difficult to discriminate from SR offspring when 

using a topical spinosad assay.  Therefore, the reciprocal cross was not conducted.  In the 

following discussion, “n” refers to the number of flies and “N” refers to the number of 

repetitions. 

Out of the 63 trios of flies (rspin ♀, rspin ♂, aabys ♂), 55 females were put on 

media cups.  This number decreased as some flies in the trio died over the three days.  F1 

offspring were obtained from 39 out of the 50 cups.  Out of the thirty-nine emerged cups, 

thirty-two were used in data analysis (N=32).  Only cups that produced more than 10 

offspring, and were clearly either SR or RR, were used.  Also cups with offspring that 

were not clearly SR or RR were not used, which excluded three cups.  Cups were scored 

as having SR offspring if their mortality ranged between 75-100%, and as RR if it ranged 

from 0-25%.  Most cups clearly fell within one of these two ranges (Table 5.2).  

Mortality for the rspin flies was 2.5% ( ± 0.54, n= 120, N= 6), and 99.7% (± 0.32, n = 80, 

N= 4) for the rspin x aabys F1 comparison group.  Even though the F1 mortality was very 

consistent, it was necessary to choose broader ranges to tally the experimental group, as 

low emergence and thus small sample size increased the variability.  Final tallies 

indicated that 7/32 cups contained offspring of an rspin male, and 25/32 cups contained 

offspring of an aabys male.  A chi-square analysis demonstrates that aabys males have a 

significant mating advantage (P = 0.0015).  This experiment should be repeated to 

confirm the results. 
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Although mating competition is one possible factor, another possible factor, 

which is not excluded by this experiment, is offspring viability. Offspring were obtained 

from 39 out of 50 possible cups, and even though 100% emergence is not expected, the 

design of the experiment makes it impossible to assess why each of the 11 cups did not 

produce offspring.  It is therefore possible that males from one strain generate less viable 

offspring. A simple experiment comparing offspring viability of the two strains would 

resolve this question. Also, non-mutant resistant and susceptible isogenic strains can be 

created, which may increase the overall cup emergence, and the mating competition can 

be repeated.
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Table 5.1.  Assay conducted on 5 day old flies.  Forty-three trios assembled, sixteen 

matings observed. 

 

  Female 

    aabys rspin 

aabys 1 4
Male 

rspin 2 9
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Table 5.2.  Bioassay mortality data from the offspring of the mating competition trio.  

Each cup represents offspring from an rspin (RR) female that chose to mate with either 

an rspin (RR) male or aabys (SS) male. 

Cup number Number of flies tested % Mortality SR/RR 

A1 14 100 SR 

A2 25 12 RR 

A3 68 15 RR 

A5 78 100 SR 

A6 57 5 RR 

A8 14 29 ? 

A10 77 99 SR 

A12 40 5 RR 

A13 58 10 RR 

A15 114 98 SR 

A16 24 100 SR 

B2 15 100 SR 

B3 16 100 SR 

B5 36 100 SR 

B6 11 100 SR 

B7 99 100 SR 

B10 38 100 SR 

B12 14 100 SR 

B13 26 96 SR 

B15 22 100 SR 

C1 81 99 SR 

C2 47 98 SR 
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C4 17 100 SR 

C5 42 100 SR 

C6 31 100 SR 

C7 44 100 SR 

C8 20 55 ? 

C13 51 98 SR 

C15 18 22 RR 

D2 40 100 SR 

D4 11 18 RR 

D9 17 94 SR 

D11 12 83 SR 

D13 12 50 ? 

D14 20 100 SR 

Table 5.2. Continued.
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Chapter 6: Future Directions 

 

The resistance monitoring study (Chapter 3) unveiled some of the possible 

complications of a resistance monitoring program using purely insecticidal bioassays.  

These are namely the facts that susceptibility varied greatly from site to site, and thus 

establishing baseline data to characterize all farms would be difficult.  Also, since 

resistance is highly recessive, heterozygotes will not be readily detected.  Of great 

interest is to develop a sensitive resistance monitoring assay that will be able to detect the 

presence of heterozygotes.  This type of assay may require molecular assays, and the 

identification of the gene responsible for resistance. 

One possibility for examining the genetic basis for resistance would be to create 

nAChR gene knockouts, as done in D. melanogaster (Perry et al. 2007b).  It would be 

interesting to see whether Mdα6 knockout house flies attain resistance, as in D.  

melanogaster.  Although this gene does not confer resistance in laboratory strains, it is 

possible that a mutation may confer a different type of resistance.  Doing this may give 

better insight as to which subunits are crucial for spinosad mode of action. 

The fitness costs to spinosad must also be explored in further depth.  First of all, 

non-mutant isogenic resistant and susceptible house fly strains should be established.  

These strains will be more robust than the mutant animals, and thus be better subjects in 

fitness studies.  Establishing such strains will also allow fitness studies that are more 

realistic to field conditions.  Observational mating competition, such as in section 5.2.1, 

will most likely be more successful with such strains.  Other measures of fitness can also 

be examined, such as overwintering and fecundity. 
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