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The concept of Lorentz Augmented Orbits (LAO) is explored and developed. A

spacecraft with a controlled net electrostatic charge moves in a planetary mag-

netic field. Such a spacecraft experiences a Lorentz force. By proper control of

the charge, useful changes to the spacecraft’s orbit can be made, making Lorentz

propulsion a type of propellantless propulsion.

The dynamics of such a system are explored in depth, using both analytical and

numerical methods with a variety of magnetic field models. These dynamics are

then applied to several novel mission designs. First, new Earth-synchronous orbits

are developed using the Lorentz force. Under certain assumptions, a low-Earth,

single-pass repeat groundtrack orbit exists for a constant spacecraft body charge-

to-mass ratio. This behavior is then recovered under more realistic conditions,

with a non-constant, feedback-controlled charge-to-mass ratio.

The potential of the Lorentz force to expand the performance and flexibility

of gravity-assist maneuvers is examined. A standard flyby maneuver is limited by

timing and geometry consideration. Using an LAO can open a new range of flyby

options, including temporary, reversible capture of spacecraft at a target planet,

along with arbitrary direction of exit asymptote. Algorithms are developed to

calculate the necessary charge-to-mass ratios.

A realistic spacecraft design, using near-term technology, is developed. Mission

design using the performance of this spacecraft architecture, along with a realistic

geomagnetic model, is examined. The LAO approach is well suited to be used for



low-Earth inclination change maneuvers. These maneuvers can save considerable

propellant, at the expense of longer maneuver duration and electrical power usage.

The possible role of LAOs in spacecraft formation flight is explored. The dy-

namics of a simple relative orbit system are derived, with their stability and con-

trollability examined. A sample formation maneuver is presented.
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CHAPTER 1

INTRODUCTION

1.1 Overview

There are two fundamentally different types of spacecraft propulsion: traditional

and propellantless. Traditional propulsion systems store propellant in some form

onboard the spacecraft. This propellant is then expelled from the spacecraft with

some momentum, imparting an equal and opposite momentum to the spacecraft.

Propellantless propulsion systems expend no propellant. Instead, these systems

exchange energy and momentum with the spacecraft’s environment in some way.

Some propellantless propulsion techniques, such as solar sails, harvest momentum

expelled from the sun.[1] Others, such as electrodynamic tethers, interact with a

magnetic field to do work upon the spacecraft.[2] Propellantless propulsion can

greatly extend the lifetime of a traditional spacecraft mission by eliminating the

need for such expendables. Additionally, propellantless propulsion can enable novel

mission designs not possible with traditional propulsive systems.

The propellantless propulsion technique discussed herein allows one to realize

a Lorentz Augmented Orbit (LAO). An LAO-capable spacecraft carries a net elec-

trostatic charge, either an excess of electrons or ions. Such a spacecraft behaves as

charged particle subject to interactions with a planetary magnetic field. We begin

with a summary of the elementary electrodynamics involved. The Lorentz force

experienced by a particle of charge q (Coulombs) moving through a magnetic field

B is given by

FL = qvr ×B (1.1)

where vr is the particle velocity with respect to the magnetic field. This force,
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named after Dutch physicist and Nobel Prize winner Hendrik Lorentz, accelerates

a spacecraft that is already subject to the force of gravity, augmenting the familiar

Keplerian dynamics. An LAO exploits the interaction between a planetary mag-

netic field and an electrostatic charge built up on a satellite.[3] Thus, an LAO

results from electrodynamic propulsion that does not require a tether. A tether

system normally entails a long conductive wire, through which a current is forced.

The drifting electrons in the tether provide the moving charged particles necessary

for the Lorentz force. In the LAO scheme, the spacecraft itself becomes the moving

charged particle, creating a current along its orbital path.

An LAO is achieved by a spacecraft that uses electrical power to maintain a net

electrostatic charge on its body, and this net charge causes an interaction between

the magnetic field and the vehicle in the form of the Lorentz force. The magnitude

and direction of the force are defined by the size and polarity of the charge on the

satellite q, the velocity of the vehicle with respect to the magnetic field vr, and

the strength and direction of the magnetic field B:

FL = q(v − ωE × r)×B (1.2)

where the position of the satellite is given by r, and ωE represents the planet’s

angular velocity. In an inertial frame the planetary magnetic fields rotate with

the planet.[4] The relative velocity, vr, that causes the Lorentz force results from

the difference between the inertial spacecraft velocity, v, and the velocity of the

magnetic field, ωE × r . The power system of the satellite can then modulate the

net charge to control the propulsive force.

The energy stored in a planet’s rotation is used to to do work on the vehicle,

as is seen more clearly in Section 1.3. The size of the force is limited by only

the charge-holding capacity (i.e. its self capacitance) and available power of the
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satellite. However, the direction of thrust is fixed with respect to the velocity

direction of the spacecraft and the direction of the magnetic field. This limitation

is not so restrictive as to render the system useless, though. With appropriate

planning and orbit design, many useful applications of Lorentz propulsion can be

realized.

This dissertation sets out to describe the dynamics of an LAO. Informed by

these dynamics, we create new missions and applications using LAOs. While the

effect of the Lorentz force on natural systems is well documented and understood

(see Section 1.4), the use of the Lorentz force to achieve spacecraft engineering

mission design goals is a new contribution. This dissertation attempts to identify

possible uses of LAOs in meaningful missions by examining Lorentz-augmented

dynamics, control, applications, and spacecraft design.

This chapter continues with an review of magnetic fields present in the Solar

System, with a particular emphasis on the Earth’s field, including a description

of the three field models used in this dissertation. This section is followed by a

derivation of the equations of motion that describe an LAO, along with general ex-

pressions for the change in energy and angular momentum of a charged spacecraft.

The first chapter concludes with a review of relevant literature and an overview of

the rest of the dissertation.

1.2 Magnetic Fields in the Solar System

The LAO concept can be applied to a spacecraft mission that involves an orbit

around any central body that has an appreciable magnetic field. This work con-

siders the fields of Earth and Jupiter primarily, but the general principles are
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not restricted to these planets. The Sun also has a magnetic field, but it is not

examined in depth here.

1.2.1 The Geomagnetic Field

The Earth’s magnetic field is a complex structure. Several models of varying depth

and accuracy are used to describe it in this dissertation. The simplest but least

accurate model of the Earth’s magnetic field is a dipole aligned with Earth’s spin

axis, referred to herein as the non-tilted dipole model. This model is used in parts

of Chapter 2, Chapter 3, and Chapter 5. A more accurate model is the tilted dipole

model, a dipole field that has been tilted some angle away from the Earth’s spin

axis (or true north pole). This tilted dipole model is used in Chapter 2. Finally,

the most accurate model is a full spherical harmonic model. This type of model

uses many coefficients, such as the International Geomagnetic Reference Field,

to describe the field in terms of spherical harmonic functions. In particular, this

dissertation uses the IGRF95 (or IGRF-7) model[5]. This model is used in Chapter

4. Based on the magnitudes of these spherical harmonic coefficients, one can say

that the non-tilted dipole component represents about 75% of the field, with the

tilted dipole adding another 15%, and higher-order components combining for the

remaining 10%. An important note on the magnetic field is that it is represented

in Earth-fixed coordinates. The field itself is locked in step with the rotation of

the Earth, as shown in Rothwell.[4] In implementing either the tilted dipole or

spherical harmonic models, one must be careful to distinguish between Earth-fixed

longitudes and inertial longitudes.

Most of the dynamics examined in this work use a spherical coordinate system.

The spherical coordinates consist of radius r, colatitude angle φ, and azimuth from

4



the x-direction θ, as shown in Fig. 1.1. The unit vector n̂ represents the Earth’s

Figure 1.1: Spherical coordinates used in the derivation of the equations of
motion.

spin axis, with the x- and y-directions being in the equatorial plane. The x-

direction is inertially fixed and aligned with the first point of Ares. The non-tilted

dipole magnetic field is expressed as

B =
B0

r3
[2 cos φr̂ + sin φφ̂ + 0θ̂] (1.3)

where B0 is the strength of the field in Weber-meters, and the unit vectors are

as shown in Fig. 1.1. The field rotates with the Earth. In the non-tilted field

case, r and φ are equivalent in both the rotating field frame and the inertial

frame. Because the dipole is axisymmetric, the magnetic azimuth does not directly

contribute to the Lorentz force. For the Earth, the geographic North Pole is in

fact the magnetic South Pole; the north side of a compass needle is attracted to

the geomagnetic south pole. We desire a coordinate system that has geographic

north in the z-direction, so we work with a dipole field that is essentially flipped

upside down. We correct for this fact by using a B0 term that is negative.
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The tilted-dipole model is implemented with two new parameters: α represents

the angle between the magnetic north pole and geographic north pole, and Ωm

represents the longitude of the magnetic north as measured from the inertial x-

axis. As the geomagnetic field is locked in step with the Earth’s rotation, Ωm

varies with respect to time as

Ωm = ωEt + Ωm(0) (1.4)

where Ωm(0) is the initial location of the magnetic pole. The general vector model

of a dipole field is

B =
B0

r3

[
3(N̂ · r̂)r̂− N̂

]
(1.5)

where N̂ is a unit vector along the magnetic north pole. α is the angle between

N̂ and n̂. This quantity is independent of time. The angle Ωm depends on time

and locates the N̂ vector. N̂ is fixed in an Earth-fixed frame, but rotates in an

inertial frame. For the Earth, the magnetic north pole is in northern Canada, with

α = 11.7◦ and an Earth-fixed longitude of −114◦.

The spherical harmonic model of the Earth’s magnetic field can be made arbi-

trarily complex. The field takes the form of

B =
∞∑

n=1

n∑
m=0

Bn,m (1.6)

where Bn,m is the component of the magnetic field of degree n and order m. See

Roithmayr[6] for explicit calculations of Bn,m. The magnetic field can also be

defined by the magnetic vector potential field A, where

B = ∇×A (1.7)

The magnetic vector potential field can be used in Hamiltonian formulations of
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the dynamics of the systems. The components of the A can be written as[7]

An,m = RE

[(
1

n

)(
RE

r

)n+1
{

m
Pm

n (cos φ)

sin φ
[−gn,m sin mθ (1.8)

+ hn,m cos mθ]φ̂− ∂(Pm
n (cos φ))

∂φ
[gn,m cos mθ + hn,m sin mθ]θ̂

}]

where RE is the radius of the Earth, Pm
n represents the associated Legendre func-

tions, and gn,m and hn,m are IGRF coefficients. The θ values in Eq. 1.8 must be

represented in an Earth-fixed coordinate system. Expressions for An,m and Bn,m

up to n = m = 2 are given in Appendix A.

Figure 1.2: Contour plot of the radial component of the geomagnetic field
over latitude and longitude. The black contour represents zero.
The dashed grey contours are values less than zero; the red con-
tours are values greater than zero.

Figure 1.2 shows a contour plot of (B · r̂) over (Earth-fixed) latitude and lon-

gitude at an altitude of 600 km. Positive values are represented by red contours,

and negative contours are dashed grey. The black contour is referred to as the
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magnetic equator and indicates where the radial component is zero. In the tradi-

tional lexicon, the magnetic equator is where the field has no inclination (or “dip”).

For the non-tilted dipole model, the magnetic equator would lie on the latitudinal

equator, but the additional higher-degree terms modify its location significantly.

Figure 1.3 shows a contour plot of (B · φ̂). Again, dashed grey contours are

Figure 1.3: Contour plot of the component of the geomagnetic field in the φ̂
direction over latitude and longitude. The black contour repre-
sents zero. The dashed grey contours are values less than zero;
the red contours are values greater than zero.

negative and red positive, with black being zero. The φ̂-component of the field is

generally negative, except for small polar regions. The φ̂-component is small near

these polar regions and is largest near the magnetic equator.

Figure 1.4 shows a contour plot of (B · θ̂). The contour colors are as above.

Figure 1.4 shows distinct regions of positive and negative values. The zero contour

represents the line of zero declination (or zero difference between true north and
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Figure 1.4: Contour plot of the component of the geomagnetic field in the θ̂
direction over latitude and longitude. The black contour repre-
sents zero. The dashed grey contours are values less than zero;
the red contours are values greater than zero.

magnetic north). The dipole component of the field (and all other zero-order terms)

contributes nothing to the θ̂-component of the field.

1.2.2 Other Planetary Fields

Most of the planets in the Solar System have significant magnetic fields. Russell

provides a survey of planetary magnetospheres.[8] Of the planets, six have ap-

preciable internally generated magnetic fields (Mercury, Earth, Jupiter, Saturn,

Uranus, and Neptune). Mars and Venus have such small and irregular fields that

Lorentz propulsion is not a viable technique. Mercury’s small magnetic field (about

1/3000th the strength of Earth’s) and gravitational field make it another unlikely
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Lorentz flyby target. The gas giants all have significant magnetic fields. Jupiter

possesses by far the strongest magnetic field in the Solar System, with a mag-

netic moment about 18,000 times as strong as Earth’s. Table 1.1 lists the relative

magnetic field strength of each planet in the Solar System.

Table 1.1: Comparison of planetary magnetospheres throughout the Solar
System.

Planet Orbit

Radius

(AU)

Magnetic Moment[8]

(compared to Earth)

Tilt of Dipole

Component

(◦)[9]

Mercury 0.39 4× 10−4 14

Venus 0.72 ∼ 0 N/A

Earth 1 1 11.7

Mars 1.52 ∼ 0 N/A

Jupiter 5.20 1.8× 104 9.6

Saturn 9.54 580 0.0

Uranus 19.2 50 58.6

Neptune 30.1 24 46.8

The six planets with intrinsic magnetic fields all have relatively strong dipole

components. In most planets, the dipole component of the field is tilted at some

angle. These angles are shown in Table 1.1. For the small tilt angles of Earth,

Jupiter, and Saturn, equatorial orbits are reasonably well modeled with a non-

tilted field. Chapter 2 details the effect of a tilted field on LAOs.
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1.3 Equations of Motion

In this section, we derive several basic equations that describe the motion of a

spacecraft in an LAO. The full equations of motion are derived using the simple

non-tilted dipole magnetic field model. These simple equations of motion are

followed by a more general treatment of LAOs using a Hamiltonian formulation.

The section ends with a general treatment of the changes in orbital energy and

angular momentum caused by the Lorentz force.

1.3.1 Equations of Motion in a Non-tilted Dipole Field

We describe the motion of a spacecraft in an LAO in the spherical coordinate

frame shown earlier in Fig. 1.1. The acceleration of the spacecraft including two-

body gravity and the Lorentz force (per unit mass) in these (inertially referenced)

coordinates is given by

a = F/m = − µ

r3
r +

q

m
(v − ωEn̂× r)×B (1.9)

where q
m

is the charge-to-mass ratio of the satellite in Coulombs per kilogram

(C/kg), and n̂ is a unit vector in the direction of the true north pole.

Expressing the Lorentz acceleration in the spherical, inertial frame yields

FL =
q

m

B0

r3


−rθ̇ sin2 φ + ωEr sin2 φ

2rθ̇ sin φ cos φ− 2ωEr cos φ sin φ

ṙ sin φ− 2rφ̇ cos φ

 (1.10)

Combining the Lorentz term with gravity and the standard accelerations in spher-
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ical coordinates gives the following three equations of motion:

r̈ = rθ̇2 sin2 φ + rφ̇2 − µ

r2
− q

m

B0

r3
[rθ̇ sin2 φ− ωEr sin2 φ] (1.11)

rφ̈ = −2ṙφ̇ + rθ̇2 sin φ cos φ +
q

m

B0

r3
2[rθ̇ sin φ cos φ (1.12)

− ωEr cos φ sin φ]

rθ̈ sin φ = −2ṙθ̇ sin φ− 2rφ̇θ̇ cos φ +
q

m

B0

r3
[ṙ sin φ− 2rφ̇ cos φ] (1.13)

Equations 1.11, 1.12, and 1.13 represent a sixth-order system that describes the

motion of any charged satellite in a non-tilted dipole magnetic field.

1.3.2 LAOs in a Hamiltonian Formulation

The general motion of a charged particle in both magnetic and gravitational fields

was described in a Hamiltonian framework by Schaffer and Burns in 1994.[7] This

section replicates that work in terms of our preferred coordinates. Here, the Hamil-

tonian formulation is derived in a frame that rotates with the planet of interest.

In such a frame, the system Hamiltonian, H, is constant regardless of whether the

charge is constant.[7]

We begin the derivation of the Hamiltonian system by first describing the La-

grangian, L, where L = T−U , with T being the total kinetic energy in the rotating

frame and U being the total potential energy. The kinetic energy of the spacecraft

in the rotating frame in spherical coordinates is

T =
1

2
mvTv =

1

2
m(ṙ2+r2φ̇2+r2 sin2 φθ̇2)+

1

2
m(ω2

Er2 sin2 φ+2ωEr2 sin2 φθ̇) (1.14)

Using two-body gravity, the gravitational potential energy is given by

Ug = m
µ

r
(1.15)
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To find the magnetic potential energy, we must use the magnetic potential field A

defined in Section 1.2. Using the definition of A, the magnetic potential energy is

Um = −q(v ·A) = −q(r sin φθ̇A · θ̂ + rφ̇A · φ̂) (1.16)

The total potential energy is the sum of the magnetic and gravitational terms,

making the Lagrangian

L =
1

2
m(ṙ2 + r2φ̇2 + r2 sin2 φθ̇2) +

1

2
m(ω2

Er2 sin2 φ + 2ωEr2 sin2 φθ̇) (1.17)

−m
µ

r
+ q(v ·A)− q(r sin φθ̇(A · θ̂) + rφ̇(A · φ̂))

With L, we can define the canonical coordinates and momenta of the Hamil-

tonian system. Choosing the three canonical coordinates as the three spherical

coordinates, r, φ, and θ, the three conjugate momenta are

pr = ∂L
∂ṙ

= mṙ (1.18)

pφ = ∂L
∂φ̇

= mr2φ̇ + qr(A · φ̂) (1.19)

pθ = ∂L
∂θ̇

= mr2 sin2 φ(̇θ + ωE) + qr sin φ(A · θ̂) (1.20)

The Hamiltonian can then be written as

H =
3∑

i=1

piq̇i(pi, qi) (1.21)

which yields the expression

H =
1

2m
(pr)

2 +
1

2mr2
(pφ − qr(A · φ̂))2 (1.22)

+
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ− qr sin φ(A · θ̂))2

+ m
mu

r
− 1

2
mr2ω2

E sin2 φ

This Hamiltonian is generally applicable for any magnetic potential field A.
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Appendix B gives the canonical variables and Hamiltonian for various terms of

the spherical harmonic model for A up to order and degree 2. In this appendix,

these quantities appear for isolated harmonics. That is to say, each Hamiltonian

given in Appendix B elucidates the effect of a single isolated harmonic term. These

Hamiltonians are not valid for the full system of many harmonics added together.

1.3.3 General Energy and Angular Momentum Change

General time rates of change of energy and angular momentum due to the Lorentz

force are derived. With these derivatives, the time rates of change of various

orbital elements can be found following the method of Burns.[10] The work-energy

principle states

Ė = v · F (1.23)

where E is the total energy of the system per unit mass, F is the applied force per

unit mass, and v is the body’s velocity. Including the Lorentz force gives

Ė = v ·
( q

m
vr ×B

)
(1.24)

Substituting for vr gives

Ė = v ·
( q

m
v ×B

)
− v ·

[ q

m
(ωEn̂× r)×B

]
(1.25)

The v · (v ×B) term is zero, yielding

Ė =
q

m
v · [B× (ωEn̂× r)] (1.26)

Equation 1.26 shows that only the rotation of the magnetic field allows the Lorentz

force to do work on the satellite. A general magnetic force is conservative; thus

the change in energy comes not from the magnetic field, but indirectly from the
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rotation of the Earth. Equivalently, a moving magnetic field is associated with an

electric field, and this induced electric field can do work on a satellite.

Applying the triple cross product identity to Eq. 1.26 yields

Ė =
q

m
ωE [(v · n̂)(B · r)− (v · r)(n̂ ·B)] (1.27)

Equation 1.27 is general. It describes any orbit or magnetic field configuration.

Change in orbital angular momentum arises from the torques applied to the

system by the Lorentz force, or

ḣ = r× FL (1.28)

where h is the angular momentum per unit mass of the system. Substituting for

FL and simplifying gives

ḣ = r×
( q

m
v ×B

)
+ r×

(
B×

[ q

m
ωEn̂× r

])
(1.29)

Applying the triple cross product formula to both terms and simplifying further

yields the following general expression:

ḣ =
q

m
[(B · r)v − (r · v)B− ωE(B · r)(n̂× r)] (1.30)

Depending on the orbital and magnetic configurations, we may change both the

magnitude and direction of the angular momentum vector. Changing the direction

of this vector allows some measure of control over both the inclination and right

ascension angle of the orbit.

1.4 Literature Review

The field of Lorentz Augmented orbits is a new area of research interest. The

work of Hough[11] represents the only known previously published study of the
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effect of the Lorentz force on the orbit of a charged, man-made spacecraft. Hough

presented the effect of charging on the targeting accuracy of a ballistic missile (and

found it to be negligible). LAO work draws on wide variety of previous scholarship

and fields of study, including natural systems that exhibit Lorentz effects, general

studies of spacecraft charging, plasma dynamics, formation flight actuators, and

electrodynamic tether propulsion.

The concept of the Lorentz Augmented Orbit was first described by Peck[3] in

2005. This work was expanded to produce the material in Chapter 2, and pub-

lished in 2007.[12]. Atchison, et al. looked at the prospect of capturing spacecraft

at Jupiter using the Lorentz force.[13] Chapter 3 presents a complementary look at

LAOs and planetary flybys, and draws from material published in 2007.[14] Chap-

ters 4 and 5 are drawn from works published in 2008[15] and 2007[16], respectively.

1.4.1 Lorentz-Affected Orbits in Natural Systems

Magnetically active planets in the Solar System, including Earth, have an iono-

sphere, a region of plasma around the planet. This plasma, along with photoelectric

excitation via the Sun, tends to impart some net electrostatic charge on any or-

biting body. This charge causes the most perturbation to small dust grains. The

Lorentz force acting on these small particles can be used to explain several natural

planetary ring phenomena.

Axford and Mendis produced some early work on the motion of charged

micrometeoroids.[17] Their work was based on the photometric changes of outer

planet satellites observable on Earth that could be caused by charged particles, and

included a study of equatorial charged particle dynamics in the Saturnian system.
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Littlejohn in 1979 and 1982[18, 19] discusses perturbation solutions for the mo-

tion of charged particles. He uses a Hamiltonian formulation, but in noncanonical

variables to avoid the use of the magnetic vector potential.

The Lorentz effect has been studied in further depth. Morfill produced a sum-

mary of electromagnetic effect on rings in 1983.[20] Burns, et al. in 1985 first

discussed the role of Lorentz resonances in shaping planetary ring features.[21]

Schaffer and Burns analyzed the dynamics of dust particles charged by the plasma

environment around Jupiter[22, 7]. They show that the motions of these small

charged grains can be greatly affected by Lorentz mechanics. This mechanism can

be used to explain sparse, latitudinally thick rings found around Jupiter’s main

rings. Hamilton derives expressions for time-averaged perturbation equations of

dust particles around Saturn,[23] some of which are also derived here. Colwell

and Horanyi[24] and Colwell, et al.[25] described how interplanetary dust can be

captured by Jupiter’s magnetic field into stable orbits. Gustafson and Lederer de-

scribed the effect of the Lorentz force from the Sun’s magnetic field on interstellar

dust particles.[26] This is by no means an exhaustive list of Lorentz-affected orbit

research, but should provide an overview of the field.

1.4.2 Spacecraft Charging and Plasma Dynamics

Just as dust grains naturally achieve some nonzero charge around Jupiter, a

spacecraft orbiting in a plasma environment will attain a static charge. Many

Earth orbiting spacecraft, such as the SCATHA mission, have measured this

effect.[27] Whipple[28] presents an overview of the natural charging that occurs

in the Earth environment. Spacecraft in Earth orbit tend to naturally hold a neg-

ative charge, and this charging occurs with a small time constant (on the order
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of milliseconds).[29] Garrett and Whittelsey[30] provided an updated survey of

spacecraft charging issues in 2000.

If a satellite is to control its charge, it must exchange charge with the plasma

environment in some way. One solution involves the use of ion or electron beams.

Charging a spacecraft with particle beams has been extensively studied in conjunc-

tion with research in both missile defense and ionospheric physics. An overview of

beam effects on satellites can be found in Lai[31].

An additional way to create a charge on a spacecraft is through the use of

radioactive material. Certain materials undergo β-decay, which involves the release

of particle containing two protons. Thus, as these protons are ejected from the

material, it tends to gain a negative charge. Linder and Christian describe this

process in more detail.[32]

The interaction between the spacecraft and the ambient plasma environment

is complex and not completely understood. When a charged body moves through

a plasma, it develops a sheath of plasma particles around it. This sheath is not

composed of individual particles that travel with the body, but a local, relative

density variation between the positive and negative species within the plasma. For

more information on the formation and characteristics of this sheath, see Walker[33]

or Parker[34].

A charged spacecraft will tend to be discharged by the ambient plasma. While

this discharging forces the spacecraft to use power to maintain a charge, the plasma

can also be used to help the satellite establish a large charge. This type of charging

is similar to the tether current collection scheme proposed by Sanmartin[35]. A

more in-depth description of this process is found in Choinière and Gilchrist[36]
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and in Chapter 4.

1.4.3 Electromagnetic Propulsion Schemes

Many other propellantless propulsion systems have been proposed. The electro-

dynamic tether system is closely related to LAOs. Tethers force current through

a long conductor.[2] The current in this tether moving with the satellite creates

a Lorentz force. By using a current in a wire rather than a space charge on the

spacecraft, a tether can produce forces in directions an LAO-capable spacecraft

cannot. However, the direction of the tether must be controlled, while the Lorentz

force in an LAO is attitude independent.

Tether research is useful to LAO investigations in the area of plasma interaction.

Mariani, et al. examine the current collected by the actual in-space deployment

of the TSS-1 tether.[37]. Fuhrhop et al. provide a theoretical and computational

model of the current collected by a tether in space.[38]

LAO-based propulsion and tethers (along with other propellantless propulsion

systems) differ in where they harvest energy from. LAO propulsion does work on

a satellite by using the rotation of Earth’s magnetic field. If in a perfect vacuum,

an LAO system would require only enough power to charge up and discharge the

spacecraft. A tether system is essentially a device for converting between electrical

energy and kinetic energy using a magnetic field. Solar sails and magnetic sails

harvest energy from the sun to perform propellantless maneuvers.[1]

Other studies have proposed various ways to use charged spacecraft and mag-

netic field interactions for many applications. King et al.[39] and Schaub[40]

present the idea of Coulomb spacecraft formations (CSF). Satellites in a CSF
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formation are electrostatically charged, and some measure of formation control

is provided by the Coulomb forces between the various satellites. The CSF sys-

tem faces many of the same system architecture challenges as LAO propulsion.

However, due to plasma shielding, a CSF is impractical in LEO, while an LAO is

more effective in LEO where the magnetic field strength is greater. The use of the

Lorentz force for formation flight is discussed in more detail in Chapter 5.

1.4.4 Attitude Control Via the Lorentz Force

Orbit control is not the only use of the Lorentz force for a spacecraft. Attitude

actuation is also a possibility by differential charging on the spacecraft body. A

number of Russian researchers began studying the effect of the Lorentz force on

spacecraft attitude motion in the late 1970s to early 1980s. In 1982, Beletskii[41]

examined a spacecraft with an electrified conical shell (designed to protect the

satellite from radiation). He used a tilted dipole geomagnetic model. This field

produces a uniform precession of the satellite about an axis a that lies fixed angle

from the axis of Earth’s rotation.

In 2002, Tikhonov[42] examined the effect of the Lorentz force on the attitude

of a charged spacecraft in an equatorial, circular orbit under the influences of

three different magnetic field models: a non-tilted dipole, a tilted dipole, and a

quadrupole model. He found that the tilted dipole does not model torques on the

satellite well. In fact, the non-tilted dipole may be more accurate for this situation.

The quadrupole is significantly better than the either dipole model.

In 2003, Tikhonov[43] examined a satellite with a charged sheet for the pur-

pose of attitude control. The spacecraft is in a near-circular, near-equatorial orbit
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(the equatorial assumption can be relaxed). A semipassive stabilizing control is

presented for a quadrupole magnetic model.

1.5 Dissertation Contributions and Overview

The main objective of this dissertation is to establish the theoretical basis for

orbital maneuvers based on modulating charge on a spacecraft within a planetary

magnetosphere, and then validate this theory via simulation of relevant examples

motivated by mission applications. In doing so, principles observed in astronomy

and planetary science are applied to spacecraft navigation problems. The key

contributions of this dissertation are:

• Expressions for the change in orbital energy and angular momentum are

develop. These expression are valid for any magnetic field model or orbit.

• Discovery of new synchronous orbits using the Lorentz force. In particular:

– A low-Earth, single-orbit repeat groundtrack trajectory, initially shown

for polar, circular starting orbits. This orbit is developed for other

inclinations and eccentricities, as well as being shown closed-loop stable

under a tilted dipole model.

– Orbits whose perigees are synchronous with the Earth.

– Sun-synchronous orbits for any inclination, eccentricity, and semimajor

axis.

• Enhancements to the gravity-assist maneuver using the Lorentz force, in-

cluding
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– Small changes to the ∆V of a flyby by rotation of the periapsis during

the hyperbolic pass.

– Reversible, temporary capture of spacecraft at the target planet

– Arbitrary exit asymptote direction using a constant charge-to-mass ra-

tio, allowing for the full range of geometrically possible ∆V values for

a given orbit energy and angular momentum.

• A framework for developing bang-off control laws to perform general Lorentz

maneuvers in any magnetic field. Specifically, a low-Earth inclination change

controller is developed fully, and proved optimal under certain conditions.

• The use of the Lorentz force to create arbitrarily shaped, planar spacecraft

formations. The stability and controllability of such formations are devel-

oped.

The six chapters of this dissertation are as follows. Chapter 1 contains the

introductory material, including the problem definition, basic orbit dynamics, and

a review of relevant research. Chapter 2 explores the creation of new Earth- and

Sun-synchronous orbits using the Lorentz force. Spacecraft with a constant charge

are examined under a non-tilted dipole magnetic field model. A charge controller

is then developed to regain synchronous behavior in the presence of a tilted dipole

field. Chapter 3 examines how the Lorentz force can be made to extend the use-

fulness and flexibility of planetary flyby maneuvers. An algorithm is developed to

allow for the temporary capture of a spacecraft at Jupiter, followed by an arbitrary

exit direction. Chapter 4 develops a more general LAO control scheme based upon

a realistic magnetic field model. A near-term achievable system architecture is

presented, and an application is developed based upon an estimate of the system’s

charge-to-mass ratio. The effect of the Earth’s plasmasphere on LAO power con-
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sumption is also examined. Chapter 5 discusses the use of the Lorentz force in

spacecraft formation flight. Relative orbit dynamics are developed, along with a

sample formation maneuver. Finally, Chapter 6 concludes this work and discusses

possible avenues of future research in Lorentz augmented orbits.
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CHAPTER 2

NEW SYNCHRONOUS ORBITS USING THE GEOMAGNETIC

LORENTZ FORCE

2.1 Introduction

In a repeat groundtrack orbit, the sub-satellite point traces out a recurring pat-

tern on the Earth in some integer number of orbital periods. Traditionally, these

orbits are achieved by adjusting the period of a satellite such that it completes an

integer number of revolutions in exactly an integer number of sidereal Earth days.

Geostationary and geosynchronous orbits are perhaps the most familiar and useful

examples. These orbits have a mean motion equal to the spin rate of the Earth.

We shall refer to orbits that repeat their groundtrack every orbital period as GT-1

orbits. Thus all GEO orbits are in the GT-1 class. A more general class, the

GT-x orbit, repeats its groundtrack every x revolutions. For example, satellites in

the GPS constellation are in 12 sidereal hour orbits and can thus be considered

GT-2 satellites. Many LEO imaging satellites designed for full-Earth coverage also

use repeat-track orbits. Every 16 days, over the course of 233 orbits, Landsat 7

covers the full Earth, making it a GT-233 satellite.[44] Repeat-groundtrack Kep-

lerian orbits are based on the number of Earth days that pass before the ground

track is repeated. However, augmenting the orbit with the Lorentz force enables

repeat-groundtrack orbits that are not tied to integer multiples of Earth’s spin

period.

Dedicated weather satellites and both government and commercial communi-

cations satellites are just a few of the numerous uses for GT-1 orbits. However

GT-1 systems are currently limited to GEO orbits. The altitude of these satellites,
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roughly 36000 km, requires high-power communications and impacts the aperture

requirements for Earth-imaging satellites. An ideal arrangement would be a GT-

1 orbit at a low Earth altitude. This chapter proposes just that: a low Earth,

polar GT-1 orbit achieved with LAO propulsion. While such an orbit is not geo-

stationary in the sense of an equatorial GEO satellite, it is geosynchronous. The

groundtrack repeats every orbital period.

Using the equations of motion and perturbation equations presented in Chapter

1, we can analyze and characterize these new orbits. Described in Section 2.2 are

methods for changing orbital energy, changing orbit angular momentum (both

magnitude and direction), and arbitrary control of right ascension and argument

of perigee for certain situations. This control allows for the creation of certain new

Earth-synchronous orbits.

The scope of this chapter does not include many complexities of the LAO

system. The non-tilted dipole geomagnetic field model is used until Section 2.3,

when the tilted dipole model is examined. The implementation of an LAO-capable

spacecraft is discussed only in Chapter 4, and what follows in this chapter assumes

that a required charge on the satellite can be delivered, regardless of plasma envi-

ronment or power constraints. This chapter focuses on the basic orbital dynamics

of an LAO and presents dynamically interesting cases with applications inspired

by these results.

2.2 Applications

Using the Lorentz force to achieve a mission objective is sometimes not an intuitive

exercise. A charged spacecraft cannot control the direction of the force, only
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magnitude and perhaps the sign, depending on the implementation architecture.

The force is also perpendicular to the field-fixed velocity of the spacecraft. Were

the magnetic field not rotating, no energy could be added to an LAO; but with the

rotating field, the energy and angular momentum of the orbit can be changed in

most cases. Also, with appropriate control of the charge on the satellite, controlling

energy and momentum allows for regulation of most of the orbital elements of the

spacecraft. Two specific cases are developed here: the polar circular orbit and

the general equatorial orbit, both in a non-tilted dipole field. Additionally, Earth

oblateness effects are examined.

2.2.1 Polar Circular Orbit, Non-tilted Dipole Field

We apply the general energy and momentum relationships in Eqs. 1.27 and 1.30

to two specific cases to develop some simple and interesting results.

Analytical Results

First, we examine a polar, circular orbit in a non-tilted dipole magnetic field. In

this case, the following expressions hold:

v · r = 0; B · r = 2
B0

r2
sin u; v · n̂ = v cos u; v =

√
µ

r
(2.1)

where r is the radius of the orbit, and u is the argument of latitude of the satel-

lite. The argument of latitude is the angular position of the satellite around the

orbit measured from the right ascension of the vehicle in the equatorial plane.

Substituting the equalities in Eq. 2.1, Eq. 1.27 becomes

Ė = 2
q

m
ωEB0

√
µr−5/2 sin u cos u (2.2)
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The expression in Eq. 2.2 is an odd, periodic function of u and, thus, contributes

no secular change to the energy of the orbit. However, the radius of the orbit

oscillates with a frequency of twice per orbit. Expressing the radius of the circular

orbit as a function of energy, and using Eq. 2.2, gives an expression for the time

rate of change of the radius of the orbit:

ṙ = 4
q

m
ωE

B0√
µ

r−1/2 sin u cos u (2.3)

For constant q
m

, Eq. 2.3 is periodic over an orbit. The radial velocity (and thus

eccentricity) remains small for a constant q
m

, keeping the assumptions of a Ke-

plerian, polar, circular orbit valid. The simulation results shown below back up

this assumption, showing that deviations in eccentricity and inclination remain

small. However, if we choose to control the charge as a function of the argument

of latitude, a secular change in the radius (and eccentricity) of the orbit can be

obtained.

Similarly, the angular momentum rate of a circular polar LAO is examined with

Eq. 1.30, with an orthogonal coordinate system having the x-direction along the

line of nodes, the y-direction aligned with the north pole, and the z-direction nec-

essarily along the orbit angular momentum vector. With this coordinate system,

the properties of a polar, circular orbit, and Eq. 1.30, the derivative of angular

momentum becomes

ḣ = 2
q

m

B0

r2


−v sin2 u

v sin u cos u

rωE sin u cos u

 (2.4)

Equation 2.4 represents the time rate of change of the angular momentum vector

due to the Lorentz force, for a circular, polar LAO.

We use the vector derivative in Eq. 2.4 to define several scalar derivatives
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of interest, including the time rates of change of the inclination angle, the right

ascension angle, and the magnitude of the angular momentum. First, the derivative

of the scalar angular momentum magnitude is given by

ḣ = 2
q

m

B0

r
ωE sin u cos u (2.5)

Thus, the magnitude of the angular momentum vector changes in a purely periodic

manner under a constant charge.

The inclination angle i is defined in terms of the angular momentum vector h

by

n̂ · h = h cos i (2.6)

Differentiating Eq. 2.6 to find the time rate of change of i gives

di

dt
=
−2 q

m
B0

r2 sin u cos u [v − rωE cos i]

rv sin i
(2.7)

where the notation di
dt

is used for clarity. Again, for constant charge, Eq. 2.7 is

nonsecular, oscillating at a frequency of twice per orbit.

The line of nodes vector Ω is defined by

Ω = n̂× h (2.8)

and extends from the origin of the coordinate system through the point where the

satellite ascends through the equatorial plane. Differentiating Eq. 2.8 gives

Ω̇ = n̂× ḣ (2.9)

which simplifies to

Ω̇ = −2qB0

mr2
vc sin2 u


0

0

1

+
2qωEB0

mr
sin u cos u


1

0

0

 (2.10)
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There are two terms in right hand side of Eq. 2.10: one along the direction of

the node vector, and one normal to it. The length of the node vector is irrelevant

here. The term normal to the node vector is more interesting. It is in the equatorial

plane, and thus represents a change in the right ascension angle Ω. This term is

an even function and produces a secular change. We can substitute into Eq. 2.10

the fact that the magnitude of the velocity in the circular orbit, v, is given by ru̇.

Thus the normal component of the vector right ascension rate is

Ω̇n = −2qB0

mr
sin2 uu̇ (2.11)

We can relate Eq. 2.11 to the actual angular right ascension rate, Ω̇, by

Ω̇ =
Ω̇n

‖Ω‖
(2.12)

In the polar case, the magnitude of the node vector is simply the magnitude of the

angular momentum vector, or

‖Ω‖ = ‖h‖ = r

√
µ

r
(2.13)

because the angular momentum is perpendicular to the north direction. Equa-

tion 2.12 becomes

Ω̇ = −2
q

m

B0

r2

√
r

µ
sin2 uu̇ (2.14)

Equation 2.14 represents the rate of change in right ascension angle as a function

of argument of latitude. Equation 2.14 is an even, secular function. The RAAN

of the orbit changes of the course of one orbit.

We can determine an average change in right ascension per orbit by integrating

Eq. 2.14 around one complete orbit. The change in right ascension per orbit (∆Ω)

is given by

∆Ω = −2π
q

m

B0

r2

√
r

µ
(2.15)

29



Thus, for the circular polar orbit, non-tilted dipole case, we can set an arbitrary

change in right ascension per orbit. Defining the average time derivative of right

ascension as Ω̇avg, equal to Eq. 2.15 divided by the orbital period, and inverting

the result gives the following simple relationship between the charge-to-mass ratio

q
m

and the average right ascension rate Ω̇avg, circular orbit radius r, and magnetic

field strength B0:

q

m
= −Ω̇avgr

3

B0

(2.16)

We can now calculate the necessary charge-to-mass ratio for any desired right

ascension rate.

Changing the right ascension of a polar orbit essentially amounts to changing

longitude on the groundtrack of the satellite (see Fig. 2.1). Arbitrary right ascen-

Figure 2.1: Graphical representation of the vectors involved in an LAO GT-1
orbit.

sion control can greatly increase the efficiency of a polar LEO imaging satellite. If

full charge control is possible (both positive and negative charges) then the satel-

lite can acquire a target faster, and then stay in the neighborhood of the target
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longer. In fact, if an average right ascension rate equal to the rate of Earth’s rota-

tion is acquired, then a satellite can have a single-orbit repeat-groundtrack. The

satellite would pass over exactly the same points on the Earth every orbit. Thus,

the orbit becomes a LEO GT-1 orbit. This groundtrack would allow a satellite to

pass over an imaging target every 90 minutes rather than at most twice a day for

an uncontrolled LEO polar satellite.

Solving for the required charge-to-mass ratio for an LAO GT-1 yields

( q

m

)
GT−1

= −ωEr3

B0

(2.17)

When evaluated for a circular orbit with 400km altitude, Eq. 2.17 reveals that a

q
m

of 2.831 C/kg is required for geosynchronous behavior.

Another possible application is a sun-synchronous LEO polar orbit at any alti-

tude. The sun-synchronous condition is a right ascension rate of Ω̇ss = 2π rad/year.

This rate yields a charge-to-mass ratio for maintaining a sun-synchronous orbit of

( q

m

)
ss

= −Ω̇ssr
3
0

B0

(2.18)

For example, a 400km orbit requires a ratio 0.0078 C/kg for sun synchronicity.

The non-periodic change in right ascension persists for orbits that are not

necessarily polar or circular. By extending the process used to derive the polar

case to a general orbit (still assuming a non-tilted dipole field), an expression

analogous to Eq. 2.16 is found for a general orbit:

q

m
=

Ω̇avga
3

B0

(1− e2)3/2 1

ωE

√
a3

µ
(1− e2)2 cos i e2−[(1−e2)1/2−1]2 cos 2ω

e2 − 1
(2.19)

Equation 2.19 is valid for any elliptical orbit under the influence of a non-tilted

dipole.
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Alternate Derivation of GT-1 Behavior

The GT-1 behavior derived above can also be found using the Hamiltonian formu-

lation of the LAO problem found in Section 1.3.2. The magnetic vector potential

for a dipole field is

A =
B0

r2
(N̂× r̂) (2.20)

For a non-tilted dipole, N̂ is aligned with n̂, giving N̂ = cos φr̂ − sin φφ̂. Substi-

tuting into Eq. 2.20 gives a vector potential of

A =
B0

r2


0

0

sin φ

 (2.21)

Using this potential in the Hamiltonian of Eq. 1.22 in a coordinate frame ro-

tating with the planet gives:

H =
1

2m
(pr)

2 +
1

2mr2
(pφ)

2 +
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ− q

B0

r
sin2 φ)2(2.22)

+ mΦgr −
1

2
mr2ω2

E sin2 φ

with canonical variables r, φ, and θ and conjugate momenta

pr = mṙ (2.23)

pθ = mr2 sin2 φ(θ̇ + ωE) + q
B0

r
sin2 φ (2.24)

pφ = mr2φ̇ (2.25)

Using Hamilton’s equation to get the rate of longitudinal movement gives

θ̇ =
∂H

∂pθ

=
pθ

mr2 sin2 φ
− ωE −

q

m

B0

r3
(2.26)

For a polar orbiting satellite, pθ is zero. For GT-1 behavior, θ̇ should be equal to

zero (in the rotating system). Setting θ̇ to zero and solving for q
m

gives( q

m

)
GT−1

= −ωEr3

B0

(2.27)
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which exactly recovers Eq. 2.17.

Numerical Simulation

A numerical simulation is developed to test several of the previous analytical re-

sults. The simulation is a Runge-Kutta (4,5) integration of the sixth-order system

defined by Eqs. 1.11-1.13, performed by Matlab. The simulation is valid for any

orbit for a charged satellite in a non-tilted dipole field. Table 2.1 shows the set of

physical parameters common to all simulations.

Table 2.1: Physical parameters common to all simulations.

Parameter Value

ωE 7.272e-5 rad/s

µ 3.986e14 m3/s2

B0 -8.000e15 Wb-m

The polar, circular orbit is integrated from the initial conditions in Table 2.2.

The charge-to-mass ratio of 2.83 c/KG is chosen based on Eq. 2.17. Figure 2.2

shows the resulting orbital path. This path is plotted in a frame that rotates with

the Earth so as to highlight the GT-1 nature of the orbit. The orbit is shown

to scale with the image of the Earth. Figure 2.2 shows a slight deviation from a

perfect GT-1 orbit. This discrepancy is explained by Fig. 2.3. This figure compares

the forces acting on the satellite over one orbital period. The magnitudes of both

gravity and the Lorentz force are shown. In this GT-1 polar scenario, the Lorentz

force is quite significant with respect to gravity, which causes large orbital element

changes, violating the osculating-element assumption. A large Lorentz force causes
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Figure 2.2: Track of a GT-1 LAO orbit in a frame rotating with Earth with
q
m

= 2.83 C/kg.

Figure 2.3: Comparison of gravitational and Lorentz acceleration magnitudes
for a GT-1 LAO orbit with q

m
= 2.83 C/kg.
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the orbital eccentricity to be non-zero, creates wobbles in the inclination, and keeps

the orbital speed from being constant. These perturbations on the orbit cause slight

inaccuracies in the expressions derived in Section 2.2.1 related to a polar circular

orbit.

Table 2.2: Initial conditions for polar, circular orbit.

Property Value

Altitude 400 km

q
m

2.831 C/kg

Integration Time 5 orbits

However, the small difference in calculated and desired right ascension angles

is due only to wind up of small errors in predicted right ascension rate over time.

The top plot of Fig. 2.4 shows both the numerically calculated and the analyti-

cally derived right ascension angle rates. The analytical results are based on the

expression in Eq. 2.14; the numerical result is based upon changes in the angular

momentum vector of the orbit determined from the state of the system at any

given time. As expected, the right ascension rate is zero as the satellite crosses

the equator, and large and positive as it crosses the poles. The average values of

the curves in Fig. 2.4 is greater than zero, causing a secular increase in the right

ascension of the orbit. These two curves match nearly exactly, with small, but

persistent, errors. The rate error is shown in the bottom plot of Fig. 2.4. The

size of the errors is an order of magnitude smaller than the rates. In practice,

closed-loop control of the charge might be used to trim the errors that arise due to

unmodeled dynamics in the open-loop system. The closed-loop case is addressed

later in Section 2.3.3.
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Figure 2.4: Time rate of change in right ascension for a GT-1 LAO orbit
with q

m
= 2.83 C/kg. The top plot shows both analytical and

numerical calculations of the right ascension. The bottom plot
shows the error between these two curves.

Finally, Fig. 2.5 shows the time rate of change of orbital energy throughout

the simulation. The solid line represents the numerically calculated energy rate

based on the state vector at each time, and the dotted line represents the derived

expression shown in Eq. 2.2. These two curves match closely. However, the energy

rate is centered around zero, and thus there is no secular change in the orbital

energy.

2.2.2 Equatorial Orbit, Non-tilted Dipole Field

A second simple case to consider is an equatorial orbit in a non-tilted dipole field.

The true equator and the magnetic equator are aligned in this situation, and
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Figure 2.5: Time rate of change of orbital energy for a GT-1 LAO orbit with
q
m

= 2.83 C/kg.

magnetic field is perpendicular to these planes. The eccentricity can be non-zero

in this case.

Analytical Results

In the equatorial, eccentric orbit case, the following relationships hold:

v · n̂ = 0;B · n̂ = −B0

r3
; r · v =

√
µa(1− e2)

e sin ν

1 + e cos ν
(2.28)

where a is the orbit semimajor axis, e is the orbital eccentricity, and ν is the true

anomaly. With Eq. 2.28, and the standard conic section equation for an elliptical

orbit,

r =
a(1− e2)

1 + e cos ν
(2.29)

Eq. 1.27 becomes

Ė =
q

m
ωEB0

√
µ
[
a(1− e2)

]−5/2
e sin ν(1 + e cos ν)2 (2.30)

Note the dependence on the eccentricity e. The Lorentz force can not add energy

to a circular, equatorial orbit. Equation 2.30 leads to a time rate of change of
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semimajor axis of

ȧ = 2
q

m
ea2ωE

B0√
µ

[
a(1− e2)

]−5/2
sin ν(1 + e cos ν)2 (2.31)

Again, the rate in Eq. 2.31 is nonsecular, but with proper modulation of q
m

, the

size of the equatorial orbit can be controlled using the Lorentz force.

Using the specifics of an equatorial orbit in Eq. 1.30 gives a time rate of change

of vector angular momentum of

ḣ = − q

m
(r · v)

B0

r3
ĥ (2.32)

where ĥ is a unit vector in the h direction. As the rate in Eq. 2.32 only has a

component in the direction of h, it represents only a change in the scalar magnitude

of h. This scalar momentum change is expressed as

ḣ =
q

m
B0
√

µ
[
a(1− e2)

]−5/2
e sin ν(1 + e cos ν)2 (2.33)

which is another periodic function with no secular terms. Here, the direction of h

cannot be controlled, which means the inclination and right ascension angle cannot

be changed.

Following Burns[10] and using Eqs. 2.30 and 2.33, an expression for the time

rate of change of orbital eccentricity under the Lorentz force in a equatorial orbit

is

ė = − q

m
B0

sin ν(1 + e cos ν)2

[a(1− e2)]3/2

[
1

a3/2(1− e2)1/2
− ωE√

µ

]
(2.34)

which is periodic in true anomaly. If one starts with an initially circular orbit, the

eccentricity of the orbit should be changed to facilitate the control of energy.

Also from Burns[10], we develop an expression for the argument of perigee rate

using Eqs. 2.30 and 2.33. Simplification gives

ω̇ =
q
m

B0√
µ

[
2

[a(1− e2)]3/2
+

2e cos ν

[a(1− e2)]3/2
+

cos ν

a3/2e(1− e2)1/2
− ωE cos ν

e
√

µ

]
ν̇ (2.35)
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where the standard time rate of change of true anomaly for a Keplerian orbit has

been used. The first term in brackets of Eq. 2.35 gives rise to a secular change in

the argument of perigee for a constant charge-to-mass ratio. This secular perigee

change has many interesting, if somewhat esoteric, applications. Perigee control

allows for the cancelation of various natural perturbations on the argument of

perigee, such as J2 effects and lunar and solar tides. Another use may be to

create a Molniya-type orbit at zero inclination (and most likely other inclinations).

Building on the same ideas as the GT-1 LAO orbits discussed previously, perigee

control also allows for matching Earth’s rotation rate. The line of apsides of such a

synchronous orbit would remain at a constant longitude on Earth’s surface. Thus,

LAO-based propulsion creates possibilities for other kinds of synchronous orbits

rather than just GT-x orbits.

To evaluate this concept of precessing the line of apsides, we seek an expression

for the q
m

necessary to generate a certain average perigee rate. Integrating Eq.

2.35 around one orbit gives an expression for the change in argument of perigee

per orbit ∆ω:

∆ω =
4π q

m
B0

√
µ [a(1− e2)]3/2

(2.36)

For a certain desired rate of change in the argument of perigee ω̇des we require that

∆ω/∆t = ω̇des, where we set ∆t to be one orbital period. Setting the resulting

expression for ∆ω equal to Eq. 2.36 and solving for q
m

gives a required charge-to-

mass ratio for some desired rate of perigee change:

q

m
=

ω̇desa
3(1− e2)3/2

2B0

(2.37)

Equation 2.37 has similar dependencies as Eq. 2.16, the charge-to-mass ratio re-

quired for a particular right ascension rate for a polar circle. However, in the

equatorial case, the eccentricity plays an important role in the magnitude of charge
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required. A higher eccentricity corresponds to a higher velocity at perigee for a

given orbit size, which makes a more effective use of the Lorentz force, allowing for

a smaller charge-to-mass ratio. Equation 2.37 applies for any desired rate of change

for argument of perigee, including mitigating oblateness and third-body effects as

well as introducing synchronous behavior. However, larger rates introduce inaccu-

racy in the q
m

predicted by this osculating-elements approach. The derivation of

Eq. 2.37 assumes that all the other orbital elements are changing slowly or are not

explicit functions of ν, and this may not be the case with a large charge-to-mass

ratio.

The secular change in argument of perigee under a constant charge also arises

in non-equatorial orbits. Following the same method as for the equatorial case,

but generalized for any elliptical orbit, yields an expression for the charge-to-mass

ratio required for a desired perigee rate:

q

m
=

ω̇desa
3(1− e2)3/2

B0 cos i

[
3− ωE

√
a3

µ
(1− e2)2 cos i

e2 − [(1− e2)1/2 − 1]2 cos 2ω

e2

]−1

(2.38)

A subtlety in the derivation of Eq. 2.38 arises from the coupled changes in right as-

cension and argument of perigee in an inclined orbit, hence the similarities between

Eq. 2.38 and Eq. 2.19.

Equation 2.38 gives the time rate of change of perigee relative to an inertial

coordinate system. This rate is the superposition of two different rates: the rate

of change of argument of perigee within the orbit plane, and the change in perigee

due to the fact that the right ascension, and thus orbital plane itself, is changing.

In order to create the ω-synchronous orbit, the rate of in-plane perigee change

must be equal to the rotation rate of the Earth. Subtracting off the rates due to
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right ascension rate of change gives

q

m
=

ωEa3(1− e2)3/2

2B0 cos i
(2.39)

which differs only by a factor of 1/ cos i from Eq. 2.37. Again, Eq. 2.39 is only

valid for situations where desired rate of perigee change is based on a relationship

with the rotating Earth, rather than some absolute inertial rate.

Numerical Simulation

The equatorial, eccentric, constant charge simulation is initialized with the values

shown in Table 2.3, using the same model as in the case of the polar orbit. The

Table 2.3: Initial conditions for equatorial, constant charge integration.

Property Value

Perigee Altitude 400 km

Apogee Altitude 1500 km

Eccentricity 0.075

Semimajor Axis 7328 km

q
m

-1.774 C/kg

Integration Time 1 day

chosen value of q
m

is designed to produce an Earth-synchronous motion of the

perigee of the orbit. The value is calculated from Eq. 2.37 with a desired rotation

rate designed to match the Earth’s rotation, or ω̇des = ωE.

Figure 2.6 shows the orbital path of the satellite over one day. Again, the orbit

is to scale with the depiction of the Earth as viewed from above the North Pole.

The orbital path is shown in a coordinate system rotating with the Earth.
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Figure 2.6: Earth-fixed orbital path of an equatorial, constant charge LAO
satellite with q

m
= −1.77 C/kg, calculated for synchronous

perigee movement.

The rotating frame view in Fig. 2.6 shows that the charge-to-mass ratio used in

the simulation was not large enough to perfectly cancel the Earth’s rotation with

perigee motion. If the correct charge were used, the rotating frame view would

show only a single curve. The top plot of Fig. 2.7 shows the numerically calculated

and analytically derived arguments of perigee for this case. The numerical values

are represented by the solid line. The dotted line represents the analytical values,

calculated by numerically integrating Eq. 2.35. While these two curves match

quite precisely, we see that the perigee angle does not reach 360◦ after one day

as intended. Fig. 2.7 gives confidence in the result for time rate of change of

perigee expressed in Eq. 2.35, but shows that accuracy is lost in integrating this

data to obtain Eq. 2.37. The perigee error, the difference between the numerical

and analytical curves, is shown in the bottom plot of Fig. 2.7. The error is
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Figure 2.7: Argument of perigee angle of an equatorial, constant charge LAO
satellite with q

m
= −1.77 C/kg. The top plot shows both analyt-

ical and numerical calculations of the argument of perigee. The
bottom plot shows the error between these two curves.

significantly smaller than the perigee values. In the integration of Eq. 2.35, we

assumed that the semimajor axis and eccentricity were changing slowly enough to

be independent of true anomaly. The charge-to-mass ratios are large enough in

this case to make that a poor assumption. However, for smaller desired perigee

rate, like mitigating J2 effects, Eq. 2.37 is quite accurate. Creating the Earth-

synchronous effect is certainly possible; it just requires a larger q
m

than predicted.

Creating a closed-loop control system to adjust q
m

can account for this variation,

in addition to correcting for imperfections in the magnetic field model, plasma

variations, etc. Equation 2.37 represents a starting point for system design and

closed-loop control.

The results demonstrate that a constant charge, equatorial LAO satellite can

43



have an arbitrary time rate of change of argument of perigee. The required charge-

to-mass ratio for a desired rate depends solely on the initial orbit configuration

and the magnitude of the desired change. The orbital energy and eccentricity also

change in a predictable manner, but with no secular variations.

The simulations, both in this section and previously in Section 2.2.1 have shown

excellent agreement between the derived equations of motion and the analytical

expressions for the orbital changes in an LAO. We see that useful and desirable

changes can be made to orbits using this system. Although only simulations of

polar and equatorial orbits are presented here, an arbitrarily inclined orbit will

just combine the properties of these two results in some way. Furthermore, the

approximation of osculating elements yields convenient expressions that provide

insight into the behaviors for only small inaccuracy.

2.2.3 Mitigation of Earth Oblateness Effects

The non-sphericity of the Earth causes secular changes in both the right ascension

and argument of perigee of a spacecraft, herein referred to as J2 effects.[44] The

generally accepted secular time rates of change due to J2 are

Ω̇J2 = −3/2
J2R

2
E

√
µ

a7/2

cos i

(1− e2)2
(2.40)

ω̇J2 = 3/4
J2R

2
E

√
µ

a7/2

4− 5 sin2 i

(1− e2)2
(2.41)

It is trivial to use Lorentz propulsion to cancel the effect of J2 on either the right

ascension angle or the argument of perigee. The rate calculated with Eq. 2.40 or

Eq. 2.41 can simply be substituted into Eq. 2.19 or Eq. 2.38, respectively. For

example, in an equatorial orbit with perigee at 400 km altitude and apogee at
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1500 km, J2 causes the argument of perigee to change by about 12.4◦/day. The

charge-to-mass ratio required to overcome this perturbation is about 0.042 C/kg.

There exist orbits where a constant charge LAO can cancel the secular changes

in both Ω and ω. These orbits can only exist below the J2 critical angle of i ≈ 63.4◦

or above the critical solution of i ≈ 116.6◦ . Additionally, the effect of the Lorentz

force must be equivalent to the J2 effects in both the right ascension and the

argument of perigee. This condition is true when the orbit in question satisfies the

following expression:

3−K

1−K
=

4− 5sin2i

2cos2i
(2.42)

where K is given by

K = ωE

√
a3

µ
(1− e2)2 cos i

e2 − [(1− e2)1/2 − 1]2 cos 2ω

e2
(2.43)

While Eq. 2.42 does not easily yield simple relationships among the orbital ele-

ments, a minimum semimajor axis for this condition can be found. Under the most

optimistic assumptions, namely e = 0, the expression in Eq. 2.42 can be satisfied

only if the polynomial

3
wE

n
cos3 i + cos2 i− wE

n
cos i + 1 = 0 (2.44)

where n is the mean motion, has a valid solution. These solutions exist only when

wE/n > 1. Thus the semimajor axis must exceed GEO altitude in order to fully

cancel J2 effects with a constant charge. At these altitudes, the J2 and LAO effects

would generally not be the dominant perturbative forces on the satellite.
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2.2.4 Tether/LAO Comparison for GT-1 Behavior

Electrodynamic tethers are an alternate propellantless electromagnetic propulsion

system. Under certain tether dynamics assumptions, a tether system can outper-

form an LAO system for some applications. Here, we discuss the use of a tether

to produce the LAO GT-1 synchronous orbits developed in Section 2.2.1.

In order for a tether to show polar GT-1 behavior, the tether current (and

tether) must be in the along-track direction of the satellite. Although the flexible-

body dynamics of a tether along the velocity direction of the spacecraft are non-

trivial, here only the electrodynamic considerations are addressed. With an along-

track electrodynamic tether, the Lorentz force experienced by the tether is equiv-

alent to the Lorentz force on an LAO-capable satellite. These two terms can be

equated as

qv ×B = LJ×B (2.45)

where the left side of the equation represents an LAO, and the right a tether,

with L being the length of the tether and J the current through it. As the tether

current, J, is in the same direction as the LAO satellite velocity, it follows that

qv = LJ (2.46)

Comparing the relevant accelerations gives[45]

q

m
v =

LI

m + λL
(2.47)

where λ is the mass per unit length of the tether and I is the current through the

tether. Solving for the length of tether required to approximate an LAO satellite

of charge q and mass m gives

L =
qv

I − q
m

vλ
(2.48)
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As the tether length cannot be negative, the denominator of this equation must

be positive, giving rise to a minimum required tether current of

I =
q

m
vλ (2.49)

For a polar GT-1 LAO satellite at an altitude of 400 km with a charge to mass

ratio of 2.83 C/kg, and the aluminum tether presented in Forward, et al.[45], the

absolute minimum current required for a tether to reproduce GT-1 behavior is

43.4 A. However, at this current an infinitely long tether is required. For a more

reasonable tether length of 20 km and a spacecraft base mass of 10 kg, a 55 A

current is required.

One slight correction to the above analysis is the self capacitance of the tether.

As a voltage is applied to the long wire, it builds up a charge, causing it to act like

an LAO spacecraft. Using 4πε0L as the capacitance of a wire, a correction to the

current limit given in Eq. 2.49 is applied as

I =
q

m
vλ− 4πε0Vt (2.50)

where Vt is the tether potential. The resistance of the tether is relatively small,

creating driving voltages on the order of 1 to 100 kV. These voltages reduce the

minimum current of Eq. 2.49 by only 0.1 to 10 µA.

2.3 Effects of a Tilted Dipole Magnetic Field

The previous analysis assumes the geomagnetic field to be a dipole whose magnetic

north pole is aligned with the Earth’s geographic north pole. While this assumption

allows for several clean analytical results to be calculated, a more accurate model

of the geomagnetic field is a dipole field whose north pole axis is tilted with respect
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to true north. The actual geomagnetic north pole sits in northern Canada, tilted

roughly 10◦ from geographic north.

2.3.1 Tilted Dipole and GT-1 Behavior

Using the tilted dipole model described in Section 1.2, Eq. 1.27, yields a new energy

rate of change relationship based on a tilted dipole:

Ė =
q

m
ωEB0

√
µ

[1 + e cos(u− ω)]2

[a(1− e2)]5/2

〈
2 sin i (cos u + e cos ω)

×{cos(Ωm − Ω) sin α cos u + sin(Ωm − Ω) cos i sin α sin u + sin i cos α sin u}

− e sin(u− ω)
[
3 sin u sin i {cos(Ωm − Ω) sin α cos u

+ sin(Ωm − Ω) cos i sin α sin u + sin i cos α sin u} − cos α
]〉

(2.51)

where, again, α represents the angle between the magnetic north pole and ge-

ographic north pole, and Ωm represents the longitude of the magnetic north as

measured from the inertial x-axis. Equation 2.51 is for a general elliptical orbit

in a dipole field with any tilt. Equation 2.51 includes the non-tilted dipole case

and encompasses the expressions in Eqs. 2.2 and 2.30. A similar expression can

be derived for the angular momentum rate, which is not presented here for the

sake of brevity. However, this angular momentum expression can be used to derive

a relationship for the time rate of change of right ascension angle under a tilted

dipole field, given by

Ω̇ =
q

m

B0

sin i

[1 + e cos(u− ω)]2

[a(1− e2)]3

{
cos φm [−2 sin u− 2e sin ω − 3e sin(u− ω) cos u]

+ e sin(u− ω) [sin α cos(Ωm − Ω)]

− 2ωE√
µ

[a(1− e2)]
3/2

[1 + e cos(u− ω)]
cos φm cos i sin u

}
(2.52)
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where φm is the satellite’s magnetic colatitude:

cos φm = cos(Ωm − Ω) sin α cos u (2.53)

+ sin(Ωm − Ω) cos i sin α sin u + sin i cos α sin u

The effects of adding a tilt angle to the dipole field are numerically simulated

based on a generalization of the non-tilted dipole integrations. The results of

two simulations comparing the non-tilted dipole and the tilted dipole are shown

in Fig. 2.8. This figure shows two integrations, both beginning with same initial

Figure 2.8: Comparison between two integrations with the same initial con-
ditions. The left plot uses a non-tilted dipole field; the right used
a dipole field tilted to 10◦.

conditions, namely a 400 km altitude polar circle with a charge-to-mass ratio calcu-

lated to give GT-1 behavior. The results are plotted in an Earth-fixed coordinate

system. The left plot shows the integration in a non-tilted dipole field, giving the

familiar GT-1 orbit. The right plot displays the result of a simulation including

a dipole field tilted at angle of 10◦. This orbit is quickly driven away from GT-1

behavior. Each simulation lasts for a period of one day.
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The cause of this deviation is found in the terms in Eq. 2.51 arising from the

tilted dipole. In particular, the term of the form

Ė ∝ cos(Ωm − Ω) sin α sin i cos2 u (2.54)

causes a secular drift in the energy of the orbit away from its initial value. Initially

the quantity cos(Ω′) is constant, where Ω′ is defined as the quantity Ωm − Ω, as

this condition embodies the LAO GT-1 behavior. A term similar to Eq. 2.54 also

arises in the rate of angular momentum expression. Thus, E and h drift away from

their nominal values, causing the spacecraft charge-to-mass ratio to be unsuitable

for GT-1 behavior. As the orbit moves away from the GT-1 behavior, Ω′ is no

longer constant, and the spacecraft settles into a periodic motion that does not

resemble GT-1.

The expression in Eq. 2.54 should go to zero when Ω′ = ±90◦. Figure 2.9

shows numerical simulations for both of these initial orbit longitudes. The two

plots in Fig. 2.9 represent the orbital energy of the spacecraft throughout the

simulation. The left plot shows Ω′ = −90◦, while the right displays Ω′ = +90◦.

In the −90◦ case, the orbital energy remains nearly constant, and the spacecraft

remains close to the intended GT-1 region. However, in the +90◦ case, the energy

varies widely, and the satellite does not maintain GT-1. This behavior can be

attributed to the sign changes that cos(Ω′) makes around ±90◦. At −90◦, the

sign of the cosine function switches in such a way to push the orbital energy back

towards its nominal value. At +90◦, the opposite happens. Essentially, Ω′ = −90◦

is a stable equilibrium and Ω′ = +90◦ is an unstable equilibrium.

Solutions near Ω′ = −90◦ remain bounded, but periodic, in Ω′. The error in Ω′

increases as the initial value of Ω′ gets further from −90◦, until the system becomes

unstable at Ω′ = 0◦ or 180◦. For the LAO GT-1 concept to be a viable application,
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Figure 2.9: The orbital energy of two tilted dipole integrations with q
m

=
−1.77 C/kg, set to give GT-1 behavior. The left plot is for Ω′ =
−90◦. The right shows an initial angle of Ω′ = +90◦.

a nearly constant arbitrary value of Ω′ should be maintainable. However, due to

symmetry of the polar orbit, a range of only 180◦ of Ω′ allows for full longitudinal

coverage. Thus, only the bounded-error cases of 180◦ < Ω′ ≤ 360◦ must be consid-

ered. The next section describes how one might modulate the charge as part of a

feedback-control scheme to compensate for this error in the open-loop dynamics.

2.3.2 Recovery of GT-1 Using a Non-constant Charge

To recover GT-1 behavior under the influences of a tilted dipole magnetic field,

a scheme of charge modulation is developed. Again, the goal is to find a time-

varying charge-to-mass ratio that forces a tilted dipole LAO to track these non-

tilted solutions. First, the non-tilted field solution is further developed analytically.

These analytical solutions provide a desired path to track in the tilted dipole case.
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Rewriting Eqs. 2.2 and 2.14 using the charge-to-mass ratio in Eq. 2.17 gives

ĖD = −ωE
√

aµ sin 2u (2.55)

Ω̇D = ωE − ωE cos 2u (2.56)

where the subscript D refers to a desired quantity.

The rates of energy and right ascension change must be matched with the

desired rates. Equations 2.51 and 2.52 are used, with the eccentricity set to zero.

Simulations show that the eccentricity of an initially circular orbit remains small

even as a GT-1 orbit is attempted. This simplification gives

Ė =
q

m
AL +

q

m
AL cos 2u +

q

m
AM sin 2u (2.57)

Ω̇ =
q

m
CM − q

m
CM cos 2u +

q

m
CL sin 2u (2.58)

with the following definitions:

A = ωEB0
√

µa−5/2 sin i (2.59)

C = − B0

a3 sin i

(
1 +

ωE√
µ

a3/2 cos i

)
(2.60)

L = cos(Ωm − Ω) sin α (2.61)

M = sin(Ωm − Ω) cos i sin α + sin i cos α (2.62)

Noting how Eqs. 2.57 and 2.58 depend on the argument of latitude u, we define a

charge-to-mass ratio with the same frequency dependencies:

q

m
= k1 + k2 sin 2u + k3 cos 2u (2.63)

Thus, q
m

has a constant baseline with a sinusoidal curve superimposed.

Substituting the charge-to-mass in Eq. 2.63 into Eqs. 2.57 and 2.58 yields

Ė = (k1AL +
1

2
k2AM +

1

2
k3AL) + (k1AM + k2AL) sin 2u

+ (k1AL + k3AL) cos 2u + (
1

2
k2AL +

1

2
k3AM) sin 4u

+ (−1

2
k2AM +

1

2
k3AL) cos 4u (2.64)

52



Ω̇ = (k1CM +
1

2
k2CL− 1

2
k3CM) + (k1CL− k2CM) sin 2u

+ (k1CL + k3CM) cos 2u + (−1

2
k2CM +

1

2
k3CL) sin 4u

+ (−1

2
k2CL− 1

2
k3CM) cos 4u (2.65)

These two expressions, Eqs. 2.64 and 2.65, are set equal to the desired rates of

change given in Eqs. 2.55 and 2.56, respectively. For these equalities to always hold

true, each frequency component in both the energy and right ascension expressions

must equate to its counterpart in the desired track equation. Between the two

different expressions, there are 10 different conditions (i.e., 2 each for the sin 2u,

cos 2u, sin 4u, cos 4u, and constant terms) to be satisfied.

As there are 10 linear equations for only 3 unknowns (k1, k2, and k3), the sys-

tem is overdetermined. The system can be solved with a least-squares regression;

however, not all can be satisfied simultaneously, resulting in an imperfect solution.

Instead, we choose to solve a full-rank, square subspace of the 10 equations. Three

equations concisely capture the desired behavior. The most important conditions

are the constant term of Ω̇ to ensure GT-1 behavior and the constant and first sine

term of the Ė to keep the orbit near its nominal state. Thus, the linear system

that is solved for each coefficient is given by
AM 1

2
AM 1

2
AL

AM AL 0

CM 1
2
CL −1

2
CM




k1

k2

k3

 =


0

−ω2
E

√
aµ

ωE

 (2.66)

The solution of Eq. 2.66 is substituted into Eq. 2.63 to obtain a value of q
m

at a

given point in the orbit.

If A, C, L, and M are treated as constants, which assumes Ω changes exactly

with the rotation of the Earth and the other orbital elements are constant, the

system in Eq. 2.66 can be solved analytically. Carrying out this solution yields the
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desired coefficients for defining the charge-to-mass ratio as

k1 =
ωE

(
ωE
√

aµCM2 + ωE
√

aµCL2 + 2AL2
)

ACM(3L2 −M2)

k2 =
−2
(
A + 2ωE

√
aµC

)
ωEL

ACM(3L2 −M2)

k3 =
−2ωE

(
2AL2 − AM2 + ωE

√
aµCL2 − ωE

√
aµCM2

)
ACM(3L2 −M2)

(2.67)

In principle, the coefficients in Eq. 2.63 will reproduce GT-1 behavior under a

tilted dipole magnetic field. However, this scheme is open loop and the resulting

system is not guaranteed to be stable.

Figure 2.10 shows the results of a simulation using the charge-to-mass ratio

calculated by Eqs. 2.63 and 2.67. All simulations in this section begin at a time at

which Earth-centered and inertial longitudes are equal. The magnetic north pole

is placed at its physical location (α = 10◦ and Ωm = −114◦). In Fig. 2.10, the top

plot shows the error in right ascension angle in degrees over 15 days. The lower

plot shows the error in specific energy in m2/s2 over the same time period. The

desired average right ascension for this simulation is 0◦, with the desired average

energy corresponding to a 400 km altitude circular orbit. Using the solution of

Eq. 2.67 and the parameters of this simulation, q
m

varies from about 2.5 C/kg to

3.3 C/kg.

For comparison, Fig. 2.11 shows the results of a simulation under the same

initial conditions using a constant charge-to-mass ratio ( q
m

= 2.93). The same two

plots are shown. The comparison of these two figures shows that the charge-varying

scheme greatly reduces the errors in right ascension and energy. For a constant

charge-to-mass ratio, the maximum right ascension error is 51.68◦. Under the

open-loop varying scheme, the maximum error is only 4.76◦. However, the error

in the varying charge does not asymptotically approach zero or fall into a periodic
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Figure 2.10: Right ascension and energy error over 15 days for a spacecraft
using the variable charge-to-mass scheme defined in Eqs. 2.63
and 2.67. The desired average right ascension is 0◦. The orbit
is initially a 400 km altitude circle. The geomagnetic field is
tilted to 10◦.

motion, so its stability is not guaranteed. To enforce a guarantee, feedback control

is introduced.

2.3.3 Feedback Control for q
m

While the open-loop solution generally reproduces GT-1 behavior over short time

scales, the resulting system is open-loop and is prone to instabilities due to im-

perfect modeling of the magnetic field. To remedy this situation, feedback is

introduced to the expression defining q
m

:

q

m
= k1 + k2 sin 2u + k3 cos 2u + k4(Ω− ΩD) + k5(E − ED) (2.68)
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Figure 2.11: Right ascension and energy error over 15 days for a spacecraft
under a constant charge. The desired average right ascension is
0◦. The orbit is initially a 400 km altitude circle. The geomag-
netic field is tilted to 10◦.

where k1, k2, and k3 are as given in Eq. 2.67, and ΩD and ED are defined by

integrating Eqs. 2.56 and 2.55, respectively. Thus, k4 and k5 are feedback gains

and the Ω and E terms are errors to be zeroed. The definition of q
m

in Eq. 2.68 is

substituted into Eqs. 2.58 and 2.57. The terms involving k1, k2, and k3 are assumed

to satisfy the 10 equation system defined by Eqs. 2.65 and 2.64. This assumption

is not explicitly true, as k1, k2, and k3 are only chosen to satisfy Eq. 2.66, but the

resulting error can be treated as a small unmodeled disturbance. Applying this

assumption gives

Ω̇ = Ω̇D + (CM − CM cos 2u + CL sin 2u)
(
k4(Ω− ΩD) (2.69)

+ k5(E − ED)
)

Ė = ĖD + (AL + AL cos 2u + AM sin 2u)
(
k4(Ω− ΩD) (2.70)

+ k5(E − ED)
)
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Combining Eqs. 2.69 and 2.70 into a state-space system yields Ω̇− Ω̇D

Ė − ĖD

 (2.71)

=

 k4C(M −M cos 2u + L sin 2u) k5C(M −M cos 2u + L sin 2u)

k4A(L + L cos 2u + M sin 2u) k5A(L + L cos 2u + M sin 2u)


×

 Ω− ΩD

E − ED


Equation 2.71 represents a closed-loop, linear, time-varying (LTV) system. De-

scribing the stability of an LTV system is not as simple or straightforward as the

time-invariant case. The following section gives a review of LTV stability criteria.

Stability of LTV Systems

Given an LTV state matrix, A(t), the eigenvalues of the state matrix being in the

left-half plane is neither a sufficient nor necessary condition of stability. Many ex-

amples exist of LTV systems with constant, negative, real eigenvalues that exhibit

unstable behavior. Willems[46] and DeCarlo[47] give an overview of LTV stabil-

ity analysis techniques. The conceptually simplest techniques involve the state

transition matrix, Φ(t, t0). The system is stable if and only if the condition

||Φ(t, t0)|| < M(t0) (2.72)

where M is some bound that may depend on t0, and ||(.)|| represents any valid

matrix norm.[46] If a bound M can be found that does not depend on t0, the system

is said to be uniformly stable. This technique, of course, relies on knowledge of

the state transition matrix.

57



Lyapunov stability can also be defined for LTV systems. The system is Lya-

punov stable if there exist P (t), a positive definite, continuous, differentiable, and

bounded matrix, and Q(t), a positive definite, continuous, and bounded matrix,

which satisfy

Ṗ (t) + P (t)A(t) + AT (t)P (t) = −Q(t) (2.73)

P and Q are guaranteed to exist for any stable A(t), but are nontrivial to calculate.

For an LTI system the Lyapunov equation reduces to a simple algebraic equation.

In the LTV case, we are left with a second differential equation, the solution of

which generally requires knowledge of the state transition matrix.

Other techniques based on the state transition matrix (STM) exist. If the STM

is periodic, Floquet theory can be used to predict system stability. See Willems

for a full description.[46] If the state matrix changes sufficiently slowly in time,

the state matrix having negative real parts for each eigenvalue can show stability.

Rosenbrock puts explicit bounds on the rate of change of the state matrix.[48]

Effectively, these bounds require that the system approaches equilibrium ”fast”

compared to the changes in A(t). For our A(t) above, these bounds do not exist.

More advanced techniques make use of the logarithmic norm of a matrix. The

logarithmic norm of a matrix, sometimes called the measure of a matrix, is a

”norm-like” quantity defined with respect to some particular matrix norm ||(.)||

as[49]

µ(A) ≡ lim
θ→0

||I + θA|| − 1

θ
(2.74)

A particular logarithmic norm is said to be induced by a particular matrix norm.

A good introduction to the logarithmic norm is found in Desoer[49], along with

expressions for the logarithmic norms induced by the 1-, 2-, and∞-norms. Surveys

of logarithmic norm literature are given in Strom[50] and Soderlind[51].
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The logarithmic norm establishes the following sufficient (but not necessary)

condition for the stability of an LTV system:[52]

||x0|| exp

[
−
∫ t

t0

µ(−A(s))ds

]
≤ ||x(t)|| ≤ ||x0|| exp

[∫ t

t0

µ(A(s))ds

]
(2.75)

(The logarithmic norm can take on negative values.) This condition essentially

implies that the integral of the logarithmic norm of the state matrix is bounded,

then the state is bounded. Willems[46] gives Wazewski’s inequality, which is based

on the logarithmic norm induced by the 2-norm. The system is stable if the

inequality

lim
t→∞

∫ t

t0

λmax(s)ds ≤ M(t0) (2.76)

holds, where λmax is the largest eigenvalue of the quantity (A(t)+AT (t)). Mori[52]

gives a similar condition based on the 1-norm induced matrix measure. These can

be useful, but since they are not necessary conditions, any given matrix A(t) can

fail these inequalities and still be stable.

A Stabilizing Controller

We do not develop specific bounds in the method of Rosenbrock, but use the

eigenvalues of the state matrix as a guide to selecting a controller, which will later

be shown numerically to be stable based on the state transition matrix. Solving

for the eigenvalues yields the following condition on the gains k4 and k5:

k5 < −k4
C(M −M cos 2u + L sin 2u)

A(L + L cos 2u + M sin 2u)
(2.77)

Gains that meet the criterion in Eq. 2.77 give the system a negative real eigenvalue.

The second eigenvalue of the system is always zero. Using Eq. 2.77 as a guideline,
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a stabilizing controller is found to be

k4 = −0.5

k5 =
−k4K + (k4 − 0.05)‖K‖

A(L + L cos 2u + M sin 2u)

K = C(M −M cos 2u + L sin 2u) (2.78)

where the symbol ‖(.)‖ refers to absolute value. The gain k5 is not constant. This

set of gains results in stable errors in energy and right ascension over at least 180◦ of

desired average right ascension angle in simulation, implying that any Earth-fixed

longitude can be tracked in GT-1 fashion with bounded, finite error.

The results of the controller in Eq. 2.78 are explored numerically. Figure 2.12

shows right ascension and energy error under the same conditions as the simulations

shown in Figs. 2.10 and 2.11. The feedback control scheme uses about the same

range of q
m

values as the open loop scheme. The maximum right ascension errors

of the feedback case is 4.12◦, less than the open loop error of 4.76◦. Additionally,

the error in the feedback case falls into a periodic motion, and is stable for all time.

The plots shown in Fig. 2.13 are intended to demonstrate the improvement

in stability of the feedback control scheme over the open loop variable q
m

case.

Figure 2.13(a) shows the results of an open loop simulation similar to those done

previously, but with a desired average right ascension angle of 70◦. This orbit

deviates widely from the desired path. The system in this case is unstable. Fig-

ure 2.13(b) shows the same simulation using the feedback controller. The controller

is able to stabilize the system, and results in bounded error. Despite the large error

bounds, the underlying system is stable.

Figure 2.14 further elucidates the stable, periodic nature of the feedback so-

lution. This figure shows the right ascension and energy error under feedback
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Figure 2.12: Right ascension and energy error over 15 days for a spacecraft
using the feedback control scheme defined in Eq. 2.68. The
desired average right ascension is 0◦. The orbit is initially a 400
km altitude circle. The geomagnetic field is tilted to 10◦.

control, for a circular, 400 km orbit with desired average right ascension of 45◦.

This simulation is carried out for 75 days, and the periodic nature of the error is

well displayed.

To show numerically that the controller in Eq. 2.78 does indeed stabilize the

system in Eq. 2.71, we use the result that an LTV system is stable if and only if

the norm of its state transition matrix is bounded for all time.[46] We numerically

solve for the state transition matrix Φ(t, 0) for the system simulated in Fig. 2.14.

Given the time history of this simulation, the system matrix of Eq. 2.71 can be

found as a function of time. Two linearly independent initial conditions, x01 and

x02 are then integrated using the system matrix. With the two resulting time

histories, x1(t) and x2(t), the state transition matrix is given by

Φ(t, 0) = [x1(t) x2(t)][x01 x02 ]
−1 (2.79)
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(a) Open loop scheme

(b) Feedback scheme

Figure 2.13: Right ascension and energy error over 15 days for a spacecraft
using the open loop scheme and the feedback controller. The
desired average right ascension is 70◦. The orbit is initially a
400 km altitude circle. The geomagnetic field is tilted to 10◦.
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Figure 2.14: Right ascension and energy error over 75 days for a spacecraft
using the feedback control scheme defined in Eq. 2.68. The
desired average right ascension is 45◦. The orbit is initially a
400 km altitude circle. The geomagnetic field is tilted to 10◦.

Figure 2.15 shows the matrix induced 2-norm of the state transition matrix. As

the norm is bounded, the system is stable. However, the result in Fig. 2.15 does

not give uniform stability of the system, nor does it prove that the system stable

over a range of desired right ascension values. The norm of Φ(t, 0) approaching 0

as time increases leads to the conclusion that Eq. 2.71 is asymptotically stable,

but the error plots in Fig. 2.14 plainly show errors approaching some non-zero

value. In Fig. 2.14, the linear system in Eq. 2.71 is not being simulated, but the

full nonlinear system of Eqs. 1.11-1.13 augmented to include the tilted dipole field.

Assumptions made in deriving Eq. 2.71 cause it to be not entirely accurate.

However, we show numerically that the full nonlinear solution still approaches a

stable and periodic non-zero error. Figure 2.16 is used to more rigorously show the

periodicity of the right ascension error in Fig. 2.14. At first glance, the long-term
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Figure 2.15: Matrix norm of the state transition matrix of the system in Eq.
2.71 using data from the simulation shown in Fig. 2.14.

behavior of the error appears to be a periodic beat of two similar frequencies. To

test this hypothesis, the error data is fast Fourier transformed. The power spectral

density of this transform is calculated and shows two distinct peaks. One peak

occurs at a frequency near twice per orbit; the other occurs at slightly less than

twice per orbit. The data is numerically resampled at the beat frequency of the

two frequency peaks. The long term average right ascension error is subtracted

from the resampled data, and the resulting curve is plotted in Fig. 2.16. As the

transient response damps out, this curve goes to zero, indicating good agreement

with the periodic, beating assumption.

The feedback controller presented in Eq. 2.68 using the gains in Eq. 2.78 stabi-

lizes GT-1 behavior under the influence of tilted geomagnetic field. This controller

consists of proportional feedback based on a linearized model and does not guar-

antee asymptotic convergence. However, the controller does bound the error in

right ascension and energy. Numerical analysis shows that the system is stabilized
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Figure 2.16: Resampled right ascension error over 75 days for the simula-
tion displayed in Fig. 2.14. The actual right ascension error is
Fourier transformed. The power spectral density of this trans-
form is used to find the two main frequencies present, and the
error is numerically resampled at the difference between these
frequencies. The long-term average error is also subtracted off
to create a zero-mean system.

for a full range of desired average right ascensions and initial orbit altitudes.

2.4 Chapter Conclusions

LAOs are based on simple physical principles but can be used to accomplish a

variety of complex orbital behaviors. The resulting changes in orbital elements

due to the Lorentz force can be used to develop novel applications. These new ap-

plications include polar, single-orbit repeat-groundtrack (GT-1) satellites. A suc-

cessfully implemented GT-1 LAO orbit would greatly outperform today’s imaging

satellites. These orbits can exist at any altitude, not just the traditional geosyn-
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chronous height. We have derived from first principles a simple expression for the

charge required to achieve such an orbit. This expression is verified numerically

and allows for mission designs to be evaluated. Also numerically confirmed is the

existence of equatorial orbits with arbitrary control over the location of perigee.

Again, a simple expression for the charge required is shown from first principles.

These orbits can create an Earth-synchronous orbit whose perigee and apogee lie

at constant longitudes.

The presence of a tilt in the Earth’s magnetic field greatly complicates GT-1

behavior. The GT-1 orbit in this case is not stable for constant charge. However,

modulating the charge as a means of feedback control is shown to stabilize a GT-1

LAO.
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CHAPTER 3

GRAVITY-ASSIST MANEUVERS AUGMENTED BY THE

LORENTZ FORCE

In this chapter, the effects of the Lorentz force on gravity-assist maneuvers

is examined. We consider a charged spacecraft that performs a hyperbolic flyby

of a planet with a non-negligible magnetosphere. If the charge on the satellite

is modulated, the usefulness and effectiveness of the flyby can be extended in

several ways with no expenditure of propellant. Both analytical and simulation

results are presented for satellites in equatorial orbits within dipole magnetic fields.

The spacecraft’s exit asymptote from the flyby target’s sphere of influence can be

changed to an arbitrary direction. The spacecraft can also be captured at the

target planet, or the assist maneuver can be timed with more flexibility than a

gravity-only flyby.

3.1 Introduction

This chapter addresses the use of LAOs as a way to increase the flexibility and

effectiveness of gravity-assist maneuvers. The methods used to analyze LAOs

consist mainly of perturbations to Keplerian orbits, following the work in Chapter

2. The next section provides an extension to these perturbation equations, a note

on Solar System magnetic fields, and an overview of flyby trajectories, followed by a

study of the extension of flybys to include LAO dynamics. Adding the Lorentz force

to hyperbolic trajectories creates several novel applications including arbitrary exit

angle from the planet frame, propellantless capture, and flexible flyby timing.
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3.1.1 Perturbation Equations

Recalling Eqs. 1.27 and 1.30:

Ė =
q

m
ωE [(v · n̂)(B · r)− (v · r)(n̂ ·B)] (1.27)

ḣ =
q

m
(B · r)v − q

m
(r · v)B− q

m
ωE(B · r)(n̂× r) (1.30)

we have expressions for the change in energy and angular momentum of the orbit,

where, throughout this chapter, we use ωE to refer to the rotation rate of any

planet of interest. But the combination of energy change and angular momentum

change does not complete a full set of independent derivatives describing changes

in the orbit. To fully describe changes in the orbit, we use the eccentricity vector,

e. The eccentricity vector is defined as

e =
v × h

µ
− r̂ (3.1)

where r̂ is a unit vector in the radial direction. Geometrically, the eccentricity

vector points from the center of the central planet towards the periapsis of the

orbit. The magnitude of e is equal to the orbital eccentricity, e. The time rate of

change of e due to the Lorentz force is

ė = − q

m

1

µ
ωE(B · n̂)(r · v)r +

q

m

1

µ

[
ωE(B · n̂)r2 − (r× v) ·B

]
v (3.2)

− q

m

1

µ
(r · v)(v ×B)

Equations 1.27, 1.30, and 3.2 provide the information necessary to determine

changes in five of the six orbital elements. Change in the semimajor axis, a,

are calculated using the change in energy. Change to the orbital inclination, i,

and right ascension of the ascending node, Ω, are found based on changes in the

direction the angular momentum vector. Change in the eccentricity, e, and the

longitude of periapsis, Π, can be gleaned from the change in the magnitude and
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direction of the eccentricity vector, respectively. The time rate of change of the

true anomaly is derived independently in Section 3.2.2.

3.1.2 Planetary Magnetic Fields

LAOs require a planetary magnetic field to work. The stronger a planet’s magnetic

field is, the more effective the Lorentz force can be. An overview of the magnetic

fields available in the Solar System appears in Chapter 1. The six planets with

intrinsic magnetic fields all have relatively strong dipole components. This chap-

ter models all magnetic fields as non-tilted dipoles. The large tilt-angle fields of

Neptune and Uranus are not considered here.

Jupiter and Earth are the most attractive targets for Lorentz augmentation

of flyby maneuvers. Both planets are used for gravity-assists for interplanetary

missions. This chapter focuses on Jupiter flybys, but the analysis is valid at Earth

and Saturn as well. Although Saturn is not convenient for gravitational flybys, its

environment is well suited to LAOs. The small tilt of its dipole component allows

for a simpler and more effective controller to be implemented. And, while Jupiter

has a plasmasphere constantly being filled with charge-eroding ions from volcanic

Io, Saturn has a more benign radiation environment with no heavily volcanic moons

and constant absorbtion of charged particles by the massive ring system.

3.1.3 Gravity-Assist Maneuvers

The gravity assist or flyby is a powerful tool in facilitating interplanetary missions.

A gravity-assist maneuver uses the gravity well of a planet to alter the heliocentric
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orbit of a spacecraft. Interplanetary satellites have made extensive use of flybys

since the Mariner 10 mission first used a flyby of Venus on its way to Mercury.

In the simplest (but still reasonably accurate) analysis of a flyby maneuver, the

hyperbolic trajectory of the spacecraft about the target planet is assumed to take a

small amount of time compared to the planet’s heliocentric orbit. This chapter also

assumes all orbits are coplanar and all planetary paths are circular. The sphere of

influence approximation is also used. Schaub and Junkins[53] offer a more in-depth

treatment of flybys and spheres of influence.

Figure 3.1: Flyby trajectory vector definitions. The dotted vectors in the
heliocentric view indicate a possible LAO trajectory resulting in
a significantly larger ∆V .

A gravity-assist maneuver uses the gravitational attraction of a target planet

to rotate a portion of the heliocentric spacecraft velocity. In a heliocentric frame,

the planet has velocity Vp and the spacecraft has initial heliocentric velocity Vh1.

In a frame moving with the planet, the spacecraft has a velocity with respect to

the planet of vin = Vh1 − Vp with a magnitude of v∞. Figure 3.1 depicts these
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quantities. The velocity vin and a periapsis distance, rp, fix the planetocentric

hyperbolic orbit. The periapsis distance is a free variable to be set by mission

design. The eccentricity of this orbit gives the turning angle of the hyperbola, δ,

through the relation sin(δ/2) = 1/e.[53] The outbound planetocentric velocity of

the spacecraft, vout, is equal to the inbound velocity, vin, turned through the angle

δ and having the same magnitude, v∞. The final heliocentric spacecraft velocity is

then Vh2 = vout + Vp. Thus, the spacecraft sees a heliocentric change in velocity

of

∆V = 2v∞ sin(δ/2) (3.3)

The main goal of this work is to use the Lorentz force to rotate vout through an

arbitrary angle γ, giving the mission designer much more freedom in obtaining a

desired ∆V .

Flybys can also be used to create multi-body periodic orbits, such as the Aldrin

cycler.[54] In the Aldrin orbit, repeated flybys of Earth and Mars are used to create

a trajectory that cycles between the two planets, using much less propellant than

single-use spacecraft making the same number of rendezvous. The Lorentz force

can be used to make small adjustments to these flybys, further reducing the amount

of propellant used by a cycler.

A final quantity of interest is the time of flight in the planetary frame. A

mission plan requires an accurate assessment of the maneuver’s duration. Time of

flight in a hyperbolic orbit can be found from the hyperbolic anomaly, F . In terms

of the true anomaly, ν, the hyperbolic anomaly is[53]

F = cosh−1

(
e + cos ν

1 + e cos ν

)
(3.4)

The hyperbolic anomaly can be related the mean anomaly, M , by[53]

M = e sinh F − F (3.5)
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Like Kepler’s equation for eccentric anomaly, Eq. 3.5 cannot be solved in closed

form. However, in certain special cases, the time of flight between two points in the

orbit can be calculated. One such case is the time to travel between two symmetric

points in the orbit (i.e., two points the same angular distance from periapsis). In

this case, the resulting time of flight, ∆t, is

∆t = 1/n (2e sinh F − 2F ) (3.6)

where n is the mean motion of the satellite, and F is taken to be the positive of

the two symmetric hyperbolic anomalies. For a hyperbolic orbit, n is defined as√
µ/(−a)3, because the semimajor axis is negative.

3.2 Applications

This section discusses two types of Lorentz-augmented flyby: changes during a

single hyperbolic pass and longer-duration maneuvers that involve a temporary

capture at Jupiter. Both analytical and numerical techniques are used to study

the costs and benefits of LAO maneuvers.

3.2.1 Single-Orbit Lorentz Modifications

On a single hyperbolic pass, the Lorentz force can change the orbit in several ways.

For a constant charge applied throughout the orbit, both the semimajor axis and

eccentricity of the orbit undergo transient changes but exhibit no net change over

the course of the orbit. However, Π, the longitude of periapsis, undergoes a secular

change throughout the orbit. Because only equatorial orbits are considered in

this chapter, longitude of periapsis, Π, is used to locate perijove rather than the
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more traditional argument of periapsis, ω. Their difference is simple: longitude of

periapsis is measured from an inertially fixed x-axis, while argument of periapsis

is measured from the line of nodes, which is undefined in an equatorial orbit.

This change in the location of periapsis affects the asymptotic direction of the

outbound leg of the hyperbola (without changing the magnitude of its velocity)

and thus affects the outbound heliocentric velocity. If the charge on the satellite

is modulated during the course of the orbit the semimajor axis, eccentricity, and

periapsis location can all be changed, affecting both the magnitude and direction

of the outbound velocity.

We derive perturbation equations based on an osculating-element assumption.

The perturbation equations are based on the general derivatives in Eqs. 1.27, 1.30,

and 3.2, following the methods of Burns[10] and the earlier work of Chapters 1 and

2. The magnetic field of Jupiter is modeled as an axis-aligned dipole. A dipole

model for the Jovian field is accurate enough for our purposes in a region from

approximately 5 to 40 Jovian radii[13]. The strong temporal components and ring

currents in the Jovian field are not considered here. The Jovian dipole component

is not axis-aligned[9], but the tilt provides relatively small perturbations to orbits

restricted to the equatorial plane. Here the small in-plane components of the

magnetic field are ignored.

Relating changes in semimajor axis to changes in energy by taking the deriva-

tive of E = −µ/(2a) gives an expression for changes in semimajor axis due to the

Lorentz force:

ȧ = 2
q

m
B0

ωE√
µ

a2e

[a(1− e2)]5/2
sin ν(1 + e cos ν)2 (3.7)

Equation 3.2 is used to develop two further perturbation equations. The change
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in orbital eccentricity is

ė =
q

m
B0

[
ωE√

µ
− 1− e2

[a(1− e2)]3/2

]
sin ν

[a(1− e2)]3/2
(1 + e cos ν)2 (3.8)

Directional changes in the eccentricity vector within the plane of the orbit directly

correspond to changes in the location of periapsis. Solving for this angular change

gives the time rate of change of longitude of periapsis as

Π̇ =
q

m
B0

[(
e2 + 1

[a(1− e2)]3/2
− ωE√

µ

)
cos ν +

2e

[a(1− e2)]3/2

]
(1 + e cos ν)2

e[a(1− e2)]3/2
(3.9)

While Eqs. 3.7 and 3.8 are periodic over true anomaly ν, Eq. 3.9 has a term that

increases in a secular way. For a constant charge over several orbits, the semimajor

axis and eccentricity repeat periodically, while the longitude of periapsis changes

monotonically.

We use an osculating-element assumption to derive an expression for the av-

erage change in longitude of periapsis per orbit under the influence of a constant

charge. The time rate of change of true anomaly is assumed to have its Keplerian

value of

ν̇ =

√
µ(1 + e cos ν)2

[a(1− e2)]3/2
(3.10)

Substituting this relationship into Eq. 3.9, integrating through one orbit, and

solving for q
m

gives

q

m
= ∆Π

√
µ

B0

e

[
2

(
e2 + 1

[a(1− e2)]3/2
− ωE√

µ

)
sin ν∞ +

4e

[a(1− e2)]3/2
ν∞

]−1

(3.11)

where ν∞ is the true anomaly at infinity, given by cos ν∞ = −1/e for a hyperbolic

orbit. Equation 3.11 is used to predict the charge-to-mass ratio required to obtain

a particular change in the orbit.

Figure 3.2 shows the result of using Eq. 3.11 to model a rotation of an orbit.

This simulation uses a two-body approximation with Jupiter as the sole source of
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gravity. All simulations in this chapter use two-body gravity with initial conditions

that place the spacecraft at the edge of Jupiter’s sphere of influence (SOI). The

radius of Jupiter’s SOI is[53]

RSOI =

(
MJ

MS

)2/5

RS−J (3.12)

where MJ and MS represent the masses of Jupiter and the Sun, respectively, and

RS−J is the average distance between the two. By this definition, Jupiter’s sphere

of influence is about 48 million km in radius. While the SOI concept is not strictly

correct, it is used here to facilitate a straightforward discussion of the orbital

dynamics. Each simulation begins with the spacecraft on a Hohmann transfer

orbit between Earth and Jupiter. At Jupiter, the spacecraft’s velocity is parallel

to the planet’s. The Jovicentric orbit is fully defined by specifying the radius of

perijove.

For the simulation displayed in Fig. 3.2, the perijove of the initial Keplerian

hyperbola is 4 Jovian radii. This orbit (with q
m

= 0 C/kg) is shown as solid black

line in the figure. Equation 3.11 is then used to calculate the charge-to-mass ratio

that results in a rotation of the hyperbolic exit asymptote of −30◦. The resulting

q
m

is about -5.6 C/kg. The path of this spacecraft is shown as a dashed line in the

figure.

Also shown in Fig. 3.2 is the path of a satellite with a q
m

of -7.46 C/kg, rep-

resented by the dot-dash line. This value of charge-to-mass ratio is calculated nu-

merically to give exactly the requested −30◦ rotation. A simple numerical scheme

is used for this calculation. An initial guess of q
m

is obtained from Eq. 3.11. This

value is used in a full numerical integration of the coupled perturbation equations,

instead of the osculating approximation that led to Eq. 3.11. A simple Newton-

Raphson solver is then employed over repeated integrations to find the value of q
m
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Figure 3.2: Hyperbolic orbit for single-orbit rotation of periapsis, showing
the Keplerian orbit, the numerically calculated solution, and the
perturbation solution for charge-to-mass ratio.

that accurately gives the desired orbit rotation.

Figure 3.2 clearly shows that results obtained using Eq. 3.11 are inaccurate.

This solution gives an error of about 6◦ over a rotation of only 30◦. As the size

of the rotation increases, both the charge required and the perturbation error

increase. One source of this error is the nature of a hyperbolic orbit. For most

of the orbit, a satellite is far from the central body and moving relatively slowly.

However, around periapsis, the satellite is close to planet and moves extremely

fast, making the Lorentz force much larger. This effect is demonstrated in Fig.

3.2. The inbound leg of each orbit shown is nearly identical. Only near perijove do
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the effects of the Lorentz force become apparent. The orbits of the LAO satellites

undergo large changes in a short amount of time, undermining the accuracy of

perturbation and osculating-element assumptions in performing integrations such

as those used to obtain Eq. 3.11.

Small changes are easy to effect in a single hyperbolic pass. However, as the de-

sired change to an orbit grows, the necessary charge required becomes prohibitively

large. If a large enough change in exit angle is desired, the q
m

necessary causes the

osculating orbit assumption to break down in the presence of non-Keplerian orbit

dynamics. Large changes are more easily and accurately brought about by slowly,

repeatedly tweaking the orbit after temporarily capturing the satellite, as shown

in the following sections.

One additional degree of freedom can be exploited in the single-pass modifi-

cation: the charge-to-mass ratio does not need to be constant. With a variable

charge-to-mass ratio the orbital energy, eccentricity, and exit angle can all be con-

trolled to some extent. This type of maneuver is not expressly studied here, but, as

in the case of pure rotation, the charge required to make significant orbit changes

becomes prohibitively large.

3.2.2 Lorentz Augmented Capture

A readily apparent application of LAOs is the capture of a spacecraft at a target

planet. Atchison, et al.[13] provide a detailed look at Lorentz Augmented Capture

at Jupiter. They discuss the possibility of capturing satellites from many different

entry orbits with charge-to-mass ratios as low as 0.005 C/kg. These captures are

effected using a simple bang-bang charge controller. The capture maneuver is
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allowed to take up to five years over a large number of Jovian orbits. Atchison

uses a conservative definition of capture that forces the satellite into a near-circular

orbit at a reasonable distance from Jupiter.

This chapter takes a slightly different approach to capture, as our main goal

is to shape gravity-assist maneuvers, not facilitate planetary capture. However,

we derive here expressions related to capturing a spacecraft in single Jovian orbit.

With a single-orbit capture, a satellite can temporarily stay in the neighborhood

of Jupiter, allowing for adjustments in the timing and exit conditions of a flyby

maneuver. Any spacecraft captured in a single orbit can also escape in single orbit,

with a charge of the same magnitude.

The quantity p, often called the orbit parameter or semi-latus rectum, can be

used to simplify some the LAO analysis. The semi-latus rectum is fundamentally

connected to the magnitude of the angular momentum of the orbit, as in

p = h2/µ = a(1− e2) (3.13)

In the same way as changes in the semimajor axis represent only changes in the

orbital energy, changes in p reflect only changes in the angular momentum. Taking

the derivative of Eq. 3.13 with respect to time yields

ṗ = ȧ(1− e2)− 2aeė (3.14)

Adapting this definition to an LAO by using Eqs. 3.7 and 3.8, gives

ṗ = 2
q

m
B0

e

p2
sin ν(1 + e cos ν)2 (3.15)

Equation 3.15, along with

ė =
q

m
B0

[
ωE√

µ
− 1− e2

p3/2

]
sin ν

(1 + e cos ν)2

p3/2
(3.16)
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Π̇ =
q

m
B0

[
1

e

(
e2 + 1

p3/2
− ωE√

µ

)
cos ν +

2

p3/2

]
(1 + e cos ν)2

p3/2
(3.17)

represents a new set of relevant LAO perturbation equations cast in terms of true

anomaly, eccentricity, and semi-latus rectum.

Adding to this set of perturbation equations is the Keplerian rate of change of

true anomaly, recast with respect to p:

ν̇ =

√
µ(1 + e cos ν)2

p3/2
(3.18)

Equation 3.18 is substituted into the expression for time rate of change of orbit

parameter given in Eq. 3.15, with the result

p1/2ṗ = 2
q

m

B0√
µ

e sin νν̇ (3.19)

Following the above procedure of integrating the perturbation equations about an

orbit gives an integral of∫ p1

p0

p1/2dp = 2
q

m

B0√
µ

e

∫ π

0

sin νdν (3.20)

The limits of integration for true anomaly are ν = 0 to ν = π. These limits

correspond to a spacecraft that enters the Jovian SOI with no charge and remains

free of charge until it reaches perijove. Once at perijove, the satellite turns on its

charging mechanism. From perijove onwards, a negative charge on the satellite

decreases p. The semi-latus rectum decreases until the orbit passes through unity

eccentricity and becomes elliptical. We look only at cases in which the charge-

to-mass ratio is sufficient to create an ellipse in one half orbit. The spacecraft is

captured in only half an orbit, and the problem is symmetric with respect to the

line of nodes. These facts allow the capture to be reversed in only half an orbit

as well. If the charge is on from apojove of the captured orbit until perijove, the
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parameter and eccentricity return to exactly the same values as the initial Jovian

hyperbolic orbit.

Figures 3.3 and 3.4 demonstrate these principles through simulation. Figure

3.3 shows the capture of a satellite by Lorentz propulsion. The left plot shows

the spacecraft’s trajectory through Jovian space. The satellite is initially on the

Earth-Jupiter Hohmann ellipse, with a perijove of 1.05 Jovian radii. The right

plot of Fig. 3.3 displays both the true anomaly of the satellite and its charge-

to-mass ratio on one set of axes. The charge is initially zero on the hyperbolic

entry and is then increased to -1.098 C/kg as the satellite passes through perijove.

This charge causes energy to be removed from the satellite’s orbit. The charge

then remains constant through the resulting elliptical orbit. The trajectory plot

also clearly shows the rotation of the longitude of periapsis caused by the constant

charge. Figure 3.4 shows the eventual escape of the same spacecraft. The charge is

initially at the negative value of -1.098 C/kg. Then, as the satellite passes perijove,

the charge is set to zero, allowing the vehicle to resume its initial hyperbolic orbit

(albeit rotated through some angle).

Solving the integral in Eq. 3.20 gives a relationship between a charge applied

from perijove to apojove and the final semi-latus rectum:

q

m
=

1

6

(p
3/2
1 − p

3/2
0 )

√
µ

B0e0

(3.21)

where p0 is the parameter of the initial hyperbolic orbit and p1 represents the

final elliptical orbit. Unlike the semimajor axis, p varies smoothly through the

transition between hyperbolic, parabolic, and elliptical orbits.

Using the parameter p instead of semimajor axis simplifies many of the per-

turbation equations. However, the semimajor axis is often the quantity of most

interest in capture problems. Defining a not only sets the size of the orbit, but
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Figure 3.3: Capture of an LAO spacecraft in one half-orbit. The left fig-
ure displays the orbital track of the satellite. The right figure
shows both the true anomaly of the spacecraft and the space-
craft charge. The charge is turned on as the spacecraft passes
through perjove and remains on as it is captured.

Figure 3.4: Escape of an LAO spacecraft in one half-orbit. The left fig-
ure displays the orbital track of the satellite. The right figure
shows both the true anomaly of the spacecraft and the space-
craft charge. The charge is initially on and is then is turned off
as the spacecraft passes through perijove.
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also its period. Knowing the period of the captured orbit becomes important as

we attempt to shape a flyby.

We can find how the energy (and thus the semimajor axis) change as p changes.

While a particular parameter p can correspond to many different values of semima-

jor axis and eccentricity, the Lorentz force only changes the quantities in a specific,

related way. The particular nature of the Lorentz force causes the spacecraft to

follow only certain trajectories in the state-space plane defined by p and E. We

use our perturbation equations to solve for these p − E trajectories based on the

satellite’s initial orbit. First, recall the LAO perturbation to energy, recast in

terms of p:

Ė =
q

m
ωEB0

e

p
sin νν̇ (3.22)

Recognizing and equating the similar terms in Eq. 3.22 and the derivative of p given

in Eq. 3.15 yields an equation relating changes in semi-latus rectum to changes in

orbital energy:

ṗ =
2

ωE
√

µ
p1/2Ė (3.23)

Equation 3.23 defines a certain trajectory in p−E space; it is a separable differential

equation and can be solved. Energy is used rather than semimajor axis because,

like p, E varies smoothly across the hyperbolic-elliptical transition. Separating

and integrating gives

p1 =

[
1

ωE
√

µ
(E1 − E0) + p

1/2
0

]2

(3.24)

where E0 and E1 refer to the initial hyperbolic and final elliptical orbits respec-

tively. Semimajor axis can now be substituted for orbital energy, giving

p1 =

[
−√µ

2ωE

(
1

a1

− 1

a0

)
+ p

1/2
0

]2

(3.25)

where the 0 and 1 subscripts are as above. Equation 3.25 now allows us to specify

a final semimajor axis, a1, for the captured orbit. Specifying a1 in turn defines the
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final desired semi-latus rectum p1. This parameter value is then used in Eq. 3.21,

which gives a q
m

that results in the desired final orbit size.

3.2.3 Flyby Shaping Using a Temporary Jovian Capture

Two methods are examined for augmenting a gravity-assist maneuver with a tem-

porary capture at Jupiter. In the first case, a captured satellite simply waits in a

stable parking orbit for a specified time period. During the wait, the orbital motion

of Jupiter causes the exit heliocentric of the spacecraft to be different than oth-

erwise possible. The second method involves active specification of the outbound

orbit. The spacecraft is captured and then uses a constant charge to change its

perijove location. This perijove rotation enables an arbitrary exit direction from

the planet and much more flexibility in designing the heliocentric ∆v achieved by

the satellite.

The simplest application of a temporary LAO capture at Jupiter is a timing

maneuver. A spacecraft enters the Jovian SOI on a hyperbolic trajectory and

is captured by turning on its charge-building mechanism at perijove as described

above. As the satellite reaches the apojove of its new elliptical orbit, the excess

charge is removed. The spacecraft is in a stable elliptical orbit. With zero net

charge on the satellite, this elliptical orbit remains unchanged.

The goal of such a capture is to create more favorable timing for a flyby ma-

neuver. This wait at Jupiter can extend or create new launch windows or create a

more favorable geometry for reaching potential targets. A satellite can leave Earth

when Jupiter is in a favorable position for rendezvous, and then hold at Jupiter

until the best time for leaving Jupiter for the eventual target. This method could
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potentially open many new mission windows, as instead of waiting for a relatively

rare alignment of Earth-Jupiter-Target, the spacecraft can be launched at any

Earth-Jupiter alignment (which occurs every 1.093 years)[53]. When the mission

calls for the spacecraft to leave the vicinity of Jupiter, a charge of the same mag-

nitude as the capture maneuver is turned on at apojove of the ellipse. By perijove,

the satellite has regained energy such that it is in its original hyperbolic orbit. The

charge is turned off and the spacecraft escapes. The maneuver can be timed easily

by choosing an elliptical orbit whose period is an integer divisor of the desired

waiting time.

In addition to merely timing a flyby, a temporary capture at Jupiter can provide

greater freedom in designing a gravity assist. Instead of waiting in a static ellipse

during the timing maneuver, the Lorentz force is used to evolve the ellipse. By

correctly choosing the magnitude of a constant charge, an arbitrary exit angle from

Jupiter’s SOI is achieved. Obtaining an arbitrary exit allows for the full range of

∆V possibilities of the flyby to be used. In Fig. 3.1, the dotted lines show a

possible LAO trajectory where the maximum magnitude of ∆V , without changing

the magnitude of vout, is obtained. The change in velocity can range anywhere

from ∆V = 0 to ∆V = 2v∞.

One way to accomplish an arbitrary exit angle is to use a large enough charge

that the spacecraft goes from the hyperbolic entrance trajectory all the way to a

circular orbit. This effect is achieved ‘instantaneously’ at perijove of the hyperbola.

As the satellite is an equatorial orbit, moving purely tangentially to Jupiter, the

Lorentz force on it is purely radial in direction. This radial force can cancel or

augment the gravitational force such that satellite continues to move in circular

orbit until the charge is turned off. Once the charge is turned off, the satellite
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resumes its previous hyperbolic orbit, escaping the system. Peck[3] gives a more

in-depth discussion of this type of maneuver.

While the straight-to-circle maneuver is simple, the magnitude of charge-to-

mass ratios it requires is infeasible. A method requiring less charge to complete

the same maneuver is a temporary capture into an elliptical orbit, followed by

successive changes in longitude of perijove. As perijove rotates, the exit asymptote

of the escape hyperbola rotates as well. A careful choice of the capture ellipse

properties allows a constant charge to be found that both captures the satellite

and rotates the exit angle through a desired value in an integer number of orbits.

This process is depicted in Fig. 3.5, which shows the four stages of the capture

and precess scenario: First, the spacecraft enters the Jovian SOI on a hyperbolic

trajectory with zero charge until perijove. Second, the increased charge causes

the capture of the satellite into a closed orbit. Third, the constant charge on the

satellite causes the captured orbit to precess. Fourth, the charge is removed at a

subsequent perijove, enable the spacecraft to escape once again.

To solve for this required charge-to-mass ratio, we define an angle γ as the

angle between the incoming asymptote of the hyperbola and the desired outgoing

asymptote. This angle is between the actual asymptotes, not the vin and vout

velocity vectors. Thus, a value of γ = 2π represents an outgoing hyperbolic leg

that is exactly antiparallel to the incoming orbit. This value of γ maximizes the

magnitude of the ∆V for the flyby maneuver. An angle of γ = π represents the

minimum magnitude of ∆V , with the satellite exiting along a path exactly parallel

to its inbound trajectory, causing the overall change in velocity to be zero.

With a given γ, it is not possible in general to specify the exact amount of

time in which the arbitrary exit angle maneuver happens. Forcing both a constant
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Figure 3.5: The four stages of the capture and precess scenario.

charge and an integer number of orbits for the rotation places too many constraints

on the problem. In the solution presented here a maximum time for the maneuver

to happen, tmax, is specified and then the solution closest to that amount of time

is solved for. In general, the longer the maneuver, the higher the number of orbits,

N , and the lower the charge-to-mass ratio required. To find the best solution,

a initial guess of N is used to find a solution that is iterated to find the largest

permissible N .

To complete a rotation through γ in N orbits, an average change in longitude

of periapsis of

Π̇avg =
γ − (π − δ)

N · 2π
√

a3
1

µ

(3.26)

is required, where a1 is semimajor axis of the capture ellipse. This periapsis change

rate is used in

q

m
=

Π̇desa
3/2p3/2

2B0

(3.27)
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which is the perturbation solution charge-to-mass ratio required for an average

rate of change of periapsis through an elliptical orbit. However, a1 is currently

unknown, but we can equate the expressions for charge-to-mass ratio for both

capture and rotation as ( q

m

)
∆Π

=
( q

m

)
∆p

(3.28)

where
(

q
m

)
∆Π

is taken from Eq. 3.27 and
(

q
m

)
∆p

is from Eq. 3.21. Combining

these two expressions and using Eq. 3.25 gives(
Π̇desa

3/2
1 −

√
µ

3e0

)[
−√µ

2ωE

(
1

a1

− 1

a0

)
+ p

1/2
0

]3

+

√
µ

3e0

p
3/2
0 = 0 (3.29)

where Π̇des is given in Eq. 3.26. For a given γ and N , Eq. 3.29 gives the perturba-

tion solution to the temporary capture with arbitrary rotation problem. Solving

this equation for a1 gives the size of the capture ellipse, which sets the q
m

re-

quired. The specified charge is turned on at perijove of the initial hyperbola. The

spacecraft is then captured to an ellipse. As the constant charge remains on, the

elliptical orbit rotates. After exactly N orbits the charge is removed allowing the

spacecraft to reenter its initial hyperbolic orbit. However, this orbit has been ro-

tated such that the exit asymptote of the hyperbola is an angle γ away from the

inbound half of the orbit.

An algorithm for the solving the maximum time problem presented above is as

follows:

1. Define maximum maneuver time tmax

2. Define outgoing angle γ

3. Set N = 1

4. Solve Eq. 3.29 to find a1 and thus the required q
m

5. Return to Step 3 and increment N until N · 2π
√

a3
1

µ
> tmax
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This algorithm represents the perturbation solution for this problem. But, as

discussed above, perturbation methods have several inaccuracies that especially

apparent under hyperbolic LAOs. In the case of the temporary capture, arbitrary

exit problem, these perturbation errors compound through both inaccurate cap-

ture and inaccurate rotation expressions that propagate through several orbits,

leading to large errors over the course of the maneuver. These errors make the

perturbation solution impractical. So, we develop a numerical solution that uses

the perturbation solution as an initial guess.

A numerical solution of the arbitrary exit problem requires a set of equations

for the change in orbital elements due to the Lorentz force is required. While Eqs.

3.15, 3.16, and 3.17 are quite accurate, the assumptions made in order to analyti-

cally manipulate them introduce errors. These three equations can be numerically

integrated with respect to true anomaly for an accurate depiction of an LAO. How-

ever, the Lorentz force causes changes in the true anomaly, ν. These changes are

especially important in a hyperbolic or high-eccentricity elliptical orbits. In these

orbits, the true anomaly changes slowly away from periapsis and then rapidly near

periapsis. In these periods of rapid changes, small errors in the assumed Keplerian

time rate of change of true anomaly result in large errors in the acutal angle. Here

we derive a perturbation expression for the rate of true anomaly change. This

expression, when combined with the set of other perturbation solutions, creates

a much more accurate system describing the effects of the Lorentz forces on a

satellite.

An expression for true anomaly is obtained from the standard equation for

radius of a conic section orbit:

cos ν =
1

e

(p

r
− 1
)

(3.30)
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In the absence of all perturbative forces, the derivative of Eq. 3.30 yields the

standard derivative of true anomaly given in Eq. 3.10, where p and e are constants,

and ṙ is known from conservation of angular momentum. Once the perturbation

force is taken into account, ṗ and ė are no longer zero, and the derivative of Eq.

3.30 is

sin νν̇ =
p

er2
ṙ − ṗ

er
+

1

e2

(p

r
− 1
)

ė (3.31)

Equation 3.31 is valid for any perturbation, not solely the Lorentz force. For an

LAO specifically, ṗ and ė are replaced by Eqs. 3.15 and 3.16, respectively. For an

instantaneous application of the Lorentz force, ṙ does not change from its Keplerian

value. Combining these expressions gives the time rate of change of true anomaly

for a charged spacecraft:

ν̇ =

[
√

µ− 2
q

m
B0

(1 + e cos ν)

p3/2
+

q

m
B0

(
ωE√

µ
− 1− e2

p3/2

)
cos ν

e

]
(1 + e cos ν)2

p3/2

(3.32)

The first term in brackets represents the Keplerian secular increase in ν. The

second and third terms represent the fact that the true anomaly changes when

semi-latus rectum and orbital eccentricity change.

With Eqs. 3.15, 3.16, and 3.17, Eq. 3.32 completes a full set of accurate differ-

ential equations for the temporary capture problem. (As the problem is restricted

to the equatorial plane, inclination and right ascension can be ignored.) With this

set of equations a numerical algorithm is developed to solve the problem. This

algorithm is mainly an extension of the perturbation method of above and is as

follows:

1. Define maximum maneuver time tmax

2. Define outgoing angle γ
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3. Set N = 1

4. Solve Eq. 3.29 to find an initial guess for a1

5. Solve (by repeated numerical integrations) for the q
m

that gives exactly a1

(at apojove) for the captured ellipse

6. Check (numerically) what rate of longitude of periapsis change this q
m

gives.

If this rate is not equal to the desired rate, go to Step 4 and adjust the guess

for a1 until Π̇actual − Π̇des = 0

7. Return to Step 3 and increment N until N · 2π
√

a3
1

µ
> tmax

This algorithm solves the arbitrary exit angle by temporary capture problem quite

accurately. Figure 3.6 shows an orbital trajectory solved for using this algorithm,

with γ = 2π and N = 20. This simulation uses all the same initial conditions as

those above. The spacecraft enters Jupiter’s sphere of influence on a Hohmann

trajectory from Earth with a perijove of 1.05 Jovian radii. The charge on the

satellite is zero until it reaches perijove of the initial hyperbolic orbit. The space-

craft’s charge is then brought up to -1.098 C/kg, and held constant. This charge

captures the satellite and then rotates the resulting ellipse through 20 full orbits.

After exactly 20 orbits the charge is removed, allowing the spacecraft to return to a

hyperbola, exiting the Jovian SOI in exactly the opposite direction as its entrance.

This time history of charge-to-mass ratio is shown in Fig. 3.7.

Figure 3.8 shows the orbital eccentricity of the spacecraft throughout the ma-

neuver. This figure reveals the nature of the captured orbit. Shown on the figure

is a dotted line representing an eccentricity of 1, which separates elliptical from

hyperbolic orbits. Initially, the spacecraft is in a hyperbolic orbit, with eccentricity

greater than one. When the charge is turned on, e begins dropping sharply. Before

the spacecraft can leave the Jovian SOI, the eccentricity drops below 1, showing
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that the satellite is now in a captured, elliptical orbit. As the spacecraft passes

through apojove, e begins to increase again until, at perijove, it has reached its

initial hyperbolic value. In an osculating sense, the satellite is in a hyperbolic orbit

at perijove, but, as long as the charge remains on, the spacecraft continues on a

non-Keplerian, but closed, orbit. After the prescribed number of orbits, the charge

is returned to zero. The osculating orbit becomes the true orbit, and the satellite

escapes.

Figure 3.6: Arbitrary exit flyby trajectory. The chosen exit angle is 2π, or
exactly opposite of the entrance angle. The number of elliptical
orbits is 20 and the charge-to-mass ratio is -1.098 C/kg.

The above simulation depicts about 849 days. The initial hyperbolic orbit with

no temporary capture would last 321 days from entrance of Jupiter’s SOI to exit.

Thus the maneuver itself adds 528 days to the Jovian flyby. In essence, time is

traded for a more effective flyby using a smaller charge. While the single-pass

method adds no time to the flyby, it uses a q
m

of -7.5 C/kg to rotate the orbit 30◦.
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Figure 3.7: Arbitrary exit flyby charge-to-mass ratio. q
m

is initially 0 and
then increases to -1.098 C/kg at the first perijove. The charge
remains constant through all 20 orbits and goes to 0 at the final
perijove.

The temporary capture adds 528 days, but can rotate orbit through a full 360◦ for

only -1.01 C/kg. Generally the smallest q
m

values that allow for temporary capture

are on the order of -1 C/kg (with maneuver time increasing greatly for small

decreases in charge). Although the temporary capture method can add significant

time to a flyby maneuver, this time may actually be beneficial to the mission,

allowing for extended launch windows and additional science opportunities. This

method is a powerful way to add flexibility and effectiveness to a flyby using a

simple on-off charge on the satellite. More advanced charge modulation could

extend the method even further.
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Figure 3.8: Arbitrary exit flyby orbital eccentricity. The eccentricity is ini-
tially hyperbolic, but is reduced to an elliptical value. Through
each orbit e oscillates between values above one and below one,
until the final escape.

3.3 Chapter Conclusions

The Lorentz force can have valuable and significant effects on gravity-assist ma-

neuvers without the expenditure of propellant. Either with a single pass or with a

temporary capture at the flyby target, LAO-based propulsion can greatly change

the exit characteristics and timing of a flyby. The effective ∆V of a gravity assist

can be maximized (or minimized). Temporary capture allows for the duration of a

maneuver to be arbitrarily extended, opening up longer and more flexible mission

windows. These effects are derived analytically to provide insight, although solu-

tions developed by integrating perturbation equations with an osculating element

assumption prove to be quantitatively inaccurate.
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CHAPTER 4

A GENERAL BANG-OFF CONTROL METHOD FOR LORENTZ

AUGMENTED ORBITS

4.1 Introduction

Earlier chapters presented the dynamics of LAOs under simplified conditions, in-

cluding greatly simplified magnetic field models. This chapter expands that anal-

ysis to include spherical-harmonic magnetic fields of arbitrary complexity.

This chapter generalizes earlier perturbation equations for easier analysis in

spherical coordinates. The spherical harmonic magnetic field model is then used

to partition the space of latitude and longitude for easier control synthesis. A

discussion of implementing an LAO-capable spacecraft ensues, followed by a look

at the maneuver limitations introduced by the Lorentz force. A compelling mission

enabled by the LAO concept is presented. The effects of ionospheric conditions on

performance and power usage are considered.

4.1.1 Lorentz Perturbations in Spherical Coordinates

We have previously shown that the change in orbital energy, E, of a charged

spacecraft affected by an arbitrary magnetic field is given by

Ė =
q

m
ωE [(v · n̂)(B · r)− (v · r)(n̂ ·B)] (1.27)

To describe this position, r, and velocity, v, we use an Earth-centered, inertial

reference frame with spherical coordinates: radius r, colatitude φ, and azimuth
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angle θ, as shown in Fig. 1.1. In these coordinates, Eq. 1.27 can be expressed as

Ė =
q

m
ωE

[
(rv · n̂− cos φr · v)(B · r̂) + sin φ(r · v)(B · φ̂)

]
(4.1)

The r̂ and φ̂ unit vectors are shown in Fig. 1.1.

The change in vector angular momentum was also previously found from per-

turbation methods:

ḣ =
q

m
(B · r)v − q

m
(r · v)B− q

m
ωE(B · r)(n̂× r) (1.30)

In the spherical coordinates, the change in inclination can be written as

di

dt
=

−1

hωE sin i
Ė +

q

m

cos i

h2 sin i

[
ωEr2 (rv · n̂− cos φr · v) (B · r̂)

+
h cos i

sin φ
(r · v)(B · φ̂) + h sin i cos(θ − Ω)(r · v)(B · θ̂)

]
(4.2)

The first term in Eq. 4.2 shows that changes in inclination are coupled to changes

in orbital energy, especially for orbits that are near circular (where r · v goes to

zero) or polar (where cos i goes to zero). This coupling does not rise from some

fundamental relationship between energy change and inclination change, but rather

from the particulars of the Lorentz force. The energy change is driven by the radial

component of the magnetic field and the apparent velocity induced by the rotation

of the field. The inclination change is generally driven by the radial component

of the magnetic field and the in-track velocity of the spacecraft. These velocities,

magnetic field components, and perturbation equations happen to line up such

that they depend upon the same dynamic quantities in the same relationships.

An expression for the change in eccentricity, e, is

ė =

[
a

µ
(1− e2)

]1/2{
(FL · r̂) sin ν + [FL · (ĥ× r̂)](cos ν +

e + cos ν

1 + e cos ν
)

}
(4.3)

This expression makes use of the Lorentz force, FL, explicitly. The Lorentz force

is not broken into spherical harmonics here for the sake of brevity.
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Equations 4.1, 1.30, 4.2, and 4.3 are greatly simplified if we restrict our discus-

sion to circular (or near circular) orbits, where the term (r ·v) vanishes. Applying

this simplification to Eq. 4.1 yields

Ė =
q

m
ωE

√
µ

r3
sin i cos u(B · r̂) (4.4)

The argument of latitude is defined as the angle from the point of right ascension

of the ascending node (RAAN) to the spacecraft’s position, measured around the

orbit. Only the radial component of the magnetic field affects the orbital energy of

a circular LAO. If the same simplification is applied to Eq. 1.30, we find that the

change in scalar angular momentum is simply a multiple of the change in energy:

ḣ =

√
r3

µ
Ė (4.5)

The inclination change in a circular orbit follows the same pattern:

di

dt
=

ωEr2

h
cos i− 1

hωE sin i
Ė (4.6)

Equation 4.6 implies that, in circular orbits, orbital energy and inclination are not

independently controllable with the Lorentz force. For every increase in energy,

there is a corresponding decrease in inclination. (This fact also holds true for any

polar orbit, eccentric or not.) This correlation limits the maneuvers that can be

performed with LAO-based propulsion.

The circular-orbit assumption simplifies Eq. 4.3, resulting in

ė =
q

m

h

µ

{
2
ωE

h

√
a

µ
r2 sin i cos(θ − Ω) sin φ cos ν(B · r̂)

+ sin ν

(
ωEr sin φ− h

r

cos i

sin φ

)
(B · φ̂)

− h

r
sin i cos(θ − Ω) sin ν(B · θ̂)

}
(4.7)
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The change in eccentricity depends on all three components of the magnetic field,

making for more complicated analysis. Each term in Eq. 4.7 involves the true

anomaly, ν. This relationship shows the importance of radial velocity, which is

also explicitly related to ν. Changes in eccentricity are driven by small deviations

from the circular-orbit assumption.

4.1.2 Partitioning The Geomagnetic Field

In this chapter, earlier assumptions about the structure of the Earth’s magnetic

field are relaxed. The simple non-tilted and tilted dipole models fail to account

for the fact that terms higher in degree than the dipole are significant components

of the field. Here, a full spherical harmonic model is used: the International

Geomagnetic Reference Field,[5] in particular, the IGRF95 (or IGRF-7) model.

All simulations in this chapter use coefficients up to 10th degree and order.

The effect of the Lorentz force on an orbit is conveniently broken up into the

components of the magnetic field in spherical-coordinate unit vectors: the radial

direction r̂, the colatitude direction φ̂, and the azimuthal direction θ̂, as seen in

Section 4.1.1. The magnetic field, B, is studied as the three components (B · r̂),

(B · φ̂), and (B · θ̂). Contour plots and descriptions of these three components are

given in Section 1.2.

The three orthogonal components of the field can be used to divide the space of

latitude and longitude into eight distinct zones. The zones are defined by whether

each component is positive or negative and are bounded by the zero contours

depicted in Figs. 1.2, 1.3, and 1.4. The zones are numbered I-VIII and depicted

graphically in Fig. 4.1 with properties shown in Table 4.1. Figure 4.1 shows each
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Figure 4.1: Eight distinct zones of the geomagnetic field, numbered I-VIII.

of the zones superimposed on a map of the Earth. Because of distortion due to the

map projection, Zones I, II, VII, and VIII are shown larger than their actual sizes.

In a three-dimensional view, they appear in a small region near each pole. The

large southward swing of the zero-declination contour over eastern Africa actually

crosses the magnetic equator, causing zones III and V to have non-contiguous

regions. Table 4.1 lists the differences among the zones. A ‘+’ in the table refers

to a quantity greater than zero, while a ‘-’ denotes less than zero.

In each zone, the geomagnetic field has a certain sign for a particular component

of the field. Each zone creates different effects on the orbit of a charged satellite.

We use these differences to create a control sequence to perform a desired maneuver.

The zones are defined with respect to Earth-fixed latitude and longitude as the

geomagnetic field rotates with the Earth. Figures 1.2-1.4 are for a representative

altitude (600 km) because the relative strength of each order of field terms depends

on altitude. While the actual zone boundaries depend on altitude, they are easily
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Table 4.1: Zone Properties

Zone (B · r̂) (B · φ̂) (B · θ̂)

I + + +

II + + −

III + − +

IV + − −

V − − −

VI − − +

VII − + −

VIII − + +

calculated at any particular location by the simple sign definitions shown in Table

4.1.

4.2 Space Vehicle Design

This section offers a brief overview of possible architectures for LAO capable space-

craft, following the work of Streetman and Peck[15]. It considers three competing,

interrelated parameters: capacitance, power, and space-vehicle mass. There are

also issues of implementation, such as deployability of the capacitor, technology

readiness of the power system, thermal implications of high power, and interactions

among various subsystems (notably attitude control). These issues are minimized

here. For the present, maximizing the q
m

metric is taken to be the only goal of

LAO space vehicle design. Furthermore, we consider this metric only in terms of a

constant-mass spacecraft. Six hundred kilograms is chosen as a somewhat arbitrary
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constraint for this mass optimization. The mass is given some contingency.

4.2.1 Capacitance

High q
m

implies high charge, which requires high capacitance. Known technologies

for self-capacitance store charge on the surface of a conductor with no sharp local

features or high curvature. So, a successful design realizes high surface area to

volume in flat structures or long, thin ones. Such a capacitor likely encounters a

limit associated with the minimum thickness of thin films or the minimum feasible

diameter of long filaments. That limit ultimately leads to a minimum mass for the

capacitor. The capacitor is also designed to exploit plasma interactions. Based

on work by Choinière and Gilchrist[36], we have baselined a cylindrical capacitor

constructed of a sparse wire mesh. This stocking-like arrangement of appropriately

spaced thin wires develops a plasma sheath due to ionospheric interactions that

raises the capacitance of the cylinder well above what it would be in a pure vac-

uum. We emphasize that such self capacitance is not available from off-the-shelf

electronics components, which merely hold equal amounts of positive and negative

charge.

In this model, the capacitance C is taken to be that of a solid cylinder of the

stocking’s radius R but with a concentric shell (due to the plasma sheath) equal

to the thickness of an individual wire’s sheath rs:

C =
2πε0L

log R+rs

R

(4.8)

where ε0 is the permittivity of free space. The sheath radius increases with po-

tential and is calculated as described by Choinière and Gilchrist[36]. In the ar-

chitecture described in Section 4.2.2, R takes on values of tens to hundreds of
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meters. The sheath thickness rs depends on the temperature and density of the

plasma and on capacitor potential, ranging from millimeters to meters in earth

orbit. We space these wires so that one wire is a sheath’s thickness away from

its neighbor. This spacing ensures overlap between individual wires’ sheaths but

keeps the structure sparse. Occasional structural elements, such as thin conductive

bands, would be necessary to maintain the spacing along the capacitor because of

Coulomb repulsion that acts among the wires. This repulsion would also serve as

a useful means for deploying the capacitor without heavy trusses or actuators. A

schematic of this design is shown in Figure 4.2.

Figure 4.2: LAO spacecraft with cylindrical stocking capacitor. The dotted
line surrounding the capacitor suggests the effective boundary of
the plasma sheath.
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4.2.2 Power

We consider two fundamentally different approaches to the power subsystem. The

classical approach depends on solar power. Energy from solar panels is used di-

rectly to power the capacitor, countering the plasma currents, or is stored in batter-

ies or some sort of efficient ultracapacitor to be used in a periodic-charging scheme.

Some assumptions about the specific power (W/kg) must be made. Although the

power density of current systems is about 40 W/kg[44], a farther-term power den-

sity of 130 W/kg, is used here, consistent with DARPA’s FAST program.[55]

In the case of this solar-power approach, the charge is maintained by modifying

the current collection scheme proposed by Sanmartin, et al[35]. A power supply

on board the spacecraft establishes a potential between two conductive surfaces

exposed to the plasma environment. The positive end attracts the highly mobile

electrons, while the negative end attracts the far less mobile ions (such as O+).

The substantial imbalance in electron and ion currents leads the negative end to

accumulate a nonzero charge while the positive end is almost electrically grounded

in the plasma. So, with the wire capacitor on the negative end, the spacecraft

would achieve a net charge roughly equal to the product of the capacitance of the

wires and the potential across the power supply.[36] This charge is accomplished

without the use of particle beams.

A more unusual approach exploits alpha-particle emission from an appropriate

radioactive isotope[32], such as Po 210. These emissions are not converted to

electrical power thermionically as in a radioisotope thermoelectric generator (RTG)

or via fission in a nuclear reactor; instead, the isotope is spread thinly enough on

the capacitor’s surface that up to half of the emitted alpha particles carry charge

away from the spacecraft. The electrical current of these particles is proportional
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to their charge (2 positive fundamental charges), their kinetic energy (roughly

5.3 × 106 eV), and the isotope’s decay rate. If the maximum potential can be

achieved despite currents from the surrounding ionospheric plasma, this approach

offers as much as 42 kW/kg of Po 210 after 1 year of alpha decay. Maintaining this

charge requires no power supply. The spatially distributed nature of the current

from the thin film suggests that the current does not approach any sort of beam-

density limit due to space charge.

We focus on the prospects for the solar-panel approach because launching an

isotope is likely to encounter a variety of technical and non-technical roadblocks.

In all cases, the capacitor maintains negative charge. The ion currents are then

given by the Orbit Motion Limited (OML) estimate[36]. We use the International

Reference Ionosphere (IRI)[56] to provide the necessary plasma number density

and temperature. We also account for the photoelectric current emitted from the

surface of the conductive capacitor. In the case of the solar-panel approach, all of

this power is subject to resistive losses as the power supply drives current through

the many, thin wires. Assuming that the current is uniform to all parts of the

capacitor, we average the losses along the length of wire that the current has to

travel.

4.2.3 Space Vehicle Mass

The charge-to-mass ratio depends on the mass of the entire space vehicle. We

model this mass coarsely, as the sum of discrete components with interrelated

dependencies. Table 4.2 summarizes this mass model.

An example of the power calculation is shown in Table 4.3. Table 4.4 uses this
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Table 4.2: Space Vehicle Mass Model

Subsystem or Compo-

nent

Value Units

Payload 50 kg

Bus (w/ payload power) 3.33 (kg bus) /(kg payload)

LAO Solar Power 130 W/kg of orbit-average

power

LAO Isotope Power 42 kW/kg of Polonium after 1

year of decay

Power Mass Contingency 14 kg

Capacitor 2700πR2nL kg for n aluminum wires of

length L and radius R

Capacitor Mass Contin-

gency

1.1m kg, where m is the sum of

the wires’ masses

power calculation to arrive at the 600 kg space-vehicle mass requirement.

4.2.4 Performance Estimates

Figure 4.3 summarize the results of these calculations for a 600kg spacecraft that

charges for 50% of the time over a 600km orbit. Figure 4.3 shows the FAST

power design, which yields q
m

= 0.0070 C/kg for a 20km stocking at 7kV potential.

The efficiency (force per power) increases with lower potential. For example, the

optimal value of 5 C in a 600km polar orbit produces about 2.3N, for 1.6 × 10−5

N/W when the capacitor is charged. However, at only 1kV, the resulting 3.1C

represents 2× 10−5 N/W. So, if the speed of the maneuver is unimportant, lower-
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Table 4.3: Example of Power Calculation for A Spacecraft in a 600km Alti-
tude LEO Circular Orbit at an Inclination of 28.5◦

Parameter Value Units

Wire Material Aluminum

Wire Radius 5.00× 10−6 m

% Overlap Sheath Diameter 0%

Length of Stocking (L) 20 km

Stocking Radius as a % of Stocking Length 5.00%

Stocking Mass Sandbag 3 kg

Intermediate Calculation Value Units

Material Resistivity at 20◦C 2.82× 10−8 Ω

Radius of Stocking (R) 1 km

Material Density of Wire 2700 kg/m3

Sheath Thickness 1.764 m

Resistance per Wire 7.198 MΩ

Number of Wires 7142

Mass of Stocking 30.36 kg

Mass of Capacitor 33.40 kg

Average Cylinder-as-body Capacitance (C) 6.00× 10−4 F

Result Value Units

Average Body Charge-to-Mass Ratio -0.0070 C/kg

Exposed Wire Area 2548 m2

Photoelectron Current 0.122 A

Orbit-Average Power Required (∼50%

duty cycle)

53.54 kW
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Table 4.4: Example of Mass Calculation

Parameter Value Units

Potential -7000 V

Orbit-Average Power for LAO 46.28 kW

LAO Power System Mass Dependency 130 W/kg

LAO Power System Mass 466 kg

Power System Mass Contingency 14 kg

Payload 20 kg

Bus Mass (including any propellant) 100 kg

Total Space Vehicle Mass 600 kg

potential designs may be better. As the capacitor potential increases beyond the

optimum for q
m

, more mass of the fixed 600kg must be devoted to the power

subsystem, which comes at the expense of capacitor mass. The accuracy of these

performance measures depends on the accuracy of the simplified sheath model

and should eventually be verified by a more complex 2-D algorithm such as that

developed by Choinière and Gilchrist[36].

4.3 LAO Maneuvers and Limitations

4.3.1 Maneuver Limitations

A Lorentz Augmented orbit cannot experience arbitrary changes for all initial

orbital elements. In certain regimes, as evidenced by Eq. 4.6, changes in orbital

elements are tightly coupled. This coupling stems from the basic physics of the
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Figure 4.3: Orbit Average Power and q
m

vs. Capacitor Potential

Lorentz force. The direction of the force is set by the magnetic field and the

velocity of the spacecraft with respect to that magnetic field, neither of which can

be altered by the spacecraft control system.

A further limiting factor is that the best system architectures provide only one

polarity of charge (negative). Because electrons in the ionosphere are far more

mobile than ions, significantly less power is required to maintain a negative charge
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than a positive charge. The single-polarity system limits what changes can be made

to the RAAN, Ω, and the argument of perigee, ω. For a given charge polarity, Ω

and ω evolve only in a single direction (in low Earth orbit). For a negative charge

in LEO, Ω always decreases and ω always increases.

Table 4.5: LAO Effects for q
m

< 0 in LEO

Element Net Effect of

Constant

Charge

Signs of Possible

Changes

Notes

a 0 +/− a/i coupled for e = 0 or i = 90◦,

ȧ = 0 for i = 0◦ and e = 0

e 0 +/− ė > 0 for e = 0

i 0 +/− a/i coupled for e = 0 or i = 90◦

Ω − − Ω undefined for i = 0◦

ω + + ω undefined for i = 0◦ and e = 0

ν 0 +/−

Table 4.5 summarizes some of the abilities and limits of LAO propulsion for

a single polarity of charge. The first column of the table shows the net effect

of a constant charge on a spacecraft. The second column shows the available

directions of change for each orbital element for a variable (but single-polarity)

charge. The final column summarizes some of the special cases and coupling within

the dynamics. Some of these special cases are addressed more explicitly in our

earlier work.[12, 14]

The Lorentz force is at its strongest in LEO. The strength of the dipole compo-

nent of the magnetic field drops off with the cube of radial distance. Additionally,

spacecraft velocities with respect to the magnetic field tend to be larger in LEO.
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A geostationary spacecraft has no velocity with respect to the magnetic field and

thus experiences no Lorentz force.

4.3.2 Example Maneuver: LEO Inclination Change and

Orbit Raising

The minimum inclination a spacecraft can be launched into is equal to the latitude

of its launch site. For a United States launch, this minimum inclination is generally

28.5◦, the latitude of Cape Canaveral, FL. However, for certain missions, equatorial

orbits are desirable. The plane change between i = 28.5◦ and i = 0◦ is expensive

in terms of ∆V and requires either a launch vehicle upper stage or a significant

expenditure of spacecraft resources. We develop a control algorithm to use the

Lorentz force to perform this inclination change without the use of propellant,

while simultaneously raising the orbital altitude.

This maneuver is primarily concerned with inclination change in circular orbit.

Equation 4.6 describes the relevant dynamics. As energy change and inclination

change are coupled in this situation, Eq. 4.4 describes both the energy and plane

changes. In this circular case, only the radial component of the magnetic field

affects the energy and inclination. For the inclination to decrease, the energy

must increase. With these facts, we develop a bang-off controller based upon the

argument of latitude and the sign of the radial component of the field. Using

q
m

< 0, the term cos u(B · r̂) must be negative. We know that (B · r̂) is positive

below the magnetic equator (Zones I, II, III, and IV) and negative above the

magnetic equator (Zones V, VI, VII, and VIII). Thus, for northward motion of

the satellite (cos u > 0), the charge should be nonzero within Zones V-VIII. For
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southward satellite motion (cos u < 0), nonzero charge is applied in Zones I-IV.

In other words, the charge should be off for the first quadrant of the orbit, on for

the second quadrant, off for the third, and on for the fourth. This control can be

represented as

q

m
=



−
(

q
m

)
max

if cos u > 0, (B · r̂) < 0

0 if cos u > 0, (B · r̂) > 0

−
(

q
m

)
max

if cos u < 0, (B · r̂) > 0

0 if cos u < 0, (B · r̂) < 0

(4.9)

where −
(

q
m

)
max

is largest available negative charge-to-mass ratio.

However, when this simple quadrant control is used, the eccentricity of the

orbit tends to grow undesirably large. Maintaining an identically zero eccentricity

is impossible, though. Any charge on a circular-orbiting spacecraft causes an

increase in the eccentricity. However, if the oblateness of the Earth is considered,

the eccentricity remains bounded by a small value. Figure 4.4 shows this result,

plotting a short simulation of an orbit under the quadrant controller. The black

line shows the growth of eccentricity with J2 absent, while the grey line shows the

bounding of e under the influence of J2. The effect of J2 on the eccentricity of the

orbit is larger than that of the Lorentz force. The J2 perturbation does not effect

the overall performance of the maneuver, though. The Lorentz force depends on

the velocity of the spacecraft which only changes by small amount due to presence

of J2. The presence of J2 only creates a small periodic disturbance to both a and

e.

The eccentricity can be kept using only charging means as well. Equation 4.7

implies that, as the orbit approaches equatorial, the term involving (B · φ̂) dom-

inates the eccentricity increase. As (B · φ̂) is of a single sign for most latitudes
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Figure 4.4: Effect of Earth oblateness on the eccentricity under the quadrant
control.

(as Fig. 1.3 shows), the sign of this term corresponds to the sign of sin ν. In

turn, the sign of sin ν exactly follows the sign of the radial velocity, ṙ. For positive

radial velocity (away from the center of the Earth) and negative charge, the ec-

centricity change is negative. For negative radial velocity and negative charge, the

eccentricity change is positive. These two facts inspire a control algorithm that

limits eccentricity growth. This e-limiting algorithm can be superimposed on the

quadrant control described above. First a maximum desired eccentricity, emax, is

defined. When emax is approached, charge is applied only if the radial velocity of

the spacecraft is greater than zero, causing the eccentricity to decrease. With e now

below emax, the charge can be applied as required by the quadrant method until

emax is approached again. This e-limiting quadrant control offers performance in

changing a and i that is close to, but less than, the performance of the unmodified

control. However, for the rest of this chapter, the e-limiting controller will not be
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used. Earth oblateness is relied on to keep the eccentricity small, as this results in

no reduction in performance.

Figure 4.5: Orbital elements for the LEO plane-change and orbit-raising ma-
neuver.

Figure 4.5 shows the results of a simulation using the e-limiting quadrant

method. The simulation begins with a 600 km altitude circular orbit. The charge-

to-mass ratio is q
m

= −0.007 C/kg. A full model of J2 is used. The simulation

lasts until an equatorial orbit is reached. The IGRF95 magnetic field model is used

to 10th degree and order. In Fig. 4.5, plot (a) shows the increase in semimajor

axis given by the quadrant method. The initial 600 km orbit is raised to a 724.0

km circular orbit, an increase of 124 km. Plot (b) shows the desired decrease in

inclination. Since the magnetic equator does not align with the true equator, the

inclination can be brought to exactly zero. Zero inclination is reached in about 340

days with this value of charge. Figure 4.5, plot (c), shows the eccentricity. The

eccentricity is bounded by the J2 perturbation to a small value. Finally, Fig. 4.5,
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plot (d), shows the RAAN. For a negative q
m

in LEO, the RAAN always decreases,

however, in this simulation, the effect of J2 on RAAN dominates.

If the maneuver simulated above is performed using conventional impulsive

thrust, it requires a ∆V of 3.75 km/s. Thus using LAOs could significantly increase

the payload ratio of a spacecraft that needed such a maneuver. However, this mass

savings comes at a cost of time spent, the mass of the capacitor and power system,

and electrical power consumed during the maneuver.

Optimality of the Quadrant Bang-Off Controller

Bang-bang or bang-off controllers are generally Hamilton-Jacobi-Bellman optimal

solutions[53]. They use the maximum capabilities of an actuator to achieve some

goal. Here, we numerically verify that, for the simplified case of the non-tilted

dipole field, the quadrant bang-off controller is the optimal way to decrease the

inclination. Under the non-tilted field, there are only two zones: above the equator

and below the equator. (For this field, the magnetic equator and true equator are

the same.)

For a circular orbit in the non-tilted dipole field, the change in energy of the

orbit due to the Lorentz force is given in Eq. 2.2. Using the relationship between

energy and inclination change in Eq. 4.6, the inclination change in this case be-

comes

di

dt
= 2B0

√
µ

r5/2

ωEr2 cos i− h

h2 sin i
sin u cos u

q

m
(u) (4.10)

where the charge-to-mass ratio has been made a function of the argument of lati-

tude. Solving for ∆i, the change in inclination per orbit, gives

∆i = 2B0
1

r

ωEr2 cos i− h

h2 sin i

∫ 2π

0

sin u cos u
q

m
(u)du (4.11)
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With Eq. 4.11,we can set up an optimization problem to gain the most decrease

in inclination per orbit:

min ∆i subject to 0 ≥ q

m
≥ −

( q

m

)
max

(4.12)

Allowing Matlab’s optimization routines to solve the problem in Eq. 4.12 gives

the charge-to-mass ratio shown in Fig. 4.6. This figure shows q
m

on the y-axis and

argument of latitude on the x-axis. Also shown are hatched regions showing where

(B · r̂) (red hatching) and cos u (blue hatching) are greater than zero. As expected,

the q
m

signal shows bang-off behavior, with switches at quadrant boundaries of u:

90, 180, 270, and 360 degrees. This result does not imply that quadrant controller

is optimal for the spherical harmonic field, but it does show that quadrant control

is optimal in at least some cases.

Figure 4.6: Optimal charge-to-mass ratio for inclination change.
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4.3.3 Example Maneuver: GEO Transfer Inclination

Change

Another commonly performed, expensive maneuver is the combined plane

change/circularization of a geostationary transfer orbit (GTO) to a geosynchronous

orbit. Again, a GEO satellite can be launched only into an orbit with inclination

greater than or equal to the latitude of its launch site. The subsequent plane

change is expensive to perform. We attempt to perform this inclination change

using LAOs.

In the LEO plane-change maneuver discussed above, inclination change was

maximized according to the constraint of keeping the eccentricity small. In the

GTO maneuver, the initial orbit is highly eccentric. So, no consideration is placed

upon eccentricity change. A simple control is used: charge is on whenever Eq. 4.2

is less than zero (to decrease inclination) and off otherwise.

The results of a one-year simulation using this controller are shown in Fig.

4.7. This simulation begins with a GTO orbit (apogee at GEO, perigee at 600 km

altitude). Earth oblateness is not considered. The initial inclination is 28.5◦. The

charge-to-mass ratio is −0.007 C/kg. In Fig. 4.7, plot (a) shows the increase in

semimajor axis that results from the coupling of inclination and energy changes.

The semimajor axis grows by about 857 km. In the inclined GTO case, the energy

change and inclination change are not exactly coupled as in the circular case, but

they generally trend inversely. Plot (b) of Fig. 4.7 displays the desired inclination

decrease. However, because the spacecraft spends much of its orbit far from the

Earth, the change in inclination is much smaller than over the same time period

in LEO. Over the course of one year, the inclination decreases only by 2.16◦. Plot
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Figure 4.7: Orbital elements for the GTO plane-change maneuver. Plot (a)
is the semimajor axis, plot (b) is the inclination, plot (c) is the
orbital eccentricity, and plot (d) is the argument of perigee.

(c) shows the orbital eccentricity over the course of the maneuver. In this case,

the eccentricity tends to get smaller, decreasing by 0.012 over the year. Figure

4.7, plot (d), shows the argument of perigee of the satellite. As the charge is of

only one polarity, ω tends to go in only one direction (positively). The change in

ω causes the orbit to rotate within the orbital plane.

The GTO inclination maneuver is not as effective as the LEO plane change.

By virtue of always remaining at low altitude where the Lorentz force is strongest,

the LEO plane change happens 10 times faster. The long time scale of the GTO

maneuver makes it impractical to use. After one year, the LAO saves little in terms

of propellant use. For the most favorable geometries, the ∆V savings afforded by

the LAO maneuver over a conventional propulsive maneuver is only 159 m/s.
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4.4 LAO Power Consumption and Plasma Density-based

Control

The simulations in Section 4.3 do not include a model of the Earth’s ionosphere.

The spacecraft design process is carried out initially using the IRI model, and then

that design is used in simulation. The simulation assumes the spacecraft maintains

its design charge-to-mass ratio, regardless of the local plasma conditions. In this

section, we explore the use of a more in-depth LAO simulation by revisiting the

LEO inclination-change maneuver. Here, we use a different code that takes into

account local ionospheric conditions and their effect on the instantaneous charge-

to-mass ratio and power consumption of the spacecraft.

The high-fidelity, plasmadynamics simulation is based upon the Global Core

Plasma Model (GCPM)[57]. The GCPM model is a framework for blending mul-

tiple empirical plasma density models and extending the IRI model to full global

coverage. For the simulations below, the GCPM model at one particular time is

used. This time corresponds to mean solar conditions. Although there is a strong

correlation between plasma conditions and time of day, this effect is averaged out

by simulating over the course of multiple days.

This simulation functions in a different fashion from the results presented in

Section 4.3. The earlier simulations assume that q
m

is either zero or constant at a

value of -0.007 C/kg. The GCPM simulation assumes that the spacecraft maintains

a constant potential on the capacitor. Because of local variations in plasma density

a constant potential results in varying values of charge-to-mass ratio and varying

power required to hold the constant potential. While the mean q
m

and orbit-

average power are consistent with those predicted in our earlier analysis in the
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Section 4.2, they have peak and minimum values that depend on to the local

plasma environment.

The local electron number density, ne, is a strong predictor of power usage and

is readily available from the GCPM model. A higher ne corresponds to a denser

plasma, which, in turn, results in more current collection for a stocking at a given

potential. Thus, high ne values correlate to high power usage. In a gross sense, ne

is larger in the low to mid latitudes on the daytime side of the Earth. The density

of the plasma also drops sharply as a function of altitude.

Assuming the spacecraft has knowledge of its local plasma conditions, signifi-

cant power savings can be realized by limiting the charge-on time when ne is high.

The spacecraft simply follows its normal control law but turns off the charge when-

ever ne exceeds a particular value. A sample of this power savings and cost in time

is shown in Table 4.6. This table lists the results of four simulations performed

with the constant-potential code. Each simulation integrates over three days and

begins with the same initial conditions. Reported for each run is the mean q
m

achieved (during times of nonzero charging), the average power used (over the en-

tire simulation), the peak instantaneous power used, the total inclination change

over the simulation, and an efficiency in the form of degrees of inclination change

per day divided by the average power used. The first simulation uses the e-limiting

quadrant controller discussed above with no modification based on electron density.

The other three runs superimpose an ne-based, density-limited control, turning off

the charge when ne is greater some value.

The average q
m

achieved by each successive simulation is slightly lower, as seen

in the first row of Table 4.6. In regions of high plasma density, the capacitance of

the stocking is increased by a tighter plasma sheath, leading to a larger capacitance.
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Table 4.6: Limiting Power Usage Via ne (in m−3) Sensing for 3 Day Simu-
lations at an Initial Inclination of i = 28.5◦ at an Altitude of 600
km

No ne Control ne < 2e11 ne < 1.5e11 ne < 1.1e11

q
mmean

(C/kg) -0.0060 -0.0057 -0.0054 -0.0048

Pmean (kW) 53.54 35.88 24.33 12.94

Ppeak (kW) 418.57 220.01 140.64 89.59

∆i (◦) 0.3764 0.3292 0.2653 0.1747

◦/day/kWmean 0.0023 0.0031 0.0036 0.0045

However, this increase q
m

requires significantly more power to maintain, as the

denser plasma greatly increases the current collected by the stocking. The power

reduction due to density-limited control is shown in the second and third rows

of Table 4.6. Without density-based control, the average power usage over the

simulation is 53.54 kW, but with a peak instantaneous power usage of 418.57 kW.

When charge is only applied for an ne of less than 1.1e11m−3 (the mean electron

density in this orbit), the power usage drops to a mean of 12.94 kW, with a peak

of 89.59 kW. Of course, the decreased power usage is coupled with a lengthening

of the maneuver time. Row 4 of Table 4.6 shows the inclination change achieved

over three days for each level of density control. The unlimited control changes

inclination at a rate about 2.2 times higher than the ne < 1.1e11 case. However,

the density-limited controllers achieve inclination changes in a more efficient way.

The fifth row of Table 4.6 displays an efficiency metric for each simulation, namely

degrees of inclination change achieved per day per average kilowatt used. Charging

only at low values of ne more efficiently uses the available power to effect inclination

change.

The profile of electron densities experienced by a spacecraft varies greatly de-
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pending on its orbit. In the 28.5◦ inclination change example, both the change in

inclination and the change in altitude during the maneuver cause no one limit on

ne to be appropriate. However, recreating this entire maneuver using the GCPM,

constant voltage simulation is impractical in its computational demands. A rea-

sonable approximation is a hybrid simulation in which a constant charge-to-mass

ratio is used, but the electron density is calculated at each step in the integration

in order to superimpose the density-limited control strategy. To take advantage

of the orbit raising that occurs during the maneuver, the ne cutoff value is made

a linear function of the spacecraft altitude. This line is defined by two points: ne

equal to 2.0e11m−3 at an altitude of 600 km, and ne equal to 1.6e11m−3 at an

altitude of 700 km. These values are chosen to give a reasonable trade-off between

power savings and maneuver time.

Figure 4.8 shows the results of this hybrid simulation. The top plot of this

figure shows semimajor axis, while the lower plot gives the inclination, both versus

time in days. The solid black lines are the results of the hybrid constant q
m

, density-

limited simulation. For comparison, the dashed grey lines show the results of the

constant-charge-only simulation. The hybrid strategy completes the inclination-

change maneuver in 380 days compared to 340 days for the original strategy.

To provide insight into the power saved by using the density-limited hybrid

strategy, short-duration simulations are run using the full GCPM, constant voltage

code. These simulations are run for three points in the trajectory of both the hybrid

simulation and the original inclination-change maneuver. When each trajectory

reaches 28.5◦, 10◦, and 1◦ of orbital inclination, its state is retrieved and used as

the initial conditions for a three-day simulation using the full GCPM code. The

results of these simulations are summarized in Table 4.7. This table gives the
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Figure 4.8: Comparison of hybrid simulation of constant charge-to-mass ratio
with plasma density-limited control to constant q

m
only control.

mean achieved charge-to-mass ratio, average and peak power consumptions, and

inclination change over the three-day simulation for each control strategy for each

inclination considered. The addition of density-limited control reduces both the

mean and peak power usage but also decreases the speed of the inclination change.

4.5 Chapter Conclusions

While the direction of the Lorentz force is fixed by the velocity of the spacecraft and

the local field, varying the magnitude of the charge-to-mass ratio of the satellite

can produce novel and useful changes to an orbit. A simple on-off (or bang-off)

charging scheme is sufficient to perform most available maneuvers and can create

large savings of ∆V .
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Table 4.7: Comparison of Power Usage During Both the Hybrid Simulation
and the Original, Constant Charge Simulation.

Inclination Constant Charge Hybrid, Density-limited

28.5◦ q
mmean

(C/kg) -0.0060 -0.0057

Pmean(Ppeak) (kW) 53.54 (418.57) 36.50 (217.15)

∆i (◦) 0.3764 0.3308

10◦ q
mmean

(C/kg) -0.0055 -0.0053

Pmean(Ppeak) (kW) 56.79 (259.47) 43.64 (208.58)

∆i (◦) 0.1806 0.1622

1◦ q
mmean

(C/kg) -0.0055 -0.0053

Pmean(Ppeak) (kW) 58.39 (235.89) 43.54 (208.39)

∆i (◦) 0.1447 0.1330

A preliminary evaluation of some possible architectures leads us to the tentative

conclusion that up to 0.0070 C/kg can be reached by a negatively charged LEO

spacecraft of 600 kg mass. These designs use cylindrical mesh “stocking” capacitive

structures that are shorter than most proposed electrodynamic tethers and offer

the important benefit that their performance is independent of their attitude in the

magnetic field. That simplicity largely decouples attitude control from propulsion,

a consideration that can complicate the operation of tether-driven spacecraft.

The Earth’s magnetic field is a complex structure. Accurate analytical ex-

pressions for orbital perturbations are difficult to obtain. The proposed control

method accommodates this complexity by breaking the geomagnetic field into dis-

tinct zones based on its sign in three orthogonal directions, leading to eight zones.

Within each zone an LAO tends to evolve in certain directions for certain orbital

elements. Understanding how the orbital evolution relates to the zone the space-
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craft is in allows us to develop control strategies to execute complex maneuvers. A

simple, but effective strategy is to operate a bang-off control scheme that switches

only at zone boundaries. This scheme allows for the execution of a sample ma-

neuver of a LEO plane change without the use of propellant, saving a ∆V of 3.75

km/s required for a conventional propulsive maneuver. However, this maneuver

lasts for 340 days and requires about 53 kW of power on average. A controller

that limits charging in response to local plasma-density measurements reduces this

power requirement to an average of 40 kW but increases the maneuver time to 380

days.
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CHAPTER 5

FORMATION FLIGHT USING THE LORENTZ FORCE

Spacecraft formation flight is an enabling technology for many spacecraft mis-

sions. Traditional formations require formation keeping and maintenance through-

out their lifetime. Using traditional propulsion systems for these maneuvers limits

the useful lifetime of a spacecraft formation. Using the Lorentz force allows for

propellantless maintenance in addition to allowing novel formation geometries. In

this chapter, we discuss the relative orbit dynamics in a simple case of LAO for-

mation flight. A novel formation is examined for controllability and then a sample

formation maneuver is presented.

5.1 Relative Dynamics and Controllability Analysis

As discussed in Chapter 1, LAO-based propulsion is not the only method charged of

spacecraft formation keeping. The Coulomb Spacecraft Formation (CSF) uses the

Coulomb interaction between two charged spacecraft as a method of actuation.[39].

Due to plasma shielding, CSF does not perform well in LEO because the Coulomb

force from a charged spacecraft is only felt over a short distance. CSF requires a

sparse plasma to work, but does not require a magnetic field, and thus is better

suited for use at GEO. Conversely, LAOs exist regardless of plasma density, but

its effectiveness depends on the strength of the magnetic field. LAO formations

are better suited for use in LEO. Table 5.1 summarizes these ideas.

We look at the relative orbit dynamics of two spacecraft. In this simplified

case, the spacecraft are both nominally orbiting in the Earth’s equatorial plane.

The geomagnetic field is represented by the non-tilted dipole model. The positions
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Table 5.1: Relative strength of the Lorentz force and the Coulomb force be-
tween charged spacecraft.

LEO GEO

Plasma Density High Low

Ratio of circular speed to speed of magnetic field High Near One

Coulomb force Near Zero High

Lorentz force High Near Zero

of the two spacecraft are given by the vectors r1 and r2, measured from the center

of the Earth. These vectors are shown in Fig. 5.1.

Figure 5.1: Reference Coordinates

We wish to develop the relative orbit dynamics of the two spacecraft in the
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formation. For the purposes of this analysis, we assume that r1 gives the location

of a reference satellite that is solely under the influence of two-body gravity. The

second spacecraft, represented by r2, will be allowed to be charged, so it will act

under the influence of both gravity and the Lorentz force. The relative dynamics

including the Lorentz force are conveniently described in a Hill-like frame[53]. This

frame rotates with the orbit of the reference satellite. The position of spacecraft

2 in this frame is defined by a Cartesian coordinate system. The x-direction in

these coordinates is measured along the r1 vector, as shown in Fig. 5.1. The y

coordinate is orthogonal to this direction in the equatorial, again as is shown in Fig.

5.1. The z-direction points out of the plane, forming an appropriate right-handed

coordinate system.

Recalling our earlier expression for the Lorentz force

FL = qvr ×B (1.2)

where vr represents the velocity of the spacecraft with respect to the magnetic

field. Previously, we needed to correct for the fact that the magnetic field rotates

with the Earth. In our new coordinates, we must also account for the fact that

our reference frame is rotating with spacecraft 1 in its orbit. Adding this rotation

to our expression for vr yields

FL = (v + nn̂× r2 − ωEn̂× r2)×B (5.1)

where n is the mean motion of the reference orbit and n̂ is a unit vector aligned

with the Earth’s spin axis. As the reference orbit is equatorial, both the Earth’s

spin and the coordinate frame rotation are in the same direction.
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Expressing various vectors in the rotating frame yields:

r2 =


x

y

z

 ; nn̂ =


0

0

n

 ; ωEn̂ =


0

0

ωE

 (5.2)

Here a model must be introduced for the Earth’s magnetic field. A non-titled

dipole model, valid for small excursions away from the equator, is:

Bref =
Bref

r2


zx

zy

z2

+ Bref


0

0

1

 (5.3)

where Bref is the magnitude of the magnetic field evaluated at the radius of the

reference orbit, given by:

Bref =
µ0m

4πr3
1

(5.4)

where µ0 is the permeability of free space, and m is the Earth’s magnetic moment.

Using the definitions in Eqs. 5.2 and 5.3 with Eq. 5.1 give an expression for

the Lorentz force in the rotating frame:

FL =
q

m
Bref

(
ẏ

−ẋ

0

+ (n− ωE)


x

y

0

+
1

r2


ẏz2 − żzy

żzx− ẋz2

ẋzy − ẏzx

+

n− ωE

r2


xz2

yz2

−zy2 − zx2


)

(5.5)

The dynamics of the rotating frame give:
ẍ

ÿ

z̈

+ 2n


−ẏ

ẋ

0

 = n2


−x

−y

0

+ Fgrav + FL (5.6)
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With two-body gravity taking the form:

Fgrav = − µ

r3


x

y

z

 (5.7)

Combining Eqs. 5.5, 5.6, and 5.7, creates the following three equations of motion

for spacecraft 2:

ẍ =

(
q

m
Bref (n− ωE) + n2 − µ

(x2 + y2 + z2)3/2

)
x (5.8)

+ (
q

m
Bref + 2n)ẏ +

q

m

Bref

x2 + y2 + z2
[ẏz2 − żzy + (n− ωE)xz2]

ÿ =

(
q

m
Bref (n− ωE) + n2 − µ

(x2 + y2 + z2)3/2

)
y (5.9)

− (
q

m
Bref + 2n)ẋ +

q

m

Bref

x2 + y2 + z2
[−ẋz2 + żzx + (n− ωE)yz2]

z̈ = − µ

(x2 + y2 + z2)3/2
z +

q

m

Bref

x2 + y2 + z2
[ẋyz − ẏxz (5.10)

− (n− ωE)x2z − (n− ωE)y2z]

In this simple circular, equatorial problem, the Lorentz force on spacecraft

will generally be in the radial direction. Effectively this force is a central force

either augmenting or decrementing gravity. By changing the magnitude of the

central force acting on the spacecraft, we change the angular velocity at which it

orbits. Using the Lorentz force, we can create a “levitating” formation, in which

spacecraft 2 can be at a different orbital radius than spacecraft 1 (in the same

plane), but have same orbital angular velocity. In the rotating frame satellite 2

appears stationary, “levitating” over spacecraft one. In this equilibrium state, the

following expressions hold true:

y = z = ẋ = ẏ = ż = 0; x = x0 (5.11)

Using these conditions in the equations of motion, an equilibrium charge can be
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defined: ( q

m

)
0

=
µ− n2x3

0

x3
0Bref (n− ωE)

(5.12)

This nominal charge
(

q
m

)
0

allows spacecraft to be stationary in the rotating frame.

By levitating multiple spacecraft, a formation of arbitrary shape can be formed in

the equatorial plane.

We wish to linearize this system about the levitating equilibrium in order to

examine its stability and controllability. Using these definitions:

x = x0 + δx; y = 0 + δy; z = 0 + δz;
q

m
=

q0

m
+

δq

m
(5.13)

the linear equations of motion become:

δ̈x =

[( q

m

)
0
Bref (n− ωE) + n2 +

2µ

x3
0

]
δx +

(( q

m

)
0
Bref + 2n

)
δ̇y (5.14)

+ [Bref (n− ωE)x0]
δq

m

δ̈y = −
(( q

m

)
0
Bref + 2n

)
˙δx +

[( q

m

)
0
Bref (n− ωE) + n2 − µ

x3
0

]
δy(5.15)

δ̈z = −
[

µ

x3
0

−
( q

m

)
0
Bref (n− ωE)

]
δz (5.16)

Note that the linear dynamics in the z-direction is uncoupled from the other mo-

tions and represent a simple harmonic oscillator. The system can be reworked into

a state space model of the following form:

˙δx

δ̇y

δ̇z

δ̈x

δ̈y

δ̈z


= A



δx

δy

δz

˙δx

δ̇y

δ̇z


+ B

δq

m
(5.17)
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where:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3µ
x3
0

0 0 0 [α + 2n] 0

0 0 0 − [α + 2n] 0 0

0 0
[
α∆− µ

x3
0

]
0 0 0


(5.18)

B =



0

0

0

Bref∆x0

0

0


(5.19)

using these definitions:

α =
q0

m
Bref ; ∆ = n− ωE (5.20)

As noted before, the z motion is uncoupled from the in-plane motion, oscillatory,

and is also uncontrollable.

Examining only the in-plane system (x and y coordinates and their derivatives),

the stability of the levitating equilibrium is studied. The reduced 4x4 A matrix

has two stable eigenvalues in the left half plane and two zero eigenvalues. Thus

the linear system is marginally stable. The controllability matrix for the reduced

system is given by

C =

[
A AB AAB AAAB

]
(5.21)

and has rank 3. Thus, the system has three controllable states and one uncontrol-

lable state. Examining the null space of C shows that the uncontrollable direction

corresponds to δ̇y. Thus, velocity in the along track direction cannot be controlled
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in this system. However, as will be seen in the next section, intelligent maneuver

planning using the natural relative orbit dynamics will allow useful maneuvers to

occur without this controllability.

5.2 Simple LAO Formation Maneuver

A simple formation maneuver is performed entirely using the Lorentz force. The

formation is a three-satellite, planar triangle. This triangle is in the Earth’s equa-

torial plane. One spacecraft, Satellite A, in the formation is used as a reference

satellite. This satellite is in a Keplerian circular, equatorial, orbit. The two remain-

ing spacecraft begin the maneuver in “levitating” equilibria. One LAO satellite,

Satellite B, is leading the reference and one, Satellite C, is trailing, forming a

triangular formation.

The goal of the maneuver is to have the leading and trailing LAO satellites

switch roles. They must exit their LAO hovering and perform a phasing correction,

using only the Lorentz force. The reconfiguration is accomplished by calculating

an open loop trajectory that achieves this goal, and using a closed loop PD con-

troller to follow this trajectory. The open loop reference is required because of the

controllability issue discussed in the previous section. The trajectory is formed by

inputting the size of the desired phasing action, dr, and calculating the time, tman,

to perform such a maneuver with respect to a known reference maneuver. These

quantities are related by the simple linear expression

tman =
dr

drref

tref (5.22)

where drref and tref are the reference maneuver size and duration, respectively.

The inputs to the controller are the satellite’s desired angular velocity, radial posi-
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tion, and radial velocity. These inputs come from the previously calculated trajec-

tory. This trajectory planning is necessary because of the uncontrollability issues

discussed above. The controller outputs a charge-to-mass ratio commanded to the

spacecraft. Thus, the controller is of the form

q

m
= K


ωdes − ω

rdes − r

ṙdes − ṙ

 (5.23)

where K is a 1x3 gain matrix. The PD controller is also used to maintain the

hovering state of the satellite when desired.

The simulation used to demonstrate this maneuver is a full three-dimensional

system, integrating full dynamics for all three satellites. The orbit of the reference

satellite is a 400 km altitude, circular, equatorial orbit. The tilted dipole magnetic

field model is used. In Section 5.1, the non-tilted dipole model was used to derive

the levitating behavior. Here, the PD controller is able to maintain the levitating

equilibrium in the presence of this unmodeled portion of the magnetic field. In

this simulation the value of K is given by [-14e4, 0.3, -5]. The reference maneuver

is a manually tuned 50m phasing maneuver that takes one orbit to complete. The

desired maneuver is 25m phasing change that allows the two moving satellites to

switch positions in the triangular formation.

The maneuver lasts for 2.5 orbits of the reference satellite. During the first

orbit the triangle formation is maintained by the controller in order to show that

it is stable throughout an orbit. During the following half orbit of Satellite A, the

maneuver is performed by Satellites B and C. The final full orbit shows that the

new configuration is stable as well, again with the controller active.

The resulting path of the satellites is shown in Fig. 5.2. This figure shows
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the track of each spacecraft relative to Satellite A. Circular points represent initial

positions, with triangular points denoting final positions. Figure 1 shows that the

maneuver is a success. Figure 5.3 shows the charge-to-mass ratio, q
m

, commanded

by the controller to each LAO satellite. The charge-to-mass ratio was capped

at 0.005 C/kg. This limit could be removed if the gains were tuned to prevent

actuator saturation. The maneuver is completed successfully.

Figure 5.2: Track of the formation satellites with reference frame centered
on Satellite A. Circular points represent starting positions, with
triangular points denoting finishing positions.
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Figure 5.3: Charge-to-mass ratio in C/kg for each LAO satellite in the for-
mation. The maximum q/m ratio for each satellite was capped
at a magnitude of 0.005 C/kg.

5.3 Chapter Conclusions

The Lorentz force can be used as a spacecraft formation actuator. In the equatorial

plane, ”levitating” formations of arbitrary shape can be created within the plane.

Under linearized dynamics, these formations are marginally stable, and three out

of four states are controllable by simply varying the magnitude of the charge on

a spacecraft. By exploiting the natural relative orbit dynamics in addition to the

Lorentz force, useful maneuvers can be performed with LAO formations.
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CHAPTER 6

CONCLUSION

The Lorentz Augmented Orbit (LAO) has been examined in depth, including

its dynamics, novel mission concepts it enables, and a possible implementation of

an LAO-capable spacecraft. This chapter summarizes and concludes that work,

with suggestions for possible avenues of future research.

6.1 Summary and Conclusions

Control of the charge on a spacecraft enables engineering applications of an LAO.

This type of propellantless propulsion is used to develop a number of applications

and novel missions including:

• With high charge-to-mass ratios, new Earth-synchronous orbits can be cre-

ated. One such orbit is the LAO GT-1, a single-pass repeat-groundtrack

orbit. This orbit always passes over the same set of points on the ground.

While derived for a simple magnetic field model, this behavior can be re-

covered for more complex field structure. In addition to Earth-synchronous

orbits, new Sun-synchronous orbits can be created for a much wider class of

orbits than previously possible.

• The Lorentz force can increase the flexibility and effectiveness of gravity-

assist maneuvers about planets with magnetic fields. An LAO-capable space-

craft can be temporarily and reversibly captured at the target planet. In

addition allowing for more flexible timing, the spacecraft can make small

changes to its orbit while captured, affecting its eventual exit from the tar-

get planet, and thus the effective ∆V of the flyby.
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• Under realistic magnetic field conditions and using near-term technology

(achieving a q
m

of 0.007 C/kg), useful LAO maneuvers are still available.

Partitioning the geomagnetic field into distinct zones and using a bang-bang

controller allows for a tractable control synthesis problem. The Lorentz force

is particularly well suited for LEO inclination change maneuvers. These ma-

neuvers can save large amount of propellant at the cost of longer maneuver

duration and significant electrical power.

• The small magnitude of the Lorentz force suggests that it can be useful for

spacecraft formations. In equatorial orbits, sets of LAOs can be found to

allow for the creation of arbitrarily shaped, planar formations. Combining

the Lorentz force and natural relative orbit dynamics, useful formation ma-

neuvers can be performed.

These applications are explored using both analytical and numerical methods

with varying levels of detail and three different magnetic field models.

6.2 Recommendations for Future Work

This research can be extended in a number of ways. While same basic orbit

dynamics applies in all LAOs, the space of LAO applications has not been fully

explored. There is also a large amount of work that needs to be completed in order

to produce a working LAO-capable spacecraft, but that direction of research will

not be discussed in this section.

One fertile are for future work is the area of Lorentz-augmented formation flight.

The material presented in Chapter 5 is only a first look at formations of LAOs.
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That work describes only a restricted look at LAO formations in the equatorial

plane under a simplified magnetic field. There are many other places to search for

uses of LAOs in building and maintaining formations, including the fusion of the

Coulomb spacecraft formation with Lorentz-based propulsion .

There are also a number of ways to optimize LAOs that have not been discussed

here. The effectiveness of a particular LAO spacecraft design such as the one

presented in Chapter 4 depends heavily on local plasma parameters. In turn,

the local plasma properties depend heavily upon altitude and latitude, and to a

lesser extent longitude. The classes of orbits used in an LAO application can be

optimized based upon plasma models to achieve maximum charge-to-mass ratios or

minimum power usage. In addition to optimizing over particular orbit classes, the

central body can also be optimized. Earth, Jupiter, and Saturn are all tempting

candidates. How effective an LAO spacecraft can be at any given planet depends

upon its local plasma parameters and magnetic fields. A more in-depth look across

the different planets may identify an application particularly well suited to LAOs.

The effect of more complicated/time-varying magnetic structures on an LAO

should be examined. The Earth has time-varying components of its field in addition

to large structures such as the magnetic tail formed by interaction with the solar

wind. These features are not included in a spherical harmonic representation of

the geomagnetic field and could produce significant effects, especially outside of

LEO. The magnetic field of Jupiter is also more complex than a spherical harmonic

model, including interactions with the sun and ionized volcanic plumes from its

moon Io. Additionally, the sun has its own complex magnetic field that dominates

interplanetary space, and has not been examined for LAO prospects in this work.

An additional novel LAO that has not been developed is called the Joviastat. In
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this configuration, the relatively strong magnetic field and fast rotation of Jupiter

can actually balance the gravitational force on a spacecraft, allowing it to have

zero inertial motion for a reasonably small charge-to-mass ratio. The spacecraft

then “hovers” as Jupiter rotates under it. The applications or feasibility of such a

system have not been thoroughly examined.

One final possible future research topic is the development and analysis of a

combined LAO/electrodynamic tether system. The LAO architecture presented in

Chapter 4 shares many similarities with tether spacecraft architectures. The forces

produced by a body charge and a tether current tend to be complimentary, allowing

for a more general force to be produced by the still-propellantless combined system.

Together the two technologies may be able to produce compelling applications

that take advantage of the each ones strengths, while skirting their individual

weaknesses.
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APPENDIX A

MAGNETIC POTENTIAL AND FIELD EXPANSIONS

The magnetic vector potential field A and magnetic field B expanded by spher-

ical harmonic term up to 2nd degree, 2nd order. The fields are shown with respect

to the Earth-centered, Earth-fixed spherical harmonic unit vectors. A discussion

of this model appears in Section 1.2. The 1,0 term represents the non-tilted dipole

field component. The combination of the 1,0 and 1,1 terms gives the tilted dipole

model.

1,0:

A1,0 · r̂ = 0

A1,0 · φ̂ = 0

A1,0 · θ̂ = REg1,0

(
RE

r

)2

sin φ (A.1)

B1,0 · r̂ = 2g1,0

(
RE

r

)3

cos φ

B1,0 · φ̂ = g1,0

(
RE

r

)3

sin φ

B1,0 · θ̂ = 0 (A.2)

1,1:

A1,1 · r̂ = 0

A1,1 · φ̂ = −RE

(
RE

r

)2

(−g1,1 sin θ + h1,1 cos θ)

A1,1 · θ̂ = RE

(
RE

r

)2

(−g1,1 cos θ + h1,1 sin θ) cos φ (A.3)
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B1,1 · r̂ = −2

(
RE

r

)3

(g1,1 cos θ + h1,1 sin θ) sin φ

B1,1 · φ̂ =

(
RE

r

)3

(g1,1 cos θ + h1,1 sin θ) cos φ

B1,1 · θ̂ =

(
RE

r

)3

(−g1,1 sin θ + h1,1 cos θ) (A.4)

2,0:

A2,0 · r̂ = 0

A2,0 · φ̂ = 0

A2,0 · θ̂ =
3

4
g2,0RE

(
RE

r

)3

sin 2φ (A.5)

B2,0 · r̂ =
3

4
g2,0

(
RE

r

)4

(3 cos 2φ + 1)

B2,0 · φ̂ =
3

2
g2,0

(
RE

r

)4

sin 2φ

B2,0 · θ̂ = 0 (A.6)

2,1:

A2,1 · r̂ = 0

A2,1 · φ̂ = −3

2
RE

(
RE

r

)3

(−g2,1 sin θ + h2,1 cos θ) cos φ

A2,1 · θ̂ =
3

2
RE

(
RE

r

)3

(g2,1 cos θ + h2,1 sin θ)(2 cos2 φ− 1) (A.7)

B2,1 · r̂ = −9

2

(
RE

r

)4

(g2,1 cos θ + h2,1 sin θ) sin 2φ

B2,1 · φ̂ = 3

(
RE

r

)4

(g2,1 cos θ + h2,1 sin θ) cos 2φ

B2,1 · θ̂ = 3

(
RE

r

)4

(−g2,1 sin θ + h2,1 cos θ) cos φ (A.8)
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2,2:

A2,2 · r̂ = 0

A2,2 · φ̂ = 3RE

(
RE

r

)3

(−g2,2 sin 2θ + h2,2 cos 2θ) sin φ

A2,2 · θ̂ = −3RE

(
RE

r

)3

(g2,2 cos 2θ + h2,2 sin 2θ) sin φ cos φ (A.9)

B2,2 · r̂ = 9

(
RE

r

)4

(g2,2 cos 2θ + h2,2 sin 2θ) sin2 φ

B2,2 · φ̂ = −6

(
RE

r

)4

(g2,2 cos 2θ + h2,2 sin 2θ) sin φ cos φ

B2,2 · θ̂ = −6

(
RE

r

)4

(−g2,2 sin 2θ + h2,2 cos 2θ) sin φ (A.10)
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APPENDIX B

CANONICAL VARIABLES AND HAMILTONIANS

Canonical coordinates and conjugate momenta with corresponding Hamilto-

nian for individual spherical harmonic components. Each canonical set below as-

sumes that only a single magnetic harmonic is present to isolate the effect of that

particular harmonic on the dynamics. The 0,0 case represents Keplerian orbital

motion in the Earth-centered, Earth-fixed frame with no magnetic field component

present. These expressions make use of the material in Schaffer and Burns[22] and

are discussed in more detail in Section 1.3.

0,0:

r pr0,0 = mṙ

φ pφ0,0 = mr2φ̇

θ pθ0,0 = mr2 sin2 φ(θ̇ + ωE) (B.1)

H0,0 =
1

2m
p2

r +
1

2mr2
p2

φ +
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ)2

+ mΦg −
1

2
mr2ω2

E sin2 φ (B.2)

1,0:

r pr1,0 = mṙ

φ pφ1,0 = mr2φ̇

θ pθ1,0 = mr2 sin2 φ(θ̇ + ωE) + qg1,0R
3
E

1

r
sin2 φ (B.3)

H1,0 =
1

2m
p2

r +
1

2mr2
p2

φ +
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ− qg1,0R

3
E

1

r
sin2 φ)2

+ mΦg −
1

2
mr2ω2

E sin2 φ (B.4)
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1,1:

r pr1,1 = mṙ

φ pφ1,1 = mr2φ̇− qR3
E

1

r
(−g1,1 sin θ + h1,1 cos θ)

θ pθ1,1 = mr2 sin2 φ(θ̇ + ωE) + qR3
E

1

r
(g1,1 cos θ cos φ + h1,1 sin θ sin φ) sin φ

(B.5)

H1,1 =
1

2m
p2

r +
1

2mr2
(pφ + qR3

E

1

r
[−g1,1 sin θ + h1,1 cos θ])2

+
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ− qR3

E

1

r
(g1,1 cos θ cos φ + h1,1 sin θ sin φ) sin φ)2

+ mΦg −
1

2
mr2ω2

E sin2 φ (B.6)

2,0:

r pr2,0 = mṙ

φ pφ2,0 = mr2φ̇

θ pθ2,0 = mr2 sin2 φ(θ̇ + ωE) +
3

4
qg2,0R

4
E

1

r2
sin 2φ sin φ (B.7)

H2,0 =
1

2m
p2

r +
1

2mr2
p2

φ +
1

2mr2 sin2 φ
(pθ −mr2ωE sin2 φ− 3

4
qg2,0R

4
E

1

r2
sin 2φ sin φ)2

+ mΦg −
1

2
mr2ω2

E sin2 φ (B.8)

2,1:

r pr2,1 = mṙ

φ pφ2,1 = mr2φ̇− 3

2
qR4

E

1

r2
(−g2,1 sin θ + h2,1 cos θ) cos φ

θ pθ2,1 = mr2 sin2 φ(θ̇ + ωE) +
3

2
qR4

E

1

r2
(g2,1 cos θ + h2,1 sin θ)(2 cos2 φ− 1)

(B.9)
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H2,1 =
1

2m
p2

r +
1

2mr2
(pφ +

3

2
qR4

E

1
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(−g2,1 sin θ + h2,1 cos θ) cos φ)2
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