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ABSTRACT 

The Chinese Stock Market encountered its largest bubble from early 2006 to 

late 2007, and then crashed to the ground in mid 2008. On contrary to the bubbles in 

developed countries, the sky-rocketing phenomenon of the Chinese stock index in a 

very short period could not be fully explained by the rational bubble theory. In this 

paper, I examine both theoretically and empirically the “Greater Fools Theory”, in the 

scope of irrational bubble theory. The result suggests that the Greater Fools Theory 

should be credited for this bubble in China. The theory part of this thesis presents an 

intuitive mathematical model to show the consistency of Greater Fools Theory to 

agents’ behavior in reality. The empirical part of this paper adopts a traditional factor-

pricing model, the APT model, to show the explanation power of greater fools proxies. 
 



 

iii 
 

 

BIOGRAPHICAL SKETCH 

Lin Sun was born on November 3, 1985 in Tianjin, China to Shouping Sun and 

Jiakang Sun. He is the only son of the family. 

He resided in Tianjin for 15 years and then moved to Beijing in 2001. He 

graduated from Peking University High School in 2004. Lin firstly matriculated into 

Tsinghua University, Beijing in 2004, majoring in Economics. One year later, Lin 

followed the family to move to Hong Kong. And hence he transferred into the 

University of Hong Kong, majoring in Economic and Finance. 

Lin has been exchanged to Seifu High School, Osaka, Japan in 2003. Lin has 

also been exchanged out to University of Edinburgh, UK in 2007. Lin accumulated 

working experience from internships in ABN-AMRO, J.P. Morgan and ING Bank. He 

has visited many countries and has taken part in broader varieties of international 

meetings and events. 

Lin began his studies at Cornell University in the pursuit of a MSc. degree in 

the fall of 2008. After successful receiving the MSc. degree, he continued to study 

toward a PhD. degree from the fall of 2010. 
  



 iv 

ACKNOWLEDGMENTS 

Prof. Calum Turvey, my advisor, deserves many thanks for his constructive 

guidance and unreserved help throughout this study. Similarly, I am also thankful to 

my committee member, Dr. Vicki Bogan for her advices and helps. 

I would also like to thank other professors in Dyson School of Applied 

Economics and Management, Johnson School of Management and the Department of 

Economics who have taught me during the past two years: Prof. Richard Boisvert, 

Prof. David Just, Prof. Ming Huang, Prof. David Easley, Prof. Lawrence Blume and 

Dr. Hazem Daouk. 

Their instructions are inevitable in the growth of my knowledge and skills. I 

am also thankful to the graduate coordinator Linda Morehouse. She has provided 

countless helps since the first time I came to the department.  

Finally, I would like to dedicate this thesis to my parents, Jiakang Sun and 

Shouping Sun. 

 



 v 

TABLE OF CONTENTS 

Biographical Sketch ....................................................................................................... iii 

Acknowledgment ........................................................................................................... iv 

Table of contents ............................................................................................................ v 

List of figures ............................................................................................................... vii 

List of tables ................................................................................................................ viii 

Chapter 1 - Introduction ............................................................................................ - 1 - 

Chapter 2 - Background of Chinese Stock Market .................................................... - 5 - 

2.1. Glorious Past ................................................................................................... - 5 - 

2.2. Fading Years .................................................................................................... - 5 - 

2.3. First Issuance and Establishment of Stock Exchanges .................................... - 5 - 

2.4. Market Development ....................................................................................... - 7 - 

2.5. “No” Dividends Policy .................................................................................... - 9 - 

2.6. Banned Short Selling ..................................................................................... - 10 - 

2.7. Summary ........................................................................................................ - 11 - 

Chapter 3 - Literature Review ................................................................................. - 12 - 

3.1. Modern Assets Pricing Theory ...................................................................... - 12 - 

3.1.1. Markowitz’s Portfolio Theory .................................................................... - 12 - 

3.1.2. Tobin’s Separation Theorem ...................................................................... - 13 - 

3.1.3. Capital Assets Pricing Model ..................................................................... - 14 - 

3.1.4. Arbitrage Pricing Theory Model ................................................................ - 16 - 

3.2. Explanations of the Stock Bubble ................................................................. - 18 - 

3.2.1. Rational Expectation Bubble Theory ......................................................... - 19 - 

3.2.2. Irrational Bubble Theory ............................................................................ - 23 - 

3.2.2.1. Feedback Theory of Speculative Bubbles ............................................... - 23 - 

3.2.2.2. Herding Behavior .................................................................................... - 25 - 

3.2.2.3. Noise Trader Theory ................................................................................ - 26 - 



 vi 

Chapter 4 - Methodology ......................................................................................... - 31 - 

4.1. What is Greater Fools Theory? ...................................................................... - 31 - 

4.2. A Simple Mathematical Proof ....................................................................... - 33 - 

4.2.1. Optimal Duration to Hold A Stock ............................................................. - 34 - 

4.2.2. Net Expected Returns for Holding a Fixed Period ..................................... - 35 - 

4.2.3. Net Expected Return and Convergence Condition ..................................... - 36 - 

4.2.4. Heterogeneous Beliefs of Investors ............................................................ - 38 - 

4.2.5. Remarks ...................................................................................................... - 41 - 

4.3. The Factor Model .......................................................................................... - 42 - 

Chapter 5 - Empirical Result ................................................................................... - 46 - 

5.1. The Data Source ............................................................................................ - 46 - 

5.2. Summary Statistics ........................................................................................ - 46 - 

5.3. OLS Estimates ............................................................................................... - 48 - 

5.3.1. Autocorrelation and Heteroscedasticity Test .............................................. - 50 - 

5.3.2. Stability Test ............................................................................................... - 53 - 

5.3.3. Non-linear Regression ................................................................................ - 55 - 

5.3.4. Redundant Variable Test ............................................................................ - 57 - 

5.3.5. OLS Remarks ............................................................................................. - 58 - 

5.4. AR-IGARCH-M Model ................................................................................. - 59 - 

5.4.1. Stationarity and Unit Root Test .................................................................. - 59 - 

5.4.2. Model Construction .................................................................................... - 60 - 

5.4.3. AR-IGARCH-M Estimates ........................................................................ - 65 - 

5.5. Economics Explanation ................................................................................. - 68 - 

Chapter 6 - Concluding Remarks ............................................................................ - 73 - 

Bibliography ............................................................................................................ - 75 - 

 



 vii 

LIST OF FIGURES 

Figure 1 Chinese Stock Market Development ........................................................... - 9 - 

Figure 2 Sensitivity of the Convergence Condition ................................................. - 38 - 

Figure 3 The Process of Greater Fools Theory ....................................................... - 42 - 

Figure 4 Actual, Fitted and Residual Graph ........................................................... - 49 - 

Figure 5 Serial Correlation Test I: Correlagram of Residuals and Q-Statistics .... - 51 - 

Figure 6 ARCH Test I: Correlagram of Residuals Squared and Q-Statistics ......... - 52 - 

Figure 7 Stability Test I: CUSUM Test and CUSUM Squares Test ........................ - 54 - 

Figure 8 Non-Linear Model Test: Scatter Graphs and Nearest Neighbor Lines .... - 56 - 

Figure 9 Actual, Fitted and Residual Graph ........................................................... - 67 - 

Figure 10 Serial Correlation Test: Correlagram of Residuals and Q-Statistics ..... - 67 - 

Figure 11 Heteroscedasticity Test I: Correlagram of Residuals Squared and Q-

Statistics ................................................................................................................... - 68 - 



 viii 

LIST OF TABLES 

Table 1 Summary Statistics of Raw Series .............................................................. - 47 - 

Table 2 Summary Statistics of Transformed Series ................................................. - 48 - 

Table 3 OLS Estimates ............................................................................................ - 49 - 

Table 4 Serial Correlation Test II: Breusch-Godfrey ............................................. - 51 - 

Table 5 Heteroscedasticity Test II: ARCH LM Test ................................................ - 52 - 

Table 6 Stability Test II: Chow Breakpoint Test ..................................................... - 55 - 

Table 7 Redundant Variable Test ............................................................................ - 58 - 

Table 8 Augmented Dickey-Fuller Unit Root Test .................................................. - 60 - 

Table 9 Model Selection: AR(x) structures comparison .......................................... - 63 - 

Table 10 Model Selection II: GARCH(q,p) structures comparison ........................ - 64 - 

Table 11 Model Selection III: GARCH-M structures comparison .......................... - 64 - 

Table 12 AR(1)-IGARCH(2,1)-M Estimates ............................................................ - 66 - 

Table 13 Heteroscedasticity Test II: ARCH LM Test .............................................. - 68 - 
 

  



 - 1 - 

CHAPTER 1 

INTRODUCTION 

The so-called bubble, a phenomenon that assets prices deviated from its 

intrinsic values based on market fundamentals, has intrigued economist for a long 

time. What makes the bubble and crash phenomenon so problematic is that this pattern 

in financial market prices is widely considered harmful for the allocation of 

investment capital. Market prices form the basis for the allocation of investment 

capital to its most efficient uses. When the market prices deviate from the right 

measure of underlying value, it will cause a misallocation of available resources for 

the economy. That is the very reason that we should study the bubble and crash 

phenomenon. And hopefully we can help to reduce the frequency of such phenomenon 

by gaining a better understanding of it. 

Economists usually hold different views about stock bubbles. One group 

believes that the price of an asset should simply equal its discounted future cash flows, 

and reflect the market fundamentals of a company. These supporters assert the 

financial market is always in equilibrium and bubbles like Tulip Mania were described 

by Garber (1989) as unusual moves in the fundamental value. They argue any 

deviation from this fundamental value should be corrected by some sophisticated 

arbitrageurs in an efficient market. Gürkaynak (2008) reports that “for each paper that 

finds evidence of bubbles, there is another one that fits the data equally well without 

allowing for a bubble. We are still unable to distinguish bubbles from time-varying or 

regime-switching fundamentals, while many small sample econometrics problems of 

bubble tests remain unresolved.” Such statement is quite representative in this camp. 

Indeed, the supporters of this camp deny the existence of bubble, not only because 
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they are the believer of the fundamental value, but more importantly because they fear 

the difficulty of testing it.  

A second group believes that the rationality of both behavior and future 

expectations could also imply a price deviation from its fundamental value. Such 

bubble can occur even when the traders act rationally and have rational expectations. 

The bubble today is simply a justification and realization of a higher bubble tomorrow. 

A group of macroeconomists, including Tirole (1982), Blanchard and Watson (1983), 

were the first to thoroughly formalize the possibility of the so called “Rational Bubble 

Theory”, finding that dynamic model of the price level could have indeterminate 

explosive solution even if the agents have rational expectations. Rational Bubble 

Theory makes a large step further towards the understanding of the bubble 

phenomenon, but it is not the end of the road. Rational bubble theory cannot survive in 

the case that agents have adaptive expectation or the case that some market limits, 

including limited life of assets, limited personal wealth and finite number of market 

participants, exists. 

The last group believes that a market bubble is caused by some irrational 

investors in the market. Such irrationality is the consequences of agents’ psychological 

and behavioral factors. This group supports the so-called “Irrational Bubble Theory”. 

Influential works include Fashion Herding Theory by Shiller and Fisher (1984), 

Feedback Loop Theory by Shiller (1990) and Noise Trader Theory by Long, Shleifer 

et al. (1990). Their theories are shifting away from the rigorous rational bubble works 

of those macroeconomist, but are more in line with the cognitive behaviors of the 

investors in the market. 

Due to the complex nature of the stock market bubble, it is not easy to simply 

attribute the bubble to any single side of the opinions. Hence, I vote to study bubble 

and crash in a more flexible context. By the term of “flexible”, I mean we should 
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really think out of the box and combine edges of different approaches. First, I will 

study the phenomenon in an equilibrium model, just like the Rational Bubble Theory. 

It is because the steady state market is the most representative and is much easier to 

characterize. Second, we have to find a theory that fits zealot investors’ cognitive 

behavior during a bubble, just like the Irrational Bubble Theory. The Greater Fools 

Theory, an old but interesting concept, catches me by its rich intuition and less 

assumption constraints. It is an equilibrium model, but it doesn’t require anything on 

the preference of agents. All it requires is the current fool holds a belief that next fool 

will buy the stock over at a higher price. It vividly describes a populous investors’ 

trading strategy during a stock market bubble. 

Now I come to the data problem. Bubble is still relatively rare event. They 

seldom recur in the same country or market sector within the same generation of 

participants, so we have to carefully select the data we will study with. in the bubble 

happened in which country and sector should I choose? Is the US stock market a 

suitable one? I don’t think the answer is positive. First, US stock market could be 

largely explained by the Rational Bubble Theory as West (1987), Flood and Hodrick 

(1990) tested. Second, many trading activities in US nowadays are now conducted 

through computational trading program. So the market suffers far more less influence 

from one trading idea (the Greater Fool Theory) but more from different trading ideas 

that opposite each other. Third, US stock market has short-selling mechanism, so it is 

easier for arbitrageurs to short and trade against a bubble. On the contrary, Chinese 

stock market seems like natural laboratory for such study, because of the poorly 

educated investors, speculative atmosphere and banned short-selling environment. 

Besides, some researchers, like Chan, McQueen et al. (1998), has tested and generally 

rejected the validity of Rational Bubble Theory in Asian markets. Thus, as an 

alternative to the Rational Bubble Theory and a complement to the existing Irrational 
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Bubble Theory, this thesis investigates the Greater Fools Theory to study the bubble 

phenomenon in China. 

To contribute to the line of literatures on irrational bubble theory, this paper 

innovates on the Greater Fools Theory in Chinese stock market on several fronts. First, 

a series of properties is derived from the basic mathematical expression of the Greater 

Fool Theory by Telser (2010). These properties are generally in line with observable 

investors’ behavior. Second, unlike previous irrational bubble theory, this Greater 

Fools Theory is empirically tested, using greater fools proxies. Third, I apply a good 

econometric practice by using an AR-IGARCH-M hybrid structure to derive a very 

satisfactory result.  

The rest of the thesis is organized as follows. Chapter II provides a background 

to the Chinese stock market. In Chapter III, I will review the main categories of 

literature that try to explain stock market and other asset bubbles and in this context 

provide an overview of assets pricing models. I will introduce the methodology and 

provide mathematics and test the model of the Greater Fools Theory in Chapter IV. 

Empirical result will be reported and interpreted in Chapter V. Chapter VI summarizes 

and concludes the thesis. 

  



 - 5 - 

CHAPTER 2 

BACKGROUND OF CHINESE STOCK MARKET 

2.1. Glorious Past 

Before 1949, Shanghai was a major banking and financial center in Far East 

with a stock market capitalization similar to that of Tokyo and considerably larger 

than that of Hong Kong. So powerful was the Shanghai Stock Exchange (“SSE”) that 

any fluctuation of it between 1919-1949 had a huge influence on other world-class 

financial markets. And in fact, Shanghai stock exchange was once believed to the 

world’s third largest after New York and London, according to an article in Shanghai-

Investment.com (2000). 

2.2. Fading Years 

After the People’s Republic of China (PRC) was established in 1949, the 

government strictly controlled virtually all channels of investment by the principle of 

communism. Prior to 1978, it was the state owned banks in China that controlled the 

entire financial system under social planner’s commands. At that time, financing were 

conducted through the direct grant of the state budgetary fund or the government 

allocated bank credits. The official process that allocated investment across regions 

and industrial sectors was often objective and bureaucratic. In many cases, the 

allocation caused inefficient use of resources. A stock market is simply not necessary 

to exist in such a centrally planned economy.  

2.3. First Issuance and Establishment of Stock Exchanges 

The Chinese government started its reform in 1978 after Chairmen Mao died 

two years earlier. To release productivity from regulatory and political constraints and 

to provide incentives to the employees of State Owned Enterprises (SOEs), China 

launched its shareholding reforms in the early 1980s. Accompanying this reform, there 
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was an outbreak of share issuance by SOEs or collective companies to bring 

shareholdings to private investors and its employees. On July 8th, 1983, Shenzhen 

Bao’An Investment restructured itself into a shareholding company and issued stocks, 

the first stock after the founding of the People Republic of China, on a private 

placement basis to the public. According to Green (2004), those shares had been 

traded illegally on the factory floor or on the streets outside the factory, since a ban on 

share trading had not been lifted. The popularity of the street trading called for a 

formal platform for shareholders to trade. On September 26, 1986, the first over-the-

counter (OTC) trading post opened in Shanghai to meet investors’ demand of 

secondary market. 

The inconveniency of OTC trading created an exploding demand for stock 

exchanges amongst investors. In response to meet this demand, the Shanghai Stock 

Exchange (SHSE) and Shenzhen Stock Exchange (SZSE) were established by the 

government on December 19 1990, and December 1 1990, respectively. Their 

establishment also replaced the paper based trading system with a computer aided 

trading system. On Nov 8th, 2009, a third stock exchange called ChiNext was 

launched in Shen Zhen. 

ChiNext1

1998

 offers a new capital platform tailor-made for the needs of enterprises 

engaged in independent innovation and other growing venture enterprises. It is often 

referred as the Chinese version of “NASDAQ”. To be noted, all three stock exchanges 

operated under an auction market environment without a specialist or market maker. 

Thus, according to Hertz ( ), liquidity is not guaranteed, trading may be frequently 

ceased, and manipulation may be widely spread without the presence of a market 

maker in SSE. 

                                                 
1 Source: http://www.szse.cn/main/en/ChiNext/aboutchinext/ 
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2.4. Market Development 

Since its establishment in 1990, the Chinese stock market has grown at a 

phenomenal pace: The number of listed stocks In Shanghai and Shenzhen Exchange 

increased from 13 in 1991 to 1,644 by the end of April, 2009, and the aggregate 

market capitalization rose from US$0.85 billion to nearly US$2,480 billion during the 

same period.2

Before August 1992, there was no consensus within the central government to 

establish a regulator in the stock market. However, the riot in Shenzhen in August, 

1992 triggered by an extremely over-subscribed IPO (people went on the street 

because they couldn’t even buy one share of the issued stock) put the creation of a 

regulator on the agenda of the government. Hence two regulators were set up back in 

1993: The China Securities Regulatory Commission (CSRC) and the State Council 

Securities Committee (SCSC). These are consolidated in 1998 to get the present day 

CSRC. In March 2000, the China Securities Depositary and Clearing Company 

(CSDCC) was established as the central securities clearing company. Currently, the 

Chinese stock market consists of one regulator, three stock exchanges, one clearing 

company, and many listed companies. 

 In terms of market capitalization, the Chinese stock markets are now the 

second largest in the Asia-Pacific region after Japan, and are ahead of such major 

markets as Australia, Hong Kong and Korea. Considering that China has one of the 

fastest growing economies in the world and, further, that the government is committed 

to continuous deregulation and liberalization, the rapid development of Chinese stock 

markets is likely to continue into the foreseeable future.  

By far, the Chinese stock market had experienced seven major bull/bear 

circles. The first bull market started in December 1990, ended in May 1992. This was 

widely regarded as the “Stock Fever” and such fever has been vividly described and 
                                                 
2 Source: http://www.sse.com.cn/ and http://www.szse.cn/ 
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carefully analyzed by Hertz (1998). During this period, the number of listed 

companies increased from 8 to about 50, while the Shanghai composite index soured 

from 96.05 to 1,429, implying a 1380% increase. After May 1992, the index crashed 

to 386 in half a year, losing 73% of its value. The last bull/bear flip-over happened 

between Jan 2006 to May 2008. The Shanghai composite index sky-rocketed from 

1,161 in Jan 2006 to 6,124 in October 2007, increasing for more than 400% in 22 

months and then it dramatically fell to less than 3,000 in May 2008, which was far 

earlier than the Global Financial Crisis of 2008-2009.  

The following graphs show the recent performance of Chinese Stock Market 

by examining its market capitalization and turnover.3

  

 They indicate that Chinese stock 

markets expanded aggressively after 2006. From the graphs, we can observe that 

Chinese investors are very sentimental in their trading pattern. When the market is 

bullish, Chinese investors tend to trade more and their turnover is extremely high and 

vice versa when the market is bearish. In a mature market, the turnover of the 

investors should be quite stable, since their trading pattern is mostly determined by the 

institutional investors who hold the stocks for a longer time horizon.  

                                                 
3 Source: People Bank of China 
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Figure 1 Chinese Stock Market Development 
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stock would be easily calculated under the principle of discounting cash flow and all 

that investors cares is the future profitability of one company. And such profitability 

could be examined and predicted by many financial analysts behind those securities. 

Although brokers’ report is not impeccable, at least it would build the cornerstone of 

the stock price. On the contrary, if a company chose to ignore dividends issuances, 

investors’ only return would be from the price appreciation, which heavily suffers 

from market sentiment, manipulation and investors’ taste. In the case that non-

dividend policy dominates the corporate world, stock market would become more 

volatile than ever, and the speculation power would find it easier for them to play 

around in such a market. Indeed, most Chinese investors have traded speculatively 

with very short holding periods. With round trip trading costs approaching 1% of the 

total transactions, the average annual turnover during the bull time roughly exceeded 

12 times4

2.6. Banned Short Selling 

! 

The Chinese stock market has no history of short sales. However, in 2007, the 

Chinese government, in an effort to increase the types of financial instruments 

available to market participants, considered introducing short selling to the market. As 

of 2009, the only short selling in the Chinese stock market occurs through the 11 

brokerage firms that are part of the trial program. By far, there has not been any 

further announcement by the commission to make short selling a permanent feature of 

the Chinese stock market. And collectively, these 11 brokerage firms only contribute 

tiny trading volume to the market and hence their shorting activity could be easily 

ignored in front of any true market manipulators. 

In a stock market that short selling is banned, fundamentalist who believed in 

the mean reversion of stock prices towards a fundamental value would find no place to 
                                                 
4 Source: Prof. Ming Huang’s Lecture Notes 
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stay. And thus deviation from the fundamental value would be difficult to correct. This 

is the one of the very reasons that Greater Fools Theory seems quite fit for China. 

2.7. Summary 

This chapter has provided a brief overview of the historical development of 

Chinese stock exchange. The volatility of the market, set against huge swings in Bull-

Bear market, wide seemingly inexplicable rises and falls, brings into question to 

market efficiency theory and rational bubble theory as reasonable explanations for 

market behavior. Against this backdrop, the next chapter reviews the historical 

development of portfolio choice and asset pricing theory that give rise to the current 

view of the existing bubble theories against which the existence of a Greater Fools 

Theory is tested.  
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CHAPTER 3 

LITERATURE REVIEW 

3.1. Modern Assets Pricing Theory 

3.1.1. Markowitz’s Portfolio Theory 

Modern finance theory started from Markowitz’s (1952) portfolio selection 

theory, which predicts how individual investors should allocate their assets by 

balancing the risk and return tradeoffs. His theory mainly assumes investors are risk 

averse and investors’ risk preference can be described by a quadratic utility function, 

where only expected return and volatility matters. Investors are assumed to only care 

about the 1st moment of their utility – the mean and the 2nd moment of their utility – 

the variance. All higher moments, like skewness or kurtosis, are ignored. In his model, 

the expected return from the portfolio as a whole is: 𝐸 = ∑ 𝑋𝑖𝑢𝑖𝑁
𝑖=1

5 and the variance 

of the portfolio is: 𝑉 = ∑ ∑ 𝑋𝑗𝑋𝑖𝜎𝑗𝑖𝑁
𝑖=1

𝑁
𝑗=1

6. Markowitz notes that it is not a security's 

own risk that is important to an investor, but rather the contribution the security makes 

to the variance of his entire portfolio. And such contribution is determined by this 

security’s covariance with all the other securities in his portfolio, which is 𝜎𝑗𝑖 in his 

model. By combining different assets whose returns are not correlated, the total 

variance of the portfolio could be reduced. Markowitz also shows that if we have 

collected all the return, covariance information we needed, then for any level of risk, 

the efficient frontier identifies a point that is the highest returning portfolio in its risk 

class. By the same token, for any level of return, the frontier identifies the lowest risk 

portfolio in that return class. These portfolios form the efficient frontier, and 

                                                 
5 𝑋𝑖 is the percentage of investors’ holding in ith asset; 𝑢𝑖 is the expected return of ith asset. 
6 𝜎𝑗𝑖 is the covariance between the jth asset and the ith asset. 
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Markowitz shows that for any investor that follows his assumption, it is economically 

efficient to limit his/her choices to portfolios that lie on this frontier. 

3.1.2. Tobin’s Separation Theorem 

Tobin (1958) develops the modern portfolio theory one step further by 

showing how to identify which efficient portfolio should be held by an individual 

investor. The key “separation theorem” describes that in a world with one safe asset 

and a large number of risky assets, portfolio choice by any risk-averse investor can be 

described as a choice between the safe asset and a market portfolio of risky assets, 

which will be accepted by all investors. The proportion of the risky shares in this 

market portfolio of risky assets is the same for all risk-averse investors. The degree of 

risk aversion only determines the shares of the safe asset and the uniform portfolio of 

risky assets in the total portfolios for each investor. Mathematically, Tobin’s 

“Separation Theorem” can be concluded as below: The market portfolio of risky 

assets, which equals to 𝑓 = 𝑉−1𝑚 1𝑇𝑉−1𝑚⁄ 7, could be found by maximizing the 

Sharpe ratio, which is 𝑓𝑇𝑚 �𝑓𝑇𝑉𝑓⁄ . However, the fraction of wealth invested in the 

risky assets, which equals to 𝛼−1𝑉−1𝑚, is individual specific, because of the risk 

aversion factor in the denominator. The fraction of wealth invested in the risk-free 

asset, which equals to 1 − 1𝑇𝛼−1𝑉−1𝑚,  is just the remaining portion of the total 

wealth. Graphically, Tobin indicates that a line drawing from the risk-free asset and is 

tangent with the Mean-Variance (MV) frontier is the Capital Market Line (CML). The 

tangent point lying on CML and MV frontier illustrates the market portfolio. 

Individual’s indifference curves that are tangent with the CML could decide the 

optimum proportions of the risk-free assets and the market portfolio. 

                                                 
7 "𝑚" is the vector of mean excess returns on the risky assets and that "𝑉" is the co-variance matrix. "𝑓" 

denotes a portfolio of risky assets, in which "𝑓𝑖" is the fraction of wealth invested in the ith asset, 

normalized so that 𝑓𝑇1 = 1. "𝛼" is the relative risk aversion. 
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3.1.3. Capital Assets Pricing Model 

Building on the earlier work of Markowitz on diversification and Tobin’s 

“Separation Theorem”, Treynor (1961, 1962), Sharpe (1964), Lintner (1965) and 

Mossin (1966) developed the so called Capital Asset Pricing Model (CAPM). The 

CAPM mainly studies how investors’ asset demand determines the relation between 

assets’ risk and return in market equilibrium. CAPM assumes that all investors have 

the mean-variance preference, and more importantly they hold a homogeneous belief 

about the value of mean and variance. Based on Tobin’s idea of market portfolio, 

CAPM concludes that any individual stock can be priced by the market portfolio as 

the formula below: 𝐸�𝑅�𝑖� − 𝑅𝑓 = 𝛽𝑖𝑚[𝐸�𝑅�𝑚� − 𝑅𝑓] ∀𝑖  where 

𝛽𝑖𝑚 = 𝐶𝑜𝑣(𝑅�𝑖, 𝑅�𝑚) 𝑉𝑎𝑟(𝑅�𝑚)⁄ . For the first time their theory clearly prescribes that it 

is the individual stocks’ co-movements with the overall markets that determine stocks’ 

expected returns (thus the stock prices). In other words, it is the systematic risk that 

matters in asset pricing. Unlike Sharpe and Lintner’s CAPM, which assumes unlimited 

borrowing or lending at a risk-free rate, Black (1972) relax their assumption such that 

a riskless asset does not exist, but a substitute asset whose return are uncorrelated with 

the efficient portfolios can replace it. The investors behave slightly differently than 

before: they hold different efficient (“efficient” here means mean-variance efficient) 

portfolios, and the combination of their efficient portfolios creates the market portfolio 

and is also lying on the mean-variance frontier. The so called Zero Beta CAPM by 

Black (1972) can be described by the formula below: 

𝐸�𝑅�𝑖� − 𝐸�𝑅�𝑧� = 𝛽𝑖𝑚[𝐸�𝑅�𝑚� − 𝐸�𝑅�𝑧�] ∀𝑖  where 𝛽𝑖𝑚 = 𝐶𝑜𝑣(𝑅�𝑖, 𝑅�𝑚) 𝑉𝑎𝑟(𝑅�𝑚)⁄ . 

𝐸�𝑅�𝑧� is called the zero-beta rate, which is the expected return on assets whose returns 

are uncorrelated with the market return. If CAPM is true, the model would have 

important implications for problems like capital budgeting, portfolio selection, cost-

benefit analysis and any problem that requires the implementation of the relation 
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between risk and return. To justify the legitimacy of CAPM, many researchers started 

to test the model. 

The initial test of the CAPM by Lintner (1965) was not successful. When 

average stock returns were plotted against betas of individual stocks, they found a lot 

of dispersion, and that the slope of the line was so flat that there was no realistic risk-

free rate to support such model. Black & Myron (1973) and Fama & MacBeth (1973) 

tackled the problem by sorting stocks into portfolios based on betas. Black, Jensen, & 

Scholes (1972) test the CAPM by investigating whether the intercepts of the cross-

sectional and time series regressions of excess return on market beta are zero. Fama & 

MacBeth (1973) followed another approach to examine the validity of CAPM model, 

by adding two additional explanatory variables to the cross-sectional regression: one is 

squared market beta and the other one is the residual variances from regressions of 

individual return on the market return. They used the squared beta to examine whether 

the relationship is linear. And they used residual variance to examine whether there 

are other measures of risk rather than the market beta that could help to explain the 

expected returns. Their result showed that both variables are not significant in 

explaining the returns. However, Roll (1977) challenged against the test of CAPM by 

making two statements. Firstly, based on pure mathematics, he showed that any mean-

variance efficient portfolio 𝑅�𝑝 can satisfy the CAPM equation such that 𝐸�𝑅�𝑖� − 𝑅𝑓 =

𝛽𝑖𝑝[𝐸�𝑅�𝑝� − 𝑅𝑓]. Secondly, a true market portfolio is unobservable; it contains all 

investment opportunities like bond, real estate, etc. Since previous tests use the stock 

market portfolio as a proxy for the true market portfolio, testing the CAPM equation is 

equivalent to testing mean-variance efficiency of stock market portfolio. Given that 

the stock market is assumed to be mean-variance efficient, testing the CAPM in this 

way is totally tautological. 
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3.1.4. Arbitrage Pricing Theory Model 

The Arbitrage Pricing Theory (APT) Model is largely motivated by the 

empirical failure of the CAPM. It is a multi-factor model that uses factor loading to 

explain stock returns. The APT was developed primarily by Ross (1973). It is a one-

period model in which every investor believes that the stochastic properties of returns 

of capital assets are consistent with a factor structure. Ross argues that if equilibrium 

prices offer no arbitrage opportunities over static portfolios of the assets, then the 

expected returns on the assets are approximately linearly related to the factor loadings. 

The factor loadings, or betas, are proportional to the returns’ co-variances with the 

factors. Unlike CAPM, which is an equilibrium model and derived from individual 

portfolio optimization, APT is a statistical model, which tries to capture sources of 

systematic risk. A mathematical formula of APT could be described as below: 

𝑟𝑖 − 𝐸(𝑟𝑖) = 𝑏𝑖1𝐹1 + 𝑏𝑖2𝐹2 + ⋯+ 𝑏𝑖𝑛𝐹𝑛 + 𝜖𝑖 ∀𝑖8. Almost from the inception of the 

APT, the choice of factors, number of factors and their interpretation has been hotly 

debated. One of the earliest empirical studies of the APT, by Roll & Ross (1980), uses 

factor analysis, a statistical technique that allows the researcher to infer the factors 

from the data on security returns. Their results indicate that there are four priced 

factors in the US stock market. The advantage of factor analytic techniques is that the 

factors determined from the data explain a large proportion of the risks in that 

particular dataset over the period under consideration. The drawback is that factors 

usually have no economic interpretation. An alternative to factor analytic techniques is 

to use observed macroeconomic variables as the risk factors. One of the first studies 

using observed factors was by Chen, Roll, & Ross (1986). Their argument is that at 

the most basic level we can imagine that some fundamental valuation model 

                                                 
8 𝐸(𝑟𝑖) is the ith asset's expected return; 𝐹𝑘, 𝑘 = 1, … , 𝑛 is the systematic factors; 𝑏𝑖𝑘 is the sensitivity of 

the ith asset to factor k; and 𝜖𝑖 is the ith risky asset's idiosyncratic random shock 
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determines the prices of assets. That is, the price of a stock will be the correctly 

discounted expected future dividends. Therefore the choice of factors should include 

any systematic influences that impact future dividends, the way traders and investors 

form expectations and the rate at which investors discount future cash flows. They 

find that US stock prices are significantly related to (1) changes in industrial 

production (GNP), (2) the spread between the yield on short-term and long-term 

government bonds, (3) the spread between low- and high-grade bonds, (4) changes in 

expected inflation, and (5) changes in unexpected inflation. However, the APT still 

has the testability problem as the CAPM. Shanken (1982, 1985) asserts that for 

individual securities the approximation implied by Ross' APT is so imprecise that it 

makes it impossible ever to test whether the APT is true or false. Furthermore, 

Shanken argues that since the expected return for any security or portfolio is related 

only approximately to its factor sensitivities, to get an exact pricing relationship, 

additional assumptions are needed. 

Although APT model has the similar testability problem as the CAPM model, I 

would still choose it as the factor assets pricing model in this paper, due to the 

following reasons. Firstly, APT is a multi-factor model, while CAPM is a single factor 

model. Confining systematic risk into a single “market portfolio” factor is not too 

compelling than decomposing the systematic risk into several meaningful factors. 

Secondly, APT requires no utility assumptions beyond monotonicity and concavity. 

On the contrast, CAPM requires a quadratic utility function, which is unlikely to be 

the case because of the higher order belief in greater fools’ decision making process 

and utility functions (please refer to the later part for the idea of higher order beliefs). 

Finally, because APT is based on a non-arbitrage condition it should hold for any 

subset of securities. On the contrast, CAPM has been criticized for a long time, 
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because of its dependence on a market portfolio of risky assets, which should be a 

world portfolio (that is not currently available) rather than the S&P 500. 

3.2. Explanations of the Stock Bubble 

What is a stock bubble? According to Kindleberger (2008) in the “The new 

Palgrave dictionary of economics”, he gave out a descriptive definition of bubble:  

“Bubbles are typically associated with dramatic asset price increases followed 

by a collapse. Bubbles arise if the price exceeds the asset's fundamental value. This 

can occur if investors hold the asset because they believe that they can sell it at a 

higher price than some other investor even though the asset's price exceeds its 

fundamental value.” 

People have studied bubbles for a long time. As early as 1841, the Scottish 

journalist Charles Mackay, in his book called “Extraordinary Popular Delusions and 

the Madness of Crowds”, proposed that crowds of people often behave irrationally to 

create bubbles. He mainly referred the Tulip Mania, along with the South Sea Bubble 

and the Mississippi Company scheme as his primary examples. Mackay's vivid book 

was popular among generations of economists and stock market participants.  

However, at the early stage of modern finance study, researchers who believe 

market is always efficient typically chose to ignore the stock bubble rather than 

actually analyzing it. When Fama (1965) discussed the random-walk behavior of the 

stock market, he expressed an idea that stock price shouldn’t deviated from its 

intrinsic value for two reason. First, he believed that some sophisticated traders can 

identify the situation when a price is running up its intrinsic value and prevent the 

bubbles from occurring by selling the stocks or shorting it. Second, once those astute 

chartists understood the nature of the dependencies in the series of successive price 

changes, they will be able to identify, statistically, situations where the price is 
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beginning to run up above the intrinsic value and thus erase the dependencies by 

selling the stocks or shorting it.  

The real study of stock bubble began by the rational bubble theory in the 1980s 

and was complemented by the irrational bubble theories in the 1990s. 

3.2.1. Rational Expectation Bubble Theory 

By the definition given by Blanchard & Watson (1983), rational expectation 

bubble is the rational deviations of the price from their fundamental values. They 

believed that rationality of both behavior and of expectation often does not imply that 

the price of an asset be equal to its fundamental value. 

They basically assume there are two types of assets in the market: one is the 

risk-free government bond; the other one is the risky stock. In the context of efficient 

stock market, investors (assumed to be risk neutral) would long stocks and short 

bonds, when the expected return of the stock exceeds the expected return of the bond. 

And hence the no arbitrage pricing condition should be satisfied and should be given 

by:  

 [𝐸(𝑃𝑡+1|𝐼𝑡) − 𝑃𝑡 + 𝐸(𝑑𝑡+1|𝐼𝑡)] 𝑃𝑡⁄ = 𝑟𝑓 9 (3.1)   

Rearranging the above formula, we will get the famous linear rational 

expectation difference equation: 

 𝑃𝑡 = 𝑎𝐸(𝑃𝑡+1|𝐼𝑡) + 𝑎𝐸(𝑑𝑡+1|𝐼𝑡) 10 (3.2)   

Given the assumption of rational expectation and that agents do not forget, the 

information set should have the following property that: 

 𝐼𝑡 ⊂ 𝐼𝑠, 𝑠 ≧ 𝑡 (3.3)  

By the property of the conditional expectation, we will have: 

                                                 
9  “𝑃𝑡” is the stock price at time t; “𝑉𝑡” is the true stock value at time t; “𝑑𝑡” is the dividends at time t;  

“𝑟𝑓” is the risk-free rate and it is constant over time. 
10 𝑎 = 1 (1 + 𝑟𝑓)⁄ ; 0 < 𝑎 < 1; “𝐼𝑡” is the information set, assumed common to all agents 
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𝐸(𝐸(𝑃𝑠+1|𝐼𝑠)|𝐼𝑡) = 𝐸(𝑃𝑠+1|𝐼𝑡) and 𝐸(𝐸(𝑑𝑠+1|𝐼𝑠)|𝐼𝑡) =

𝐸(𝑑𝑠+1|𝐼𝑡)  
(3.4)  

Now taking expectation of (3.2) with respect to information set 𝐼𝑡 , and 

incorporating the result of (3.4), we will have: 

 𝐸(𝑃𝑡+𝑘|𝐼𝑡) = 𝑎𝐸(𝑃𝑡+𝑘+1|𝐼𝑡) + 𝑎𝐸(𝑑𝑡+𝑘+1|𝐼𝑡), 𝑘 = 1,2,3 … (3.5)  

Substitute (3.5) into formula (3.2) and iterated to time T, we can have: 

 𝑃𝑡 = 𝑎𝑇𝐸(𝑃𝑡+𝑇|𝐼𝑡) + �𝑎𝑘𝐸(𝑑𝑡+𝑘|𝐼𝑡)
𝑟

𝑘=1

 (3.6)  

If we further assume the future stock price is bounded, we can have the 

transversality condition: 

 lim
𝑇→∞

𝑎𝑇𝐸(𝑃𝑡+𝑇|𝐼𝑡) = 0 (3.7)  

So the first term of (3.6) was eliminated and hence the only solution to (3.2) 

under transversality condition is: 

 𝑃𝑡∗ = 𝑉𝑡 = �𝑎𝑘𝐸(𝑑𝑡+𝑘|𝐼𝑡)
𝑟

𝑘=1

 (3.8)  

𝑃𝑡∗ is the present value of expected dividends and thus should be deemed as the 

fundamental value of the asset. However, 𝑃𝑡∗ is not the only solution to (3.2). Without 

imposing the transversality condition, differential equation (3.2) could have multiple 

solutions, and they could be generalized as: 

 𝑃𝑡 = 𝑃𝑡∗ + 𝐵𝑡  11 (3.9)   

Substitute equation (3.9) back into (3.2), we will have: 

 
𝑃𝑡∗ + 𝐵𝑡 = 𝑎𝐸(𝑃𝑡+1∗ + 𝐵𝑡+1|𝐼𝑡) + 𝑎𝐸(𝑑𝑡+1|𝐼𝑡)

= 𝑎𝐸(𝑃𝑡+1∗ |𝐼𝑡) + 𝑎𝐸(𝐵𝑡+1|𝐼𝑡) + 𝑎𝐸(𝑑𝑡+1|𝐼𝑡)   
(3.10)  

Deduct the original equation (3.2) from (3.10), and we will get: 

 𝐵𝑡 = 𝑎𝐸(𝐵𝑡+1|𝐼𝑡) (3.11)  

                                                 
11 “𝐵𝑡” is the bubble component at time t. 
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So 𝑃𝑡 in the form of (3.9) and (3.11) is the solution system to (3.2) without the 

transversality condition. (As we will discuss later, many follow-up works in the field 

of the rational bubble theory is to eliminate some implausible solutions by either 

mathematic condition or economic theories.) It tells us the current price of an asset 

reflects not only the fundamental value, but also the discounted price of the future 

bubble. And market participant would not earn excessive return, even with presence of 

a bubble. 

Now we want to know what property could 𝐵𝑡  have? Through iteration on 

(3.11), we will further get: 

 𝐵𝑡 = 𝑎𝑘𝐸(𝐵𝑡+𝑘|𝐼𝑡)  (3.12)  

Equation (3.12) is the simplest form of a bubble, and it is called “deterministic 

bubble” by Blanchard & Watson (1983). In this case, from time t to time t+k, the 

bubble must grow at the rate of 1/𝑎, or equivalently 1 + 𝑟𝑓, each period, in order to let 

the rational investors hold it. A further example given by Blanchard & Watson (1983) 

is that the “collapsing bubble” persists stochastically in each period only with 

probability of 𝜋 and bursts with probability of (1 −  𝜋). If the bubble continues, it has 

to grow in expectation at a rate of (1 + 𝑟𝑓)/𝜋 . This faster bubble growth rate 

(conditional on not bursting) is necessary to achieve an expected growth rate of 𝑟𝑓. 

The probability that this stochastic bubble lives for n periods converge to 0 as n grows 

large, so bubble can exist even though rational investors know they will eventually 

burst. 

Now back to the “deterministic bubble”, since 0 < 𝑎 < 1, when 𝑘 → ∞, taking 

limit towards (3.12) and we will get: 

 lim
𝑘→∞

𝐸(𝐵𝑡+𝑘|𝐼𝑡) = lim
𝑘→∞

𝐵𝑡/𝑎𝑘 = �+∞, 𝑤ℎ𝑒𝑛 𝐵𝑡 > 0
−∞, 𝑤ℎ𝑒𝑛 𝐵𝑡 < 0� (3.13)  

What is the implication of equation (3.13)? We can see a negative bubble 

cannot emerge since (3.13) implies that the asset price has to become negative in 
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expectation at some point in time (like time t+k). Once investors anticipate a negative 

price in the future (like time t+k), they would not short the assets and trigger the 

negative bubble in the first place (like time t). 

Blanchard and Watson’s theory formulate a basic picture of what a rational 

bubble looks like. It grows at a constant rate (maybe an increasing rate, if agents are 

risk averse) and a negative bubble would never happen. On the one hand, inspirited by 

their pioneering works, many researchers have proposed new types of rational bubbles 

like: Intrinsic Bubble by Froot & Obstfeld (1991), Periodically Collapsing Bubble by 

Evans (1991), etc. On the other hand, many researchers have put sufficient energy to 

reduce the size of the solution sets to the difference equation. Tirole (1982) showed 

that a positive rational bubble in equation (3.13) would not exist with constant number 

of asset holders and infinite time horizons; and Tirole (1985) shows that a rational 

bubble can arise in asset prices in a model with an infinite succession of overlapping 

generations of asset holders with finite planning horizons, as long as the growth rate of 

the economy is greater than or equal to the required rate of return. Diba & Grossman 

(1988) argue that negative rational bubbles cannot exist because it would imply that 

investors expect that the price of the asset will become negative at a finite future date. 

The rational bubble theory only describes the condition the bubble relies on to 

sustain itself and the scenario of how asset prices grow. It is incapable of capturing the 

subtle interaction between the bubble and the market participants. This contributes a 

huge disadvantage for it. Furthermore, rational bubble theory cannot survive in the 

case that agents have adaptive expectation, which is very likely to be true in China, or 

the case that some market limits, including limited life of assets, limited personal 

wealth and finite number of market participants, exists. Beside of these theoretical 

constraints, rational bubble theory in empirical test cannot coincide with rapid asset 

appreciation in a very short period, which is just what has happened in China. Thus, I 
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believe rational bubble theory would not be a plausible explanation to the stock bubble 

phenomenon in China. 

3.2.2. Irrational Bubble Theory 

When the price appreciation in the stock market is so intensive that it exceeds 

the reasonable explanatory range of the rational bubble theory, we should consider 

irrational bubble theory. Irrational bubble theory emphasizes the irrationality of the 

market participants and there are basically three influential and popular explanations 

in the irrational camp.   

3.2.2.1. Feedback Theory of Speculative Bubbles 

In the book of “Irrational Exuberance” by Shiller (2000), he provided a 

summary of the feedback loop theory, to investigate the mechanism of a speculative 

bubble. Feedback loop theory describes a phenomenon that initial price increase could 

lead to higher sequential prices, by feed backing the current price into the future prices 

through the assets demand function of the next period. 

There are two popular versions of the feedback theory. The first one assumes 

agents behave with adaptive expectation. In psychology, representativeness bias helps 

to explain why many investors seem to extrapolate price movements: investors see an 

investment with recent price increases as representative of longer-term successful 

investments. So if the current price increases, they will set current price as a reference 

point, and hence increase their expectations of future prices relative to it. The above 

example is a simple price-to-price feedback: investors modify their expectation of 

future price based on the current price. There are also lots of deviated forms of 

feedback theory stemming from adaptive expectations. For example, Akerlof (2009) 

mentioned the price-to-GDP-to-price feedback which conjectures that as the price of 

the stock market increase, investors start to feel they get wealthier and hence consume 

more than before; their consumptions impact positively on the GDP; investors 
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interpret the advance of the GDP as an evidence of improved economy rather than the 

consequence of a bubble, and hence they adjust upwards their expectation of price, 

which finally caused them to bid the price up further more. According to Akerlof 

(2009), the price-to-corporate earning-to-price is also a form of the adaptive 

expectation version. The only difference is that it traces the corporate earnings, instead 

of GDP, as an improving factor in the economy. Another popular version of the 

feedback theory assumes that a price increase could produce a positive feedback on 

investors’ confidence, and thus push them to heighten their demands for future stocks. 

This version is believed to be more fitting to the consistent price increase pattern, 

rather than a sudden price increase. The rationale behind this is that people build up 

their confidence slowly, and the confidence can only be established by a continuous 

sequence of successes.  

There is empirical evidence to support the feedback theory. For example, De 

Bondt (1993) studied 38,000 forecasts of stock prices and exchange rates by surveying 

peoples. He found that non-experts would most likely to expect past trends in prices to 

continue. It could be observed that they are optimistic in bull markets and pessimistic 

in bear markets. 

Feedback fits the reality better than the rational bubble theory. Firstly, it 

doesn’t limit itself to a constant bubble growth rate, but could accommodate a huge 

price increase in a short time, as long as the “enthusiasm-ness” in investors’ 

expectation is high. Secondly, unlike the rational bubble theory, feedback theory could 

predict a negative bubble: when people observed the negative price movement, they 

will adjust downwards their future expectations and hence push the stock market to a 

lower position. It is just a reverse direction of the standard statement. However, 

feedback theory didn’t explain the burst of the stock bubble very well. In Shiller’s 

book, he use the argument that “According to the adaptive expectation version of 
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feedback theory, we would expect a bursting of the bubble, since investors no longer 

think prices will continue to rise and therefore no longer see a good reason to hold the 

stocks.” Such argument is really weak and it didn’t give a plausible reason to us why a 

stock market could crash suddenly, like in one day, since investors adjust their 

expectation slowly. 

3.2.2.2. Herding Behavior 

From the prospective of human psychology, individuals tend to do what the 

group would do. The reason of this herding behavior has been given by psychologist 

from several angels: people may feel the social pressure of expressing an opposite 

opinion; or they trust the authority of some experts in the group, or they simply feel 

that when a large group of people reach agreement on a question, they are almost 

certainly right.  

As Shiller (2000) said in his book: “The (herding) behavior, although 

individually rational, produces group behavior that is, in a well-defined sense, 

irrational. This herdlike behavior is said to arise from an information cascade.” What 

Shiller said implies that imitating the behavior of other investors and disregarding his 

own information may be the best strategy for one investor. However, if everyone holds 

this kind of idea and reply on others’ decision, the group decision made by them may 

not be the most desirable one. It is because in this case they cannot make use of each 

other’s information, since they do not reveal their own information to others when 

they merely follow them. 

It should be noted that not only the weakly informed individual investors 

would suffer from the herding behavior, but also the professional investors would 

conduct similar behaviors. Their herding behavior doesn’t follow the similar 

psychological biases as the individual would do, but originated from a series of job 

security consideration and performance consideration. If a fund manager is losing 
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money while the others are making money, the fund manager’s job may be in danger. 

If a fund manager is losing money while the others are also losing money, there is 

more job security. So it could be beneficial for the job-concerned managers to follow 

the group behavior, not to beat the market, but merely to keep their jobs. Another 

herding scenario is that fund managers have to participate in the stock bubble and 

follow the others, since there would be tremendous performance pressure if they 

didn’t. Most funds set the average fund return as a benchmark of their manager’s 

performance. So if a fund manager ignores the opportunity of bubbles, his 

performance will be lagging behind the others in short run, and he will very likely be 

fired, (although he is surely right in the long run). 

3.2.2.3. Noise Trader Theory 

Long, et al. (1990) has shown a noise trader model, to explain the pricing 

bubble with the presence of noise traders and sophisticated investors in the market. 

They defined the noise trader as the type of trader that falsely believes that they 

learned some pseudo-signals of a stock and irrationally trade stocks based on such 

pseudo-signals. They adopted the overlapping generations model of Samuelson (1958) 

with the above two types of agents that each lives for two periods. In period “t”, there 

would be no consumption and no bequest for both agents, the only thing they are 

allowed to do is to choose an optimal portfolio to hold. In period t+1, their portfolios 

could be sold at a certain price and the wealth would be transformed into consumption 

in this period. 

There are two asset classes that both pay r dividends at time t+1.  The risk-free 

asset called s is convertible to equivalent units of goods at any time. S is in perfectly 

elastic supply and its price level is fixed at l. The risky asset called u is only tradable 

between traders at 𝑝𝑡 in time t. It can only be redeemed into consumption at 𝑝𝑡+1 in 

time t+1. U is not in perfectly elastic supply and thus its quality is normalized to one 
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unit. The noise trader is denoted by n and their proportion in the market is 𝜇; the 

sophisticated trader is denoted by i and their proportion in the market is 1 − 𝜇. These 

two types of traders will hold different beliefs on the distribution of 𝑝𝑡+1, and select 

their portfolios accordingly based on the principle of utility maximizing. They believe 

the misperception of the noise traders should be market-wide rather than idiosyncratic. 

Otherwise, arbitrageurs would easily eliminate such mispricing. Thus, they assumed 

noise trader’s misperception at time t about the expected price of the risky asset at 

time t+1 should be represented by an i.i.d. 12

They assumed the agents measure their utility by a constant absolute risk 

aversion function of wealth at time t+1, which is: 

 normal random variable 

𝜋𝑡: 𝜋𝑡~𝑁(𝜋∗, 𝜎𝜋2). 𝜋∗  reflects the average bullishness (or bearishness) of the noise 

traders, and 𝜎𝜋2 is the variance of noise traders' misperceptions. 

 𝑈 = −𝑒−2𝛾𝑤  12F

13 (3.14)  

Maximizing equation (3.14) is equivalent to maximizing the following 

equation, since the return is assumed to be normally distributed: 

 𝑤� − 𝛾𝜎𝑤2   13F

14 (3.15)  

Understanding this, we can write down the respective expected utilities that the 

sophisticated traders and the noise traders try to maximize below: 

 
𝐸𝑡�𝑈𝑖� =

𝐶0 + 𝜆𝑡𝑖 [𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)] − 𝛾(𝜆𝑡𝑖 )2�𝐸𝑡�𝜎𝑝𝑡+1
2 �� 14F

15 
(3.16)  

                                                 
12 independent and identically distributed 
13 𝛾 is the coefficient of absolute risk aversion. 𝑤 is the wealth at time t+1 
14 𝑤�  is the expected wealth at time t+1, and 𝜎𝑤2  is the one period ahead variance of wealth. 
15 𝐶0 is the fixed income at time t. 𝐸𝑡�𝜎𝑝𝑡+1

2 � = 𝐸𝑡{[𝑝𝑡+1 − 𝐸𝑡(𝑝𝑡+1)]2} is the variance of the price at 

time t+1. 𝜆𝑡𝑖  and 𝜆𝑡𝑛 are the holdings of risky assets for sophisticated traders and noise traders, 

respectively. 
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𝐸𝑡(𝑈𝑛) = 𝐶0 + 𝜆𝑡𝑛[𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)]

− 𝛾(𝜆𝑡𝑛)2�𝐸𝑡�𝜎𝑝𝑡+1
2 �� + 𝜆𝑡𝑛(𝜋𝑡) 

(3.17)  

As we can see, the only different between equation (3.16) and (3.17) is noise 

traders’ misperception term about the risky assets’ return. Taking first order 

derivatives of equations (3.16) and (3.17), we can get the optimal quantities of risky 

assets that each trader should purchase as below: 

 𝜆𝑡𝑖 =
𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)

2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �
   (3.18)  

 𝜆𝑡𝑛 =
𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)

2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �
+

𝜋𝑡
2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �

  (3.19)  

It should be noted that 𝜆𝑡𝑖  and 𝜆𝑡𝑛 can be negative, which means arbitrage is 

allowed in this model. Since the risky asset is not in elastic supply and its supply has 

been normalized to 1, we can set up the market clearing condition and plug equation 

(3.18) and (3.19) into it: 

 

(1 − 𝜇)𝜆𝑡𝑖 + 𝜇𝜆𝑡𝑛

= (1 − 𝜇)
𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)

2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �

+ 𝜇 �
𝑟 + 𝐸𝑡(𝑝𝑡+1) − 𝑝𝑡(1 + 𝑟)

2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �
+

𝜋𝑡
2𝛾𝐸𝑡�𝜎𝑝𝑡+12 �

�

= 1  

(3.20)  

Equation (3.20) contains two unknowns (𝑝𝑡 and 𝐸𝑡(𝑝𝑡+1)), and thus we can solve the 

equilibrium price of the risky asset, 𝑝𝑡, in terms of 𝑝𝑡+1: 

 𝑝𝑡 =
1

1 + 𝑟
[𝑟 + 𝐸𝑡(𝑝𝑡+1) − 2𝛾𝐸𝑡�𝜎𝑝𝑡+1

2 � + 𝜇𝜋𝑡] (3.21)  

Equation (3.21) can be solved recursively and we will have the equilibrium 

price in the steady state: 

 𝑝𝑡 = 1 +
𝜇(𝜋𝑡 − 𝜋∗)

1 + 𝑟
+
𝜇𝜋∗

𝑟
−

2𝛾
𝑟
�𝐸𝑡�𝜎𝑝𝑡+1

2 ��  (3.22)  
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Since the variance of the price is solely caused by noise traders’ misperception, 

we can express 𝐸𝑡�𝜎𝑝𝑡+1
2 � in terms of: 

 𝐸𝑡�𝜎𝑝𝑡+1
2 � = 𝜇2𝜎𝜋2 (1 + 𝑟)2⁄  (3.23)  

Substitute equation (3.23) back into (3.22), we will get the final solution of 

risky asset’s price: 

 𝑝𝑡 = 1 +
𝜇(𝜋𝑡 − 𝜋∗)

1 + 𝑟
+
𝜇𝜋∗

𝑟
−

2𝛾
𝑟
�
𝜇2𝜎𝜋2

(1 + 𝑟)2
� (3.24)  

In final equation (3.24) derived by Long, et al. (1990), “1” is the fundamental 

value of the risky asset. The second term in (3.24) implies that the price of the risky 

assets could be affected by the degree of variation of noise traders’ misperception 

away from its mean value. The third term in (3.24) represents the price fluctuation due 

to the average noise traders’ misperception. And the last term in (3.24) represents the 

uncertainty that drives the price down and its return up. This uncertainty stems from 

the belief of the noise traders in the next period. And the lower price and higher return 

driven by the last term is the compensation to the risk created by noise traders’ 

speculation.  

The noise trader model gives us pretty good intuition of why a bubble cannot 

burst with the presence of arbitrageurs (i.e. sophisticated traders). It is because the 

belief of noise traders is unpredictable in the future and thus arbitrage need to bear the 

risk that misperceptions become even more extreme tomorrow than today. In short, 

stock bubble could sustain, because of the limit of arbitrage. Considering the 

additional risk created by the noise traders, arbitrageurs would not bet too much to 

correct price way back to fundamental value. The noise trader model is a good model 

that captures the true subtle interaction between the arbitrageurs and the retail 

investors on Wall Street. It portraits the true reality that a large portion of the trading 

activities conducted by the professional arbitrageurs can be seen as a response to noise 

trading rather than as trading independently on fundamentals. However, it is may not 
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be wise to attribute Chinese stock bubble solely to the limit of arbitrage. First, noise 

trader theory assumes that noise traders hold misperceptions. This may not be the case 

in reality. Retail investors are not as simple and naïve as they are modeled. As I will 

discuss later in the Greater Fools Theory, only the last fool who found no other fools 

to resell his shares are the true fools. Otherwise, the players in the early stage of stock 

bubble are pretty smart. Second, noise trader theory describes a steady-state 

equilibrium stock price. It is not appropriate to apply it to a booming stock bubble, 

which is definitely not in steady state. 

  



 - 31 - 

CHAPTER 4 

METHODOLOGY 

4.1. What is Greater Fools Theory? 

The intuition of the “Greater Fools” theory originated from the famous 

Keynesian “Beauty Contest” theory in his General Theory. In the following famous 

passage, Keynes (1936) used metaphor to portrait the investment activities in the stock 

market by a beauty contest in which the winners are those who anticipate the average 

opinion. This is the first attempt made by economist to link the higher orders beliefs of 

human being to the stock market investment. 

“Professional investment may be likened to those newspaper competitions in 

which the competitors have to pick out the six prettiest faces from a hundred 

photographs, the prize being awarded to the competitor whose choice most nearly 

corresponds to the average preferences of the competitors as a whole: so that each 

competitor has to pick, not those faces which he himself finds prettiest, but those 

which he thinks likeliest to catch the fancy of the other competitors, all of whom are 

looking at the problem from the same point of view. It is not a case of choosing those 

which, to the best of one’s judgment, are really the prettiest, nor even those which 

average opinion genuinely thinks the prettiest. We have reached the third degree 

where we devote our intelligences to anticipating what average opinion expects the 

average opinion to be. And there are some, I believe, who practice the fourth, fifth and 

higher degrees.”16

Keynes’s insights opened a brand new window for us to observe the financial 

market. Traditionally, many financial researchers hold a view that the price of an asset 

should be equal to the current expectations of its future pay-offs by a representative 

 

                                                 
16 The General Theory of Employment, Interest and Money, Page 140 
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agent. This statement is largely based on the property of a martingale process and the 

existence of a representative agent. For a martingale process, it has been shown that 

higher order expectations are redundant in the process of calculating the asset price by 

Tirole (1982), and thus expectation could be iterated over time in a martingale process. 

Iterated expectation implies one investors’ current expectation of future expectation of 

future pay-offs should be equal to his current expectation of future pay-offs. Also, in a 

typical assets pricing literature, a financial researcher would create the so called 

“representative agent”, since they believe a large group of investors on average can be 

represented by a uniform agent that holds a certain belief and preference. By assuming 

the existence of representative agent, one can conclude the average current expectation 

of the future pay-offs in the market should be in line with the representative agent’s 

current expectation of the future pay-offs. Nevertheless, this simplification ignores the 

interaction between the investors when they are forming their expectations. We have 

to concede the settings of martingale process and representative agents are less 

prudent in a reality, if we consider the inspiration from Keynes’ passage more 

carefully. Indeed, in Keynes’ beauty contest example, he revealed the importance of 

higher order belief in people’s decision-making process. By applying the same 

rationale in the assets pricing world, we can easily see that the calculation of asset 

price not only requires the understanding of investors’ beliefs about future cash flows, 

but also of investors’ beliefs about other investors’ beliefs, and higher order beliefs. 

Hence, Keynes’ beauty contest idea actually built the corner stone of the greater fool 

theory by reminding us the importance of higher order beliefs.  

At the basis of the beauty contest, the Greater Fools Theory states that it does 

not matter if the price paid for an asset is higher than the fundamental value, as long as 

someone (the greater fool) is willing to pay an even higher price. The anticipation of 

other greater fools’ move is a typical higher order belief. When acting in accordance 
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with the Greater Fools Theory, an investor buys securities without any regard to their 

qualities on his own belief, but with regard to their qualities on others’ beliefs.  

4.2. A Simple Mathematical Proof 

According to the Greater Fools Theory, investors who participate in the stock 

bubble are still rational: they weigh the probability of further rises against the 

probability of falls. And we know that probability of further rise is associated with the 

supply of greater fools: if the supply of fools plummets, stock market are more likely 

to fall; if the supply of fools sours, stock market are more likely to rise. So it would be 

rational for an investor to buy shares, knowing that they are overvalued, as long as the 

probability weighted expectation of gain exceeds the probability-weighted expectation 

of loss. To maximize their return, they should hold overvalued stocks until the 

expectation of the stock return peaks, or in other words, until the supply of greater 

fools starts to decline. Selling too soon will cause a loss of potential profits for them.  

Telser (2010) presents a model in scratch about “Greater Fools” to characterize 

several behaviors of speculators. I will use his proof as a basis and add some of my 

modification and understanding to show this theory in mathematics is consistent with 

what we observed in the market. First, let us define some notations in the model and 

make some assumptions to facilitate the discussion. 

r = rate of return for each period; 0 < 𝑟 < 1 

pt = probability of �inding a greater fool buyer in each period; 0 < pt < 1 

qt = 1 − pt = probability of not �inding a greater fool buyer in each period; 0

< qt < 1 

Assumption 1A: Assume finding a greater fool is a random event, and is 

independently and identically distributed (“I.I.D.”). Therefore, pt ≡ 𝑝, qt = 1 − p, ∀𝑡. 

If the current stockholder is able to find a great fool and sell the stock to him, the 
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bubble will continue. Vice versa, the bubble will burst.  Hence, the probability of a 

stock bubble that lasts for 𝑡 + 1 period is 𝑝𝑡𝑞.17

Assumption 1B: Expected return of holding the stock forever must be 

convergent; otherwise nobody would consider an exit strategy and they are all happy 

to hold it forever. 

 

Based on the above two assumptions, we can write the expected return of 

holding a stock forever is structured as follow: 

 𝐸(𝑟, 𝑡) = � (1 + 𝑟)𝑡𝑝𝑡𝑞
∞

𝑡=0
 (4.1)  

The necessary condition for the expected return to be convergent is: 

 (1 + 𝑟)𝑝 ≤ 1 (4.2)  

Using the expected return equation, we can infer certain behaviors of the 

investors from this simple model and check whether such behaviors are consistent 

with the reality. 

4.2.1. Optimal Duration to Hold A Stock 

 𝐸(𝑇) = �(𝑡 + 1)
∞

𝑡=0

𝑝𝑡𝑞 (4.3)  

The expected optimal duration to hold a stock, “𝐸(𝑇)”, is simply the sum of 

the probability weighted time in the right hand side. “t+1” measure the time of a 

bubble cycle and “𝑝𝑡𝑞” is the probability of a bubble lasts for “t+1”. A good example 

of this formula is: when p=1/2, the bubble burst at time 1 with probability of 1/2, at 

time 2 with probability of 1/4 and so on. After applying the weighting of the 

probability, the optimal duration, “ 𝐸(𝑇) ”, equals 1 2⁄ ∗ 1 + 1 4⁄ ∗ 2 + 1 4⁄ ∗ 3 +

                                                 
17 An I.I.D. distribution is quite unreliable in reality, but purely for the matter of simplicity. 
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1 16⁄ ∗ 4 + ⋯ = 2.18

The exogenous variable in this formula is “p”, which implies the higher 

probability one can find a greater fool in each period; the longer one should hold the 

stock in average. This is consistent with the observation that investors participate in 

the early stage of a bubble hold the stock longer, since the probability of finding a 

greater fool is higher at the initial point. We should also note that the duration is not 

related with the return (“𝑟”) at all. This may suggest that in a bubble, investors are not 

referring the price and return information to optimize their holding methods. This 

finding is at least partly true in some cases. In the DotCom bubble, many investors still 

long the overvalued DotCom stocks one night before the crash. They totally ignore the 

warning sent by the high price level. Why? At least one reason is they believe more 

people will join and continue this game.  

 Hence in this example, the investor should hold the underlying 

assets for only 2 time periods. 

4.2.2. Net Expected Returns for Holding a Fixed Period 

We already know the optimal duration one should hold the stock for. But what 

is the optimal time point to enter and exit the stock market? Let’s calculate the net 

expected return for an investor who was supposed to enter the market at time “t” and 

exit it at time “t+s”. 

 

𝐸(𝑁𝑒𝑡 𝑅𝑒𝑡𝑢𝑟𝑛) = 𝐸(𝑅𝑒𝑡𝑢𝑟𝑛 − 𝐶𝑜𝑠𝑡)

= 𝐸(𝑅𝑒𝑡𝑢𝑟𝑛|𝐵𝑢𝑏𝑏𝑙𝑒 𝑛𝑜𝑡 𝑏𝑢𝑟𝑠𝑡𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 "𝑡 + 𝑠")

+ 𝐸(𝑅𝑒𝑡𝑢𝑟𝑛|𝐵𝑢𝑏𝑏𝑙𝑒 𝑏𝑢𝑟𝑠𝑡𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 "𝑡 + 𝑠")

− 𝐸(𝐶𝑜𝑠𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 "𝑡")

= 𝑝𝑠(1 + 𝑟)𝑡+𝑠 + � 𝑝𝑖𝑞𝑠−𝑖 ∗ 0
𝑠−1

𝑖=1
− (1 + 𝑟)𝑡

= (1 + 𝑟)𝑡[(𝑝𝑠(1 + 𝑟)𝑠 − 1] 

(4.4)  

                                                 
18 Let 𝑛

2𝑛
= 𝑠(𝑛). (1/2)𝑠(𝑛) = 𝑛/2(𝑛+1) =  (𝑛 − 1)/2𝑛. Hence (1/2)𝑠(𝑛)  =  𝑠(𝑛) − (1/2)𝑠(𝑛) =

 1/2𝑛. Since ∑ 1/2𝑛∞
1 = 1, we can have ∑ 𝑠(𝑛)∞

1 = 2. 
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From the previous convergence condition (4.2), we know 

(1 + 𝑟)𝑝 ≤ 1. Now let us have a look at this final product of the net return, (1 +

𝑟)𝑡[(𝑝𝑠1+𝑟𝑠−1]. Since the second term is negative, the net return will in best case 

only hit a zero profit, which indicates that investing based on “Greater Fools” theory is 

not a profitable strategy. How come it just achieves a negative or zero profit? Is there 

anything wrong with the model setting? Is it because of the I.I.D. distribution of the 

probability? Let’s hold it for a moment, and I will discuss it in the next section 

immediately. 

We also found that the net return are only related to “𝑡” and “𝑠”, the larger 

“𝑡” and “𝑠” is, the larger one’s loss. It means the later one enters the market and the 

longer one holds this stock, the fewer return one will get. It is consistent with our 

empirical observation that only early birds buy in earlier and hold for relatively shorter 

period could win in a stock bubble. Buying too late and holding too long will make 

one suffer from the crash. It is also consistent with the demographical logics that the 

supply of greater fools is limited and cannot be sustained forever. 

4.2.3. Net Expected Return and Convergence Condition 

In the last section, we derived the result that the net expected return is negative, 

which is not quite consistent with the reality. Is it due to our simplified assumption 

that investors receive nothing when the market crashes? We know that in the real 

world, even when the investors cannot find a greater fool and market collapses, they 

could still recover a proportion of their wealth by cutting their losses. So let us further 

assume: 

𝜑 = 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡  𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑓 𝑎 𝑏𝑢𝑏𝑏𝑙𝑒 𝑏𝑢𝑟𝑠𝑡  

After injecting this parameter, let us consider the net expected return in a two 

periods’ case to illustrate its effect: 
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 𝐸(𝑅𝑒𝑡𝑢𝑟𝑛) = 𝑝(1 + 𝑟) + 𝜑 ∗ 𝑞 − 1 (4.5)  

In period 1, investors invest one dollar in a certain asset. In period 2, they 

could earn 1 + 𝑟 dollars with probability of 𝑝, or they could recover 𝜑 dollar of their 

investment with probability of 𝑞. So it seems that the new parameter, 𝜑, has the power 

to flip the expected return back to positive, and to satisfy the convergence condition 

(1 + 𝑟)𝑝 ≤ 1 at the same time, when: 

 𝑝(1 + 𝑟) + 𝜑 ∗ 𝑞 > 1 (4.6)  

However, if we incorporate the concept of “loss cutting”, the convergence 

condition would not be the same as "(1 + 𝑟)𝑝 ≤ 1" anymore. The new convergence 

condition should be exactly the same as "𝑝(1 + 𝑟) + 𝜑 ∗ 𝑞 ≤ 1", if we think over the 

intuition of the convergence condition more carefully. From the two periods’ case, we 

observe that the expected return is mathematically equivalent to the convergence 

condition. Thus, we can conclude the negative expected return in the previous section 

is purely caused by strictly application of the convergence condition in all periods, 

rather than the lack of “loss cutting” behavior in the model formation. If we relax the 

convergence condition in some periods but strictly obey it when the time approaches 

infinity, the expected return would firstly increase in the positive range and then 

decrease to the negative range, which fits the reality very well.  

But is it true that the convergence condition could be initially not bounded, and 

eventually bounded with the only varying exogenous parameter “p”? The answer is 

“yes”! As long as the probability increases over a threshold level, the convergence 

condition could be relaxed and become greater than 1 at some time. The expected 

return would be positive if the convergence condition exceeds 1 and be negative if it is 

not. The following graph shows the sensitivity of the convergence condition. In the 

graph, “X” axis describes the probability of “𝑝”; “Y” axis describes the loss-cutting 
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ratio “𝜑” and “Z” axis describes the value of the convergence condition. For a given 

value of “𝜑”, we could find plenty of “𝑝” to support the value of the convergence 

condition to be greater than 1. We can also see the net convergence condition, as well 

as the net expected return, will increase in “𝑝” and “𝜑”. This graph gives us a very 

intuitive way to see the linkage between the Greater Fools Theory and the return. 

 

 

Figure 2 Sensitivity of the Convergence Condition  

 

4.2.4. Heterogeneous Beliefs of Investors 

In our basic model, we treat all investors equivalently as fools and assume all 

investors behave in the same way. Besides, our model involves no uncertainty and 

expectation in the parameters. Now we want to relax the assumptions on parameters to 

accommodate some heterogeneous beliefs of investors.  
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Let’s assume all investors are facing a decision-making problem at time t-1: 

whether or not to stay the market in the next period. Investors purchased the stock at 

“1”. In contrast to the constant rate of return we used before, we allow time varying 

returns (𝑟𝑡−1, 𝑟𝑡, 𝑒𝑡𝑐) and we also allow the investors to form different expectations 

about returns at time t, based on the observable return at time t-1 now. Investor will 

earn a payoff of 1 + 𝐸𝑡−1(𝑟𝑡) when they successfully sell it to the next fool. Loss 

cutting ratio will be ignored, instead, we will assume investors could have earned an 

alternative return, “ 1 + 𝐸𝑡−1(𝑟𝑡
,) ”, when they cannot find a greater fool with a 

probability of “q”. Since the investors make the decision at time t-1, they will try to 

maximize the following equation. 

 𝐸𝑡−1(𝑅𝑒𝑡𝑢𝑟𝑛) = 𝑝𝑡[1 + 𝐸𝑡−1(𝑟𝑡)] + 𝑞𝑡[1 + 𝐸𝑡−1(𝑟𝑡
,)] − 1 (4.7)  

It is a two periods’ case. The return at time t was formed into expectation, ex 

ante, on time t-1. Without loss of generality, we assume there are two types of 

investors. One type is fundamental investor. They believe in the fundamental value of 

a stock estimated by future cash flows. They hold this belief, maybe because they are 

long-term investors in the market and they trust the mean reversion in the long run. 

They believe stock price will eventually come back to its value, which is also assumed 

to be “1” in this case. The other type is the momentum investor. They don’t buy the 

idea of fundamental value. They believe market is efficient, and the latest price 

already reflects the value of the stock. According to the above intuition, we can make 

the following assumptions about these two types of investors. 

Assumption 2A: Fundamental investors believe they can only sell the stock at 

its value (“1”), when they cannot find a fool to resell it. Hence their expectation of 𝑟𝑡
, 

will be equation (4.8). 

 𝐸𝑡−1𝐹 (𝑟𝑡
,) = 𝑓(𝑟𝑡−1) =

1 − (1 + 𝑟𝑡−1)
1 + 𝑟𝑡−1

=
−𝑟𝑡−1

1 + 𝑟𝑡−1
< 0 (4.8)  

Clearly, the derivative of 𝐸𝑡−1𝐹 (𝑟𝑡
,) with respect to 𝑟𝑡−1 is: 
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𝑑[𝐸𝑡−1

𝐹 (𝑟𝑡
,)]

𝑑(𝑟𝑡−1)
=

−1
(1 + 𝑟𝑡−1)2

< 0 (4.9)  

It implies the fundamentalists believe “higher last period’s return is, lower the 

alternative return will be in this term.” 

Assumption 2B: Momentum investors believe they can sell the stock at least 

at the last period’s price (“1 + 𝑟𝑡−1”), even when they cannot find a fool to sell it. It 

may be because they believe last period’s price already reflected the latest value of the 

stock. Hence their expectation of 𝑟𝑡
, will be greater than 0 as equation (4.10) indicates. 

 𝐸𝑡−1𝑀 (𝑟𝑡
,) = 𝑓(𝑟𝑡−1) ≥

(1 + 𝑟𝑡−1) − (1 + 𝑟𝑡−1)
1 + 𝑟𝑡−1

= 0 (4.10)  

Since they believe in the momentum of stock investment, it is naturally to 

assume the derivative of 𝐸𝑡−1𝑀 (𝑟𝑡
,) with respect to 𝑟𝑡−1 is also greater than 0: 

 
𝑑[𝐸𝑡−1𝑀 (𝑟𝑡

,)]
𝑑(𝑟𝑡−1)

≥ 0 (4.11)  

It implies the momentum investors believe “higher last period’s return is, 

higher the momentum will be resided in this term’s alternative return.” 

Assumption 2C: Both types of investors are earning the same return, when 

they can sell the stock to the next fool, since we believe the fools can also reach a 

consensus about the price they offered to buy stocks. Therefore: 

 𝐸𝑡−1𝐹 (𝑟𝑡) = 𝐸𝑡−1𝑀 (𝑟𝑡) = 𝐸𝑡−1(𝑟𝑡) (4.12)  

Now from equation (4.7), we can solve for a threshold probability for both 

types of investors to stay in the market. This “𝑝𝑡∗” is the probability that makes the 

investors breakeven. 

 𝑝𝑡∗ =
𝐸𝑡−1(𝑟𝑡

,)
𝐸𝑡−1�𝑟𝑡

,� − 𝐸𝑡−1(𝑟𝑡)
 (4.13)  

The derivative of 𝑝𝑡∗ with respect to 𝑟𝑡−1 can be easily shown by chain rule for 

both types of investors: 

 𝑝𝑡𝐹 = 𝐸𝑡−1𝐹 �𝑟𝑡
, �

𝐸𝑡−1𝐹 �𝑟𝑡
, �−𝐸𝑡−1(𝑟𝑡) and 𝑑[𝑝𝑡𝐹]

𝑑(𝑟𝑡−1)
> 0 (4.14)  
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 𝑝𝑡𝑀 = 𝐸𝑡−1𝑀 �𝑟𝑡
,�

𝐸𝑡−1𝑀 �𝑟𝑡
,�−𝐸𝑡−1(𝑟𝑡) and 𝑑[𝑝𝑡𝑀]

𝑑(𝑟𝑡−1)
≤ 0 (4.15)  

From (4.14), we can see fundamentalist will have a higher threshold 

probability (of finding a greater fool) to stay when they saw a higher 𝑟𝑡−1, while the 

momentum guys will have a lower threshold probability instead. Therefore, our model 

will accommodate two types of investors who hold heterogeneous beliefs. 

Fundamentalist will be more likely to leave the market, while the observed return 

(“𝑟𝑡−1”) is rising, because the threshold probability for them to stay is getting tougher 

as a bubble thrives. In contrast, the momentum guys will be more likely to join the 

market, while the observed return (“𝑟𝑡−1”) is rising, because the threshold probability 

for them to stay is getting easier as a bubble thrives. 

4.2.5. Remarks 

On the first hand, after discussing some implications from this mathematical 

model, we found that the probability of finding a greater fool, or “𝑝𝑡”, is important as 

it determines both the net expected return and the optimal holding period for investors 

in a stock bubble. And because of demographic reasons, the probability of finding a 

greater fool is directly linked with the supply of greater fools. So if we could use 

supply of greater fools as a proxy to examine the relationship of “𝑝𝑡” and return “𝑟𝑡”, 

the mathematical proof above will be empirically tested. The null hypothesis for this is 

“as the probability of finding a fool increases, the return should also increase.” 

On the other hand, we also found in section 4.2.4 that the observed return “𝑟𝑡−1” 

and threshold probabilities “ 𝑝𝑡 ” of heterogeneous investors are correlated. For 

fundamentalist, as 𝑟𝑡−1 goes up, 𝑝𝑡 will goes down. For momentum guys, as 𝑟𝑡−1 goes 

up, 𝑝𝑡  will also up. It implies the fundamentalist could work as a stabilizing force 

against the greater fools. Therefore, remaining hypotheses are “as the observed return 

of last period increases, the probability of finding a fundamentalist will decrease” and 

“as the observed return of last period increases, the probability of finding momentum 
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investors will increase. These hypotheses will not be officially tested, but will be 

casually discussed in section 5.5. 

In summary, the general process of a bubble under a Greater Fools Theory 

would most likely follow the processes below: 

 

 

Figure 3 The Process of Greater Fools Theory 

4.3. The Factor Model 

The assets pricing model I chose to test the theory is the APT model. 

According to my suggestion above, the explained variable will be the return. And the 

explanatory variable will include the supply of greater fools and some others.  

APT model contains the following major assumptions, according to Ross 

(1973): 

Stage 1
• Some random forces, like technology advance or general prosperity, push the 

first wave of stock boom. Media Propaganda spread the news out to public.

Stage 2
• General public are attracted  by the idea of stock investment. The supply of 

greater fools sours. "p" increase as a consequence.

Stage 3
• As "p" increase, initial investors would find it is profitable to buy in overpriced 

stock and sell it to the next greater fools.  

Stage 4
• As long as the supply of greater fools could sustain, stock price would continue 

to rise and create abnormal return for the early fool but not the last one. 

Stage 5

• Along with the souring returns, more and more fundamentalist are leaving the 
market to avoid destructive downside mean-aversion crisis. They are the forces 
against the greater fools.

Stage 6

• Finally, supply of the greater fools started to diminish.  Stock market crashes as a 
consequence. The whole process is like a natural ponzi scheme. Early fool's 
earning is from last fool's huge loss.
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i. Investors are risk averse and seek to maximize their terminal wealth. In 

other terms, preferences are monotonic and convex. 

ii. Investors can borrow and lend at the risk free rate. 

iii. There are no market frictions (transaction costs, taxes, or restrictions on 

short selling). 

iv. Investors agree on the number and identity of the factors that are 

important systematically in pricing assets. 

v. There is no riskless arbitrage profit opportunities left in the market. 

Although (iii) and (v) are probably not true in Chinese market, it should be 

clear that APT model requires fewer assumptions than any other assets pricing models. 

Thus it may not be the best model to fit the reality, but must not be the worst to do so. 

APT model is basically a multi-factor model. However, as we have mentioned 

in the literature review session, the specific risk factors have not been identified or 

discovered in the APT model. It requires practitioner to employ some ad-hoc 

specifications of factors, in order to capture the systematic risks involved in the 

investments. Such theoretical structure creates tremendous convenience for me. I can 

add a variable that proxies the supply of greater fool freely and safely into the model 

as a risk factor. However, I have to concede that market may be mainly lead by the 

greater fool factors but it could also be affected by some other factors.  These factors 

should be macroeconomics related, since they capture variations in the underlying 

reasons why an asset’s pay-offs and cash flows change over time. Indeed, risk factors 

can also be identified at a microeconomic level by focusing on relevant characteristics 

of the companies themselves, such like the size of the firm and the value of the firm. 

This approach is just what Fama & French (1992) did in their famous three-factor 

model. However, as I am studying the index as a whole, firm level risk should not be 

considered here. 
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In Equation (4.16), 𝑟𝑡 is the observed asset return, 𝑟𝑓 is the risk free rate and 𝑟𝑡∗ 

is the risk premium. To facilitate the expression of my methodology, I created two 

new expressions, “equilibrium return” and “bubble return” in the right hand side of 

Equation (4.16). Through some simple algebra, the excess return (𝑟𝑡 − 𝑟𝑓 ) can be 

discomposed into two parts: the equilibrium return (𝑟𝑡∗ − 𝑟𝑓) and the bubble return 

(𝑟𝑡 − 𝑟𝑡∗).  

 𝑟𝑡 − 𝑟𝑓 = (𝑟𝑡 − 𝑟𝑡∗) + (𝑟𝑡∗ − 𝑟𝑓) (4.16)  

The dependent variable on the left should be the excess return for the month. 

𝐸𝑅 = 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 

In Equation (4.16), equilibrium return is the return that investors earn on the 

economic fundamentals. Any variation of macroeconomics conditions should give a 

change to the equilibrium return. Bubble return is the return that investors earn on the 

event of successfully finding a greater fool and selling stocks to him. The more supply 

of greater fools, the higher chance to find one and sell the stocks and hence the higher 

return. Thus any variation of the greater fools supply should give a change to the 

bubble return.  

Inspired by the empirical work of (Chen, et al., 1986), I choose the following 

monthly macroeconomics variables in China for the inputs of my APT model to 

explain the equilibrium returns (𝑟𝑡∗ − 𝑟𝑓): 

DIP = the growth rate in industrial production 

DI = the change in in�lation, measured by CPI 

DL = the growth rate in aggregate liquidity, measured by M1 supply 

DE = the growth rate in exports 

DMMR = the change in money market rate 
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Thus the equilibrium return should be governed by a set of broad economic 

influences in the following fashion: 

 
𝑟𝑡∗ − 𝑟𝑓 = 𝑎𝑡 + [𝑏1𝑡𝐷𝐼𝑃𝑡 + 𝑏2𝑡𝐷𝐼𝑡 + 𝑏3𝑡𝐷𝐿𝑡 + 𝑏4𝑡𝐷𝐸𝑡

+ 𝑏5𝑡𝐷𝑀𝑀𝑅𝑡] + 𝜀𝑡  
(4.17)  

To mimic the supply of greater fools, I choose the following two factors to 

explain the bubble returns (𝑟𝑡∗ − 𝑟𝑓).  

DRI = the growth rate in retail investors 

, measured by the "newly registered retail investor stock accounts" 

DII = the growth rate in institutional investors 

, measured by the "newly registered institutional investor stock accounts" 

Based on these new factors, the bubble return should be governed by a set of 

variables that proxies the supply of greater fools in the following way: 

 𝑟𝑡 − 𝑟𝑡∗ = 𝑎𝑡 + [𝑏1𝑡𝐷𝑅𝐼𝑡 + 𝑏2𝑡𝐷𝐼𝐼𝑡] + 𝜀𝑡  (4.18)  

Consolidating Equation (4.16), (4.17) and (4.18), we can build up the model 

for empirical tests as: 

 
𝑟𝑡 − 𝑟𝑓𝑡 = 𝑎𝑡 + [𝑏1𝑡𝐷𝐼𝑃𝑡 + 𝑏2𝑡𝐷𝐼𝑡 + 𝑏3𝑡𝐷𝐿𝑡 + 𝑏4𝑡𝐷𝐸𝑡

+ 𝑏5𝑡𝐷𝑀𝑀𝑅𝑡 + 𝑏6𝑡𝐷𝑅𝐼𝑡 + 𝑏7𝑡𝐷𝐼𝐼𝑡] + 𝜀𝑡 
(4.19)  

where I will regress the monthly excess return against all of my monthly 

macroeconomic factors and greater fool proxies.   
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CHAPTER 5 

EMPIRICAL RESULT 

5.1. The Data Source 

The data sources of this study are the most reliable and have been widely used 

by researchers. Some of the macroeconomic variables, including CPI, Export, Money 

Market Rates and Stock of M1, were retrieved from the EIU, “Economic Intelligence 

Unit”. 19  The Industrial Production Index was retrieved from IMF, “International 

Monetary Fund”. 20 The Shanghai Stock Index information was retrieved from the 

CSRC, “China Securities Regulatory Commission”. 21  The newly discovered data 

series, “Monthly Registered Stock Accounts”, was retrieved from CSD&C, “China 

Securities Depository and Clearing Corporation”. 22

5.2. Summary Statistics 

 Since the public available 

information of the CSD&C only starts from January 2005, my data series is limited to 

start from the same time. The ending date is December 2009. Therefore, a total of 60 

months’ observations have been included in my study. 

In this section, I will try to describe and explain the raw and the transformed 

data series I am using.  Shanghai Stock Index is the monthly average number, rather 

than a simple monthly close figure. Money Market Rate is serving both as the risk free 

rate and the basic lending rate in the model. The month-on-month industrial 

production growth figures in January 2007, 2008 and 2009 are missing from the data 

series. Several sources (like University of Michigan China Data Center, Chinese 

                                                 
19 www.eiu.com 
20 www.imf.org/external/data.htm 
21 www.csrc.org.cn 
22 www.chinaclear.cn 
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Statistic Bureau, etc.) contain such missing value as well and there is clearly no way to 

avoid them. Summary statistics of the raw data are provided in Table 1. 
 

Table 1 Summary Statistics of Raw Series 
Series Name Obs. Mean S.D. Minimum Maximum 

Shanghai Index 60 2556.04 1287.42 1042.18 5765.03 
Retail Investors (000’) 60 1211.243 1290.89 49.66 5600.00 
Institutional Investors 60 4399.55 3957.75 304.00 18104.00 
Money Market Rate (%) 60 3.00 1.03 4.77 1.38 
CPI (indexed to 100) 60 106.69 5.40 99.00 114.50 
Export ($bn) 60 93.01 23.17 44.28 136.72 
Industrial Production Growth (%) 60 15.20 3.83 5.40 22.95 
Stock of M1 Money (¥bn) 60 13907.73 3432.18 9269.77 22000.20 

  

APT model specifies the independent variables to be the incremental part of a 

macroeconomics variable. Since some of our raw data series, like the “Industrial 

Production Growth”, is incremental value, so it will fit with the model specification 

out of the box. While the remaining data are not aligned with the model specification, 

we need to take some transformation of them. The procedures are described below. 

DIPt  = Industrial Production Growtht 

DIt = log(CPIt) − log(CPIt−1) 

DLt = log(M1t) − log (M1t−1) 

DEt = log(Exportt) − log (Exportt−1) 

DMMRt = Money Market Ratet − Money Market Ratet−1 

DRIt = log(Retail Investorst) − log (Retail Investorst−1) 

DII = log(Institutional Investorst) − log (Institutional Investorst−1) 

ER = log(Shanghai Indext) − log(Shanghai Indext−1) − Money Market Ratet 

Money Market Rate is measured in percentage terms, so it is only taken by the 

first order difference. All the rest data series were taken first order logarithm 
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difference to capture the percentage changes on the original data. After the 

transformation, the summary statistics of the transformed data are provided in Table 2. 

 
 

Table 2 Summary Statistics of Transformed Series 
Series Name Obs. Mean S.D. Minimum Maximum 

DIP (%) 59 15.10 3.79 5.40 22.95 
DI (%) 59 0.22 0.67 -0. 89 2.57 
DL (%) 59 1.39 1.91 -4.50 6.07 
DE (%) 59 1.61 12.26 -33.26 36.59 
DMMR (%) 59 -0.02 0. 53 -2.11 1.75 
DRI (%) 59 5.77 49.30 -103.35 154.12 
DII (%) 59 4.43 48.84 -149.73 139.24 
ER (%) 59 -1.37 9.18 -21.54 16.53 

 

5.3. OLS Estimates 

Table 3 shows the regression results estimated via OLS. Among the 

independent variables, it is found that the intercept, the changes in retail investor (DRI) 

and the liquidity (DL) are significant. And the R-squared amounts to 0.380, which 

should be considered as an acceptable result, since all the variables are already 1st 

order difference and explaining stock return usually doesn’t get back a high R-squared. 

However, we cannot give the estimates any economic explanation before we conduct a 

series of tests against the classic assumptions of OLS. Most importantly, we should 

test the assumption of “no serial correlation and no heteroscedasticity”. It is because if 

the classical assumptions don’t hold, the OLS will not be BLUE and lose its efficiency 

even asymptotically.   
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Table 3 OLS Estimates 

R-squared 0.380 Mean dependent var -0.016  
Adjusted R-squared 0.289 S.D. dependent var 0.091  
S.E. of regression 0.077 Akaike info criterion -2.168  
Sum squared resid 0.282 Schwarz criterion -1.878  
Log likelihood 68.694 Hannan-Quinn criter. -2.055  
F-statistic 4.197 Durbin-Watson stat 1.262  
Prob(F-statistic) 0.001    
Variable Estimate Std. Error t-Statistic Prob.>|𝑡| 
Intercept -0.078 0.045 -1.736 0.089 
DRI 0.127 0.033 3.831 0.000 
DII -0.061 0.040 -1.518 0.136 
DE -0.111 0.110 -1.015 0.315 
DI 2.435 1.878 1.297 0.201 
DIP 0.186 0.289 0.645 0.522 
DL 2.036 0.700 2.908 0.006 
DMMR -0.162 2.063 -0.078 0.938 

 

 

Figure 4 Actual, Fitted and Residual Graph 
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5.3.1. Autocorrelation and Heteroscedasticity Test 

With time series data, the ordinary regression residuals are usually 

autocorrelated over time. In such a case, it will not be desirable to simply use ordinary 

regression analysis since the assumption that the errors are independent of each other 

will be violated. Therefore, a correlogram graph and Q-statistics are deployed to 

graphically detect if autocorrelation issue exists. From the length of the bar in Figure 5, 

we can roughly guess the residuals are not a white noise process. The residual is auto-

correlated with its own lagged term with up to 5 periods and the significant Q-

statistics and the lower p-values confirm such finding. Additionally, a Breusch-

Godfrey Lagrange Multiplier test is also used to test for autocorrelation. Breusch-

Godfrey test set the residuals as the dependent variable and regress it against all the 

original explanatory variables and lagged residuals. The null hypothesis is the 

residuals contain no serial correlation. After the regression, it employs the F-statistics 

and the chi-square-statistics for inference. In Table 4, the result of the Breusch-

Godfrey test is presented with lag term of 1 to 5. If we set the critical interval as 5%, 

we will see residuals are autocorrelated with the lagged residuals up to three 

continuous periods. Furthermore, if we extend the critical interval to 10%, we will see 

the residuals are autocorrelated up to four periods. It is a very significant result. This 

confirms the residuals are not white noise, and thus an autoregressive model needs to 

be considered to improve the quality of the regression. 
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Figure 5 Serial Correlation Test I: Correlagram of Residuals and Q-Statistics 

 

Table 4 Serial Correlation Test II: Breusch-Godfrey 
Breusch-Godfrey LM 
Test Lag= 1 2 3 4 5 

F-statistic  8.178 5.942 4.800 3.919 3.027 
    Prob. F  0.006 0.005 0.006 0.008 0.020 
Obs*R-squared  8.300 11.497 13.576 14.711 14.579 
    Prob. Chi-Square(2)  0.004 0.003 0.004 0.005 0.012 

 

In a time-series financial data, the heteroscedasticity issue often appears in the 

autoregressive conditional form, which is widely referred as the “ARCH”. ARCH 

describes a phenomenon that fluctuations in volatility tend to be grouped into clusters 

when viewed over time: high volatility is most likely to be followed by high 

volatilities; low volatility is most likely to be followed by low volatilities. The 

intrinsic force to push this phenomenon could be market sentiment, rumor, common 

economic conditions, etc. In terms of statistics, we can see the variance of the error 

term at time t is autocorrelated with the squares of the previous error terms. Or in 

terms of mathematics, we can express it as below. 

 Var(ut) = σt2 = α0 + α1ut−12 + 𝛼2𝑢𝑡−22 + ⋯+ 𝑎𝑛𝑢𝑡−𝑛2  (5.1)  

To examine if ARCH exists in the residual of our model, we can initially check 

the correlogram of residual squared graph as shown in Figure 6. From the length of the 
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bars, we can see the residuals squared are at least correlated with up to three 

continuous terms. And the significant Q-statistics and the low p-value also depict the 

severity of the ARCH problem. Alternatively, we can also run a heteroscedasticity test 

for ARCH. The regression function of this test is just based on the equation above, 

regressing the residual squared terms against the lagged residual squared terms. I try 

different lag setting and store the results in Table 5. Once again, I confirm the fact 

ARCH phenomenon is persistent in the residuals squared. And it is significant at 5% 

level for four lagged terms. So this result reminds us the existence of the ARCH 

problem and it calls for an ARCH or a GARCH (“Generalized ARCH”) model to 

complement my study. 

 

 
Figure 6 ARCH Test I: Correlagram of Residuals Squared and Q-Statistics 

 

Table 5 Heteroscedasticity Test II: ARCH LM Test 
ARCH LM Test Lag= 1 2 3 4 5 
F-statistic  6.775 3.310 3.741 3.055 2.192 
    Prob. F  0.012 0.046 0.019 0.029 0.082 
Obs*R-squared  6.205 6.156 9.640 10.352 9.632 
    Prob. Chi-Square  0.013 0.046 0.022 0.035 0.086 
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5.3.2. Stability Test 

Stability test is useful and necessary among time series studies. Apart from the 

test against some important classic assumption, we should also consider whether the 

coefficient we estimated is stable over time. If it is not, it means the model may need 

some modification or some dummy variable to be added, in order to accommodate 

such instability. The first testing method is the RLS (“Recursive Least Square”) 

estimation. Suppose there are “k” explanatory variables in the model, RLS will use the 

first k sample to derive a set of coefficient estimates, and then iterate such set of 

coefficients into the fitted value calculation for the k+1 sample. RLS will derive error 

terms for all the remaining n-k samples recursively and use such special error terms 

for inference. The CUSUM test is just a test against the special error terms of the RLS. 

In the following graph, the CUSUM test and the CUSUM Squares Test will draw the 

boundaries of the 5% critical interval, if the graph of the error terms go beyond the 

boundary, it will indicate a coefficient instability at such time point. From Figure 7, 

we can see that the CUSUM test does not indicate any model instability at 5% 

significance level. However, the CUSUM Squares test does find a potential model 

break point starting from January 2007 to February 2008. The error terms slightly 

draw outside the boundary, and we’d better use another test to further test whether our 

model is correct during this period. A Chow Breakpoint Test has been introduced to 

test the potential breakpoint starting from January 2007. From Table 6, the null 

hypothesis cannot be rejected at 10% significance level, which means the coefficients 

are consistent and stable across time. Therefore, we can conclude it is not necessary to 

make structural change to our model, like adding dummy variables or splitting the 

sample into sub samples according to certain events. 
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Figure 7 Stability Test I: CUSUM Test and CUSUM Squares Test 
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Table 6 Stability Test II: Chow Breakpoint Test 

Chow Breakpoint Test: 2007M01 
Null Hypothesis: No breaks at specified breakpoints 
Varying regressors: All equation variables 
Equation Sample: 2005M02-2009M12 
F-statistic 1.200955  Prob. F(8,40) 0.3231 
Log likelihood ratio 12.05486  Prob. Chi-Square(8) 0.1488 
Wald Statistic 9.607638  Prob. Chi-Square(8) 0.2937 

 

5.3.3. Non-linear Regression 

Sometimes, the dependent variable may show some non-linear relationship 

with the independent variables. In a non-linear model, the estimated coefficients are 

still linear, but the variables are in the form of a non-linear function (exponential, log, 

inverse, square, etc.) of the originals. In graph, we can observe a curved regression 

line, rather than a straight one with a non-linear regression. Therefore, the quickest 

way to determine whether a non-linear model should be adopted is to observe the 

scatter graph. If the dependent variable and the independent variable show some 

special curvatures, we should be cautious and try some non-linear forms to fit the data. 

A series of scatter graphs and nearest neighbor fit lines have been drawn to gauge the 

curvatures between variables. Nearest neighbor fit is a nonparametric regression 

method that fit local polynomials, so it should help us to find the non-linear 

relationships between variables. From Figure 8, we can see all explanatory variables 

have no obvious non-linear relationship with the excess return. Although all the lines 

show intensive volatility, but not a single one shows any shape of rectangular 

hyperbola (inverse form in variables), parabola (quadratic form in variables), 

exponential curve or logarithm curve. Thus we believe there is no non-linearity 

between the variables and it is not necessary to conduct non-linear regressions. 

Furthermore, from Figure 5 I observe some scatter graphs are in the shape of a sphere, 
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and thus I suspect a linear relationship does not even exist in some graphs. So a 

redundant variable test should be conducted to eliminate those potentially insignificant 

variables. 

 

 

   
Figure 8 Non-Linear Model Test: Scatter Graphs and Nearest Neighbor Lines 
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Figure 8 (Continued) 
 

  

 

 

5.3.4. Redundant Variable Test  

The redundant variables test allows us to test for the statistical significance of a 

subset of included variables. More formally, the test is for whether a subset of 

variables in an equation has zero coefficients and might thus be deleted from the 

equation. The test statistics are the F-statistic and the Log likelihood ratio. The F-

statistic is more reliable under finite sample, and the LR test is an asymptotic test. 

Given the limited number of observations in our test, we should rely more on the F-

statistic. In Table 7, we can see only two variables DL and DRI are significant at even 

-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

.20

-.03 -.02 -.01 .00 .01 .02

DMMR

E
R

-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

.20

-1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

DII

E
R

-.25

-.20

-.15

-.10

-.05

.00

.05

.10

.15

.20

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

DRI

E
R



 - 58 - 

1% level. DII is significant at the 15% level, but not at the 10% level. And DI is 

significant around the 20% level, but not at the 15% level. To be careful, I will keep 

DII and DI to see their importance in my following models. The other variables of DE, 

DIP and DMMR are not significant at an even higher level. To be more precise, I also 

test whether they three are collectively significant and the result is not desirable as 

well. Thus I will eliminate these three macroeconomic variables from my model. 

 
Table 7 Redundant Variable Test 

Redundant 
Variable Test Variable= DE DI DIP DL DMMR DRI DII 

F-statistic  1.030 1.682 0.416 8.454 0.006 14.673 2.305 
    Prob. 
F(1,48)  0.315 0.201 0.522 0.006 0.938 0.000 0.136 

Log likelihood 
ratio  1.189 1.928 0.484 9.085 0.007 14.937 2.626 

    Prob. Chi-
Square(1)  0.276 0.165 0.487 0.003 0.933 0.000 0.105 

 

5.3.5. OLS Remarks 

Although we cannot draw too many economic explanations from the flawed 

OLS regression, we still learn a lot from it about what we should do next. First, an 

autoregressive model should be considered, which means an AR(X) structure should 

be added into the repressors. Second, a GARCH model should be adopted because of 

the autoregressive conditional heteroscedasticity issue. Third, the model is stable over 

the time; there is no need to add any dummy variable or conduct any sub-sample 

regressions. Fourth, there isn’t any obvious non-linearity between the variables, so we 

don’t need to transform any variable into a non-linear function of itself. Fifth, Three 

out of seven independent variables are significantly redundant and I will not include 

them in my following model constructions. And I can conclude from here that the 

change in export, industrial production and lending rate contribute very few to the 

change of excess return in Chinese stock market.  
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5.4. AR-IGARCH-M Model 

Most of the time series statistical tools are designed to model the conditional 

mean of a random variable. On the contrary, GARCH will not only model the 

conditional mean but also the conditional variance, or volatility, of a variable. There 

are several reasons that we may wish to use GARCH model and thus forecast 

volatility. First, we may need to analyze the risk of holding an asset or the value of an 

option. Second, forecast confidence intervals may be time varying, so that more 

accurate intervals can be obtained by modeling the variance of the errors. Third, more 

efficient estimators can be obtained if heteroscedasticity in the errors is handled 

properly. 

After several theoretic checks and empirical trials, I finally decided an AR(1)-

IGARCH-M model should be used to derive the right estimates. 

5.4.1. Stationarity and Unit Root Test 

Before the injection of any AR(x) terms into the model, it should be clear that 

the theory behind ARMA estimation is based on stationary time series. A series is said 

to be stationary if the mean and auto-covariance of the series do not depend on time. 

For example, a most common non-stationary series is a random walk (𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡). 

However, the first order difference of such random walk is stationary (Δ𝑦𝑡 = 𝑦𝑡 −

𝑦𝑡−1 + 𝜀𝑡). Since a random walk series could become stationary after a first order 

difference, it could be called I(1), “integrated of order 1”. Also, we can call the 

random walk series contain one unit root.  

Standard inference procedures do not apply to regressions that contain an 

integrated dependent variable or integrated regressors. Therefore, it is important to 

check whether a series is stationary or not before using it in a regression. The formal 

method to test the stationarity of a series is the unit root test. 
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The unit root test generally contains one test equation, which is in the form of 

“∆𝑦𝑡 = 𝜂𝑦𝑡−1 + 𝛼 + 𝛿𝑡 + ∑ 𝛽𝑖Δ𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝑢𝑡”. The null hypothesis is that the time 

series “𝑦𝑡 ” has one unit root, or equivalently “𝐻0: 𝜂 = 0; 𝐻1: 𝜂 < 0”. There are 

several options for the unit root test. First, we can add some lagged difference terms 

(Δ𝑦𝑡−𝑖) based on some automatic selection criteria (AIC, SIC, etc.). Second, we can 

add an intercept term and a trend term (𝑡) into the test equation. The most widely 

accepted unit root test is the ADF “Augmented Dickey-Fuller” test. I will present my 

test statistics in Table 7 based on this method. It can be shown that all the variables are 

stationary after the first order difference originated from the APT theory. Therefore, 

any regression including ARMA structures should be safe now, and no spurious 

regression will be created as a result. 

 
Table 8 Augmented Dickey-Fuller Unit Root Test 

Variable Exogenous Lagged Δ𝑦𝑡−𝑖 terms (AIC) ADF statistic 5% level Prob. 

ER none 0 -4.101 -1.947 0.000 
DRI none 0 -8.527 -1.947 0.000 
DL none 1 -3.048 -1.947 0.003 
DII none 1 -7.145 -1.947 0.000 
DI none 0 -5.416 -1.946 0.000 

 

5.4.2. Model Construction 

To cure the autocorrelation, an AR(x) structure has to be added into the mean 

equation. The original AR(x) structure started with equation (5.2) and (5.3). 

Especially, (5.3) describe the situation where current residual is correlated with last 

period’s residual.  

 Var(ut) = σt2 = α0 + α1ut−12 + 𝛼2𝑢𝑡−22 + ⋯+ 𝑎𝑛𝑢𝑡−𝑛2  (5.2)  

 𝜖𝑡 = 𝜙𝜖𝑡−1 + 𝑢𝑡 (5.3)  
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Through some substitution and iteration, we can transformed (5.2) and (5.3) to 

the following form as (5.4) shown. 

 𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑋𝑡 ∙ 𝜃  + 𝜖𝑡 (5.4)  

Thus, it is clear that we can simply add some lagged dependent variables into 

the right hand side of the mean equation, to accommodate the AR(x) structure. 

Besides of a time varying conditional mean of financial time series, most of 

them also exhibit changes in volatility over time. While modeling such time series, we 

cannot use homoscedastic models. The simplest way to allow volatility to vary is to 

model conditional variance using a simple autoregressive process. Basic ARCH 

models were introduced by Engle (1982) and generalized as GARCH by Bollerslev 

(1986) and Taylor (1986). GARCH model is consistent with the some stylized facts 

that have been uncovered by researchers, including volatility clustering, fat tail and 

volatility mean reversion. A simple GARCH(1,1) model that should be constructed by 

three parts, the conditional mean equation, the conditional normality assumption and 

the conditional variance equation.  

 𝑌𝑡 = 𝑋𝑡 ∙ 𝜃  + 𝜖𝑡 (5.5)  

 (𝜖𝑡|𝐼𝑡−1)~𝑁(0, 𝜎𝑡2) (5.6)  

 𝜎𝑡2 = 𝜔 + 𝛼𝜖𝑡−12 + 𝛽𝜎𝑡−12 , 0 ≤ 𝛼, 𝛽 < 1 (5.7)  

In the mean equation given above, conditional mean (𝑌𝑡) is related with an 

array of exogenous variables (𝑋𝑡). The conditional normality assumption implies the 

error term (𝜖𝑡) should follow a normal distribution with the forecasted variance (𝜎𝑡2). 

The left hand side of the variance equation (𝜎𝑡2)  is one-period ahead forecasted 

variance based on past information. The right hand side of the variance equation 

contains three parts: a constant term (𝜔), news about volatility from the previous 

period, measured as the lag of the squared residual from the mean equation (𝜖𝑡−12 ), and 

last period’s forecast variance (𝜎𝑡−12 ). Furthermore, 𝜖𝑡−12  and 𝜎𝑡−12  terms are often 
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referred as the ARCH term and the GARCH term, respectively. We should notice that 

a covariance stationary conditions (0 ≤ 𝛼, 𝛽 < 1  ) should apply for the GARCH 

model; otherwise, the variance will continue to increase over time and eventually 

explode. The above model is a typical GARCH(1,1) model. We can easily extend it 

into a GARCH(q,p) model, which contains ARCH terms lagged up to q periods and 

GARCH terms lagged up to p periods in their variance equation. Due to the 

heteroscedasticity issue I spotted above, it is quite consistent to use GARCH as a 

curing regression method. 

GARCH-in-Mean (GARCH-M) model is a modification on the mean equation 

of GARCH by Engle, Lilien, & Robins (1987). In financial investment, high risk is 

often expected to lead to high returns. GARCH-M extends the basic GARCH model 

so that the conditional volatility can generate a risk premium that is part of the 

expected returns. GARCH-M introduces an arbitrary function of volatility (𝜎𝑡) into the 

mean equation as shown in (5.8).  

 𝑌𝑡 = 𝑋𝑡 ∙ 𝜃 + 𝜆𝑓(𝜎𝑡) + 𝜖𝑡 (5.8)  

Since my study is also using also using stock returns data as the dependent 

variable, it should be logic and necessary to incorporate GARCH-M into my model, in 

order to capture the risk premium generated by high volatility in the market. 

IGARCH (Integrated-GARCH) model added a coefficient restriction to the 

existing GARCH model. In an IGARCH model, the sum of the coefficients (𝛼 and 𝛽) 

of the ARCH and GARCH terms should always equal to one. The conditional variance 

of the IGARCH model is clearly non-stationary and integrated. This has important 

implications for interpreting the volatility of such a time series: the volatility of the 

model is not mean reverting; any shock to the volatility is persistent. The rationale 

behind IGARCH fits the reality in China very well. For example: when financial crisis 

happened, the volatility in China just jumps to the roof and stay there for a long time. 
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So it is better to assume persistence of volatility, rather than to assume the mean-

reversion of it. 

After discussing the concept and rationale of some chosen testing structures, it 

is time to do the real practice to select the best-fitted one from varieties of them.  

From Table 9, we can see that an IGARCH-M model with an AR(1) structure 

has the highest AIC figure and the second highest R-squared figure. Besides, both 

AR(2) and AR(3) structure are not significant in the regression. Thus only an AR(1) 

term will be incorporated into the model.  

 
Table 9 Model Selection: AR(x) structures comparison 

 AR(X)= 1 2 3 
R-squared  0.609 0.608 0.613 
AIC  -2.656 -2.623 -2.607 
Prob. of AR(1)  0.000 0.001 0.000 
Prob. of AR(2)   0.662 0.931 
Prob. of AR(3)    0.742 

 

I also tried different GARCH(q,p) setting as shown in Table 10. At the first 

glance, we can see all ARCH and GARCH terms in GARCH(1,1) and GARCH(2,1) 

are significant at a 10% level. In contrast, some terms in GARCH(1,2) and 

GARCH(2,2) are not significant at all. Now, among GARCH(1,1) and GARCH(2,1), 

we found the latter has the lowest AIC and SIC figures, indicating the best model 

fitness. Thus we should adopt GARCH(2,1) structure rather than the more common 

GARCH(1,1) structure.  
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Table 10 Model Selection II: GARCH(q,p) structures comparison 

 GARCH(1,1) GARCH(2,1) GARCH(1,2) GARCH(2,2) 
R-squared 0.641 0.609 0.615 0.606 
AIC -2.636 -2.656 -2.628 -2.630 
SIC -2.280 -2.336 -2.308 -2.274 
Prob. of ARCH(1) 0.001 0.002 0.019 0.002 
Prob. of ARCH(2) NA 0.054 NA 0.227 
Prob. of GARCH(1) 0.000 0.000 0.597 0.294 
Prob. of GARCH(1) NA NA 0.305 0.681 

 

For the GARCH-M structure, I tried standard deviation (𝜎𝑡), normal variance 

(𝜎𝑡2) and logarithm of variance (log [𝜎𝑡2]) in the mean equation. All of them are 

significant. 𝜎𝑡 derives the best R-squared, and log [𝜎𝑡2] derives the best AIC and SIC 

figures. To balance these two benchmarks, I chose to use 𝜎𝑡 , a variable gives 

satisfactory scores in both side.  

 
Table 11 Model Selection III: GARCH-M structures comparison 

 𝜎𝑡 𝜎𝑡2 log [𝜎𝑡2] 
R-squared 0.609 0.621 0.527 
AIC -2.656 -2.652 -2.739 
SIC -2.336 -2.332 -2.420 

Prob. of 𝜎𝑡 0.000 NA NA 
Prob. of 𝜎𝑡2 NA 0.000 NA 
Prob. of log [𝜎𝑡2] NA NA 0.000 

 

Therefore, I finally decided to choose an AR(1)-IGARCH(2,1)-M(𝜎𝑡) model as 

equations (5.9), (5.10) and (5.11) shown below: 

 𝐸𝑅𝑡 = [𝐸𝑅𝑡−1, 𝐷𝐼𝑡, 𝐷𝐼𝐼𝑡, 𝐷𝑅𝐼𝑡, 𝐷𝐿𝑡] ∙ 𝜃⃑  + 𝜆𝜎𝑡 +  𝜖𝑡 (5.9)  

 𝜎𝑡2 = 𝜔 + 𝛼𝜖𝑡−12 + 𝛽𝜖𝑡−22 + 𝛾𝜎𝑡−12  (5.10)  
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 𝛼 + 𝛽 + 𝛾 = 1 (5.11)  

5.4.3. AR-IGARCH-M Estimates 

Table 12 shows the regression results estimated via AR(1)-IGARCH(2,1)-M 

model. Compared with the OLS method, I have to mention several improvements 

from this new method. First, the R-squared increases from 0.38 in OLS to 0.61 in the 

refined model, indicating a larger proportion of the variance is explained in the new 

model. Second, F-statistics that test the overall significance of the regression model 

increase from 4.20 to 9.53, implying the new regression method justifies a closer 

relationship between the dependent variable and the independent ones. Third, as the 

model selection criterion AIC decrease from -2.17 to -2.656 and SIC decreases from -

1.88 to -2.34, we can see the new model is superior to the old one in the closeness of 

fit. Fourth, the Durban-Watson statistic rises from 1.26 to 1.70. Since small values of 

the Durbin-Watson statistic indicate the presence of autocorrelation, we can see the 

autocorrelation problem has been largely corrected in the new model.  



 - 66 - 

 
Table 12 AR(1)-IGARCH(2,1)-M Estimates 

R-squared 0.609 Mean dependent var -0.014  
Adjusted R-squared 0.545 S.D. dependent var 0.093  
S.E. of regression 0.062 Akaike info criterion -2.656  
Sum squared resid 0.191 Schwarz criterion -2.336  
Log likelihood 86.014 Hannan-Quinn criter. -2.531  
F-statistic 9.526 Durbin-Watson stat 1.704  
Prob(F-statistic) 0.000    

Mean Equation 
Variable Estimate Std. Error t-Statistic Prob.>|t| 
Intercept 0.044 0.011 3.847 0.000 
SQRT(GARCH) -1.327 0.274 -4.842 0.000 
ER(-1) 0.371 0.073 5.058 0.000 
DRI 0.119 0.016 7.635 0.000 
DII -0.077 0.021 -3.690 0.000 
DI 1.221 0.830 1.471 0.141 
DL 0.747 0.357 2.091 0.037 

Variance Equation 
Variable Estimate Std. Error t-Statistic Prob.>|t| 
RESID(-1)^2 0.552 0.175 3.163 0.002 
RESID(-2)^2 -0.373 0.193 -1.929 0.054 
GARCH(-1) 0.820 0.153 5.348 0.000 

 

(5.12) and (5.13) are the estimation equations with substituted coefficients: 

 
𝐸𝑅𝑡  =  0.04 − 1.33 ∗ 𝜎𝑡 +  0.37 ∗ 𝐸𝑅𝑡−1  +  1.22 ∗ 𝐷𝐼𝑡 +  0.12

∗ 𝐷𝑅𝐼𝑡 −  0.08 ∗ 𝐷𝐼𝐼𝑡  +  0.75 ∗ 𝐷𝐿𝑡 
(5.12)  

 𝜎𝑡2 = 0.55 ∗ 𝜖𝑡−12 −  0.37 ∗ 𝜖𝑡−22 +  0.82 ∗ 𝜎𝑡−12  (5.13)  

From the ACF graph, we can also easily observe the improvement. OLS did 

very poorly in predicting the excess return from September 2007 to October 2008. In 

OLS, the fitted line is deviated below from the actual line as we can see from Figure 1. 

On the contrary, the new model plots a better graph where fitted line are leveled up 

and moving along closer with the actual line in Figure 9.  
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Figure 9 Actual, Fitted and Residual Graph 

Other typical tests have been repeated under the new model as well. For the 

autocorrelation problem, we found the bars in the correlogram are no longer lengthy 

and the Q-statistics are not significant any more as shown in Figure 10. So we can 

conclude that the autocorrelation problem has been successfully cured by the AR(1) 

structure.  

 

 

Figure 10 Serial Correlation Test: Correlagram of Residuals and Q-Statistics 
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For the heteroscedasticity problem, the correlogram and the Q-statistics shows 

it has be cleaned away as shown in Figure 11. An additional ARCH LM test has been 

also conducted to further qualify the issue. From Table 13, we can judge that even at 

the 10% critical level, not a single lagged term has the ARCH problem. So the 

GARCH structure in the new model successfully cured the problem as well.  

 

 
Figure 11 Heteroscedasticity Test I: Correlagram of Residuals Squared and Q-

Statistics 

 
Table 13 Heteroscedasticity Test II: ARCH LM Test 

ARCH LM Test Lag= 1 2 3 4 5 
F-statistic  0.439 0.335 0.597 0.483 0.574 
    Prob. F  0.510 0.717 0.620 0.748 0.720 
Obs*R-squared  0.451 0.700 1.865 2.048 3.050 
    Prob. Chi-
Squared  0.502 0.705 0.601 0.727 0.692 

 

5.5. Economics Explanation 

The results shown above in Table 12 deliver the following implications to us. 

Some of them are consistent with simple intuition and experience of other countries; 

some of them are new and unique in China. 

1) There is ARCH effect in the excess return rate of Chinese stock market. 

It means volatility clustering phenomenon does exist in China. I think one possible 
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explanation of such phenomenon could be developed through our heterogeneous 

investors model, if we further assume our two groups of investors could switch 

behaviors among different periods. In this new setting, a significant proportion of 

fundamental investors may switch to the momentum type, when the threshold 

probability for momentum investors to stay is low enough. And these newly switched 

(from fundamental to) momentum investors will create extra buy/sell activities in an 

upward/downward trend of the market. Finally, these extra buy/sell activities trigger 

the outbreak of volatilities and constitute the elevated volatility interspersed among 

more tranquil periods. This finding is consistent with the basic stylized fact of 

financial series that is observed elsewhere. 

2) One term lagged volatility and forecasted volatility (𝜖𝑡−12  and 𝜎𝑡−12 ) 

affect the current forecasted volatility positively and significantly at a 0.000 level. 

Two term lagged volatility (𝜖𝑡−22 ) effect the current forecasted volatility negatively and 

significantly at a 0.054 level. The sign was flipped from two periods lagged ARCH 

term to one period lagged ARCH term, proving that the volatility clustering in China 

happens in a very short horizon. Today’s high volatility may indicate a likely increase 

of volatility in the next period, but the volatility after the next period is most likely to 

be adjusted down. Such finding is consistent with the nature and environment of a 

speculative stock market.  

3) The IGARCH restriction was proved as legitimate by the result, 

showing that any shock to the volatility is persistent.  

4) The GARCH-M structure in the mean equation affects the excess return 

negatively and significantly at a 0.000 level, which is a very interesting result. It 

means excess return doesn’t compensate for higher risk (or expected volatility). Such 

fact could be explained by a series of plausible frictions in reality. First, it could be the 

case that investors in the Chinese stock market may not realize volatility is the source 
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of risk. This explanation relies on the poorly educated investors. Second, it could be 

the case that investors may favor volatility rather than avoiding it, since volatility 

provides the context for them to gamble and speculate. This explanation involves the 

concept of naïve investor. Third, it could be the case that investor are exploiting price 

movement too much. When they see a price increase/decrease (and consequentially 

the high volatility), they will overbuy/oversell the stocks and results a lower return. 

Fourth, it could most likely be the case that some predatory investors rely on volatility 

to trade against retail investors. When the former predicts a high volatility, they will 

inject their capitals into the market to trade and gain from the latter, because the 

former are better trained than the latter to trade under a high volatility environment. 

Their general capital injection could lead to a higher price and lower return of stocks. 

5) The percentage change of retail investors loads positively and 

significantly against the excess return at a 0.000 level. This is consistent with the 

Greater Fools Theory. More retailed investors rushed in the market, higher the chance 

a greater fool could be found and higher the price and the return. This result also 

indirectly proved the greater fools in the simple could be deemed as momentum 

investors in the heterogeneous belief model. For momentum investors, a higher 

observed return in last period will make the threshold probability for them to stay 

lower. Hence, as the bubble thrives and the return sours, momentum investor are more 

likely to join the market, implying the number of them will increase. I didn’t directly 

testing this positive relationship. But through the positive relationship we tested 

between “𝐸𝑅𝑡−1” and “𝐸𝑅𝑡”, and the positive relationship we tested between “𝐸𝑅𝑡” 

and “𝐷𝑅𝐼𝑡 ”, I casually established a npositive relationship between “𝐸𝑅𝑡−1” and 

“𝐷𝑅𝐼𝑡”, and hence indirectly confirmed the second hypothesis in section 4.2.5. Thus, I 

believe retail investors could be classified not only as greater fools, but also as 

momentum investors. Although the coefficient is merely 0.119, we have to notice the 
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standard deviation of DRI is almost 49.3%, which means if DRI moves up/down by 

one S.D., excess return will increase/decrease by 5.87%! It is a very bold effect on the 

stock market. 

6) The percentage change of institutional investors loads negatively and 

significantly against the excess return at a 0.000 level. This result shows the 

institutional investors are not qualified as a greater fool. Alternatively, they could be 

deemed as the fundamentalist discussed in section 4.2.4. For fundamentalist, a higher 

observed return in last period will make the threshold probability for them to stay 

tougher. Hence, as the bubble thrives and the return sours, fundamentalist are more 

likely to leave or not join the market, implying the number of them will decline. I 

didn’t directly testing this negative relationship. But through the positive relationship 

we tested between “𝐸𝑅𝑡−1 ” and “𝐸𝑅𝑡 ”, and the negative relationship we tested 

between “𝐸𝑅𝑡” and “𝐷𝐼𝐼𝑡”, I casually established a negative relationship between 

“𝐸𝑅𝑡−1” and “𝐷𝐼𝐼𝑡”, and hence indirectly confirmed the second hypothesis in section 

4.2.5. Thus, I believe institutional investors couldn’t be classified as a part of the 

greater fools. They as a whole behave like a fundamentalist and hold different belief 

from the retail investors.  

7) The percentage change of liquidity affects the excess return positively 

and significantly at a 0.037 level. This result is consistent with the empirical result 

found in elsewhere. Liquidity could push the stock market in many means. I will list 

the most intuitive two. In the real side, more liquidity could increase the lending to the 

firm, make the firm committed to more investment and hence make their stocks more 

attractive and higher priced. In the nominal side, more liquidity could increase 

everyone’s nominal income, thus people will invest more nominal money into the 

stock than before, which will push the stock price to a higher level. The coefficient of 

DL is 0.747, and one standard deviation of DL is 1.91%, which means if DL moves 
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up/down by one S.D., excess return will increase /decrease by 1.43%. So liquidity is 

the third largest factor that explains the variance of the excess return. 

8) The percentage change of inflation affects the excess return positively 

at a 0.141 level. This variable is not very significant. I believe it is because the 

liquidity variable DL already works as a substitute of inflation. Inflation happens when 

the extra liquidity reflected on the commodities. So liquidity and inflation is related. 

Besides, since the formation of the basket is arbitrary and the menu cost prevents 

immediate reaction, inflation will always lag behind the liquidity. Hence, it is really no 

surprise to see inflation is not as significant as liquidity. 

9) As we have shown before in the redundant variable test, all the other 

macroeconomic variables, including export, industrial production and interest rate, are 

not significant in the study. This contradicts the finding in the developed countries. I 

believe this interesting result could be supported by the Chinese stock market 

background I introduced earlier and the Greater Fools Theory. First, Chinese market is 

most likely not an efficient market driven by public information and data. Second, 

since the Chinese economy is still under the intervention of the central government, 

investor concern more about the incoming government policies rather than the 

incoming economic indicators. Third, following the Greater Fools Theory, as long as 

the investors believes more greater fools will enter the arena, they will buy the stocks 

anyway regardless with any indicators. Fourth, due to the lack of shorting mechanism, 

positive indicators might be reflected in the market, but negative ones may not be 

immediately reflected. Thus, the general explanatory power of economic indicators 

would be weakened. 
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CHAPTER 6 

CONCLUDING REMARKS 

My study tried to characterize the Greater Fools Theory, test whether it is 

empirically valid and statistically significant. The objective of this study has been 

fulfilled with a satisfactory result. Properties derived from the basic mathematic 

formula are quite consistent with people’s irrational behaviors during a bubble. The 

empirical test finds out the supply of greater fools is the single largest force that drives 

the stock market return into an abnormal level. And institutional investors are the 

second largest force that stands against the influence of those greater fools. Liquidity 

affects the stock market in a third place by exerting influence on real side and nominal 

side of the economy.  The statistical practice is also very successful. The AR-

IGARCH-M model corrected all common problems for a time series regression. Thus 

the result should be reliable and trustworthy. 

However, some further improvement could be done on this study. First, we 

could further incorporate more features into the model of the Greater Fools Theory, 

like trying non I.I.D. distributions, different expectation and even some utility 

functions. Second, we could include a wider range of testing periods, if data in the 

earlier time has been published. Third, we could test the Greater Fools Theory in a 

firm level, by using some panel data. The factor model should also be adjusted to the 

Fama-French form, and also include the greater fools proxies. Fourth, some Vector 

Autoregressive Regression method could be discussed to see its fitness with the data.  

By revealing the significance of the Greater Fools Theory to public, my 

research has deep implications either to the market participant or the policy maker in 

China. First, it reminds the investor that the greater fools’ thinking dominates in 

Chinese stock market. If most Chinese investors become more aware of the Greater 

Fools Theory, the stock markets will be less volatile, avoiding the huge and abrupt 
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boom and bust in the last few years. By that time, the stock markets will become a 

more reliable venue for investment, supporting China to become a more developed 

economy. Second, the policy maker can play a more critical role in preventing the 

birth and burst of bubbles, should they understand the relationship between the Greater 

Fools Theory and Chinese stock bubbles. They could provide more information about 

the fools in the market, to avoid exaggerated expectation of next incoming fools. They 

should allow the short-selling of stocks in order to create more arbitrageurs than fools 

in the market. And they should also encourage dividends issuance to create more 

fundamentalist than fools in the market. 
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