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Quality estimators aspire to quantify the perceptual resemblance but not the use-

fulness of a distorted image when compared to a reference natural image. However,

humans can successfully accomplish tasks (e.g., object identification) using visibly

distorted images that are not necessarily of high quality. This work investigates

the usefulness (i.e., utility) of distorted natural images by 1) reporting methods to

experimentally measure image perceived utility; 2) introducing and evaluating an

objective utility estimator; and 3) generating useful but distorted natural images

based on the proposed novel objective utility estimator.

Subjective experiments were conducted to verify the distinction between the

quality and utility of distorted natural images. Quality scores were obtained using

a standard methodology. Novel experiments were conducted to collect responses

from human observers regarding the usefulness of these distorted images, too. The

resulting relationship between the utility and quality scores reveals that quality

does not accurately predict utility. Distortions to high-frequency signal compo-

nents of natural images are observed to have the greatest impact on utility. The

experiment results demonstrate that a quality evaluation of a distorted image is

different from its utility evaluation, so accurate quality estimators cannot accu-

rately estimate utility.

An understanding of the signal characteristics that distinguish utility from

quality is obtained by analyzing and dismantling leading quality estimators, since

no utility estimators exist. The natural image contour evaluation (NICE) is intro-



duced as a utility estimator. NICE measures contour degradations of a distorted

natural image relative to a reference natural image by extracting and comparing

the edges from both images. Quality estimators and NICE are assessed as both

quality and utility estimators. NICE provides accurate estimates of perceived

utility scores and is argued to be compatible with shape-based theories of object

perception.

The perceived utility scores from the first set of experiments were found to

exhibit limitations, and a novel technique that overcomes these limitations is pro-

posed and implemented. The novel technique collects textual descriptions pro-

duced by observers viewing distorted natural images. The technique uses an

observer-centric approach, so observers participating in the experiment dictate

the relevant concepts that characterize image usefulness. This technique is used to

obtain perceived utility scores for two collections of distorted images that simulate

scenes captured by a surveillance system. The capability of both NICE and sev-

eral leading quality estimators to estimate the perceived utility scores is reported.

NICE is demonstrated to produce the most accurate estimates of perceived utility

scores.

Last, a procedure to generate useful distorted natural images based on NICE

is presented. An image independent parametric quantization table that is compat-

ible with baseline JPEG and based on NICE is provided. The quantization table

is found by using a genetic algorithm heuristic search to perform rate-distortion

optimization using a baseline JPEG encoder and NICE. Rate-distortion optimiza-

tion using a genetic algorithm is discussed as a tool to analyze other objective

estimators.
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CHAPTER 1

INTRODUCTION

Imaging systems that capture, process, compress, transmit, and/or store natural

images1 supply information to humans to permit or to facilitate the performance

of a particular task. For instance, people working in the public safety sector (e.g.,

law enforcement, fire control, and emergency services) use natural imaging systems

in real-time scenarios to make immediate decisions on how best to respond to an

incident [42, 43]. In another example, investigators not only examine recordings

obtained with video surveillance systems but also introduce such recordings as

evidence for criminal investigations [12, 28, 91].

Consumer imaging systems (e.g., digital cameras) directly used by human ob-

servers to perform a particular task capture a broad class of source content and are

vulnerable to a broad class of distortions, including compression and transmission

errors. When operating with limited resources (e.g., communication bandwidth or

memory storage), such imaging systems can produce visibly distorted natural im-

ages. A visibly distorted image could impede a human’s ability to perform a task

and provoke inappropriate responses, or it could have no impact at all. Under-

standing the impact of distortions is clearly important to system designers, users,

as well as the subjects who may be captured. Poorer task performance implies

that the distorted image is less useful to a human observer than its undistorted

counterpart: the perceived utility decreases. The perceived utility characterizes the

usefulness of a distorted image as a surrogate for a reference (i.e., undistorted)

natural image. For such systems and the images generated by them, an objective

1Natural images are formed using imaging devices that sense the natural environment (e.g.,
digital cameras, magnetic resonance imaging (MRI), etc.). Computer generated images and other
types of synthetic images are not considered natural images.
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estimator of perceived utility (i.e., a utility estimator) would facilitate current and

future system design, optimization, and improvement. Furthermore, that objec-

tive estimator could be used to parameterize existing image coders to generate

distorted but useful natural images.

Distorted images traditionally have been assessed with regard to how well they

represent the natural world perceived by humans. Such an assessment corresponds

to the perceived quality of the distorted image, and a perceived quality score quan-

tifies a human’s judgement of the severity of the visible distortion artifacts. To

circumvent expensive subjective studies to acquire perceived quality scores, the

image processing community has sought a signal processing tool that accurately

estimates the perceived quality of a distorted image given a reference image: a

full-reference quality estimator. A full-reference quality estimator would provide

an estimate of the perceived quality of a distorted image through an objective

analysis of the signals corresponding to both the reference and distorted images.

Many full-reference quality estimators have been proposed and tested on a variety

of image databases containing distorted images along with perceived quality scores

obtained via subjective studies.

At a high-level, the perceived utility of a distorted image is expected to correlate

with perceived quality. That is, as the level of distortion within an image is

increased both the perceived utility and perceived quality are expected to decrease.

Chapter 3 describes subjective experiments that were conducted to examine the

relationship between perceived utility and perceived quality for a collection of

distorted natural images. The resulting relationship between perceived utility and

perceived quality demonstrated that an image’s perceived utility does not imply

that image’s perceived quality and vice versa.
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Figure 1.1: The usefulness or utility of a distorted natural image does not
necessarily correspond to the perceived quality of that distorted
natural image. A reference image and two distorted images are
shown in the diagram. Images farther away from the reference
image exhibit a decrease in utility and quality. The two distorted
images shown in the figure were experimentally determined to
have equal utility but different quality. See Chapter 3 for details
about the experiment and results.

The diagram in Figure 1.1 illustrates the basic results from the subjective

experiment discussed in Chapter 3. Consider the reference image in the center

as the origin of a space of images, and images farther from the origin exhibit a

decrease in utility and quality. The contours in the diagram represent distorted

images with equal utility or equal quality. At the intersection of the two contours

is a distorted image that was formed by smoothing (i.e., blurring) the textures

in the reference image. This distorted image was filtered with a high-pass filter

to produce the other distorted image, which has the same perceived utility but
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lower perceived quality. The loss of low-frequency signal information in an image

impacts the quality but not the utility.

The evidence from our subjective experiments indicate that a objective es-

timator2 that accurately estimates perceived quality cannot accurately estimate

perceived utility. In other words, the problem of estimating perceived utility is

different from the problem of estimating perceived quality. This difference moti-

vated the work presented in this dissertation. Namely, this dissertation reports

1) experimental methods to obtain perceived utility data from human observers

are developed and implemented, 2) a utility estimator that compares the edges or

contours of the reference and distorted images is proposed and evaluated, and 3)

a procedure to generate distorted but useful image based on the proposed utility

estimator is presented and demonstrated.

The remainder of this chapter is organized as follows: Section 1.1 briefly reviews

prior work regarding perceived utility and perceived quality. Section 1.2 summa-

rizes the problem and approach used. The contributions of this work are listed in

Section 1.3. This chapter concludes with an outline of the remaining chapters in

Section 1.4.

1.1 Prior Work

Prior work on the perceived utility of natural images can be traced back to John-

son, who quantified task performance in terms of empirically determined sampling

criteria for detection, recognition, and identification of a target object [2,58]. The

sampling criteria were specified in terms of the number of resolved cycles along the

2A quality estimator or a utility estimator is generically referred to as an objective estimator.
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minimum dimension of the target object and establish the level of object discrimi-

nation with respect to the distance of the target object. Johnson’s criteria provide

basic guidelines for the design of imaging sensors and the expected performance

for a given task (i.e., target recognition).

Recent work has investigated alternatives and refinements to Johnson’s crite-

ria. For example, recognition of a target has been demonstrated to be equivalent

to the detection of an equally sized circular disk, which allows for imaging devices

to be characterized in terms of the smallest detectable circular disk [130]. In an-

other example, Vollmerhausen et al. proposed a targeting task performance (TTP)

metric that accounts for variations among imaging sensors and computes the inte-

gral of the square root of the product of the target contrast, the sensor frequency

response, and the contrast sensitivity function of the human visual system [131].

The TTP metric was demonstrated to predict task performance more accurately

than Johnson’s criteria [131].

The impact of various image compression artifacts on task performance has

been investigated. One study investigated the use of uncompressed and com-

pressed synthetic aperture radar imagery captured by an airborne sensor to per-

form various tasks (e.g., vehicle counting and vehicle classification) and reported

the relationship between task performance and the compression ratio [56]. Given

the same compression ratio, Irvine et al. observed that wavelet-based compression

techniques yield better task performance than standard JPEG compression [56].

Another study conducted a target identification experiment using uncompressed

and compressed close-range thermal imagery containing one of a finite number of

known targets [81]. O’Shea et al. demonstrate that the TTP metric can be used to

predict task performance of compressed imagery using the frequency response of a
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parameterized Gaussian blur as the sensor frequency response in the TTP metric,

where the parameters of the Gaussian blur were selected to fit the experimental

results [81].

A fundamental limitation of the prior work on image utility is the use of a

priori knowledge about the target objects imaged. The experiments conducted to

measure task performance train observers to identify specific set of targets that will

appear in the test images [81, 131] or prompt observers to perform specific tasks

that provide information about the potential content of the image (e.g., vehicle

counting) [56]. The models developed in the prior work also incorporate a priori

knowledge about the target object(s) such as the contrast of the target [81, 131].

Practical use of such a priori knowledge in models requires 1) a mechanism that

correctly associates known target information with the image under evaluation,

which increases the complexity of the model, and 2) a database of target informa-

tion, which limits the scope of images to which the model can be reliably applied.

In short, the results from prior work are tailored to specific applications and provide

little insight into the underlying image characteristics that allow human observers

to achieve a desired task performance level for a broad class of images.

Over the past three decades, consumer imaging systems have been largely stud-

ied in the context of perceived quality to characterize the perceptual resemblance of

a distorted image to a reference (either known or implied). Perceived quality has

been historically framed as a study of “image quality” coupled with a specific hu-

man interaction with a constrained class of images [52, 99]. In more recent years,

the term perceived quality refers to the perceptual fidelity of a distorted image

with respect to an undistorted reference image [84]. However, studies examining

the perceived quality of distorted images do not always assume that the reference
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image available to view (i.e., an ideal reference is implied by the viewer). In the ab-

sence, of a specific definition of perceived quality within the community,3 this work

treats perceived quality as an evaluation of distorted images in nonperformance

environments, where a human interacts with an image in a recreational setting

with a primary concern for aesthetic characteristics of the image (e.g., viewing

broadcast television) [52].

Objective estimators of perceived quality have been proposed that are designed

according to various principles (e.g., signal fidelity measures or human visual sys-

tem models), and these estimators are then tuned to or trained on image databases

containing distorted images with subjective scores. Such image databases contain

distortions typically affecting consumer imaging systems; for example, the LIVE

and CSIQ image databases [15, 111] contain images with distortions due to blur,

compression, transmission errors, additive noise, and/or global contrast loss. Thus,

such estimators are expected to accommodate a broad class of source content and

distortions, and various estimators have achieved very good predictive performance

of perceived quality for these databases.

1.2 Problem Statement and Approach

The work presented in this dissertation is motivated by the prior work in both

image quality and utility and expands the previous narrowly studied definitions

of utility in a manner that allows both a broader evaluation of utility as well as

a characterization of the underlying image characteristics that impact usefulness.

3One could argue that the definition of perceived quality is implied in the experimental data
a researcher uses to evaluate a candidate quality estimator. However, this approach merely
circumvents the definition of perceived quality.
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Unlike the specific tasks performed with images in prior work, the “task” is instead

to report the content of an image as it is gradually improved from an initially

extremely distorted and unrecognizable version to a visually lossless4 version. No

experimental methods are known exist to measure the perceived utility of distorted

natural images when the task is to report the content of an image. A novel suite

of experiments presented here provides utility scores for distorted images, and

quality scores are collected using a standard test methodology. Distortions were

strategically selected to disrupt various spatial frequencies in a broader sense than

those traditionally studied in perceived quality experiments.

An analysis of the resulting relationship between perceived quality and per-

ceived utility demonstrates that an image’s perceived quality does not imply that

image’s usefulness and vice versa. Therefore, an objective estimator that accu-

rately estimates perceived quality scores cannot accurately estimate perceived

utility scores and vice versa. These results motivate a thorough analysis of the

images to understand the image characteristics that produce distorted but useful

images for human observers. The performance of several objective estimators as

both quality and utility estimators is assessed. Although most of these objective

estimators have been designed to estimate perceived quality, they serve as signal

analysis tools not only to develop an understanding of those image characteristics

that impact usefulness but also to suggest signal analysis tools for an objective

utility estimator.

The natural image contour evaluation (NICE) is introduced and analyzed as a

novel signal analysis tool that accurately estimates the perceived utility of distorted

natural images. NICE was inspired by the importance of contour information to

the human visual system for object perception [34, 67, 75]. NICE is based on

4A visually lossless image is visually indistinguishable from a reference image.
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the hypothesis that degradations to image contours restrict the content that an

image conveys to a human and decrease perceived utility. In particular, NICE

estimates utility as a function of both lost and introduced contour information in a

distorted image when compared with a reference image. NICE is evaluated using

two separate databases of distorted images with perceived utility scores. A method

is explored to generate distorted but useful images based on NICE using a baseline

JPEG coder.

1.3 Contribution

The main contributions of this dissertation are summarized [100–106]:

• The perceived quality of a distorted natural image is not a reliable proxy to

characterize the perceived utility of that image. This result implies that any

quality estimator that accurately estimates the perceived quality of distorted

natural images cannot also accurately estimate the perceived utility of dis-

torted natural images across a variety of distortion artifacts. Thus, existing

quality estimators cannot be assumed to reliably estimate perceived utility,

rather they must be “tuned,” if possible, to produce reliable estimate per-

ceived utility. However, many quality estimators lack parameters that allow

them to be tailored to different applications. [100, 105]

• The natural image contour evaluation (NICE) utility estimator is introduced

and evaluated as a novel signal analysis tool that compares the edges of a

distorted image to the edges of a reference image. NICE is demonstrated

to accurately estimate perceived utility scores of distorted natural images.

[100, 105]
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• A novel technique to acquire perceived utility scores is proposed, used, and

demonstrated to provide reproducible estimates of the perceived utility of

distorted natural images. The performance of NICE and several quality

estimators as utility estimators is evaluated. NICE is concluded to be a

reliable utility estimator, robust to variety of distortion artifacts. [106]

• An image independent, parameterized quantization table compatible with a

baseline JPEG coder that is based on a rate-distortion optimization with

NICE is provided. This quantization table provides a means of forming

distorted but useful natural images based on NICE. The quantization table

was formed by using a genetic algorithm to search the space of quantization

tables to minimize NICE for a specified rate-distortion tradeoff.

1.4 Outline

This dissertation is organized as follows: Chapter 2 surveys several image databases

and several state-of-the-art quality estimators that are been actively used by the

contemporary image processing community. Chapter 3 presents the first of two

proposed experimental methodologies used to collect perceived utility scores of dis-

torted natural images. In addition, experiments are described that were conducted

to collect perceived quality scores for distorted natural images using a standard

methodology. The perceived utility and perceived quality scores are compared to

illustrate the relationship between the perceived utility and perceived quality.

Chapter 4 introduces the natural image contour evaluation (NICE) utility es-

timator and reports the performance of NICE as well as several state-of-the-art

quality estimators as both utility estimators and quality estimators. Chapter 5
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describes the second experimental methodology used to collect perceived utility

scores of distorted natural images. This second method is a significant improve-

ment over the first method and is demonstrated to yield reproducible results. An

analysis of NICE is presented in Chapter 6, which includes an image indepen-

dent, parameterized quantization table compatible with a baseline JPEG coder

that is based on a rate-distortion optimization with NICE. General conclusions

are provided in Chapter 7.

The appendix contains two chapters of related work. Appendix A reports

the results from experiments conducted to acquire recognition thresholds for line

drawings formed from reference natural images [102]. Appendix B summarizes a

comparison of two testing methodologies used to collect perceived quality scores

for both images and video sequences [101].
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CHAPTER 2

BACKGROUND

2.1 Introduction

The analysis of the usefulness of distorted natural images is motivated by prior

work in the perceived quality assessment of distorted natural images. That prior

work includes the development and use of testing methodologies to collect sub-

jective responses from human observers corresponding to the perceived quality

of distorted natural images as well as the design of objective quality estimators.

An objective quality estimator is validated by analyzing its ability to accurately

estimate the perceived quality scores obtained from subjective studies.

A generally unspoken conclusion is that an objective quality estimator that

accurately estimates perceived quality scores obtained via a particular testing

methodology serves as a objective model that maps an image to a subjective score.

That is, an objective estimator is limited to the means with which the subjective

data has been collected. At present, the methods used to obtain perceived quality

scores of natural images are indirect: an observer reports her visual perception

using an artificial quality scale. Thus, the observer must map her perceptual state

induced by a distorted natural image to that artificial quality scale. Undeniably,

the human brain employs an abundance of computational resources (i.e., neurons)

to produce a perceived quality score upon viewing a distorted natural image. An

objective quality estimator consolidates this computation and, hopefully, imitates

this mapping from distorted image to quality score insofar as it produces output

consistent with that obtained via the subjective experiments. The objective qual-

ity estimator is a theoretical model of the mapping from a distorted image to a
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Estimator

test image

reference image

Human

test image

reference image

Consistent?

Figure 2.1: A full-reference objective estimator analyzes a reference and test
(i.e., distorted) image to produce an output value that is con-
sistent with the subjective score provided by human observers
viewing the same two images.

quality score. The diagram in Figure 2.1 illustrates the conventional goal when

developing a full-reference objective estimator: produce an output based on the

analysis of two images that is consistent with subjective data obtained by humans

viewing those images.

A variety of experiments have been conducted to form image databases linking

responses from human observers to distorted images to evaluate the performance of

objective quality estimators. This chapter reviews several such image databases as

well as many state-of-the-art quality estimators that are actively used by members

of the image processing community. The review of image databases provides insight

with regard to what an objective quality estimator evaluated using that database

should do as well as the types of distortions estimator should support. The review

of quality estimators shows what theoretical models have been proposed to map a

distorted natural image to a quality score. The “better” quality estimators tend

to leverage models and/or theories of the human visual system.
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2.2 Image Databases with Subjective Responses

A first step toward producing an objective estimator that can be used in lieu of

a human observer to evaluate a distorted image is to collect responses from hu-

man observers who view a collection of distorted images. Several image databases

that associate scores provided by human observers to distorted images have been

formed. This section briefly reviews several image databases that contain per-

ceived quality scores for distorted images and a video database that contains data

corresponding to a human observers ability to perform a specific task with a video

sequence.

2.2.1 Image Databases with Perceived Quality Scores

Many image databases have been created to associate perceived quality scores

obtained from human observers with distorted images. This section briefly reviews

a few image databases to survey the various test methods used to acquire perceived

quality scores, since there is no unanimously accepted method. An investigation

of the differences and similarities between perceived quality scores collected for the

same stimuli using two common test methods is provided in Appendix B.

LIVE Database

The LIVE image database is a large collection of distorted images for which per-

ceived quality scores have been recorded [111]. This database is frequently used as

the de facto database to assess the performance of quality estimators. The database

contains 29 reference 24-bits/pixel color images and 779 distorted images, which
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were formed from the reference images. Five types of processing artifacts were used

to form the distorted images: 1) JPEG-2000 compression, 2) JPEG compression,

3) additive white Gaussian noise, 4) Gaussian blurring, and 5) simulated bitstream

errors of a JPEG-2000 compressed bitstream in a fast-fading channel.

The perceived quality scores were collected to accommodate two types of qual-

ity estimators: full-reference and no-reference1 [114]. The original difference mean

opinion scores (DMOSs) of the LIVE database were obtained using a single-

stimulus testing methodology, where observers rated both processed and reference

images [112,116]. The reference images were hidden from the observers and used to

calibrate the ratings of the processed images. The original DMOS were generated

by subtracting the mean opinion scores (MOS) for the processed images from the

MOS for the reference images.

A subsequent realignment experiment was conducted to calibrate observer re-

sponse scales across testing sessions and processing artifacts [116]. To minimize

fatigue without limiting the number of processed images evaluated, the original

observer responses were collected over many testing sessions. Collecting observer

responses over multiple sessions could lead to variations in observer ratings. For

example, a rating of 25 in one session may not be equivalent to a rating of 25 in

another session. To resolve this potential inconsistency, the original DMOS were

realigned using observer responses acquired using the double stimulus continuous

quality evaluation (DSCQE) test method for a subset of the distorted images in

the LIVE database. For the DSCQS protocol, observers are sequentially presented

with the reference and distorted images two consecutive times. The order by which

the reference and distorted images are presented is random and hidden from the

observer. Observers provide opinion scores for each image during the second pre-

1No-reference quality estimators provide quality estimates using only on the processed image
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sentation of the pair of reference and processed images.

A57 and CSIQ Databases

The A57 image database is a small collection of distorted images for which per-

ceived quality scores have been recorded [16]. The database contains 3 reference

8-bit grayscale images and 54 distorted images, which were formed from the ref-

erence images. Six types of processing artifacts were used to form the distorted

images: 1) JPEG compression; 2) additive white Gaussian noise; 3) Gaussian

blurring; 4) baseline JPEG-2000 compression; 5) JPEG-2000 compression with

the DCQ algorithm [20]; and 6) uniform quantization of LH subbands of a 5-level

discrete wavelet transform to affect different target RMS distortion contrasts.

The A57 database reports perceived quality scores as difference mean opinion

scores (DMOS). The testing method used to collect the subjective fidelity ratings

is similar to the SAMVIQ protocol, which is described in detail in Appendix B. In

particular, an observer indicated his opinion of the perceived quality of a distorted

image relative to a reference image affixed to a table by placing the distorted image

on the table such that the distance between the distorted image and the reference

image reflects the perceived difference in quality. Several images were arranged

on the table by the observer to produce scores naturally aligned across different

distortion artifacts and reference images. Refer to [21] for additional details about

the experiment.

The continuous scale image quality (CSIQ) database [15] uses a test method

similar to that used for the A57 database to collect perceived quality scores. The

CSIQ database contains 30 reference images and 1500 distorted images, formed

from the reference images. Six types of processing artifacts were used to form
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the distorted images: 1) JPEG compression; 2) JPEG-2000 compression; 3) global

contrast scaling; 4) Gaussian blurring; 5) additive white Gaussian noise; and 6)

additive pink Gaussian noise. The perceived quality scores were formed from the

responses of 35 different observers and are reported as DMOSs.

IVC Database

The Image Video Communication (IVC) image database [65] contains 10 reference

images and 235 distorted images, which were formed from the reference images.

Four types of distortion artifacts were used to form the distorted images: 1) JPEG

compression; 2) JPEG-2000 compression; 3) Gaussian blur; and 4) locally adap-

tive resolution coding. Observer responses were collected using a double stimulus

impairment scale with five impairment categories. This method consists of con-

secutive trials, where in each trial, an observer views the reference image followed

by the distorted image and provides an impairment rating for the distorted image.

Unlike a quality rating scale, which has an observer provide an opinion of perceived

quality in terms of adjectives such as “Excellent,” “Good,” “Fair,” “Poor,” and

“Bad,” an impairment scale used to rate the distorted image uses the following ad-

jectives: “Imperceptible,” “Not annoying,” “Same as reference,” “Annoying,” and

“Very annoying.” Perceived quality scores are reported as mean opinion scores.

2.2.2 Public Safety Video Quality Database

A public safety video quality (PSVQ) database was recently created to determine

the ability of an observer to perform specific recognition tasks with distorted video

sequences [43,55]. The design of the database was inspired by concepts established
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by the Johnson criteria [58], which was developed to characterize images in terms

of an observers ability to detect, recognize, and identify targets in an image. The

PSVQ database contains video sequences simulating surveillance applications and

recorded video applications. Observers included law enforcement first responders

and profession video analysts. The reference video sequences were standard defi-

nition video sequences formed from high-definition video sequences. The distorted

video sequences simulated compression artifacts and packet loss artifacts.

Subjective responses were collected by performing two types of tasks. For

one task, observers were asked to identify, for example, the object being held by a

subject in a video sequence. A multiple-choice method was used to collect responses

from observers. In the other task, observers were asked to report a sequence of

characters in the video such as the license plate on a car. For both tasks, observers

were provided with the task prior to watching a video sequence.

2.3 Objective Estimators of Subjective Scores

This section reviews several signal analysis tools that are designed to provide mean-

ingful estimates of subjective scores of natural images: 1) amplitude-spectrum

statistics of natural images and 2) natural image quality estimators.

2.3.1 Amplitude-Spectrum Statistics

A well-known characteristic of natural scenes is the relationship between the spa-

tial frequency and the amplitude of the spatial frequency component [39]. This

characterisitic is mathematical specified as A(f) = f−β, where β defines the spec-
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tral slope of an image. Natural images have been reported to have spectral slope

values near 1.2 on average [39, 86].

Human performance on visual discrimination tasks has demonstrated a decrease

when the spectral slope of the test stimuli are artificially increased or decreased [86].

Such results motivate the use of the spectral slope as an indicator of perceived

utility as a natural image is increasingly distorted. In this paper, the spectral

slope β of a test image is evaluated as a means to estimate subjective scores.

2.3.2 Full-Reference Image Quality Estimators

Accurately estimating the perceived quality of distorted natural images remains

an open research problem, and current quality estimators could produce accurate

estimates of the perceived utility scores of distorted natural images. Accordingly,

full-reference quality estimators are treated as mathematical formulas and, in par-

ticular, signal analysis tools that quantify the comparison of a distorted image to a

reference image. This section reviews several state-of-the-art full-reference quality

estimators.

Full-reference quality estimators use both an explicit, external reference im-

age X and the test image X̂ to estimate the subjective score of the test image.

The full-reference quality estimators evaluated in this paper can be categorized

as 1) conventional signal fidelity measures, 2) estimators based on properties of

the HVS, and 3) estimators derived from hypothetical high-level HVS objectives.

The structural similarity (SSIM) index and the visual information fidelity (VIF)

criterion are quality estimators that are derived from hypothetical high-level HVS

objectives. These two quality estimators are discussed at length in Sections 2.3.4
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and 2.3.5, respectively.

Conventional Signal Fidelity Measures

Mean-square error (MSE), which is used to compute the peak signal-to-noise ratio

(PSNR), and root mean squared (RMS) distortion contrast provide computation-

ally simple evaluations of signal fidelity. These measures evaluate fidelity solely in

terms of the overall energy of the distortions. Root mean squared (RMS) distor-

tion contrast Crms(E) measures fidelity based on the visibility of the distortions

E = X̂ −X when comparing the images on a particular display device [94] and

is given by

Crms(E) =
1

µL(X)

[

1

M

M
∑

i=1

(

L(Ei + µX)− µL(E+µX )

)2

]1/2

, (2.1)

where µL(X) denotes the average luminance of the reference image X, L(Ei + µX)

denotes the luminance of the ith pixel of E + µX, µL(E+µX ) denotes the average

luminance of the mean shifted distortions E + µX, and M is the total number

of pixels. Eq. (2.1) normalizes the standard deviation of the luminance values

E + µX according to the mean luminance of X. This normalization accounts for

Weber’s Law, which asserts that distortions of equal energy are more difficult to

detect in brighter regions of an image than in darker image regions. Various other

signal fidelity measures have been analyzed with regard to their performance to

estimate perceived quality [1, 36].
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2.3.3 Estimators Based on Properties of the Human Visual

System

Several quality estimators capitalize on models and principles characterizing low-

level HVS properties such as contrast sensitivity [31], contrast masking [17,31,66],

and perceived contrast [5, 45]. These properties model the detection of a visual

target (e.g., the distortions in an image) under a variety of conditions based on the

contrast of the distortions. Many quality estimators have been proposed [14,20,26,

27, 47, 68, 71, 84, 87, 108, 113, 121, 125, 137–139, 142]. This section first summarizes

the models of HVS properties that have been incorporated into quality estimators.

Then, a subset of quality estimators, representing a variety of approaches to quality

estimation, are summarized.

Models of HVS Properties

Quality estimators based on properties of the HVS use some measure of contrast.

The conventional measure of contrast for a visual pattern is the Michelson peak-

to-peak contrast given as

CMichelson =
Lmax − Lmin

Lmax + Lmin
, (2.2)

where Lmax and Lmin denote the respective maximum and minimum luminance

values [31]. The Michelson contrast measure predicts human sensitivities to peri-

odic visual patterns such as sine-wave gratings but fails for more complex visual

patterns found in natural scenes [74].

The conventional measure of contrast varies with respect to the frequency of

the sine-wave grating [31]. The contrast sensitivity function (CSF) has been de-
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rived from psychophysical experiments measuring the detection of targets as sine-

wave gratings, and, hence, identifies sensitivity thresholds as a function of spatial

frequency [31]. The contrast sensitivity is defined as the inverse of the physical

contrast of the target when the target is at the threshold of visual detection (i.e.,

just visible). For a human to visually detect the target, the contrast of the target

must exceed the contrast detection threshold, which is the inverse of the contrast

sensitivity.

The contrast sensitivity function varies when a stimulus contains two overlap-

ping sine-wave gratings at different frequencies. In this case, one grating is viewed

as a target to be detected that is masked by the other grating. Models of contrast

masking account for the variation of the contrast sensitivity due to interactions

between a target and background (mask). A psychophysical experiment [66] has

been conducted to investigate the effect of a masking sine-wave grating on the de-

tectability of the target sine-wave grating when the stimuli (i.e., mask and target)

are simultaneously presented. That study [66] reported that contrast thresholds

increased for all spatial frequencies for high contrast masks and decreased for very

low contrast masks with spatial frequencies near the target’s spatial frequency.

That is, targets presented against a high-contrast mask are more difficult to detect

than when presented against a low-contrast mask.

When targets are suprathreshold (i.e., visible to a human observer), models

account for an observer’s perceived contrast. Contrast-matching experiments have

been conducted that present two stimuli side-by-side, and an observer adjusts the

contrast of one stimuli to match the apparent contrast of the other stimuli. Such

contrast-matching experiments, using sine-wave gratings as stimuli, have revealed

that as the target contrast becomes increasingly suprathreshold, the perceived
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contrast depends less on spatial frequency than predicted by the CSF, a result

termed contrast constancy [5, 45]. Estimators incorporating perceived contrast

adapt the CSF according to the extent that the distortions are suprathreshold.

Natural images do not resemble the sine-wave gratings used in the aforemen-

tioned experiments. Contrast threshold, contrast masking, and contrast matching

experiments have been conducted to investigate the detectability of wavelet sub-

band quantization distortions when masked by natural images [17]. The results

of these experiments have been used to develop multi-scale models based on the

experiment results [18]. For equal levels of distortion contrast, distributing the

distortions according to the results from the contrast matching experiments for

wavelet subband quantization distortions generated lower quality images than dis-

tributing the distortions according to the CSF [18]. The phenomenal appearance of

the images generated by distributing distortion contrast according to image scales

was consistent with the principle of global precedence [18,76], which contends that

the HVS processes a visual scene in a global-to-local order. Distortions that disrupt

global precedence demonstrate a greater impact on visual quality than distortions

that are spatially uncorrelated with the image [21].

Estimators based on HVS Properties

Two quality estimators, the weighted signal-to-noise ratio (WSNR) and noise qual-

ity measure (NQM), evaluate images by incorporating HVS properties to simulate

the appearance of the reference and test images to a human and compute the signal-

to-noise ratio (SNR) as a function of the difference of the simulated images [27].

WSNR generates the simulated images through filtering with the contrast sensi-

tivity function (CSF) [31]. NQM produces the simulated images through nonlin-
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ear processing based on Peli’s contrast pyramid [89]. NQM’s processing model

accounts for the HVS properties of contrast sensitivity, contrast masking, and

suprathreshold contrast perception.

Another quality estimator, the visual signal-to-noise ratio (VSNR), evaluates

images according to a contrast model accounting for low-level HVS properties

and the mid-level HVS property of global precedence [20,76]. VSNR incorporates

models [17] for low-level HVS properties based on experiments investigating the

contrast of wavelet subband quantization distortions in natural images rather than

sine-wave gratings. To evaluate visual quality, VSNR first assesses the visibility

of the distortions. For subthreshold distortions, the algorithm evaluates the test

image as having perfect visual quality. For suprathreshold distortions, the VSNR

visual quality evaluation accounts for the HVS properties of perceived contrast and

global precedence [18, 76].

The last quality estimator examined that incorporates properties of the HVS,

criterion 4 (C4), assesses images using elaborate models of several processing ar-

eas of the visual cortex [14]. The models in C4 describe color vision; frequency-

orientation analysis; contour detection; perceptual and localization of patterns;

object discrimination; and visual memory.

2.3.4 The Structural Similarity (SSIM) Index

Full-reference quality estimators evaluate a test image X̂ with respect to a reference

image X to quantify the visual similarity of the test image from the reference image.

A challenge for quality estimators is to generate evaluations consistent with human

observer opinions across a variety of image artifacts [8].
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The structural similarity (SSIM) [137] index and its multi-scale extension (MS-

SSIM) [138] estimate visual quality based on the premise that the human visual

system (HVS) has evolved to process structural information from natural images,

and, hence, a high-quality image is one whose structure closely matches that of

the original. To this end, SSIM employs a modified measure of spatial correlation

between the pixels of the reference and test images to quantify the degradation of an

image’s structure. MS-SSIM extends SSIM through a multi-scale implementation

of this modified spatial correlation measure.

SSIM estimates perceptual quality using three spatially local evaluations:

mean, variance, and cross-correlation. Despite its simple mathematical form, SSIM

objectively predicts subjective scores as well as more sophisticated quality estima-

tors [20,113]. Furthermore, SSIM’s simplicity has been investigated by researchers

investigating how the HVS evaluates quality [8].

The three SSIM components are examined with regard to how they contribute

to its quality estimation for common image artifacts. A gradient analysis illustrates

the value of the SSIM cross-correlation component over the other two components.

The performance of individual components and pairwise component products in

estimating visual quality is assessed using the LIVE image database [111]. The

objective estimates using the product of the variance and cross-correlation com-

ponents match those of the complete SSIM and MS-SSIM evaluations. A com-

putationally simple alternative to SSIM (cf. Eq. (2.13)) that ignores the mean

component and sets the local average patch values to 128 exhibits a 1% decrease

in linear correlation with subjective ratings to 0.934 from the complete SSIM eval-

uation with an over 20% reduction in the number of multiplications.

The remainder of this section has the following organization: the SSIM and
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MS-SSIM index as well as the modified versions SSIM* and MS-SSIM*, which

ignore the constant terms in the original specifications of SSIM and MS-SSIM are

reviewed. Then, a gradient analysis of the SSIM components is presented. The

results of individual and combinations of SSIM and MS-SSIM components used to

estimate subjective scores of perceptual quality are reported and followed by an

analysis and discussion. This section ends with a summary.

SSIM and MS-SSIM

This section first presents the mathematical specification of SSIM and MS-SSIM.

The second half of this section mathematically specifies the proposed modifications

to both SSIM and MS-SSIM, denoted SSIM* and MS-SSIM*.

Mathematical Specification of SSIM and MS-SSIM SSIM estimates

visual quality with a similarity measure between two patches x and y as the product

of three components: mean m(x, y), variance v(x, y), and cross-correlation r(x, y).

The two patches, x and y, correspond to the same spatial window of the images

X and Y , respectively. The SSIM value for the patches x and y is given as

SSIM(x, y) = m(x, y)α × v(x, y)β × c(x, y)γ

=

(

2µxµy + C1

µ2
x + µ2

y + C1

)α

×
(

2σxσy + C2

σ2
x + σ2

y + C2

)β

×
(

σxy + C3

σxσy + C3

)γ

= m× v × r (2.3)

where µx denotes the mean of x, σx denotes the standard deviation of x, σxy is the

cross-correlation (inner product) of the mean shifted images x−µx and y−µy, and

the Ci for i = 1, 2, 3 are small positive constants. These constants combat stability

issues when either (µ2
x+µ2

y) or (σ2
x+σ2

y) is close to zero. The positive exponents α, β,

and γ allow adjustments to the respective component’s contribution to the overall
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SSIM value. The original specification for SSIM2, set C3 = C2

2
and α = β = γ = 1,

which simplifies Eq. (2.3) to

SSIM(x, y) =

(

2µxµy + C1

µ2
x + µ2

y + C1

)

×
(

2σxy + C2

σ2
x + σ2

y + C2

)

= (m)× (v × r). (2.4)

The overall SSIM image quality index for the images X and Y is computed

by averaging the SSIM values computed for small patches of the two images. The

SSIM value is computed with α = β = γ = 1 and after downsampling the images

X and Y by 2 in both spatial directions [137].

MS-SSIM extends SSIM by computing the variance and cross-correlation com-

ponents at K image scales, where the kth scale image corresponds to low-pass

filtering and subsampling, by a factor of 2 in both spatial directions, the original

image (k− 1) times. The mean component is only computed at the coarsest scale,

K. The MS-SSIM index is given by

MS-SSIM = mK(X, Y )αK

K
∏

k=1

vk(X, Y )βkrk(X, Y )γk , (2.5)

where mk(X, Y ), vk(X, Y ), and rk(X, Y ) respectively correspond to the mean, vari-

ance, and cross-correlation component computed and pooled across patches from

scale k with k = 1 as the full-resolution image. The exponents αK , {βk}Kk=1, and

{γk}Kk=1 vary according to k and adjust the contribution of the components based on

experimental results by Wang et al. [138] that examined perceptual image quality

across scales for distortions with equal mean-squared error (MSE). The exponents

are nonnegative and normalized to sum-to-one across scale (i.e.
∑K

k=1 βk = 1). The

exponents obtained from the experiment by Wang et al. [138] are αK = 0.1333,

2A Gaussian weighting function is used to compute µx, µy, σx, σy and σxy [137]. For example,
µx =

∑n

j=1 wjxj , where wj are weights corresponding to a circular-symmetric Gaussian function

with
∑n

j=1 wj = 1 and xj denotes the jth pixel in the patch x.
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β1 = 0.0448, β2 = 0.2856, β3 = 0.3001, β4 = 0.2363, and β5 = 0.1333 with βk = γk

for k = 1, 2, · · · , K.

Mathematical Specification of SSIM* and MS-SSIM* The constants3

Ci, for i = 1, 2, 3, in Eq. (2.3) were introduced to counteract stability issues when

either (µ2
x + µ2

y), (σ2
x + σ2

y), or (σxσy) are very close to zero [137] When (σxy ≪

C3) and (σxσy ≪ C3), both the SSIM cross-correlation component and MS-SSIM

cross-correlation component are approximately one (see Figure 2.2). This behavior

occurred with very distorted images, for example, when computing the SSIM cross-

correlation component of the MS-SSIM cross-correlation component between the

airplane/TS+HPF distortion image for τ = 2048, Y , (cf. Figure 2.3(d)) and

the original, X, (cf. Figure 3.1(a)), since the airplane/TS+HPF distortion image

for τ = 2048 is a constant valued image (i.e., σy = 0). This casts doubt upon

the significance of the SSIM and MS-SSIM cross-correlation component values

to accurately assess the structure of images. Thus, alternative versions of SSIM

and MS-SSIM, henceforth respectively identified as SSIM* and MS-SSIM*, are

proposed where the positive constants Ci in each component have been set to zero.

The component definitions for SSIM* and MS-SSIM* follow from straightfor-

ward consideration of the scenarios leading to the stability concerns addressed in

the preceding paragraph. Suppose the constants Ci have been set to zero. When

both patches x and y have average pixel values of zero, the mean component is set

to one, since the patches have identical mean values. Thus, the alternative mean

component definition is given by

m∗(x, y) =











1 µ2
x + µ2

y = 0

m(x, y) else
, (2.6)

3These constants were reportedly “hand-optimized” to fit the data from the LIVE database
[113].
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Figure 2.2: Illustration showing the values of the SSIM, the SSIM cross-
correlation component r, and the SSIM* cross-correlation com-
ponent r∗ as the parameter γ is varied for a airplane/TS+HPF
sequence. Larger values of γ induce more texture smoothing.
The objective scores are produced by comparing the test image
with the airplane/TS+HPF image with γ = 1. The SSIM cross-
correlation component r is approximately one when the image is
most distorted (i.e., γ = 2048). The SSIM objective value for this
image is approximately 0.5, because the mean and variance com-
ponents produce objective values less than one, as desired. The
SSIM* cross-correlation component r∗ objective value is nearly
zero for the airplane/TS+HPF distorted image with γ = 2048.
Sample images from this sequence are shown in Figure 2.3.

for m(x, y) as defined in Eq. (2.3) with C1 = 0. Similarly, when both patches

have variance zero, the variance component is set to one, since the patches have

identical variances. The alternative variance component is given by

v∗(x, y) =











1 σ2
x + σ2

y = 0

v(x, y) else
, (2.7)

for v(x, y) as defined in Eq. (2.3) with C2 = 0. Now, suppose that σx > 0, and the

patch y is constant. Then, the variance of the patch y is zero. Under this scenario,
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(a) log2(γ) = 0 (b) log2(γ) ≈ 6

(c) log2(γ) ≈ 8.7 (d) log2(γ) = 11

Figure 2.3: Texture smoothing plus high pass filtering distortions for the im-
age airplane for several values of the TS+HPF distortion param-
eter γ. See Table 3.1 for more information about the TS+HPF
distortions.
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y does not correlate with x, so the cross-correlation component must be set to

zero. When both patches have equal variance and C3 = 0, the cross-correlation

component must be set to one. The alternative cross-correlation component is

given as

r∗(x, y) =























0 σx > σy = 0 or σy > σx = 0

1 σx = σy = 0

r(x, y) else

. (2.8)

for r(x, y) as defined in Eq. (2.3) with C3 = 0.

Combining Eqs. (2.6)-(2.8), SSIM* is given as

SSIM∗(X, Y ) = m∗(X, Y )α × v∗(X, Y )β × r∗(X, Y )γ , (2.9)

and following the extension from SSIM to MS-SSIM, MS-SSIM* is given as

MS-SSIM∗(X, Y ) = m∗
K(X, Y )αK

K
∏

k=1

v∗
k(X, Y )βkr∗k(X, Y )γk , (2.10)

where m∗
k(X, Y ), v∗

k(X, Y ), and r∗k(X, Y ) respectively correspond to the alternative

mean, variance, and cross-correlation components each computed and pooled over

the image patches from scale k with k = 1 as the full-resolution image. MS-SSIM*

inherits the MS-SSIM values for the exponents: αK , {βk}Kk=1, and {γk}Kk=1.

SSIM Component Gradient Analysis

The SSIM index as given in Eq. (2.3) combines three components to estimate the

visual quality of an image, but it is not immediately obvious how each component

evaluates visual quality. A gradient analysis illustrated that for a fixed MSE, the

total SSIM index favors an image with increased visual quality [137]. However, a

gradient analysis of the individual components of SSIM was not conducted.
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(a) Original (X) (b) m(X, Y ) = 0.99

(c) v(X, Y ) = 0.99 (d) r(X, Y ) = 0.98

Figure 2.4: Gradient analysis of the individual SSIM components: mean
m(X, Y ), variance v(X, Y ), and cross-correlation r(X, Y ). Im-
ages (b) – (d) have been rescaled for visibility.
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A gradient analysis, inspired by [137], is performed to examine the visual quality

evaluation corresponding with the individual components. An original natural

image X is selected, and a random image Y is formed whose pixel values are

independently and identically drawn from a uniform distribution with mean 128

and standard deviation 1/12. For example, to optimize according to the mean

component of SSIM, m(X, Y ), the image Y is updated at iteration k via gradient

ascent according to

Y ← Y + η(k)∇Y m(X, Y ), (2.11)

where η(k) is the learning rate at iteration k and ∇Y m(X, Y ) denotes the gradient

of the mean component with respect to Y . Here, m(X, Y ) denotes the average of

the individual patch means m(x, y).

Figure 2.4 illustrates the effect of maximizing the individual components of

SSIM for the natural image einstein. At first glance, using the mean component

generates an image (Figure 2.4(b)) that most resembles the original in Figure

2.4(a) among the three components. However, the maximum for m(X, Y ) does

not produce a sharp image. The optimization with the SSIM variance component

yields a textured image (Figure 2.4(c)), where the textures occur along the image

edges. The variance component optimization does not adequately restrict the

possible pixel value configurations to produce an easily recognizable image. The

image optimizing the cross-correlation component captures most of the details

from the original image. For instance, notice the details in the hair, eyes and

mustache in Figure 2.4(d). Moreover, the facial expression has a more accurate

phenomenal appearance in Figure 2.4(a) with respect to the original than in Figure

2.4(b), where the expression appears melancholy rather than alert. The SSIM

cross-correlation component clearly assesses quality according to the preservation

of the reference image edges.
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Estimating Visual Quality with SSIM and MS-SSIM Components

The components of SSIM, SSIM*, MS-SSIM, and MS-SSIM* are analyzed in terms

of the consistency of their objective estimates with subjective scores. The LIVE

image database [111] is used to assess the performance of the components. This

analysis considers the individual performance of the components and the perfor-

mance of these components in pairs. That is, the analysis examines the perfor-

mance of the mean; variance; cross-correlation; mean and variance; mean and

cross-correlation; and variance and cross-correlation. Then, the predictive perfor-

mance of v × r (cf. Eq. (2.4)) is assessed when removing the calculation of the

patch means µx and µy.

The SSIM and SSIM* components were computed with α = β = γ = 1 and

after filtering and downsampling the reference and test images by a factor of 2

in both spatial directions as specified by [137]. MS-SSIM and MS-SSIM* were

computed with the exponents as specified in Section 2.3.4.

The LIVE image database is a large collection of distorted images for which

subjective visual quality scores have been recorded [111]. The database consists

of 29 reference 24-bits/pixel color images and 779 distorted images. Five types

of distortions were evaluated: 1) JPEG-2000 (J2K) compression, 2) JPEG (JPG)

compression, 3) additive white Gaussian noise (Noise), 4) Gaussian blurring (Blur)

, and 5) simulated bitstream errors of a JPEG-2000 compressed bitstream in a fast-

fading (FF) channel. Realigned difference mean opinion scores (DMOS) were used

for the subjective scores [116].

The objective estimates were computed from grayscale images generated ac-

cording to Y = 0.2989R+0.5870G+0.1140B, where R, G, and B denote the 8-bit
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grayscale red, green, and blue image intensities. The nonlinear mapping of the

objective estimates a to the subjective scores f is given as

f(a) =
p1

1 + exp(p2(a− p3))
+ p4. (2.12)

The parameters {pj}4j=1 were fitted to the data via a Nelder-Mead search to mini-

mize the sum-squared error between the nonlinear mapped objective estimates and

the subjective scores. The performance assessment is based on the linear corre-

lation computed between the DMOS and the objective estimates after nonlinear

regression.

Estimation using Individual Components and Pairwise Products of

Components The nonlinear mapping of Eq. (2.12) was fitted using the objective

evaluations for the entire set of distorted images (ALL) for each component and

component pair tested. Tables 2.1 and 2.2 report the statistics summarizing both

the correlation and accuracy of SSIM, SSIM*, MS-SSIM, and MS-SSIM* as quality

estimators as well as the individual components of each of the estimators and

the pairwise products of the components of the estimators. The statistics were

computed after nonlinear regression.

Individually, the SSIM cross-correlation component estimates subjective scores

the best among its individual components and nearly as well as the corresponding

complete SSIM definition across the six artifact types. The mean component (m or

m∗) estimates the subjective scores least accurately among the three components.

The mean component alone performs poorly as a quality estimator for MS-SSIM

and MS-SSIM, since the mean component is only computed for very low frequency

content.

Among the pairwise combinations of the components, the product of the vari-

ance and cross-correlation components (v × r) performs nearly identically to the
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Table 2.1: Statistics summarizing the correlation and accuracy of the objec-
tive estimators as quality estimators using the subjective scores
from the LIVE database [116]. The objective estimator values
were produced by SSIM, SSIM’s individual components, SSIM’s
pairwise components, SSIM*, SSIM*’s individual components,
and SSIM*’s pairwise components. The linear correlation r,
Spearman rank correlation ρ, and the Kendall rank correlation
τ are computed between the objective estimates and subjective
scores (i.e., DMOSs) after nonlinear regression. The root mean
square error (RMSE), outlier ratio (OR), skewness (skew), and
kurtosis (kurt) are computed using the residual between the fit-
ted objective scores and the subjective scores.

Components r ρ τ RMSE OR skew kurt

SSIM m× v × r 0.937 0.948 0.797 9.614 0.648 -0.083 2.789

SSIM m 0.833 0.864 0.683 15.122 0.770 -0.555 4.090

SSIM v 0.889 0.918 0.744 12.524 0.748 0.149 2.445

SSIM r 0.930 0.939 0.776 10.067 0.675 0.061 2.550

SSIM m× v 0.891 0.921 0.749 12.406 0.746 0.140 2.465

SSIM m× r 0.930 0.939 0.776 10.066 0.682 0.049 2.561

SSIM v × r 0.937 0.949 0.797 9.548 0.646 -0.101 2.780

SSIM* m∗ × v∗ × r∗ 0.864 0.854 0.668 13.759 0.724 -0.689 4.060

SSIM* m∗ 0.832 0.863 0.682 15.169 0.769 -0.571 4.161

SSIM* v∗ 0.837 0.847 0.658 14.971 0.736 -0.441 4.204

SSIM* r∗ 0.860 0.843 0.654 13.959 0.742 -0.589 3.679

SSIM* m∗ × v∗ 0.842 0.853 0.666 14.724 0.721 -0.483 4.243

SSIM* m∗ × r∗ 0.860 0.843 0.655 13.919 0.741 -0.588 3.684

SSIM* v∗ × r∗ 0.872 0.861 0.674 13.379 0.732 -0.553 3.755
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Table 2.2: Statistics summarizing the correlation and accuracy of the objec-
tive estimators as quality estimators using the subjective scores
from the LIVE database [116]. The objective estimator values
were produced by MS-SSIM, MS-SSIM’s individual components,
MS-SSIM’s pairwise components, MS-SSIM*, MS-SSIM*’s indi-
vidual components, and MS-SSIM*’s pairwise components. The
linear correlation r, Spearman rank correlation ρ, and the Kendall
rank correlation τ are computed between the objective estimates
and subjective scores (i.e., DMOSs) after nonlinear regression.
The root mean square error (RMSE), outlier ratio (OR), skew-
ness (skew), and kurtosis (kurt) are computed using the residual
between the fitted objective scores and the subjective scores.

Estimator Components r ρ τ RMSE OR Skew. Kurt

MS-SSIM m× v × r 0.934 0.945 0.793 9.775 0.623 -0.156 3.260

MS-SSIM m 0.284 0.691 0.500 26.198 0.883 0.123 2.065

MS-SSIM v 0.881 0.909 0.731 12.909 0.765 0.138 2.356

MS-SSIM r 0.930 0.938 0.777 10.039 0.673 -0.123 2.975

MS-SSIM m× v 0.881 0.909 0.731 12.909 0.765 0.138 2.356

MS-SSIM m× r 0.930 0.938 0.777 10.040 0.673 -0.123 2.975

MS-SSIM v × r 0.934 0.945 0.793 9.774 0.623 -0.156 3.260

MS-SSIM* m∗ × v∗ × r∗ 0.872 0.867 0.685 13.365 0.714 -0.730 4.337

MS-SSIM* m∗ 0.284 0.691 0.499 26.196 0.883 0.123 2.067

MS-SSIM* v∗ 0.835 0.846 0.658 15.044 0.763 -0.372 4.128

MS-SSIM* r∗ 0.871 0.859 0.674 13.432 0.727 -0.634 3.831

MS-SSIM* m∗ × v∗ 0.835 0.846 0.658 15.042 0.761 -0.372 4.128

MS-SSIM* m∗ × r∗ 0.871 0.859 0.674 13.431 0.727 -0.633 3.830

MS-SSIM* v∗ × r∗ 0.872 0.867 0.685 13.365 0.714 -0.731 4.337
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corresponding complete definition that uses all three components. The product

of the mean and variance components (m × v) estimates subjective score well,

but it is evident that the incorporation of the cross-correlation component signif-

icantly improves its objective quality estimation. Even the product of the mean

and cross-correlation components (m× r) accurately estimates subjective scores.

The results indicates that the cross-correlation component is the most im-

portant component among the three components when estimating the subjective

scores. The absence of the cross-correlation component leads to a significant drop

in both the accuracy and correlation between the objective scores and the subjec-

tive scores.

The proposed modifications to SSIM and MS-SSIM demonstrate that the con-

stants provided with the original specifications of SSIM and MS-SSIM “tune” these

estimators to the LIVE database. While SSIM* and MS-SSIM* cross-correlation

components do not estimate the subjective scores as accurately as the SSIM and

MS-SSIM cross-correlation components, they correctly indicate that a flat image

(e.g., cf. Figure 2.3(d)) is different from the reference image. The cross-correlation

component of MS-SSIM* r∗ has been demonstrated for the use of quality assess-

ment of mammograms [96].

Estimation without Computing µx or µy for SSIM The performance of

the mean component with the LIVE image database casts doubt on its relevance

in objective quality estimation for typical image artifacts.4 However, removing

the mean component m from the SSIM index does not significantly reduce the

computational complexity, since the variance and cross-correlation components

use the terms from m: µx, µy.

4The LIVE database contains image artifacts representative of typical imaging applications,
where there is limited variation to the luminance.
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Removing or fixing the values of µx and µy produces significant computational

savings. When µx and µy are computed for two patches x and y of n pixels, the

computation of v × r over n pixels requires 8n + 8 multiplications. However, if

µx and µy are fixed or set to zero, the computation of v × r reduces to 6n + 8

multiplications. For a patch of size n = 11, this leads to a reduction of more than

20% in the number of multiplications.

The computation of v × r with µx = µy = 128 (c.f. Eq. (2.13)) predicts

subjective quality scores very well across all distortion types. Table 2.3 summarizes

the linear correlation coefficients for v × r when the values µx and µy are fixed to

128. For comparison, the linear correlation of v × r is included. Moreover, the

performance for µx = µy = 128 is very similar to the complete SSIM computation.

SSIM: Analysis and Discussion

The gradient analysis of the SSIM components along with the results in Section

2.3.4 emphasizes the significance of the cross-correlation component when assessing

perceptual quality. Human evaluations of perceptual quality demonstrate a pref-

erence for images that preserve image edge information across image scales [17].

This finding is consistent with the principle of global precedence, which contends

that the HVS processes a visual scene in a global-to-local order [76]. The MS-

SSIM cross-correlation component explicitly evaluates the pixel values across im-

age scales, which provides a measure of how well the edges of two images match.

For both SSIM and MS-SSIM, the image that maximizes the cross-correlation

component with respect to a reference image possess identical edge information.

A simple analysis explains the estimation accuracy of v × r when the local

average pixel values are set to 128 (cf. Table 2.3). Let µ denote a fixed mean offset
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Table 2.3: Linear correlation coefficients between DMOS [116] and v × r for
fixed µx = µy = µ after nonlinear regression for each artifact type
in LIVE image database [111].

Artifact Type

Components ALL J2K JPG Noise Blur FF

v × r .937 .966 .979 .908 .947 .948

µ = 128 .925 .936 .965 .898 .917 .927

subtracted from an image before computing the product of the SSIM variance and

cross-correlation components. In terms of the SSIM definitions of µx, µy, σ2
x, σ2

y ,

and σxy, the product of the modified variance and cross-correlation components

for a fixed mean offset µ is given as

v̂(x, y)× r̂(x, y) =
2σxy + C + AB

σ2
x + σ2

y + C + A2 + B2
, (2.13)

where A = µx−µ and B = µy−µ. Eq. (2.13) is very similar to the v×r component

of Eq. (2.4). The additional constant AB in the numerator only shifts the objective

score, and the additional constant A2+B2 in the denominator rescales the objective

score. Using the minimum MSE estimate of the mean pixel value, µ = 128, ensures

that on average other values of µ will demonstrate poorer predictive performance.

Objective quality estimation using Eq. (2.13) does not significantly alter the linear

correlation between the DMOS and the objective scores as demonstrated by the

results in Table 2.3.

SSIM: Summary

This chapter examines how the SSIM components (mean, variance, and cross-

correlation) contribute to its quality estimation of common image artifacts. Modi-
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fied versions of SSIM and MS-SSIM, denoted SSIM* and MS-SSIM*, are proposed

whose individual components accurately reflect the difference between a very dis-

torted image and its reference image.

An analysis of the performance of the components of SSIM, SSIM*, MS-SSIM,

and MS-SSIM* as quality estimators is performed using the LIVE image database.

The objective scores using the product of the variance and cross-correlation com-

ponents match those of the complete SSIM and MS-SSIM calculations. A com-

putationally simple alternative to SSIM (cf. Eq. (2.13)) that ignores the mean

component and sets the local average patch values to 128 exhibits a 1% decrease

in linear correlation with subjective scores to 0.934 from the complete SSIM eval-

uation with an over 20% reduction in the number of multiplications.

2.3.5 The Visual Information Fidelity (VIF) Criterion

The visual information fidelity (VIF) criterion is an extension of the information

fidelity criterion (IFC) that incorporates a simple human visual system (HVS)

model5 [113,115]. VIF*, a modified version of VIF, adjusts the relative importance

of distortions measured across spatial frequencies to the overall objective estimate

by normalizing VIF’s channel measurements before linearly pooling across image

scales. VIF* provides accurate estimates of perceived quality for a broader set

of distortions than VIF. A detailed mathematical description of VIF and VIF* is

presented as well as the performance of each as quality estimators using the LIVE

database.

5VIF has been argued to imitate aspects of the HVS based on its mathematical resemblance
to existing models of the HVS [110].
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VIF Specification

VIF extends IFC by modeling the human visual system (HVS) as an additive

Gaussian noise source that was conjectured by VIF’s authors to model low-level

HVS processing [113]. VIF’s assessment of a test image is based on spatially local

SNR measurements, computed at multiple image scales, of both the reference and

test images contaminated with the modeled, low-level HVS noise.

Let the elements of the length Nk vectors Ck and Dk denote the wavelet

coefficients of the kth channel of the reference and test images, respectively.6 The

elements of the length Nk vectors Ek and F k denote the wavelet coefficients of the

kth channel of the respective reference and test images that have been contaminated

with visual noise.

VIF parses each wavelet channel into disjoint blocks composed of P coefficients.

The following discussion assumes only one channel, so the superscript k is omitted

in the subsequent discussion. Let ~Cb and ~Db correspond to the bth block of P

spatially adjacent coefficients of C and D, respectively. The bth block of wavelet

coefficients in the channel of the reference image may be modeled as a Gaussian

scale mixture [135, 136] (GSM) random vector given as ~Cb = sb
~U , where sb is a

positive random scalar and ~U is a zero mean Gaussian random vector of length P

with covariance K~U . The GSM model has been demonstrated to approximate the

distribution of wavelet coefficients for natural images . Given sb, the coefficient

block ~Cb is a zero mean Gaussian random scalar with covariance s2
bK~U , and ~Cb is

conditionally independent of ~Cm for all m 6= b. VIF relates the bth block of wavelet

coefficients of the test and reference images using the linear model ~Db = gb
~Cb + ~Vb,

6The subscript k for Nk accounts for decimated wavelet decompositions, such as the steerable
pyramid, whose channels in coarser image scales have fewer coefficients than channels in finer
image scales.
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where gb is a deterministic scalar defined for each block and ~Vb is a zero mean

Gaussian random vector of length P with covariance matrix σ2
~Vb

I specified for

each block b. Thus, given sb, the block of coefficients ~Db is also a Gaussian random

vector with covariance g2
bs

2
bK~U + σ~Vb

I.

Independent zero-mean additive Gaussian noise sources model low-level HVS

noise in VIF; coefficients of the reference and test images are contaminated with

visual noise. Let ~Eb and ~Fb correspond to the bth block of P spatially adjacent co-

efficients of E and F , respectively. The output of the HVS model for the reference

image is ~Eb = ~Cb + ~Mb, and the output of the HVS model for the test image is

~Fb = ~Db + ~Nb. The terms ~Mb and ~Nb are a zero mean Gaussian random vectors

of length P with covariance σ2
MI = σ2

NI, where σ2
N = σ2

M is the HVS model pa-

rameter. Thus, given sb, the block of coefficients ~Eb is a Gaussian random vector

with covariance s2
bK~U + σ2

NI, and the block of coefficients ~Fb is also a Gaussian

random vector with covariance g2
bs

2
bK~U + σ2

~Vb
I + σ2

NI

VIF combines two evaluations to yield an overall assessment of a test image.

First, an evaluation comparing the reference coefficients before and after the HVS

model value is computed. Second, an evaluation comparing the reference coeffi-

cients before the HVS model to the processed coefficients after the HVS model is

computed. These two evaluations are computed for each wavelet channel. The

ratio of the sum of these evaluations across the channels provides an overall as-

sessment of the test image. Let s be a length Bk vector whose bth element is sb.

Given s, the VIF value is given by

VIF =

∑K
k=1 IFC(Ck, F k)

∑K
k=1 IFC(Ck, Ek)

. (2.14)

The terms IFC(Ck, F k) and IFC(Ck, Ek) are based on IFC [115] and are defined
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as

IFC(Ck, F k) =
Bk
∑

b=1

log2

(

|g2
bs

2
bK~U + (σ2

~Vb
+ σ2

N )I|
|(σ2

~Vb

+ σ2
N)I|

)

(2.15)

and

IFC(Ck, Ek) =

Bk
∑

b=1

log2

( |s2
bK~U + σ2

NI|
|σ2

NI|

)

, (2.16)

where | · | denotes the matrix determinant and the terms gb, sb, K~U , and σ~Vb
vary

with k and are computed from Ck and Dk. For channel k, the term gb is estimated

as the linear regression of block ~Db on the block ~Cb, and the variance of the additive

zero mean Gaussian noise ~Vb is the mean squared error of the regression.

VIF* Specification

VIF emphasizes evaluations of finer image scales (i.e., higher spatial frequencies)

over those of coarser image scales (i.e., lower spatial frequencies). Thus, VIF is

invariant to disruptions to low frequency content (see Figure 4.1), which is func-

tionally due to the variation in the number of coefficients blocks Bk for channels

at different image scales. Channels corresponding to finer image scales have more

wavelet coefficients than channels corresponding to coarser image scales due to the

use of a decimated wavelet transform; for a fixed block size P , the number of co-

efficient blocks is smaller for channels corresponding to coarser image scales. The

proposed modifications of VIF, denoted VIF*, normalizes the channel measure-

ments by the number of blocks Bk for that channel. The same variables defined

for VIF are used to mathematically specify VIF*. VIF* is defined as

VIF∗ =

∑K
k=1

1
Bk

IFC(Ck, F k)
∑K

k=1
1

Bk
IFC(Ck, Ek)

, (2.17)
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where IFC(Ck, F k) and IFC(Ck, Ek) are defined as in Eq. (2.15). As illustrated

in Figure 4.1, VIF* produces distinct scores that reflect the changes in the perceived

quality scores for these images. In particular, disruptions to low-frequency content

affect VIF*’s estimate, whereas VIF’s estimate does not.

Statistics summarizing the performance of both VIF and VIF* as quality es-

timators using the perceived quality scores in the LIVE image database [111] are

reported in Table 2.4. The a linear mapping was fitted to map the objective scores

the perceived quality scores (i.e., DMOS) provided in the LIVE database. The

standard performance statistics are reported after applying the linear mapping:

the Pearson linear correlation r; the Spearman rank correlation ρ; the Kendall

rank correlation τ ; the root mean-squared error (RMSE); the outlier ratio (OR);

and the skewness and kurtosis of the residuals. The Pearson linear correlation co-

efficients for VIF and VIF* are statistically equivalent at the 95% confidence level.

However, VIF and VIF* do not have statistically equivalent rank correlation coef-

ficients at the 95% confidence level. The RMSE values are statistically equivalent

according to the Brown-Forsythe-Levene test [10].

The improvement of VIF over VIF* in terms of the rank correlation is not

surprising, since a nonlinearity is often fitted to the data to resolve any nonlin-

ear relationship. However, VIF* provides estimates of perceived quality that are

effectively as reliable as those produced by VIF. Part of the reason that VIF ex-

hibits slightly better performance is as results of the distortions used in the LIVE

database. In particular, all of the distortions impact high frequency components,

which VIF is very sensitive to relative to VIF*. Thus, VIF is slightly better at

resolving differences in the perceived quality of the distorted images in the LIVE

databases. In Chapter 4, it is shown that VIF* can provide more accurate per-
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Table 2.4: Statistics summarizing the performance of VIF and VIF* as qual-
ity estimators using the LIVE database.

Estimator r ρ τ RMSE OR Skew./Kurt

VIF -0.941 -0.964 -0.828 9.2 0.597 0.21/2.8

VIF* -0.938 -0.934 -0.780 9.5 0.599 -0.08/3.7

ceived quality estimators for a wider variety of distortion artifacts.

2.4 Summary

This chapter reviewed several image databases that contain a collection distorted

images along with responses from human observers. The image databases contain-

ing perceived quality scores demonstrate that a variety of test methods have been

used to obtain these scores, and no standard method of acquiring perceived qual-

ity scores has been developed. The public safety video quality collects responses

from observers prompted to perform specific tasks with an image, which provides

the observer with prior information about the distorted image before viewing the

image. Chapters 3 and 5 discuss techniques to obtain responses from human ob-

servers about the usefulness of distorted images without specific prompts prior to

viewing a distorted stimulus.

This chapter also reviewed several state-of-the-art quality estimators. The

structural similarity (SSIM) index and the visual information fidelity (VIF) cri-

terion are discussed at length, as these two quality estimators are largely viewed

as the “best” in the image quality assessment community. Limitations for both

of these quality estimators are revealed and discussed. The image quality estima-

tors reviewed in this chapter form a suite of baseline objective estimators that are
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compared with a novel utility estimator introduced in Chapter 4.

2.5 Key Points

• Many testing protocols have been implemented to form databases that con-

tain perceived quality scores provided by human observers of distorted im-

ages. Several such databases that are commonly used to validate the perfor-

mance of objective quality estimators were reviewed.

• Several objective estimators have been proposed and evaluated using popular

image databases with perceived quality scores. Among those estimators, the

structural similarity (SSIM) index is commonly adopted in lieu of mean-

squared error or peak signal-to-noise ratio as a perceived quality estimator.

This chapter illustrated fundamental flaws with the components of SSIM

(see Figure 2.2). A modified version of SSIM is presented (see Eq. (2.9))

that has been demonstrated by other researchers as a quality estimator for

mammograms [96].

• The visual information fidelity (VIF) criterion is another quality estimator

that currently marketed as the leading quality estimator. A modified version,

VIF*, is described (see Eq. (2.17)) that is shown to provide much more

accurate estimates of perceived quality than VIF in Chapter 4.
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CHAPTER 3

SUBJECTIVE ESTIMATES OF PERCEIVED UTILITY AND

PERCEIVED QUALITY

Hoke: How you know the way I

see, less you lookin outta my eyes?

Driving Miss Daisy, Alfred Uhry

3.1 Introduction

The work presented in this chapter is motivated by the prior work in both image

quality and utility and expands the previous narrowly studied definitions of utility

in a manner that allows both a broader evaluation of utility as well as a character-

ization of the underlying image characteristics that impact usefulness. Unlike the

specific tasks performed with images in prior work, the “task” is instead to report

the content of an image as it is gradually improved from an initially extremely dis-

torted and unrecognizable version to a visually lossless1 version. A novel suite of

experiments presented here provides utility scores for distorted images, and quality

scores are collected using a standard test methodology. Distortions were strategi-

cally selected to disrupt various spatial frequencies in a broader sense than those

traditionally studied in perceived quality experiments.

An analysis of the resulting relationship between perceived quality and per-

ceived utility demonstrates that an image’s perceived quality does not imply that

image’s usefulness and vice versa. Therefore, an objective estimator that accu-

1A visually lossless image is visually indistinguishable from a reference image.
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rately estimates perceived quality scores cannot accurately estimate perceived util-

ity scores and vice versa. These results motivate a thorough analysis of the images

to understand the image characteristics that produce distorted but useful images

for human observers.

To the best of our knowledge, no experimental methods exist to measure the

perceived utility of distorted natural images when the task is to report the content

of an image. This chapter reports the first usage of such experimental methods

as well as a subsequent analysis. Section 3.2 presents the proposed experimental

methodology used to collect perceived utility scores. Several standard methods

are available to collect perceived quality scores for distorted natural images, and

Section 3.3 reviews the experimental methodology we used to collect perceived

quality scores. Experimental results illustrating the relationship between the per-

ceived utility and perceived quality scores are presented in Section 3.4.

3.2 Methods: Perceived Utility Scores

For a human performing a task, a distorted natural image is a surrogate for an

undistorted, reference image. A perceived utility score quantifies the usefulness of

that distorted image with respect to the reference image for that task. More useful

images provide more information about the image content to an human.

Two meaningful anchors are associated with the perceived utility of an image:

the recognition threshold equivalence class and the reference equivalence class. The

recognition threshold equivalence class, henceforth denoted the recognition thresh-

old (RT), specifies a collection of maximally degraded images from which humans

still accurately recognize the basic content of the reference image. The perceived
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utility score of the RT can distinguish useful distorted images from useless distorted

images formed from a reference image. In particular, an image with a perceived

utility score greater than that of its RT is useful, whereas an image with a per-

ceived utility score less than that of the RT is useless. Humans recognize at least

the basic content of useful images but recognize nothing in useless images.

The reference equivalence class (REC) specifies an equivalence class of images,

including the reference image, that yield the same interpretation of the content as

the reference image. Images in the REC may contain signal degradations that may

or may not be visible to a human observer but still convey the same information

as the reference image. For example, a visually lossless image could contain signal

distortions yet remain visually indistinguishable from the reference image, so a

visually lossless image belongs to the REC.

Two experiments2 were conducted to obtain perceived utility scores. The first

experiment acquires subjective data that were processed (cf. Section 3.2.4) to pro-

duce relative perceived utility scores for a collection of distorted natural images

generated from each reference image. These relative perceived utility scores corre-

spond to a unique range of values that varies for each reference image. The relative

perceived utility scores for the RT and the REC of each reference image are used

to map the relative perceived utility scores to a common range of values. On this

common range of values, the RT is indicated by a perceived utility score of 0,

and the REC is indicated by a perceived utility score of 100. The subjective data

obtained in the second experiment is used to estimate the RT of each reference

image. The REC did not need to be estimated from experimental data, because

both the reference image and any visually lossless image belong to the REC. A

2The following experiments described in this section augment the experiments described in
the publications [102,103], and [100].
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visually lossless image generated via JPEG-2000 compression using the dynamic

contrast-based quantization (DCQ) strategy [17] defined the REC of each reference

image (cf. Section 3.2.1).

The remainder of this section describes the methods used to collect subjective

data and produce perceived utility scores. First, the distortion types used to con-

struct reference/distortion image sequences are described. Then, the methods are

reported for the experiments conducted using these sequences to acquire subjec-

tive data to 1) produce relative perceived utility scores and 2) estimate the RTs of

reference images. Last, the derivation of perceived utility scores from the collected

subjective data is explained.

3.2.1 Reference/Distortion Image Sequences

Sequences of decreasingly distorted natural images were generated from a refer-

ence natural image. Each sequence corresponds to a specific distortion and evolves

such that subsequent images in the sequence gradually refine detail or informa-

tion relative to the previous images. For brevity, such a sequence is henceforth

denoted 1) generically as a reference/distortion sequence and 2) more specifically

by explicitly indicating either the reference image name, the distortion, or both

(e.g., reference/JPEG denotes a sequence of JPEG distorted images correspond-

ing to the same undisclosed reference). The reference/distortion sequences were

formed by varying a single parameter that controlled the level of distortion. For a

single reference subjected to a single distortion, perceived utility is assumed to ex-

hibit a monotonically, non-decreasing relationship with decreasing distortion level.

Thus, as a reference/distortion sequence evolves toward a visually lossless image

the perceived utility does not decrease. The sequences of distorted images that
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correspond to different distortions served as test stimuli in the experiments. Select

images from the airplane/J2K+DCQ sequence are shown in Figure 3.5.

Each distortion is spatially correlated with the reference natural image and dis-

rupts different image characteristics. The image characteristics disrupted include

the spatial frequency content, contour integrity (i.e., edges), and the level of detail

(i.e., textures). Example images with each distortion are shown in Figures 3.1

and 3.2, and Table 3.1 summarizes each distortion. The remainder of this section

describes the five distortions evaluated in the experiments.

JPEG: Quantized Discrete Cosine Transform Coefficients

JPEG achieves lossy compression of natural images by quantizing block-based

discrete cosine transform (DCT) coefficients [90]. The quantization strategy im-

plemented in the source code library provided by the Independent JPEG Group

(IJG) [79] is used and is parameterized by Pjpeg ∈ [0, 100], which scales the example

luminance component quantization table suggested in the JPEG specification [124].

A sequence of images with JPEG compression artifacts evolves by increasing the

parameter Pjpeg.

BLOCK: Extreme Blocking Artifacts

Extremely low rate JPEG images effectively replace each 8×8 block of pixels with

their average value. To simulate this, a reference/BLOCK sequence of images has

extreme blocking artifacts and evolves by decreasing the quantization step-size

Qavg of the average block pixel value.
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(a) airplane (reference) (b) JPEG compression

(c) BLOCK: Extreme blocking artifacts (d) J2K+DCQ: JPEG-2000 compression using
the DCQ strategy

Figure 3.1: The original reference airplane image and distorted images illus-
trating the distortions described in Section 3.2.1. The JPEG and
BLOCK distortions are introduced by quantizing coefficients of
a block-based discrete cosine transform. J2K+DCQ distortions
result from quantizing coefficients of a discrete wavelet transform
according to the dynamic contrast-based quantization (DCQ)
strategy [17]. Table 3.1 contains descriptions of each of the dis-
tortions.

53



Table 3.1: Summary of image distortions studied. The relationship between
the distortion parameter and the level of distortion is described for
each distortion. For a reference image subjected to one distortion
type, utility and quality are assumed to exhibit a monotonically,
non-decreasing relationship with decreasing distortion level.

Distortion Description
Parameter versus dis-

tortion level
Example

none Reference airplane image n/a

JPEG

Quantized discrete cosine trans-
form (DCT) coefficients accord-
ing to the lossy JPEG image com-
pression standard. Parameter-
ized by JPEG quality parameter
Pjpeg .

Increasing Pjpeg de-
creases the level of
distortion.

J2K+DCQ

Quantized discrete wavelet trans-
form coefficients using quantiza-
tion step-sizes specified by the
dynamic contrast-based quanti-
zation (DCQ) strategy for a tar-
get encoding bitrate, R.

Increasing R de-
creases the level of
distortion.

BLOCK

Replace each 8×8 block of pixels
by their average and quantizing
this average pixel value using the
quantization parameter Qavg.

Decreasing Qavg de-
creases the level of
distortion.

TS

Texture smoothing with limited
disruption to image edges. Pa-
rameterized by texture smooth-
ing parameter γ.

Decreasing γ de-
creases the level of
distortion.

TS+HPF

Texture smoothing (i.e., TS dis-
tortions) plus high-pass filter-
ing. Parameterized by texture
smoothing parameter γ.

Decreasing γ de-
creases the level of
distortion.
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(a) TS: Texture smoothing (b) TS+HPF: TS plus high-pass filtering

Figure 3.2: Distorted images illustrating the distortions described in Section
3.2.1. Texture smoothing (TS) distortions are induced via total
variation (TV) regularization to smooth texture regions with lim-
ited disruption to edges. A high-pass filter (HPF) that removes
low-frequency signal information from images with TS distortions
produces the TS+HPF distortions. Table 3.1 contains descrip-
tions of each of the distortions.

J2K+DCQ: Quantized Discrete Wavelet Transform Coefficients

The lossy JPEG-2000 (J2K) image compression standard represents natural im-

ages as a linear combination of wavelet basis functions [123]. Distortions are intro-

duced by quantizing the basis function coefficients found using a discrete wavelet

transform to achieve a desired encoding bitrate, R. The dynamic contrast-based

quantization (DCQ) strategy assigns quantization step-sizes according to a mea-

sure of visual distortion parameterized by characteristics of the image, the wavelet

subband coefficients, and the display. The DCQ strategy’s visual distortion mea-

sure distinguishes visually lossless images from visibly distorted images, so the

DCQ strategy can specify subband quantization step-sizes for lossy compression

that yield a visually lossless image. A reference/J2K+DCQ sequence of images has
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distortions due to JPEG-2000 compression using the DCQ strategy and evolves by

increasing the encoding bitrate, R.

TS: Texture Smoothing

Edges distinguish objects and regions (i.e., sky and rooftop) in natural images

that convey substantial meaning to human observers, whereas textures generally

provide secondary information about these objects or regions. Furthermore, the

extra-striate visual cortex exhibits the greatest response to images that retain

contour information and lack texture information [34]. The apparent significance

of edges to the human visual system inspired the evaluation of distortions that

deliberately smooth texture regions in images with limited disruption to edges.

Total variation (TV) regularization traditionally has been used to remove noise

from images by producing piecewise smooth images that lack textures [107]. Let

g(t) be a continuous signal obtained by adding noise to a reference signal for t ∈

[a, b]. TV regularization finds a restored signal f from g by solving an optimization

problem of the form:

min
f

∫ b

a

(

(f(t)− g(t))2 + γ

∣

∣

∣

∣

d

dt
f(t)

∣

∣

∣

∣

)

dt, (3.1)

where the first term maintains the similarity between the f and g, the second

term penalizes deviations from smoothness, and γ is a regularization parameter to

control the amount of smoothing.

An alternative and equivalent approach to finding f is via soft thresholding of

undecimated Haar wavelet coefficients in all subbands except the coarsest LL sub-

band [120]. The strict mathematical equivalence does not remain for 2-D signals,

but sufficient visual similarities warrant this alternative for natural images [119].
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Soft thresholding with thresholding parameter γ is given by

Sγ(x) =











x− γsgn(x) |x| > γ

0 |x| ≤ γ,
(3.2)

where sgn(x) is the signum function. Given a thresholding parameter γ, thresh-

olds are appropriately scaled for wavelet coefficients at each scale. Applying soft

thresholding to a noisy image produces a similar image while reducing the presence

of noise by shrinking and discarding wavelet coefficients. In the case of natural im-

ages with negligible noise, finer details such as textures act as additive noise, and

soft thresholding removes those finer details. Adjusting the parameter γ varies

the level of detail removed from the reference image, where smaller values of γ

result in the removal of very few details. On the other hand, larger values of γ

induce more aggressive smoothing which may simultaneously compromise image

structures (e.g., edges) important for interpretation. A 5-level undecimated Haar

wavelet transform is used. A reference/TS sequence of images has distortions due

to texture smoothing (TS) and evolves by decreasing a smoothing parameter γ

that controls the degree of texture smoothing induced by soft-thresholding.

TS+HPF: Texture Smoothing plus High-Pass Filtering

Low-frequency content is not critical to preserve the appearance of edges, which

commonly coincide with object boundaries in natural images, so images subjected

to texture smoothing and high-pass filtering were evaluated. When viewing high-

pass filtered images, observers necessarily cannot use very low-frequency content

by squinting, moving, or otherwise blurring the appearance of the stimulus to

interpret the image content. A high-pass filter (HPF) that removes low-frequency

content from images with TS distortions produces the TS+HPF distortions.
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3.2.2 Experiment 1: Subjective Data to Derive Relative

Perceived Utility Scores

This experiment collected subjective data that was processed to derive relative

perceived utility scores of distorted images formed from the same reference image.

Distorted images of the same reference image but subjected to different distor-

tions were compared using a paired comparison test methodology. The images

compared were selected from reference/distortion sequences corresponding to the

same reference image but different distortions. The comparisons of images with

different distortions were used to align different reference/distortion sequences for

the same reference image. For example, these comparisons allow the images from

both an airplane/J2K+DCQ sequence and an airplane/TS sequence to be placed

in relation to one another in terms of their relative perceived utility. For the same

reference image, all reference/distortion sequences corresponding to each distortion

were aligned, and these aligned sequences can be merged to form a single sequence

of increasingly useful images that contain all distorted images of the same reference

image.

Stimuli

Nine grayscale natural images of size 512× 512 pixels were cropped from original

natural images and served as the reference images for these experiments. The

content of the natural images consisted of either one or two main objects (e.g., an

airplane or a boy and a cat) or a human in action (e.g., skiing or playing guitar).

The nine natural images used in the experiments are shown in Figures 3.1(a), 3.3,

and 3.4.
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(a) boy & cat (b) backhoe

(c) train (d) skier

Figure 3.3: Four of the nine natural images serving as reference images for
the experiments. Figure 3.4 contains the four other natural im-
ages serving as reference images. The reference airplane image
is shown in Figure 3.1(a).
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(a) pianist (b) jack-o-lanterns

(c) caged birds (d) guitarist

Figure 3.4: Four of the nine natural images serving as reference images for
the experiments. Figure 3.3 contains the four other natural im-
ages serving as reference images. The reference airplane image
is shown in Figure 3.1(a).
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A collection of distorted images was formed by selecting a broad range of distor-

tion levels from each reference/distortion sequence corresponding to each reference

image and distortion. Specifically, images with JPEG distortions were formed us-

ing JPEG parameter values Pjpeg = 1, 2, 5, 10, 20, and 50. Images with BLOCK

distortions were formed using quantization step-sizes Qavg = 400, 200, and 1. Six

images with J2K+DCQ distortions were formed using encoding bitrates logarith-

mically equally spaced from R = 0.01 to RV L, where RV L denotes the bitrate of a

visually lossless image formed using the DCQ strategy and JPEG-2000 compres-

sion. Four of the six images from the airplane/J2K+DCQ sequence are shown in

Figure A.3. Images with TS and TS+HPF distortions were formed using smooth-

ing parameters γ = 2048, 446, 97, 21, 5, and 1. The entire collection contained 243

distorted images.

Procedure

A paired comparison testing methodology was used to collect subjective responses.

Observers were asked to select an image from a pair of distorted images correspond-

ing to the same reference image in response to the query “Which image tells you

more about the content?” Most of the observers were Francophones, and for those

observers, the query was presented in French as “Quelle est l’image qui donne

le plus d’information sur le contenu de l’image ?” The distorted images in each

pair correspond to the same reference image but different distortions (e.g., air-

plane with J2K+DCQ distortions and airplane with TS+HPF distortions). Each

observer provided responses for a pair of images once. Certain pair comparisons

were determined to be unnecessary based on responses collected in a preliminary

experiment (e.g., comparing the most distorted image with J2K+DCQ distortions

to the least distorted image with TS distortions), so the number of comparisons
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(a) R = 0.01, U = −57, Q = 1.1 (b) R = 0.03, U = −14, Q = 1.2

(c) R = 0.08, U = 15, Q = 1.8 (d) R = 0.23, U = 46, Q = 2.5

Figure 3.5: Four images from the airplane/J2K+DCQ sequence used in Ex-
periment 1 (Section 3.2.2). J2K+DCQ distorted images are pa-
rameterized using the encoding bitrate R in bits per pixel (bpp)
(see Table 3.1). The encoding bitrate of the visually lossless air-
plane image specified by the DCQ strategy is RV L = 1.85 bpp.
The perceived utility (U) scores and perceived quality (Q) scores
obtained via the subjective experiments are provided for each
image.
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for each reference image was reduced.

Due to the large number of comparisons, the paired comparison tests were split

into four testing sessions. Observers completed each session in approximately 30

minutes. Distorted images corresponding to the reference images airplane, boy &

cat, caged birds, guitarist, and train were compared in the first two test sessions.

J2K+DCQ, TS, and TS+HPF distorted images were included in the first session,

and JPEG, BLOCK, TS, and TS+HPF distorted images were included in the

second session. Both TS and TS+HPF distorted images appear in both sessions,

so that the combined responses from each session also can be used to determine

the relationship among J2K+DCQ distorted images and both BLOCK and JPEG

distorted images via transitivity.

Distorted images corresponding to the reference images backhoe, jackolanterns,

pianist, and skier were compared in the last two test sessions. The last two sessions

were designed such that observers compared half of the distorted images in a single

test session, and the distorted images in each session spanned the full range of

distortion levels tested. All five types of distortions appeared in each of these last

two test sessions.

Observers

A total of 82 observers with verbally verified normal or corrected-to-normal acuity

participated in the experiment over the four test sessions. Forty naive, Franco-

phone observers participated in the first test session. An analysis of the results

obtained from the first test session revealed that fewer observers would yield sta-

tistically equivalent results, so the remaining test sessions were conducted with

fewer observers. In the second test session, ten naive, Francophone observers and
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ten expert, French- or English-speaking observers participated. Twenty-two naive,

Francophone observers participated in the last two sessions with eleven observers

per session.

3.2.3 Experiment 2: Recognition Thresholds of Natural

Images

The experiment to estimate recognition thresholds for each of the nine reference im-

ages subjected to J2K+DCQ, TS, and TS+HPF distortions consisted of two parts.

In the first part, observers called writers provided descriptions of the distorted im-

ages. In the second part, new observers called readers read these descriptions and

decided which description indicated that the writer recognized the image content.

Since writers typed their descriptions, response time is not a suitable indicator of

recognition. The experimental methods used to estimate the recognition thresholds

of the nine reference images are described.

Stimuli

To accurately estimate observer recognition thresholds of the reference images,

reference/distortion sequences were constructed for each reference image using a

dense set of distortion parameters for the J2K+DCQ, TS, or TS+HPF distortions.

Reference/J2K+DCQ sequences contained 20 images corresponding to encoding bi-

trates R that were logarithmically equally spaced from 0.01 to 0.30 bits per pixel.

The choice of extremely low bitrates guarantees that unrecognizable images appear

at the beginning of the sequence. Both reference/TS and reference/TS+HPF se-

quences contained 24 images corresponding to smoothing parameters γ that were
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logarithmically equally spaced from 2048 to 1. The first image of a reference/TS

sequence contains an image with only very low-frequency content, and the first

image of a reference/TS+HPF sequence contains an image with a constant valued,

gray image. With 9 reference images and 3 distortions, there are a total of 27

reference/distortion sequences.

Part 1: Procedure to Collect Descriptions of Distorted Natural Images

In this part of the experiment, which is similar in design to that of Bruner and

Potter [11], observers called writers viewed a distorted image and typed a brief de-

scription of the recognizable image content. The images that a writer viewed and

described were ordered such that a writer cycled through each image of one refer-

ence/distortion sequence in order of decreasing distortion level. After completely

viewing one reference/distortion sequence, the writer cycled through a new refer-

ence/distortion sequence corresponding to a different reference image and possibly

a different distortion.

A writer necessarily viewed and described the images of at most 9 refer-

ence/distortion sequences, each sequence corresponding to a different reference

image. The order that the reference/distortion sequences were presented to each

writer was randomized. Participants completed this task in about 30 minutes.

Part 2: Procedure to Identify Recognition Thresholds from Descriptions

Collected in Part 1

In this part of the experiment, observers called readers who have not previously

viewed the images read the descriptions produced by the writers.
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This experiment consisted of consecutive trials. In each trial, a reader read

all the descriptions provided by an unidentified writer for the images of a sin-

gle reference/distortion sequence. The reference image corresponding to a refer-

ence/distortion sequence was simultaneously presented to the reader to compare

with the descriptions, but information about the distortion viewed by the writer

was hidden from the reader. The list of descriptions typed by a writer were ordered

for the reader such that the first description corresponded to the first image of the

reference/distortion sequence (i.e., an unrecognizable image), and the last descrip-

tion corresponded to the last image of the sequence. In each trial, the reader

was instructed to select the first description that indicated the basic content of

the reference natural image had been recognized. Trials were randomized for each

reader.

This experiment was split into four sessions to alleviate observer fatigue. No

time limit was imposed, and observers completed each session in approximately 30

minutes.

Observers

A total of 49 observers with verbally verified normal or corrected-to-normal acuity

participated in the experiments to estimate recognition thresholds for the nine

reference images. Forty-six English-speaking observers (i.e., writers) participated

in the experiment that collected descriptions of images in sequences corresponding

to the different distortions. Nine to 13 observers viewed and described the distorted

images in the reference/J2K+DCQ sequences for all nine reference images. Not

all observers viewed a reference/J2K+DCQ sequence of images corresponding to

each of the nine reference images. Twelve observers viewed and described the
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distorted images in the reference/TS and reference/TS+HPF sequences for all nine

reference images. Three English-speaking observers (i.e., readers) participated in

the experiment to identify recognition thresholds from writers’ descriptions.

3.2.4 Perceived Utility Scores from Subjective Data

Perceived utility scores were obtained using the subjective data acquired in the two

experiments described in Sections 3.2.2 and 3.2.3. The process to obtain perceived

utility scores is described as three steps.

Relative Perceived Utility Scores from Subjective Data

Relative perceived utility scores were derived from the subjective data collected us-

ing the paired comparison test method (see Section 3.2.2). In particular, given two

differently distorted images formed from the same reference image, the subjective

data collected for the pair of images was used to estimate the actual probability

that one distorted image is more useful to a human than the other.

Bradley and Terry specified a mathematical model that relates the probability

that the response to stimulus Xi is greater than the response to stimulus Xj to a

continuum of raw scale values that ranks the collection of stimuli {Xi}ni=1 according

to some measure of merit [4]. This mathematical model was used to derive relative

perceived utility scores (i.e., the raw scale values). For a reference image Xref , let

Xi denote a distorted image formed from Xref , and let pij denote the probability

that image Xi conveys more information to a human about the content of Xref

than image Xj. The Bradley-Terry model was used to map the estimates of pij ,

based on the subjective data, to relative perceived utility scores.
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Distorted images subjected to the same distortion were not compared in the

paired comparison test, because perceived utility is assumed to exhibit a mono-

tonically, non-decreasing relationship as the distortion level decreased in the ref-

erence/distortion sequences. This assumption was imposed by explicitly defining

the estimate of the probability pij for two types of comparisons. First, for com-

parisons of an image with itself, the estimate of pii was set to 0.5, since observers

were expected to choose either image with equal probability. Second, for two dif-

ferent distorted images corresponding to the same reference/distortion sequence,

the image with less distortion was assumed to have greater perceived utility than

the image with more distortion. This second assumption was imposed by setting

pij = 0.99 when image Xi and Xj belong to the same reference/distortion sequence

(e.g., a JPEG distortion sequence) but the level of distortion for Xi is less than

that of Xj . The images used in the paired comparison test were broadly spaced in

terms of the distortion level to accommodate this second assumption. For example,

suppose XR1 and XR2 are two J2K+DCQ distorted images formed from the refer-

ence image using encoding bitrates R1 and R2, where R1 < R2. Because a larger

encoding bitrate implies a lower level of distortion for J2K+DCQ distortions, the

second assumption was imposed by setting P (XR2 > XR1) = 0.99.

For each reference image, relative perceived utility scores for the corresponding

set of distorted images were obtained from the estimates of pij using a general-

ized linear model, which Critchlow and Flinger demonstrated is equivalent to the

maximum-likelihood method used by Bradley and Terry [25]. The estimates of

pij were either generated from the subjective data or explicitly defined to impose

the assumptions regarding the relationship among perceived utility and the distor-

tion parameters for a single distortion. In addition to producing relative perceived

utility scores, this data provides a mapping from each distortion parameter to the
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relative perceived utility scores for each reference image, which was used in the

next step.

Relative Perceived Utility Scores for the Recognition Threshold and the

Reference Equivalence Class

The recognition threshold (RT) and the reference equivalence class (REC) of each

reference image are used as anchors to map the relative perceived utility scores to

the common utility scale (see Section 3.2.4). The estimates of the relative perceived

utility scores for the RT and REC are described.

The subjective data from the second experiment (see Section 3.2.3) were used

to estimate the relative perceived utility score coinciding with the RT of each

reference image. The processed subjective data from the first experiment was used

to construct mappings from each distortion parameter to the relative perceived

utility scores. The RT for each reference/distortion sequence was estimated in

terms of the corresponding distortion parameter based on the results from the

experiments described in Section 3.2.3 (e.g., the RT for a J2K+DCQ sequence was

specified in terms of the encoding bitrate R). The relative perceived utility score of

the reference/distortion sequence’s RT was found by linear interpolation using the

mappings from each distortion parameter to the relative perceived utility scores.

For a reference image, this yields several estimates of the relative perceived utility

score for the RT, one corresponding to each distortion. The relative perceived

utility score for the actual RT is estimated as the average of the relative perceived

utility scores for the RT for each distortion.

Both the reference image and any visually lossless image belong to the REC.

Thus, the relative perceived utility score coinciding with the minimum bitrate
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visually lossless image generated via JPEG-2000 compression using the dynamic

contrast-based quantization (DCQ) strategy was used to define the relative per-

ceived utility score of the REC (cf. Section 3.2.1). These visually lossless images

were included in the paired comparison experiments, so the relative perceived util-

ity scores of the REC of each reference image were directly estimated.

Perceived Utility Scores: Relative Perceived Utility Scores Mapped to

a Common Utility Scale

Perceived utility scores were obtained by mapping the relative perceived utility

scores to a common utility scale, where the recognition threshold (RT) was mapped

to a perceived utility score of 0 and the reference equivalence class (REC) was

mapped to a perceived utility score of 100. The relative perceived utility scores for

the RT and the REC were used to define a linear mapping from relative perceived

utility scores for the distorted images generated from the same reference image to

perceived utility scores on the common utility scale.

3.3 Methods: Perceived Quality Scores

Human judgments of perceived quality generally indicate the perceptual resem-

blance of an image to a reference and are quantified by a perceived quality score.

The reference is either 1) an explicit, external natural image that is presented to the

observer or 2) an internal reference based upon observer expectations that is only

accessible to the observer. Despite the vagueness of the term “quality,” observers

frequently attend to particular distortions (e.g., “blocky,” “blurry,” “sharp,” etc.)

to draw conclusions about the perceived quality [122].
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Distorted natural images have been studied more often in the context of per-

ceived quality than perceived utility, and several objective estimators have been

developed to estimate perceived quality (see Section 2.3). The relationship between

perceived quality and perceived utility is unclear; however, a poor quality image

is expected to be less useful than an excellent quality image. If perceived quality

accurately estimates perceived utility, then existing objective quality estimators

should be suitable as utility estimators. Otherwise, those image characteristics

that differentiate judgments of perceived quality from those of perceived utility

need to be determined to properly design both quality and utility estimators ro-

bust to a variety of distortions.

An experiment was conducted to acquire perceived quality scores for the same

images for which perceived utility scores were obtained to understand the rela-

tionship between quality and utility. The methods employed to acquire perceived

quality scores are reported.

3.3.1 Stimuli

The nine reference images and the 243 distorted images formed from these reference

images according to the methods described in Section 3.2.2 served as test stimuli

in this experiment.
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3.3.2 Procedure

The absolute category rating (ACR) [54] testing methodology 3 was used to collect

perceived quality opinions of distorted images from human observers and consists

of consecutive trials. In each trial, an observer was presented with a stimulus for

10 seconds. Then, the display was set to a constant gray background, and the

observer was immediately requested to provide a opinion score that indicated his

perceived quality of the previously displayed stimulus. The reference images were

included in the test stimuli evaluated by the observer, and an observer was unaware

if a stimulus was a distorted or reference image. The order of the stimuli presented

was random and varied for each observer.

A discrete category rating scale was used that has five categories. Observers

provide opinions of quality using the adjectives “Bad,” “Poor,” “Fair,” “Good,”

and “Excellent” that define the quality categories. The observers participating

in the experiment were Francophones; the rating scale respectively translated to

French is “Mauvais,” “Médiocre”, “Assez Bon,” “Bon,” and “Excellent.”

To alleviate observer fatigue due to prolonged evaluation sessions, the test

was split into two sessions each containing roughly half of the stimuli. Observers

completed each session in approximately 30 minutes and rested for five minutes

between the two testing sessions.

3Numerical category scaling [30], adjective category scale [99], and categorical sort [60] are
alternative names describing the absolute category rating (ACR) test method. The subjective
assessment methodology for video quality (SAMVIQ) generally obtains more accurate perceived
quality scores, but both ACR and SAMVIQ yield very similar perceived quality scores for our
collection of distorted images [101].
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3.3.3 Observers

Twenty-six naive, Francophone observers with verbally verified normal or

corrected-to-normal acuity participated in the experiment, and one observer was

rejected as an outlier according to criteria specified in the VQEG Multimedia Phase

I report [134]. The 25 opinion scores from the remaining 25 observers were used

to produce perceived quality scores for each stimulus.

3.3.4 Perceived Quality Scores from Subjective Data

Observers provided quality judgements that correspond to one of the five category

levels (i.e., “Bad,” “Poor,” “ Fair,” “Good,” and “Excellent”). These five levels

were mapped to the integers on the range 1 to 5 and yield observer opinion scores.

The perceived quality score 4 for each test image was computed by averaging the

corresponding observer opinion scores.

3.4 Results: Quality is not a proxy for Utility

The subjective data collected in Sections 3.2 and 3.3 provide perceived utility

scores and perceived quality scores for a collection of distorted natural images.

An analysis of the resulting relationship between the perceived quality scores and

the perceived utility scores is reported and followed by a summary of the image

characteristics that appear to influence human judgments of quality and utility,

respectively, based on an analysis of the distortions. Example images that illustrate

4Prior work in the context of perceived quality often denotes a perceived quality score as a
mean opinion score (MOS).
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that quality is not a proxy for utility are then presented and discussed.

3.4.1 Relationship Between Quality and Utility

Perceived quality scores lie on the closed interval Q = [1, 5], whereas perceived

utility scores lie on R with 0 denoting the recognition threshold and 100 denoting

the reference equivalence class. Images with perceived utility scores less than 0 are

unrecognizable and useless, and images with perceived utility scores greater than

100 are more useful than the reference image.

The relationship between quality and utility was analyzed only for those im-

ages whose perceived utility scores lie on the closed interval U = [−15, 115]. No

images had perceived utility scores greater than 115, but many images (n = 80)

had perceived utility scores less than −15. Differences between perceived util-

ity scores for images well below the recognition threshold convey less information

about utility, since these values result from comparisons of two unrecognizable

images. Furthermore, unrecognizable images were rated as having “Bad” quality:

the perceived quality scores for these images have small standard deviation and

both mean and median approximately equal to 1 5. Images whose perceived util-

ity scores fall just below the recognition threshold were included, because Bruner

and Potter reported that human observers, especially adults, tend to maintain

incorrect hypotheses about the actual content when viewing reference/distortion

sequences beginning with a very distorted, unrecognizable images as compared

to observers that first view a reference/distorted sequence beginning with a less

distorted image [11]. Our experiments to estimate recognition thresholds had ob-

5The perceived quality of unrecognizable images with perceived utility scores less than −15
range from 1 to 1.4 with the average, standard deviation, and median being 1.07, 0.089, and
1.04, respectively.
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servers first view very distorted unrecognizable images in the reference/distortion

sequences, so including images whose perceived utility scores lie on the interval

[−15, 0] accounts for possible overestimates of the recognition thresholds due to

the phenomenon reported by Bruner and Potter.

To test whether quality is a robust proxy for utility, both correlation and ac-

curacy statistics were used. Specifically, quality is not a robust proxy for utility

if 1) perceived quality scores and perceived utility scores are weakly correlated

and 2) perceived quality scores inaccurately estimate perceived utility scores. The

Pearson linear correlation r, the Spearman rank correlation ρ, and the Kendall

rank correlation τ are used to quantify the relationship between perceived quality

scores and perceived utility scores [118]. The rank correlation measures, the ρ and

τ , quantify the discrepancies between the rank order of the two sets of subjective

scores. Neither ρ nor τ are affected by a monotonic, nonlinear mapping.

The root mean squared error (RMSE) and the outlier ratio (OR) were chosen

to quantify the accuracy with which perceived quality scores estimate perceived

utility scores. The RMSE was computed after fitting the perceived quality scores

and the perceived utility scores to a monotonic, nonlinear mapping (cf. Eq. (3.3)).

The OR is the proportion of nonlinearly mapped quality scores (i.e., the utility

score estimated from quality) that lie outside the 95% confidence interval of the

perceived utility score.

Monotonic nonlinear functions were fitted to the subjective scores and used to

map perceived quality scores to the utility range, since perceived quality exhibits a

nonlinear relationship with perceived utility (cf. Figure 3.6). Let Q = [1, 5] denote

the domain of the quality range, and let U = [−15, 115] denote the domain of the

utility range. Let qi and ui respectively denote the perceived quality score and
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perceived utility score of image i. The nonlinear function f : Q → U given as

f(q) = a log(q) + b (3.3)

maps perceived quality scores to the utility range, and the parameters {a, b} were

found by minimizing the sum of the squared error based on the residuals {f(qi)−

ui}ni=1, where n is the number of images with both perceived quality and perceived

utility scores. The fit was considered sufficient if the residuals exhibit a Gaussian

distribution. The Jarque-Bera normality test determines if a collection values come

from an unspecified Gaussian distribution [57], was applied to the set of residuals

{f(qi) − ui}ni=1, and concluded that they did come from an unspecified Gaussian

distribution at the 95% confidence level.

The two scatter plots in Figures 3.6 and 3.7 illustrate the nonlinear relationship

between quality and utility for the nine reference images and five distortions with

perceived utility indicated on the left ordinate. In each scatter plot, the quality ad-

jectives delineating the quality rating scale have been provided on the top abscissa,

and the two anchors, the recognition threshold (RT) and the reference equivalence

class (REC), associated with perceived utility are indicated on the right ordinate.

The symbols in the Figures 3.6 and 3.7 distinguish subjective scores according to

the reference image and the distortion, respectively. The solid curve in each figure

corresponds to the fitted nonlinear mapping from the abscissa to the ordinate (i.e.,

Eq. (3.3)), and the dashed curves define the 95% prediction interval (PI) for the

fitted nonlinear mapping.

The nonlinear relationship between utility and quality indicates that the quality

of a test image generally does not accurately predict its usefulness. The slope of the

nonlinear relationship between utility and quality is positive and decreases with

increasing quality, which indicates that variations in quality correspond to smaller

76



1 2 3 4 5

0

20

40

60

80

100

Perceived Quality

P
er

ce
iv

ed
 U

til
ity

 

 

airplane
backhoe
boycat
cagedbirds
guitarist
jackolanterns
pianist
skier
train
a*log(x)+b
95% PI

Bad Poor Fair Good Excellent

RT

REC

Figure 3.6: Quality is not a suitable proxy for utility. The scatter plots
show the relationship between perceived utility scores and the
perceived quality scores for nine reference images and five distor-
tions (cf. Figure 3.1). The symbols indicate the reference image
corresponding to each subjective score. The recognition thresh-
old (RT) and the reference equivalence class (REC) are denoted
on the axis corresponding to perceived utility scores. The quality
adjectives are denoted on the axis corresponding to the perceived
quality scores. Standard error bars have been included for both
subjective scores. In each figure, the fitted nonlinear mapping
from the abscissa to the ordinate is denoted by the solid curve,
and the 95% prediction interval (PI) for the fitted nonlinear map-
ping is denoted by the dashed curves. See also Figure 3.7.

variations in utility as quality increases. For example, there are test images rated

as having perceived quality ranging from “Fair” to “Excellent” that have high

perceived utility.

The relationship between quality and utility was analyzed for the entire col-

lection of distorted images as well as subsets of the collection that were formed

by treating both 1) quality and 2) distortion type as factors. The quality range

spans the interval [1, 5], and three “levels” of the quality factor were defined: low
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Figure 3.7: Perceived utility versus perceived quality where the symbols in-
dicate the distortion corresponding to each subjective score. See
caption of Figure 3.6.

quality [1, 2.25), medium quality [2.25, 3.75], and high quality (3.75, 5]. Subsets of

distorted images spanning different regions of quality were analyzed, because the

distorted images used in the experiment span distortion levels ranging from unrec-

ognizable to visually lossless. The five distortion types correspond to the “levels” of

the distortion type factor: JPEG, BLOCKS, J2K+DCQ, TS, and TS+HPF. Sub-

sets of distorted images corresponding to different distortion types were analyzed,

because each distortion type disrupts different image characteristics.

Statistical differences in either correlation or accuracy among the different lev-

els of a factor (i.e., quality region or distortion type) preclude a reliable predictive

relationship between perceived quality and perceived utility. Statistical differ-

ences between two correlation values were determined using a z-test after apply-

ing the Fisher transformation to the correlation values [32, 41]. Statistical differ-

ences between accuracy statistics were identified by analyzing the squared errors
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{(f(qi) − ui)
2}ni=1 using a one-way analysis of variance (ANOVA) to determine if

any of the mean squared errors statistically differ for a particular factor [32]. If

ANOVA indicated that the accuracy differed according to a particular factor, then

Tukey’s multiple comparison procedure was used to identify which levels (e.g., high

quality or J2K+DCQ) of that factor had statistically different mean squared er-

rors. The comparison results are reported as p-values, where p-values greater than

0.05 indicate that at the 95% confidence level the mean squared errors differ among

the two levels of the factor that are compared. The outlier ratio (OR) is a binomial

random variable, and statistical differences between two OR values are determined

via a z-test at the 95% confidence level using the Gaussian approximation of a

binomial random variable [32].

Table 3.2 summarizes the correlation and accuracy statistics for all images

and subsets of distorted images when either the quality region or the distortion

is considered as a factor. The monotonic, nonlinear mapping (i.e., Eq. (3.3))

affects the Pearson linear correlation between the subjective scores. The Pearson

linear correlation computed before applying the nonlinearity is denoted r, and it

is denoted rfit when computed after applying the nonlinearity. For each statistic,

values in boldface are statistically greater than those of the other levels within that

factor. The remainder of this section summarizes key observations, which appear

in boldface, followed by statistical justifications and interpretations.

Quality does not consistently and accurately predict utility for dif-

ferent regions of quality. The entire collection of distorted images range from

unrecognizable to visually lossless, and a strong global correlation is observed,

which implies that a poor quality image is less useful than an excellent quality im-

age. However, the 95% prediction interval for the fitted nonlinear mapping between
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Table 3.2: Results summarizing the relationship between perceived quality
and perceived utility. Each row corresponds a subset of n im-
ages either spanning a particular range of quality or correspond-
ing to a particular distortion. The Pearson linear correlation r,
the Spearman rank correlation ρ, and the Kendall rank correla-
tion τ are computed between the perceived quality and perceived
utility scores. The root mean squared error (RMSE) and the out-
lier ratio (OR) were computed using the utility scores and the
mapped (i.e., Eq. (3.3)) quality scores. rfit denotes the Pearson
linear correlation after applying the mapping. For the correlation
statistics and OR, boldface values are statistically equivalent to
the largest value for a subset of images (excluding All). Boldface
RMSE values are statistically larger than the other subsets based
on ANOVA.

Factor Image Subset n r ρ τ RMSE rfit OR

All 163 0.909 0.919 0.750 14.2 0.925 0.58

Quality

Region

Low Quality 72 0.819 0.791 0.606 12.5 0.812 0.60

Med. Quality 63 0.620 0.625 0.458 17.5 0.627 0.68

High Quality 28 0.603 0.583 0.402 9.28 0.614 0.32

Distortion

JPEG 39 0.931 0.938 0.795 11.9 0.939 0.59

BLOCKS 6 0.228 0.116 0.138 7.71 0.221 0.17

J2K+DCQ 42 0.953 0.953 0.825 11.9 0.955 0.48

TS 38 0.964 0.934 0.769 14.3 0.957 0.58

TS+HPF 38 0.884 0.868 0.690 18.6 0.894 0.66

utility and quality (i.e., Figure 3.6) indicates that a perceived quality score corre-

sponds to a broad range of perceived utility scores, and the range of the perceived

utility scores varies for different regions of quality (e.g., the prediction interval is

wider in the medium quality region than the low quality region). An analysis of the

relationship between the perceived utility scores and the perceived quality scores

for individual quality regions provides more insight into the relationship between
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quality and utility.

For different quality regions, both the correlation and accuracy between the

perceived utility scores and the nonlinearly mapped perceived quality scores vary.

The perceived utility scores and perceived quality scores exhibit the most linear

relationship (r = 0.82) for images with low quality (i.e., rated as having either

“Bad” or “Poor” perceived quality). Variations in perceived quality scores explain

67% (i.e., 100r2%) of the variation in perceived utility scores in this quality region.

However, for the other quality regions, the correlation between perceived utility

scores and perceived quality scores is statistically significantly smaller (r < 0.62),

which indicates that variations in the perceived quality scores explain no more

than 40% of the variation in the perceived utility scores in the medium and high

quality regions.

The quality region was found to be a factor that influences the squared errors

between the perceived utility scores and the nonlinearly mapped perceived quality

scores based on a one-way ANOVA (F (2, 160) = 7, p < 0.01). The mean squared

error between the perceived utility scores and the mapped perceived quality scores

for distorted images in the medium quality region is statistically larger than that

of the other two quality regions (p ≤ 0.01).

The significant variation in both the correlation and accuracy statistics for

different regions of quality demonstrate that quality does not generally provide a

reliable estimate of utility. The observed relationship between quality and utility

is discussed for each quality region.

Variations in quality for distorted images in the low quality region largely coin-

cide with variations in utility. The slope of the overall relationship between utility
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and quality decreases as quality increases and is steepest within the low quality

region, which indicates that small changes in perceived quality in the low quality

region affect perceived utility more than small changes in quality for other regions

of quality. Consider, for example, a reference/distortion sequence beginning with

an unrecognizable image and evolving toward a useful image with medium per-

ceived quality. Subsequent images in the sequence will contain less distortion than

the previous images, and the sequence will evolve from unrecognizable to recog-

nizable within the low quality region. The strong correlation (r = 0.82) as well as

the steep slope between utility and quality within this region reflect the dramatic

perceptual changes coinciding with the evolution of images from unrecognizable to

recognizable in this sequence. In other words, the observed relationship between

quality and utility in the low quality region suggests that observers largely judge

lower quality images in terms of their ability to interpret the content.

Distorted images in the medium quality region are useful but visibly distorted

and nearly span the full range of utility [21, 115]. Twenty percent of the distorted

images in the medium quality region have very high utility (i.e., perceived utility

scores greater than 90) and span nearly the entire range of the medium quality

region [2.5, 3.7]. This clearly demonstrates that high utility does not necessar-

ily imply high quality, since these images all have medium quality. Therefore,

very useful images can contain a moderate amount of visible distortions (i.e., have

medium quality). Further analysis revealed that most of the images with medium

quality and high utility are TS+HPF distorted images, which suggests that remov-

ing low-frequency content can form a perceptually different image (i.e., decrease

quality) without affecting the image’s usefulness.

Distorted images in the high quality region contain few visible distortions and
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span a narrow range of utility [73, 108]. In addition, more than 60% of the distorted

images have very high utility (i.e., perceived utility scores greater than 90) with

quality as low as 4 (i.e., “Good” quality). Furthermore, both low correlation with

and low RMSE between the perceived utility scores and the nonlinear mapped

perceived quality scores was observed for distorted images in the high quality

region. In other words, as the level of distortion decreases utility saturates before

quality saturates, and refinements in quality for high quality images have little

effect on utility.

The interpretation of the relationship between utility and quality must be qual-

ified with respect to the natural images used in the experiments. In particular, the

usefulness of the natural images was determined by an object or objects that gen-

erally occupy a large portion of the image, which led to useful images despite the

presence of visible of distortions (i.e. images in the medium quality region). Had

the usefulness of the images been dictated by either a smaller or less conspicuous

object (e.g., recognition of the flower pot in the boy & cat image), the relationship

between utility and quality could differ. For example, image usefulness dictated by

a smaller, inconspicuous object is expected to require a higher quality image than

if the usefulness is dictated by a larger, conspicuous object. Such variations in im-

age usefulness reflect tasks that repurpose the original intent of the images. In this

paper, the task was to report the content of each natural image, and the content

of the images selected for the experiment is dictated by one or two conspicuous

objects.

Utility is not accurately estimated using quality for TS+HPF dis-

torted images. Both the accuracy with which perceived utility scores are esti-

mated from mapped perceived quality scores as well as the correlation between the
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perceived utility scores and the perceived utility scores varies among the different

distortion types 6. The squared errors between the perceived utility scores and

the mapped perceived quality scores were influenced by the distortion type factor

based on a one-way ANOVA (F (4, 158) = 3.39, p = 0.01). The mean squared

errors for estimates of perceived utility scores from perceived quality scores for

TS+HPF distortions were found to be statistically larger than those for JPEG

(p = 0.02) and J2K+DCQ (p = 0.02) distortions but not TS distortions (p = 0.23)

.

TS+HPF distortions disrupt both high-frequency content via texture smooth-

ing and low-frequency content via high-pass filtering, whereas JPEG, J2K+DCQ,

and TS distortions primarily disrupt high-frequency content before low-frequency

content. The perceived utility scores exhibit very strong correlation (r > 0.93)

with the perceived quality scores for the JPEG, J2K+DCQ, and TS distorted im-

ages, and the highest correlation is observed for the TS distorted images (r = 0.96).

The very strong correlation between the perceived utility scores and the perceived

quality scores for JPEG, J2K+DCQ, and TS distorted images indicates that dis-

tortions to high-frequency content affect both utility and quality. However, the

correlation between the perceived utility scores and the perceived quality scores is

statistically lower for the TS+HPF distorted images than the TS distorted images

(p = 0.01), yet the TS+HPF distorted images only lack the low-frequency con-

tent of the TS distorted images. The weak correlation as well as the large RMSE

between the perceived utility scores and the mapped perceived quality scores for

TS+HPF distorted images indicate that distortions to low-frequency content affect

utility differently than they affect quality.

6Only six BLOCK distorted images have perceived utility scores greater than −15, so results
corresponding to the BLOCK distorted images provide little insight into the relationship between
quality and utility. Furthermore, these images have perceived quality scores in the range [1, 1.3]
(i.e., “Bad” quality) and perceived utility scores in the range [−13, 4] (i.e., effectively useless).
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Overall, the analysis of the relationship between utility and quality demonstrate

that an image with low quality also has low utility, and an image with high quality

also has high utility. However, distorted images with quality in the medium region

correspond to a wide range of perceived utility scores, including high utility. In

other words, high utility does not imply high quality. The perceived utility scores of

TS+HPF distorted images are less accurately estimated from the perceived quality

scores than for the other distortions, especially when the TS+HPF distorted image

has quality in the medium region and suggests that low-frequency content affects

quality differently than utility.

3.4.2 Effects of Low-frequency Content on Quality and

Utility

JPEG, BLOCKS, J2K+DCQ, and TS distortions largely disrupt high-frequency

content with limited disruption to low-frequency content. However, TS and

TS+HPF distorted images with the same smoothing parameter γ only differ with

regard to the inclusion of low-frequency content. The perceived utility scores and

perceived quality scores for TS and TS+HPF distorted images were compared to

determine the influence of low-frequency content on both utility and quality.

For each reference image, the subjective scores for TS and TS+HPF distorted

images with equal smoothing parameters γ are tested for statistical differences

when γ = 1, 5, 21, 97, 446, and 2048. Statistical differences in the subjective scores

imply that the disruption to low-frequency content influences the subjective scores.

For TS and TS+HPF distorted images formed from the same reference image

using smoothing parameter γ, let STS(γ) and STS+HPF(γ) denote the subjective
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scores, respectively, and let σSTS(γ)
and σSTS+HPF(γ)

respectively denote the standard

deviation of STS(γ) and STS+HPF(γ). Z-tests were used to determine if two scores

are statistically different using the test statistic

zstat =
STS(γ) − STS+HPF(γ)
√

σ2
STS(γ)

+ σ2
STS+HPF(γ)

. (3.4)

The results of the z-test are reported as the confidence that STS(γ) is greater than

STS+HPF(γ) (i.e., P (z ≤ zstat), where z is a zero mean Gaussian random variable

with unit variance) and is denoted as Conf(STS(γ) > STS+HPF(γ)) ∈ [0, 1].

Figures 3.8 and 3.9 show Conf(STS(γ) > STS+HPF(γ)) as a function of the per-

ceived quality score and the perceived utility score of a TS distorted image, re-

spectively. Values of Conf(STS(γ) > STS+HPF(γ)) less than 0.025 and greater than

0.975 indicate that the subjective scores for TS and TS+HPF distorted images

with equal γ are statistically different at the 95% confidence level (i.e., a two-sided

z-test). Values of Conf(STS(γ) > STS+HPF(γ)) less than 0.05 indicate that the sub-

jective score for the TS distorted image is statistically smaller than the subjective

score for a TS+HPF distorted image formed from the same reference image using

the same γ at the 95% confidence level (i.e., a one-sided z-test). Similarly, values

of Conf(STS(γ) > STS+HPF(γ)) greater than 0.95 indicate that the subjective score

for the TS distorted image is statistically greater than the subjective score for a

TS+HPF distorted image with the same γ. Key observations appear in boldface

and are followed by a statistical justification and interpretation.

For the same reference image, a TS+HPF distorted image never is of

higher quality than a TS distorted image with the same γ. Over all levels

of quality, loss of low-frequency content led to an average decrease in perceived

quality of 0.53, and in most cases, the perceived quality of a TS distorted image

is statistically greater than that of a TS+HPF distorted image formed from the
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Figure 3.8: Perceived quality either decreases or remains the same when low-
frequency content is disrupted (i.e., for TS+HPF distortions rel-
ative to TS distortions). The figures show the confidence that the
perceived quality (Q) score of the TS distortions are greater than
the perceived quality score for TS+HPF distortions with equal γ
as a function of the perceived quality score of the TS distortions.
Confidence values either in the interval [0, 0.025] or [0.975, 1] in-
dicate that the perceived quality scores are statistically different
at the 95% confidence level. Confidence values greater than 0.95
(less than 0.05) indicate that the perceived quality score for the
TS distorted image is greater than (less than) the perceived qual-
ity score for a TS+HPF distorted image at the 95% confidence
level. QTS(γ) denotes the perceived quality Q of a TS distorted
image using smoothing parameter γ, and QTS+HPF(γ) is similarly
defined for a TS+HPF distorted image. See Section 3.4.2 for
additional details regarding the confidence analysis and its inter-
pretation.
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Figure 3.9: Disruptions to low-frequency content do not affect the perceived
utility of most images. The figures show the confidence that the
perceived utility (U) score of the TS distortions are greater than
the perceived utility score for TS+HPF distortions with equal γ
as a function of the perceived utility score of the TS distortions.
Confidence values either in the interval [0, 0.025] or [0.975, 1] in-
dicate that the perceived utility scores are statistically different
at the 95% confidence level. Confidence values greater than 0.95
(less than 0.05) indicate that the perceived utility score for the
TS distorted image is greater than (less than) the perceived util-
ity score for a TS+HPF distorted image at the 95% confidence
level. UTS(γ) denotes the perceived utility U of a TS distorted
image using smoothing parameter γ, and UTS+HPF(γ) is similarly
defined for a TS+HPF distorted image. Refer to the legend of
Figure 3.8.
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same reference image using the same γ. For some images, the perceived quality

of a TS and TS+HPF distorted image with equal γ are statistically equivalent

but only when the perceived quality of the TS distorted image is less than 3 (i.e.,

the quality is “Fair” or worse). In short, because poorer quality images are very

heavily distorted, additional distortions that affect the low-frequency content of

poorer quality images have little influence on the perceived quality.

The relationship between the utility of TS and TS+HPF distorted

images with the same γ formed from the same reference image varies

for each reference image. For many of the reference images, disruptions to

low-frequency content (i.e., TS and TS+HPF distorted images with equal γ) do

not affect perceived utility. However, disruptions to the low-frequency content of

the images skier, airplane, backhoe, and caged birds did affect utility when the TS

distorted image has high utility (i.e., perceived utility score greater than 70).

The image skier has a statistically greater perceived utility score when low-

frequency content is disrupted (i.e., for TS+HPF distorted images) than when the

low-frequency content is not disrupted (i.e., the TS distorted images). Moreover,

a skier TS+HPF distorted image with medium quality has a perceived utility

score statistically greater than 100: this image is more useful than the reference

image. Removing the low-frequency content from skier introduces “halos” near

edges that enhance the visibility of the skier and other objects (see Figure 3.10).

The increased visibility of the skier could explain why removing the low-frequency

content (i.e., a TS distorted image versus a TS+HPF distorted image with the

same γ) increased the perceived utility. However, the observer responses do not

indicate what criteria the observers used to choose the TS+HPF distorted image

over the TS distorted image (see Section 3.5).
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(a) TS (γ = 1), Q = 4.2, U = 98

(b) TS+HPF (γ = 1), Q = 3.4, U = 115

Figure 3.10: Example showing that the skier TS distorted image has sta-
tistically greater quality than the TS+HPF distorted image
with equal γ but statistically lower utility. Removing the low-
frequency content from skier (i.e., the TS+HPF distorted im-
age) introduces “halos” near edges that enhance the visibility
of the skier. See also Figures 3.8 and 3.9.
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Among TS distorted images with high utility (i.e., greater than 70), the per-

ceived utility scores of the images airplane, backhoe, and caged birds were statis-

tically smaller for TS+HPF distorted images than TS distorted images for the

same γ. Because a paired comparison test methodology without ties was used,

observers were forced to choose one of the images in each pair presented. The

binary responses collected from observers to obtain perceived utility scores pre-

clude a definitive explanation for why the TS distorted images were chosen over

TS+HPF distorted images, but there are two possible explanations for this result:

• Relative to the TS+HPF distorted images, the low-frequency content of TS

distorted images may convey useful information about the content to ob-

servers. For example, in the airplane image, the removal of the low-frequency

content darkens many regions of the image (e.g., the sky and the airplane).

The sky similarly darkens in the backhoe image when low-frequency content

is removed. These perceptual differences may cue different interpretations

about the scene to observers, and the interpretation for the TS distorted im-

age appears more accurate. The appearance of the specular reflections of the

bird cage, which may provide an observer with information about the bright-

ness of the room, are reduced in the caged birds TS+HPF image relative to

its TS distorted version. Such features correspond to additional information

about the image content beyond the visibility of the objects’ spatial details,

which would be primarily conveyed by high-frequency content (e.g., edges).

• Observers may have found both TS and TS+HPF distorted images formed

from the same reference using the same γ equally useful and more often

reverted to judgments of quality to choose an image. This would suggest that

quality is a secondary criteria to utility. In other words, given images with

equal utility, observers generally preferred the higher quality TS distorted
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image, except when the lower quality TS+HPF distorted image conveyed

sufficiently more information about the content (e.g., the skier image). For

many of the reference images, the values of Conf(STS(γ) > STS+HPF(γ)) show

evidence of a slight, though not statistically significant, bias toward observers

choosing the TS distorted image over the TS+HPF distorted image with

equal γ.

We conjecture that the second explanation (i.e., observers revert to quality judge-

ments) is more plausible; however, different observers may have used different

criteria to make a decision (see Section 3.5).

3.4.3 Examples illustrating that quality is not a proxy for

utility

The analysis of the relationship between perceived utility scores and perceived

quality scores demonstrates that quality does not accurately predict utility, and

Figure 3.11 illustrates several cases when the relationship between two distorted

images based on quality does not reflect the relationship between those two images

in terms of utility and vice versa. Each row of Figure 3.11 corresponds to a

different reference image, and for each row the images are arranged such that

1) the distorted image on the left and the distorted image in the middle have

statistically equivalent perceived utility scores but statistically different perceived

quality scores and 2) the distorted image in the middle and the distorted image

on the right have statistically equivalent perceived quality scores but statistically

different perceived utility scores.
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Statistically Equivalent Perceived Utility

Statistically Equivalent Perceived Quality

TS (γ = 5): U = 83, Q = 3.8 TS+HPF (γ = 5): U = 78, Q = 2.6 TS (γ = 21): U = 52, Q = 2.2

TS (γ = 5): U = 86, Q = 4.3 TS+HPF (γ = 5): U = 90, Q = 2.7
J2K+DCQ (R = 0.2):

U = 49, Q = 2.5

J2K+DCQ (R = 0.2):

U = 71, Q = 3.6

JPEG (Pjpeg = 10):

U = 62, Q = 3.1

TS+HPF (γ = 21):

U = 102, Q = 2.8

Figure 3.11: Differences in perceived quality (Q) do not imply differences
in perceived utility (U). In terms of perceived utility, the dis-
torted images in the middle column are statistically equivalent
to the distorted images in the left column. However, in terms
of perceived quality the distorted images in middle column are
statistically equivalent to the distorted images in the right col-
umn.
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The first two rows of the first two columns in Figure 3.11 illustrate the rela-

tionship between TS and TS+HPF distorted images. The texture smoothing pa-

rameter γ must be increased (i.e., increasing the level of texture smoothing) for a

TS distorted image to exhibit the same perceived quality observed as a TS+HPF

distorted image, but the resulting TS distorted image will have lower perceived

utility than the TS+HPF distorted image (first row of Figure 3.11). Similarly, a

J2K+DCQ distorted image that exhibits the same perceived quality as a TS+HPF

distorted image also has lower perceived utility (second row of Figure 3.11). In

other words, high-frequency content must be disrupted to form a distorted image

with equal quality to an image that lacks low-frequency content.

The last row of Figure 3.11 contains three images that respectively have

J2K+DCQ, JPEG, and TS+HPF distortions. High-frequency content is disrupted

for both J2K+DCQ and JPEG distorted images with limited disruption to low-

frequency content. For the TS+HPF distorted image, the low-frequency content is

lost with little disruption to the high-frequency content. The TS+HPF distorted

image has “Fair” perceived quality (statistically equivalent to the JPEG distorted

image) but perceived utility corresponding to the reference equivalence class.

These examples illustrate that distorted images corresponding to a specific level

of utility can significantly vary in terms of quality, and distorted images correspond-

ing to a specific level of quality can significantly vary in terms of utility. Thus,

quality does not reliably predict of utility. Furthermore, the observed relationship

between utility and quality implies that any objective estimator that accurately es-

timates perceived quality (utility) scores cannot also accurately estimate perceived

utility (quality) scores across a variety of distortion types.
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3.5 Limitations of Perceived Utility Scores

Relative perceived utility scores of distorted images were obtained using a paired

comparison methodology that has two limitations. The subjective responses lack

information about the specific content actually recognized by the observers viewing

the distorted images, because the test method only collected binary responses (i.e.,

a choice) from observers in response to the query “Which image tells you more

about the content?”. This precludes an analysis of the data based on the actual

criteria that led observers to their responses.

The second limitation is that observers may have used a secondary factor such

as perceived quality to choose an image when both images appeared equal with

regard to their perceived usefulness. For example, for the airplane, backhoe, and

caged birds images, the TS distorted images had higher perceived utility than

the TS+HPF distorted image with the same γ. If observers consistently rely

on a secondary factor to choose an image, then the perceived utility scores will

be intermixed with these secondary factors. Because TS distorted images have

greater perceived quality than TS+HPF distorted images, the perceived quality is

the most likely secondary factor to influence an observers decision.

Despite the limitations with the current method used to obtain relative per-

ceived utility scores, the results still illustrate a distinction between perceived

quality and perceived utility, and any improvements to the test methodology used

to obtain relative perceived utility scores are expected to reveal greater differences

between perceived quality and perceived utility.
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3.6 Summary

This chapter described a suite of experiments that were conducted to obtain per-

ceived utility and perceived quality scores for a collection of distorted natural

images. An analysis comparing the the results from the experiments reveals that

perceived quality is not a proxy for perceived utility. A distortion that removes

low-frequency content from an image demonstrated that perceived utility is largely

based on the fidelity of high-frequency content and is less affected by distortions to

low-frequency content. Perceived quality, on the other hand, is affected by distor-

tions to both low and high frequency content. The observed relationship between

utility and quality implies that accurate objective quality (utility) estimators will

not accurately estimate perceived utility (quality) for a broad class of distortions.

3.7 Key Points

• A suite of experiments were conducted to obtain perceived utility and per-

ceived quality scores for a set of distorted natural images. The resulting

relationship between the perceived utility and perceived quality scores indi-

cates that quality is not a suitable proxy for utility.

• Distorted images spanning a broad selection of distortion types were used

in the experiments, and some distortions (i.e., the texture-smoothing (TS)

and TS plus high-pass filtering distortions) have not been formally exam-

ined in terms of perceived quality. Distortions to the low-frequency content

of natural images were not found to affect their perceived utility, whereas

distortions to high-frequency content did affect their perceived utility. Fur-

thermore, quality is affect by distortions to both low and high frequency
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content.

• Limitations with regard to the perceived utility scores were noted. First,

the subjective responses lack information about the content actually recog-

nized by observers viewing the distorted images, because observers provided

responses to the query “Which image tells you more about the content?”.

Second, observers likely relied on a secondary factor to resolve potential ties

(i.e., equal usefulness), and that factor may have been perceived quality. An

improved methodology that addresses these issues is presented in Chapter 5.

• Despite the limitations with the experimental data, the results still illustrate

a distinction between perceived quality and perceived utility. In short, the

observed relationship between utility and quality implies that accurate objec-

tive quality (utility) estimators will not accurately estimate perceived utility

(quality) for a broad class of distortions.
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CHAPTER 4

OBJECTIVE ESTIMATES OF PERCEIVED UTILITY AND

PERCEIVED QUALITY

4.1 Introduction

The psychometric evidence presented in Chapter 3 establishes that any objective

estimator that accurately estimates perceived quality scores cannot accurately es-

timate perceived utility scores. The performance of several objective estimators as

both quality and utility estimators is assessed. Although most of these objective

estimators have been designed to estimate perceived quality, they serve as signal

analysis tools not only to develop an understanding of those image characteristics

that impact usefulness but also to suggest signal analysis tools for an objective

utility estimator.

Two objective estimators are shown to accurately estimate utility. The first is

an objective estimator that is customarily used as a quality estimator. A modified

version of this estimator, in which the modifications adjust the relative importance

of distortions across spatial frequencies to the overall objective estimate, is shown

to generate the most accurate estimates of perceived quality among the objective

estimators evaluated.

The second objective estimator is the newly proposed natural image contour

evaluation (NICE) utility estimator, which was inspired by the importance of con-

tour information to the human visual system for object perception [34, 67, 75].

NICE is based on the hypothesis that degradations to image contours restrict the

content that an image conveys to a human and decrease perceived utility. In par-
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ticular, NICE estimates utility as a function of both lost and introduced contour

information in a distorted image when compared with a reference image.

Chapter 2 reviewed several objective estimators that are assessed as both util-

ity and quality estimators of distorted natural images in this chapter. The natural

image contour evaluation (NICE) utility estimator is introduced and described

in Section 4.2. Results summarizing the performance of NICE as well as several

objective estimators are reported and described in Section 4.3. The results from

both of the subjective experiments reported in Chapter 3 and the analysis of ob-

jective estimators as utility and quality estimators are discussed in Section 4.4. A

summary is provided in Section 4.5.

4.2 NICE: Natural Image Contour Evaluation

Processing in the human visual system (HVS) parses a visual stimulus into mean-

ingful pieces that facilitate the perception of objects. The primary visual cortex

extracts local, oriented edge information from a visual stimulus. This information

is later processed by cortical regions of the HVS that have been associated with

object perception [49]. Cells within in the extra-striate cortex, in particular V4,

have been functionally described as shape descriptors [75]. The extra-striate visual

cortex has been shown to exhibit an increased activation in response to images that

contain contour information [34]. Thus, the evidence suggests that the HVS uses

contour information for object perception.

A degradation to image contours is hypothesized to inhibit object perception.

Furthermore, we hypothesize that the perceived usefulness of a distorted image is

related to a human’s ability to recognize objects within that image. Biderman and
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Ju reported that human observers can recognize objects from line drawings nearly

as efficiently as photographs [3], and the authors of the present paper have shown

elsewhere that humans can recognize image content from contour information de-

tected using a Canny edge detector operating at different image scales [102]. The

fidelity of contour information from a test image with respect to a reference image

may be a reliable indicator of perceived utility, and, specifically in this paper, a

human’s ability to extract information from the test image.

The natural image contour evaluation (NICE) utility estimator compares the

contours identified in a test image to those identified in the reference image to

produce a numerical score indicating the estimated utility score of the test image

[100, 105]. Image contours or edges, defined by sudden intensity changes in pixel

values, can be identified by the presence of an absolute maximum magnitude in

the gradient of an image [95].

Image contours can be detected from a single image scale or across multiple

image scales. For example, the Sobel edge detector analyzes image content from

a single image scale to identify contours. However, energy from edges span multi-

ple image scales, and the HVS does not strictly analyze one image scale of visual

information [31]. A wavelet decomposition coarsely approximates the multi-scale,

multi-orientation analysis conducted by the primary visual cortex, and can be used

to identify contours at multiple image scales. The Sobel edge detector is compu-

tationally efficient, but multi-scale contour identification uses visual information

from multiple image scales that would be available to the HVS. The performance

of NICE was evaluated using both single- and multi-scale contour identification

methods. The computation that NICE conducts using identified contours is de-

scribed and followed by individual descriptions of the single-scale and multi-scale
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contour identification methods used for NICE.

Contour Comparison

An objective score with NICE is computed by comparing the contours of the

reference and test images, which are represented as binary images. Before the

contours of the reference and test images are compared, binary images represent-

ing the contour maps are individually subjected to morphological dilation with a

3 × 3 “plus-sign” shaped structuring element E [46]. Morphological dilation ac-

commodates local registration errors between the reference and test contour maps

introduced by distortions in the test image that should not be quantified as errors.

The contours of the reference and test images are compared across S image

scales, and Bs and B̂s respectively denote the contours of the reference and test

images at scale s. The overall NICE score for the test image is

NICE =

∑S
s=1 dH(Bs ⊕ E, B̂s ⊕E)

∑S
s=1 NBs

, (4.1)

where NBs
is the number of non-zero elements of Bs ⊕ E, dH(X, Y ) denotes the

Hamming distance1 between the two binary vectors X and Y , and B ⊕E denotes

the dilation of the binary image B using the morphological structuring element

E. The Hamming distance quantifies 1) the number of pixels corresponding to

contours in the reference image that have been lost in the test image due to the

distortions and 2) the number of pixels corresponding to contours in the test image

introduced by the distortions that were absent in the reference image. Since the

content of natural images vary, the proportion of pixels corresponding to contours

will vary. The factor NB accounts for this variability by adaptively scaling the

1The Hamming distance counts the number of dissimilar elements between two vectors [50].
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raw score dH(B ⊕ E, B̂ ⊕ E) according to the extent of the contour information

identified in the reference image.

Single-scale Contour Identification with Classical Edge-Detectors

Numerous image processing tools have been designed to detect edges in natural

images [13, 72, 95]. These are used to generate the binary images B1 and B̂1

corresponding to contours of the finest image scale of the respective reference

and test images for the single-scale implementation of NICE (i.e., S = 1 in Eq.

(4.1)). Edge-detectors incorporate a filtering operation that approximates the first-

derivative of the image. The Sobel and Canny edge-detectors were used for the

single-scale version of NICE.

The Sobel edge-detector filters an image with two 3× 3 linear filters, one that

approximates a horizontally-oriented derivative and another that approximates

a vertically-oriented derivative. If Gx and Gy correspond to the approximated

horizontal and vertical derivatives of the original image, respectively, then an edge-

intensity image, given as G = G2
x + G2

y, is subjected to hard-thresholding, using

a threshold given as twice the average value of G, to produce a binary image

identifying image contours.

The Canny edge-detector filters the image with the derivative of a Gaussian

specified for a particular σ > 0 and applies thresholding to generate a binary

image [13]. The parameter σ in the Canny filter controls the suppression of high-

frequency content (i.e., textures and uncorrelated noise) before detecting edges,

and NICE was implemented with the Canny edge-detector for σ = 1.
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Multi-scale Contour Identification

A wavelet representation of an image provides multi-scale directional derivatives

of that image, which can be used to identify image contours at different image

scales. Both the reference and test images are represented using an undecimated

implementation of the steerable pyramid [117] using D orientations and S scales2.

Let Ws,θ(i) and Ŵs,θ(i) denote the ith wavelet coefficient of the respective refer-

ence and test images in the subband corresponding to scale s ∈ {1, 2, . . . , S} and

orientation θ ∈ {0, π
D

, 2π
D

, . . . , π(D−1)
D
}.

For each image scale s, the local modulus maxima (LMM) [70] of wavelet coef-

ficient scales correspond to image contours for the reference and test images. The

LMM are determined from gradient vectors formed from wavelet subbands corre-

sponding to derivatives in horizontal and vertical spatial directions [70]. Define

Gs(i) = Ws,0(i) − jWs, π
2
(i) and Ĝs(i) = Ŵs,0(i) − jŴs, π

2
(i) as the gradient of the

respective reference and test images at scale s, where j =
√
−1. For image scale

s, let Ms(i) = |Gs(i)| and As(i) = ∠Gs(i) denote the respective modulus and an-

gle of the gradient of the reference image. Similarly, define M̂s(i) = |Ĝs(i)| and

Âs(i) = ∠Ĝs(i) for the test image. LMM of the reference image correspond to

points of Ms(i) greater than the two adjacent neighbors in the direction indicated

by As(i), and for the test image, LMM are similarly identified using M̂s(i) and

Âs(i). For scale s, let Is and Îs denote sets of indices i corresponding to LMM of

the respective reference image and test images.

Binary images represent image contours of the reference and test images.

Thresholds used to identify contours are independently calculated for the refer-

ence and test images based on the energy of the combined horizontal and vertical

2The high-pass residual generated by the steerable pyramid is not used.
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subbands (i.e., Ms and M̂s). Specifically, the image contours at scale s of the refer-

ence and test images are identified as LMM that exceed the respective thresholds

βs = 4
P

∑P
i=1 M2

s (i) and β̂s = 4
P

∑P
i=1 M̂2

s (i), where P is the number of wavelet

coefficients. Bs(i) and B̂s(i), the reference and test binary images for scale s, are

defined as

Bs(i) =











1 Ms(i) > βs and i ∈ Is

0 else
. (4.2)

B̂s(i) is similarly defined using M̂s, Îs, and β̂s.

4.3 Results: Objective Estimates of Utility and Quality

Subjective experiments are reliable but prohibitively expensive methods to esti-

mate either utility or quality, but an objective estimator that is consistent with

subjective responses for either utility or quality can be used in lieu of the subjective

experiments. This section evaluates each objective estimator described in Section

2.3 as both a utility estimator and a quality estimator. Specifically, the objective

estimates are evaluated using the perceived utility and perceived quality scores

from the subjective experiments. Objective estimators that provide accurate and

reliable estimates of the subjective scores also serve as signal analysis tools that

can be analyzed to understand what image characteristics impact the subjective

scores. For example, an objective estimator that reliably estimates perceived util-

ity scores can be dismantled to understand the image characteristics that affect

utility.

The implementations of all the objective estimators were obtained from the

respective authors and are available in the Metrix Mux compilation of objective
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estimators [44]. Single-scale implementations of NICE are evaluated using the

Sobel and Canny edge-detector, respectively denoted as NICESobel and NICECanny.

Multi-scale implementations of NICE are evaluated using up to four scales (i.e.,

for S = 1, 2, 3, 4 in Eq. (4.1)), where each implementation is denoted MS-NICES

(i.e., MS-NICE3 denotes MS-NICE using the first three image scales).

A monotonic, nonlinear mapping between objective estimates and subjective

scores is often recommended before analyzing the performance of an objective

estimator [132]. However, the nonlinear mapping functionally compensates for ob-

jective estimator’s shortcomings and obscures the relationship between the image

characteristics analyzed by that objective estimator and those that affect the sub-

jective scores. Thus, a linear mapping between the objective estimates and the

subjective scores was used to avoid drawing erroneous conclusions from the results

that are due to the nonlinear mapping and not the objective estimator. Further-

more, objective estimators that estimate either utility or quality using only a linear

mapping are preferred, since training data is not needed to calibrate the nonlinear

mapping associated with the objective estimator (see also Appendix VI.3 of [133]).

An affine linear function hE that maps the objective estimates to the range of

values corresponding to the subjective scores that lie in the domain E was fitted

to the data. The parameters of hE were found by minimizing the sum of the set of

squared residuals {(hE(di)− ei)
2}ni=1 for the n images, where di and ei respectively

denote an objective estimate and a subjective score for image i.

To test the performance of an objective estimator as a utility estimator and a

quality estimator both correlation and accuracy statistics were used to quantify

the relationship between the its objective estimates and the respective subjective

scores. Specifically, 1) the objective estimates and the subjective scores must be
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strongly correlated and 2) the objective estimator must accurately estimate the

subjective scores.

The same correlation and accuracy statistics used in Section 3.4.1 to evaluate

and quantify the relationship between perceived quality scores and perceived util-

ity scores are used to evaluate the objective estimators. The root mean squared

error (RMSE) is computed between the subjective scores and the linearly mapped

objective estimates. The resolving power (RPα) is another accuracy statistic that

is used to specify the smallest difference in fitted objective scores for a pair of test

images such that the difference is significant based on the estimated error of the

subjective scores at the 100(1− α)% confidence level [7].

The skewness and kurtosis of the set of residuals {hE(di) − ei}ni=1 are also

reported. Values of skewness and kurtosis that differ from 0 and 3, respectively,

suggest that the residuals do not come from a Gaussian distribution. The best

performing objective estimators will have residuals that come from a Gaussian

distribution with a small standard deviation (i.e., small root mean squared error

(RMSE)). Such estimators analyze important image characteristics that reliably

explain the variation in the subjective scores.

The correlation and accuracy statistics are estimated from the data and, there-

fore, are random variables, so statistical differences, not absolute differences, indi-

cate significant differences in the statistics. Statistical differences between correla-

tion statistics and the outlier ratio (OR) are determined using the same methods

described in Section 3.4.1.

Statistical differences in accuracy are determined by comparing the variance of

the residuals corresponding to different objective estimators. An F -test frequently
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is used to compare the variance of the residuals corresponding to different objective

estimators, but an assumption with the F -test is that the residuals come from a

Gaussian distribution [32, 132]. For most objective estimators, the residuals did

not come from a Gaussian distribution according to the Jarque-Bera normality

test [57], so the Brown-Forsythe Levene (BFL) test [10], rather than the F -test,

was used to compare the variance of the residuals for different objective estimators,

with results reported by the corresponding p-value. With the BFL test, p-values

greater than 0.05 indicate at the 95% confidence level that the variance of the

residuals for two estimators are statistically equivalent.

The results that characterize the performance of the objective estimator as both

1) utility estimators and 2) quality estimators are reported separately. A general

summary of the results is presented.

4.3.1 Results: Objective Estimates of Perceived Utility

A utility estimator should both detect recognizable images and provide accurate

estimates of perceived utility.

Determining if Test Images Are Recognizable

Objective estimators can be used to determine if test images are recognizable by

applying an appropriate threshold to the score generated by that estimator.

An image is either recognizable or unrecognizable. Cast as a two-class detection

problem, the performance of a estimator as a detector can be characterized by its

receiver operating characteristic (ROC) [38, 48, 51]. An ROC curve summarizes
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the relationship between the proportion of true positives and false positives for a

given estimator using a range of threshold values. The area under the ROC curve

(AUC) collapses the performance of an objective estimator to a single number.

Given a pair of test images belonging to each class (i.e., one recognizable and one

unrecognizable), the AUC quantifies the probability that an estimator correctly

distinguishes recognizable images from unrecognizable images.

The objective estimators were evaluated as recognition detectors by applying

a threshold to the objective estimates to classify an image as either recognizable

or unrecognizable. A total of 1000 thresholds were tested ranging from 0.95 of the

minimum objective estimate to 1.05 times the maximum objective estimate. For

each threshold, the true positive rate (i.e., the proportion of times an image was

correctly classified as recognizable) and the false positive rate (i.e., the proportion

of times an image was incorrectly classified as recognizable) were recorded. ROC

curves were generated from the recorded pairs of true positive and false positive

rates. The AUC was estimated by the trapezoidal rule [51]. The AUC is a statistic

estimated from available data and is therefore a random variable, so the 95% confi-

dence intervals for the estimates of the AUC were computed [51]. The first column

of Table 4.1 lists the AUC as the recognition detection accuracy for each objective

estimator that was used to detect recognizable images across all distortions.

VIF, VIF*, NICESobel, NICECanny, and all versions of MS-NICE cor-

rectly distinguish recognizable images from unrecognizable images with

statistically greater probability than the other objective estimators. All

of the other objective estimators correctly rank two such images with probability

greater than chance. In Table 4.1, the absolute maximum value of the recognition

detection accuracy is shown in boldface, and values that are statistically equiv-
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alent with 95% confidence are italicized. The subjective experiments revealed a

linear relationship between perceived quality scores and perceived utility scores

for low quality distorted images, so an objective estimator that produces accurate

estimates of perceived quality scores should also accurately detect recognizable

images. All the other objective estimators exhibit poor recognition detection ac-

curacy, because these estimators severely underestimate the perceived utility scores

of TS+HPF distorted images. Specific details about the performance of these es-

timators are discussed alongside the results presented in Section 4.3.1.

Estimating the Perceived Utility of Recognizable Test Images

A utility estimator should accurately estimate the perceived utility of a test image

deemed recognizable. Only those test images with perceived utility scores exceed-

ing −15 (n = 163 test images) are used to evaluate an estimator’s performance as

a utility estimator, since accurate estimates of perceived utility scores for unrec-

ognizable images are unnecessary. Tables 4.1 and 4.2 summarize the correlation

and accuracy statistics for all the objective estimators when analyzing their lin-

early mapped objective estimates with respect to the perceived utility scores. The

p-value for the BFL test BFLp is reported when the residuals of each objective es-

timator were compared with the residuals of VIF, since residuals for VIF exhibited

the smallest variance when VIF was evaluated as a utility estimator.

The remainder of this section reports the key results, which appear in boldface,

followed by a summary of the results for subsets of objective estimators that exhibit

similar performance with headings for the subsets of estimators appearing in italics.

Statistical justifications, general interpretations, and specific remarks about the

objective estimators are reported.
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Table 4.1: Statistics summarizing 1) the ability of an objective estimator to
distinguish recognizable and unrecognizable images and 2) the cor-
relation of objective estimator values with perceived utility scores.
The recognition detection accuracy is the probability that an un-
recognizable image and recognizable image are correctly distin-
guished. The Pearson (linear) correlation coefficient r, the Spear-
man rank correlation coefficient ρ, the Kendall rank correlation τ
are reported when the estimates are compared with the perceived
utility scores for test images with perceived utility exceeding −15
(n = 163 test images). Optimal values appear in boldface with
statistically equivalent values italicized.

Recognition
Detection
Accuracy

Correlation Measures
Estimator ρ τ r

Spectral Slope β 0.729 0.751 0.535 0.730
Sig. Fidelity
Measures

PSNR 0.768 0.520 0.422 0.414
Crms(E) 0.792 0.521 0.404 0.211

Estimators
Based on
HVS
Properties

WSNR 0.766 0.485 0.372 0.415
NQM 0.796 0.509 0.401 0.422
VSNR 0.790 0.530 0.436 0.541
C4 0.830 0.661 0.517 0.651

Estimators
Based on
Hypothesized
HVS
Objectives

SSIM 0.924 0.862 0.682 0.845
MS-SSIM 0.935 0.731 0.585 0.652
VIF 0.978 0.959 0.821 0.943
VIF* 0.973 0.928 0.768 0.924

Proposed
Utility
Estimators

NICESobel 0.980 0.951 0.804 0.924
NICECanny 0.980 0.937 0.785 0.935
MS-NICE1 0.979 0.956 0.816 0.923
MS-NICE2 0.980 0.959 0.821 0.911
MS-NICE3 0.980 0.958 0.817 0.902
MS-NICE4 0.981 0.947 0.794 0.901

Estimators that analyze distortions to low-frequency content perform

poorly as utility estimators. The spectral slope, signal fidelity measures, and the

objective estimators based on HVS properties perform poorly as utility estimators.

Estimates from these estimators weakly correlate with and inaccurately estimate

perceived utility scores. Specifically, the linear correlation between the values from

these estimators and the perceived utility scores (0.21 < r < 0.73) imply that these
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Table 4.2: Statistics summarizing the accuracy of estimators serving as util-
ity estimators. The root mean squared error (RMSE), the out-
lier ratio (OR), and the resolving power RPα for α = 0.1, 0.05
are reported when the estimates are compared with the perceived
utility scores for test images with perceived utility exceeding −15
(n = 163 test images). Optimal values appear in boldface with
statistically equivalent values italicized. An asterisk beside the
RMSE indicates that the residual variance is statistically equiva-
lent to that of VIF according to the Brown-Forsythe-Levene test
at the 95% confidence level. The skewness (Skew.) and kurtosis
(Kurt.) of the residuals are italicized when the Jarque-Bera (JB)
test indicates that the residuals belong to a Gaussian distribution.

Estimating Perceived Utility: Accuracy Measures
Estimator RMSE OR RP0.10 RP0.05 Skew. Kurt.

Spectral Slope β 25.6 0.748 52.3 64.4 0.51 2.8
Sig. Fidelity
Measures

PSNR 34.1 0.859 57.3 57.3 -0.19 2.6
Crms(E) 36.6 0.877 37.6 38.2 0.11 1.8

Estimators
Based on
HVS
Properties

WSNR 34.0 0.847 56.3 57.6 -0.22 2.4
NQM 33.9 0.847 54.1 54.1 -0.28 2.4
VSNR 31.5 0.742 41.5 83.9 -0.51 3.0
C4 28.4 0.785 69.9 75.9 -0.74 3.9

Estimators
Based on
Hypothesized
HVS
Objectives

SSIM 20.0 0.595 41.5 55.2 -0.12 3.8
MS-SSIM 28.4 0.828 49.6 66.4 0.01 2.4
VIF 12.4 0.595 20.8 26.6 0.04 2.9
VIF* 14.3* 0.497 30.9 41.1 -0.53 4.2

Proposed
Utility
Estimators

NICESobel 14.3* 0.564 24.0 33.6 -0.37 4.1
NICECanny 13.3* 0.454 29.0 39.1 -0.36 5.2
MS-NICE1 14.4* 0.583 22.2 33.0 -0.35 3.7
MS-NICE2 15.4* 0.577 19.8 33.4 -0.15 3.6
MS-NICE3 16.2 0.601 19.3 34.0 -0.06 3.5
MS-NICE4 16.3 0.601 21.8 34.5 0.03 3.3

estimators account for no more than 53% (i.e., 100r2%) and as little as 4% of the

variation in utility. Their low rank correlation with the perceived utility scores

(ρ < 0.75, τ < 0.54) indicate that a monotonic, nonlinear mapping would not

significantly improve the performance of these estimators as utility estimators.

The RMSE between each estimator’s linearly mapped estimates and the per-

ceived utility scores exceeds 26, which corresponds to approximately one-quarter
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of the total utility scale. When the estimates from each these estimators are used

as utility estimates, the residual variance is statistically larger than that of VIF,

which has the smallest residual variance, according to the BFL test. The outlier

ratios for these estimators indicates that their estimates of perceived utility for 74%

of the distorted images lie outside the 95% confidence intervals of those distorted

images’ respective perceived utility scores. Last, the resolving power statistics for

these estimators imply that these estimators only reliably distinguish distorted im-

ages with gross differences in perceived utility scores (i.e., in most cases exceeding

50) at both the 10% and 5% significance levels.

The TS+HPF distorted images largely influence the performance of these es-

timators. When each estimator was analyzed as a utility estimator with the

TS+HPF distorted images removed, all estimators except the spectral slope exhib-

ited significantly better performance as utility estimators. The performance im-

provements when the TS+HPF distorted images are removed indicate that these

estimators operate with the assumption that distortions do not compromise the

integrity of the low-frequency content without also severely distorting the high-

frequency content. Such an assumption is consistent with the behavior of lossy

image compression methods but becomes problematic when an image is also sus-

ceptible to transmission errors (e.g., packet loss) that arbitrarily distort an image.

The spectral slope quantifies the shape of the distorted image’s frequency re-

sponse. The J2K+DCQ, TS, and TS+HPF distortions primarily disrupt and sup-

press high-frequency content before low-frequency content as the level of distortion

increases, which leads to a significant decrease in the spectral slope (i.e., β increases

in A(f) = 1/f−β). JPEG distortions simultaneously disrupt, suppress, and intro-

duce high-frequency content (e.g., blocking artifacts) and lead to a modest increase

112



in β relative to the other distortions as the level of distortion increases. As a result,

the relationship between the spectral slope and perceived utility varies with each

distortion type, and the spectral slope is observed to be an unreliable indicator

of utility, since its relationship with perceived utility scores varies with distortion

type.

The signal fidelity measures as well as the estimators based on HVS proper-

ties generate objective estimates that are entirely or in part a function of energy

measurements of the reference and test images. PSNR and Crms(E) measure the

global energy of the difference image X − X̂ in the pixel and luminance domains,

respectively. VSNR analyzes the visibility of the global contrast of the difference

image across several image scales. The other estimators based on HVS properties

apply different filters to suppress frequency content less sensitive to the HVS and

compare the global energy of the filtered reference and test images in the frequency

domain. All of these estimators account for distortions to low-frequency content,

and the loss of low-frequency content significantly decreases the energy of the dis-

torted image relative to the reference image. Consequently, each of these estimators

underestimate the perceived utility scores for TS+HPF distorted images.

SSIM performs satisfactorily as a utility estimator but MS-SSIM does not.

Among all the estimators evaluated, estimates from SSIM both moderately cor-

relate with and accurately estimate perceived utility scores of distorted images.

Specifically, the linear correlation between SSIM’s estimates and the perceived

utility scores (r = 0.84) imply that SSIM accounts for 71% of the variation in

utility. Despite the large Spearman rank correlation statistic (ρ = 0.86), further

inspection of the relationship between SSIM’s estimates and perceived utility indi-

cated that a monotonic, nonlinear mapping would not significantly improve SSIM’s
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performance as a utility estimator.

The RMSE between SSIM’s linearly mapped estimates and the perceived utility

scores is 20, which corresponds to approximately one-fifth of the total utility scale.

Furthermore, the variance of the residuals when SSIM’s estimates are used as

utility estimates are statistically larger than that of VIF according to the BFL

test. The outlier ratio indicates that SSIM’s estimates for 60% of the distorted

images lie outside the 95% confidence interval of the respective distorted images’

perceived utility scores. Last, the resolving power for SSIM implies that it only

reliably distinguishes distorted images with differences in perceived utility scores

as small as 42 and 55 at the 10% and 5% significance levels, respectively.

In contrast with SSIM, estimates from MS-SSIM weakly correlate with and

inaccurately estimate perceived utility scores. Specifically, the linear correlation

between MS-SSIM’s estimates and the perceived utility scores (r = 0.65) imply

that MS-SSIM accounts for only 43% of the variation in perceived utility. MS-

SSIM’s Spearman rank correlation statistic (ρ = 0.73) indicates that a monotonic,

nonlinear mapping would not significantly improve MS-SSIM’s performance as a

utility estimator.

The RMSE between MS-SSIM’s linearly mapped estimates and the perceived

utility scores is 28, which corresponds to approximately one-third of the total utility

scale. The BFL test concluded that the variance of the residuals when MS-SSIM’s

estimates are used as utility estimates are statistically larger than that of VIF.

The outlier ratio indicates that MS-SSIM’s linearly mapped estimates for 83% of

the distorted images lie outside the 95% confidence interval of the respective dis-

torted images’ perceived utility scores. Last, the resolving power for MS-SSIM

implies that it only reliably distinguishes distorted images with differences in per-
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ceived utility scores as small as 50 and 66 at the 10% and 5% significance levels,

respectively.

Both SSIM and MS-SSIM incorporate an analysis of low-frequency content via

a comparison of the spatially local mean pixel values of the reference and test

images. In addition to MS-SSIM’s local mean comparison of the reference and

test images, MS-SSIM compares the variance of spatially local pixel values of the

reference and test images across multiple image scales. Thus, both MS-SSIM’s

mean and variance comparisons analyze the low-frequency content of the reference

and test images, whereas only SSIM’s mean comparison analyzes the low-frequency

content of the reference and test images.

Because SSIM and MS-SSIM analyze low-frequency content, each estimator

underestimates the perceived utility scores of TS+HPF distorted images. As with

the spectral slope, signal fidelity measures, and the objective estimators based

on HVS properties, the interpretation of SSIM and MS-SSIM as utility estimators

changes when the TS+HPF distorted images are removed from the database: both

SSIM and MS-SSIM produce more accurate estimates of perceived utility scores

when the TS+HPF distorted images are removed.

SSIM and MS-SSIM were modified by removing the comparisons of the refer-

ence and test images that quantify disruptions to low-frequency content, and both

modified estimators exhibited better performance as utility estimators than their

original implementations across all five distortion types. The linear correlation

and RMSE between SSIM’s estimates and perceived utility significantly improve to

0.92 and 15, respectively, when SSIM operates without the local mean comparison

(i.e., when SSIM ignores disruptions to low-frequency content). The linear cor-

relation and RMSE between MS-SSIM’s estimates and perceived utility modestly
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improve to 0.73 and 25, respectively, when MS-SSIM operates without both the

local mean and variance comparisons across multiple image scales. Even when the

local mean and variance comparisons have been removed, MS-SSIM’s multi-scale

analysis necessarily quantifies distortions to low-frequency content and explains its

modest performance improvement. However, the significant improvement demon-

strated with SSIM when the local mean comparisons are removed relative to the

original implementation of SSIM suggests that an analysis of high-frequency con-

tent provides reliable estimates of perceived utility3.

VIF* produces unreliable estimates of perceived utility, especially for TS+HPF

distortions with high perceived utility. Estimates from VIF* strongly correlate with

and accurately estimate perceived utility scores, and most of VIF*’s correlation and

accuracy statistics are statistically equivalent to those of VIF. However, the outlier

ratio for VIF* is statistically larger than that of VIF and indicates that VIF*’s

linearly mapped estimates for 60% of the distorted images lie outside the 95%

confidence interval of the respective images’ perceived utility scores. Furthermore,

VIF*’s resolving power implies that it reliably distinguishes distorted images with

differences in perceived utility scores as small as 30 at the 10% significance level,

whereas VIF reliably distinguishes distorted images with differences in perceived

utility scores as small as 26 at the 5% significance level. In short, VIF* less

reliably distinguishes distorted images with smaller differences in perceived utility

than VIF.

VIF* underestimates the perceived utility of TS+HPF distorted images with

high perceived utility, because, unlike VIF, VIF* has a greater sensitivity to dis-

ruptions to low-frequency content. The negative skewness of VIF*’s residuals are a

3The local variance comparison used by SSIM corresponds to an analysis of high-frequency
content and does not need to be removed.
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consequence its poor estimates of the perceived utility scores for TS+HPF distorted

images. The subjective experiments demonstrate that disruptions to low-frequency

content do not consistently affect perceived utility scores. Therefore, VIF*’s poorer

performance as a utility estimator, especially for TS+HPF distorted images, is ex-

pected, because VIF* is sensitive to disruptions to low-frequency content.

Estimators that strictly analyze distortions to high-frequency con-

tent and measure degradations to image contours accurately estimate

perceived utility. VIF, NICESobel, NICECanny, and MS-NICES≤2
4 outperform

the other objective estimators as utility estimators. Relative to the other estimators

evaluated, estimates from these estimators strongly correlate with the perceived

utility scores. Specifically, the linear correlation between the estimates from these

estimators and the perceived utility scores (r > 0.92) imply that these estimators

account for between 83% and 89% of the variation in utility with VIF accounting

for the greatest variation in utility. Despite the large Spearman rank correlation

statistics for these estimators (ρ > 0.93), the large linear correlation statistics

indicate that a monotonic, nonlinear mapping will not significantly improve the

performance of these estimators as utility estimators.

Estimates from these objective estimators accurately estimate the perceived

utility scores relative to the other estimators. The RMSE between each estimator’s

linearly mapped estimates and the perceived utility scores is less than 15.4, which

corresponds to approximately one-seventh of the total utility scale. According to

the BFL test, the variance of the residuals when estimates from these estimators

are used to estimate utility scores are statistically equivalent to that of VIF, which

has the smallest residual variance.

4The notation MS-NICES≤2 is used to refer to both MS-NICE1 and MS-NICE2.
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The outlier ratios for these estimators indicate that their estimates of perceived

utility scores for between 45% and 60% of the distorted images lie outside the 95%

confidence intervals of the distorted images’ respective perceived utility scores.

NICECanny and VIF were observed to have the smallest and statistically equivalent

outlier ratios and indicate that at most half of their estimates lie outside the 95%

confidence intervals of the distorted images’ respective perceived utility scores.

The resolving power for these estimators show no consistent trend favoring

one estimator over on another: estimators with smaller resolving powers relative

to the other estimators at 10% significance level have relatively larger resolving

powers than the other estimators at the 5% significance level. Overall, the resolving

powers imply that all of these estimators reliably distinguish distorted images with

differences in perceived utility scores as small as 41, and some of these estimators

reliably distinguish distorted images with difference in perceived quality as small

as 20.

VIF, NICESobel, NICECanny, and MS-NICES≤2 strictly analyze the high-

frequency content of the reference and test images. NICESobel, NICECanny, and

MS-NICES≤2 primarily analyze disruptions to contours, whereas VIF analyzes any

disruption to high-frequency content (i.e., both contours and textures). Most im-

portantly, all of these estimators do not analyze disruptions to low-frequency con-

tent, which contributed to the poorer performance of many of the other objective

estimators as utility estimators. A detailed discussion that compares VIF to NICE

is presented in Section 4.4.1.

Among the various implementations of NICE and MS-NICE, estimates from

NICECanny most accurately estimate the perceived utility scores. The RMSE for

NICECanny is smallest among the various implementations of NICE and MS-NICE
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but not statistically significant. However, the residuals for NICECanny exhibit

much higher kurtosis that those for the other implementations of NICE and MS-

NICE. Residuals exhibiting high kurtosis indicate that most of the estimates from

NICECanny are very accurate with respect to the perceived utility scores and poorly

estimated for only a few distorted images. Further inspection of the relationship

between estimates from NICECanny and the perceived utility scores revealed that

NICECanny poorly estimates the perceived utility scores for distorted images formed

from the skier and caged birds images. Removing distorted images formed from

the skier and caged birds images, both significantly increases the linear correlation

and significantly reduces the RMSE to 0.97 and 9.3, respectively. The interpreta-

tion of none of the other estimators changes as significantly when these distorted

images are removed; even the RMSE for VIF only reduces to 11.

NICECanny underestimates the perceived utility scores for the skier distorted

images. The Canny edge detector identifies contours within the snow region below

the skier in the skier image. Because all of the distortions blur the pixel values in

the snow region of the image, NICECanny no longer detects most of these contours

in the snow region in any of the distorted images at the lowest level of distortion.

Consequently, NICECanny measures a large degradation to image contours in these

slightly distorted images. Furthermore, a majority of the contours detected in

the reference image correspond to the snow region of the image, so additional

degradations to contours have a small impact on the estimate from NICECanny.

The Sobel edge detector did not identify any contours in the snow region of the

image, and thus removing skier distorted images from the dataset did not change

the interpretation of its performance as a utility estimator.

NICECanny overestimates the perceived utility scores for the caged birds dis-
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torted images. The cage in the caged birds image blocks the two birds, and the

bars of the cage contribute strong edges that are identified by the Canny edge

detector. As this image is distorted, the strong edges corresponding to the bars

of the cage are not significantly suppressed, and thus, NICECanny only measures

a small overall degradation to the image contours. Because the cage partially oc-

cludes the birds, a higher-level, more complex analysis is necessary to distinguish

the birds from the cage and measure the degradation of their respective contours.

We hypothesize that the human observers primarily attend to the birds with an

awareness of the cage, and perceived utility is gauged by the detail of the birds.

NICECanny does not separately measure the degradation of contours corresponding

to the birds and the cage within this image.

For the remaining distorted images, NICECanny outperforms the other imple-

mentations of NICE and MS-NICE, and these different implementations largely

vary with respect to the edge detector used. The Sobel, Canny, and wavelet-based

edge-detectors used by NICE were evaluated using the publicly available Berke-

ley Segmentation Dataset and Benchmark to determine which method identifies

contours that best corresponds with those identified by humans [73]. The wavelet-

based edge-detector was tested using only its finest scale contour maps (i.e., s = 1),

since MS-NICE1 exhibits the smallest residual variance among the four versions

of MS-NICE. The Canny edge-detector ranked highest among the three meth-

ods, which suggests that its contour maps correspond best with those formed by

humans. NICE is designed assuming that degradation to contours coincide with

a decrease in utility, and better correspondence between the objectively identi-

fied contours and those identified by a human should improve the performance of

NICE. Thus, NICECanny performs best as a utility estimator, because its contours

maps correspond best with those identified humans among the edge-detectors used
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with NICE.

MS-NICE3 and MS-NICE4 inaccurately estimate utility without an additional

monotonic, nonlinear mapping. In particular, the RMSE between the linearly

mapped estimates from both MS-NICE3 and MS-NICE4 and the perceived utility

scores is approximately 16, and the variances of the residuals when estimates from

both MS-NICE3 and MS-NICE4 are used as utility estimates are statistically larger

than that of VIF. The outlier ratios for MS-NICE3 and MS-NICE4 indicate that

their linearly mapped estimates for 60% of the distorted images lie outside the

95% confidence intervals of the distorted images’ respective perceived utility scores.

Last, the resolving powers for both MS-NICE3 and MS-NICE4 are similar to that

of VIF’s at the 10% significance level but greater than that of VIF’s at the 5%

significance level.

Estimates from both MS-NICE3 and MS-NICE4 strongly correlate with per-

ceived utility scores (r > 0.9, ρ > 0.94, τ > 0.79), and their rank correlation

statistics are statistically equivalent to those of VIF. However, the linear corre-

lation statistics for both MS-NICE3 and MS-NICE4, though strong, are statisti-

cally smaller than that of VIF. The statistical equivalence of the rank correla-

tion statistics but statistically different linear correlation statistics for MS-NICE3,

MS-NICE4, and VIF suggest that a monotonic, nonlinear mapping could improve

the performance of both MS-NICE3 and MS-NICE4 as utility estimators.

An analysis of NICE operating with content from the coarser image scales 3

and 4 (i.e., for s = 3 and s = 4 in Eq. (4.1)) revealed that the computations for

these coarser image scales primarily vary for images with lower perceived utility.

In contrast, MS-NICES≤2 exhibits strong linear correlation with perceived utility,

and the comparison of the reference and test images at coarser image scales with
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MS-NICES for S > 2 exhibit an increased sensitivity to low-frequency distortions

of distorted images with lower perceived utility. In other words, estimates from

MS-NICES exhibit an increasingly monotonic, nonlinear relationship with the per-

ceived utility scores as coarser image scales are analyzed (i.e., as S increases).

A monotonic, nonlinear mapping, which does not affect ρ and τ , improved

both the linear correlation and accuracy between estimates from both MS-NICE3

and MS-NICE4 and the perceived utility scores. This nonlinear mapping primarily

compresses differences among the objective estimates for distorted images with low

perceived utility scores (i.e., near the recognition threshold). Although the non-

linearity improves their performance as utility estimators, the nonlinear mapping

introduces a stage of processing that was not incorporated into MS-NICES and

illustrates that MS-NICES’s analysis of the reference and test images for S > 2

without the monotonic, nonlinearity degenerates as utility decreases. In particular,

MS-NICES becomes increasingly sensitive to disruptions to low-frequency content

for distorted images with low perceived utility scores as S increases and coarser

image scales are analyzed.

4.3.2 Results: Objective Estimates of Perceived Quality

A quality estimator should produce objective estimates that are both strongly cor-

related with perceived quality and accurately estimate perceived quality. All test

images (n = 243 test images) were used to evaluate an estimator’s performance as

a quality estimator, because a reliable quality estimator should accurately deter-

mine the quality of unrecognizable distorted images, even though they have “Bad”

quality. Tables 4.3 and 4.4 summarize the statistics for each objective estimator

when analyzing the linearly mapped objective estimates with respect to the per-
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Table 4.3: Statistics summarizing the correlation of objective estimator val-
ues with perceived quality scores. The Pearson (linear) correlation
coefficient r, the Spearman rank correlation coefficient ρ, and the
Kendall rank correlation τ are reported when the estimates are
compared with the perceived quality scores for all test images
(n = 243). Optimal values appear in boldface with statistically
equivalent values italicized.

Correlation Measures
Estimator ρ τ r

Spectral Slope β 0.518 0.331 0.585
Sig. Fidelity
Measures

PSNR 0.598 0.477 0.656
Crms(E) 0.627 0.480 0.401

Estimators
Based on
HVS
Properties

WSNR 0.582 0.443 0.648
NQM 0.600 0.461 0.666
VSNR 0.607 0.466 0.738
C4 0.822 0.636 0.832

Estimators
Based on
Hypothesized
HVS
Objectives

SSIM 0.870 0.696 0.883
MS-SSIM 0.865 0.679 0.733
VIF 0.929 0.774 0.950
VIF* 0.938 0.799 0.959

Proposed
Utility
Estimators

NICESobel 0.932 0.780 0.885
NICECanny 0.914 0.746 0.934
MS-NICE1 0.935 0.784 0.875
MS-NICE2 0.937 0.789 0.860
MS-NICE3 0.940 0.796 0.855
MS-NICE4 0.946 0.810 0.855

ceived quality scores. The difference between VIF*’s estimates and the perceived

quality scores exhibited the smallest variance (i.e., smallest RMSE), so the p-value

for the BFL test is reported when the residuals of estimates from each objective

estimator when used as quality estimates were compared with that of VIF*.

The remainder of this section reports the key results, which appear in boldface,

followed by a summary of the results for subsets of objective estimators that exhibit

similar performance with headings for the subsets of estimators appearing in italics.

Statistical justifications, general interpretations, and specific remarks about the

objective estimators are reported.
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Table 4.4: Statistics summarizing the accuracy of objective estimators serv-
ing as quality estimators. The root mean squared error (RMSE),
the outlier ratio (OR), and the resolving power RPα for α =
0.1, 0.05 are reported when the estimates are compared with the
perceived quality scores for all test images (n = 243). Optimal
values appear in boldface with statistically equivalent values ital-
icized. An asterisk beside the RMSE indicates that the residual
variance is statistically equivalent to that of VIF* according to
the Brown-Forsythe-Levene test at the 95% confidence level. The
skewness (Skew.) and kurtosis (Kurt.) of the residuals are itali-
cized when the Jarque-Bera (JB) test indicated that the residuals
belong to a Gaussian distribution.

Estimating Perceived Quality: Accuracy Measures
Estimator RMSE OR RP0.10 RP0.05 Skew. Kurt.

Spectral Slope β 0.895 0.835 1.749 1.902 -0.27 2.1
Sig. Fidelity
Measures

PSNR 0.833 0.506 1.720 1.949 -0.81 2.8
Crms(E) 1.011 0.881 2.407 2.413 -0.61 2.0

Estimators
Based on
HVS
Properties

WSNR 0.841 0.823 1.650 2.052 -0.90 2.8
NQM 0.823 0.831 1.524 1.911 -0.97 3.0
VSNR 0.745 0.794 1.439 1.760 -1.1 3.6
C4 0.615 0.808 1.59 1.60 -0.47 2.9

Estimators
Based on
Hypothesized
HVS
Objectives

SSIM 0.519 0.700 2.507 2.517 -0.12 2.6
MS-SSIM 0.751 0.831 2.771 2.779 -0.30 2.1
VIF 0.345* 0.531 0.666 0.828 0.17 5.4
VIF* 0.313 0.568 1.047 1.056 0.12 3.0

Proposed
Utility
Estimators

NICESobel 0.515 0.786 2.066 2.076 -0.64 2.9
NICECanny 0.394* 0.568 0.90 1.02 -0.29 3.5
MS-NICE1 0.535 0.778 2.246 2.256 -0.77 3.1
MS-NICE2 0.563 0.765 2.395 2.405 -0.79 3.1
MS-NICE3 0.572 0.782 2.281 2.291 -0.73 3.0
MS-NICE4 0.572 0.757 2.245 2.254 -0.69 3.0

Estimators that overemphasize the significance of distortions to low-

frequency content perform poorly as quality estimators over a variety of

distortions. The spectral slope, signal fidelity measures, and most of the objective

estimators based on HVS properties perform poorly as quality estimators over a

variety of distortions. Estimates from these estimators, excluding C4, weakly cor-

relate with and inaccurately estimate the perceived quality scores. Specifically, the
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linear correlation between the estimates from these estimators and the perceived

quality scores (r < 0.74) imply that these estimators account for no more than 55%

of the variation in quality. The rank correlation statistics (ρ < 0.63, τ < 0.48)

signify that a nonlinear mapping would not significantly improve the performance

of these estimators as quality estimators.

For these estimators, the RMSE between each estimator’s linearly mapped esti-

mates and the perceived quality scores exceeds 0.75. A difference of 1 in perceived

quality corresponds to a different quality category (i.e., “Fair” versus “Good”).

The variance of the residuals when estimates from these estimators are used to

estimate quality are statistically larger than that of VIF*, which has the smallest

residual variance, according to the BFL test. The outlier ratios for these estima-

tors indicate that their estimates of perceived quality scores for no fewer than 51%

and, in most cases, more than 82% of the distorted images, lie outside the 95%

confidence intervals of those distorted images’ perceived quality scores. Last, the

resolving power for these estimators imply that these estimators reliably distin-

guish distorted images with differences in perceived quality no smaller than 1.44

and 1.76 at the 10% and 5% significance levels, respectively.

The TS+HPF distortions are largely responsible for the poor performance of

these estimators as quality estimators. In fact, when each estimator was analyzed

with the TS+HPF distortions removed from the test image set, the interpreta-

tion of the performance of these estimators changes: the correlation and accu-

racy statistics of these estimators improved. Apart from the spectral slope and

Crms(E), these objective estimators previously have been evaluated as quality es-

timators on other image databases that do not include distortions that deliberately

disrupt the low-frequency content without severely disrupting the high-frequency
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content [20,64,116]. The performance of these estimators on the current database

of test images, which includes distortions that disrupt low-frequency content with-

out severely disrupting high-frequency content (i.e., the TS+HPF distortions for

small γ), demonstrates that these estimators were designed and tested under the

assumption that either 1) distortions will not compromise the integrity of the low-

frequency content 2) distortions to low-frequency content will coincide with severe

distortions to high-frequency content or 3) distortions to low-frequency content

have a negligible impact on quality. However, the current results indicate that

these different assumptions do not reflect the general image characteristics that

influence judgments of perceived quality. Namely, the loss of low-frequency con-

tent without severely disrupting high-frequency content coincides with a significant

decrease in quality.

The spectral slope, as discussed in Section 4.3.1, quantifies the shape of the

distorted image’s frequency response, which varies for the different distortions.

However, the correlation between the spectral slope and the perceived quality

scores is significantly lower than the correlation between the spectral slope and

the perceived utility scores. Specifically, the spectral slope accounts for 53% of the

variation of utility but only 34% of the variation in quality. An analysis of the

relationship between the spectral slope and the perceived quality scores revealed

that TS+HPF distorted images have spectral slopes similar to TS and J2K+DCQ

distorted images, but TS+HPF distorted images have significantly lower perceived

quality. Thus, the spectral slope is an unreliable indicator of quality over a variety

of distortions.

The signal fidelity measures as well as the estimators based on HVS properties,

excluding C4, produce estimates that are a function of the energy of the reference
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and test images and account for distortions to low-frequency content, which, ac-

cording to the subjective experiments, significantly affects quality. However, these

estimators overemphasize the significance of distortions to low-frequency content

and underestimate the perceived quality scores of TS+HPF distorted images.

C4 and SSIM perform satisfactorily as quality estimators but MS-SSIM does

not. Among all the estimators evaluated, estimates from both C4 and SSIM mod-

erately correlate with and accurately estimate the perceived quality scores. Specif-

ically, the linear correlation between their estimates and the perceived quality

scores (C4: r = 0.83, SSIM: r = 0.88) imply that these estimators account for no

less than 68% of the variation in quality (C4) and no more than 77% (SSIM) .

The RMSE between C4’s and SSIM’s estimates and perceived quality is 0.62

and 0.52, respectively, which correspond to estimates within a quality category of

the perceived quality score. The variance of the residuals when estimates from

these two estimators are used as quality estimates are statistically greater than

that of VIF*, which has the smallest residual variance, according to the BFL test.

The outlier ratios for these estimators indicate that their estimates of perceived

quality for 70% (SSIM) and 81% (C4) of the distorted images lie outside the 95%

confidence intervals of those distorted images’ respective perceived quality scores.

Last, the resolving power for these estimators imply that these two estimators

reliably distinguish distorted images with differences in perceived quality no smaller

than 1.6 at both the 10% and 5% significance levels with C4 exhibiting smaller

resolving powers.

In contrast with both C4 and SSIM, estimates from MS-SSIM weakly correlate

with and inaccurately estimate the perceived quality scores. Specifically, the linear

correlation between MS-SSIM’s estimates and the perceived quality scores indicate
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that MS-SSIM accounts for only 55% of the variation in quality. The RMSE

between MS-SSIM’s estimates and the perceived quality scores is 0.75, which nearly

corresponds to one quality category. The resolving power for MS-SSIM exceeds 2.7

at both the 10% and 5% significance levels and suggests that MS-SSIM can only

reliably distinguish gross differences in perceived quality corresponding to nearly

three quality categories (i.e., “Bad” versus ”Good”) over a variety of distortion

types.

An analysis of the relationship between the estimates from C4, SSIM, and

MS-SSIM and the perceived quality scores revealed that their accuracy decreases

as quality decreases, which indicates that their analyses of the reference and test

images degenerate as quality decreases. However, the strong Spearman rank cor-

relation (r > 0.82) between perceived quality and the estimates from these three

estimators suggest that they each exhibit a nonlinear, monotonic relationship with

the perceived quality scores. Fitting the estimates from these estimators to the per-

ceived quality scores with a monotonic, nonlinear mapping significantly changes

the interpretation of their performance as quality estimators: each significantly

improves as a quality estimator. Each of these estimators analyze distortions

to low-frequency content, as discussed in Section 4.3.1, and the subjective ex-

periments demonstrate that distortions to low-frequency content affect perceived

quality. However, even with a nonlinear mapping these estimators overemphasize

distortions to low-frequency content and underestimate the perceived quality of

TS+HPF distorted images.

Estimators that analyze all frequency content without overemphasiz-

ing the significance of distortions to low-frequency content accurately

estimate perceived quality scores over a variety of distortions. VIF* pro-
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duces more reliable estimates of perceived quality scores than VIF over a variety of

distortions. Estimates from VIF strongly correlate with and accurately estimate

perceived quality scores, and most of VIF’s correlation and accuracy statistics are

statistically equivalent to those of VIF*. The linear correlation between estimates

from both VIF and VIF* and the perceived quality scores indicate that each ac-

count for more than 90% of the variation in quality, and the accuracy between

estimates from both VIF and VIF* and the perceived quality scores are small

(RMSE < 0.35) and statistically equivalent. However, the resolving power for VIF

is smaller than the resolving power for VIF* at both the 90% and 95% confidence

levels. In particular, the resolving powers for VIF and VIF* indicate that they

reliably distinguish distorted images with differences in perceived quality scores no

smaller than 0.83 and 1.1 at the 5% significance level, respectively.

VIF distinguishes smaller differences among distorted images with high per-

ceived quality more reliably than VIF*, which results in smaller resolving powers

for VIF, because VIF is more sensitive to disruptions to high-frequency content

than VIF*. Modest disruptions to high-frequency content (i.e., textures) affect

the perceived quality of high quality yet visibly distorted images. However, dis-

tortions to low-frequency content have a greater affect on perceived quality than

distortions to high-frequency components (see Section 3.4), and VIF* is more sen-

sitive to low-frequency distortions than VIF. As a consequence, VIF* estimates the

perceived quality scores of TS+HPF distortions more accurately than VIF, which

results in the slightly smaller, though not statistically significant, RMSE observed

for VIF* as compared to VIF. However, VIF overestimates the perceived quality

scores of TS+HPF distorted images, because disruptions to low-frequency content

do not affect estimates from VIF unless they accompany severe disruptions to high-

frequency content. VIF*, however, analyzes the low-frequency content. In short,
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VIF performs well as a quality estimator for applications that do not encounter

distortions such as the TS+HPF distortions that disrupt low-frequency content

without severely disrupting high-frequency content. However, VIF* performs well

as a quality estimator across a variety of distortions, because its modifications to

VIF normalize the individual channel measurements based on the energy distribu-

tion of the reference image across image scales (see Section 2.3.5).

Estimators that measure degradations to image contours perform

poorly as quality estimators over a variety of distortions. NICESobel

and the various implementations of MS-NICE produce unreliable estimates of per-

ceived quality across a variety of distortions. Estimates from these estimators

strongly correlate with and estimate with moderate accuracy perceived quality

scores. Specifically, the linear correlation between the estimates from these esti-

mators and the perceived quality scores (r > 0.85) imply that these estimators

account for at least 72% but no more than 78% of the variation in quality.

The RMSE between each estimator’s linearly mapped estimates and the per-

ceived quality scores are approximately 0.5, which indicates that errors in qual-

ity estimates correspond to less than one quality category. The variance of the

residuals when estimates from these estimators are used as quality estimates are

statistically larger than that of VIF*, which has the smallest residual variance,

according to the BFL test. For no fewer than 76% of the distorted images, these

estimators produce estimates that lie outside the 95% confidence intervals of those

distorted images’ respective perceived quality scores based on the outlier ratios.

The resolving powers for these estimators imply that these estimators reliably dis-

tinguish distorted images with differences in perceived quality no smaller than 2

at both the 10% and 5% significance levels.
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A nonlinear relationship between the perceived quality scores and the esti-

mates from both NICESobel and MS-NICES≤4 was observed and quantified by their

strong Spearman correlation statistics (ρ > 0.93). Further analysis of this nonlin-

ear relationship revealed that small degradations to contours, as measured by both

NICESobel and MS-NICES≤4, correspond to large changes in the perceived quality

scores. In other words, distorted images with high perceived quality scores primar-

ily exhibit visible degradations to textures, and both NICESobel and MS-NICES≤4

do not measure degradations to image textures, which influence perceived qual-

ity. Furthermore, distorted images with very low perceived quality exhibit large

changes in contours, as measured by NICESobel and MS-NICES≤4, but exhibit very

little change in perceived quality. Thus, heavily distorted images (i.e., very low

perceived quality) exhibit strong variations in signal characteristics that corre-

spond to very small changes in perceived quality. This follows if one considers

again a reference/distortion sequence beginning with an unrecognizable image and

evolving toward a useful, medium quality image. The dramatic perceptual changes

in subsequent images near the recognition threshold will coincide with significant

variations in the underlying signal characteristics, especially the emergence of con-

tours, as detected by NICESobel and MS-NICES≤4. Despite these dramatic percep-

tual changes, the perceived quality scores of these images are still very low relative

to the undistorted reference images.

For NICESobel and MS-NICES≤4, a monotonic, nonlinear mapping increases the

correlation between their objective estimates and the perceived quality scores to

at least 0.94 and is statistically larger for MS-NICE4 (r = 0.97). The nonlinear

mapping also reduces the RMSE to less than 0.41 and is smallest for MS-NICE4

(RMSE = 0.28). The fitted nonlinearity expands small differences among estimates

from NICESobel and MS-NICES≤4 for distorted images with high perceived quality
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and compresses large differences among estimates from NICESobel and MS-NICES≤4

for distorted images with low perceived quality. Among the single- and multi-scale

implementations of NICE, MS-NICE4 exhibits the best performance as quality esti-

mator when fitted with a nonlinear mapping, because, as discussed in Section 4.3.1,

implementations of MS-NICES for larger S are more sensitive to low-frequency

distortions than the other versions (i.e., NICE and MS-NICES≤2), which analyze

distortions to high-frequency content.

Although the monotonic, nonlinear mapping changes the interpretation of the

performance of NICESobel and MS-NICES≤4 as quality estimators, the parameters

of this nonlinearity may vary for distortions not included in the current collection

of test images. The current results cannot definitively establish that using both

NICESobel and MS-NICES≤4 with a tuned nonlinear mapping provides reliable and

accurate estimates of perceived quality over a variety of distortion types.

NICECanny performs poorly as a quality estimator for medium quality distorted

images. Over the entire collection of distorted images, estimates from NICECanny

exhibit correlation and accuracy statistics as a quality estimator that are sta-

tistically equivalent to those of VIF* when considering the entire collection of

distorted images. However, the performance of NICECanny as a quality estima-

tor is not consistent for different regions of quality. Specifically, estimates from

NICECanny exhibit statistically weaker linear correlation with the perceived quality

scores (r = 0.62) than VIF* (r = 0.82) for distorted images with medium quality

(i.e., perceived quality scores between [2.25, 3.75]). Furthermore, the RMSE be-

tween estimates using both VIF* and NICECanny and perceived quality scores are

0.28 and 0.42, respectively, for medium quality distorted images, and the variance

of the residuals are statistically smaller for VIF* than NICECanny. In both the low
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and high quality regions the performance statistics for VIF* and NICECanny are

statistically equivalent.

The relationship between NICECanny and the perceived quality scores is consis-

tent with the relationship observed between perceived quality scores and perceived

utility scores: perceived utility is unreliably predicted from perceived quality for

medium quality distorted images. Likewise, NICECanny estimates the perceived

quality less reliably for distorted images with medium quality. TS+HPF and TS

distorted images with equal γ formed from the same reference image have very

similar values for NICECanny, which is consistent with their equal perceived utility

scores yet different perceived quality scores. NICECanny overestimates the qual-

ity of TS+HPF distorted images, because it does not analyze distortions to low-

frequency content, whereas VIF* does and most accurately estimates the perceived

quality of TS+HPF distorted images.

4.3.3 Results: Summary

When estimating perceived utility scores, objective estimators that analyze the

high-frequency content of the reference and test images outperform those estima-

tors that also analyze the low-frequency content of the reference and test images.

Specifically, VIF, NICESobel, NICECanny , and MS-NICES≤2 produce the most re-

liable estimates of perceived utility scores. The interpretation of both SSIM and

MS-SSIM as utility estimators changes when they operate without the components

that analyze low-frequency content (i.e., the mean component and, in the case of

MS-SSIM, also the variance component): both estimators provide more accurate

estimates of perceived utility than their original implementations.
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NICECanny produces the most accurate estimates of the perceived utility scores

when the skier and caged birds images were discarded. These images reveal two

limitations of NICECanny: 1) detection of less visible contours (e.g., those in snow

region in the skier image) and 2) separate analysis of relevant versus irrelevant

contours (e.g., the birds versus the bars of the cage in the caged birds image).

Despite these limitations, NICECanny demonstrates that perceived utility scores

can be reliably estimated from an analysis of image contour degradation.

When estimating perceived quality scores, estimates from VIF* most accu-

rately estimate the perceived quality scores. Unlike many of the other objective

estimators, VIF* analyzes both high-frequency content and low-frequency con-

tent of the reference and test images without overemphasizing disruptions to low-

frequency content. Several other estimators grossly underestimate the perceived

quality scores of TS+HPF distorted images, because these estimators analyze low-

frequency content but overemphasize the effect of distortions to low-frequency con-

tent. VIF* weights the relative influence of distortions to low- and high-frequency

content on its estimates in a manner that yields accurate estimates of perceived

quality.

4.4 Discussion

The subjective experiments establish that perceived quality is not a suitable proxy

for perceived utility. An evaluation of objective estimators as both utility and qual-

ity estimators revealed that an analysis of degradations to high-frequency content

and, specifically, image contours produces accurate estimates of perceived utility,

whereas a properly weighted analysis of degradations across all frequency content
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produces accurate estimates of perceived quality. This section discusses 1) the im-

age characteristics revealed by objective estimators that impact perceived utility

and perceived quality and 2) the relationship between object recognition, perceived

utility, and the analysis conducted by NICE.5

4.4.1 Objective Estimators Reveal Image Characteristics

that Impact Utility and Quality

Among the objective estimators investigated, VIF and NICE performed best as

utility estimators, and VIF* performed best as a quality estimator. First, the

signal analyses conducted by VIF* and VIF are analyzed and compared, since

the distinctions between VIF* and VIF reiterate the conclusion drawn from the

subjective experiments that low-frequency content affect perceived utility but not

quality. Second, the signal analyses conducted by VIF and NICE are analyzed and

compared, since VIF and NICE illustrate different uses of high-frequency content

to estimate utility. Last, the impact that an edge-detector used with NICE has on

its performance as a utility estimator for other distortions is discussed.

VIF versus VIF*: Low-frequency Content Affects Quality

VIF and VIF* analyze the reference and test images using the steerable pyramid

decomposition [117], which models the well-accepted multi-channel characteriza-

tion of the analysis conducted by the human visual system in the primary visual

cortex [31] (A mathematical description of VIF and VIF* is presented in Chapter

5We use “NICE” to generically refer to both the single-scale and multi-scale implementa-
tions of NICE, and specific implementations of NICE (e.g., NICECanny) will be identified when
necessary.
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(b) VIF*

Figure 4.1: VIF is more sensitive to distortions at finer image scales (i.e.,
high spatial frequencies) over those at coarser image scales (i.e.,
low spatial frequencies), whereas VIF* is more sensitive to dis-
ruptions to coarser scale content than finer scale content. Fig-
ures 4.1(a) and 4.1(b) respectively show the image scale mea-
surements computed byVIF and VIF* for the airplane image
with J2K+DCQ (Q = 3.8, U = 77), TS (Q = 4.0, U = 76),
and TS+HPF (Q = 3.2, U = 69) distortions. These images
have statistically equivalent perceived utility, but the perceived
quality of the TS+HPF distorted image is statistically smaller
than the other two distorted images. The pooled image scale
measurements for VIF reflect their similarity in perceived utility
but not their differences in perceived quality. The pooled image
scale measurements for VIF* reflect their differences in perceived
quality not their similarity in perceived utility.
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2). VIF and VIF* compute and linearly pool spatially local signal-to-noise ratios

within each channel, which produces a channel measurement that quantifies the

fidelity of the test image with respect to the reference image within that chan-

nel. The channel measurement values decrease as the fidelity of the test image

with respect to the reference image within that channel decreases (i.e., the test

image contains more distortion). The sum of the channel measurements from the

same image scale yield image scale measurements that quantify the fidelity of the

test image with respect to the reference image within that image scale. Because

the steerable pyramid decomposition represents a coarser image scale with half as

many coefficients as the next finest image scale (i.e., due to decimation), the finer

image scale measurements are larger than the coarser image scale measurements.

VIF linearly pools image scale measurements to produce an objective estimate for

the test image, and image scale measurements at finer image scales dominate VIF’s

objective estimate. In contrast, VIF* normalizes each image scale measurement by

the number of coefficients in that image scale, which balances the measurements

from different image scale measurements, before linearly pooling. Natural images

exhibit a 1/fα power spectra [39], and, as a consequence, the normalized image

scale measurements at coarser image scales dominate VIF*’s objective estimate.

As a result, VIF* is more sensitive to disruptions to coarser image scale content

than finer image scale content.

Images from the airplane/J2K+DCQ, airplane/TS, and airplane/TS+HPF se-

quences that have statistically equivalent perceived utility are evaluated using VIF

and VIF* to illustrate the differences between VIF and VIF*. The image from

the airplane/TS+HPF sequence has the same parameter γ as the image from the

airplane/TS sequence and statistically has the smallest perceived quality. Figure

4.1 shows the image scale measurements from VIF and the normalized image scale
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measurements from VIF* for these three images. The image scale measurements

from VIF are much larger at finer image scales (i.e., high spatial frequencies) than

coarser image scales (i.e., low spatial frequencies) and exhibit very little variation

among these four distorted images across all image scales. Thus, for these images,

VIF’s pooled image scale measurements reflect their similarity in perceived utility

but not their differences in perceived quality. In contrast, the normalized image

scale measurements from VIF* are larger at coarser scales than finer scales and

indicate a difference between the airplane/TS+HPF image and the other distorted

image at the coarsest image scale. Thus, for these images, VIF*’s pooled image

scale measurements reflect their differences in perceived quality and not their sim-

ilarity in perceived utility.

The analyses conducted by VIF* and VIF are consistent with the subjective

experiments. The absence of low-frequency content (i.e., the TS+HPF distorted

images versus TS distorted images with the same γ) significantly and consistently

affects quality but has less consistent effects on the utility. Since VIF and the

various implementations of NICE outperform the other objective estimators as

utility estimators, the fidelity of low-frequency content does not strongly influence

utility. The low-frequency content represents the shading in grayscale natural

images, which forms the appearance of naturalness due to interactions between

object surfaces and lighting. Natural images with undisrupted shading are visually

consistent with our daily experiences with natural environments. Disruptions to

an image’s shading decrease its perceived quality, which the objective estimates

produced by VIF*, not VIF, accurately reflect due to normalizing image scale

measurements before pooling across image scales.
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Comparing VIF and NICE: Estimates of Image Contour Degradation

Fine-scale signal components describe natural image details corresponding to both

object boundaries and textures, and the energy of the fine-scale signal components

coincides with the visibility of these details. VIF and NICE, both of which perform

best as utility estimators, specifically analyze the energy of fine-scale signal com-

ponents of the reference and test images to produce an objective estimate of the

test image’s perceived utility. Both objective estimators6 filter the images using

two channels that separate the fine-scale signal components into horizontally and

vertically oriented spatial frequency components. VIF and NICE illustrate two

possible uses of the fine-scale signal components to estimate perceived utility.

VIF subjects the high-frequency channel responses for the reference and test

images to a normalization mechanism functionally similar to divisive normalization

(i.e., a model of gain control) that normalizes channel responses to a particular

range for subsequent processing stages [113,115,141]. Divisive normalization mod-

els the relationship between the nth neuron’s response yn to its input tn according

to

yn =
tpn

bq +
∑

m∈Mn
wmtqm

, (4.3)

where b is a positive saturation constant, Mn is a set of indices specifying local

spatial, frequency, and orientation neuron responses to input tn, the wm are weights

applied to those local responses before pooling, and the exponents p and q are

positive values that model a power-law relationship between a neuron’s input and

output.

VIF approximates the divisive normalization model by normalizing the channel

6Using the fine-scale steerable pyramid filters to identify image contours for MS-NICE lead
to statistically similar performance to the single-scale implementation of NICE using the Sobel
and Canny edge-detectors.
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responses based on the energy (i.e., in Eq. (4.3) set b = 0 and p = q = 2)

of their spatially local channel responses. That is, VIF performs spatially local

variance normalization. Image contours generally elicit larger channel responses

than textures, and following a spatially local variance normalization, the channel

responses to both contours and textures are normalized to the same range. As a

consequence of this normalization, estimates from VIF reflect any disruption to

the high-frequency channel responses due to the distortions, so disruptions to both

image contours and image textures affect VIF’s objective estimates.

In contrast with VIF, NICE detects the edges in the reference and test images

and can be viewed as performing spatially global variance normalization, collinear

facilitation [67], and hard thresholding. NICE and MS-NICE perform global vari-

ance normalization by normalizing the channel responses based on the average

channel response energy.7 Global variance normalization reduces the magnitude

of all the channel responses, so channel responses to image contours remain larger

than those to textures.

Collinear facilitation describes the perceptual facilitation and suppression of

channel responses due to interactions (i.e., connected cells) among spatially local

and similarly oriented channel responses and suggests that mechanisms mediate

the perception of smooth curves from line segments [92,93]. In particular, studies

of human observers report that the detection contrast of a target Gabor patch

spatially flanked by two high contrast Gabor patches is highest (i.e., the target

is difficult to detect) when the flanking patches are spatially very close to and

have the same orientation as the target, whereas the target detection contrast is

lowest (i.e., the target is easy to detect) when the spatial distance between the

7Applying a hard-threshold defined as β to a signal f (i.e., values of f satisfying f > β are
set to 1 and otherwise zero) is viewed as normalizing the signal f by β (i.e., f/β) followed by
hard-thresholding with threshold equal to 1.
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flanking patches and the target is large and oriented orthogonal to the target

patch [92]. Furthermore, the target detection contrast is lowest when the global

orientation of the line formed by the three patches coincided with the individual

patch orientations [93]. All of the edge detectors used for NICE crudely perform

collinear facilitation via a thinning operation that retains local maxima.

Hard thresholding removes low energy channel responses, which largely coin-

cide with textures, and is hypothesized to represent a decision process performed

at a later stage of the human visual system corresponding to object perception.

Disruptions to image textures have a negligible impact on NICE’s objective score,

since NICE reflects disruptions to image contours due to the distortion process.

Because NICE primarily measures degradations to image contours, we ana-

lyzed estimates of VIF when decomposed into separate fidelity measurements for

contours and textures. Specifically, VIF was decomposed as

VIF ≈ VIFcontour + VIFtexture, (4.4)

where VIFcontour and VIFtexture respectively represent VIF evaluated on contour and

texture components of an image. Estimates from both VIFcontour and VIFtexture

were evaluated in terms of their performance as utility estimators. The correlation

statistics for VIFcontour increase relative to those for VIF, whereas all of the correla-

tion statistics for VIFtexture are statistically smaller than those of VIF. The RMSE

of VIFcontour is 10.7, but the residual variance is statistically equivalent to that of

VIF (RMSE=12.4). However, the RMSE for VIFtexture is 18.3 and is statistically

larger than that of VIF. In short, VIFcontour accurately estimates the perceived

utility scores as a function of the fidelity of the contour information.

In summary, VIF analyzes disruptions to both contours and textures while

excluding disruptions to low-frequency content, whereas NICE primarily analyzes
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disruptions to contours to estimate utility. The performance of VIFcontour as a

utility estimator is parallels the performance of NICE, which corroborates the

hypothesis that contour degradations coincide with decreased perceived utility.

Edge-detectors Impact the Performance of NICE

NICE operates in conjunction with an edge detector and was assessed using three

different edge detectors. As a utility estimator, NICE operating with the Canny

edge detector (i.e., NICECanny) and excluding the skier and caged birds distorted

images, outperformed NICE operating with the other edge detectors. The perfor-

mance of NICECanny as a utility estimator was justified in terms of the agreement of

its identified edges with object boundaries identified by humans: compared with

human ground truth, the Canny edge detector ranked highest among the three

edge detectors (see Section 4.3.1). Despite the performance of NICECanny as a

utility estimator, the current database does not include distorted artifacts that are

uncorrelated with the reference image (e.g., independent, additive white Gaussian

noise), and the Canny edge detector frequently identifies false contours as a result

of these distortion artifacts.

Correlated distortions influence a human’s perception of the distortion level

more than uncorrelated distortions (i.e., independent, additive white Gaussian

noise) [21,59]. Thus, uncorrelated distortions are expected to have a smaller influ-

ence on perceived utility than correlated distortions: human observers can “ignore”

moderate levels of uncorrelated distortions. NICE estimates perceived utility as

a function of the errors between the reference and test edge maps produced by

an edge detector: an edge detected in the reference image but absent in the test

image produces an error, and an edge absent in the reference image but detected
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in the test image produces an error. With NICE, more errors imply lower utility,

and perceived utility would be underestimated when the errors are largely due to

false contours that humans would “ignore.” More advanced edge detectors assess

various types of edge cues including pixel value discontinuities and texture bound-

aries [62, 69] but generally conduct a more complex analysis of an image relative

to the edge detectors tested with NICE.

The distortion types used in the experiments were spatially correlated with

the reference image, so the current collection of test images cannot be used to

evaluate the potential vulnerabilities of the contour detection techniques used by

NICE. However, the current results based on correlated distortions demonstrate

the feasibility of conducting an image contour comparison to accurately estimate

perceived utility. NICE operating with robust edge detectors that do not detect

false contours due to uncorrelated noise sources are expected to reliably estimate

perceived utility scores for such distortions.

4.4.2 Object Recognition, Perceived Utility, and NICE

A perceived utility score quantifies the amount of information a distorted image

conveys to a human, where the information of a scene included the objects and

activities as well as their respective details. We hypothesize that perceived utility

is linked to the level of detail with which objects and activities in the scene are

recognized.

Objects in the natural world can be described with varying levels of detail, and

object recognition studies using images containing one object have examined the

effects of simple image filtering on the level of detail accurately recognized by a
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human. Such object recognition studies use the taxonomy of objects proposed by

Rosch to distinguish these levels of detail, which Rosch named levels of abstrac-

tion [97]. As an example, a snare drum can be identified as a musical instrument, a

drum, or a snare drum, where Rosch’s taxonomy respectively assigns these descrip-

tions to the superordinate, basic, and subordinate levels of abstraction. The object

recognition studies demonstrate that humans can reliably recognize an object at

the basic level using only low-frequency content, whereas subordinate-level recog-

nition requires more high-frequency content [22, 23]. Thus, humans only perceive

an object’s basic-level details but not its subordinate-level details in a low-pass

filtered distorted image, and this result is consistent with low-pass filtering lead-

ing to a decrease in perceived utility as subordinate-level object details disappear.

The object recognition studies also concluded that humans can reliably recognize

an object at both the basic and subordinate levels using only high-frequency con-

tent [22, 23]. Thus, a high-pass filtered distorted image does not affect the level

of detail a human perceives about the object, and this result is consistent with

high-pass filtering (i.e., TS versus TS+HPF distorted images with the same γ)

often negligibly affecting perceived utility.

Another recent perceptual study of object recognition used natural images con-

taining multiple objects of varying size and demonstrated that the number and

accuracy with which humans recognized objects in distorted images decreases as

the level of blur increases [127]. Furthermore, the size of the objects accurately

recognized decreases as the level of blur increases (i.e., disrupting high-frequency

content compromises the recognition of smaller objects). These results are consis-

tent with the criteria proposed by Johnson, which was used to design sensors and

display devices [58,98]. The Johnson criteria relates the level of object discrimina-

tion to the detectability of a bar pattern of a given spatial frequency. For object
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recognition, the Johnson criteria states that a human must detect a bar grating

with 4 cycles across the object’s minimum dimension. Increasing the number of

cycles in the bar grating across the object’s minimum dimension allows the ob-

ject to be more accurately identified. Our perceived utility scores are consistent

with this evidence, because perceived utility decreases as high-frequency content

is removed or distorted.

The object recognition studies demonstrate that loss of high-frequency con-

tent but not low-frequency content impairs object recognition performance. This

evidence is consistent with our subjective experiments and suggest that our per-

ceived utility scores, rather than perceived quality scores, estimate the amount of

information recognized by a human. Such studies and our perceived utility scores

provide little guidance toward understanding how information is recognized by a

human, and in particular, what underlying image characteristics impact usefulness.

However, those objective estimators (i.e., VIF, NICE, and MS-NICE) that accu-

rately estimate perceived utility were dismantled and analyzed to understand those

image characteristics that impact usefulness. In particular, NICE and MS-NICE

estimate utility based on a measurement of the degradation to image contours in

a distorted image with respect to a reference image.

Contours form shapes, and object shape is hypothesized to be a primary cue for

object recognition by the human visual system [128]. Humans reliably recognize

objects from line-drawings [3], which provide only object shape cues, and even

from degraded line drawings [82, 102]. Line drawings abstractly represent object

shapes using contours, and humans quickly identify contours formed by Gabor

patches aligned along a curved path placed in an image composed of an array of

randomly oriented Gabor patches [40]. The ability of humans to recognize objects
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from abstract contour representations along with their reported ease of detecting

contours among clutter support theories of shape-based object recognition.

Another object recognition study collected fMRI data for various regions of

the visual cortex to understand how the human visual system performs object

recognition. The fMRI data was collected from both the striate (i.e. primary)

and extra-striate cortex when humans viewed images that contained only contour

regions, texture regions, or both (i.e., the full image) [34]. In that study, the extra-

striate cortex responded greatest when humans viewed images that contain only

contour regions. The increased activation due to contour information corroborates

theories that object recognition is largely driven by contour information (i.e., shape

perception) in natural images.

In summary, NICE performs very well as a utility estimator by extracting,

comparing, and quantifying the degradation to image contour information in a

distorted image with respect to a reference image. Together, the theories that

contour information mediates object recognition and the performance of NICE as

a utility estimator demonstrate that NICE is a viable signal analysis tool that

estimates the usefulness of distorted natural images.

4.5 Summary

This chapter introduced the natural image contour evaluation (NICE) utility es-

timator. NICE as well as several objective quality estimator were evaluated as

utility estimators and quality estimators using the data collected in the experi-

ments described in Chapter 3. Two estimators were shown to accurately estimate

utility. One is the visual information fidelity (VIF) criterion, which is customarily
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used as a quality estimator. A modification to VIF denoted VIF* was proposed

that outperforms VIF as a quality estimator on the current database of distorted

images. The signal analyses conducted by VIF and VIF* are consistent with

the observations from the subjective experiments. Specifically, VIF primarily an-

alyzes disruptions to high-frequency content and accurately estimates perceived

utility but not perceived quality, whereas VIF* exhibits increased sensitivity to

low-frequency distortions relative to VIF and analyzes disruptions to all frequency

content and accurately estimates perceived quality but not perceived utility.

The natural image contour evaluation (NICE) utility estimator was also shown

to accurately estimate utility. NICE estimates utility as a function of both lost

and introduced contour information in a distorted image when compared with a

reference image. In contrast with VIF, NICE abstractly represents the reference

and test images as contours and compares these contours to estimate utility. NICE

was shown to be a viable signal analysis tool to estimate the usefulness of a dis-

torted natural image. This result supports hypotheses about the importance of

contour information to the human visual system for object perception.

4.6 Key Points

• The natural image contour evaluation (NICE) utility estimator is introduced.

Single-scale and multi-scale versions of NICE are defined. The performance

of various implementations of NICE as both utility estimators and quality

estimators is reported. The experimental data collected in the experiments

described in Chapter 3 is used to validate the performance of each objective

estimator.

• The performance objective estimators summarized in Chapter 2 as both util-
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ity and quality estimators is reported. Among the estimators examined,

VIF*, the modified version of the visual information fidelity (VIF) criterion

introduced in Chapter 2, is demonstrated to provide more accurate estimates

of perceived quality than VIF.

• VIF, which largely sensitive to distortions to high-frequency content, and

NICE both are shown to provide the most accurate estimates of perceived

utility using the database of images described in Chapter 3. These two

estimators are analyzed and shown to largely be driven by an analysis of

image contours or edges. NICE is argued to be compatible with shape-based

theories of object perception.
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CHAPTER 5

A NOVEL TECHNIQUE TO ACQUIRE PERCEIVED UTILITY

SCORES FROM TEXTUAL DESCRIPTIONS OF DISTORTED

NATURAL IMAGES

5.1 Introduction

Many applications value an assessment of distorted images according to their use-

fulness, or utility, rather than their perceptual quality. For example, the public

safety sector uses imaging systems to make immediate decisions on how best to

respond to an incident [42, 43]. However, quantifying distortions in such images

according to perceived quality is not a proxy for perceived utility (PU) [100,105].

For the quality task, human observers evaluate a natural image based on its percep-

tual resemblance to a reference. The reference may be either an explicit, external

natural image or an internal reference, only accessible to the observer. For the

utility task, the usefulness of a natural image as a surrogate for a reference is under

evaluation.

Experiments to collect PU scores of visual stimuli often require observers to

perform a very specific task with an visual stimulus. For example, experiments

have been conducted that prompt an observer with a task (e.g., “Identify the

object being held.”) prior to viewing a distorted video sequence [43]. Evaluations

of distorted images need not accompany a specific task, especially if the task simply

is to determine the image content as is common in video surveillance applications.

Perceived utility scores have been obtained using a paired comparison methodology

that instructs observers to choose among two distorted images the one that “tells

you more about the content” [100]. While this method suits content interpretation

149



tasks, the responses lack information about the specific content actually seen in

the distorted images.

A novel technique for acquiring PU scores is presented that collects textual

descriptions produced by observers viewing distorted images. This technique uses

observer-centric concepts for the images that emerge from an analysis of the ob-

server descriptions. Since observers guide the creation of concepts describing useful

image content, the observer-centric approach establishes a framework to quantify

image usefulness for a broad range of tasks. Concept vectors that quantify the pres-

ence of concepts appearing in observer descriptions are used to generate PU scores.

Two experiments are conducted to collect PU scores using the proposed technique

for a combined total of 500 distorted images that simulate scenes captured by a

surveillance system.

Objective estimators are sought that provide scores consistent with subjective

evaluations to circumvent expensive studies to acquire PU scores. The natural

image contour evaluation (NICE), which compares the contours of a test image

to those of a reference image to score the test image, has been examined as a

utility estimator [105]. The capability of both the natural image contour evalua-

tion (NICE) utility estimator, which compares contours of the reference and test

images, and popular quality estimators to estimate these PU is reported. The

conclusions drawn from the results reported combined with results previously re-

ported [105] establish that a multi-scale implementation of NICE (MS-NICE) is

the most robust utility estimator among the estimators evaluated, since MS-NICE

consistently performs as well as estimators producing the most accurate perceived

utility estimates for a variety of distortion types.

This chapter has the following organization: Section 5.2 presents the proposed
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methods to obtain textual descriptions from observers viewing distorted images.

Section 5.3 describes the process used to generate PU scores from textual descrip-

tions of distorted images. The PU scores obtained from the two experiments are

compared in Section 5.4. The capability of NICE and several quality estimators

to predict PU scores is analyzed and reported in Section 5.5, which is followed by

a discussion in Section 5.6. Conclusions are presented in Section 5.7.

5.2 Methods: Measuring the Perceived Usefulness of Dis-

torted Natural Images

This section describes the experimental methods used for collecting responses from

observers from which perceived utility (PU) scores can be generated. Two experi-

ments were conducted. In the first experiment, a small collection of 150 distorted

images are evaluated that span three types of distortions. The second experiment

contains minor procedural refinements relative to the first experiment based on exit

interviews with observers in the first experiment. In addition, a large collection

of 350 distorted images are evaluated that span five types of distortions. Three

reference images from the first experiment are used in the second experiment, so

the two experiments can be compared.

5.2.1 Experiment 1

The stimuli and procedures used to collect responses from observers in the first

(preliminary) experiment are described.
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(a) conference, S, C = 14 (b) desk1, L, C = 16

(c) desk2, S, C = 12 (d) elevator, S, C = 12

(e) kitchen, L, C = 16 (f) stairs, L, C = 6

Figure 5.1: Six of the ten grayscale natural images serving as reference im-
ages for the experiment. The images simulate hypothetical scenes
captured by a video surveillance system. In the caption for each
image, “L” indicates that the image size is 640× 480 pixels and
“S” indicates that the image size is 320× 240 pixels. The num-
ber of concepts C associated with each image is provided. The
remaining four images are provided in Figure 5.2.

152



(a) street1, S, C = 11 (b) street2, S, C = 8

(c) street3, L, C = 11 (d) tram, L, C = 9

Figure 5.2: Four of the ten grayscale natural images serving as reference im-
ages for the experiment. The images simulate hypothetical scenes
captured by a video surveillance system. In the caption for each
image, “L” indicates that the image size is 640× 480 pixels and
“S” indicates that the image size is 320× 240 pixels. The num-
ber of concepts C associated with each image is provided. The
remaining six images are provided in Figure 5.1.

Stimuli

Ten 8-bit grayscale natural images (Nr = 10) served as reference images for the

first experiment (Figures 5.1 and 5.2). The images simulate scenes captured by a

surveillance system. The ten reference images varied by image size: five images

were 320 × 240 pixels, and the other five images were 640 × 480 pixels. The
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elevator1 image is 320× 240 pixels and was obtained directly from an AXIS 211

video surveillance camera. The other reference images were resized and cropped

from larger resolution images captured by either a Sony DSC-V1 digital camera

(original image size 2592× 1944 pixels) or a Canon EOS Digital Rebel XTi digital

camera (original image size 3888× 2592 pixels). Images were resized by applying

an antialiasing filter and downsampling in both horizontal and vertical directions.

From the ten reference images, 150 distorted images were formed that contained

one of three types of distortions: additive white Gaussian noise; Gaussian blur;

and lossy JPEG compression. For each distortion type, a sequence of Nd = 5

distorted images for each reference is formed such that subsequent images in the

sequence contain less distortion than the preceding image, and the first image

in a sequence was formed to be unrecognizable. Additive white Gaussian noise

(AWGN) with noise power σ2
η was added for ση = 13, 25, 50, 100, and 200. Gaussian

blur (GBLUR) was induced by convolving the reference image with a Gaussian

kernel parameterized by standard deviation σg for σg = 1, 3, 5, 7, and 9. Distortion

attributed to lossy JPEG compression was induced for specific quality parameters

QPjpeg = 16, 8, 4, 2, and 1 using the quantization matrix defined in the original

JPEG specification [90].

Procedure

In the experiment,1 observers produce typed descriptions of images. For each ref-

erence image, an observer views both the reference image and Nd = 5 distorted

images generated from that reference image for one distortion type (e.g., an ob-

1The Psychophysics Toolbox is used to conduct experiments [6].
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server only views desk1 contaminated with JPEG distortions).2 Distortion arti-

facts are randomly paired with reference images. An observer views and describes

(Nd + 1)×Nr = 60 images (Nd = 5 distorted images generated plus the reference

image) in a testing session.

A testing session is composed of consecutive trials. In each trial, an observer

views a fixation mark for 1 second, then the image to be described is displayed for

t seconds, and last an image of filtered Gaussian noise is displayed for 1 second.

Observers provide a typed description of the image viewed for t seconds,3 where

t = 4 or t = 8. The finite viewing interval forces an observer to prioritize his ex-

amination of the content and report the most important content in his description.

The next trial begins after submitting a description.

The correct information about a heavily distorted image reported by an ob-

server is sought. The trials are ordered such that an observer views the most

distorted versions of the reference images first. More precisely, view a test session

as being composed of Nd +1 sets of Nr trials, where Nd is the number of distorted

images generated for each of the Nr reference images. In the dth set of Nr trials, an

observer views the dth image from the sequence of distorted images formed from

each reference image. The observers view and describe the references in the last

set of Nr trials.

Seventeen observers participated in the experiment. The observers (one female

and 16 males) were undergraduate and graduate students between the ages of 20

and 28.

2Observers cannot repeat the experiment for the same reference images for different distortion
types, since observers may recognize image content in heavily distorted images from previous
viewings.

3For 13 observers, t = 4 seconds, and for four observers, t = 8 seconds.

155



5.2.2 Experiment 2

The second experiment is an expanded version of the first experiment. Five rather

than three distortion types are evaluated, and reference/distortion sequences con-

taining Nd = 7 distorted images rather than Nd = 5 distorted images. In addition,

a collection of novel images are mixed into the stimuli that observers view to

discourage guessing based on previously viewed images.

Stimuli

Ten 8-bit grayscale natural images (Nr = 10) served as reference images for the

second experiment (Figures 5.3 and 5.4). The images simulate scenes captured

by a surveillance system. The ten reference images varied by image size: five

images were 320×240 pixels, and the other five images were 640×480 pixels. The

images conference, elevator, and kitchen were reused from the first experiment to

validate the repeatability of the proposed test methodology. The images bank, fire,

gas station, hallway, police, and shop were extracted from videos in the publicly

available Consumer Digital Video Library [77]. These 6 images were resized and

cropped from the original versions. The image desk3 was resized and cropped

from an image captured with a Sony DSC-V1 digital camera (original image size

2592 × 1944 pixels). Images were resized by applying an antialiasing filter and

downsampling in both horizontal and vertical directions.

From the ten reference images, 350 distorted images were formed that contained

one of five types of distortions: additive white Gaussian noise; Gaussian blur; lossy

JPEG compression; lossy JPEG-2000 compression using the dynamic contrast-

based quantization (DCQ) strategy (J2K+DCQ); and texture-smoothing (TS). For
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each distortion type, a sequence of Nd = 7 distorted images for each reference is

formed such that subsequent images in the sequence contain less distortion than the

preceding image, and the first image in a sequence was formed to be unrecognizable.

Such a sequence is henceforth named a reference/distortion sequence.

Reference/additive white Gaussian noise (AWGN) sequences were formed by

varying the noise power σ2
η of the Gaussian noise added to the reference image

for ση = 10, 30, 50, 80, 120, 160, and 200. Reference/Gaussian blur (GBLUR) se-

quences were formed by convolving the reference image with a Gaussian kernel

parameterized by standard deviation σg for σg = 1, 2, 4, 6, 10, 15, and 20. Ref-

erence/JPEG sequences were formed by compressing the reference image using

baseline JPEG compression for quality parameters QPjpeg = 90, 50, 20, 8, 4, 2, and

1 using the example quantization table provided in the original JPEG specifica-

tion [79,90]. Reference/J2K+DCQ sequences were formed by compressing the ref-

erence image using a JPEG-2000 encoder with quantization step-sizes specified by

DCQ to achieve encoding bitrates R = 0.5, 0.2, 0.1, 0.05, 0.03, 0.02 and 0.01. Ref-

erence/TS sequences were formed by smoothing textures in the reference image

through soft-thresholding of Haar wavelet coefficients using the smoothing param-

eter γ. The reference/TS sequences contained 7 images corresponding smoothing

parameters γ that were logarithmically equally spaced from 2 to 2048.

In addition to the 350 test images, a collection of novel images were used in

the experiment to keep the observers interested in the experiment. In addition,

these images prevent the observers from immediately anticipating that an image

corresponds to a previously viewed image. Seven (Nn = 7) novel images were

downloaded from the online public image database Flickr [78]. The novel images

are shown in Figure 5.5. Reference/distortion sequences containing Nd = 7 dis-

157



(a) bank, L, C = 19 (b) desk3, L, C = 21

(c) fire, S, C = 11 (d) gas station, S, C = 8

(e) hallway, L, C = 16 (f) police, S, C = 14

Figure 5.3: Six of the ten grayscale natural images serving as reference images
for the second experiment. The images simulate hypothetical
scenes captured by a video surveillance system. In the caption for
each image, “L” indicates that the image size is 640× 480 pixels
and “S” indicates that the image size is 320 × 240 pixels. The
number of concepts C associated with each image is provided.
The remaining four images are provided in Figure 5.4.
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(a) shop, L, C = 17 (b) kitchen, L, C = 19

(c) conference, S, C = 15 (d) elevator, S, C = 13

Figure 5.4: Four of the ten grayscale natural images serving as reference im-
ages for the second experiment. The images simulate hypotheti-
cal scenes captured by a video surveillance system. In the caption
for each image, “L” indicates that the image size is 640×480 pix-
els and “S” indicates that the image size is 320×240 pixels. The
number of concepts C associated with each image is provided.
The remaining six images are provided in Figure 5.3.

torted images were formed for each novel image for the five different distortion

types.
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(a) drummer (b) shuttle

(c) police2 (d) football

(e) street corner (f) bridge

(g) cowboy

Figure 5.5: The six grayscale natural images serving as novel images for the
second experiment. These images act as distractors in the exper-
iment to avoid guessing by the observers. All of the novel images
were 640× 480 pixels in size.
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Procedure

As in the first experiment,4 observers produce typed descriptions of images. For

each reference image, an observer views both the reference image and Nd = 7

distorted images generated from that reference image for one distortion type (e.g.,

an observer only views elevator contaminated with JPEG distortions).5 Distortion

artifacts are randomly paired with reference images. Due to the large number of

distorted image, the experiment was split into two sessions to alleviate observer

fatigue. In each session, an observer views and describes (Nd + 1)×Nr/2 + Nn =

187 images (Nd = 7 distorted images generated plus the reference image plus the

Nn novel images) in a testing session.

A testing session is composed of consecutive trials. In each trial, an observer

views a fixation mark for 1 second, then the image to be described is displayed

for t = 10 seconds, and last an image of filtered Gaussian noise is displayed for

1 second. Observers provide a typed description of the image viewed for t = 10

seconds. The finite viewing interval forces an observer to prioritize his examination

of the content and report the most important content in his description. The next

trial begins after submitting a description.

The correct information about a heavily distorted image reported by an ob-

server is sought. The trials are ordered such that an observer views the most

distorted versions of the reference images first. More precisely, view a test ses-

sion as being composed of Nd sets of Nr/2 + 1 trials plus one final set of Nr/2

trials, where Nd is the number of distorted images generated for each of the Nr/2

4The Psychophysics Toolbox is used to conduct experiments [6].
5Observers cannot repeat the experiment for the same reference images for different distortion

types, since observers may recognize image content in heavily distorted images from previous
viewings.
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reference images plus one novel image per set. In the dth set of Nr/2 trials, an

observer views the dth image from the sequence of distorted images formed from

each reference image plus a random novel image with a random level of distortion.

The observers only view and describe the references in the final set of Nr/2 trials.

Twenty-four observers participated in the experiment. The observers (11 female

and 13 males) were undergraduate and graduate students between the ages of 18

and 34. Observers were either paid $10 for their participation or received credit

for a cognitive psychology course.

5.3 Perceived Utility Scores from Textual Descriptions

Perceived utility scores are derived from the textual descriptions produce by ob-

servers that viewed the distorted images in both experiments described in Section

5.2. This section describes the process used to obtain perceived utility scores from

the raw observer responses.

5.3.1 Concept Vectors

Perceived utility loss6 scores are obtained by comparing concept vectors based on

the observer descriptions of the images. Concept vectors are generated for both

distorted and reference images. Each element of a concept vector is a number

between 0 and 1 indicating the proportion of observers whose description included

words or phrases related to a specific concept associated with the reference image

6Perceived utility loss with respect to the reference is similar to difference mean opinion scores
(DMOS) reported in the perceived quality task.
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content. The concepts are observer-centric and emerge from an analysis of the

collected observer descriptions. Images formed from the same reference image

use the same concepts; the number of concepts C for each reference image are

provided in Figures 5.1, 5.2, 5.3, and 5.4. The concepts that emerged from the

observer responses from the novel images in the second experiment were not used.

To illustrate the formation of the observer-centric concepts, consider the street2

image in Figure 5.2(b). Among other features described, several observers de-

scribed the streetlamp appearing on the right-hand-side of the image. Observers

used the following words and phrases to describe the streetlamp: “lamp post,”

“lamp,” “lampost,” “lamppost,” “lightpost,” “light post,” “pole,” “post,” “street-

lamp,” “streetlight,” and “streetlights.” Thus, the “streetlamp” emerges from the

descriptions, and all these words or phrases coincide with the “streetlamp” con-

cept, so the observer descriptions can be automatically scanned for the presence

of this concept.

The concept vectors were adjusted in two steps. First, the concept vectors

corresponding to the reference images were examined for the presence of infrequent

concepts. Infrequent concepts, defined as those concepts that appeared in fewer

than 15% of the observer descriptions, where removed from the concept vectors.

Second, elements of the concept vectors corresponding to the distorted images

occasionally contained values indicating that more observers described a concept

in a distorted image than the reference image. Given a particular distortion type

and reference image, the values of the concept vectors are expected to monotoni-

cally increase as the distortion level decreases with the reference image yielding the

largest value. Due to the test design, all 17 observers viewed the reference images

and only a subset of these observers viewed images subjected to a particular distor-
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tion type. Consequently, it is possible that all the observers viewing the kitchen2

image contaminated with AWGN described the knife block on the counter, but not

all the observers viewing this image degraded by JPEG compression mentioned the

knife block, even when viewing the reference image. This would lead to a smaller

proportion of observers describing the knife block concept in the reference image

relative to the proportion describing this concept in the kitchen2 subjected to the

least amount of AWGN, disrupting the desired monotonicity. To restore mono-

tonicity, distorted image concept vectors were multiplied (element-wise) by the

corresponding reference image concept vectors.7

5.3.2 Perceived Utility Loss Definition

The perceived utility loss score is defined such that experimental errors could

be estimated.8 The infrequent concepts described in Section have been removed,

leaving C concepts for a given natural image. Let p and q denote the concept

vectors corresponding to the reference image and distorted image, respectively.

The cth element of the concept vector p is denoted pc and defines the probability

that concept c is recognized.9 Assuming that 1 ≥ pc ≥ qc ≥ 0 for c = 1, 2, . . . , C,

the perceived utility loss (UL) is based on two concept vectors p and q and is given

by

UL(p, q) =
100

A

C
∑

c=1

pc (1− qc) , (5.1)

7The reference image concept vector is a vector of ones when all observers describe all concepts
in the reference images, and in that case, no adjustment to ensure monotonicity is needed.

8In [106], the perceived utility loss score did not accommodate a straightforward estimate of
the experimental errors.

9The experiment is conducted to collect data from observers to estimate the values of the
concept vectors p and q
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where A =
∑C

c=1 pc is treated normalizing constant10 introduced to fix the max-

imum value of UL to 100. Note that UL ∈ [0, 100], since 1 ≥ pc ≥ qc ≥ 0 for

c = 1, 2, . . . , C, and UL increases as the perceived utility decreases. UL = 0 ⇐⇒

p = q and indicates that for all concepts the same proportion of observers describe

the concepts in the reference image as in the distorted image. UL = 100 when all

observers described the concepts in the reference image but no observers described

any of the concepts in the distorted image.

Eq. (5.1) has a straightforward interpretation. First, suppose all concepts were

recognized by all observers, then pc = 1 for c = 1, . . . , C. Then, according to Eq.

(5.1), any concept recognized with probability less than 1 in a distorted image

constitutes a utility loss. Now, suppose pc is less than 1, then Eq. (5.1) introduces

a weight on the importance of each concept: smaller values of pc correspond to

less important concepts according to the sample of people participating in the

experiment.

The standard error associated with the second utility loss definition in Eq. (5.1)

is based on approximating the proportions pc and qc by Gaussian random variables

and assuming that a proportion pc is independent of proportion pd for c 6= d. The

assumption recognition of concept c is independent of recognition of concept d for

c 6= d. First, observe that Eq. (5.1) can be rewritten as

UL(p, q) =
100

A

C
∑

c=1

pc −
100

A

C
∑

c=1

pcqc (5.2)

Let Np and Nq denote the number of observers that viewed the reference and

distorted images, respectively, and let np,c and nq,c be binomial random variables

counting the number of times observers recognized concept c in the reference and

distorted images, respectively. Then, p̂c = np,c

Np
and q̂c = nq,c

Nq
approximate the true

10Although the values pc are estimated in from the experimental data, the term A is assumed
to be deterministic to simplify the approximation of the standard deviation.

165



values of pc and qc. The binomial random variables np,c and nq,c are approximated

as Gaussian random variables. For example, the binomial random variable np,c

can be approximated by a Gaussian random variable with mean Nppc and variance

Nppc(1 − pc). This can be transformed to approximate pc as a Gaussian random

variable with mean np,cN
−1
p and variance np,c(Np − np,c)N

−2
p . The term pcqc is

approximated by a Gaussian random variable with mean np,cnq,c(NpNq)
−1 and

variance np,cnq,c(NpNq − np,cnq,c)N
−1
p N−2

q . The variance of pcqc only accounts for

variation due to qc (i.e., division by NpN
2
q and not N2

p N2
q ), since pc is a weight

introduced to restore monotonicity of the values of qc. Since it is assumed that

recognition of concepts are independent of one another, the utility loss is modeled

as a Gaussian random variable with mean

E{UL(p, q)} ≈ 100

A

C
∑

c=1

p̂c −
100

A

C
∑

c=1

p̂cq̂c (5.3)

and variance

V ar{UL(p, q)} ≈ 10000

A2

C
∑

c=1

(

p̂c(1− p̂c)

Np
+

p̂cq̂c(1− p̂cq̂c)

Nq

)

, (5.4)

where p̂c = np,c

Np
and q̂c = nq,c

Nq
. Thus, the estimate of UL is unbiased, and the

variance of the estimate decreases as the number of observers viewing the reference

and distorted images increases.

5.3.3 Plausibility of Utility Loss Definition

The plausibility of the methods leading to Eq. (5.1) to produce meaningful PU

scores is evaluated by analyzing the consistency of the scores corresponding to im-

age recognition thresholds. The recognition threshold splits a sequence of distorted

images into useful distorted images that provide relevant information about the
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reference scene content to an observer and useless images. The PU loss score for

the recognition threshold should not vary across distortion types.

Five people reviewed all the descriptions obtained in the first experiment and

selected the first description relevant to the reference scene content. PU loss scores

computed using Eq. (5.1) corresponding to the selected images were averaged to

determine the average recognition threshold in terms of the PU loss scores.

The methods leading to Eq. (5.1) were determined to provide meaningful PU

scores. A one-way analysis of variance (ANOVA)11 revealed that image size ac-

counts for variations among recognition thresholds (F1,848 = 46.8, p ≈ 0), and

for only four of the ten reference images the distortion type accounts for differ-

ences among recognition thresholds (F2,82 > 3.8, p < 0.03). An inspection of

the sequences of distorted images for the four images (kitchen2, stairs1, street2,

and street3 ) whose recognition thresholds differed across distortion types revealed

that these sequences sparsely sampled the distortion levels near the recognition

threshold, which merely casts doubt on the accuracy of the estimated recognition

thresholds for these four images. The recognition thresholds for the remaining six

reference images varied according to the image size (F1,508 = 18.6, p ≈ 0) and not

the distortion type (F2,507 = 0.02, p = 0.98). Objective estimators that accurately

estimate PU loss scores inherit the ability to estimate recognition thresholds, and

only an appropriate threshold based on the image size needs to be determined.

11ANOVA uses an F-test that compares 1) the variance of the m mean recognition threshold
(RT) PU scores for each subset (e.g., images with the same distortion type) with the global
mean RT PU score to 2) the total the variance of all m × n RT PU scores. The test statistic
Fm−1,m(n−1)) and its p-value are reported.
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5.4 Analysis of Perceived Utility Scores

In this section, the perceived utility (PU) scores acquired in both are analyzed to

1) demonstrate the need for a utility estimator and 2) illustrate that the proposed

method provided reproducible PU loss scores.

5.4.1 Demonstrating the Need for a Utility Estimator

Applications for which the images used are vulnerable to a variety of distortions

need a utility estimator to predict the perceived utility (PU) loss of distorted

images. However, applications often use images vulnerable to a specific class of

distortions (e.g., additive white Gaussian noise). If the perceived utility loss of

a given image can be reliably predicted based on that distortion parameter (e.g.,

additive white Gaussian noise with power σ2
η), then a utility estimator would be

unnecessary in that application.

The PU loss scores obtained in both experiments demonstrate that PU loss

scores vary among distorted images contaminated with the same type and level

of distortion. Figures 5.6 and 5.7 show, for each distortion type, the relationship

between the PU loss scores as a function of the distortion parameters for all the

images tested. From the figure it is evident that for a fixed value of a distortion

parameter the PU loss varies according to the reference image, and the distortion

parameter to poorly estimates the PU loss of a given distorted image. Thus, a

utility estimator that accurately estimates the PU loss is necessary.
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(c) JPEG

Figure 5.6: Given a fixed distortion parameter value (e.g., additive white
Gaussian noise with noise power σ2

η) does not accurately predict
the perceived utility (PU) loss across a variety of images. Each
bar graph shows the PU loss scores from the first experiment as
a function of the distortion parameters.

5.4.2 Evidence that the Proposed Technique Yields Repro-

ducible Results

An experimental method is only useful if its results are reproducible. The im-

ages conference, elevator, and kitchen were used in both experiments to examine

the extent that the proposed technique to obtain perceived utility (PU) scores is
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Figure 5.7: Given a fixed distortion parameter value (e.g., additive white
Gaussian noise with noise power σ2

η) does not accurately predict
the perceived utility (PU) loss across a variety of images. Each
bar graph shows the PU loss scores from the first experiment as
a function of the distortion parameters.
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reproducible.

For both experiments, distorted images were formed by subjecting the refer-

ence images to additive white Gaussian noise (AWGN), Gaussian blur (GBLUR),

and baseline JPEG compression. However, different distortion parameters were

used in each experiment. Specifically, the reference/distortion sequences contained

Nd = 5 images in the first experiment, whereas Nd = 7 images appeared in the

reference/distortion sequences formed for the second experiment. To compare the

degree of correlation between the PU loss scores from each experiment, the PU

loss scores from the second experiment were approximated for the distortion pa-

rameters used in the first experiment via linear interpolation.

The PU loss scores obtained from one experiment capture at least 90% of

the variation in the PU loss scores observed from the other experiment. The

relationship between the PU loss scores and the distortion parameters (e.g., ση for

AWGN) obtained in each experiment are shown in Figures 5.8 and 5.9. The error

bars in the figures indicate the 95% confidence intervals corresponding to the PU

loss scores. In most cases, the error bars corresponding to the PU loss scores from

each experiment overlap, which indicates that the PU loss scores are statistically

equivalent. However, in some cases the PU loss scores are statistically different.

Despite the statistical differences in some of the PU loss scores, the PU loss scores

the two experiments are strongly correlated. The Pearson linear correlation r is

calculated between the PU loss scores from the first experiment and the PU loss

scores from the second experiment after interpolating the scores corresponding to

the distortion parameters used in the first experiment. The values of r are provided

in Figures 5.8 and 5.9, and all correlation values exceed 0.95, which indicate that at

least 0.90% of the variation in the PU loss scores from one experiment are captured
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(b) elevator : AWGN, r = 0.987
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(c) conference: GBLUR, r = 0.961
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(d) elevator : GBLUR, r = 0.955
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(e) conference: JPEG, r = 0.997
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(f) elevator : JPEG, r = 0.993

Figure 5.8: Perceived utility (PU) loss scores obtained from each experiment
versus the distortion parameter for conference and elevator. The
error bars indicate the 95% confidence intervals. The Pearson
linear correlation r is reported when the PU scores from the first
experiment with those of the second experiment, interpolated to
the distortion parameter values used in the first experiment.
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(a) kitchen: AWGN, r = 0.975

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100

110

logarithm  σ
g

P
er

ci
ev

ed
 U

til
ity

 L
os

s

 

 

Experiment 1
Experiment 2

(b) kitchen: GBLUR, r = 0.989
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(c) kitchen: JPEG, r = 0.979

Figure 5.9: Perceived utility (PU) loss scores obtained from each experiment
versus the distortion parameter for kitchen. The error bars indi-
cate the 95% confidence intervals. The Pearson linear correlation
r is reported when the PU scores from the first experiment with
those of the second experiment, interpolated to the distortion
parameter values used in the first experiment.

in the other experiment.
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5.5 Objective Estimates of Perceived Utility Scores

This section examines the capability of both the single-scale and multi-scale NICE

utility estimators as well as popular quality estimators to estimate the perceived

utility (PU) loss scores obtained from each experiment described in Section 5.2.

Specifically, the following quality estimators are examined: the following the peak

signal-to-noise ratio (PSNR); the weighted signal-to-noise ratio (WSNR) [27]; the

noise quality measure (NQM) [27]; the visual signal-to-noise ratio (VSNR) [20];

the structural similarity index (SSIM) [137] and its multi-scale extension (MS-

SSIM) [138]; the visual information fidelity (VIF) criterion [113]; and a modified

implementation of VIF, denoted VIF*, that adjusts the weights used to pool the

objectives scores produced by VIF across image scales12 [100]. All of these objective

quality estimators are available in the MeTriX MuX toolbox [44].

The correlation between the objective scores and the PU loss scores is measured

using the Pearson (linear) correlation r, the Spearman rank correlation ρ, and

the Kendall rank correlation τ . The scores produced by many of the estimators

exhibit a nonlinear relationship with the PU scores, and a nonlinearity is often

fitted to the data to resolve this nonlinear relationship. However, the coefficients

attributed to the nonlinearity augment the objective estimator and obscure the

true contribution made by the objective estimator. Therefore, an linear mapping

f(x) = ax + b is fitted to the data to minimize the sum-squared error between the

mapped objective scores f(x) and the PU loss scores. This mapping simply shifts

and rescales the objective scores to the range of PU loss scores. The accuracy

of the linearly mapped objective scores are evaluated with respect to the PU loss

scores using the root mean squared error (RMSE) and the outlier ratio (OR). In

12VIF* multiplies the individual subband calculations corresponding to I(~CN ; ~EN |sN ) and

I(~CN ; ~FN |sN ) in Eqs. (12) and (13) of [113] by 1
N

.
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Table 5.1: Statistics summarizing the performance of estimators serving as
utility estimators using the perceived utility (PU) loss scores from
the first experiment. The Pearson linear correlation r, the Spear-
man rank correlation ρ, the Kendall rank correlation τ , the root
mean-squared error (RMSE), outlier ratio (OR), the resolving
power RP0.05 are reported when the estimates are compared with
the PU loss scores. The skewness (skew) and kurtosis (kurt) of
the residuals are reported. RMSE values with an asterisk indicate
that the accuracy of that estimator is statistically equivalent to
that of MS-NICE4 based on the Brown-Forsythe-Levene (BFL)
at the 5% significance level. Boldface values are the optimal for
that column, and italicized values are statistically equivalent to
the optimal value. The correlation measures are compared using
their absolute values.

Correlation Measures Accuracy Measures

Estimator r ρ τ RMSE OR skew/kurt RP0.05

PSNR -0.571 -0.588 -0.409 19.9 0.507 0.26/2.5 42.5

WSNR -0.799 -0.825 -0.627 14.6* 0.327 -0.23/2.8 41.1

NQM -0.814 -0.835 -0.637 14.1* 0.340 -0.25/2.8 41.1

VSNR -0.745 -0.771 -0.559 16.2 0.427 0.21/2.5 41.8

SSIM -0.367 -0.378 -0.266 22.6 0.540 0.42/2.4 28.2

MS-SSIM -0.744 -0.762 -0.554 16.2 0.433 0.17/3.0 49.8

VIF -0.750 -0.820 -0.607 16.1 0.353 0.03/2.6 45.9

VIF* -0.805 -0.838 -0.633 14.4* 0.320 -0.22/2.6 40.6

NICESobel 0.762 0.801 0.592 15.7 0.353 -0.03/2.6 39.3

NICECanny 0.371 0.600 0.436 22.6 0.540 0.57/2.5 42.6

MS-NICE4 0.864 0.866 0.670 12.2 0.273 -0.23/2.4 36.7
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addition, the skewness and kurtosis of the residuals are reported along with the

resolving power (RPα), which specifies the smallest difference in fitted objective

scores for a pair of test images such that the difference is significant based on the

estimated error of the subjective scores at the 100(1 − α)% confidence level [7].

Comparisons between the accuracy (i.e., the residual variance) of MS-NICE4 and

the other objective estimators are made using the Brown-Forsythe-Levene (BFL)

test 13 [10].

Overall, MS-NICE4 provides the most reliable estimates of PU loss among the

objective estimators evaluated. The results based on the PU loss scores from the

first experiment show that both MS-NICE4 and VIF* provide statistically equiva-

lent errors in terms of accuracy based on a comparison of residual variances using

the BFL test. However, the errors are statistically larger for VIF* than MS-NICE4

when the PU loss scores from the second experiment are used. The second exper-

iment contains more distortions and more images than the first experiment, so

the data for the second experiment provides better evidence with regard to the

performance of the objective estimators than the first experiment. Tables 5.1 and

5.2 contain the statistics summarizing the performance of the objective estimators

using the PU loss scores from the first and second experiments, respectively. An as-

terisk appears next to the RMSE values for objective estimators with statistically

equivalent residual variance to MS-NICE at the 5% significance level. Optimal

values corresponding to the correlation measures, RMSE, and outlier ratio appear

in boldface, and italicized values are statistically equivalent. Correlation measures

are compared using their absolute values.

13The BFL test does not require that residuals follow a Gaussian distribution, which is assumed
for the F -test.
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Table 5.2: Statistics summarizing the performance of estimators serving as
utility estimators using the perceived utility (PU) loss scores from
the second experiment. Refer to Table 5.1 for an explanation of
the correlation and accuracy measures.

Correlation Measures Accuracy Measures

Estimator r ρ τ RMSE OR skew/kurt RP0.05

PSNR -0.647 -0.717 -0.526 17.6 0.509 0.14/2.2 35.3

WSNR -0.765 -0.854 -0.651 14.8 0.440 0.14/2.3 29.2

NQM -0.797 -0.868 -0.670 13.9 0.400 -0.05/2.5 32.1

VSNR -0.719 -0.786 -0.572 16.0 0.477 0.07/2.2 37.0

SSIM -0.479 -0.603 -0.430 20.2 0.571 0.34/2.4 32.9

MS-SSIM -0.705 -0.775 -0.574 16.3 0.449 0.07/2.6 45.2

VIF -0.731 -0.880 -0.686 15.7 0.489 0.23/2.1 43.6

VIF* -0.816 -0.880 -0.684 13.3 0.397 0.06/2.2 32.4

NICESobel 0.757 0.788 0.584 15.0 0.406 -0.20/2.8 37.9

NICECanny 0.369 0.659 0.481 21.4 0.597 0.36/2.2 41.5

MS-NICE4 0.848 0.858 0.658 12.2 0.337 -0.08/2.5 29.4

5.6 Discussion

The overall conclusions establish that MS-NICE4 provides the most accurate esti-

mates of perceived utility loss across a variety of distortions. However, NICECanny,

which produced very accurate estimates of PU scores in Chapter 4, does not per-

form well on the data from the two experiments described in this chapter. A

closer examination of the results for NICECanny revealed that it provided very un-

reliable estimates of PU loss for distorted images with additive white Gaussian

noise (AWGN). AWGN is typically problematic for classical edge detectors, since
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these distortions introduce contours to which the Canny edge detector is sensitive.

Among the single-scale implementations of NICE evaluated, NICESobel provides

better performance than NICECanny in terms of estimating PU loss scores.

The conclusions drawn about VIF and VIF* appear to contradict those con-

clusions reported in Chapter 4. In Chapter 4, VIF was reported to provide more

accurate estimates of perceived utility (PU) scores than VIF*, yet according to the

current results, VIF* provides more accurate estimates than VIF for both datasets

(i.e., Tables 5.1 and 5.2) . VIF exhibits greater sensitivity to high-frequency dis-

tortions than low-frequency distortions [100]. Consequently, VIF poorly resolves

differences in the PU of heavily distorted images, where observers necessarily ex-

tract information about the image content using cues conveyed by lower-frequency

signal information due to the degradation of high-frequency signal information.

VIF* weights distortions across images scales based on the reference image’s en-

ergy distribution, and thus, VIF* exhibits greater sensitivity to low-frequency dis-

tortions than high-frequency distortions due to the 1/fα power spectra of natural

images [39]. For this reason, VIF* resolves differences in PU of heavily distorted

images better than VIF.

5.7 Summary

A novel technique to acquire perceived utility (PU) scores is presented that col-

lects textual descriptions produced by observers viewing distorted natural images.

This technique uses observer-centric concepts for the images that emerge from an

analysis of the observer descriptions. Concept vectors that quantify the presence

of concepts appearing in observer descriptions are used to generate PU scores.
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Since observers guide the creation of concepts describing useful image content, the

observer-centric approach establishes a framework to quantify image usefulness for

a broad range of tasks.

Two experiments are conducted using this novel technique with distorted im-

ages that simulate scenes captured by a surveillance system. The first experiment

collected PU loss scores for 150 distorted images spanning three types of distor-

tions, and the second experiment collected PU loss scores for 350 distorted images

spanning five types of distortions. The distorted images in each experiment were

formed from ten reference images, and three reference images were used in both ex-

periments (i.e., a total of 17 reference images were used across both experiments).

The three reference images that were common to both experiments were used to

compare the results from the each experiment and demonstrate the proposed tech-

nique provides reproducible results.

The capability of both the NICE utility estimator and popular quality estima-

tors to estimate these PU is reported. The conclusions drawn from the results

reported in Tables 5.1 and 5.2 establish that MS-NICE is the most robust utility

estimator among the estimators evaluated, since MS-NICE consistently performs

as well as estimators yielding the most accurate PU estimates for a variety of

distortion types.

5.8 Key Points

• A novel technique to collect perceived utility scores is presented that over-

comes the limitations of the perceived utility scores collected using the tech-

niques described in Chapter 3.
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• The novel technique uses observer-centric concepts that emerge from an anal-

ysis of the observer descriptions. Because observers guide the creation of

concepts describing useful image content, the observer-centric approach es-

tablishes a framework to quantify image usefulness for a broad range of tasks.

• Two experiments were conducted using this novel technique to obtain per-

ceived utility scores for distorted images that simulate scenes captured by

a video surveillance system. Perceived utility scores were collected for a to-

tal of 500 distorted images, spanning 5 types of distortion artifacts. Three

reference images were common to both experiments, and the perceived util-

ity scores for the distorted images formed from those reference images were

compared to demonstrate the reproducibility of the technique.

• The capability of both the NICE utility estimator and popular quality es-

timators to estimate these PU is reported. The multi-scale implementation

of NICE (MS-NICE) performs the best among all the estimators evaluated,

since MS-NICE consistently performs as well as estimators yielding the most

accurate PU estimates for a variety of distortion types.
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CHAPTER 6

ANALYSIS OF THE NATURAL IMAGE CONTOUR EVALUATION

6.1 Introduction

The natural image contour evaluation (NICE) was introduced and analyzed in

Chapter 4 as a utility estimator. Chapter 5 demonstrated the use of NICE on a

new database of images with perceived utility scores obtained using a novel test

method. The combined results from those two chapters support the designation of

NICE as a utility estimator for a variety of distortions.

This chapter describes a two part analysis of NICE. In the first part, a gradient

analysis is conducted to illustrate those image features that minimize NICE. The

gradient analysis demonstrates that restoring the visibility of edges in images min-

imizes NICE, which is consistent with the intended behavior of NICE described in

previous chapters. In addition, the results confirm observations in previous chap-

ters that distortions to low-frequency components (e.g., shading) and very high-

frequency components (e.g., textures) have little impact on the score produced by

NICE.

In the second half of the chapter, a novel method is proposed and executed to

produce distorted but useful images compatible with an existing image codec but

based on the distortion measure used by NICE. Specifically, baseline compatible

JPEG quantization tables, which specify step-sizes used to quantize the discrete

cosine transform (DCT) coefficients, are found via rate-distortion optimization

using NICE as a distortion measure with a JPEG coder [90].

The formula for NICE was not developed for use with the block-based DCT
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used by JPEG. Such an incompatibility between an objective estimator and coder

is common, and often the problem of tuning a coder to a objective estimator is

abandoned. This chapter describes a novel approach to tune a coder to an objec-

tive estimator. In particular, JPEG quantization tables optimized with respect to

NICE were found using a genetic algorithm (GA) heuristic search [109] to minimize

a cost function based on the rate-distortion optimization problem. The resulting

quantization tables produce images whose encoding bitrates are 34% lower than

images yielding the same score with NICE but produced using the example quan-

tization tables provided in the original JPEG specification [90]. In addition to pro-

viding JPEG quantization tables optimized with respect to NICE, the GA-based

approach to rate-distortion optimization is discussed as a technique to “tune” other

existing estimators to existing image codecs.

This chapter is organized as follows: A gradient analysis of NICE is presented in

Section 6.2, which includes a description of a continuous approximation of NICE.

Section 6.3 reports the use of NICE to perform rate-distortion optimization with

JPEG. In particular, methods for producing quantization tables optimized for

NICE that are compatible with JPEG are provided. The use of a genetic algorithm

to perform rate-distortion optimization for other objective estimators is discussed

in Section 6.4. The chapter is concluded with a summary in Section 6.5.

6.2 Gradient Analysis

A gradient analysis, which is similar to that conducted with the components of

SSIM in Section 2.3.4, is conducted using NICE to illustrate those image features

that minimize NICE. NICE contains two nonlinear components: hard-thresholding
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and the Hamming distance. To find the gradient of NICE, a continuous approx-

imation of NICE is found, and the gradient of the continuous approximation is

determined.

This section first summarizes NICE, which is followed by a formulation of the

continuous approximation of NICE. Next, the gradient of the continuous approxi-

mation of NICE is derived. This section concludes with sample images formed by

minimizing NICE using conjugate gradient descent. Various distorted images were

used to initiate the conjugate gradient descent iteration.

6.2.1 Summary of NICE

NICE compares the contours of the reference and test images, which are repre-

sented as binary images. Before the contours of the reference and test images

are compared, binary images representing the contour maps are individually sub-

jected to morphological dilation with a 3×3 “plus-sign” shaped structuring element

E [46]. Morphological dilation accommodates local registration errors between the

reference and test contour maps introduced by distortions in the test image and

should not be quantified as errors.

The contours of the reference and test images are compared across S image

scales, and bs[m, n] and b̂s[m, n] respectively denote the contours of the reference

and test images at scale s and spatial index (m, n). The NICE score for the test

image is computed as

NICES =

∑S
s=1 dH(bs[m, n]⊕E, b̂s[m, n]⊕ E)

∑S
s=1 Nbs

, (6.1)

where Nbs
is the number of non-zero elements of bs, dH(X, Y ) denotes the Hamming
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distance1 between the two binary vectors X and Y , and b[m, n] ⊕ E denotes the

dilation of the binary image b[m, n] using the morphological structuring element

E. The Hamming distance quantifies 1) the number of pixels corresponding to

contours in the reference image that have been lost in the test image due to the

distortions and 2) the number of pixels corresponding to contours in the test image

introduced by the distortions that were absent in the reference image. Since the

content of natural images vary, the proportion of pixels corresponding to contours

will vary. The factor NB accounts for this variability by adaptively scaling the

raw score dH(bs[m, n] ⊕ E, b̂s[m, n] ⊕ E) according to the extent of the contour

information identified in the reference image.

6.2.2 Continuous Approximation of NICE

A continuous approximation to NICE is formed by first removing the morpho-

logical dilation operation in NICE (cf. Eq. (6.1)). This morphological dilation

operation is intended for edge-detectors that produce 1-pixel width edges.2 The

morphological dilation operation is ignored, because there is no thinning process to

“localize” edges for the continuous approximation of NICE. Thus, the continuous

approximation of NICE is based on NICE when it is specified as

NICES =

∑S
s=1 dH(bs[m, n], b̂s[m, n])

∑S
s=1 Nbs

. (6.2)

For simplicity suppose that S = 1, and the continuous approximation to NICE is

based on the single-scale definition of NICE:

NICE1 =
dH(b[m, n], b̂[m, n])

Nb

. (6.3)

1The Hamming distance counts the number of dissimilar elements between two vectors [50].
2Many edge detectors identify edges by apply a threshold to a continuous valued signal.

Then, these edge detectors perform a “thinning” procedure to localize edges. Removing the
morphological dilation has no effect when the edges are not subjected to “thinning.”
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The signals b[m, n] and b̂[m, n] are determined from the reference image x[m, n]

and a test image y[m, n]. Specifically, b[m, n] and b̂[m, n] are defined as

b[m, n] = fa,b





[

∑

k,l

x[k, l]hv[m− k, n− l]

]2

+

[

∑

k,l

x[k, l]hh[m− k, n− l]

]2

− τx





b̂[m, n] = fa,b





[

∑

k,l

y[k, l]hv[m− k, n− l]

]2

+

[

∑

k,l

y[k, l]hh[m− k, n− l]

]2

− τy



 ,

where hv[m, n] and hh[m, n] are impulse responses that approximate either the

first-derivative or second-derivative of an image in the vertical (i.e., subscript “v”)

and horizontal (i.e., subscript “h”) directions, fa,b : R → [−1
2
, 1

2
] parameterized

with scalars a and b is a continuous monotonic nonlinearity that represents the

threshold operation. The scalars τx and τy are thresholds defined as

τx =
2

P

∑

m,n





[

∑

k,l

x[k, l]hv[m− k, n− l]

]2

+

[

∑

k,l

x[k, l]hh[m− k, n− l]

]2




τy =
2

P

∑

m,n





[

∑

k,l

y[k, l]hv[m− k, n− l]

]2

+

[

∑

k,l

y[k, l]hh[m− k, n− l]

]2


 ,

where P is the number of pixels in the images x[m, n] and y[m, n]. The threshold

operation is approximated by the sigmoid (i.e., hyperbolic tangent):

fa,b(z) = a tanh(bz). (6.4)

For a = 0.5, as b→∞ then fa,b(z− τ)→ u(z− τ)− 1
2
, where u(x) is the unit-step

(i.e., heaviside) function.

The sigmoid function fa,b is used to form the signals b[m, n] and b̂[m, n] with

values that lie on the interval [−1
2
, 1

2
]. For an appropriate value of b ≫ 1, the

nonlinearity will make most of these elements very close the boundaries of this

interval, so the L2-norm can be substituted for the Hamming distance.3 In other

3Notice that the L1 and L2 norms are equivalent to the Hamming distance if the values of
b[n] and b̂[n] belong to the set {− 1

2 , 1
2}, which implies that |b[n]− b̂[n]| ∈ {0, 1}.
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words,

NICE1 =
dH(b[m, n], b̂[m, n])

Nb
≈
∑

n

∣

∣

∣
b[m, n] − b̂[m, n]

∣

∣

∣

∑

n |b[m, n]| ≈
∑

n

∣

∣

∣
b[m, n]− b̂[m, n]

∣

∣

∣

2

∑

n |b[m, n]|2
,

(6.5)

and the approximations are due to the fact that most of the elements of b[m, n]

and b̂[m, n] equal 0 or 1. The continuous approximation of NICE1 is denoted by a

superscript “c” and is defined as

NICEc
1 =

∑

n

∣

∣

∣
b[m, n]− b̂[m, n]

∣

∣

∣

2

∑

n |b[m, n]|2
. (6.6)

For S > 1, the continuous approximation of NICES is defined as

NICEc
S =

∑S
s=1

∑

n

∣

∣

∣
bs[m, n]− b̂s[m, n]

∣

∣

∣

2

∑S
s=1

∑

n |bs[m, n]|2
. (6.7)

6.2.3 Gradient of Continuous Approximation of NICE

The gradient of NICEc
1 is provided for the case of 1-D signals x[n] and y[n] with

support n = 0, 1, . . . , N−1 for simplicity. The gradient of NICEc
1 for to 2-D signals

is a straightforward extension of the 1-D case. Let the length N vectors x and y

respectively denote the reference and test signals, where x[n] is used to denote the

nth element of x. The denominator of NICEc
1 is based on the reference signal x,

so it can be omitted when determining the gradient. Thus, a minimum is sought

for the cost function φ(y; x):

φ(y; x) =
∑

n

∣

∣

∣
b[n]− b̂[n]

∣

∣

∣

2

=
∑

n

(fa,b(w[n]− τx)− fa,b(ŵ[n]− τy))
2 . (6.8)

The thresholds τx and τy are defined as

τx =
2

N

N−1
∑

n=0

w[n] τy =
2

N

N−1
∑

n=0

ŵ[n],
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and for some impulse response h[n] approximating either the first derivative or

second derivative of a signal, the signals w[n] and ŵ[n] are given as4

w[n] = [h[n] ∗ x[n]]2 =

[

∑

k

x[k]h[n − k]

]2

,

ŵ[n] = [h[n] ∗ y[n]]2 =

[

∑

k

y[k]h[n− k]

]2

.

An obvious minimum for φ(y; x) is y = x. However, there are likely other min-

ima, since NICE is not a metric. Performing gradient descent to minimize NICE

using random initial points y may reveal some of the idiosyncrasies implied by the

definition of NICE.

The gradient of φ with respect to y[m] is

∂φ(y; x)

∂y[m]
= −2

∑

n∈Dm

[

(fa,b(w[n]− τx)− fa,b(ŵ[n]− τy))
∂

∂y[m]
fa,b(ŵ[n]− τy)

]

,

where Dm = {m − L, m − (L − 1), . . . , m, m + 1, . . . , m + L} is determined by

assuming that the support of the signal h[n] is {−L,−L + 1, . . . , L}. The partial

derivative ∂
∂y[m]

fa,b(ŵ[n]− τy) is5

∂

∂y[m]
fa,b(ŵ[n]− τy) = ab

(

1− tanh2(bŵ[n]− bτy)
)

× ∂

∂y[m]
(bŵ[n]− bτy)

To determine the partial derivative ∂
∂y[m]

(bŵ[n]− bτy), the following two partial

derivatives are needed:

∂

∂y[m]
ŵ[n] =

∂

∂y[m]

[

∑

j

y[j]h[n− j]

]2

= 2

(

∑

j

y[j]h[n− j]

)

h[n−m]

4The signals x[n] and y[n] are symmetrically extended at the boundaries based on the length
of the filter h[n], and the signals w[n] and ŵ[n] are defined for n = 0, 1, . . . , N − 1.

5The derivative of fa,b(z) = a tanh(bz) with respect to z is ∂
∂z

fa,b(z) = ab
(

1− tanh2(bz)
)

.
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and

∂

∂y[m]
τy =

∂

∂y[m]

2

N

∑

n

ŵ[n] =
2

N

∂

∂y[m]

∑

n

[

∑

j

y[j]h[n− j]

]2

=
4

N

∑

n

(

∑

j

y[j]h[n− j]

)

h[n−m]

Using these two partial derivatives then, ∂
∂y[m]

(bŵ[n]− bτy) is

∂

∂y[m]
(bŵ[n]− bτy) = 2b

(

∑

j

y[j]h[n− j]

)

h[n−m]

− 4b

N

∑

k

(

∑

j

y[j]h[k − j]

)

h[k −m]. (6.9)

Therefore,

∂

∂y[m]
fa,b(ŵ[n]− τy) = ab

(

1− tanh2 (bŵ[n]− bτy)
)

× ∂

∂y[m]
(bŵ[n]− bτy) ,

where ∂
∂y[m]

(bŵ[n]− bτy) is defined in Eq. (6.9).

6.2.4 Sample Images

A gradient analysis is performed to investigate the idiosyncrasies of NICE. A ref-

erence image X is selected, and several different initial distorted images Y are

formed. To optimize NICE, the image Y is represented by a vector y by stacking

the columns of the matrix representing Y . NICE is specified using the cost func-

tion φ(y; x) defined in Eq. (6.8). The vector y is updated at iteration k > 1 using

conjugate gradient descent [33] according to

yk+1 = yk + sk∆yk, (6.10)
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using

sk = arg min
s

φ(yk + s∆yk; x) (6.11)

∆yk = −∇yφ(yk; x) + βk∆yk−1 (6.12)

βk =
∇yφT (yk; x)∇yφ(yk; x)

∇yφT (yk−1; x)∇yφ(yk−1; x)
, (6.13)

where ∇yφ(y; x) denotes the gradient of φ with respect to y and yT denotes the

matrix transpose. To start the conjugate gradient descent using an initial vector

y0, the vector y1 is defined as

y1 = y0 + s0∆y0 (6.14)

(6.15)

using

∆y0 = −∇yφ(y0; x) (6.16)

s0 = arg min
s

φ(y0 + s∆y0; x). (6.17)

Figure 6.1 contains several images formed by minimizing φ(y; x) with x given

as the natural image conference and different initial images y shown in Figure 6.2.

It is immediately obvious that NICEc
1 does not account for distortions to very low

frequency content, since all of the images lack the dynamic contrasts between light

and dark regions. The edges detected by NICEc
1 are determined by the responses to

the band-pass filters corresponding to the steerable pyramid [117], so perturbations

to low-frequency image components have no affect on NICEc
1.

In each of the images, the appearance of the image edges are enhanced relative

to the initial images in Figure 6.2. In particular, strong edges (e.g., the boundary

between the bookshelf and the wall) are enhanced rather than weak edges (e.g.,

edges due to the fold in the coat in the person nearest to the camera). The finer
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(a) conference/JPEG, NICEc
1 = 0.06 (b) conference/J2K+DCQ, NICEc

1 = 0.01

(c) conference/TS, NICEc
1 = 0.04 (d) conference/AWGN, NICEc

1 = 0.19

(e) conference/GBLUR, NICEc
1 = 0.03

Figure 6.1: Images formed by minimizing φ(y; x) using conjugate gradient
descent. The value of NICEc

1 for the image formed with respect
to the reference image is provided.
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(a) conference/JPEG, NICEc
1 = 0.53 (b) conference/J2K+DCQ, NICEc

1 = 0.63

(c) conference/TS, NICEc
1 = 0.95 (d) conference/AWGN, NICEc

1 = 0.89

(e) conference/GBLUR, NICEc
1 = 0.98 (f) conference (reference)

Figure 6.2: The reference image conference and the initial images y0 used
to start the conjugate gradient descent iteration. The value of
NICEc

1 for the initial image with respect to the reference image
is provided.
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image details in the reference image are not improved. For example, the writing

on the white board is not visible in any of the images.

The gradient analysis illustrates that restoring the visibility of object bound-

aries (i.e., edges) minimizes NICE, whereas distortions to both low-frequency and

high-frequency components have little impact on NICE.

6.3 Using NICE for Rate-Distortion Optimization with

JPEG

In previous chapters, NICE has been examined as a reliable utility estimator. That

is, given a reference image and a test image, NICE provides an estimate of the use-

fulness of the test image relative to the reference image. Now, suppose that a

reference image needs to be transmitted to a user, and a distorted image must be

transmitted to satisfy an imposed rate constraint. This section examines the imple-

mentation of NICE within a rate-distortion optimization setting to form “useful”

distorted natural images as defined by NICE within the JPEG framework. First, a

brief overview of the JPEG coder is presented. Next, the use of genetic algorithms

to perform rate-distortion optimization with a Lagrangian cost function based is

described, where NICE is used as the distortion measure in the cost function. The

results of the rate-distortion optimization with NICE for several images are pre-

sented and compared with images generated using the baseline JPEG coder. An

example quantization table derived from the rate-distortion optimization results is

described.
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6.3.1 Overview of JPEG for Grayscale Images

JPEG achieves lossy compression of natural images by quantizing block-based

discrete cosine transform (DCT) coefficients [90]. More specifically, an image is

first decomposed into non-overlapping 8 × 8 blocks of pixels, and each block of

pixels is transformed using the DCT. The transform coefficients in each block are

quantized according to a quantization table that specifies the quantization step-size

for each of 64 DCT coefficients. One quantization table is used for an image. The

blocks of quantized coefficients are encoded in a raster scan order. The first DCT

coefficient in each block (i.e., the DC coefficient) represents the average pixel value

within that block, and this coefficient is predicted from the previously encoded

block. The difference of the current DC coefficient relative to the DC coefficient of

the previously block is encoded. The remaining 63 DCT coefficients of each block

are processed on a block-by-block basis. Within each block, the 63 coefficients

are processed in a “zig-zag” order that roughly orders the coefficients from lowest

to highest spatial frequency. A run-length entropy coder is used to encode the

sequence of 63 coefficients. A run-length code specifies the number of zero-valued

coefficients between the current and previous nonzero valued coefficients and the

value of the current nonzero valued coefficient. The run-length code is a simple

entropy coder for sparse sequences. A Huffman code is used to compress the run-

length encoded DCT coefficients [24].
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6.3.2 The Rate-Distortion Optimization Problem for

JPEG

The encoding bitrate of a JPEG image formed from a reference image X can be

determined by the choice of the quantization table Q used to quantize the DCT

coefficients.6 To remain compatible with baseline JPEG, the quantization table for

the luminance channel contains 64 integer values, each ranging from 1 to 255. Let

Q denote the set of quantization tables that are compliant with baseline JPEG.

The rate control problem corresponds to choosing a quantization table Q for each

image that will affect the encoding bitrate R(X, Q) and the distortion D(X, Q).

For a given bitrate Rmax, a quantization table Q ∈ Q is sought that solves the

optimization problem:

min
Q∈Q

D(X, Q) subject to R(X, Q) ≤ Rmax. (6.18)

This optimization problem can be transformed to the following unconstrained prob-

lem using Lagrange multipliers [37, 80]

min
Q∈Q

J(X, Q) = D(X, Q) + λR(X, Q), (6.19)

where the nonnegative scalar Lagrange multiplier corresponds to the tradeoff be-

tween between the encoding bitrate and distortion.

With baseline JPEG, a standard approach to “rate control” is to specify a

“quality” parameter Pjpeg ∈ [0, 100], where higher values of Pjpeg generally pro-

duce images that better resemble the reference image X (i.e., lower distortion).

This “quality” parameter Pjpeg produces a quantization table Q. The original

JPEG specification contains an example quantization table [124]. By scaling the

6The entropy coder table can also be altered to change the encoding bitrate, but only changes
to the quantization table are considered
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example quantization table Qexample, a quantization table Q can be formed using

the following equation recommended by the Independent JPEG Group (IJG) [79]

Q =

⌊

p

100
Qexample +

1

2
18×8

⌋

, (6.20)

where 18×8 is an 8 × 8 matrix of ones, ⌊X⌋ denotes rounding the elements of

X down to the nearest integer, and p is specified according to a user specified

“quality” parameter Pjpeg ∈ [0, 100]

p =











5000
Pjpeg

Pjpeg < 50

200− P 2
jpeg Pjpeg ≥ 50

. (6.21)

The example quantization table for the luminance component is given as

Qexample =













































16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99













































. (6.22)

The example quantization table quantizes high frequency coefficients more coarsely

than low frequency coefficients.

Baseline JPEG uses a distortion measure implied by the example quantization

table along with a strategy of adjusting that quantization table corresponding

to a desired “quality” level Pjpeg. When a different distortion measure D(X, Q)

is chosen, the rate-distortion optimization problem needs to be solved using Eq.

(6.18). Using NICE as a distortion measure, the cost function in Eq. (6.19) can
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be minimized with respect to the quantization table Q for a given value of λ, and

this provides the quantization table corresponding to the optimal operating point

(i.e., an encoding bitrate and distortion level) for that value of λ. An exhaustive

search of all possible quantization tables to determine the quantization table that

minimizes the cost function J(X, Q) is unrealistic, since the search space contains

25564 ≈ 10154 possible quantization tables. Heuristic optimization techniques tend

to produce practical solutions for such difficult optimization problems, and Section

6.3.3 describes the use of the genetic algorithm search technique to minimize the

cost function in Eq. (6.19) when NICE is used as the distortion measure.

6.3.3 Rate-Distortion Optimization using a Genetic Algo-

rithm

A genetic algorithm (GA) is an adaptive learning heuristic that operates on a

collection of points within a search space called a population [109]. The genetic

algorithm heuristic was inspired by the theory of natural selection, where it is

assumed that individuals with particular characteristics will survive to transfer

those characteristics to their offspring. The genetic algorithm is used to minimize

the cost function in Eq. (6.19) when NICE is used as the distortion measure due

to vast number of quantization tables in the search space.

Given a cost function J to be minimized, the basic structure of a GA is:

1. Generate an initial population.

2. Compute the cost of each member of the population.

3. Generate a new population using crossover and mutation operations with
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the current population.

4. Replace the old population with the new population. Go to step 2.

Each population defines a generation, and new generations are formed until some

stopping criterion is met. The crossover operation generates two new members for

the next population (i.e., children) from two members from the current population

members (i.e., parents). The parent members were selected using the tournament

method, where each parent member is chosen by selecting two members at random

from the current population and keeping the member that yields a smaller value

for the cost function. The mutation operation perturbs elements of members in

the current population to create novel members in the next population. Last, to

preserve the best members across generations a fixed number of elite members

that yield the smallest values for the cost function among members in the current

generation are carried over to the next population.

The cost function in Eq. (6.19) was minimized using a GA heuristic search to

find the quantization table corresponding to the lower-bound of the rate-distortion

performance for several images. MS-NICE1 and MS-NICE4 were separately eval-

uated as distortion measures. Sixty-four values of λ were selected that were log-

arithmically equally spaced over the interval [0.01, 100]. Each value of λ forms a

unique cost function to be minimized. A population containing 640 members was

used with four elite population members carried across generations. The GA was

terminated when the average cost function value for the population relative to that

of the previous generation was less than the threshold ǫ = 1×10−9. When the GA

terminates, the quantization table in the final population providing the smallest

value for the cost function for a specific value of λ is saved.

The GA-based rate-distortion optimization was applied to the following 8 nat-
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Figure 6.3: MS-NICE1 as a function of encoding bitrate (bpp) for the images
einstein and figure. A genetic algorithm was used to search for
a quantization table minimizing the cost function in Eq. (6.19)
using MS-NICE1 as the distortion measure. The rate-distortion
operating points corresponding to baseline JPEG using the ex-
ample quantization table provided in the original specification
are included in each figure. The rate-distortion operating points
corresponding to the NICE optimized quantization table using
Eq. (6.23) and the parameters in Table 6.1 are shown in each
figure.

ural images when MS-NICE1 was used as the distortion measure: conference, ein-

stein, elevator, fire, gas station, guitarist, pianist, and police. When MS-NICE4

was used as the distortion measure, the optimization was applied to the image

einstein. These images are shown in Figures 2.4(a), 3.4, 5.3, and 5.4, which re-

spectively appear on pages 32, 60, 158, and 159.

6.3.4 Results: JPEG Images Optimized using NICE

Example rate-distortion curves formed using GA-based optimization for two differ-

ent natural images using MS-NICE1 as the distortion measure are shown in Figure

6.3. The rate-distortion curve formed using the example quantization table pro-
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(a) MS-NICE1 optimized: 0.259 bpp and
MS-NICE1 = 0.246

(b) MS-NICE1 optimized: 0.437 bpp and
MS-NICE1 = 0.133

(c) Baseline JPEG: 0.434 bpp and
MS-NICE1 = 0.242

(d) Baseline JPEG: 0.709 bpp and
MS-NICE1 = 0.132

Figure 6.4: Example images for rate-distortion operating points correspond-
ing to the curves shown in Figure 6.3(a). The images in the top
row were produced using quantization tables found by minimizing
the rate-distortion cost function in Eq. (6.19). The images in the
bottom row were produced using the example quantization tables
provided with baseline JPEG specification. The images within
each column have equal MS-NICE1 distortion values. The images
in Figures 6.4(b) and 6.4(c) have equal encoding bitrates. The
MS-NICE1 optimized images have encoding bitrates 39% lower
than the baseline JPEG images.
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vided in the original JPEG specification and Eq. (6.20) is included for comparison

in each plot. Example images corresponding to two different rate-distortion oper-

ating points along the curves for each image are shown in Figures 6.4 and 6.5. The

two images in the top row of each of these two figures were formed using quanti-

zation tables that minimize MS-NICE1 for a target encoding bitrate, and the two

images in the bottom row were formed using the example quantization table in the

original JPEG specification and Eq. (6.20). The images within the same column

have equal values of MS-NICE1 when compared with the reference image. The

MS-NICE1 optimized images have encoding bitrates 39% (einstein) and 25% (fire)

lower than the baseline JPEG images with equal MS-NICE1 distortion values.

The images formed using quantization tables that optimize MS-NICE1 preserve

the appearance of object boundaries and edges at the expense of finer image details

such as textures. For example, the images in Figures 6.4(b) and 6.4(c) have the

same encoding bitrate but different MS-NICE1 distortion values. The MS-NICE1

optimized image lacks details in the tie that are visible in the baseline JPEG image.

Furthermore, the smooth shading perceived throughout the baseline JPEG image

is lost in the MS-NICE1 optimized image, where blocking artifacts are more visi-

ble. As another example, consider the images in Figures 6.5(b) and 6.5(c), which

also have equal encoding bitrates but different MS-NICE1 distortion values. The

phenomenal appearance of the smoke on the left side of the baseline JPEG image

is more consistent with what one experiences in the natural world as compared

with the MS-NICE1 optimized image. Since the smoke region contains no edges,

MS-NICE1 does not penalize distortions within this region. Despite the distortions

within the smoke regions of the MS-NICE1 optimized image, the appearance of the

house, firemen, and tree branches are preserved. The detailed texture visible in

the siding of the house is poorly represented in the MS-NICE1, yet the impression
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(a) MS-NICE1 optimized: 0.410 bpp and
MS-NICE1 = 0.332

(b) MS-NICE1 optimized: 0.554 bpp and
MS-NICE1 = 0.236

(c) Baseline JPEG: 0.550 bpp and
MS-NICE1 = 0.336

(d) Baseline JPEG: 0.758 bpp and
MS-NICE1 = 0.232

Figure 6.5: Example images for rate-distortion operating points correspond-
ing to the curves shown in Figure 6.3(b). The images in the top
row were produced using quantization tables found by minimizing
the rate-distortion cost function in Eq. (6.19). The images in the
bottom row were produced using the example quantization tables
provided with baseline JPEG specification. The images within
each column have equal MS-NICE1 distortion values. The images
in Figures 6.5(b) and 6.5(c) have equal encoding bitrates. The
MS-NICE1 optimized images have encoding bitrates 25% lower
than the baseline JPEG images.

of the siding is maintained.

The differences among the MS-NICE1 optimized images and the baseline JPEG

images described in the previous paragraph are more obvious when comparing
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Figure 6.6: MS-NICE4 as a function of encoding bitrate (bpp) for the ein-
stein natural image. A genetic algorithm was used to search for
a quantization table minimizing the cost function in Eq. (6.19)
using MS-NICE4 as the distortion measure. The rate-distortion
operating points corresponding to baseline JPEG using the ex-
ample quantization table provided in the original specification
are included in each figure.

the images within the same column of Figures 6.4 and 6.5, which have different

encoding bitrates but the same MS-NICE1 distortion value. The blocking artifacts

are more visible in the MS-NICE1 optimized images than the baseline JPEG images

for the same MS-NICE1 distortion value. Thus, the loss of the textures that are

visible in the baseline JPEG images but not the MS-NICE1 optimized images does

not impact the MS-NICE1 distortion value. The MS-NICE1 optimized images do

preserve the appearance of the edges but not in a manner that produces a “natural”

looking image. The MS-NICE1 optimized images are arguable equally useful to the

baseline JPEG images with the same MS-NICE1 distortion level, assuming that

the lack of textures does not impact their usefulness.

The rate-distortion curve formed using GA-based optimization for the einstein
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(a) MS-NICE4 optimized: 0.253 bpp and
MS-NICE4 = 0.234

(b) MS-NICE4 optimized: 0.383 bpp and
MS-NICE4 = 0.137

(c) Baseline JPEG: 0.384 bpp and
MS-NICE4 = 0.233

(d) Baseline JPEG: 0.594 bpp and
MS-NICE4 = 0.135

Figure 6.7: Example images for rate-distortion operating points correspond-
ing to the curves shown in Figure 6.6. The images in the top
row were produced using quantization tables found by minimiz-
ing the rate-distortion cost function in Eq. (6.19). The images in
the bottom row were produced using the example quantization
tables provided with baseline JPEG specification. The images
within each column have equal MS-NICE4 distortion values. The
images in Figures 6.7(b) and 6.7(c) have equal encoding bitrates.
The MS-NICE4 optimized images have encoding bitrates 34%
lower than the baseline JPEG images.
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image using MS-NICE4 as the distortion measure is shown in Figure 6.6. The

rate-distortion curve formed using the example quantization table provided in the

original JPEG specification and Eq. (6.20) is included for comparison. Example

images corresponding to two different rate-distortion operating points along each

curve are shown in Figure 6.7. The two images in the top row of Figure 6.7

were optimized to minimize MS-NICE4, and the two images in the bottom row

of Figure 6.7 were formed using the example quantization table in the original

JPEG specification and Eq. (6.20). The images within the same column have

equal values of MS-NICE4 when compared with the reference einstein image. The

MS-NICE4 optimized images have encoding bitrates 34% lower than the baseline

JPEG images.

Similar to the MS-NICE1 optimized JPEG images, there are striking visual

differences among the images shown in Figure 6.7. Blocking artifacts are far more

obvious in the MS-NICE4 optimized images relative to the baseline JPEG images

with equal MS-NICE4 distortion values. As a consequence, the forehead region

appears smoother in the baseline JPEG image in Figure 6.7(c) than the MS-NICE4

optimized image in Figure 6.7(a). The MS-NICE4 optimized images also lack the

finer image details that are visible in the baseline JPEG images. For example, the

textures in the hair and the lines in the suit are visible in the baseline JPEG image

shown in Figure 6.7(d), but these details are absent in MS-NICE4 optimized image

in Figure 6.7(b).

6.3.5 JPEG Quantization Table Optimized for NICE

The Lagrange multipliers λ specify a tradeoff between the distortion and the en-

coding bitrate and are used to parameterize a quantization table derived from the
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rate-distortion optimization when the distortion measure is MS-NICE1. For each

natural image, a quantization table was found that minimized the cost function

in Eq. (6.19) for a specified value λ. For each value of λ, the quantization tables

corresponding to each image were averaged. A mapping from λ to each value of

the quantization table was found. Thus, a total of 64 mappings were formed, each

corresponding to a specific step-size in the quantization table.

Let k denote a natural image, and let Qu,v,k(λj) denote the quantization step-

size corresponding to the (u, v) DCT coefficient, u = 0, . . . , 7 and v = 0, . . . , 7,

when the cost function in Eq. (6.19) is minimized for λ = λj . Let Nλ = 64

denote the number of values of λ for which Eq. (6.19) was minimized. For each λj ,

the average quantization step-size for the (u, v) DCT coefficient across all K = 8

images was computed Q̄u,v(λj) =
∑K

k=1 Qu,v,k(λj).

The relationship between the average quantization step-size {Q̄u,v}Nλ

j=1 and

{λj}Nλ

j=1 was observed to exhibit a nonlinear relationship for many DCT coeffi-

cients. The absolute value Spearman rank order correlation coefficients (ROCC)

between {Qu,v,k(λj)}Nλ

j=1 and {λj}Nλ

j=1 for the (u, v) DCT coefficient was determined

for each natural image. The average absolute ROCC across the K = 8 natural

images was found Figure 6.8(a) shows the average absolute ROCC as an intensity

image, where brighter intensities correspond to higher correlation coefficients. The

average absolute ROCC values are arranged in Figure 6.8(a) to correspond with

8× 8 DCT basis functions shown in Figure 6.8(b). The average absolute ROCC is

greatest for DCT coefficients corresponding to either horizontal or vertical frequen-

cies, whose basis functions can be combined to produce edges in natural images.

Textures within natural images are represented using high frequency DCT coeffi-

cients (i.e., v +u ≥ 8). The average absolute ROCC values corresponding to these
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(a) Average absolute ROCC of
{Qu,v,k(λj)}Nλ
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(b) 8× 8 DCT basis functions

Figure 6.8: The average absolute Spearman rank correlation coefficient
(ROCC) between {Qu,v,k(λj)}Nλ

j=1 and {λj}Nλ

j=1 for each DCT co-
efficient (u, v), u = 0, . . . , 7 and v = 0, . . . , 7, is shown in Fig-
ure 6.8(a). The average absolute ROCC was taken across the
K = 8 natural images. The ROCC are arranged to corre-
spond with the basis functions corresponding to the 8 × 8 DCT
shown in Figure 6.8(b). Let (m, n) index the pixel at mth row
and nth column spatial location in the M × N block of pix-
els. The basis function at row v and column u is defined as

1
4MN

cos(π(2m + 1)v) cos(π(2n + 1)u) for m = 0, . . . , M − 1 and
n = 0, . . . , N − 1, where M = N = 8.

high frequency DCT coefficients are less than 0.5. The small correlations between

λ and Qu,v,k are consistent with NICE, since NICE does not account for distortions

to textures within natural images.

The image-independent quantization table parameterized by κ = 25 log10 λ +

50 for λ > 0 was formed using the data from the rate-distortion optimization.

Specifically, a nonlinearity mapping fu,v defined as

fu,v(κj) = au,v

(

1

1 + exp [−bu,v(κ− cu,v)]
+ du,v

)

, (6.23)

was fitted to the data to map the set {κj}Nλ

j=1 to the set of quantization step-
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sizes {Q̄u,v(κj)}Nλ

j=1. The parameters {au,v, bu,v, cu,v, du,v} were chosen to minimize

the sum of squared errors {(fu,v(κj) − Q̄u,v(κj))
2}Nλ

j=1. Thus, a set of 64 non-

linear mappings {fu,v(κ)}8,8
u=1,v=1 were fitted to the data. The fitted parameters

{au,v, bu,v, cu,v, du,v} corresponding to each nonlinear function fu,v(κ) are provided

in Table 6.1. As κ ∈ [0, 100] increases, fu,v(κ) creates quantization step-sizes that

correspond to larger distortion as measured by MS-NICE1.

The rate-distortion operating points for the images einstein and fire corre-

sponding to quantization tables produced using Eq. (6.19) with the parameters in

Table 6.1 are included in Figures 6.3(a) and 6.3(b). The mapping was formed by

averaging the quantization tables minimizing the cost function in Eq. (6.19) for a

specific value of λ for several different natural images. As a result, the mapping

does not provide the optimal quantization table for each image. However, the

mapping does provide quantization tables that lead to rate-distortion operating

points better suited to NICE than the rate-distortion operating points when using

the example quantization tables provided with the JPEG specification.

6.4 Discussion

Genetic algorithms (GA) are shown to produce quantization tables that are com-

pliant with baseline JPEG while adhering to different NICE distortion measures.

The results from the rate-distortion optimization were used to produce a mapping

fu,v(κ) to generate a quantization table given the parameter κ. GA have been used

to determine quantization tables to optimize the “quality” of medical images, but

a parameterized mapping similar to fu,v(κ) was not formed [143].

The combined GA-based optimization with a parametric mapping f(κ) could
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Table 6.1: Fitted parameters for the nonlinearity fu,v(κ) defined in Eq. (6.23)
to produce quantization step-sizes based on MS-NICE1 for a value
of κ ∈ [0, 100]. Smaller values of κ correspond to less distortion
as measured by MS-NICE1.

(u, v) au,v bu,v cu,v du,v (u, v) au,v bu,v cu,v du,v

(0, 0) 239 0.0959 51.5 0.0724 (4, 0) 241 0.104 61.6 0.0442
(0, 1) 243 0.0955 55.8 0.0678 (4, 1) 215 0.112 56 0.0696
(0, 2) 243 0.101 62.6 0.0526 (4, 2) 205 0.107 48.3 0.0799
(0, 3) 252 0.0904 66.6 0.0432 (4, 3) 181 0.109 34 0.166
(0, 4) 234 0.0953 64.6 0.0381 (4, 4) 154 0.0812 26.4 0.298
(0, 5) 219 0.0998 54 0.0609 (4, 5) 68.8 0.117 33.4 1.67
(0, 6) 210 0.0702 42.9 0.077 (4, 6) 0.265 -26.6 54.5 614
(0, 7) 0.205 -29.4 48.7 859 (4, 7) 40 0.108 21.5 3.47

(1, 0) 241 0.0968 58.1 0.064 (5, 0) 219 0.0996 57.6 0.0647
(1, 1) 244 0.0986 54.5 0.0533 (5, 1) 192 0.139 46.6 0.0984
(1, 2) 233 0.116 58.6 0.0826 (5, 2) 163 0.133 43 0.217
(1, 3) 225 0.142 59.1 0.0744 (5, 3) 139 0.102 29 0.38
(1, 4) 228 0.105 54.7 0.0521 (5, 4) 72.7 0.0326 -11.5 1.37
(1, 5) 206 0.113 48.8 0.078 (5, 5) 0.346 -25.5 67.8 439
(1, 6) 152 0.132 36.7 0.336 (5, 6) -0.144 38.9 40.4 -1090
(1, 7) 0.164 -36.7 40.8 1000 (5, 7) 15.8 26.2 43.7 9.55

(2, 0) 247 0.0893 60.3 0.0452 (6, 0) 189 0.132 44.1 0.174
(2, 1) 235 0.116 58.3 0.0725 (6, 1) 159 0.107 34.7 0.242
(2, 2) 226 0.104 54.5 0.0897 (6, 2) 78.4 0.0368 87.5 1.79
(2, 3) 213 0.106 52.2 0.0923 (6, 3) 0.202 -28.4 48.2 793
(2, 4) 210 0.11 49.5 0.0742 (6, 4) 69.7 0.1 32.4 1.59
(2, 5) 186 0.0918 41.5 0.159 (6, 5) 108 0.115 4.01 0.555
(2, 6) 45.9 0.0865 71.5 2.98 (6, 6) 5.35 0.551 -7.59 27.2
(2, 7) 92.8 0.126 23.2 1.01 (6, 7) 15.3 0.058 47.8 9.49

(3, 0) 276 0.0745 71.2 0.0309 (7, 0) 131 0.129 35 0.6
(3, 1) 231 0.107 57.7 0.0544 (7, 1) 87.2 0.112 26.5 1.21
(3, 2) 215 0.103 54 0.0847 (7, 2) 26.2 0.0125 206 6.34
(3, 3) 195 0.121 44.9 0.128 (7, 3) 0.228 -25.2 26.4 691
(3, 4) 182 0.103 38.3 0.15 (7, 4) -0.277 95.2 66.4 -569
(3, 5) 139 0.117 32.7 0.406 (7, 5) -0.863 -24.9 19.6 -173
(3, 6) 81.2 0.124 29.3 1.28 (7, 6) 98 0.0377 -31.4 0.646
(3, 7) -67.7 -0.0629 22.5 -2.69 (7, 7) 41.6 0.0603 42.1 3.21
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be applied to other objective estimators and other image coders (e.g, JPEG-2000)

as a means to investigate the “optimal” images for that objective estimator when

operating within the constraints of the coder. This approach would allow exist-

ing objective estimators to be analyzed in greater detail. Furthermore, existing

objective estimators may be used to improve existing coders by applying, via the

GA-based optimization, the objective estimator to a coder. As a final step, the

images produced using this method could be evaluated by human observers to de-

termine if the objective estimator actually improves the coder according to some

criterion such as perceived utility or perceived quality.

6.5 Summary

The chapter presents an analysis of the natural image contour evaluation (NICE)

utility estimator. A gradient analysis is conducted based on a continuous approxi-

mation to NICE that reveals those image features that minimize NICE. This analy-

sis demonstrates that maintaining the phenomenal appearance of object boundaries

and edges coincides with minimizing NICE. The second half of the chapter presents

a method to produce distorted but useful images compatible with a baseline JPEG

coder based on NICE. In particular, an image independent parameterized quanti-

zation table is provided based the results of a rate-distortion optimization using

NICE. A genetic algorithm is used to search for the optimal quantization tables

for specific rate-distortion tradeoffs. This set of quantization tables is parameter-

ized to circumvent the need for the genetic algorithm. The parameterized tables

are suboptimal, since they are not tailored to the statistics of the source image.

The use of genetic algorithms to perform rate-distortion optimization with other

estimators is discussed.
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6.6 Key Points

• A gradient analysis of the natural image contour evaluation (NICE) utility

estimator demonstrates that the appearance of object boundaries and edges

coincides with minimizing NICE.

• Distorted but useful images compatible with a baseline JPEG coder are

formed to minimize NICE for a specific rate-distortion tradeoff. Rate-

distortion optimization is performed using a genetic algorithm, since NICE

was developed for use with the block-based discrete cosine transform (DCT)

used by JPEG.

• An image independent parametric quantization table that is compatible with

a baseline JPEG coder is presented as a suboptimal alternative to rate-

distortion optimization.

• The use of genetic algorithms to perform rate-distortion optimization with

other estimators is discussed.
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CHAPTER 7

CONCLUSION

Natural images from imaging systems supply information that facilitate human

observers performing various tasks. This dissertation examined human perfor-

mance when performing a broad task with natural images: reporting the content

of a distorted image. Novel experiments were conducted to measure the useful-

ness of distorted natural images in terms of this task. In addition, experiments

were conducted to measure the perceived quality of these same distorted natural

images. Results from both subjective experiments were compared and revealed

the perceived quality does not imply an image’s perceived utility. In particular, a

distortion that removes low-frequency content from an image demonstrated that

perceived utility is largely based on the fidelity of high-frequency content and is

less affected by distortions to low-frequency content, whereas distortions to any

frequency content affects perceived quality. The observed relationship between

utility and quality implies that accurate objective quality (utility) estimators will

not accurately estimate perceived utility (quality) for a broad class of distortions.

The natural image contour evaluation (NICE) utility estimator was introduced

as a novel signal analysis tool to estimate the perceived utility of distorted natural

images. NICE estimates utility as a function of both lost and introduced contour

information in a distorted image when compared with a reference image. NICE

abstractly represents the reference and test images as contours and compares these

contours to estimate utility. NICE was shown to be a viable signal analysis tool

to estimate the usefulness of a distorted natural image. This result supports hy-

potheses about the importance of contour information to the human visual system

for object perception.
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Along with NICE, several objective estimators, mostly designed to estimate

perceived quality, were assessed in terms of their performance as utility and qual-

ity estimators. Apart from NICE, none of the objective estimators provided reliable

estimates of perceived utility across a variety of distortions. The visual informa-

tion fidelity (VIF) criterion, which is customarily used as a quality estimator, was

modified to produce VIF* and shown to outperforms VIF as a quality estimator

on the current database of distorted images. The signal analyses conducted by

VIF and VIF* are consistent with the observations from the subjective exper-

iments. Specifically, VIF primarily analyzes disruptions to high-frequency con-

tent and accurately estimates perceived utility but not perceived quality, whereas

VIF* exhibits increased sensitivity to low-frequency distortions relative to VIF and

analyzes disruptions to all frequency content and accurately estimates perceived

quality but not perceived utility.

Recognizing the limitations to the initial experiments conducted to obtain per-

ceived utility scores, a novel methodology was proposed, tested, and used to eval-

uate the performance of NICE as well as several quality estimators. The method

is suitable to applications when observers are simply faced with the task of deter-

mining the content of a distorted image. For example, observers are not directed

to search for specific objects being held. The method generates the definitions of

utility for each image based on the observer responses by forming observer-centric

concepts. This framework is flexible and can support a broad rage of tasks.

In addition to measuring (i.e., via experimental methods) and estimating (i.e.,

using NICE) the perceived utility of distorted natural images, a procedure is de-

veloped and used to generate distorted but useful natural images. An image inde-

pendent parametric quantization table compatible with baseline JPEG was formed
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via rate-distortion optimization using NICE as a distortion measure with a JPEG

coder. A genetic algorithm was used to conduct the rate-distortion optimization

for specific rate-distortion tradeoffs. This procedure is discussed as at tool that

could be applied to other objective estimators as well as other image coders to

analyze performance of those objective estimators.
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APPENDIX A

RECOGNITION THRESHOLDS OF LINE DRAWINGS

A.1 Introduction

The reference/texture smoothing (TS) sequences used in the experiments described

in Chapter 3 were preceded by reference/line drawing sequences. This chapter

describes the experiments to estimate the recognition threshold of a natural image

using reference/line drawing sequences. In addition, the recognition threshold was

found for sequences formed using 1) JPEG-2000 (J2K) distortions and 2) J2K

distortions introduced by using step-sizes specified by the dynamic contrast-based

quantization (DCQ) strategy [19].

Qualitative comparisons between the encoding bitrates corresponding to the

recognition threshold from all three types of distortions suggest an underlying

image characteristic that facilitates content recognition: visual structure. Visual

structure loosely corresponds to the object boundaries and edges within an image.

Thus, the line drawings are hypothesized to explicitly preserve the visual structure

of a natural image. The J2K and J2K+DCQ distortions retain the visual structure

of a natural image as long as the corresponding wavelet components are preserved.

Despite the evidence that visual structure is a fundamental characteristic that

predicts recognition of natural images, the disparity between the line drawing

representation and the wavelet basis representation used by a JPEG-2000 encoder

restricts the quantitative comparison of the results from the different types of

distortions. The texture smoothing distortions, which preserve object boundaries

and edges, were selected to replace line drawings, since the texture smoothing

distortions afford a quantitative analysis with the J2K and J2K+DCQ distortions.
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The remainder of this chapter is organized as follows: Section A.2 describes the

experimental methods used. Section A.3 presents the results from the experiments,

which are discussed in Section A.4. The chapter ends with a summary in Section

A.5.

A.2 Experimental Methods

An experiment was conducted to determine the bitrate corresponding to an ob-

server’s recognition threshold for reference/line drawing sequences, reference/J2K

sequences, and reference/DCQ+J2K sequences.

A.2.1 Distortions

The nine grayscale natural images used in the experiments described in Chap-

ter 3, shown in Figure 3.1(a), Figure 3.3, and Figure 3.4, were used to generate

reference/distortion sequences. The two types of distortions are described.

Line Drawings

Object structure is widely believed to rely on the perception of image details,

such as sharp edges, which are conveyed by the high spatial frequencies [31, 72].

Edges, defined spatially by sudden intensity changes, may be identified by either

the presence of an absolute maximum in the first derivative of an image or a zero-

crossing in its second derivative1 [72]. Line drawings formed from natural images

1Marr and Hildreth favored detecting edges by convolving the image with the Laplacian of a
two-dimensional, circularly symmetric Gaussian, since it is locally optimized in both the spatial
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were generated with the Canny edge detector [13]. The Canny edge detector filters

an image with the derivative of a Gaussian specified for a particular σ > 0 and

applies thresholding to generate a binary image. The parameter σ in the Canny

filter controls the suppression of high frequencies before detecting edges. The fre-

quency response of a derivative of a Gaussian filter is essentially a band-pass filter,

suppressing both very low and very high spatial frequencies. Decreasing σ retains

more high frequency content, and the resulting line drawing will include finer im-

age details. The bitrate R of a line drawing was determined by compressing the

binary image with a JBIG coder, which is the standard fax compression algorithm

for bi-level images.

A reference/line drawing sequence was formed for each natural image by varying

σ in the Canny edge detector from 0.5 to 10 with an increment of 0.5, where σ

varies inversely with respect to the bitrate. Select images from the airplane/line

drawing sequence are shown in Figure A.1.

J2K and J2K+DCQ: Quantized Discrete Wavelet Transform Coeffi-

cients

The lossy JPEG-2000 (J2K) image compression standard represents natural im-

ages as a linear combination of wavelet basis functions [123]. Distortions are intro-

duced by quantizing the basis function coefficients found using a discrete wavelet

transform to achieve a desired encoding bitrate, R. The dynamic contrast-based

quantization (DCQ) strategy assigns quantization step-sizes according to a mea-

sure of visual distortion parameterized by characteristics of the image, the wavelet

and frequency domains and the economy of computation of the Laplacian operator [72]. Later,
Canny considered the identification of edges by convolving the image with the first derivative of
a Gaussian [13]. Canny’s approach demonstrated enhanced edge detection by incorporating the
edge orientations.
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(a) R = 0.0241, σ = 9 (b) R = 0.0343, σ = 4.5

(c) R = 0.0684, σ = 2 (d) R = 0.2445, σ = 1

Figure A.1: Selected images from the airplane/line drawing sequence. The
bitrate R using the JBIG coder and the parameter σ for the
Canny edge detector are provided with each image..
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subband coefficients, and the display [19]. The DCQ strategy’s visual distortion

measure distinguishes visually lossless images from visibly distorted images, so the

DCQ strategy can specify subband quantization step-sizes for lossy compression

that yield a visually lossless image.

A reference/J2K sequence of images has distortions due to JPEG-2000 com-

pression using the baseline implementation and evolves by increasing the encod-

ing bitrate, R. Similarly, a reference/J2K+DCQ sequence of images has distor-

tions due to JPEG-2000 compression using the DCQ strategy and evolves by in-

creasing the encoding bitrate, R. Select images from the airplane/J2K and air-

plane/J2K+DCQ sequences are shown in Figure A.2 and Figure A.3, where the

images chosen in both sequences have approximately the same values of R.

A.2.2 Stimuli

For each of the nine images, reference/distortion sequences were formed using a

dense set of parameters for the line drawing, J2K, and J2K+DCQ distortions.

Reference/line drawing sequences contained 20 images by varying σ for the Canny

edge detector from 0.5 to 10 with an increment of 0.5. Reference/J2K and refer-

ence/J2K+DCQ sequences contained 20 images corresponding to encoding bitrates

that were logarithmically equally spaced from 0.01 and 0.3.
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(a) R = 0.0112 (b) R = 0.0170

(c) R = 0.0352 (d) R = 0.1216

Figure A.2: Selected images from the airplane/J2K sequence along with the
corresponding encoding bitrate R.
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(a) R = 0.0100 (b) R = 0.0171

(c) R = 0.0349 (d) R = 0.1231

Figure A.3: Selected images from the airplane/J2K+DCQ sequence along
with the corresponding encoding bitrate R.
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A.2.3 Procedure

Observers2 viewed one reference/distortion sequence for several (if not all) of the

nine natural images. Not every observer viewed each type of distortion for the nat-

ural images. Observers viewing reference/J2K+DCQ sequences also viewed refer-

ence/line drawing sequences. However, observers viewing reference/J2K sequences

did not view any reference/line drawing or reference/J2K+DCQ sequences. For

each image in a sequence, the observer provided a typed descriptions of the im-

age content. The next image in the sequence was shown upon submission of a

description; a time limit was not imposed. Participants typically completed the

experiment session in about 30 minutes.

A.2.4 Participants

Forty observers with normal or corrected-to-normal acuity participated in this

experiment. Each series of representations was viewed by at least 9 observers and

at most by 14. On average the reference/line drawing sequences were viewed by

12.1 observers. The reference/J2K+DCQ sequences were viewed by 11.8 observers

on average, and the reference/J2K sequences were viewed by 14 observers.

A.3 Results: Recognition Thresholds

An observer’s point of recognition was identified when the description contained

both adequate and accurate information to briefly describe the image content.3 For

2These observers were called writers in the experiments described in Chapter 3.2.3.
3Judgments of observer recognition were made by the author. Additional experiments con-

ducted later (see Chapter 3.2.3) revealed little discrepancy between the observer recognition
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all nine images, all observers identified the image content before viewing either the

images from the reference/J2K or reference/J2K+DCQ sequences with the largest

bitrate. However, several observers did not recognize the image content for three

of the reference/line drawings sequences.

This section presents the results in two parts. The first part analyzes the raw

mean recognition bitrates for both the line drawing, J2K, and J2K+DCQ distor-

tions. The second part examines the raw mean recognition bitrates normalized by

the image’s visually lossless bitrate for the J2K and J2K+DCQ distortions.

A.3.1 Raw Mean Recognition Bitrate

The average bitrate corresponding to the initial point of recognition for each nat-

ural image was noted for the line drawing, J2K, and J2K+DCQ distortions, and

the standard deviation of the initial recognition bitrates was computed. Figure

A.4 show the mean recognition bitrates for the nine images from Figures 3.1(a),

3.3, and 3.4 for all three distortions. Standard error bars have been included in

both graphs.

Consider the mean recognition bitrates for the reference/line drawing sequences

shown in Figure A.4(a). It is immediately obvious that the natural images boy &

cat, backhoe, and cagedbirds have much larger mean recognition bitrates than those

of the remaining six natural images. The required increase in bitrate reflects the

nature of the content in the original natural scene. From Figures 3.1(a), 3.3,

and 3.4 it is observed that the two images boy & cat and cagedbirds contain many

more object boundaries than the other images. In addition, several artificial object

thresholds identified by the author and those identified by three other people.
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(b) J2K+DCQ and J2K Distortions

Figure A.4: Mean recognition bitrates for line drawings and natural images
with either baseline JPEG-2000 (J2K) distortions or distortion
generated using JPEG-2000 with the dynamic contrast-based
quantization strategy (J2K+DCQ). Standard error bars have
been included in each graph. Acronyms based on the image de-
scriptions identify the nine natural images: airplane (A), back-
hoe (B), boy and cat (B&C), caged birds (CB), guitarist (G),
jack-o-lanterns (J-L), pianist (P), skier (S), and train (T).
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boundaries appear in the structural representations for these images. For example,

the stripes on the child’s shirt and the pattern on the tablecloth for the image

boy & cat lead to artificial edges corresponding to the contrast in these patterns.

Likewise, the wires on the birdcage in the image cagedbirds occlude the birds

and may distract the observer viewing the structural representation. In these two

cases, the higher mean recognition bitrate is explained by the additional amount of

information necessary to recognize and meaningfully represent the image content.

In the image backhoe, the gray levels between the foreground and background

content are noticeably less distinct than for the other images and offers a different

explanation for the difficulty in recognizing the content. A lower threshold for the

Canny edge detector would be necessary to detect the boundary of the backhoe in

the foreground. Using a lower threshold increases the number of edges detected,

many of which do not belong to the primary content of the image. These addi-

tional and unnecessary edges provide additional, inaccurate, and often confusing

information to the observer and make recognition much more difficult.

For the line drawing distortions, the standard error for these same three images

is significantly larger than for the other images. A large standard error reflects the

difficulty in recognizing the image content for the reference/line drawing sequences:

different observers recognized the content at very different levels of distortion rela-

tive to the reference/line drawing sequences formed from the other natural images.

In fact, these three images (boy & cat, backhoe, and cagedbirds) were not rec-

ognized by several of the observers who viewed the corresponding reference/line

drawing sequence during the experiment. However, while not all of the observers

recognized the content from the reference/line drawing sequences, the Canny edge

detector successfully extracted critical information necessary for human observers
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to recognize the content of the remaining six natural images.

Consider the mean recognition bitrates for the J2K and J2K+DCQ distortions

in Figure A.4(b). The same three natural images (boy & cat, backhoe, and caged-

birds) had significantly larger mean recognition bitrates for both types distortions.

In addition, the mean recognition bitrates for three images are also observed to

have larger standard errors. This correspondence between the mean recognition

bitrates and standard errors for the line drawing, J2K, and J2K+DCQ distortions

suggests that a difficulty in content recognition for one representation predicts a

similar difficulty for the other representation. In addition, the similarities among

the mean recognition bitrates for the three distortions stresses the importance of

object boundary information to observers for accurate recognition.

A.3.2 Normalized Mean Recognition Bitrate

The content among the nine natural images varies, and comparing the raw mean

recognition bitrates does not necessarily permit an adequate comparison. Apart

from indicating the complexity of the image content in terms of both its ease

of recognition and distortion, the raw mean recognition bitrate alone offers little

evidence towards understanding what characteristics an image must possess to be

recognizable.

The visually lossless bitrate RV L for an image provides a reference bitrate where

recognition is unquestionable. Normalizing the mean recognition bitrate for the

J2K and J2K+DCQ distortions by RV L specifies the mean recognition bitrate as

a proportion of the visually lossless bitrate. This normalization reduces the vari-

ability among the recognition bitrates due to the differences in the original signal
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content of the natural image. A visually lossless image is visually indistinguish-

able from the original image. For line drawings, this definition of a visually lossless

image is incompatible, since a reference line drawing is not readily available nor

computable. The dynamic contrast quantization (DCQ) strategy specifies quan-

tization step-sizes to produce a visually lossless image with (invisible) J2K+DCQ

distortions.

The bitrates for the visually lossless J2K+DCQ distorted images are shown

in Figure A.5(a). It is noted that the images backhoe and jack-o-lanterns have

the highest visually lossless bitrates, which indicates that these images require

more signal information to accurately represent the original image content than

the other seven images. The normalized mean recognition bitrates are shown in

Figure A.5(b) along with standard error bars. When comparing the normalized

bitrates to the original bitrates shown in Figure A.4(b) it is immediately noted

that only the images boy & cat and cagedbirds have significantly larger normalized

mean recognition bitrates than the other seven images.

The recognition bitrate for image backhoe is approximately the same as those

of the remaining five images upon applying the normalization. This is likely a

consequence of the low contrast between the foreground and background gray

levels in this image as noted in the discussion for the line drawings. Notice that

the images guitarist, jack-o-lanterns, and airplane show similar contrasts between

the gray levels for the foreground and background content. The normalized mean

recognition bitrates for the remaining images are less than 0.025 of the visually

lossless bitrate. This rudimentary ratio based on the visually lossless bitrate may

provide a coarse indication of the recognition threshold for a given natural image.
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Figure A.5: Visually lossless bitrates RV L determined using the dynamic
contrast-based quantization strategy with JPEG-2000 for the
nine natural images (Figure A.5(a)). Mean recognition bitrates
normalized by the visually lossless bitrate RV L (Figure A.5(b)).
Standard error bars have been included in each graph. See Fig-
ure A.4 for the images corresponding to the acronyms.
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A.4 Discussion

Several observers remarked on their difficulty in determining the content of the line

drawings. A noted shortcoming for the reference/line drawing sequences using the

Canny edge detector by varying σ is apparent when examining Figure A.1. Without

prior knowledge of the image content, the representations in Figures A.1(a) and

A.1(b) do not provide adequate information to facilitate recognition of the content.

Though varying σ captures edges a different scales, larger values of σ smooth the

contours corresponding to object edges as observed in Figure A.1. Specifying σ = 1

captures the desired object boundaries in addition to other undesirable contours

(e.g. the texture of the grass beneath the plane). Varying the threshold used

by the Canny edge detector for fixed parameter σ (e.g., σ = 1) could limit the

amount of undesired contours that appear in the line drawing, but choosing the

proper threshold is more of an art than a science.

The performance of the Canny edge detector has been shown to depend primar-

ily on the post-processing after filtering with a derivative of a Gaussian filter [144].

The authors of that paper [144] report that modifications to the initial filter used

for edge detection is likely to provide very minor improvements and recommend

improvements to the post-processing procedures after filtering. New work in the

field of edge detection has offered impressive improvements to the post-processing

used after the initial filtering by the derivative of a Gaussian [83]. It is believed

that such improvements will minimize the number of unintended edges detected

and reduce the difficulty in recognizing the image content by generating better line

drawings.

Alternatively, a new type of reference/distortion sequence that is more con-

sistent with the J2K and J2K+DCQ distortions would permit a more elaborate
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comparison than the qualitative analysis performed using line drawings. A cartoon

rendering of a natural image is a slightly more advanced version of a line draw-

ing. The cartoon rendering is a piecewise constant representation, not a bi-level

image, that omits the finer details while preserving the object boundaries of the

original natural image. Such an image could be directly compared to either the

J2K or J2K+DCQ distortions. The texture smoothing distortion types described

in Chapter 3 were used in lieu of line drawings in subsequent experiments.

A.5 Summary

This chapter summarized the results from an experiment investigating the use

of visual structure in natural images for a recognition task. When comparing

the results for the mean recognition bitrates, the same three images (boy & cat,

backhoe, and cagedbirds) had significantly higher mean recognition bitrates for line

drawings, J2K, and J2K+DCQ distortions than the other natural images. The

qualitative similarity in the mean recognition thresholds for the different types of

distortions indicates that the observers relied upon an image’s visual structure to

recognize the image content, since the line drawings are hypothesized to preserve

the structure of a natural image.
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APPENDIX B

TRADEOFFS IN SUBJECTIVE TESTING METHODS FOR IMAGE

AND VIDEO QUALITY ASSESSMENT

B.1 Introduction

An objective quality estimator for either still images or video should accurately

estimate the perceived quality scores of a collection of stimuli. New applications

and processing techniques will introduce novel distortions that will need to be

quantified in terms of perceived quality in order to confidently evaluate an objective

quality estimator.

The subjective testing method used to obtain the perceived quality scores af-

fects both the accuracy and the reliability of the data collected. Various testing

methods have been used to obtain perceived quality scores for images and video

sequences [30, 60, 99, 129, 140]. Among the variety of subjective methods, paired

comparisons produce the most accurate and reliable estimates of perceived qual-

ity [60]. Using paired comparisons, an observer chooses among two stimuli the one

having greater perceived quality. Raw observer responses to the paired compar-

ison task are typically converted to scale values using either Thurstone’s law of

comparative judgment [126] or the Bradley-Terry model [4, 25]. Responses from

many observers are needed to generate accurate scale values. Furthermore, for N

stimuli a total of N(N−1)
2

comparisons are necessary3. The large number of compar-

isons coupled with the need to collect responses from many observers discourage

researchers from using paired comparisons to obtain perceived quality scores. Re-

searchers generally choose alternative testing methods that provide perceived qual-

3Some comparisons may be omitted if the stimuli are easily distinguishable.
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ity scores faster. Two common methods used to collect perceived quality scores are

absolute categorical rating (ACR) [54] and the subjective assessment methodology

for video quality (SAMVIQ) [35, 63].

An awareness of the potential benefits and/or costs attributed to the ACR

and SAMVIQ test methods can guide researchers to choose the more suitable

method for a particular application. For example, applications involving the use

of high-definition displays to display stimuli would benefit from a testing method

that allows observers to critically examine and reexamine stimuli (e.g., SAMVIQ),

whereas stimuli for applications involving lower-end display devices, such as mobile

phones, could suffice with less sophisticated testing methods (e.g., ACR). The ACR

test method presents stimuli in a random order and uses a coarse resolution rating

scale for evaluation. The SAMVIQ test method allows the observer to freely view

several stimuli multiple times and uses a fine resolution rating scale for evaluation.

Ease of implementation typically influences the adoption of ACR over SAMVIQ,

since ACR accommodates more stimuli per testing session. This paper investigates

the tradeoffs corresponding to the perceived quality scores obtained via these two

subjective testing methods using three different subjective databases. The subjec-

tive databases contain either still-images or video sequences and perceived quality

scores that have been obtained using both the ACR and SAMVIQ test methods.

This paper has the following organization: Section B.2 summarizes the two test

methods compared in this paper, ACR and SAMVIQ. Section B.3 summarizes the

content of the three subjective databases used to evaluate the two test methods.

An analysis of the ACR and SAMVIQ test methods is presented in Section B.4.

Section B.5 discusses a potential strategy to improve the SAMVIQ protocol based

on observations from the analysis described in Section B.4. Section B.6 concludes
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this paper.

B.2 Testing Methods: ACR and SAMVIQ

This section summarizes the two test methods investigated in this paper: abso-

lute category rating (ACR) and the subjective assessment methodology for video

quality (SAMVIQ).

B.2.1 Absolute Category Rating (ACR) Method

The absolute category rating (ACR) [54] testing method4 consists of consecutive

trials in which an observer views and scores a stimulus. Specifically, in each trial,

observers are presented with a stimulus3, and then the display is set to a constant

gray background and observers are immediately requested to provide an opinion

score of the viewed stimulus. The reference stimuli are included in the test stimuli

evaluated by the observer, and the observer is unaware if a stimulus is a processed

or reference stimulus. The order of the stimuli presented is random and varies for

each observer.

With ACR, a discrete category rating scale is used that has either five (ACR-

5) or eleven (ACR-11) levels. The quality assessment task uses rating categories

differentiated by the adjectives “Bad,” “Poor,” “Fair,” “Good,” and “Excellent.”

For ACR-5, the five levels correspond to the adjectives and are mapped to the

integers on the range 1 to 5. With ACR-11, the eleven levels correspond to integers

4Numerical category scaling [30], adjective category scale [99], and categorical sort [60] are
alternative names describing the absolute category rating (ACR) test method.

3Still images are displayed for 10 seconds. Video sequences are played once.
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on the range 0 to 10, where “Bad” corresponds to 1, “Poor” corresponds to 3,

“Fair” corresponds to 5, “Good” corresponds to 7, and “Excellent” corresponds to

9. A mean opinion score (MOS) is computed for each stimulus by averaging the

corresponding observer opinion scores.

The ACR method is simple to implement and accommodates the evaluation

of many stimuli in a single testing session. However, many observers are needed

to minimize the influence of contextual effects due to presentation order in the

collected opinion scores [29]. Contextual affects emerge when preceding stimuli

influence an observer’s interpretation of the quality scale, and such affects often

lead to judgments of perceived quality relative to recently viewed stimuli [29, 85].

B.2.2 Subjective Assessment for Video Quality (SAMVIQ)

Method

The subjective assessment methodology for video quality (SAMVIQ) [35, 63]

method consists of consecutive trials in which an observer freely views and scores

a collection of test stimuli associated with an explicitly identified reference stimu-

lus. Within a trial, an observer may view each stimulus multiple times and adjust

an opinion score as needed. The explicit reference stimulus is available for com-

parison. The reference stimulus is also hidden among the test stimuli viewed by

the observer. A trial is concluded by the observer only if he/she has supplied an

opinion score for each stimuli, including the explicit reference stimulus.

A continuous rating scale is used with SAMVIQ. For the quality assessment

task, the rating scale is categorized according to the adjectives “Bad,” “Poor,”

“Fair,” “Good,” and “Excellent.” The rating scale is mapped to the range 0 to
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100, where “Bad” is aligned with a score of 10, “Poor” with a score of 30, “Fair”

with a score of 50, “Good” with a score of 70, and “Excellent” with a score of

90. A mean opinion score (MOS) is computed for each stimulus by averaging the

observer opinion scores.

The SAMVIQ method has a more complex implementation than ACR. The

design of the evaluation trials restricts the number of stimuli that may be in-

cluded in a single testing session. A single trial allows observers to view eleven

stimuli, including both the explicit and hidden reference stimuli. Observers may

view a stimulus multiple times in a trial, so fewer observers are typically needed

to minimize contextual effects due to presentation order in the collected opinion

scores. However, the opportunity to review a stimulus multiple times lengthens

the duration of the testing session.

B.3 Databases with Perceived Quality Scores for Visual

Stimuli

This section summarizes the content of the three subjective databases used to

compare the ACR and SAMVIQ test methods. Each database contains subjective

scores corresponding to the quality assessment task collected according to both the

ACR and SAMVIQ test methods. One database contains subjective scores for still

images, and the other two databases contain subjective scores for video sequences.
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B.3.1 Still-Image Database

The Still-image database is a collection of processed images for which subjec-

tive quality scores have been recorded using both the ACR-5 and SAMVIQ [100]

test methods. The database consists of five reference grayscale images and 90

processed images that were generated from the reference images. The processed

images were generated from the reference images according to three different pro-

cedures: 1) JPEG-2000 compression driven by the dynamic contrast quantization

algorithm [19] to choose subband quantization step-sizes for a desired bitrate, 2)

a texture smoothing procedure that applies soft-thresholding for a desired thresh-

old to undecimated Haar wavelet coefficients [103, 107, 119, 120], and 3) texture

smoothing as in 2) with low-frequency signal information removed [103].

The ACR test method with five quality categories is used to collect subjective

scores of the images from observers. Since there are a total of 95 images (90 test

images plus 5 reference images) to be scored by the observers, a single test session

lasting 25 minutes was used. Opinion scores were collected from 28 observers for

all 95 images.

The SAMVIQ test method is implemented as described in Section B.2. To

alleviate observer fatigue due to prolonged evaluation sessions, the processed im-

ages were partitioned into to two equally representative sets, creating two testing

sessions each lasting 25 minutes. For each natural image, three anchor images,

each associated with a different processing procedure and spanning the range of

“quality,” served as anchor images and appeared in both testing sessions to facil-

itate opinion score alignment across both sessions. Opinion scores were collected

from 26 observers for each processed image (52 opinion scores were collected for

the anchor images).
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B.3.2 Video 1 database

The Video 1 database is a collection of video sequences for which subjective quality

scores have been recorded according to the ACR-5, ACR-11, and SAMVIQ test

methods. This database consists of five reference video sequences recorded at a

resolution of 1920 by 1080 pixels and at a frame rate of 50 progressive frames per

second (1080p50). The database contains 145 processed video sequences generated

from the reference video sequences to simulate 29 different broadcast applications

for high-definition display devices. Perceived quality scores have been collected

using both ACR-5 and ACR-11 for all video sequences in the database, but per-

ceived quality scores were obtained using SAMVIQ for only 44 video sequences

(40 processed video sequences plus 4 reference video sequences). The analysis in

this paper considers only those 44 video sequences that have been evaluated using

both testing methods.

Subjective scores for all five reference video sequences and 145 processed video

sequences were obtained using the ACR-5 and ACR-11 test methods. Using the

ACR-5 testing methodology, subjective scores were collected from 24 observers for

all 150 video sequences. Using the ACR-11 test method, subjective scores were

collected from 26 observers for all 150 video sequences. Perceived quality scores

were collected in a single test session lasting 45 minutes using either ACR-5 or

ACR-11.

Under the SAMVIQ test method, subjective scores were collected for four ref-

erence video sequences and 40 processed video sequences. Subjective scores were

collected from 21 observers for the 44 video sequences. A single test session lasted

30 minutes.
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B.3.3 Video 2 database

The Video 2 database is a collection of video sequences for which subjective quality

scores have been recorded according to the ACR-5 and SAMVIQ test methods [88].

This database consists of 24 reference video sequences recorded at a resolution

of 1920 by 1080 pixels and at a frame rate of 50 interlaced frames per second

(1080i50). The database contains 192 processed video sequences, which include

the 24 reference video sequences, generated from the reference video sequences

using an H.264 encoder operating at different encoding bitrates.

Subjective scores for all 192 processed video sequences were obtained using the

ACR-5 test methods. Subjective scores were collected from 28 observers for all 192

video sequences. Two 30 minute test sessions, each containing 96 video sequences,

were conducted to collect perceived quality scores.

Under the SAMVIQ test method, subjective scores were collected for all 24

reference video sequences, explicitly identified as reference video sequences, and

192 processed video sequences, which include hidden reference video sequences.

Only subjective scores corresponding to the set of 192 processed video sequences

are used. To alleviate observer fatigue due to prolonged evaluation sessions, the

processed video sequences were partitioned into to six sets, creating six testing ses-

sions each lasting 30 minutes. In each testing session, observers provide perceived

quality scores to all the processed video sequences corresponding to four reference

video sequences. Among the six testing sessions, different numbers of observers

provided subjective scores. Subjective scores were obtained from at least 18 and

up to 39 observers for each testing session.
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B.4 Analysis of the ACR and SAMVIQ Subjective Testing

Methods

This section analyzes the subjective scores collected according to the ACR and

SAMVIQ test methods for the three subjective databases described in Section

B.3. This section first presents an individual analysis of the subjective scores

obtained via the ACR and SAMVIQ test methods. The second part of this section

compares the subjective scores obtained from the two test methods.

B.4.1 Observers Use of Rating Scale for ACR and

SAMVIQ

A distinction between the ACR and SAMVIQ test methods is the resolution of

the rating scale used to score a stimuli. Despite the near continuous range of

scores available to observers in the SAMVIQ test method, observers primarily

submit opinion scores associated with the quality adjectives (i.e., “Bad,” “Poor,”

“Fair,” “Good,” and “Excellent”) and the mid-points between those adjectives.

Histograms counting the frequency of the opinion scores provided by observers for

each subjective database are shown in Figures B.1-B.3. For the SAMVIQ test

method, it is evident from these histograms that observers quantize their scores to

the the quality adjectives and the mid-points between those adjectives. Among the

three databases, approximately 20% of the observer scores correspond directly to

the quality adjectives, and approximately 43% of the observer scores correspond to

either the quality adjectives or the mid-points between those adjectives. Specific

values corresponding to the percentage of observer scores corresponding directly
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Figure B.1: Histogram of raw observer scores from the Still-Image database
using ACR5 and SAMVIQ test methods. For SAMVIQ, 20.4%
of the observer scores directly correspond to the category adjec-
tives (i.e., “Bad”, “Poor”, etc.), and 40.8% of the observer scores
correspond to both the category adjectives and mid-points be-
tween categories.
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to the quality adjectives or to the mid-points between categories are listed in the

captions of Figures B.1-B.3. In short, the fine resolution rating scale used in the

SAMVIQ is superfluous, since observers typically provide scores that correspond

to a coarser rating scale.

Observers frequently refrain from using the boundaries of the rating scale (i.e.,

scoring images as either “Bad” or “Excellent”). While the subjective scores col-

lected for the Still-Image database appear to contradict this behavior (cf Figure

B.1), this particular database contains a disproportionately large number of very

low quality images, many of which deliberately contain very little recognizable

content [100]. The histograms counting the frequency of opinion scores from the

two video databases demonstrate that observers refrain from using the boundaries

of the rating scale (cf Figures B.2 and B.3). Researchers [60] have suggested that

observers “reserve” extreme ratings in test methods such as ACR in the event

that stimuli viewed later in the test should demand perceived quality ratings of

either “Bad” or ‘Excellent.” A remedy for ACR is to place a fixed set of stimuli

at the beginning of the test to expose observers to the full range of “quality” to

be evaluated. Responses from these initial trials are excluded from the analysis.

B.4.2 Comparative Analysis of MOSs from ACR and

SAMVIQ

The SAMVIQ test method is resource demanding. In the three databases exam-

ined, A typical testing session duration is approximately 30 minutes and allows

observers to evaluate at most 55 images (e.g. the Still-Image database) or 44

video sequences (e.g., the Video 1 database). Thus, evaluating many processed
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Figure B.2: Histogram of raw observer scores from the Video 1 database
using ACR11 and SAMVIQ test methods. For ACR-11, 51.7% of
the observer scores directly correspond to the category adjectives
(i.e., “Bad”, “Poor”, etc.). For SAMVIQ, 23.3% of the observer
scores directly correspond to the category adjectives, and 42.9%
of the observer scores correspond to both the category adjectives
and mid-points between categories.
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Figure B.3: Histogram of raw observer scores from the Video 2 database us-
ing ACR5 and SAMVIQ test methods. For SAMVIQ, 18.1% of
the observer scores directly correspond to the category adjectives
(i.e., “Bad”, “Poor”, etc.), and 44.9% of the observer scores cor-
respond to both the category adjectives and mid-points between
categories.
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stimuli for many different references often requires multiple testing sessions, espe-

cially when the stimuli are video sequences. Not only will this lengthen the time

necessary to collect the desired subjective scores, but compensating observers for

their participation in the experiment becomes expensive. The ACR test method

accommodates more stimuli per testing session and may be more suitable given

the available resources of the particular research group.

This section examines the tradeoffs between the ACR and SAMVIQ test meth-

ods. The first section compares the accuracy of the mean opinion scores (MOSs)

collected under each test method based on the number of observers. The second

section compares the ability of each test method to yield MOSs that distinguish

pairs of stimuli generated from the same reference content within a subjective

database. The last section examines the consistency of the MOSs between the two

test methods.

Accuracy: SAMVIQ provides MOSs with smaller confidence intervals

than ACR for the same number of observers

Among the two testing methods, SAMVIQ typically provides more accurate es-

timates of MOSs than ACR given the same number of observers. Figure B.4

shows the relationship between the average confidence interval of the MOS and

the number of observers providing opinion scores for the different test methods

for the three subjective databases. For each testing method, the MOS average

confidence interval decreases as the number of observers increases, and for a fixed

number of observers, SAMVIQ yields the smallest average confidence interval for

the MOSs. Specifically, SAMVIQ requires between 2.8 and 11.5 fewer observers

than ACR-5 for the Still-image database with an average of 5.5 (36%) fewer ob-
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servers. For the Video 1 database, SAMVIQ requires between 2.4 and 9.3 fewer

observers than ACR-5 and between 1 and 5.3 fewer observers than ACR-11 to

achieve the same average confidence interval. On average, SAMVIQ requires 4.7

(34%) fewer observers than ACR-5 and 2.2 (17%) fewer observers than ACR-11

on the Video 1 database to achieve the same average confidence interval. For the

Video 2 database, SAMVIQ requires between 1.7 and 8.4 fewer observers than

ACR-5 with an average of 3.8 (27%) fewer observers to achieve the same average

MOS confidence internal.

Distinction: SAMVIQ MOSs differentiate stimuli more often than ACR

MOSs

The ACR and SAMVIQ test methods use rating scales with different resolutions.

As a result, MOSs for a pair of test stimuli could be statistically different using

one test method but not another. This section compares the ability of the MOSs

from the ACR and SAMVIQ test methods to differentiate test stimuli using the

three databases. The analysis conducted in this section is similar to the resolving

power for objective quality estimators proposed by Brill et al. [7].

The comparison of the ability of MOSs from two different test methods to

differentiate test stimuli generated from the same reference stimulus for a particular

database consists of two parts. First, for each pair of test stimuli associated with

the same reference stimulus, a two-sample t-test with a 95% confidence level is used

to determine if the corresponding MOSs, obtained using a specific test method,

are statistically different. Second, for each pair of stimuli associated with the

same reference stimulus, the conclusions from the t-test conducted for each test

method are compared. Considering two test methods, “A” and “B,” there are
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(a) Still-image database
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(b) Video 1 database
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(c) Video 2 database

Figure B.4: Relationship between the average confidence interval of the mean
opinion scores and the number of observers used for different test
methods for the three different databases. Increasing the num-
ber of observers for ACR generates more accurate mean opinion
scores, competitive with those found with fewer observers using
SAMVIQ.

four outcomes in this comparison for each pair of stimuli: 1) the MOSs for both

methods are statistically different 2) the MOSs for both methods are statistically

equivalent, 3) the MOSs for method “A” are statistically different but the MOSs

for method “B” are statistically equivalent, and 4) the MOSs for method “B” are

statistically different but the MOSs for method “A” are statistically equivalent.

The outcomes corresponding to the first case will constitute the largest percentage
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of the comparisons, since a large proportion of the stimuli will likely yield very

different levels of perceived quality.

MOSs obtained using the SAMVIQ test method regularly differentiate more

test stimuli from the same reference stimulus than MOSs obtained using either

ACR test method. Table B.1 summarizes the results when comparing the ability

of MOSs from the ACR and SAMVIQ test methods to differentiate test stimuli

in each database. For each database and a pair of test methods, the table lists

the average percentage of pairs of test stimuli3 corresponding to each of the four

outcomes of the comparison described in the preceding paragraph. As an example,

MOSs obtained using SAMVIQ differentiate 6.4% pairs of test stimuli in the Still-

Image database that are not differentiated by MOSs obtained with ACR-5. In

every database, MOSs obtained with SAMVIQ differentiate about 5 times the

number of stimuli as either ACR-5 or ACR-11. For the Video 1 database, neither

ACR testing method exhibits a significant advantage in terms of differentiating

pairs of test stimuli.

Consistency: Stimuli influence the consistency of MOSs from ACR and

SAMVIQ

The collection of stimuli evaluated influence the consistency of MOSs collected

via ACR with respect to those collected via SAMVIQ. ACR allows each observer

only one opportunity to view and score a stimulus in a database. SAMVIQ allows

each observer several opportunities to view and revise her score of a stimulus in

a database. Consequently, if stimuli are easily discriminated by observers, then

both ACR and SAMVIQ will produce consistent MOSs for the stimuli. However,

3Only pairs of test stimuli generated from the same reference stimulus are considered.
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Table B.1: Results when comparing the ability of mean opinion scores
(MOSs) from different test methods to differentiate test stimuli.
For each database and a pair of test methods, the table lists the
percentage of pairs of test stimuli corresponding to each of the
four outcomes of a comparison test described in Section B.4.2.
Considering two test methods, “A” and “B,” there are four out-
comes in this comparison for each pair of stimuli: 1) the MOSs
for both methods are statistically different 2) the MOSs for both
methods are statistically equivalent, 3) the MOSs for method “A”
are statistically different but the MOSs for method “B” are sta-
tistically equivalent, and 4) the MOSs for method “B” are sta-
tistically different but the MOSs for method “A” are statistically
equivalent. As an example, MOSs obtained using SAMVIQ dif-
ferentiate 6.4% pairs of test stimuli in the Still-Image database
that are not differentiated by mean opinion scores obtained with
ACR-5. The results illustrate that MOSs obtained with SAMVIQ
better differentiate stimuli that those obtained with ACR.

Subjective Database

Still-Image Video 1 Video 1 Video 1 Video 2

Test Method A ACR-5 ACR-5 ACR-5 ACR-11 ACR-5

Test Method B SAMVIQ ACR-11 SAMVIQ SAMVIQ SAMVIQ

1) Stat. diff.

MOSs for both A

and B

82.6% 45.0% 50.0% 50.0% 63.4%

2) Stat. eq. MOSs

for both A and B
6.9% 34.4% 31.1% 31.7% 10.7%

3) Stat. diff.

MOSs for only

Method A

1.8% 11.1% 0% 2.2% 3.6%

4) Stat. diff.

MOSs for only

Method B

6.4% 11.1% 15.6% 17.8% 14.3%
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if stimuli are more difficult to discriminate in terms of perceived quality, ACR,

which only allows an observer one opportunity to view and score a stimulus, is

not expected to produce MOSs that reflect differences among stimuli as well as

SAMVIQ. This section investigates the consistency of the mean opinion scores

obtained via the two test methods.

Since the different methods use rating scales with different ranges, a mapping

between the rating scales facilitates a thorough comparison. Linear mappings be-

tween the rating scales are used that directly map the quality adjectives from one

rating scale to another [88]. After linear mapping, the Pearson linear correla-

tion [118] (R), the Spearman rank-order correlation [118] (ROCC), the Kendall τ

rank correlation coefficient [61] (τ), and the root mean squared error (RMSE) are

computed using the MOSs from different testing methods for each database. Both

of the rank correlation measures, the Spearman ROCC and Kendall’s τ , quantify

the discrepancies between the rank order of two sets of MOSs; however, the Spear-

man ROCC accounts for the magnitude of the rank discrepancy, whereas Kendall’s

τ does not. The Spearman ROCC is the Pearson’s linear correlation of the ranks

assigned to the two sets of MOSs. The RMSE is normalized to the reflect errors

in terms of the proportion of the target scale range.

For the Still-Image and Video 1 databases, the MOSs found using ACR are

generally consistent with those found using SAMVIQ, indicating that the stimuli

in each database are easy to discriminate in terms of perceived quality. Table

B.2 summarizes the statistical analysis between MOSs obtained from different test

methods after linear mapping, and the scatterplots in Figure B.5 illustrate the

relationship between the MOSs found using ACR-5 and the MOSs found using

SAMVIQ for the different databases. The Pearson linear correlation coefficients
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Table B.2: Summary of statistical comparisons of mean opinion scores
(MOSs) between different test methods for each subjective
database. The Pearson linear correlation (R), the Spearman
rank-order correlation (ROCC), the Kendall τ rank correlation
coefficient (τ), the root mean squared error (RMSE), and the
percentage of consistent categories based on the MOSs of two
test methods are computed. The RMSE is normalized to the re-
flect errors in terms of the proportion of the target scale range.
MOSs obtained with ACR are consistent with those obtained with
SAMVIQ for the Still-Image and Video 1 databases. The stim-
uli in the Video 2 are more difficult to distinguish in terms of
perceived quality, hence the lower consistency between MOSs ob-
tained using the two test methods (cf Figure B.5).

Database Comparison R ROCC τ RMSE

Still-Image ACR-5 to SAMVIQ 0.989 0.978 0.883 0.0560

Video 1 ACR-5 to ACR-11 0.959 0.933 0.806 0.0686

Video 1 ACR-5 to SAMVIQ 0.967 0.954 0.844 0.0521

Video 1 ACR-11 to SAMVIQ 0.974 0.972 0.875 0.0626

Video 2 ACR-5 to SAMVIQ 0.825 0.809 0.622 0.137

R and Spearman rank-order correlation coefficients between MOSs generated via

different testing methods for the Still-Image and Video 1 databases exceed 0.93,

which indicates strong linear correlation and rank-order correlation. For these

two databases, the values of Kendall’s τ are lower than those of the Spearman

ROCC. The values of Kendall’s τ indicate that more than 80% of the MOSs are

in rank agreement, and the high values of the Spearman ROCC indicate that the

differences in the rank values of the MOSs that are not in perfect rank agreement

are small. In addition to high correlation, estimating the MOSs obtained using

SAMVIQ with the MOSs obtained using either ACR testing method yield RMSEs

corresponding to an average error of less than 6.5% of the SAMVIQ rating scale

range.
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Unlike the Still-Image and Video 1 databases, the MOSs found using ACR-5

exhibit less consistency with those found using SAMVIQ for the Video 2 database,

indicating that the stimuli in the Video 2 database are difficult to discriminate

in terms of perceived quality. From Table B.2, all three correlation measures are

markedly smaller for the Video 2 database than those for either of the other two

databases. In addition, estimating the MOSs obtained using SAMVIQ with the

MOSs obtained using ACR-5 yield RMSEs corresponding to an average error of

13.7% of the SAMVIQ rating scale range. Figure B.5(c) illustrates the nature

of the notably decreased consistency between ACR and SAMVIQ for the Video

2 database. The scatterplot in Figure B.5(c) shows the relationship between the

MOSs found using ACR-5 and the MOSs found using SAMVIQ for the Video 2

database. In Figure B.5(c), the MOSs associated with the “Good” quality adjec-

tive for ACR-5 spread a greater range of quality categories when using SAMVIQ.

This indicates that MOSs obtained with ACR fail to capture subtle differences

in perceived quality of stimuli, since MOSs obtained with SAMVIQ better distin-

guish stimuli rated as having “Good” quality under ACR. There are inconsisten-

cies between the MOSs corresponding to the “Bad”, “Poor”, and “Fair” quality

categories, and Section B.5 presents a discussion regarding the nature of these

inconsistencies.

B.5 Discussion: ACR or SAMVIQ?

Section B.4 compares mean opinion scores (MOSs) obtain using either the absolute

category rating (ACR) testing method or the subjective assessment methodology

for video quality (SAMVIQ). Despite the evidence promoting the use of SAMVIQ

to obtain perceived quality scores for a collection of stimuli, ACR yields adequate
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Figure B.5: Stimuli influence the consistency of mean opinion scores (MOSs)
obtained using ACR and SAMVIQ. Each scatterplot illus-
trates the relationship between MOSs of stimuli for a particular
database obtained by using ACR-5 and SAMVIQ. The consis-
tency of the MOSs obtained using ACR and SAMVIQ for the
Still-Image and Video 1 databases indicate that the stimuli eval-
uated were relatively easy to discriminate in terms of perceived
quality. The MOSs obtained using ACR and SAMVIQ for the
Video 2 demonstrate that the stimuli were more difficult to dis-
criminate in terms of perceived quality.
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perceived quality scores for collections of stimuli evaluated in this paper (e.g.,

stimuli from the Still-Image database and the Video 1 database). Perhaps most

interesting are the inconsistencies between the MOSs for ACR-5 and SAMVIQ

corresponding to lower quality categories for the Video 2 database. This section

briefly discusses the possible causes of these discrepancies.

For the Video 2 database (cf. Figure B.5(c)), MOSs corresponding to lower

quality adjectives under SAMVIQ spread a greater range of quality categories un-

der ACR-5. In other words, the MOSs obtained with ACR reflect larger differences

in perceived quality among stimuli rated as either having “Bad” or “Poor” per-

ceived quality using SAMVIQ. Two possible explanations are provided for this

discrepancy: 1) a limitation with SAMVIQ and 2) the suitability of the testing

method used for the application and stimuli studied.

The discrepancy between the ACR and SAMVIQ MOSs for the Video 2

database could be a consequence of the protocol for SAMVIQ: observers rate a

collection of stimuli generated from the same reference stimulus in a trial. Thus,

SAMVIQ encourages observers to develop separate quality scales for stimuli gener-

ated from a particular reference content. As a result, the perceived quality scores

for stimuli generated from different reference content may be misaligned1. It has

been suggest that under ACR observers develop different internal scales for stim-

uli generated from the same reference content [129], yet SAMVIQ does nothing

to discourage this behavior. Stimuli have been evaluated following protocols that

include trials that force observers to compare stimuli generated from different ref-

erence content [21, 64]. These additional trials serve to align perceived quality

1Suggesting that the perceived quality scores are misaligned implies that stimuli gener-
ated from different reference stimuli should be assigned a perceived quality corresponding to
a global perceived quality score (as methods that measure just-noticeable differences (JNDs)
afford [60, 140]) rather than a perceived quality scale associated with stimuli generated from a
single reference content.
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scores corresponding to stimuli generated from different reference content. A thor-

ough analysis comparing the effects of these additional “alignment” trials using

SAMVIQ needs to be performed.

Alternatively, the discrepancy between the ACR and SAMVIQ MOSs for the

Video 2 database could be attributed to the suitability of the testing method used

for the application and stimuli studied. The ACR testing method is best suited for

applications with stimuli where an observer views a stimulus only once, whereas

SAMVIQ is best suited for applications with stimuli where an observer may view

a stimulus multiple times. The stimuli in the Video 2 database contain various

distortions due to encoders operating at various bitrates, whereas the Video 1

database contains distortions due to different antialiasing filters using a broadcast

application. The distortions in the Video 1 database are spatially uniform, so

viewing a stimulus at any spatial location as the video is played will generally

give an observer an impression of the distortions. Thus, under both the ACR

and SAMVIQ testing methods, observers will very similar conclusions about the

perceived quality of the video. In contrast, the distortions in the Video 2 database

are spatially distributed, and all observers may not see the distortions in the video

when viewing the video. The opportunity to view the video multiple times, as in

SAMVIQ, increases the probability that an observer will see the distortion. Thus,

the wide range of MOSs for ACR when the MOSs for SAMVIQ are in the “Bad”

to “Poor” range would be explained by observers “missing” the distortions in their

single view with ACR but not with SAMVIQ.

The second explanation of the discrepancy between the ACR and SAMVIQ

MOSs emphasizes the need to pair the testing method with the application studied.

ACR is suited to applications where observers cursorily view the stimuli, whereas
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SAMVIQ is suited to applications where observers critically view stimuli.

B.6 Summary

This paper investigated the tradeoffs of the absolute category rating (ACR) and

subjective assessment for video quality (SAMVIQ) methods methods using three

different subjective quality databases that have scores corresponding to each

method. The subjective databases contained either still-images or video sequences.

Results are that 1) the fine resolution rating scale used by SAMVIQ is super-

fluous, 2) SAMVIQ scores have greater accuracy than ACR scores for the same

number of observers (on average 30% fewer observers were required for SAMVIQ

than ACR for the same level of accuracy), 3) SAMVIQ scores better differentiate

stimuli than ACR scores, and 4) the consistency of categorical ratings between

ACR and SAMVIQ is lower for databases when stimuli are more difficult to distin-

guish in terms of perceived quality. Increasing the number of observers for ACR

generates more accurate scores, competitive with the accuracy found with fewer

observers using SAMVIQ.

This analysis discloses areas of future work. First, the current analysis considers

all of the subjective data in a given database. The effects of outlier rejection and

deliberately reducing the number of observers could alter the conclusions drawn

about the relationship between the ACR and SAMVIQ test methods. Second, the

three subjective databases correspond to specific applications, and a closer analysis

of suitability of different test methods should be considered [9,53]. The suitability

of perceived quality scores obtained by ACR and SAMVIQ for specific applications

is currently being investigated.
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