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Abstract

With probability 1, the difference between the sample and ordinary expectations of kernel-
weighted moments h~![K(® (¥=2)]"(¥=2)°¢(X,Y) has order (nh)~/2(logn)'/2 as n — oo,
uniformly over intervals of z and h, for well-behaved K and g. Schulman and Ruppert (1998)

prove the same theorem, but here we supply details of the proof which are omitted from that

paper.

1 Introduction

Let (X1,Y1),...,(Xn,Y,) be iid. pairs of random variables. We prove a uniform strong law of large
numbers (Proposition 1) for quantities of the form (nh)~! 3" | [K@(Xi=2)]"(£i=2)’g(X;,Y7),
where the uniformity holds over intervals of h and z. The proof relies on a general uniform strong
law of large numbers of Pollard (1984).

Section 2 provides background on uniform strong laws, most of it taken from Pollard (1984).

Section 3 applies the theory of Section 2 to prove our Proposition.
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2 Uniform strong laws of large numbers

Strong laws of large numbers may be shown to hold uniformly over classes of functions that are not
too large. Here “large” refers to L' covering numbers, that is, the number of functions required to

approximate all members of a class to less than any € > 0 in the L' sense.

Definition 1. Let F be a class of functions on a set S, and let ¢ > 0. The (L') covering number
N(e, @, F) is the smallest number m for which there exist functions gy, ..., g, on S (not necessarily

in F) such that min; [ |f — ¢;| dQ < € for each f € F.

Although g1, ..., gm do not have to belong to F, Pollard (1984) observes that we can require
them to do so at the cost of doubling €, by replacing g; by f; € F satisfying [ |g; — fi| dQ < e.
The conditions on covering numbers that lead to uniform strong laws are collected in the

following definition.
Definition 2. A class F of functions on a set S is well-covered if:

(i) F is permissible in the sense of Pollard (1984, Appendix C);
(ii) |f| < C for all f € F and some C > 0;

(iii) there exist constants A > 0 and W > 0 such that supge g N (€, Q, F) < Ae=W forall0 < e < 1.

Here Q is the set of all probability measures on S with its o-algebra. A sequence {F,} of classes

of functions on sets {S,} is uniformly well-covered if
(i) F, is permissible for each n;
(i) |f| < C for all f € F, and some C > 0;

(iii) there exist constants A > 0 and W > 0 such that sup, supgeg, N(€, @, Fn) < Ae=W for all

0<e<l.
Here Q,, is the set of all probability measures on S,, with its o-algebra.

Permissibility is a guarantee that suprema of measurable functions over uncountable index sets
are measurable. All the classes of functions considered here are permissible, so this condition will

not be discussed further. For details the reader is referred to Appendix C of Pollard (1984).



Note that well-covering is a special case of uniform well-covering, in which F,, = F for all n.
Thus any results about uniform well-covering include ordinary well-covering as a special case. Also,
if F is a well-covered class, then any sequence of subclasses of F is uniformly well-covered.

With these definitions, we now state a uniform strong law proved by Pollard (1984). Let E,
stand for empirical expectation, so that for a function f and a random variable &, E,f(¢) =

n 13" | f(&) for some i.i.d. random variables &1, ..., &, with the same distribution as &.

Theorem 1 (Pollard (1984) I1.37). Let F, = {fs : s € S} be a uniformly well-covered
sequence of classes of functions, and {a,} a non-increasing sequence of positive numbers. If

Ef,(£)? < 62 for each s € Sy, and né2a?/logn — oo, then

sup | B, fo(€) — Bfs(€)| = o(62c)  almost surely.
SESn

In order to invoke Theorem 1, we need to show uniform well-covering of the classes F,,. In
particular, we need uniform bounds of the form Ae~" on covering numbers. The easiest way to
get such bounds is by comparison with the covering numbers of related classes. The next lemma
contains results of this type. The lemma is stated in terms of uniform well-covering, but as was

noted above, it includes ordinary well-covering as a special case by setting Fi,, = F; and Fa,, = Fa.

Lemma 1. Let {F1,} and {Fon} be two uniformly well-covered sequences of classes of functions
on sets {S1n} and {S2,}, respectively. Then the sequence {G,} is uniformly well-covered, for each

of the following G, :

(a) Gn = {a1fi(s) +asfa(s): fi € Fin, fo € Fan} 0on Sin N Sap, for each fized ai,ay € R;
(b) Gn ={a1f1(s) +azfa(t) : f1 € Fin, f2 € Fon} on S1p X Son, for each fized a1,as € R;
(¢) G ={f1(s)f2(s) : fi € Fin, f2 € Fan} on Si, N Son;

(@) Gun = {f1(8)f2(t) : f1 € Fin, fo € Fan} on Sin X Sa,. (Opsomer, 1994, Lemma A.5)

Proof. All the classes are uniformly bounded, so check the covering numbers. For convenience

write Qf = [ fdQ.



(a)

(d)

Fix € > 0 and n, and let () be a probability on Sy, N S2,. If a; # 0 and as # 0, then choose
fi1y- -+ fimy and fo1,..., fom, that approximate all f; € Fi,, and fy € Fa, to within ﬁ and

respectively, where m; < A;(55)""i, i = 1,2, and A; and W; are independent of Q

_€ _€_
2|az|’ 2|a4|
and n. If either a; is zero, then F;, may be ignored so choose m; = 1 and f;; = 0. Now the

functions aq f1;(-) + a2 fo;(-) approximate all aq fi(-) + a2 fa(:):
I?ian|alf1 + azfa — (a1 f1i + aa fo5)

< D;.lijn[|al|Q|f1 — ful + la2| Q| f2 = fo;]]

= la[min Q[ f1 — fui| + |az|mjinQ\f2 — [yl <¢
and there are at most mimy < [A142(2|a1])"1(2]as|) V2] e~ (W1+W2) such functions.
Define two new sequences of classes of functions on Si, X San, by Gin = {g1(s,t) = fi(s) :
f1 € Fin} and Go,, = {g2(s,t) = fa(t) : fo € Fon}. It suffices to show that Gy, and Ga, are
uniformly well-covered on Sy, X Sa,, since then by part (a) (with Sy, X Sy, in place of Si,

and Sy,) the sequence of classes of all a1g1(s,t) + azg2(s,t) = a1 f1(s) + azf2(t) is uniformly

well-covered.

Fix € > 0 and n, and let ) be a probability on Sy, X S9,. For Gi,, define a probability
Q1 on S1, by Q1(4) = Q(A X Sy,), for measurable A C Sy,,. Choose fi1,..., fim, such that
min; Q1| f1 — fii| < e for all f; € Fip, where m; < Ae=" and A and W are independent of n
and @1, and hence of ). Now the functions g1;(s,t) := f1;(s) approximate all g1 (s,t) = f1(s)
for fi € Fin, since min; Q|g1 —g1i| = min; Q1| f1— f1i| < e. Hence Gy, is uniformly well-covered.

An analogous argument applies to Ga.
The proof is the same as (a), but with the inequality

Qlf1f2 — frifosl <sup|fel - Qlft — fuil +sup | fu] - Qlf2 — foyl-

Since the classes {Fi,} are uniformly bounded, we can without loss of generality choose all fi;

to satisfy the same uniform bound.
The proof is the same as (b), with fi fo in place of aj f1 + a2 fo- n
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To apply Lemma 1, we need first to bound the covering numbers of some initial class. Pollard
develops bounds for classes which are, again, not too big, where now the size of F depends on
how well the graphs of functions in F can divide arbitrary sets of points in § x R. The graph of a
function f on a set S is the set {(s,%) : 0 <¢ < f(s) or f(s) <t<0}in S xR

Definition 3. A class D of subsets of S is a polynomial class or has polynomial discrimination if
there exists a polynomial p(-) such that, from every set Sy of N points in S, there are at most p(N)

distinct sets of the form Sy N D with D in D.

Since there are 2V subsets of any set of size N, a class that picks out only polynomially many
such subsets must eventually fail to pick them all out, for large enough N. Such a class is in some
sense small, and for the graphs of a class F of uniformly bounded functions, this turns out to
be sufficient to bound the covering numbers of F. The next lemma is trivially different from the

version given by Pollard.

Lemma 2 (Pollard (1984) I1.25). If F is a class of uniformly bounded functions, and the graphs

of functions in F form a polynomial class of sets, then F is well-covered.

The next problem, then, is to show polynomial discrimination of the graphs of some initial
class of functions. The definition is difficult to use, although Opsomer (1994, Lemma A.4) does so.
Fortunately, Pollard provides some tools for showing polynomial discrimination, of which the two

in the next lemma will be sufficient for our purposes.

Lemma 3 (Pollard (1984), I1.18 and II.15).

(a) If G is a finite-dimensional vector space of real functions on S, then the class of sets of the

form {g > 0}, for g € G, has polynomial discrimination in S x R.
(b) If classes C and D have polynomial discrimination, then so do each of:
(i) {D°:D e D}
(ii) {CuD:CeC,DeD}

(ii) {CND:CeC,D €D}



In summary, our approach is as follows. First, use Lemma 3 to show polynomial discrimination
of the graphs of functions in some initial class, and conclude from Lemma 2 that the class is well-
covered. Extend the well-covering to other classes of interest, using Lemma 1 or similar arguments,
and then apply Theorem 1 to get uniform a.s. rates of convergence of sample expectations of

functions in the well-covered classes.

3 Kernel-Weighted Moments

Following the theory of Section 2, we now use polynomial discrimination to find a well-covered class
of functions (Lemma 4), extend the well-covering to classes of kernel-weighted monomials (Lemmas
5 and 6), and use the well-covering to prove a uniform strong law for sample kernel-weighted
moments (Proposition 1).

Let X be a measurable subset of R, and let H,, = [an’,an”] be a sequence of bandwidth

intervals, where —1 <y <% <0 and @,a > 0. We use the following assumptions.

(A1) The kernel function K is supported on [—1,1], and D-times differentiable on R, for some
D€ {0,1,...}. KP) has bounded variation on [1,1] (write K(P) € BV[-1,1]).

(A2) (X1,Y7),...,(X,,Y,) are i.i.d. observations from the distribution of a random pair (X,Y),

where X has a bounded density fx.

Lemma 4. If g : [c,d] — R has bounded variation and —oo < ¢ < d < 00, then the location-scale

class G = {g() : t € R,h > 0} is well-covered.

Proof. (After Pollard (1984), example I1.26) First suppose that g is non-negative and strictly
increasing on [c,d]. The graph of g(%) is the set

{(z,9) : 0 <y < g(EFh), e< HE < d}
={(z,9): 0<y, g7 (y) <5 e<HE<d}

= (R x [0,00)) N {(z,y) : 2 — hg™'(y) —¢ > 0} (3.)
N{(z,y) :z—hc—t>0}N{(z,y) : —z+ hd +t > 0}.



Consider the second set of (3.1). Define a vector space of functions {kun:(z,y) = ax —hg 1(y) —t:
a,h,t € R} on R?2. By Lemma 3(a), the sets {(z,y) : ax — hg~'(y) —t > 0} form a polynomial
class; hence the smaller class with a = 1 and A > 0 must also be a polynomial class. By a similar
argument, the classes of sets {(z,y) : £ — hc — ¢ > 0} and {(z,y) : —z + hd +t > 0} are also
polynomial classes. Therefore by Lemma 3(b), the class G of sets in (3.1) is a polynomial class.
Also since g has bounded variation, g is bounded; therefore G is uniformly bounded and hence
well-covered, by Lemma, 2.

Now consider arbitrary g € BV|c,d]. It is a fact (see e.g. 7, Theorem 5.2.5 and its proof) that
any function of bounded variation on [c,d] may be written as a difference of two bounded, strictly
increasing, non-negative functions on [c,d]. Thus write g(-%t) = g1(5%) — g2(%), for bounded,
non-negative, strictly increasing g; and go. As shown above, the location-scale classes of g; and go

are well-covered; so the location-scale class of g; — g2 is also well-covered, by Lemma 1(a). [

Lemma 5. The classes {[K@(ZH)]"(2)° : t € R,h > 0} and {|K@O(FH)|" |F]° - t € R, > 0}

are well-covered, for each ¢q=0,...,D,r=1,2,..., and s =0,1,....

Proof. By Lemma 4, it suffices to show that [K(9)(-)]"(-)* and |K(@(-)|"|-|* have bounded variation
on [—1,1].

By assumption (A1), K(P) € BV[-1,1]. In particular K(P) is bounded, so for any par-
tition —1 = z; < --- < zy = 1, S |KP D(z;1) — KPV(z)| = 3 ffj“ KD)(t)dt| <
f_ll |K(P)(t)|dt < oo; therefore K(P~1 € BV[—1,1]. Repeat the argument to show that all of
K

.., K(P) haye bounded variation on [—1,1].

For any f, f € BV[—1,1] implies also f" € BV[—1,1], since

9.

(@) = f @) = |(f(@) = f(y) 3520 f (=) f(y)

<rsup|f["7 - |f(@) — f(y)| for all z,y.

Also clearly (-)* € BV[-1,1]. If f,g € BV[—1,1], then fg € BV[-1,1]: f and g are bounded, so

|f(z)g(z)—f(y)g(v)| < |f(z)—f(y)|sup|g|+|g(z) —g(y)|sup | f| implies fg € BV[—1,1]. Therefore
[K@()]"(-)* € BV[~1,1], for each g, r, and s.
Finally, f € BV[—1,1] implies |f| € BV[—1,1], since || f(z)| — [f(W)]| < |f(z) — f(v)- =
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We can use Lemma 5 to show uniform well-covering of a related class of functions, the scaled
monomials h~Y2[K (q)(%)]’”(%)s , as long as h is bounded away from zero for each n. For our

purposes it is good enough to assume a little more, that h € H,, = [an?,an”].

Lemma 6. The classes &, = {nl/Qh_l/Q[K(q)(%)]”(%)s :t € Rh € Hy} and F, =
{n1/2p=1/2 ‘K(q)(%)‘T |%‘s :t € Roh € H,} are uniformly well-covered, for each ¢ = 0,...,D,
r=12,...,and s=0,1,....

Proof. The sequence G,, = {nl/ 2h=12 : h € H,} of classes of constant functions on R is uniformly
bounded above by a~ Y2, Therefore the constant functions {€,2¢,...,Je = 2—1/2}’ where J =
la /2 /e], approximate all n?/2h~1/2 to within €, and there are at most o 1/2¢ ! such functions.
Thus the G, are uniformly well-covered, so by Lemmas 5 and 1(c), the &, and F,, are also uniformly

well-covered. -

Lemma 6 allows us to apply Theorem 1 to prove our main result. The following uniform order
notation is convenient: write A, (z,h) = Oy(Bn(z,h)) if sup,, , , |An(z,h)/Bp(z,h)| < oo, and
An(z,h) = oy(Bn(z,h)) if sup,  |An(z, h)/Bn(x, h)| — 0 as n — oc. Here and below, suprema are
taken over € X and h € H,,. We also write Oy (B,,) to stand for some function A,, which satisfies

A, = Oy(Bn).

Proposition 1. Let g(z,y) be a measurable function on X xR such that: P(|g(X,Y)| > z) < Cz™®
for all z and some C > 0 and o > 2/(1+7); and n(-) := E(g(X,Y)?|X =) is bounded. Then with

probability 1,

W KO (X)) () e(X,Y)
= BL K@ (A52)]"(452)" 9(X,Y) + Ou((nh) /2 (log n)'/?)
for each ¢ = 0,....,D, r = 1,2,..., and s = 0,1,...; and similarly for
A (X, Y.

Proof. The proofs with and without the absolute values are identical, so only the latter is given.
If A is any set, the indicator function of A will also be denoted A. The empirical probability of A
is denoted P, A := E,, A.



Write L = K@ and

S

Ryzn = nl/zhil/zL(Xl:z)T( ;x)sg(Xay)

Snan = 2 2h LS )T (X22)s (X, V) {|9(X, V)| < A}

Toen = n22h V2 L(E2) (X22y0 (X, V) {|g(X,Y)| > An}

for all z € X, h € H,, and some sequence A, — oco. Theorem 1 applies to the bounded piece,

Sheh, as long as A, is not too large; we look for the largest possible A,,, in order to make T, as

small as possible.

(a) Convergence of E,Snzn- The classes {A-1g(-,){|g(-,")] < A,}} are trivially uniformly
well-covered (each set has only one element), so by Lemmas 6 and 1(d), the classes {A,1S,.n : 7 €

X,h € H,} (where S, is treated as a function of X and Y) are uniformly well-covered. Also
B(AT Sun)? < A7t [ L(22) (4520 ) f () d
=AY / L(t)?" t**n(z + ht) fx (z + ht) dt
= Oy (87%n7)

since fx and 7 are bounded, and L is bounded with compact support. So for Theorem 1 choose
62 = A72nr, for any T, — 0o, and to satisfy nd2/logn — oo, let A, = n{1t1/2/(log n)}/2. Then

Theorem 1 with a,, =1 gives

AYE,Spuh = AT ESon + ou (A2 n21,)  as.

or EnSnzh = ESnan + oU(n(l_l)/z(log n)l/zTn) a.s.
Since this holds for all 7,, — oo,

E,Snzh = ESnan + OU(n(l_l)/Q(log n)1/2) a.s. (3.2)

(b) Convergence of E,Tp.n. Let Z = g(X,Y). By hypothesis, P(|Z| > z) < Cz~ for all z

and some a > 2. Let p = a — € for some small ¢ > 0; then E|Z[|P = p [2P7'P(|Z] > 2)dz <



pC [ 29 € 1279 dz < 0o. Use Holder’s inequality:

sup |E'nTna:h - ETna:h|
z,h

g En sup |Tn:1:h| + FE sup |Tna:h|
z,h z,h

= (B + B)n? sup b IL(A2) 25211 Z{12) > Ay}
z,h
<a VP (sup |L[") (B, + B)|ZI{|Z] > An}

<o P(sup L) [(Ba + B)ZP)F - [Pt PY{1Z] > AT
< N[(P. + P){|Z] > An}}p%l a.s.

p—1
<N[[(Pn = P){|Z] > An}| +2P{|Z] > An}] P (3.3)
for large n and some N > 0, since E,|Z|P — E|ZJP < oo a.s.

For Theorem 1, E({|Z| > A,}?) = P{|Z] > A,} = O(A,*) = On2/2/1ogn)~*, but we
cannot choose 62 = (n(!*2/2/logn) 2, since then o > 2/(1 + 7) implies ndz/logn — 0. The
smallest allowable 6, is §2 = 1,n logn, for any 7, — oo. This and o, = 1 in Theorem 1
give |(P, — P){|Z| > A,}| = o(m,n~'log?n) a.s. for any 7, — oo, or (P, — P){|Z| > A,}| =
O(n~'log?n) a.s. Insert this expression into (3.3) and simplify to get

sup | EnThoh — ETpen| = O(n ™ log? n)t=1/0+0() 55, (3.4)
z,h

(¢) Convergence of E,R, .. Comparing (3.2) and (3.4), we can show that the error bound
for T,zn is smaller than that of S, if and only if @ > 2/(1 + ). This is true by hypothesis,
80 sup,  |(En — E)Rpzn| = O(sup,  [(En — E)Snznl|) = O(n=Y2(logn)/?) a.s. Multiply by

n~2/2h=1/2 to get the result. [
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