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Abstract 

Component integration environments such as 

Microsoft .NET and J2EE have become widely popu-

lar with application developers, who benefit from 
standardized memory management, system-wide type 

checking, debugging, and performance analysis tools 

that operate across component boundaries.  This pa-

per describes QuickSilver Scalable Multicast1 (QSM), 

a new multicast platform designed to achieve high 

performance in managed environments. Memory-

related overheads and phenomena related to schedul-

ing are shown to dominate the behavior of the system. 

We discuss techniques that helped us to alleviate 

these problems, and argue that they reveal general 

principles applicable to other kinds of high-data-rate 

protocols and applications in managed settings. 
 

1 Introduction 
 

A component integration “revolution” is trans-

forming the development of desktop applications.  

Platforms such as Windows .NET and J2EE promote 
an application development style in which compo-

nents are implemented independently and heavily 

reused.  By standardizing memory management and 

type checking, these platforms enable safe and effi-

cient cross-component method invocations, avoiding 

overheads associated with protection boundaries, 

argument marshaling, copying and un-marshaling.   

Broadly, our project is interested in leveraging 

these benefits to help developers implement robust 

and scalable computing services that will run on clus-

ters or in datacenters. Early users of our platform are 

creating applications in areas such as parallelized 
data mining, event stream filtering software, and 

scalable web services.   

Developers of clustered services need reliable 

multicast protocols for data replication; and in light 

of our broader goal of leveraging the power and 

component integration features of a managed frame-

work, the multicast technology must run in a ma-

naged setting.  But little is known about high-

performance protocols in managed environments.  It 

is interesting to realize that although Microsoft pro-
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motes end-user application development using C# in 
its .NET framework, the company’s own products are 

still implemented primarily in unmanaged C++.   By 

building XYX in the recommended manner, we 

found ourselves breaking new ground.    

The multicast protocols employed by QSM were 

designed for performance and scalability, incorporat-

ing a mixture of new ideas and ideas drawn from 

prior systems.  Nonetheless, the aspects on which we 

focus here reflect architectural responses to schedul-

ing delays, overheads associated with threads, and 

costs arising in the memory management subsystem.  

Over the period during which QSM was developed 
(two years), these had pervasive consequences, forc-

ing us to redesign and recode one layer of the system 

after another.    For example, the original system was 

multithreaded, used synchronous I/O calls and was 

rather casual about buffering and caching; the current 

system is single-threaded, uses asynchronous I/O, 

and obsessively minimizes memory consumption.  

Today, QSM (finally) performs well and is stable 

at high data rates, large scale and under stress.  The 

finished system achieves extremely high performance 

with relatively modest CPU and memory loads.  Al-
though our paper is not “about” setting performance 

records the absolute numbers are good: QSM outper-

forms the multicast platforms we’ve worked with in 

the past – systems that run in unmanaged settings.    

This paper won’t tell the blow-by-blow story.  

Instead, we use QSM in a series of experiments that 

highlight fundamental factors.  These reveal linkages 

between achievable performance and the costs and 

characteristics of the managed framework.  Doing so 

sheds light on the challenges of working in a kind of 

environment that will be more and more prevalent in 

years to come.  Our insights should be of value to 
developers of other high-performance communica-

tion and event-oriented systems.  To summarize: 

1. We propose a new “positioning” of multicast 

technology, as an extension of the component in-

tegration features of the Microsoft .NET ma-

naged runtime environment. 

2. Although we started with a sophisticated multi-

cast protocol, experiments reveal a series of 

problematic interactions between its high-speed 

event-processing logic and the properties of the 

managed framework, which we document.     
3. We addressed these and achieved high perfor-

mance by making some unusual architectural de-

cisions, which we distill into general insights. 
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The embedding of QSM into Windows yielded 

an unexpected benefit: it enables what we are calling 

“live distributed objects.”  As the term suggests, 

these are abstract data types in which content evolves 

over time.  When an application binds to a live object, 

the current state of the object is imported and the 
object can send and receive updates at high data rates.  

An object could be a place in a game like Second 

Life, a media stream, a publish-subscribe topic, a 

shared file, etc.  Live objects are a natural and power-

ful idea, and we plan to pursue the concept in future 

work.  However, this use of QSM raises performance 

and scalability issues beyond the ones seen in our 

original target domain. For that reason, we leave de-

tailed discussion of the idea for the future. 

QSM has been available for free download since 

mid-2006, and it has a number of users, most work-

ing on clustered computing.  For example, one large 
project is pairing QSM with high-speed event stream 

filtering and data mining system to obtain a scalable, 

cluster-hosted service capable of handling very high 

event rates.    

 

2 Usage cases 
 

Use of QSM in our target settings gives rise to 

potentially large numbers of overlapping communica-

tion groups.  As we have seen, the primary goal is to 

support data replication in scalable, componentized 

services, in which sets of components are intercon-

nected and cooperate to perform requests.  To minim-

ize latencies, components sets are normally co-

located; when a service is replicated, each of its con-

stituent components will need to replicate its portion 

of the service state.  If QSM is used to disseminate 

updates, this results in a pattern of communication 
groups that are exactly overlapped: each replicated 

component will have one or more associated groups, 

delivering update streams to its replicas.   

Of course, a datacenter will typically host many 

services, each with a disjoint set of components, and 

often deployed on disjoint sets of nodes.  In cases 

where two services are co-located on the same node, 

we’ll still see heavy overlap, but unless the degree of 

replication is identical, there may be two cases: nodes 

that host both services (and hence both sets of QSM 

groups), and nodes that just host one of them. 
Cluster management systems use groups for pur-

poses other than component replication, such as 

tracking node status and launching applications: these 

groups will span large numbers of nodes, perhaps the 

entire cluster.  Such groups overlap with everything.  

The result is an environment in which there will be a 

hierarchy [6] of overlapping groups (Figure 1).  QSM 

is highly effective in supporting this style of use. 

Group used for System Management

Service B Service c

X  Y  Z X  Y  Z X  Y  Z A   B A   B W  
Figure 1: If sets of components are replicated, the 

associated multicast groups overlap hierarchically. 

The foregoing is the primary use scenario for 

QSM, but may not be the only one.  One could im-

agine an approach to laying out components on a 

cluster that would result in irregular layouts of groups.  

QSM can support such layouts, at least to a degree, 

but for reasons of brevity the discussion in the re-

mainder of the paper focuses on regular, hierarchical-
ly structured communication groups with extensive 

and regular overlap.  Initial users of our system ha-

ven’t had any difficulty with this constraint: knowing 

QSM is particularly effective with regular layouts, 

they just design to favor regularity. 

 

3 Architecture 
 

Reliable multicast is a mature area, but a review 

of prior systems convinced us that no existing system 

would work well in the scenarios targeted by our 

project.  This forced us to build a new system that 

combines features from a number of prior systems. 

Our decision not to use some existing multicast 

system reflects a number of issues.  Most prior multi-

cast systems were designed to replicate state within 

just a single group at a time, for example a single 

distributed service. Some don’t support multiple 
groups at all, while others have overheads linear in 

the number of groups to which a node belongs.  For 

example, we looked at JGroups [2], a component of 

the JBoss platform which runs in a managed Java 

framework.  JGroups wasn’t designed to support 

large numbers of overlapping groups, and if confi-

gured to do so, overheads soar. 

There has been a great deal of work on P2P pub-

sub and content delivery platforms in recent years, 

often oriented towards content filtering in document 

streams.  A good example is Siena, a system that has 

become popular in WAN settings [3].  However, sys-
tems in this class incur steep overheads associated 

with content filtering.  Moreover, messages often 

follow circuitous routes from source to destination, 

incurring high latency.  In high performance settings, 

these factors would degrade the performance of the 

replicated application.   

The Spread multicast system implements 

“lightweight” groups [1, 4].  The groups seen by ap-

plications are an illusion; there is really only one 
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process group, consisting of a small set of servers to 

which client systems connect.  Each application-level 

multicast is vectored through a server, which multi-

casts it to its peers.  These filter the ordered multicast 

stream and relay messages back out to receivers.  

This approach can support huge numbers of groups 
with irregular overlap patterns, but the servers are a 

point of contention, and the indirect communication 

pathway introduces potentially high latencies.  

These considerations convinced us that a new 

system was needed. QSM implements a approach 

similar to Spread’s lightweight group abstraction, but 

without a separate server group.  We define a region 

of overlap to be a set of nodes with approximately the 

same group membership (Figure 2).  Under the as-

sumptions of Section 2, our cluster should be nicely 

“tiled” by regions.  QSM uses regions for multicast 

dissemination and for recovery of lost packets, em-
ploying different protocols for each purpose.   

 

For initial dissemination, QSM currently uses an 

unreliable IP multicast.  Since a single group may 

span multiple regions, to send to group G, a node 

multicasts a message to each of the regions separately 

(Figure 3). Our approach makes it easy to aggregate 

messages across different groups, on a per-region 

basis.  If  a node has two messages to send to a pair 
of groups G1 and G2 which overlap in region R, then 

while transmitting to R, the node can batch these 

messages together.  

To recover from packet loss, QSM uses a hierar-

chical structure of token rings (we considered using 

other structures, such as trees, but token rings pro-

duce a more predictable traffic pattern; the impor-
tance of this will become clear later).  The basic 

structure is illustrated in Figure 4.  At the highest 

level, QSM circulates tokens around sets of regions, 

aggregating information that can be used by a group 

sender to retransmit packets that were missed by en-

tire regions (left).  Within each region, a token circu-

lates to provide loss recovery at the level of nodes 

belonging to the region (right).  

If regions become large, QSM partitions them in-

to smaller rings. This is illustrated in Figure 5. In the 

experiments reported in this paper, no token ring ever 

grows larger than about 25 nodes, and the system 
uses single and two-level hierarchies.  In the future, 

we plan to experiment with larger configurations and 

will work with deeper hierarchies.   

The QSM recovery protocol uses tokens to track 

message status (missing/received/cached) at each 

node.  In effect, the token carries ACK and NAK 

information, aggregated over the nodes “below” each 

ring.  Token rings avoid the kinds of ACK/NAK im-

plosion problems with which reliable multicast pro-

tocols traditionally have struggled, but problems of 

their own: if a message is lost, the sender may not 
find out for quite a while.  In QSM, this isn’t a major 

issue because most message losses can be corrected 

locally, through cooperation among receivers.  

The basic idea is to perform recovery “as locally 

as possible” (Figure 6).  If a message is available 

within the same token ring, some process that has a 
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Figure 2. Groups overlap to form regions.  Nodes 

belong to the same region if they have similar 

group membership.  
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copy will forward it to the process missing the mes-

sage.  To conserve memory, QSM implements a 

scheme originally proposed by Zhao [7]: even in a 
large ring, no more than five nodes cache any given 

message.  QSM also uses this idea at the level of par-

titions: each message is cached in a single partition, 

round-robin fashion; if some partition is missing a 

message, the partition caching it steps in to resend it.  

Finally, if an entire region is missing a message, the 

sender becomes involved and re-multicasts it. 

QSM tokens also carry other information, in-

cluding data used to perform rate control and infor-

mation used to trigger garbage collection. 

The overall system configuration is managed by 
what we call the Configuration Management Service 

(CMS), which handles join and leave requests, de-

tects node failures, and uses these to generate a se-

quence of membership views for each multicast. The 

CMS also determines and continuously updates re-

gion boundaries, maintains sequences of region views 

for each region, and tracks the mapping from group 

views to region views. In our prototype, the CMS 

runs on a single node, but we intend to replace this 

with a state-machine replicated version in the future 

to eliminate the risk of single-point failures.  In the 

longer term we will move to a hierarchically struc-
tured CMS, similar to Moshe [8]. 

 

4 Implementation 
 

When we set out to implement QSM, our intent 

was to leverage the component integration tools 
available on the Windows platform.  We didn’t ex-

pect that co-existence with the managed environment 

would require any special architectural features.  

QSM is implemented much like any .NET com-

ponent.  The system is coded in C# (about 200,000 

lines of code, of which 7500 are unmanaged C++ to 

interface to the native Windows asynchronous I/O 

library), and is accessible from any .NET application.   

Windows understands QSM to be the handler for 

operations on new kind of event stream.  An applica-

tion can obtain handles from these QSM-managed 

streams, and can then invoke methods on those han-
dles to send events; incoming messages are delivered 

through upcalls.  QSM is also registered as a “shell 

extension”, making it possible to access the commu-

nication subsystem directly from the Windows GUI. 

For example, the user can store a shortcut to a QSM 

stream in the file system, and can point-and-click to 

attach a previewer or a viewer to an event stream.  
The overall architecture is summarized in Figure 

7. The system is single-threaded and event-driven.  

We use a Windows I/O completion port, henceforth 

referred to as an I/O queue, to collect all asynchron-

ous I/O completion events, including notifications of 

any received messages, completed transmissions, and 

errors, for all sockets. A single “core thread” syn-

chronously polls the I/O queue to retrieve incoming 

messages. The core thread also maintains an alarm 

queue, implemented as a splay tree, for timer-based 

events, and a request queue, implemented as a lock-

free queue with CAS-style operations, for requests 
from the (possibly multithreaded) application. The 

core thread polls all queues in a round-robin fashion 

and processes the events sequentially.  

Events of the same type are processed in batches, 

up to the limit determined by a quantum (currently 

50ms for I/O, 5ms for alarms; there is no limit for 

application requests). When an I/O event representing 

a received packet is retrieved for a given socket, the 

socket is drained to minimize the probability of loss.  

Several aspects of the architecture are notewor-

thy because of their performance implications.  First, 

QSM assigns priorities to different types of I/O 

events.  The basic idea is that when an I/O event oc-

curs, we retrieve all events from the I/O queue, de-

termine the type of each, and then place it in an ap-

propriate priority queue. Then, the system processes 
queued events in priority order (Figure 8).  By priori-

tizing incoming I/O over sending-related events we 
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Figure 7. QSM uses a single-threaded architecture, 

with a “core” thread that controls three queues: 

for I/O requests, timer-based events, and requests 

from the possibly multithreaded application. 
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Figure 6. Recovery inside and across partitions. 
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reduce packet loss, and by prioritizing control pack-

ets over data we reduce delays in reacting to packet 

loss or other control.  In Section 5 we will see that 

this slashes system-wide memory overheads.   

The pros and cons of using threads in event-

oriented systems are hotly debated.  In QSM itself, 
threads turned out to be a bad idea.  Although we 

used threads rather casually in the first year of our 

effort, that version of the system was annoyingly 

unstable, and prone to oscillatory throughput when 

scaled up.  When we decided to take control over 

event processing order, we also eliminated multith-

reading. Fine-grained scheduling eliminated convoy 
behavior and oscillatory throughput of the sort that 

can disrupt reliable multicast systems when they run 

at high data rates on a large scale2. 

The last aspect relates to the creation of new 

messages, particularly by QSM itself.  Readers who 

have implemented multicast protocols will know that 

most existing systems are push-based: some layer 

initiates a new message at will, and lower layers then 

buffer that message until it can be sent.  This makes 

sense under the assumption that senders often gener-

ate bursts of packets; by buffering them, the commu-
nication subsystem can smooth the traffic flow and 

keep the network interface busy.  One consequence is 

that messages can linger for a while before they are 

sent.  Not only does this increase memory consump-

tion, but if a message contains “current state” infor-

mation, that state may be stale by the time it’s sent. 

In contrast to this usual approach, QSM imple-

ments a “pull” architecture. Our original motivation 

                                                
2 For reasons of brevity, we are unable to undertake a 
detailed analysis of oscillatory phenomena in this 

paper (also called convoys and broadcast storms; 

these plague many multicast and pub-sub products). 

Event prioritization eliminated such problems in the 

configurations tested by our experiments. 

was to reduce staleness by postponing the creation of 

control messages until the time when transmission is 

actually about to take place.  “Just-in-time” informa-

tion is more accurate, and this makes QSM more sta-

ble. An unintended benefit is that the “pull” architec-

ture slashes buffering and memory overheads, which, 

as we shall demonstrate, turns out to have an enorm-

ous impact on performance. 

In QSM each element of a protocol stack acts as 

a feed that has data to send, or a sink that can send it 

(Figure 9), and many play both roles (Figure 10). 
Rather than creating a message and handing it down 

to the sink, a feed registers the intent to send a mes-

sage with the sink. The message can be created at this 

time and buffered in the feed, but the creation may 

also be postponed until the time when the sink polls 

the feed for messages to transmit. The sink deter-

mines its readiness to send based on a control policy, 

such as rate, concurrency, windows size limitation, 

and so forth. When the socket at the root of the tree is 

ready for transmission, messages will be recursively 

pulled from the tree of protocol stack components, in 

a round-robin fashion. Feeds that no longer have data 
to send are automatically deregistered. 

 

5 Evaluation 
 

Evaluation of QSM could pursue many direc-

tions: costs of the domain crossing between the ap-

plication and QSM, protocol design and scalability, 
and interactions between protocol properties and the 

managed framework.  Here we focus on the latter.  

Our goal is to arrive at a deep understanding of the 

performance limits of QSM when operating at high 

data rates with large numbers of overlapping groups 
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policy limit sending rate 

limit concurrency 

limit window size 

Figure 9.  In a “pull” protocol a "feed" regis-

ters the intent to send with a “sink” that may 

be controlled by a policy limiting the send 

rate, concurrency etc. When the sink is 

“ready” to send, it issues an upcall. 
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on varying numbers of nodes.  We’ll find that the 

experiments have a pattern: in scenario after scenario, 

the performance of QSM is ultimately limited by 

overheads associated with memory management in 

the managed environment.  Basically, the more 

memory in use, the higher the overheads of the mem-
ory management subsystem and the more CPU time 

it consumes, leaving less time for QSM to run.  These 

aren’t just garbage collection costs: every aspect of 

memory management gets expensive, and the costs 

grow linearly in the amount of memory in use.  When 

QSM runs flat-out, CPU cycles are a precious com-

modity.  Thus, minimizing the memory footprint 

turns out to be the key to high performance.  

All results reported here come from experiments 

on a 200-node3 cluster of Pentium III 1.3GHz blades 

with 512MB memory, connected into a single broad-

cast domain using a switched 100Mbps network. 
Nodes run Windows Server 2003 with the .NET 

Framework, v2.0. Our benchmark is an 

nary .NET GUI application, linked to the QSM li-

brary, running in the same process. Unless otherwise 

specified, we send 1000-byte arrays, without preallo-

cating them, at the maximum possible rate, and with-

out batching. The majority of the figures include 95% 

confidence intervals, but these intervals are some-

times so small that they may not always be visible. 

 

5.1 Memory Overheads on the Sender 
 

We begin by showing that memory overhead at 

the sender is a central to throughput. Figure 11 shows 

throughput in messages/s in experiments with 1 or 2 

senders multicasting to a varying number of receivers, 

all of which belong to a single group. With a single 

sender, no rate limit was used: the sender has more 

work to do than the receivers and on our clusters, 

isn’t fast enough to saturate the network (Figure 12). 
With two senders, we report the highest combined 

send rate that the system could sustain without devel-

oping backlogs at the senders. 

Why does performance decrease with the num-

ber of receivers? First, let’s focus on a 1-sender sce-

nario. Figure 12 shows that whereas receivers are not 

CPU-bound, and loss rates in this experiment (not 

shown here) are very small, the sender is saturated, 

and hence is the bottleneck. Running this test again in 

a profiler reveals that the percentage of time spent in 

QSM code is decreasing, whereas more and more 

time is spent in mscorwks.dll, the CLR (Figure 13). 
More detailed analysis (Figure 14) shows that the 

main culprit behind the increase of overhead is a 

                                                
3 This configuration is typical of the host environ-

ment expected for our target applications.   

growing cost of memory allocation (GCHeap::Alloc) 

and garbage collection (gc_heap_garbage_collect).  

 

 

 

 

 
 

The former grows by 10% and the latter by  15%, 

as compared to 5% decrease of throughput. The bulk 

Figure 14.  Memory allocation and 

garbage collection overheads on the 

sender node. 

 

Figure 13. The percentages of the profiler 

samples taken from QSM and CLR DLLs. 

Figure 12. Processor utilization as a func-

tion of the multicast rate (100 receivers). 

Figure 11. Throughput as a function of the 

number of nodes (1 group, 1KB messages). 
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of the overhead is the allocation of byte arrays to 

send in the application (“JIT_NewArr1”, Figure 15). 

Roughly 12-14% of time is spent exclusively on co-

pying memory in the CLR (“memcopy”), even 

though we used our own scatter-gather serialization 

scheme that efficiently uses scatter-gather I/O.  
The increase in the memory allocation overhead 

and the activity of the garbage collector are caused by 

the increasing memory usage. This, in turn, reflectsan  

increase of the average number of multicasts pending 

completion (Figure 16). For each, a copy is kept by 

the sender for possible loss recovery. Notice that 

memory consumption grows nearly 3 times faster 

than the number of messages pending acknowledge-

ment.  If we freeze the sender process and inspect the 

contents of the managed heap, we find that the num-

ber of objects in memory is more than twice the 

number of multicasts pending acknowledgement. 
Although some of these have already been acknowl-

edged, they haven’t yet been garbage collected.  

The growing amount of unacknowledged data is 

caused by the increase of the average time to ac-

knowledge a message (Figure 17). This grows be-

cause of the increasing time to circulate a token 

around the region for purposes of state aggregation 

(“roundtrip time”). The time to acknowledge is only 

slightly higher than the expected 0.5s to wait until the 

next token round, plus the roundtrip time; as we scale 

up, however, roundtrip time becomes dominant. 
These experiments show that the critical factor de-

termining performance is the time needed for the 

system to aggregate state over regions. Moreover, 

they shed light on a mechanism that links latency to 

throughput, via increased memory consumption and 

the resulting increase in allocation and garbage col-

lection overheads. 

An 500ms increase in latency, resulting in a 

10MB increase in memory consumption, can inflate 

overheads by 10-15%, and degrade the throughput by 

5%. One way to alleviate the problem we've identi-

fied could be to reduce the latency of state aggrega-
tion, so that it grows sub-linearly. In our system, this 

might be achieved by using a deeper hierarchy of 

rings, and by letting tokens in each of these rings 

circulate independently. This would create a more 

complex structure, but aggregation latency would 

grow logarithmically rather than linearly.  

Is reducing state aggregation latency the only op-

tion? We evaluated two alternative approaches, but 

found that neither can substitute for lowering the la-

tency of the recovery state aggregation.  

Our first approach varies the rate of aggregation 
by increasing the rate at which tokens are released 

(Figure 18). This helps only up to a point. Beyond 

1.25 tokens/s, more than one aggregation is underway 

at a time, and successive tokens perform redundant 

work. Worse, processing all these tokens is costly. 

Changing the default 1 token/s to 5 tokens/s decreas-

es the amount of unacknowledged data by 30%, but 

increases throughput by less than 1%.  

 

 

 

  
 

 

Figure 18. Varying token circulation rate. 

Figure 17. Token roundtrip time and an 

average time to acknowledge a message. 

Figure 16. Memory used on sender and the 

number of multicast requests in progress. 

Figure 15. Time spent allocating byte ar-

rays in the application, and copying. 
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Our second approach increased the amount of 

feedback to the sender. In our base implementation, 

each aggregate ACK contains a single value Max-

Contiguous, representing the maximum number such 

that messages with this and all lower numbers are 

stable in the region. To increase the amount of feed-
back, we permit ACK to contain up to k numeric 

ranges, (a1, b1), (a2, b2), …, (ak, bk). The system 

can now cleanup message sequences that have as 

gaps (messages that are still unstable).  

In the experiment shown in Figures 19 and 20, 

we set k to the number of partitions. Unfortunately, 

while the amount of acknowledged data is reduced by 

30%, it still grows, and the overall throughput is ac-

tually lower because token processing becomes more 

costly.  Furthermore, the system becomes unstable 

(notice the large variances in Figure 21Figure), be-

cause our flow control scheme, based on limiting the 
amount of unacknowledged data, breaks down. While 

the sender can cleanup any portion of the message 

sequence, receivers have to deliver in FIFO order.  

The amount of data they cache is larger, and this re-

duces their ability to accept incoming traffic.    

Notice the linkage to memory.  In this case, the 

growth in memory occurs on the receivers, but the 

pattern is similar to what we saw earlier: merely hav-

ing more cached data is enough to slow them down. 

 

5.2 Memory Overheads on the Receiver 
 

The reader may doubt that memory overhead on 

receivers is the real issue, considering that their CPUs 

are half-idle (Figure 12). Can increasing memory 

consumption affect a half-idle node? To find out, we 

performed an experiment with 1 sender multicasting 

to 192 receivers, in which we vary the number of 

receivers that cache a copy of each message (“repli-

cation factor” in Figure 22). Increasing this value 
results in a linear increase of memory usage on re-

ceivers. If memory overheads were not a significant 

issue on half-idle CPUs, we would expect perfor-

mance to remain unchanged. Instead, we see a dra-

matic, super-linear increase of the token roundtrip 

time, a slow increase of the number of messages 

pending ACK on the sender, and a sharp decrease in 

throughput (Figure 23). 

The underlying mechanism is as follows. The in-

creased activity of the garbage collector and alloca-

tion overheads slow the system down and processing 

of the incoming packets and tokens takes more time. 
Although the effect is not significant when consider-

ing a single node in isolation, a token must visit all 

nodes in a region to aggregate the recovery state, and 

delays are cumulative. Normally, QSM is configured 

so that five nodes in each region cache each packet.  

If half the nodes in a 192-node region cache each 

packet, token roundtrip time increases 3-fold. This 

delays state aggregation, increases pending messages 

and reduces throughput (Figure 23).  

 

 

 

 

 
As the replication factor increasess, the sender’s 

flow control policy kicks in, and the system goes into 

Figure 22. Varying the number of caching 

replicas per message in a 192-node region. 

Figure 21. Instability with O(n) feedback. 

Figure 20. More work with O(n) feedback, 

and lower rates despite saving on memory. 

Figure 19. More aggressive cleanup with 

O(n) feedback in the token and in ACKs. 
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a form of the oscillating state we encountered in Fig-

ure 21: the amount of memory in use at the sender 

ceases to be a good predictor of the amount of memo-

ry in use at receivers, violating what turns out to be 

an implicit requirement of our flow-control policy.  

 

5.3 Overheads in a Perturbed System 
 

The reader might wonder whether our results 

would be different if the system experienced high 

loss rates or was otherwise perturbed.   To find out, 

we performed an experiment in which one of the re-

ceiver nodes experiences a periodic, programmed 

perturbation: every 5s the node sleeps for 0.5s. This 

simulates the effect of disruptive, overloaded applica-
tions. In the “loss” scenario, every 1s the node drops 

all incoming packets for 10ms, thus simulating 1% 

bursty packet loss. In practice, the loss rate is higher, 

around 2-5%, because recovery traffic interferes with 

regular multicast, causing further losses.   

In both scenarios, CPU utilization at the receiv-

ers is in the 50-60% range and doesn’t grow with 

system size, but throughput decreases (Figure 

24Figure). In the sleep scenario, the decrease starts at 

about 80 nodes and proceeds steadily thereafter. It 

doesn’t appear to be correlated to the amount of loss, 

which oscillates at the level of 2-3% (Figure 25). In 
the controlled loss scenario, throughput remains fair-

ly constant, until it falls sharply beyond 160 nodes. 

Here again, performance does not appear to be direct-

ly correlated to the observed packet loss. Finally, 

throughput is uncorrelated with memory use both on 

the perturbed receiver (Figure 26) or other receivers 

(not shown). Indeed, at scales of up to 80 nodes, 

memory usage actually decreases, a consequence of 

the cooperative caching policy described in Section 3. 

The shape of the performance curve does, however, 

correlate closely with the number of unacknowledged 
requests (Figure 27).  

We conclude that the drop in performance in 

these scenarios can’t be explained by correlation with 

CPU activity, memory, or loss rates at the receivers, 

but that it does appear correlated to slower cleanup 

and the resulting memory-related overheads at the 

sender.  The effect is much stronger than in the undis-

turbed experiments; the number of pending messages 

starts at a higher level, and grows 6-8 times faster. 

Token roundtrip time increases 2-fold, and if a failure 

occurs, it requires 2 token rounds before repair occurs, 

and then another round before cleanup takes place 
(Figures 28, 29). Combined, these account for the 

rapid increase in acknowledgement latency.  

 

 

 

 

 
 

Figure 26. Memory usage at the perturbed 

node (at unperturbed nodes it is similar). 

Figure 25. Average packet loss observed at 

the perturbed node. 

Figure 24. Throughput in the experiments 

with a perturbed node (1 sender, 1 group). 

Figure 23. As the number of caching rep-

licas increases, the throughput decreases. 
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It is worth noting that the doubled token 

roundtrip time, as compared to unperturbed experi-

ments, can’t be accounted for by the increase in 

memory overhead or CPU activity on the receivers, 

as was the case in experiments where we varied the 

replication factor. The problem can be traced to a 

priority inversion. Because of repeated losses, the 

system maintains a high volume of forwarding traffic. 
The forwarded messages tend to get ahead of the to-

ken, both on the send path, where in the sinks, we use 

a simple round-robin policy of multiplexing between 

data feeds, and on the receive path, where forwarded 

packets are treated as control traffic, and while 

they’re prioritized over data, they are treated as 

equally important as tokens. They also increase the 

overall volume of I/O that the nodes process. As a 

result, tokens are processed with higher latency.  

Although it would be hard to precisely measure 

these delays, measuring alarm delays sheds light on 

the magnitude of the problem. Recall that our time-

sharing policy assigns quanta to different types of 

events. High volumes of I/O, such as caused by the 

increased forwarding traffic, will cause QSM to use a 
larger fraction of its I/O quantum to process I/O 

events, with the consequence that timers will fire late. 

This effect is magnified each time QSM is preempted 

by other processes or by its own garbage collector; 

such delays are typically shorter than the I/O quan-

tum, yet longer than the alarm quantum, thus causing 

the alarm, but not the I/O quanta, to expire.   

The maximum alarm firing delays taken from 

samples in 1s intervals are indeed much larger in the 

perturbed experiments, both on the sender and on the 

receiver side (Figures 30 and 31). Large delays are 

also more frequent (not shown). The maximum delay 
measured on receivers in the perturbed runs is 130-

140ms, as compared in 12-14ms in the unperturbed 

experiments. On the sender, the value grows from 

700ms to 1.3s. In all scenarios, the problem could be 

alleviated by making our priority scheduling more 

fine-grained, e.g. varying priorities for control pack-

ets, or by assigning priorities to feeds in the sending 

stack. 

 

 

 

 
 

Figure 31. Histogram of maximum alarm 

delays in 1s intervals, on the sender. 

Figure 30. Histogram of maximum alarm 

delays in 1s intervals, on the receivers. 

Figure 29. Token roundtrip time and the 

time to recover in the "loss" scenario. 

Figure 28. Token roundtrip time and the 

time to recover in the "sleep" scenario. 

Figure 27. Number of messages awaiting 

acknowledgement in experiments with 

perturbances. 
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5.4 Overheads in a Lightly-Loaded System 
 

So far the evaluation has focused on scenarios 

where the system was heavily loaded, with un-
bounded multicast rates and occasional perturbations. 

In each case, we traced degraded performance or 

scheduling delays to memory-related overheads.  But 

how does the system behave when lightly loaded? Do 

similar phenomena occur?   Here we’ll see that load 

has a super-linear impact on performance.  In a nut-

shell, the growth in memory consumption causes 

slowdowns that amplify the increased latencies asso-

ciated with the growth in traffic. 

To show this we designed experiments that vary 

the multicast rate. Figure 12 showed that the load on 
receivers grows roughly linearly, as expected given 

the linearly increasing load, negligible loss rates and 

the nearly flat curve of memory consumption  (Figure 

33), the latter reflecting our cooperative caching poli-

cy. Load on the sender, however, grows super-

linearly, because the linear growth of traffic, com-

bined with our fixed rate of state aggregation, in-

creases the amount of unacknowledged data (Figure 

32), increasing memory usage. This triggers higher 

overheads: for example, the time spent in the garbage 

collector grows from 50% to 60% (not shown here). 

Combined with a linear growth of CPU usage due to 
the increasing volume of traffic, these overheads 

cause the super-linear growth of CPU overhead 

shown on  Figure 12.  

The increasing number of unacknowledged re-

quests and the resulting overheads rise sharply at the 

highest rates because of the increasing token 

roundtrip time. The issue here is that the amount of 

I/O to be processed increases, much as in some of the 

earlier scenarios.  This delays tokens as a function of 

the growing volume of multicast traffic. We confirm 

the hypothesis by looking at the end-to-end latency 
(Figure 34). Generally, we would expect latency to 

decrease as the sending rate increases because the 

system operates more smoothly, avoiding context 

switching overheads and the extra latencies caused by 

the small amount of buffering in our protocol stack.  

With larger packets once the rate exceeds 6000 

packets/s, the latency starts increasing again, due to 

the longer pipeline at the receive side and other phe-

nomena just mentioned. This is not the case for small 

packets (also in Figure 34); here the load on the sys-

tem is much smaller. Finally, the above observations 

are consistent with the sharp rise of the average delay 
for timer events (Figure 35). As the rate changes 

from 7000 to 8000, timer delays at the receiver in-

crease from 1.5ms to 3ms, and on the sender, from 

7ms to 45ms.  

 

 

 

 

Figure 35. Alarm firing delays on sender 

and receiver as a function of sending rate. 

Figure 34. The send-to-receive latency for 

varying rate, with various message sizes. 

Figure 33. Linearly growing memory use 

on sender and the nearly flat usage on the 

receiver as a function of the sending rate. 

Figure 32. Number of unacknowledged 

messages and average token roundtrip 

time as a function of the sending rate. 
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5.5 Per-Group Memory Consumption 
 

In a final set of experiments, we focus on scala-

bility with the number of groups. A single sender 
multicasts to a varying number of groups in a round-

robin fashion. All receivers join all groups, and since 

the groups are perfectly overlapped, the system con-

tains a single region.  QSM’s regional recovery pro-

tocol is oblivious to the groups, hence the receivers 

behave identically no matter how many groups we 

use. On the other hand, the sender maintains a num-

ber of per-group data structures. This affects the 

sender’s memory footprint, so changes to throughput 

or protocol behavior must be directly or indirectly 

linked to memory usage. 
We do not expect the token roundtrip time or the 

amount of messages pending acknowledgement to 

vary with the number of groups, and until about 3500 

groups this is the case (Figure 36). However, in this 

range memory consumption on the sender grows 

(Figure 37), and so does the time spent in the CLR 

(Figure 38), hurting throughput (Figure 39). Inspec-

tion of the managed heap in a debugger shows that 

the growth in memory used is caused not by messag-

es, but by the per-group elements of the protocol 

stack. Each maintains a queue, dictionaries, strings, 

small structures for profiling etc. With thousands of 
groups, these add up to tens of megabytes. 

We can confirm the theory by turning on addi-

tional tracing in the per-group components. This trac-

ing is lightweight and has little effect on CPU con-

sumption, but it increases the memory footprint by 

adding additional data structures that are updated 

once per second, which burdens the GC. As expected, 

throughput decreases (Figure 39, “heavyweight”). 

It is worth noting that the memory usages re-

ported here are averages. Throughout the experiment, 

memory usage oscillates, and the peak values are 
typically 50-100% higher.  The nodes on our cluster 

only have 512MB memory, hence a 100MB average 

(200MB peak) memory footprint is significant. With 

8192 groups, the peak footprint approaches 360MB, 

and the system is close to swapping.  

Even 3500-4000 groups are enough to trigger 

signs of instability. Token roundtrip times start to 

grow, thus delaying message cleanup (Figure 40) and 

increasing memory overhead (Figure 41). Although 

the process is fairly unpredictable (we see spikes and 

anomalies), we can easily recognize a super-linear 

trend starting at around 6000 groups. At around this 
point, we also start to see occasional bursts of packet 

losses (not shown), often roughly correlated across 

receivers.  Such events trigger bursty recovery over-

loads, exacerbating the problem. 

 

 

 

 

Figure 39. Throughput decreases with the 

number of groups (1 sender, 110 

receivers, all groups have the same 

subscribers). 

Figure 38. Time spent in the CLR code. 

Figure 37. Memory usage grows with the 

number of groups. Beyond a certain thre-

shold, the system is increasingly unstable. 

Figure 36. Number of messages pending 

ACK and token roundtrip time as a func-

tion of the number of groups. 
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Stepping back, the key insight is that all these ef-

fects originate at the sender node, which is more 

loaded and less responsive. In fact, detailed analysis 

of the captured network traffic shows that the multi-

cast stream in all cases looks basically identical, and 

hence we cannot attribute token latency or losses to 
the increased volume of traffic, throughput spikes or 

longer bursts of data. With more groups, the sender 

spends more time transmitting at lower rates, but 

doesn’t produce any faster data bursts than those we 

observe with smaller numbers of groups (Figure 40). 

Receiver performance indicators such as delays in 

firing timer event or CPU utilization don’t show any 

noticeable trend.  Thus, all roads lead back to the 

sender, and the main thing “going on” in the sender is 

that it has a steadily growing memory footprint. 

 

 

 

 

We also looked at token round-trip times.  The 

distribution of token roundtrip times for different 

numbers of groups shows an increase of the token 

roundtrip time, caused almost entirely by 50% of the 

tokens that are delayed the most (Figure 41), which 

points to disruptive events as the culprit, rather than a 
uniform increase of the token processing overhead. 

And, not surprisingly, we find that these tokens were 

most commonly delayed on the sender.  

With many thousands of groups, the average 

time to travel by one hop from sender to receiver or 

receiver to sender can grow to nearly 50-90ms, as 

compared to an average 2ms per hop from receiver to 

receiver (not shown). Also, the overloaded sender 

occasionally releases the tokens with a delay, thus 

introducing irregularity. For 10% of the most-delayed 

tokens, the value of the delay grows with the number 

of groups (Figure 42).   Our old culprit is back: 
memory-related costs at the sender!  To summarize, 

increasing the number of groups slows the sender, 

and this cascades to create all sorts of downstream 

problems that can destabilize the system as a whole.   

 

6 Discussion 
 

The experiments just reported make it clear that 

the performance-limiting factor in the QSM system is 

latency, and that in addition to protocol factors such 

as the length of token rings, latency is strongly influ-

enced by the memory footprint of the system.  Of 

course, when we built the system it was obvious that 

minimizing latency would be important; this moti-

vated several of the design decisions discussed in 

Section 3.  But the repeated linkage of latency and 

oscillatory throughputs to memory was a surprise: we 

expected a much smaller impact.  We can summarize 
our design insights as follows:  

1. Minimize the memory footprint. We expected that 

the primary cost of managed memory would be asso-

ciated with garbage collection.  Instead, all costs as-

sociated with managed memory rise in the amount of 

allocated memory, at least in the Windows CLR.  

Implications include: 

1.1 Pull data.  Whereas traditional multicast systems 

accept messages whenever the application layer or 

the multicast protocols produce it, QSM uses an up-

call-driven pull architecture.  Often we can delay 
generating a message until the last minute, and we 

can also avoid situations in which data piles up on 

behalf of an aggressive sender. 

1.2 Limit buffering and caching.  Most existing mul-

ticast protocols buffer data at many layers and cache 

data rather casually for recovery purposes.  This turns 

out to be extremely costly in a managed setting and 

must be avoided whenever possible. 

Figure 42. Intervals between the subse-

quent tokens (cumulative distribution). 

Figure 41. Token roundtrip times for 4K 

and 7K groups (cumulative distribution). 

Figure 40. Cumulative distribution of the 

multicast rates for 1K and 8K groups. 
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1.3 Clear messages out of the system quickly.  Data 

paths should have rapid data movement as a key goal. 

2. Minimize delays.  We’ve already mentioned that 

data paths should clear messages quickly, but there 

are other important forms of delay, too.  Most situa-

tions in which QSM developed convoy-like behavior 
or oscillatory throughput can be traced to design de-

cisions that caused scheduling jitter or allowed some 

form of priority inversion to occur, delaying a crucial 

message behind a less important one.  Implications 

included the following: 

2.1 Event handlers should be short, predictable and 

terminating.  In building QSM, we struggled to make 

the overall behavior of the system as predictable as 

possible – not a trivial task in configurations where 

hundreds of processes might be multicasting in thou-

sands of overlapping groups.  By keeping event han-

dlers short and predictable and eliminating the need 
for locking, we obtained a more predictable system 

and were able to eliminate multithreading, with the 

associated context switching and locking overheads. 

2.2 Drain input queues.  Here we encounter a ten-

sion between two goals.  From a memory footprint 

perspective, one might prefer not to pull in a message 

until QSM can process it.  But in a datacenter or clus-

ter, most message loss occurs in the operating system, 

not on the network, hence message loss rates soar if 

we leave messages on input sockets for long.   

2.3 Control the event processing order.  In QSM, 
this involved single-threading, batched asynchronous 

I/O, and the imposition of an internal event 

processing prioritization.  Small delays add up in 

large systems: tight control over event processing 

largely eliminated convoy effects and oscillatory 

throughput problems.  

2.4 Act on Fresh State.   Many inefficiencies can be 

traced to situations in which one node takes action on 

the basis of stale state information from some other 

node, triggering redundant retransmissions or other 

overheads.  The pull architecture has the secondary 

benefit of letting us delay the preparation of status 
packets until they are about to be transmitted.  

 

7 Conclusions 
 

The premise of our work is that developers of 

services intended to run on clustered platforms desire 
the productivity and robustness benefits of managed 

environments, and need replication tools integrated 

with those environments. Building such tools so 

posed challenges to us as protocol and system de-

signers, which were the primary focus of our paper. 

A central insight is that high-performance protocols 

running in managed settings need to maintain the 

smallest possible memory footprint. By repeated ap-

plication of this principle, QSM achieves scalability 

and stability even at very high loads.  

An unexpected side effect of building QSM in 

Windows was that by integrating our system tightly 

with the platform, we created a new kind of live dis-

tributed objects: abstract data types that form groups, 
share state, and that are updated using QSM multi-

casts.  These look natural to the Windows user: such 

an object changes faster than the average Windows 

object, but the same basic mechanisms can support 

them, and the component integration environment 

(type checking, debugging, etc) extends seamlessly to 

encompass them.  Although a great deal of additional 

work is needed, QSM should eventually enable ca-

sual use of live objects not just in datacenters but also 

on desktops in WAN settings, opening the door to a 

new style of distributed programming.  

The current version of QSM is stable in cluster 
settings and, as noted earlier, has a growing commu-

nity of users.  Looking to the future, we plan to scale 

QSM into WAN settings, to support a wider range of 

multicast reliability properties, and to introduce a 

gossip infrastructure that would support configuration 

discovery and other self-* mechanisms.  Live objects 

pose a protocol design challenge: they give rise to 

irregular patterns of overlapping multicast groups; 

hence our region-oriented state aggregation mechan-

isms will need to be redesigned.  We have an idea for 

solving this (basically, recovery would be performed 
by selecting a subset of nodes  that form  a clean 

overlay structure, rather than just treating every sin-

gle receiver as a member of a recovery region). 

Whether this can really scale remains to be seen.   
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