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Cornell University 2010

Calculations of helium and the negative hydrogen ion are presented using

the pseudospectral method. The fundamental analytic properties, including the

presence of Kato cusps and logarithmic terms of the solutions to the Schrödinger

equation, are explored and their effect on the convergence properties analyzed.

We find that by most measures of error the pseudospectral method converges at

an exponential rate. With this method, we calculate energies and perturbations

due to the finite nuclear mass and relativity and interactions with the electro-

magnetic field. The value calculated for the absorption oscillator strength of

the 11S → 21P transition is about as accurate as the best in the literature. A

general prescription is given for choosing subdomains needed for exponential

convergence. With this prescription and the overall general applicability of the

method, we conclude pseudospectral methods can be applied to general few-

electron problems.
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CHAPTER 1

INTRODUCTION

This work explores fundamental quantummechanics. The helium atom and

its isoelectronic counterparts are the most simple nontrivial Coulomb problems

in quantummechanics. They involve strong electron-electron correlations, non-

trivial symmetry considerations, and single as well as double continua. Many

different solution techniques have been developed and applied over the past 80

years. A thorough understanding of this simple system is important not only

because of its direct relevance to experimental studies in atomic physics but also

because the best methods of solution may suggest generalizations applicable to

multielectron and/or multiatom systems.

Applying pseudospectral methods to this problem provides a test of the

known analytic structure of the wave function, and provides an alternative high

precision method to the standard variational method. It is free of explicit as-

sumptions of the form of the solution and can give local values of the wave

function and its derivatives to exponential accuracy. In chapter 3, a detailed

analysis of the analytic structure and numerical errors is given. The necessity of

using multiple subdomains is shown and the rate of convergence is given. This

work is published in Physical Review A [73].

Many problems can be solved once one has a method for getting numeri-

cally exact wave functions. Accurately treating transitions between states due

to radiation effects provides a good test of the method. This requires solving for

more than one angular momentum state and constructing an accurate method

of calculating matrix elements and dipole operators. These problems are solved

in the first half of chapter 4.
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Small effects are often treated perturbatively, including the mass polariza-

tion term (see Secs. 3.3 and 4.11.1 and relativistic corrections (see Sec. 4.11.2). In

the second half of chapter 4, the leading order corrections are calculated and the

convergence of their errors with respect to Drake’s high precision values [45] is

discussed.

Pseudospectral methods can be applied to large classes of fundamental

physics problems, even if one is restricted to few-electron problems. The asymp-

totic form of the helium atom in the breakup limit is still an active area of re-

search [123]. The form near the triple coalescence point is only known analyt-

ically to second order [1, 71, 72, 106]. Applying a direct numerical approach

can provide verification and guidance to analytic techniques as well as in it-

self be a complete solution. One can also envision solving systems of two- or

three-electrons which have extra terms that cannot be treated perturbatively, for

example, very large magnetic fields or models of solid density matter. One can

even imagine directly solving the Dirac equation, implicitly incorporating all

relativistic effects up to QED corrections. Such a calculation would greatly help

attempts to refine estimates of the fine structure constant.
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CHAPTER 2

BACKGROUND

2.1 Theoreticalmethods for solving the nonrelativistic Schrödinger

equation for two-electron atoms

Using the infinite nuclear mass approximation, the Scrödinger equation for a

two-electron atom in atomic units is

(

−1

2
(∇2

1 + ∇2
2) −

Z

r1
− Z

r2
+

1

r12
− E

)

ψ = 0, (2.1)

where ∇2
i is the laplacian with respect to the ith electron’s coordinates, Z is the

nuclear charge, ri is the distance between the ith electron and the nucleus, and

r12 is the electron-electron distance.

This equation has a three-three splitting (see Sec. 4.4) between the interpar-

ticle coordinates {r1, r2, r12} and the coordinates giving the orientiation of the

particles. One important feature of this equation is the presence of physical sin-

gularities at r1 = 0, r2 = 0, and r12 = 0. These singularities prevent complete

smoothness of the wave function, a significant problem to overcome for pseu-

dospectral methods. This problem and its solution are discussed in Secs. 3.5,

3.7, and 4.7. The solution entails carefully choosing coordinates analagous to

spherical coordinates seen in Sec. 2.1.3.

There are three methods for solving this eigenvalue problem, which we will

compare throughout this thesis: the variational, finite difference, and pseu-

dospectral method. These comparisons yield insights to which method may be

best for other problems. For a general problem, a variational method typically
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takes the form of a spectral (linear basis) expansion

ψ[x] =

N∑

i=1

ciF
i[x], (2.2)

where ci is an expansion coefficient and F i is a basis function, ψ[x] is the wave

function, x is a set of independent variables, and the summation is truncated at

a finite basis sizeN . One changes the problem of solving for ψ to solving for the

ci’s. If the analytic properties of the basis can reproduce the analytic properties

of the wave function, this method is capable of converging at an exponential

rate. Finite difference methods are very different. Instead of expanding the

wave function in a finite basis, the wave function is solved at a finite number of

grid points. That is

ψ[x] → {ψ[x1], ψ[x2], . . . , ψ[xN ]}, (2.3)

where xi is a grid point and N is now the number of grid points. Discretizing

space in this way forces one to make approximations to evaluations of deriva-

tives by fitting polynomials of some fixed order m locally at each point on the

grid. This approximation limits the method to algebraic convergence (the errors

scale as 1/Nm). The pseudospectral method is a combination of the two above,

it combines the exponential accuracy of a variational method (if the solution is

smooth) with the grid-based technique of finite differencing. These properties

are summarized in Tab. 2.1.

2.1.1 The variational method

In the variational method the functional

Evar =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (2.4)
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Table 2.1: A comparison of three methods which can be used to solve
quantum mechanical problems.

Method Type Ideal Convergence

Variational Spectral Exponential

Finite Difference Grid Algebraic

Pseudospectral Grid Exponential

where Ĥ is the Hamiltonian operator, and ψ is a trial wave function, is mini-

mized with respect to free parameters used to describe ψ. This method gives

an upper bound to the energy. This bound can approach the exact energy expo-

nentially fast if the trial wave function is expressed as an ordered complete basis

capable of representing the analytic behavior of the exact wave function. Vari-

ational methods have had enormous success solving the helium problem and

many others. Many different types of bases have been used. Hylleraas [87] first

recognized that S state wave functions of two-electron atoms could be written

in terms of three coordinates describing the distances between particles, r1, r2,

and r12. Since then many types of functions of these coordinates have been used

to produce basis sets. Hylleraas’ [87] original coordinates were

s = r1 + r2 (2.5)

t = r1 − r2 (2.6)

u = r12. (2.7)

He formed a basis with functions

F lmn
A = sltnume−ks/2, (2.8)
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where k is a nonlinear variational parameter. Bartlett, Gibbons, and Dunn

proved that this expansion fails about the point r1 = r2 = r12 = 0 [15]. This re-

sult stimulated attempts to find better bases that could represent the exact wave

function. Kinoshita [94] expanded this basis by including negative powers of s

F lmn
B = sl

(
t

s

)m (u

s

)n

e−ks/2. (2.9)

This form had already been shown by Bartlett [14] to fail at s = 0 as well, but

better convergence was found. Interestingly, including half powers of s,

F lmn
C = sl+1/2tmune−ks/2, (2.10)

which are unmotivated by any analytic calculation, improved the convergence

rate more. Analytic work by Bartlett [14] and Fock [59, 60] suggested the inclu-

sion of logarithmic terms. Frankowski and Pekeris [64] constructed a basis with

functions of the form

F lmn
D = sl(ln s)tmune−ks/2 (2.11)

in addition to functions of the form F lnm
A . This produced even better conver-

gence, but, curiously, higher powers of the logarithm which are in Fock’s ex-

pansion [59, 60] do not make further improvements [139].

Schwartz [139] tested combinations of these schemes. That is, he included

functions of the form

F lmn
E = sl+1/2

(
t

s

)m (u

s

)n

e−ks/2 (2.12)

and

F lmn
F = sl ln s

(
t

s

)m (u

s

)n

e−ks/2. (2.13)

He also tried Korobov’s basis [100]

F lmn
K = e−αlr1−βmr2−γnr12 , (2.14)
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with αl, βm, and γn chosen quasirandomly within specified intervals. This basis

has no analytic motivation but is extremely simple for performing calculations.

Schwartz created six different bases of these types:

A : {F lmn
A }

B : {F lmn
B }

C : {F lmn
A , F lmn

C }

D : {F lmn
A , F lmn

D }

K : {F lmn
K }

E : {F lmn
B , F lmn

E }

F : {F lmn
B , F lmn

F }

(2.15)

These bases are listed in order of slowest convergence to fastest convergence

with respect to basis size [139]. All except basis F , which appears exponential,

have algebraic convergence. Having a better convergence rate for the helium

problem is not needed in a practical sense (45 decimal places in the ground state

energy of the infinite-nuclear mass, nonrelativistic problem are known [135],

well beyond the precision of the known corrections to this number), but these

tests provide some insight into the fundamental nature of the exact nonrelativis-

tic wave function andmay lead to better bases for other problems. However, the

property of being able to represent the wave function by all the inter-particle

distances, without those distances forming an overcomplete set, is unique to

one- and two-electron atoms. Processes that ruin the overall spherical symme-

try may also significantly change what is a good basis. Applying these methods

to nonstandard problemsmay yieldmuchworse results. Furthermore, although

convergence of the wave function is guaranteed in a mean sense, local (point-

wise) convergence of the wave function is not.
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These bases took decades to develop for this simplest of nontrivial problems.

It is inefficient to hunt for the best basis for each new problem. There is a need

to have a general high precision method.

2.1.2 The finite difference method

The finite difference method requires an approximation for derivatives. This

approximation gets better with increasing order of the scheme. However, too

high an order may lead to instabilities (i.e. the Runge phenomenon [62]). On a

grid x = {x1, x2, . . . , xN}, a first order representation of the first derivative of a

one-dimensional function ψ at xi (2 ≤ i ≤ N) is

(
dψ

dx

)

1

=
ψ[xi] − ψ[xi−1]

xi − xi−1
. (2.16)

This is the slope of the line connecting xi and xi−1. If one instead fits a parabola

to the three points xi−1, xi, and xi+1, one arrives at the second order approxima-

tion

(
dψ

dx

)

2

=
(ψ[xi+1] − ψ[xi])(xi − xi−1)2 + (ψ[xi] − ψ[xi−1])(xi+1 − xi)2

(xi+1 − xi)(xi+1 − xi−1)(xi − xi−1)
. (2.17)

If the grid is evenly spaced with spacing h, the relative difference between these

two approximations simplifies to

∆ψ′

ψ′
=

(ψ[xi+1] − ψ[xi]) − (ψ[xi] − ψ[xi−1])

(ψ[xi+1] − ψ[xi]) + (ψ[xi] − ψ[xi−1])
≈ hψ′′[xi]

2ψ′[xi]
, (2.18)

where

∆ψ′ =

(
dψ

dx

)

2

−
(
dψ

dx

)

1

(2.19)

and primes signify derivatives. The first order scheme is accurate to first order

in h. In general, the nth order scheme is accurate to nth order in h (ignoring the
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Runge phenomenon mentioned earlier). As h is decreased by adding more grid

points, the errors usually get smaller.

Finite difference methods (FDM) [151, 12, 83, 54] have been used to solve

the two-electron atom and have had some success. The most recent work [54]

obtained 10 digits of accuracy in the energy of the ground state using state-of-

the-art matrix and parallelization methods.

2.1.3 The pseudospectral method

The pseudospectral method has a long history of success in fluid dynamics [34],

numerical relativity [93, 122], and quantum chemistry [65, 66, 67, 127, 74, 112,

111, 96, 84]. Some one-electron quantum mechanics problems [24, 26] have also

been solved with the method.

There have not been any studies directly comparing the computational costs

of pseudospectral methods to variational methods. Ideally, one must take into

account both memory and time requirements. Such studies have been done

with finite difference methods but for different problems. Pfeiffer et al. [122]

directly compared a pseudospectral method to a finite difference code (Cadez),

optimized to solve a nonlinear problem with a three-dimensional, infinite do-

main with two spherical holes. For this problem, the pseudospectral code out-

performed (in terms of computing time) the finite difference code even when

the latter employed Richardson extrapolation. Without Richardson extrapola-

tion, the pseudospectral code was seven orders of magnitude better for the same

runtime at the highest resolutions (the difference increased with higher resolu-

tion). Fornberg and Merrill [61] compared these two methods for convective
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flow over a sphere and realized similar results. It is worthwhile to begin to

explore applying the pseudospectral method to fully correlated quantum me-

chanical systems.

Grid points

The pseudospectral method is a collocation method, in which the differential

equation is enforced at all grid points. The grid points are chosen so that expo-

nentially fast convergence is assured if the solution is smooth on the computa-

tional domain.1 For finite nonperiodic domains, the points must be the roots (or

antinodes plus endpoints) of Jacobi polynomials or a multidimensional gener-

alization of such polynomials.

The Jacobi polynomials denoted P
(a,b)
n [x] with a, b > −1 satisfy the orthonor-

mality condition

∫ 1

−1

(1−x)a(1+x)bP (a,b)
n [x]P (a,b)

m [x]dx =
2a+b+1

2n+ a + b+ 1

Γ[n+ a + 1]Γ[n+ b+ 1]

Γ[n+ 1]Γ[n + a+ b+ 1]
δmn,

(2.20)

where Γ is the gamma function. Each polynomial P
(a,b)
n has n − 1 roots on the

interval −1 ≤ x ≤ 1, which are more closely spaced on the edges of this domain

than in the center. Common choices for a and b are a = b = 0 (Legendre polyno-

mials) and a = b = −1/2 (Chebyshev polynomials). The latter choice is the most

common because the Chebyshev polynomials are the only Jacobi polynomials

with the property

|Pn(a, b)[x]| ≤ 1 (2.21)

for −1 ≤ x ≤ 1. This property means that interpolation errors are evenly dis-

tributed.

1Known nonanalytic behavior can be used to provide a different choice of grid points.
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Such a grid limits one to finite domains that fit within the range −1 ≤ x ≤ 1.

This is not a strong restriction because any other domain can be scaled to fit in

that range. For a finite domain given by −ymin ≤ y ≤ ymax, a trivial mapping is

x =
2y − ymin − ymax

ymax − ymin

. (2.22)

Another possibility is a semi-infinite domain 0 ≤ r ≤ ∞. One can then use

either Laguerre polynomials or, as done here, scale by the algebraic mapping

x =
1 − r

1 + r
. (2.23)

Other mappings are discussed in Ref. [25]. For any mapping employed, one

must check if the solution is smooth in the transformed x coordinate.

Differentiation matrices

For any solution method, it is essential to have a way of representing deriva-

tives. A solution f [x] is represented by a vector f = {f 1, f 2, . . . , fN} =

{f [x1], f [x2], . . . , f [xN ]}, where xi is a grid point and N is the number of grid

points. The N th order approximation to f is

f [x] ≈
N∑

i=1

f iCi[x], (2.24)

where Ci[x] is the cardinal function

Ci[x] =
N∏

j=1
j 6=i

x− xj

xi − xj
(2.25)

with the property

Ci[x
j ] = δj

i . (2.26)

The differentiation matrix for themth derivative is then defined by

Dmj
i =

dmCi[x]

dxm

∣
∣
∣
∣
x=xj

, (2.27)
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and the pseudospectral approximation to the mth derivative of f at the grid

point xj is

dmf [xj ]

dxm
≈

N∑

i=1

Dmj
i f i. (2.28)

A simple example

The radial Scrödinger equation for the hydrogen atom is

−1

2

d2fnl

dr2
− 1

r

dfnl

dr
+
l(l + 1)fnl

2r2
− fnl

r
= Enfnl, (2.29)

where atomic units have been used and the full solution is given by

ψnlm[r] = fnl[r]Ylm[θ, φ], (2.30)

where Ylm is the usual spherical harmonic, with energy

En = − 1

2n2
. (2.31)

For simplicity, the angular momentum quantum number l will be set to zero.

With the algebraic mapping (Eq. 2.23), Eq. 2.29 turns into

−1

2
(1 + x)4d

2fnl

dx2
− (1 + x)3(2 − x)

1 − x

dfnl

dx
− 1 + x

1 − x
fnl = Enfnl. (2.32)

The pseudospectral approximation to this equation is

N∑

i=1

[

−1

2
(1 + xj)4D2j

i − (1 + xj)3(2 − xj)

1 − xj
D1j

i −
(

1 + xj

1 − xj
+ En

)

D0j
i

]

f i
nl = 0.

(2.33)
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For N = 5 and l = 0 and a Legendre grid, this turns into the standard matrix

eigenvalue problem,2















−0.049 −En 0.00043 −0.00035 0.00019 −0.00054

−0.045 −0.24 −En −0.012 −0.0050 0.0020

0.16 −1.0 0.17 − En −0.31 0.0078

−0.72 3.0 −11. 7.1 −En −1.8

11. −41. 89. −211. 131.− En





























f 1
n0

f 2
n0

f 3
n0

f 4
n0

f 5
n0















= 0.

(2.34)

The energies of the five states that this equation gives are −0.501773,−0.187408,

−0.049601, 4.770660, and 134.023677. The exact energies are −0.5, −0.125,

−0.0555556, −0.03125, and −0.02. What is truly amazing is the error in the en-

ergy of the ground state is 0.35% for only five grid points. The first and second

excited state energies are roughly correct while the third and fourth are very

inaccurate.

In order to see how accurate the wave function is, the eigenvector must be

normalized. The normalization condition is

∫ ∞

0

r2|fnl[r]|2dr = 2

∫ 1

−1

(1 − x)2

(1 + x)4
|fnl[x]|2dx = 1. (2.35)

The grid points that have been chosen are also quadrature points, so this condi-

tion becomes

1 = 2

N∑

j=1

wj
(1 − xj)2

(1 + xj)4
|f j

nl|2, (2.36)

where the quadrature weights are w0 = w5 = 0.236927, w1 =

w4 = 0.478629, and w3 = 0.568889. The eigenvector is then

{0.000156265, 0.0538214, 0.814599, 1.64433, 2.10374}with the exact answer being

{3.00126 × 10−9, 0.0713428, 0.735759, 1.48165, 1.90395}, roughly a 10% error.

2This matrix has been rounded to two decimal places so that it would fit on the page. All
calculations were done with double precision arithmetic.
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If N is increased, these errors go down exponentially fast. By the time

N = 59, the energy error has dropped to machine precision. The convergence

rate would have been even faster if this problem had a finite domain. At no

point were any explicit assumptions about the solution made. The asymptotic

form of the solution was not given at large or small r. No regularity condition

was specified at the singularity. These behaviors are handled automatically by

the method. The method gives the regular solution to the partial differential

equation.

2.2 Experimental results for two-electron atoms

Spectra are powerful tools for measurements of atomic systems. These directly

give the energy differences between states and if measured carefully, the relative

oscillator strength of the transitions. Absolute values of both oscillator strengths

and energies are more difficult to obtain.

For identical systems in the same initial state, exposed to monochromatic

illumination, the absorption oscillator strength measures the fraction of tran-

sitioning systems that transition to a given final state. Comparing the bright-

ness of two lines directly gives the relative oscillator strength, but an absolute

measurement either requires measurements of all transitions or using a well-

known transition to calibrate results. Oscillator strengths are more usually cal-

culated from lifetime calculations. These measurements further suffer from cas-

cade events, during which multiple transitions interfere with a single transition

measurement. Experimental absolute oscillator strengths are not known to bet-

ter than three decimal places [35], meaning finite-nuclear-mass and relativistic
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effects can be ignored while comparing with theoretical calculations.

Morton et al. [110], reviewed the state of knowledge of energy levels of the

lower part of the helium spectrum for both stable isotopes. The experimental

energies are known to higher precision than theoretical calculations for most

of the lowest energy states (presumably because of the difficulty in calculating

the relativistic corrections), with the exception of the ground state for which the

errors are comparable. The ground state energy is harder to measure because of

the large gap in energy between it and the closest state. All these energies have

been measured to better than 1 part in 108. Direct comparisons between theory

and experiment can be used to determine the fine structure constant. Drake [47]

calculated α−1 = 137.03608(13), which has a precision only four times worse

than g − 2 experiments.

2.3 Corrections to the two-electron problem

There are two small parameters in which the full Hamiltonian is often exanded:

the ratio of the reduced mass of the electron-nucleus pair to the nuclear mass,

µ/M = 1.37074563559(58)× 10−4 [107, 108] (for 4He) and the fine structure con-

stant α = 7.2973525376(50)× 10−3 [107, 108]. Here, the lowest order corrections

in µ/M and α are considered. For high-precision work, one needs to correct

the theoretical calculations of energies and oscillator strengths perturbatively in

powers of both small quantities.

A listing of the various contributions is given in Tab. 2.2. These numbers

give the order of magnitudes of corrections that must be added before theo-

retical and experimental values can be compared. If more than eight digits of

15



Table 2.2: Contributions to the energy and their orders of magnitude.

Contribution (Ref. [53]) Magnitude (Ref. [53]) − log10 |Magnitude|

Nonrelativistic energy Z2 -.6

Mass polarization Z2µ/M 3.3

Second-order mass polarization Z2(µ/M)2 7.1

Relativistic corrections Z4α2 3.1

Relativistic recoil Z4α2µ/M 6.9

Anomalous magnetic moment Z4α3 5.2

Lamb shift Z4α3 lnα + . . . 4.5

Finite nuclear size Z4(RN/a0)
2 8.8

accuracy is needed for the energy even higher order corrections should be in-

cluded.

2.3.1 Finite nuclear mass correction

The nonrelativistic (α0) Hamiltonian for two-electron atoms can be written

Ĥnr = Ĥ0 + Ĥcm + Ĥmp, (2.37)

where Ĥ0 is the fixed nucleus approximation to the hamiltonian with the elec-

tron mass set to µ, Ĥcm is the kinetic energy of the center of mass, and Ĥmp is the

16



mass polarization term:

Ĥ0 =
1

2
(p2

1 + p2
2) + V̂ (2.38)

Ĥcm =
1

2(M + 2me)
p2

cm (2.39)

Ĥmp =
1

M
p1 · p2, (2.40)

where V̂ is the potential energy operator, me is the electron mass, pcm is the

momentum operator of the center of mass, and reduced mass atomic units (µ =

1) are being used. The second term is removed in center-of-mass coordinates

and the last term provides the dominant nontrivial correction for finite nuclear

mass (the trivial one being the scaling of the energy by me/µ).

2.3.2 Relativistic corrections

The Schrödinger equation is a nonrelativistic approximation to the true equa-

tion of motion. The lowest order relativistic corrections enter at order (Zα2), as

summarized in Ref. [58]. The Breit-Pauli Hamiltonian encapsulates the correc-

tion

ĤBP = Ĥnr + Ĥrel, (2.41)

where Ĥnr is the usual nonrelativistic Hamiltonian used in Schrödinger’s equa-

tion and Ĥrel is the lowest order relativistic correction. The latter can be further

divided into nonfine-structure (NFS) and fine-structure (FS) contributions:

ĤNFS = Ĥmass + ĤD + ĤSSC + ĤOO (2.42)

ĤFS = ĤSO + ĤSOO + ĤSS. (2.43)

The separate contributions to the Hamiltonian are the mass-velocity (mass),

two-body Darwin (D), spin-spin contact (SSC), orbit-orbit (OO), spin-orbit (SO),
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spin-other-orbit (SOO), and the spin-spin (SS) terms. These are explicitly given

by

Ĥmass = −α
2

8

∑

i

p4
i (2.44)

ĤD = −α
2Z

8

∑

i

∇2
i r

−1
i +

α2

4

∑

i<j

∇2
i r

−1
ij (2.45)

ĤSSC = −8πα2

3
(s1 · s2)δ(r12) (2.46)

ĤOO = −α
2

2

(
p1 · p2

r12
+

r12(r12 · p1) · p2

r3
12

)

(2.47)

ĤSO =
α2Z

2

∑

i

l̂i · ŝi

r3
i

(2.48)

ĤSOO = −α
2

2

∑

i6=j

(
rij

r3
ij

× pi

)

· (si + 2sj) (2.49)

ĤSS =
α2

r3
12

(

s1 · s2 −
3

r2
12

(s1 · r12)(s2 · r12)

)

, (2.50)

where i and j can be 1 or 2, pi and ri are the momentum and position of the

ith electron with respect to the nucleus, respectively, r12 is the vector pointing

from the first electron to the second, and ŝi and l̂i are the one-electron spin and

angular momentum operators of the ith electron, respectively. The last three

terms are zero for 1S states due to symmetry considerations.
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CHAPTER 3

PSEUDOSPECTRAL CALCULATIONOF THE WAVE FUNCTION OF

HELIUMAND THE NEGATIVE HYDROGEN ION

This chapter is material from an article published in Physical Review A (Ref.

[73]).
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3.1 Abstract

We study the numerical solution of the non-relativistic Schrödinger equation

for two-electron atoms in ground and excited S-states using pseudospectral (PS)

methods of calculation.

The calculation achieves convergence rates for the energy, Cauchy error in

the wavefunction, and variance in local energy that are exponentially fast for all

practical purposes. The method requires three separate subdomains to handle

the wavefunction’s cusp-like behavior near the two-particle coalescences. The

use of three subdomains is essential to maintaining exponential convergence

and ismore computationally efficient than a single subdomain. A comparison of

several different treatments of the cusps suggests that the simplest prescription

is sufficient.

We investigate two alternate methods for handling the semi-infinite domain,

one which involves a sequence of truncated versions of the domain and the

other which employs an algebraic mapping of the semi-infinite domain to a

finite one and imposes no explicit cutoffs on the wavefunction. The latter pre-

scription proves superior.

For many purposes it proves unnecessary to handle the three-particle coales-

cence in a special way. The presence of logarithmic terms in the exact solution

is expected to limit the convergence to being non-exponential but the only clear

evidence of that is the rate of convergence of derivatives near the three-particle

coalescence point. Higher resolution than achieved in this work will ultimately

be needed to see its limiting effect on other measures of error.
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As developed and applied here the PS method has many virtues: no explicit

assumptions need be made about the asymptotic behavior of the wavefunction

near cusps or at large distances, the local energy (Hψ/ψ) is exactly equal to

the calculated global energy at all collocation points, local errors go down ev-

erywhere with increasing resolution, the effective basis using Chebyshev poly-

nomials is complete and simple, and the method is easily extensible to other

bound states. As the number of collocation points grows, the method achieves

exponential convergence up to the resolution tested.

This study serves as a proof-of-principle of themethod formore general two-

and possibly three-electron applications.

3.2 Introduction

The nonrelativistic, two-electron atom (H−, He, Li+) is the simplest “hard” prob-

lem in quantum mechanics. It involves strong electron-electron correlations,

nontrivial symmetry considerations, and single as well as double continua.

Many different solution techniques have been developed and applied over the

past 80 years. A thorough understanding of this simple system is important not

only because of its direct relevance to experimental studies in atomic physics

but also because the best methods of solution may suggest generalizations ap-

plicable to multielectron and/or multiatom systems.

Our own interest in this problem arose from investigating bound-free and

free-free opacity of the negative hydrogen ion H−. As first conjectured by Wildt

[150], H− gives the greatest contribution to opacity in the atmosphere of the Sun

and many other stars. The photo-absorption cross section of H− is known to an
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accuracy of a few percentage points [88] but little attention has been devoted to

H− in less-than-ideal circumstances (high density, high magnetic field, etc.) of

relevance to astrophysical applications. We sought a first-principles approach

that would allow “exact” calculations of initial and final states as part of these

investigations and were led to reconsider this classic problem.

Ideally, there would exist a simple method capable of handling any two-

electron state in the presence of a nucleus with any angular momentumwhether

bound or free. In practice, many individual methods have been formulated each

having somewhat more specific goals. A common starting point, for example,

is finding the ground-state energy for zero total angular momentum.

It is not possible in a single article, let alone an introduction, to review the full

range of methods that have been developed and explored. We can briefly com-

pare the strengths and weaknesses of a few select approaches by assessing each

in terms of the generality (is it applicable to all states or just the ground state?),

the capability of achieving an exact solution of the nonrelativistic Schrödinger

equation in the limit of infinite nuclear mass (is it in principle capable of finding

an exact solution [in the aforementioned sense] or are there intrinsic approxi-

mations?), the degree of tuning required (is it straightforward to apply or does

it require an enlightened guess for, say, the choice of basis functions?) and, of

course, the computational effort for a given level of accuracy.

The asymptotic rate of convergence of some error Rn as a function of the

number n of basis functions, grid size, etc. is of central importance in evaluating

a numerical method. To characterize the convergence rate the definitions of

Boyd [25] are used in this article and reproduced here. The algebraic index of
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convergence, k is defined as the maximum k so that

lim
n→∞

|Rn|nk <∞. (3.1)

If k is finite then Rn converges algebraically. The simplest example of algebraic

convergence is an error Rn ∝ 1/nk. If k is infinite then Rn converges exponen-

tially. This latter category is subdivided into three cases defined by the value

of

l = lim
n→∞

log |Rn|
n

. (3.2)

If l is zero, a finite positive number, or infinite, the rate is subgeometric, geomet-

ric, or supergeometric, respectively. For example, if the error Rn ∝ exp(−nm),

the conditions 0 < m < 1, m = 1, and m > 1 correspond to subgeometric,

geometric, and supergeometric convergence, respectively.

3.2.1 Variationalmethod for two electrons and nucleus: ground

state

The first numerical explorations of two-electron ground states adopted the ap-

proach of minimizing the global energy. Once Hylleraas determined that only

three coordinates were needed to represent the wave function for S states he

carried out such variational calculations (prior to the advent of computers) [87].

Pekeris and coworkers [118, 120, 64, 3] did the first high precision calculations

on computers, expanding the wave function in terms of Laguerre polynomials

of linear combinations of the interparticle distances times an appropriate expo-

nential falloff. They determined the energy of H− to eight decimal places and

that of He to nine, calculations that were the gold standard for several decades.
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Variational methods have been highly successful at calculating extremely

precise eigenvalues of the ground state of two-electron atoms. Indeed, eigen-

value energies have been calculated to numerical accuracy—at least 42 digits—

that far exceeds the accuracy of the underlying physical description based on

nonrelativistic equations of motion [8, 46, 99, 68, 100, 48, 69, 70, 114, 115, 103].

A clear strength of the general variational approach is that intrinsic approxima-

tions to the Hamiltonian operator need not be made. The principle drawbacks

are related to the difficulties inherent in the selection of the basis: it should be

complete so that convergence to the exact solution is possible and efficient so

that finite numbers of elements do a good job representing the wave function.

Significant progress in choice of the basis for the two-electron problem has

taken place. The inclusion of new functions (e.g., logarithmic terms) typically

motivated by known limiting forms of the wave function improves the rate of

convergence [94, 140, 137, 64, 8, 99, 143, 63]. Furthermore, without special addi-

tions, some bases are simply incapable of representing the exact solution [15, 14].

Klahn and Morgan have shown that there are examples where the expectation

value of an operator (i.e., rk with k ≥ 6) converges to the incorrect value or

diverges even if the basis is complete. In their example the basis cannot accu-

rately represent the derivatives of the hydrogenic solution at r = 0 [95]. When

employing such bases, one must always check that the physical property one is

calculating is converging properly.

Schwartz [139] surveyed the convergence rate of the error in the ground-

state energy eigenvalue achieved by many different strategies for basis set se-

lection. His results for the error may be expressed as a function of n, the total

number of basis functions selected according to a well-defined procedure. The
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error generally converges algebraically with index, 1.5 ≤ k ≤ 8.3 (∝ n−k), de-

pending on the basis. The range in k highlights the significance that a good

choice of basis can have on the asymptotic convergence of a calculation. One

basis set, which included a single power of a logarithm, appeared to converge

exponentially fast as σ−n with σ in the range 0.51-0.54. Such exponential be-

havior is often assumed of variational methods if the basis can accurately de-

scribe the behavior of the wave function everywhere. That is, the basis includes

functions which have the same analytic and nonanalytic behavior as the exact

solution.

Loosely speaking, even when convergence is assured, the accuracy of the

variationally inferred wave function (by many different measures) is much less

than that of the energy eigenvalue. Parts of the wave function that have a small

effect on the total energy are not well-constrained by lowering the energy. An

alternative strategy to minimizing the global energy is to minimize the variance

in the local energy instead [16, 38, 145]. This approach can produce better lo-

cal values of the wave function but leads to nonlinear minimization problems

which are more difficult to handle numerically (minimization of the variance

in local energy with respect to parameters in the trial wave function) but still

tractable because one need not calculate the global energy at each step.

3.2.2 Variational method for excited states

Variational methods [120, 3, 97, 98, 46] have been successful at calculating pre-

cise excitation energies. In general, variational methods extend naturally to ex-

cited, bound states whenever the variational parameters enter in a linear fash-
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ion. It is then straightforward to find multiple eigenstates of the linear system.

The more highly excited the state the less converged the energy is, especially if

the basis was optimized in order to reproduce the features of the ground state

only 1.

3.2.3 Fourier spectral expansion

Griebel and Hamaekers [76] developed a Fourier expansion method for mul-

tidimensional quantum mechanical systems. They apply the hyperbolic cross

truncation to their basis and show that for smooth solutions the exponential

convergence rate is not dependent on the dimensionality of the system. They

calculate the energies of several different systems including hydrogen and he-

lium. Unfortunately, they fail to achieve exponential convergence because the

cusps were not properly treated, and hence their highest resolution runs for hy-

drogen and helium are only good to about 2 and 10%, respectively.

3.2.4 Specialized methods for two-electron systems

Haftel and Mandelzweig and later other collaborators [77, 78, 79, 80, 81, 101,

102] have presented an exact treatment of two-electron atoms that begins by

1Drake [46] points out that alternative methods can calculate the singly excited spectrum.
For high angular momentum, the system can be treated as an electron in the field of a perturbed
core with higher and higher moments of the core being included for higher and higher accuracy.
This calculation can be done analytically for the two-electron problem. The approximation here
is that the electron correlation energy is ignored, but this is very small for such states. For
large principle quantum numbers, quantum defect approximations work well. The energy is
proportional to 1/(n− δl)

2, instead of the usual 1/n2, where n is the principle quantum number
of the excited electron, l is its angular momentum, and δl gives the effect of the screening due to
the inner electron.
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factoring out the correct cusp behavior and posing the problem in terms of the

remaining part of the wave function. This piece which is continuous up to first

derivatives is expanded in terms of hyperspherical harmonics yielding a set of

coupled ordinary differential equations for coefficients which are functions of

the hyperradius. The method fully accounts for the asymptotic behavior near

coalescence points and yields results with energies good to one part in 109. The

hyperspherical harmonic expansion converges more quickly than if the cusp is

not explicitly accommodated for, but remains algebraic because of the higher-

order discontinuities. The method accurately determines bound excited states

as well.

3.2.5 Direct solution of partial differential equation for bound

and continuum states

Most of the bound-state techniques mentioned thus far are unsuitable for cal-

culating continuum-states. In fact, continuum state calculations rely on totally

different variational methods. The main ones are R-matrix [31], Schwinger vari-

ational [86], and the complex Kohn variational [126] methods. Accuracy for

these methods lags far behind that of bound-state calculations.

Roughly speaking, the source of some of these difficulties is related to de-

scribing the wave function over an infinite volume while simultaneously con-

trolling the errors of greatest significance. Typically, linear variational methods

are equivalent to spectral expansions of the wave function. The control one has

over the accuracy of an approximate description of the wave function is indirect

via the choice of the expansion. Instead, one may be motivated for both bound
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and continuum problems to consider solving the partial differential equation

directly on a grid where a greater degree of local control is possible.

Finite difference methods (FDM) [151, 12, 83, 54] and Finite elementmethods

(FEM) [104, 27, 4, 141, 157, 156] represent the solution and the differential equa-

tion on a discrete grid. The FDM grid is usually evenly spaced with derivatives

calculated to some small (usually second) order. FEM uses subdomains, con-

centrating grid points where more accuracy is needed. Recent work achieves as

many as seven decimal places in the energy of the ground state but produces

surprisingly nonsmooth wave functions [157, 156]. The rate of convergence of

these methods is limited by the order of the representation of derivatives and is

always algebraic with some small index dependent on the order used for deriva-

tives.

3.2.6 Pseudospectral approach

Some of the above considerations motivate an investigation of the pseudospec-

tral (PS) method. Like FDM and FEM methods the PS method represents the

wave function by values on a discrete grid of points rather than by coefficients

of a spectral expansion. However, the points are selected in a different manner

and the derivative order increases with grid resolution. Roots of Jacobi poly-

nomials are chosen in order to make the asymptotic rate of convergence of an

analytic function constant across the entire finite nonperiodic domain. Such a

choice also has the advantage that exponential convergence can be lost only by

nonanalytic behavior within the domain. By contrast, an equispaced grid is sen-

sitive to singularities nearby in the complex plane and can lead to divergences
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when interpolating near the endpoints (Runge phenomenon). Of all the Jacobi

polynomials, Chebyshev polynomials vary the least over [−1, 1] and hence pro-

duce the smallest residual from the PS method. The mathematical theory of

nonsmooth functions is not well developed and precise convergence rates are

usually calculated empirically [62].

The PS method [62, 25, 124] has seen successes in many fields including fluid

dynamics [34], relativistic astrophysics [23], and numerical relativity [93, 122].

When the underlying solution is smooth, the PS method typically requires less

computational run time and less memory than FDM and FEM to achieve com-

parable precision. The method has been applied in quantummechanics to solve

the full Schrödinger equation for a single electron [55, 24, 26]. In addition, vari-

ous simplifications of themultielectron Schrödinger equation have been treated,

including theHartree-Fock approximation [65, 66, 67, 127, 74, 84], Møller-Plesset

perturbation theory [112], and density functional theory [111, 96].

To the authors’ knowledge, no one has solved the full three-dimensional

Schrödinger equation for heliumlike systems (the “exact” problem) using PS

methods. This article implements the method, investigates several design

choices and calculates ground and excited bound S states. The convergence rate

is used as the metric to characterize different grid choices, alternative methods

for handling regularity conditions and other practical considerations needed for

an efficient algorithm. No attempt to reproduce the ultrahigh precision results

of variational methods is made. The calculation employs a standard Chebyshev

basis without any specialized tuning. The eigenvalue and eigenfunction prob-

lems are solved by a standard method. All calculations are done on a single

processor with a speed of 6 GHz and 8 GB of memory.
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The PS method is expected to be supergeometric on a finite computational

domain if no singularities exist in the solution anywhere in the complex plane,

geometric if singularities are only outside the domain, and algebraic if singular-

ities exist within domain. If the domain is infinite or semi-infinite, subgeometric

convergence is expected when no singularities are in the domain, and algebraic

convergence is expected otherwise [25].

3.3 Setting up the problem

Let zi and ∇2
i be the position vector and the Laplacian of the coordinates, re-

spectively, of the ith electron if i is 1 or 2 and of the nucleus if i is 3. The nonrel-

ativistic Schrödinger equation for a heliumlike system is

H = −1

2

(∇2
1

m
+

∇2
2

m
+

∇2
3

M

)

+ V, (3.3)

where

V = − Z

|z1 − z3|
− Z

|z2 − z3|
+

α

|z1 − z2|
, (3.4)

Z is the nuclear charge, α = 1 unless the electron-electron interaction is sup-

pressed (α = 0),m is the mass of the electron andM is the mass of the nucleus.

The units are e = h̄ = 1/4πǫ0 = 1. The Hamiltonian acts on functions of nine

dimensions, i.e., three coordinate positions for each particle.

The relative and center of mass coordinates are

r1 = z1 − z3 (3.5)

r2 = z2 − z3 (3.6)

R =
m(z1 + z2) +Mz3

M + 2m
. (3.7)
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Define the coordinates

r1 = |r1| (3.8)

r2 = |r2| (3.9)

r12 = |r1 − r2|, (3.10)

and rewrite the Hamiltonian

H = T0 + Tcm + Tmp + V, (3.11)

where

T0 = − 1

2µ
(∇2

r1
+ ∇2

r2
), (3.12)

Tcm = − 1

2(M + 2m)
∇2

R, (3.13)

Tmp = − 1

M
∇r1 · ∇r2 , (3.14)

V = −Z

r1
− Z

r2
+

α

r12
, (3.15)

µ = mM/(M + m) is the reduced mass of the electron and nucleus, and ∇x is

the gradient operator with respect to the vector x.

In the center-of-mass frame Tcm may be dropped bringing to six the number

of nontrivial coordinates on which the wave function depends. Because m ≪

M , the mass polarization term Tmp is often ignored or treated perturbatively.

While unnecessary for many methods including PS, we use the infinite nuclear

mass approximation (M = ∞) to facilitate comparison with previous results. In

units withm = 1 (atomic units) the Hamiltonian is

H = −1

2
(∇2

r1
+ ∇2

r2
) − Z

r1
− Z

r2
+

α

r12
. (3.16)

Atomic units are used throughout the rest of this article.
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This operator is elliptic. All boundaries in physical space require specifica-

tion of the function or its normal derivative or some combination of the two [7].

In the ideal problem, the physical boundary is at infinity where the wave func-

tion must be zero. The existence of the Coulomb potential’s singular points at

r1 = 0, r2 = 0, and r12 = 0 introduces complications in any formal and practical

analysis. Before the exact nature of the Hermitian Hamiltonian operator and its

spectrumwas understood, Kato [91] showed that discrete eigenstates existed for

the specific case of helium. In later work Kato [90] showed that the wave func-

tion must be finite at the singular points (which is also true everywhere else),

and that the first derivative of the wave function on the domain excluding the

singular points is bounded. This result allows discontinuities in the first deriva-

tive at the singular points, called Kato cusps. Generally, higher derivatives are

not bounded at the singular points.

In any numerical treatment of the Hamiltonian operator a decision must

be made about how to handle the singular points. In a formal mathematical

sense, quantities at the singularities are well defined only in the limit as one

approaches the singularity. This creates an effective inner boundary about such

points on which additional conditions on the function and its normal derivative

may be specified. Such conditions are exploited to guarantee regularity in the

limit that the excised region shrinks to a point. This article assumes that it is

correct to excise such a point, either explicitly or implicitly.
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3.4 Coordinates and the Hamiltonian

The heliumlike atom is made of three particles: a nucleus and two electrons.

Six coordinates are required to describe relative positions. Three coordinates

describe the precise shape and size of the triangle with a particle at each vertex,

and the other three describe the orientation of that triangle in space (often taken

to be Euler angles). The wave function for S states is completely independent

of the latter three [87]. For nonzero angular momentum one first expands the

wavefunction in generalized spherical harmonics of the Euler angles. Only a

finite number of terms are needed for a given total angular momentum and its z

component, and the Shrödinger equation becomes a finite set of coupled partial

differential equations for the remaining three variables (e.g., Refs. [21, 22]).

Two useful sets of coordinates for the triangle are {r1, r2, r12} and {r1, r2, θ12},

where r1 and r2 are the proton-electron distances, r12 is the electron-electron

distance, and θ12 is the angle between the vectors pointing to the two electrons.

Four additional useful sets of coordinates {ρ or x, φ, C} and {ρ or x, ζ, B} are

defined by

r1 = ρ cosφ (3.17)

r2 = ρ sinφ (3.18)

C = − cos θ12 (3.19)

√
2 sin ζ =

√

1 + C sin 2φ (3.20)

B =
cos 2φ

√

1 − C2 sin2 2φ
(3.21)

x =
1 − ρ

1 + ρ
. (3.22)
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The ranges of these variables are given by:

0 ≤ r1, r2, ρ <∞

|r1 − r2| ≤ r12 ≤ r1 + r2

0 ≤ θ12 ≤ π

0 ≤ φ, ζ ≤ π/2

−1 ≤ x, C,B ≤ 1.

(3.23)

The coordinate xmaps the semi-infinite domain to a finite domain 2. This simple

choice works well because the wave function is exponentially small at large ρ

for bound states which are the topic of interest here.

After integrating over the Euler angles the volume elements are

∫

d3r1 d
3r2 = 2π2







4
∫
r1r2r12dr1 dr2 dr12

4
∫
r2
1r

2
2 sin θ12dr1 dr2 dθ12

∫
ρ5 sin2 2φdρ dφ dC

∫
ρ5 sin2 2ζdρ dζ dB

2
∫ (1−x)5

(1+x)7
sin2 2φdx dφ dC

2
∫ (1−x)5

(1+x)7
sin2 2ζdx dζ dB.

(3.24)

The Hamiltonian for S states can be written in hyperspherical coordinates

as:

H = Tρ + ρ−2(Tφ + csc2 2φTC) + ρ−1U (3.25)

= Tρ + ρ−2(Tζ + csc2 2ζTB) + ρ−1U , (3.26)

2One can introduce a free parameter L by defining x = (1 − ρ/L)/(1 + ρ/L) and vary L
to optimize convergence but doing this led to only slight improvements. This finding is in
agreement with Boyd et al. [26], who showed that L has a small effect for the hydrogen atom
when using a Chebyshev basis.
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where

Tρ = −1

2
∂ρρ −

5

2ρ
∂ρ (3.27)

= −(1 + x)4

8
∂xx +

(1 + x)3(4 + x)

4(1 − x)
∂x (3.28)

Tφ = −
(

1

2
∂φφ + 2 cot 2φ∂φ

)

(3.29)

TC = −2
(
(1 − C2)∂CC − 2C∂C

)
(3.30)

Tζ = −
(

1

2
∂ζζ + 2 cot 2ζ∂ζ

)

(3.31)

TB = −2
(
(1 − B2)∂BB − 2B∂B

)
(3.32)

U =
α

σ[C, φ]
− Z csc φ− Z sec φ (3.33)

=
α√

2 sin ζ
− Z

√
2

σ[B, ζ ]
− Z

√
2

σ[−B, ζ ] , (3.34)

and

σ[x, y] =
√

1 + x sin 2y. (3.35)

3.5 The singular points in the Hamiltonian

PS methods are very sensitive to discontinuous derivatives of any order. If such

discontinuities exist, the method loses its exponential convergence and artifi-

cial oscillations may occur. The wave function has discontinuities only at the

singular points which thus require special attention. Myers et al [113] discuss

these singularities in detail. Here we reproduce some of their discussion for

completeness.
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3.5.1 Two-particle coalescences

There exist three lines corresponding to two-particle coalescences: two for the

proton and each electron at φ = 0 and φ = π/2 and one for the two electrons

at ζ = 0. Only one of the proton-electron coalescence lines need appear in the

numerical domainwhich takes advantage of the explicit symmetry of the spatial

part of the wave function about φ = π/4.

Kato [92] analyzed the discontinuity in the derivative of a wave function at

two particle coalescence points and showed that

∂ψ̂

∂r

∣
∣
∣
∣
∣
r=0

= µijqiqjψ(r = 0), (3.36)

where ψ is the wave function, r is the particle-particle distance, ψ̂ is the limit

of the average value of the wave function on a sphere centered at r = 0 as its

radius shrinks to zero, µij is the reduced mass of the two particles, and qi and qj

are the charges of the two particles.

Pack and Byers Brown [117] extended the analysis to show that the wave

function could be expanded in terms of hydrogenic solutions.

ψ =
∑

lm

almr
lY m

l [θ, φ]

(

1 +
qiqjµij

l + 1
r +O[r2]

)

, (3.37)

where l ≥ 0, |m| ≤ l, alm is an expansion coefficient, θ and φ are the usual

spherical angles giving the orientation of the two particles, and Y m
l is the usual

spherical harmonic.

These results describe the regularity required at the Coulomb singularities.

There are three practical approaches to making sure the solution has the appro-

priate behavior.
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1. Behavioral

Assume that local solutions to the Schrödinger equation that fail to satisfy

Eqs. (3.36) and (3.37) are not analytic; assume that the expansion (cardinal

functions) employed in the numerical treatment is incapable of represent-

ing this nonanalytic behavior. Granted these assumptions, all numerical

solutions will automatically be regular at the point in question 3. Accord-

ing to Boyd [25], in many contexts this approach is sufficient. If the solu-

tions that do not satisfy Eqs. (3.36) and (3.37) have only weakly singular

behavior, the convergence rate may be slow.

2. Regularity

Replace the Hamiltonian at the singular points with the Kato cusp condi-

tions without otherwise altering the domain. The cusp conditions are

∂ψ̂

∂φ

∣
∣
∣
∣
∣
φ=0

= −Zρψ(φ = 0) (3.38)

∂ψ̂

∂φ

∣
∣
∣
∣
∣
φ=π/2

= Zρψ
(

φ =
π

2

)

(3.39)

∂ψ̂

∂ζ

∣
∣
∣
∣
∣
ζ=0

=
αρ

2
ψ(ζ = 0) (3.40)

or

ψ(φ = 0) = 0 (3.41)

ψ
(

φ =
π

2

)

= 0 (3.42)

ψ(ζ = 0) = 0, (3.43)

where these two sets are mixed and matched while preserving the appro-

priate symmetry or antisymmetry. The choice depends on precisely which

state one wishes to calculate.
3Because it is impossible to work where the potential diverges, the grid must be designed to

exclude the point in question. The fact the grid does not contain the point is not a requirement
of the behavioral approach.
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3. Excision

Excise a small sphere around the singular points and impose boundary

conditions on its surface that yield the correct behavior at the singularity

as the sphere shrinks. From equation Eq. (3.37)

ψ =
∑

l

blρ
lφlPl[C]

(

1 − Zρφ

l + 1
+O[ρ2φ2]

)

(3.44)

ψ =
∑

l

clρ
lφ̃lPl[C]

(

1 − Zρφ̃

l + 1
+O

[

ρ2φ̃2
]
)

(3.45)

ψ =
∑

l

dlρ
lζ lPl[B]

(

1 +
αρζ

√
2

2(l + 1)
+O[ρ2ζ2]

)

, (3.46)

where φ̃ = π/2 − φ, Pl is a Legendre polynomial of order l, and bl, cl, and

dl are unknown constants. Define

ξl =

∫ 1

−1

ψPl[C] dC (3.47)

χl =

∫ 1

−1

ψPl[B] dB, (3.48)

and write the conditions as

0 = φ
∂ξl
∂φ

+

(

−l + ρφ
Z

l + 1

)

ξl (3.49)

= −φ̃∂ξl
∂φ

+

(

−l + ρφ̃
Z

l + 1

)

ξl (3.50)

= ζ
∂χl

∂ζ
−
(

l +
αρζ

√
2

2(l + 1)

)

χl. (3.51)

These conditions become exact as the excised volume shrinks to a point.

For PSmethods the volume should be reduced exponentially with increas-

ing resolution. The changes do not increase the computational cost, but

may adversely affect the condition number of the matrix.

The difficulty of implementation increases with number on the list.
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3.5.2 Three particle coalescence

The potential is also singular when all three particles collide (i.e., when the hy-

perradius, ρ goes to zero). The behavior of the wave function about this point

is much less well understood than two-particle coalescences and cannot be han-

dled in the same way. Instead of simply having a discontinuity in the wave

function’s first derivative (the value of which is finite on both sides of the sin-

gularity), the second derivative grows logarithmically near ρ = 0. Bartlett [14]

was the first to show that a simple Frobenius type expansion in powers of ρ

about ρ = 0 fails at second order on account of the electron-electron interaction.

He suggested that logarithmic terms exist in the exact solution of helium. Fock

[59, 60] introduced an expansion of the form

ψ =

∞∑

n=0

⌊n/2⌋
∑

m=0

enmρ
n(log ρ)m, (3.52)

where enm are two dimensional functions of the hyperangles {φ, C} or {ζ, B}

determined through the recursive relationship

[n(n+4)+△]enm = 2V en−1,m−2Een−2,m−2(n+2)(m+1)en,m+1−(m+1)(m+2)en,m+2,

(3.53)

and △ is the two-dimensional Laplacian over the hyperangles. All enm with

n ≤ 2 are known analytically plus a few additional terms with higher n [1, 71,

72, 106]. Morgan proved that the series is convergent everywhere [109], and

it has been shown that variational calculations converge faster when a single

power of a logarithm is included in the basis [64] 4.

Again, there are three basic strategies for a numerical scheme.

4Curiously, higher powers of the logarithm do not seem to improve the convergence rate of
variational calculations [139].
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1. Behavioral

Do nothing special and rely on the regularity of the cardinal functions.

This is an imperfect approach since the exact wave function has un-

bounded second derivatives as ρ → 0. If the basis set can only represent

regular behavior as discussed in the case of two-particle coalescence it will

not produce the exact solution. However, since the volume element scales

as ρ5dρ such inexactness may have negligible effect on observables calcu-

lated from the wave function.

2. Regularity

Impose a regularity-like condition at the singular point. For the ground

state (and many other S states), the first-order solution [59, 60] to the Fock

equations 3.53 is

e00 = c (3.54)

e10 = c
{

−Z(cosφ+ sinφ) +
α

2
σ[C, φ]

}

, (3.55)

where c is a constant given by the normalization. These solutions imply

either

∂ρψ|ρ=0 =
{

−Z(cosφ+ sin φ) +
α

2
σ[C, φ]

}

ψ(ρ = 0), (3.56)

which is valid for the ground state, or

ψ(ρ = 0) = 0. (3.57)

Note that this regularity-like condition says nothing about the second

derivatives. For the same reasons as above this method can never give

the exact solution at ρ = 0.

3. Excision
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Excise a small domain with ρ < ρmin, where ρmin is the cutoff. A boundary

condition can be calculated on this inner surface by solving equation 3.53

to relate the wave function and normal derivative on the surface 5 . As the

resolution increases, more terms must be calculated so that the truncation

error in the Fock expansion equals the error due to having finite resolution

in the numerical calculation. The basis set expansion in the bulk remains

completely regular. While exact, the method is complicated and will be

pursued at a later time.

3.5.3 Infinite separation

The domain of the ideal problem extends to infinity. The bound-state wave

functions fall off exponentially. The outer boundary condition must be approx-

imated in the numerical method. There are several approaches.

1. Behavioral

Rely on the regularity of the cardinal functions to exclude exponentially

growing solutions as ρ→ ∞. One must map the semi-infinite domain to a

finite one to use Chebyshev collocation points or work with semi-infinite

functions like Laguerre polynomials.

2. Regularity

Againmap the domain to a finite one but replace the Schrödinger equation

at ρ = ∞ by

ψ(ρ = ∞) = 0. (3.58)

5The boundary condition is not known in analytic form (except at low order) but must be
inferred by a numerical technique. Solutions to equation 3.53 can be found numerically with
similar techniques as employed here for the full three dimensional problem.
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Note that if one includes the endpoints using the behavioral method, this

method is effectively the same as the behavioral condition because the

Schrödinger equation reduces to Eψ = 0 at x = −1 (ρ = ∞).

3. Excision

Excise the region with ρ > ρmax where ρmax is the cutoff and impose a

suitable boundary condition. As in the three-particle coalescence, onemay

develop a more and more accurate representation at fixed ρmax and/or an

approximate condition at increasing ρmax. It is easiest to set

ψ(ρ = ρmax) = 0 (3.59)

or

∂ψ

∂ρ

∣
∣
∣
∣
ρ=ρmax

= 0 (3.60)

and vary ρmax, which is what is done in this article when using this

method. In a PS numerical scheme one should vary ρmax ∝ n1/2 for large n

where n is the radial resolution (see Appendix A).

3.5.4 Collinearity (B or C = ±1)

The coefficients multiplying the second derivatives with respect to B and C at

B,C = ±1 go to zero. In ordinary differential equations this allows irregular

solutions that behave as linear combinations of Legendre functions of the sec-

ond kind. Regularity of the cardinal functions excludes such solutions. Since

the Schrödinger equation at these points contains no infinities it does not mat-

ter if the grid includes these points. The partial differential equation is parabolic

along this boundary. So no boundary conditions or regularity conditions need

to be given.
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3.6 The pseudospectral method

Boyd [25], Fornberg [62], Pfeiffer et al [122], and the third edition of Numerical

Recipes [124] cover the PS method in detail. A brief review of some aspects

pertinent to our work follows.

The main advantage of this method is that it provides exponentially fast con-

vergence for smooth solutions. Unlike finite difference and finite element algo-

rithms, all derivatives are calculated to higher and higher order with increasing

resolution.

It is also noteworthy that the grid points are clustered more closely near the

boundary of a domain than in its center. With this arrangement the representa-

tion of a function and its derivative is more uniformly accurate across the whole

domain than is possible using an equal number of equidistant points. Finite dif-

ference and finite element methods typically use an equal-spaced grid and the

derivatives are less accurate at the edge than at the center.

Let nd be the number of coordinate dimensions and Ni the resolution in the

ith dimension. The differential equation is enforced at nt =
∏nd

i=1Ni collocation

or grid points chosen to be the roots or extrema of a Jacobi polynomial of order

Ni in each dimension. Boyd’s recommendation that one use Chebyshev poly-

nomials to generate the grid points in lieu of special circumstances is followed

here [25].

The derivatives in the ith direction are calculated to N th
i order in terms of the

function values at the collocation points. To illustrate this it is useful to define
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the cardinal functions:

CN
j [x] =

N∏

i=1
i6=j

x− xi

xj − xi
, (3.61)

where the xi’s are the collocation points and i and j are superscripts not expo-

nents. These functions have the property that

CN
j [xi] = δi

j . (3.62)

The PS representation of a function at an arbitrary nd-dimensional position

(x1, . . . , xnd
) is expanded as

ψ ≈ ψN1,...,Nnd
= ψj1,...,jndF

N1,...,Nnd

j1,...,jnd
[x1, . . . , xnd

], (3.63)

(using the Einstein summation convention) in terms of its grid values and the

cardinal functions

ψj1,...,jnd = ψN1,...,Nnd
[xj1

1 , . . . , x
jnd
nd ] (3.64)

F
N1,...,Nnd

j1,...,jnd
=

nd∏

i=1

CNi

ji
[xi]. (3.65)

Such an expansion is equivalent (up to an exponentially small error for smooth

functions) to a spectral one,

ψ = sj1,...,jndGj1,...,jnd
[x1, . . . , xnd

], (3.66)

where

Gj =

nd∏

i=1

uji
[xi] (3.67)

sj1,...,jnd =

∫

ψGj

nd∏

i=1

w[xi]dxi (3.68)

≈ ψi1,...,indGj[x
i1
1 , . . . , x

ind
nd ]

nd∏

k=1

vik , (3.69)

j means j1, . . . , jnd
, uji

are orthonormal polynomials chosen here to be Cheby-

shev polynomials, w is the weight function over which they are orthonormal,
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and vik are the corresponding quadrature weights. Note, the collocation points

are also quadrature points which allow exponential convergence of the quadra-

ture. Derivatives of ψ are approximated by differentiating Eq. (3.63). To this

end, it is useful to introduce differentiation matrices,

(DN)i
j = ∂xC

N
j [x]|x=xi. (3.70)

This method is readily applied to linear eigenvalue problems as arise from

the Schrödinger equation 6

(H−E)ψ = 0, (3.71)

whereH is the Hamiltonian operator, ψ is thewave function, andE is the energy

eigenvalue. Discretizing on the grid gives the tensor equation

H
i1,i2,...,ind

j1,j2,...,jnd
ψj1,j2,...,jnd = Eψi1,i2,...,ind , (3.72)

where

H
i1,i2,...,ind

j1,j2,...,jnd
= HFj1,j2,...,jnd

[xi1
1 , x

i2
2 , . . . , x

ind
nd ]. (3.73)

Unlike finite difference methods, the tensor H
i1,i2,...,ind

j1,j2,...,jnd
is dense. Write this as

H
k(i1,i2,...,ind

)

l(j1,j2,...,jnd
) or for short Hk

l , where k and l are one-to-one functions mapping

the set of nd indices to the lowest nt positive integers. This recasts the tensor as

a large matrix so that standard matrix methods can be employed.

One way to carry out the mapping employs the Kronecker product as fol-

lows. IfH is given by

H =
∑

i1...,ind

fi1,...,ind
[x1, . . . , xnd

](∂x1
)i1 · · · (∂xnd

)ind , (3.74)

where fi1,...,ind
is a function coefficient, then the matrix, H is given by

Hk
l =

∑

i1,...,ind

fi1,...,ind
[xk]

(
nd⊗

j=1

(DNj
)ij

)k

l

, (3.75)

6Linearity is not required for the PS method.
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where xk is the nd-dimensional vector of coordinates with indices that map to k,

Nj is the number of grid points in the jth direction, ij is an exponent, andDNj
is

the differential matrix based on Nj points.

3.7 Pseudospectral convergence for nonsmooth functions

To make appropriate design algorithmic choices it is important to investigate

how the PS method handles nonsmooth behavior of solutions. This section ex-

plores the convergence of truncated cardinal function expansions to cusps and

logarithmic terms and then employs a toy model that illustrates how the triple

coalescence is expected to influence the numerical results.

3.7.1 Kato cusps

Consider the ground state of the hydrogen atom with wave function

ψ = e−r = e−
√

x2+y2+z2

. (3.76)

In Cartesian coordinates, there is a discontinuity in the first derivative at the

origin,

lim
x→0+

∂ψ

∂x

∣
∣
∣
∣
y=z=0

6= lim
x→0−

∂ψ

∂x

∣
∣
∣
∣
y=z=0

. (3.77)

In spherical coordinates no discontinuity exists for r ≥ 0. All the derivatives

at r = 0 are well defined and a PS code has no problem exponentially converg-

ing toward the correct answer. The essence of this observation can be seen by
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Figure 3.1: (Color online). The logarithm base 10 of δN
RMS[g1] (blue circles)

and δN
RMS[g2] (red crosses) with solid blue and dashed red fits,

respectively. See Appendix B for fitting functions.

considering the one-dimensional exponential functions

g1[x] = e−|x| (3.78)

g2[x] = e−(x+1), (3.79)

on the domain −1 ≤ x ≤ 1 with weight x2 (analogous to the three dimensional

hydrogen atom). As a measure of error between the function f and its cardinal

expansion truncated at order n define

δN
RMS[f ] =

√
√
√
√

∫ 1

−1

x2

(

f [x] −
N∑

i=1

CN
i [x]f [xi]

)2

dx. (3.80)

Figure 3.1 compares δn
RMS[g1] to δ

n
RMS[g2] as a function of n. Evidently the cusp

is poorly represented compared to the smooth function at a given n. The PS
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representation of the cusp converges algebraically while the representation of

the smooth function converges supergeometrically (see Appendix B for fits).

The basic strategy in more complicated problems is to adopt a coordinate

system with a radial-like coordinate at each cusp. For two-electron atoms

no global coordinate system exists with the desired property at each of the

three separate two-particle coalescences. This article uses three individual but

overlapping domains to guarantee appropriate treatment near each coalescence

point.

3.7.2 Logarithmic terms

Consider the one-dimensional function

f [x] =

(

1 +
1

2
αρ[x]2 log[ρ[x]]

)

e−ρ[x], (3.81)

where

ρ[x] =
1 − x

1 + x
. (3.82)

Here ρ ∈ [0,∞), x ∈ [−1, 1] and f are analogous to the hyperspherical radius, its

algebraic transformation and the heliumlike wavefunction ψ, respectively. As in

the full three-dimensional problem, the presence or absence of the logarithmic

terms is controlled by α, which can be set to 0 or 1.

There are two types of errors considered here: interpolation error and oper-

ator error. These are different sorts of error, but qualitative features (e.g., expo-

nential or algebraic convergence) are expected to be the same.
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Figure 3.2: (Color online). The logarithm base 10 of the error in f [x] using
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and dotted green fits, respectively. See Appendix B for fitting
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Interpolation error

The pointwise error between f and its truncated expansion is

∆f = f [x] −
N∑

i=1

CN
i [x]f [xi], (3.83)

where xi refers to the ith grid point.

Figure 3.2 shows that the behavior of ∆f at three different values of ρ. For

each value the apparent rate of convergence starts out exponential before be-

coming algebraic at large N . The algebraic convergence known with the high-

est accuracy in Fig. 3.2 is for ρ = 10−6, which asymptotically goes as 1/N3.82±0.09
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(see Appendix B). This algebraic behavior is expected when trying to represent

a nonanalytic function (log[ρ]) with an analytic basis. Such behavior disappears

if α is set to zero.

The onset of algebraic convergence varies from N ≈ 40 to N ≈ 80 as ρ, mov-

ing away from the singularity, increases by 10 orders of magnitude. The error at

the transition is< 10−6. Typically, energy errors vary as the square of wave func-

tion errors andwould already be very small compared to relativistic corrections.

This calculation shows that it is possible to get precise values with apparent ex-

ponential convergence before reaching the asymptotic algebraic regime. As a

practical matter, one may never reach the latter limit.

Operator error

In order to estimate the error in the eigenvalue, it would help to have a one-

dimensional toy eigenvalue problem with an eigenfunction similar to the func-

tion in Eq. (3.81). It is impossible to construct a one-dimensional eigenvalue

problem with solutions that have logarithmic singularities without explicitly

introducing such singularities into the differential operator. So here a more lim-

ited test problem is used. Instead of solving for an eigenvalue, the error in the

operator is measured. This would contribute to the eigenvalue error along with

the error in the wave function.

Let ∆H be the difference between the true Hamiltonian and the Hamilto-

nian constructed from PS differentiation matrices. The associated energy error

is 〈ψ|∆H|ψ〉. The aim is to construct an analog of the integrand of the energy

error and use it to assess pointwise and integral errors.
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Construct a differential operatorD similar to the full HamiltonianH [see Eq.

(3.25)] but in terms of the coordinate x,

D = p2[x]∂xx + p1[x]∂x + p0[x], (3.84)

where

p2[x] = −(1 + x)4

8
(3.85)

p1[x] =
(1 + x)3

4

(
4 + x

1 − x

)

(3.86)

p0[x] = − 1

ρ[x]
. (3.87)

Note, the first two terms are identical to the operator Tρ and the last term is a

Coulomb potential.

The corresponding matrix operator is

(dN)i
j = p2[x

i](DN)i
k(DN)k

j + p1[x
i](DN)i

j + p0[x
i]δi

j , (3.88)

where Einstein’s summation convention is used and δi
j is the Kronecker delta

function. The pointwise error on the grid and its maximum are

(∆HN )i = w[xi]

(

(Df)[xi] −
∑

j

(dN)i
jf [xj ]

)

(3.89)

∆Hmax
N = max

i
|(∆HN)i|, (3.90)

where

w[x] =
(1 − x)5

(1 + x)7
f [x] (3.91)

The factor (1 − x)5/(1 + x)7 comes from the Jacobian.

Figure 3.3 shows ∆Hmax
N , the maximum error anywhere on the grid, as a

function of n for α = 0 and α = 1. The decrease appears to be exponential,

not unanticipated when α = 0 but perhaps a surprise for α = 1. The slopes
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Figure 3.3: (Color online). The logarithm base 10 of the maximum error
of a pseudospectral matrix. The dark blue circles are for α = 1
and the light red crosses for α = 0 with solid blue and dashed
red fits, respectively. See Appendix B for fitting functions and
method.

of the two curves are roughly the same and the offset is due to the variation of

the magnitude of f with α. An explanation is immediately suggested by Fig.

3.4 which shows the error at the grid point closest to the singularity (∆HN)i∗

(here i∗ refers to that point). The data for α = 1 is well fit by an algebraic rate of

convergence (1/N10.36±0.08) at large N while α = 0 has an approximately expo-

nential fall-off (the convergence is subgeometric because the calculation is done

on a semi-infinite domain). The log term does spoil the method’s exponential

convergence. Assuming that the effect is greatest at i = i∗ , the maximum error

is dominated by the log term when N is greater than about 200 and the error is

very small. This is exponential convergence “for all practical purposes.”
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3.7.3 Conclusion

For the interpolation and operator errors, the logarithmic term does not slow

convergence unless one is at high resolution or interested in small values of ρ.

For those cases, one would need to apply the excision method about the triple

coalescence point in order to retain exponential convergence. For most appli-

cations the level of precision needed is obtained before the algebraic behavior

becomes apparent.
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3.8 Numerical domains and collocation points

Because the two electrons are identical particles the full wave function is anti-

symmetric. In the ground state, the spins are antisymmetric and the spatial part

is symmetric. The spatial domain may be taken as φ < π/4 and B > 0. The

complete numerical domain is

D0 : −1 ≤ x ≤ 1 0 ≤ φ ≤ π
4

−1 ≤ C ≤ 1

or

D0 : −1 ≤ x ≤ 1 0 ≤ ζ ≤ π
2

0 ≤ B ≤ 1.

(3.92)

A single domain does not allow the proper treatment of the two-particle coales-

cences. Therefore, introduce three subdomains to cover D0 using two different

sets of variables:

D1 : −1 ≤ x ≤ 1 0 ≤ φ ≤ 1
2

−1 ≤ C ≤ 1

D2 : −1 ≤ x ≤ 1 1
2
≤ φ ≤ π

4
−2

3
≤ C ≤ 1

D3 : −1 ≤ x ≤ 1 0 ≤ ζ ≤ 1
2

0 ≤ B ≤ 1.

(3.93)

For calculations done on a finite domain, the condition −1 ≤ x ≤ 1 is replaced

by 0 ≤ ρ ≤ ρmax. Cross sections of these domains at fixed ρ are shown in Fig. 3.5.

An electron-proton singularity lies inD1, while the electron-electron singularity

lies in D3. The radial-like coordinates in D1 (φ) and D3 (ζ) accommodate the

cusps just like the usual radial coordinate does in the hydrogen atom. D2 fills in

the remaining volume. All three domains have boundaries that touch the triple

coalescence point (not pictured).

Consideration of the electron-electron singularity shows why the single do-

mainD0 is inadequate. Byers Brown andWhite [30] showed that the wavefunc-

tion can be expanded in powers of r12 about r12 = 0. Using such a coordinate
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Figure 3.5: (Color online). This is the arrangement of grid points of the
three domains at a constant value of ρ in φ and C coordinates.
Note that the point density becomes larger at the boundary of
each subdomain and that no grid points sit on the Coulomb
singularities. The blue circles, red crosses, and green pluses
belong to domains D1, D2, and D3, respectively. D1 and D2 are
rectangular domains, whileD3 has the curved boundary in φ,C
coordinates but is rectangular in ζ ,B coordinates. The electron-
proton singularity occurs on the left side (solid line at φ = 0).
The entire line corresponds to one physical point. The electron-
electron singularity occurs at the lower right-hand corner (solid
disk at φ = π/4, C = −1). A line of symmetry falls on the right
side (dashed line at φ = π/4 where r1 = r2).
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accurately treats the cusp away from the triple coalescence point. The expan-

sion in powers of ζ is very similar [see Eq. (3.46)] or equivalently powers of
√

2 sin ζ =
√

1 + C sin 2φ 7. Re-expanding in φ and C coordinates gives deriva-

tives of
√

1 + C sin 2φ with respect to C and φ, terms that are either infinite or

undefined at φ = π/4 and C = −1. This is why the PS method fails to converge

rapidly using D0 alone.

Within each domain, grid points are set as follows. Let the ith dimension

extend from xi,min to xi,max and have Ni collocation points. These points are

the roots or antinodes plus endpoints of the N th
i order Chebyshev polynomial 8

stretched to fit length ∆xi = xi,max − xi,min. The jth point (for j = 1, 2, . . . , Ni) of

dimension i is

xj
i =

∆xi

2
(yj

i + 1), (3.94)

where

yj
i = cos

[
(Ni − j + λ)π

Ni

]

(3.95)

and λ is 0 or 1/2 for nodes or antinodes plus endpoints, respectively 9. In this

article, nodes are generally used except when explicit boundary conditions are

needed at both endpoints, xi,min and xi,max.

Potentially each dimension and domain could have its own Ni but in this

paper the x direction is set to be twice as large as the other two dimensions

and all are varied in lockstep. That is, {Nx, NC , Nφ} = {2n, n, n} in domains D1

and D2 and {Nx, NB, Nζ} = {2n, n, n} in domain D3. The total number of grid

7The radius of convergence of the Byers Brown and White expansion is unknown to the
authors but is clearly invalid at ρ = 0, the location of the triple coalescence point. Here only the
effect of the double coalescence point is being considered.

8When the excision method is used near the two-particle coalescence points, the nodes of
Legendre polynomials are used in the B and C directions. This choice makes it easier to apply
Eq. (3.49) with a simple quadrature.

9It is also possible to use the so called Chebyshev-Randau points, which include one end-
point on one side of the domain but not the other.
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points is nt = 3 × (2n × n × n) = 6n3 points. Twice as many points were used

in the x dimension, an arbitrary choice but one motivated by the semi-infinite

range of the hyperspherical coordinate and by the wave function’s logarithmic

dependence on the hyperspherical radius near the triple coalescence point.

3.9 Boundary conditions

3.9.1 Internal boundary conditions

It is necessary to ensure continuity of the wave function and its normal deriva-

tive at internal boundaries. There are two ways in which the subdomains can

touch: they can overlap or they can barely touch. For clarity, consider a one-

dimensional problem with two domains. Let the first domain be domain 1 and

the second be domain 2 with extrema x1,min < x2,min ≤ x1,max < x2,max, where the

1 and 2 now refer to domain number. The first case corresponds to x2,min < x1,max

and the second to x2,min = x1,max ≡ x∗. For both cases, exactly two conditions

are need to make the wave function and its derivative continuous. The simplest

choice for the first case is

ψ1[x1,max] = ψ2[x1,max] (3.96)

ψ1[x2,min] = ψ2[x2,min], (3.97)

and for the second case is

ψ1[x∗] = ψ2[x∗] (3.98)

d

dx
ψ1[x∗] =

d

dx
ψ2[x∗]. (3.99)
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For multidimensional grids, the situation is analogous. The conditions are

applied on surfaces and the derivatives are normal derivatives at the surface.

On a discrete grid, a finite number of conditions are given which, in the limit

of an infinitely fine mesh, would cover the entire surface. There is a great deal

of freedom in the selection of the points but in this article the edge of a domain

has one constant coordinate so there is a natural choice. Conditions are imposed

at the points of the finite mesh formed by varying all the other coordinates (in

general, these are not collocation points). In other words, the matching points

lie at the intersection of the coordinate lines normal to the surface with the sur-

face itself. The positions of the crosses in Figs. 3.6 and 3.7 illustrate where the

matching occurs when the domains overlap and when they just touch.

For touching domains, the black and white crosses in Fig. 3.7 are used. Note

that four (three) crosses are defined by the coordinate lines in D2 (D1). At the

set of four crosses, function values are equated, and at the set of three crosses,

normal derivatives are equated. In general, function values (derivatives) are

equated at points stemming from the subdomain with a greater (lesser) density

of points along the boundary.

For overlapping domains, the function values are equated at the black and

white crosses in Fig. 3.6 which lie on two separate surfaces. The points are

selected in a manner similar to that of touching domains, i.e. in terms of the

intersection of the coordinate lines in D1 and D3 with the surface.

In all cases, values and derivatives at all points are calculated using Eq. (3.63)

and are ultimately linear combinations of the grid point values.
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Figure 3.6: The intersection (gray) of domains D1 (white) with black grid
points and D3 (black) with white grid points. The boundary
points are depicted as black and white crosses and are con-
nected via black and white lines to the grid points that they
replace.

3.9.2 Symmetry and regularity conditions

For this problem there are two types of boundary conditions on the boundary

of the numerical domain: the symmetry condition from electron exchange and

the regularity conditions imposed near singular points.

The symmetry condition is related to the total spin of the two electrons, S. If

S = 0 (S = 1) the wave function is symmetric (antisymmetric) about φ = π/4 or

B = 0 and the normal derivative (value) of the wave function is equal to zero.

This condition is enforced at all the points on the boundary that have the same

ρ and C coordinates as grid points in D2 or the same ρ and ζ coordinates in D3.

This gives 2 × 2n× n = 4n2 boundary conditions.
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Figure 3.7: Barely touching domainsD1 (white) with black grid points and
D2 (black) with white grid points. The boundary points are
depicted as black and white crosses and are connected via gray
lines to the grid points that they replace.

Regularity conditions are imposed as boundary conditions at four two-

dimensional surfaces: ρ = 0, ρ = ∞, φ = 0, and ζ = 0. These are similar in

form to the symmetry condition except involve linear combinations of deriva-

tive and value. Depending on which type of conditions are given at singular

points (behavioral versus regularity or excision) are used, there are 0 to 10n2

conditions. These conditions replace an equal number of equations. The partic-

ular equation replaced is the one that stems from enforcement of the discretized

Schrödinger equation at the collocation point nearest to the boundary at which

the condition applies.

The most complicated type of boundary condition arises when a region is

excised about a two-particle coalescence. First, one must project out terms pro-

portional to each Legendre polynomial by performing an integral over C or B.
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This can be done by quadrature over the grid points in those dimensions. For

example, Eq. (3.47) turns into

ξl[ρ
i, φj] =

∑

k

wkPl[C
k]ψ[ρi, φj, Ck], (3.100)

where wk are the quadrature weights. Then Eq. (3.49) becomes for j = 1 (the

excision boundary)

0 =

(

φj(DNφ
)j
k +

(

−l + ρiφjZ

l + 1

)

δj
k

)

ξl[ρ
i, φk], (3.101)

which is NρNC conditions (0 ≤ l ≤ NC − 1 and 1 ≤ i ≤ Nρ).

3.9.3 Incorporating boundary conditions into the matrix prob-

lem

All of the above boundary conditions are expressed as a linear combination of

the function values at the grid points equal zero. In matrix form

nb{(B1B2)
︸ ︷︷ ︸

nb+ni






ψ1

ψ2






}nb

}ni

= 0, (3.102)

where ψ1 (ψ2) is a vector of the nb (ni) wave function values at all the boundary

(interior) points, the boundary condition matrix has been broken into an nb by

nb matrix B1 and an nb by ni matrix B2, and nb + ni = nt. For the case where

an endpoint is not a collocation point, the grid point nearest to the boundary,

at which an explicit boundary condition is given, is considered as a boundary

point. All the points near where behavioral boundary conditions are given are

not included in this definition. These points are the ones that give rise to the

first nb rows in Eqs. (3.102) and (3.103). Note, that this ordering was chosen for

clarity in this section.
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There is also the Hamiltonian matrix equation

nb{

ni{






H11 −E

H21

H12

H22 − E






︸ ︷︷ ︸

nb+ni






ψ1

ψ2




 = 0, (3.103)

where the Hamiltonian matrix has also been divided into four matrices: H11,

H12,H21 andH22.

So there are nt + nb equations and nt unknowns (ψ1 and ψ2) as well as the

eigenvalue. One could approximately solve these equations with singular value

decomposition [124], but it is much faster to simply discard the first nb rows

of the Hamiltonian matrix and incorporate the boundary conditions into the

remaining eigenvalue problem:

(H22 −H21B
−1
1 B2 − E)ψ2 = 0, (3.104)

where B1 has an inverse because all of its rows are linearly independent (other-

wise more than one boundary condition would have been specified for a given

boundary point). Calculating the inverse is not too computationally expensive

because nb ≪ nt. Then solve for ψ1 afterwards with

ψ1 = −B−1
1 B2ψ2. (3.105)

3.10 Matrix methods

In one dimension the Hamiltonian matrix for the PS method is dense but in

three dimensions with three domains the number of nonzero elements scales

as 24n4 out of a possible 36n6. The boundary condition matrix is also sparse

with 8n4 non-zero elements out of 48n5 (for the simplest case where behavioral
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conditions are used whenever possible). Therefore, any attempt to solve these

equations should take advantage of these memory savings.

Equation (3.104) is solved by the method of inverse iteration [124] after shift-

ing the eigenvalue with an approximately known value. In cases where the

exact eigenvalue is not known a priori, one solves the full eigenvalue problem

for a low resolution case first and then at each successive iteration shifts the

eigenvalue using the result of the previous iteration. Because the Hamiltonian

matrix is not symmetric, a complex eigenvalue may occur. There is no theoret-

ical reason prohibiting the numerical eigenvalue from containing an imaginary

part at finite resolution but, in fact, none were generated for n > 5. Of course,

the imaginary part contributes to the error which must converge to zero.

The above solution method can yield highly oscillatory wave functions

which appear to diverge on the boundaries of the computational domain. These

nonphysical wave functions do not satisfy the first nb rows of Eq. (3.103) and

arise as an artifact of solving a subset of equations of the overdetermined sys-

tem. They are easily identified and rejected and in no way affect the true solu-

tion.

The entire calculation for n = 14 took only about 20 minutes on a 6-GHz

machine. Memory needed to solve the linear equations was the limiting factor

because inverting the equation has requirements scaling as n6. The generalized

minimal residual (GMRES) algorithm [13] might reduce the memory require-

ments of the solution of the linear equations that arise in the inverse iteration.

For simplicity of coding, the above calculations were done usingMathematica

[152]. Care was taken to use predefined functions whenever such choice was
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more efficient.

3.11 Results

This article is an exploration of the PS method as applied to heliumlike systems,

not an attempt to improve the energy eigenvalues for bound states. That has

already been done to a higher precision than will ever be needed [8, 46, 99, 68,

100, 48, 69, 70, 114, 115, 103]. The focus here is on showing the PS method works

in a new application and assessing its convergence properties.

Table 3.1 gives a list of runs used in this section to discuss the effects of the

Coulomb terms, energy level (ground or excited), computational domains and

numerical methodology on the convergence of the solution to the two-electron

problem.

3.11.1 Convergence in energy

In this section, the energy error means the difference between the numerical

energy eigenvalue at finite resolution and the exact energy eigenvalue of the

nonrelativistic infinite-mass-nucleus Hamiltonian. When no analytic value ex-

ists, highly precise variationally calculated values are used [8, 46, 99, 68, 100, 48,

69, 70, 114, 115, 103].

The energy errors for H−, H− with the electron-electron interaction turned

off, the ground states of Helium, and the first excited S State of helium (cases

A,B,C, andD) are shown in Fig. 3.8. The first important result is that the energies
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Table 3.1: A list of the different cases that are compared in this section. Exc
refers to the first excited S state. Grd refers to the ground state.
ND is the number of domains. B, R, and E refer to behavioral,
regularity, and excision, respectively.

Potential State Domains Boundary Conditions

Case Z α Exc/Grd ND ρ = 0 φ, ζ = 0 ρ = ∞

A 1 1 Grd 3 B B B

B 1 0 Grd 3 B B B

C 2 1 Grd 3 B B B

D 2 1 Exc 3 B B B

E 1 1 Grd 1 B B B

F 1 0 Grd 1 B B B

G 1 1 Grd 3 R B R

H 1 1 Grd 3 R B E

I 1 1 Grd 3 B R B

J 1 1 Grd 3 B E B

appear to converge in an approximate exponential fashion. Since these are not

variational calculations there is no reason to expect monotonically decreasing

energy errors. Detailed inspection of the solutions suggests that the kinks in the

graphs are discreteness effects. That is, the precise positioning of the grid points

has a large effect on the magnitude of the error.

A potentially significant issue is the impact on convergence of logarithmic

terms present in the Fock expansion. Prior authors have been able to calculate

very accurate energies without adverse effects of the infinite second derivative

at ρ = 0, but the PS method is sensitive to singularities anywhere within the
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Figure 3.8: (Color online). The convergence of the energy of H−, case A
(red pluses); two non-interacting electrons in the field of a pro-
ton, case B (green stars); the ground state of He, case C (blue
crosses); and its first excited S-state, case D (black circles) as
a function of grid resolution n, with dotted red, dot-dashed
green, dashed blue, and solid black fits, respectively. See Ap-
pendix B for fitting functions and method.

domain. Figure 3.8 includes a calculation of the H− system with the electron-

electron interaction turned off, altering the exact solution and removing the log-

arithmic term. The rate of convergence is comparable in all cases suggesting

that the influence of the logarithmic term on convergence is subdominant for

n ≤ 14. This conclusion agrees with the analysis in subsection 3.7.2.

Ideally, the numerical method should handle states other than the ground

state. Figure 3.8 shows the convergence of energies for the ground state and the

first excited S state of helium. The important result is that the convergence of

both calculations is approximately exponential with a similar rate.
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Figure 3.9: (Color online). The convergence of the energy of, case E,
H− using only one computational domain with the electron-
electron interaction on (blue circles); case F, one domain with
the interaction off (red crosses); and case A, three domains with
the interaction on (green pluses) with dashed blue, dotted red,
and solid green fits, respectively. See Appendix B for fitting
functions and method.

The relative sizes of the magnitude of the error at fixed grid size for H−,

He and excited He are roughly consistent with the general expectation set by

the difficulty in resolving the solution’s small-scale structure. Errors for ground

state He are larger than H− because the exponential length scale for falloff of the

He wave function is smaller than that of H−; errors for the excited state of He

are larger than the ground state of He because the oscillatory length scale of the

excited state is smaller than the exponential length scale of the ground state.

Figure 3.9 shows the impact on convergence of using a single numerical sub-

domain, D0, versus three, {D1, D2, D3}. The single domain had one third as
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many points as the computation with three domains. However, the resolution

in the x direction dominates the convergence and in that dimension the resolu-

tion is identical. DomainD0 has radial-like coordinates near the electron-proton

cusp but not near the electron-electron cusp. One anticipates slower conver-

gence in the energy using D0. Comparison shows that two interacting electrons

on three domains (case A) or two noninteracting electrons on D0 (case F) have

similar exponential rates of convergence. On the other hand, two interacting

electrons on D0 (case E) converge more slowly. This result shows the multiple

grids are essential for achieving superior convergence, and that the electron-

electron cusp drives this requirement. If the single domain data were adjusted

to account for the fact that they used fewer points, they would be shifted to

the left by a factor of 31/3 ≈ 1.44. This would not affect the conclusion that us-

ing three domains is more efficient because the single domain solution is only

algebraically convergent starting at about n = 8. Using three subdomains is

more efficient because the work involved in the calculation has the same scaling

whether one or three subdomains is used.

Figure 3.10 presents a comparison of calculations having the full semi-

infinite domain (case A) to those with a finite cutoff in ρ (case H). The scaling of

the cutoff ρmax ∝
√
n imposed in case H is derived in Appendix A by balancing

the error due to finite resolution from the numerical scheme with errors intro-

duced by truncating the bound state. The figure shows that the semi-infinite

calculation fairs better. This is a consequence of the two different sets of as-

sumptions used to distribute the points. The grid points in the semi-infinite

scheme are more often found where the wave function is large. Half the points

have ρ < 1 (x > 0) because 0 is the center of the x dimension. By comparison,

half the points have ρ < ρmax/2 in the finite calculation. The number of points
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Figure 3.10: (Color online). The convergence of the energy of, case H, H−

doing the calculation on a finite domain (blue circles); and,
case A, semi-infinite domain (red pluses) with dashed blue
and solid red fits, respectively. See Appendix B for fitting
functions and method.

where the wave function is large is smaller in this latter scheme. Although the

semi-infinite strategy is more effective, nothing can be said about the optimal

strategy because other distribution methods were not considered. The main

advantage of the method is simplicity since there are no adjustable parameters.

Figure 3.11 presents a comparison of the different ways of handling the reg-

ularity of the wave function at the two-particle coalescence points. The simplest

method, relying on the regularity of the Chebyshev polynomials (case A), does

as well or better than the other methods (cases I and J).

Figure 3.12 compares two ways of handling the wave function at ρ = 0, case

A, relying on the regularity of the Chebyshev polynomials (behavioral) and case
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Figure 3.11: (Color online). The convergence of the energy of H− us-
ing three different methods of ensuring regularity at the two-
particle coalescence points: case A, relying on the regularity
of the Chebyshev polynomials (green pluses); case I, using the
Kato cusp condition as a regularity condition (red crosses);
and case J, excising the singularity (blue circles) with green
dotted, solid red, and dashed blue fits, respectively. See Ap-
pendix B for fitting functions.

G, directly specifying a logarithmic derivative (regularity). The latter method is

slightly better but both have roughly the same convergence rate.

3.11.2 Convergence in local energy

Another useful measure of convergence is the local energy,

Eloc =
Hψ
ψ
. (3.106)
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Figure 3.12: (Color online). The convergence of the energy of H− us-
ing two different methods of ensuring regularity at the three-
particle coalescence point: case A, relying on the regularity
of the Chebyshev polynomials (blue circles); and case G, us-
ing the Fock condition to specify a logarithmic derivative (red
pluses) with dashed blue and solid red fits, respectively. See
Appendix B for fitting functions and method.

which is constant only for an exact eigenfunction ψ of HamiltonianH. Through-

out this subsection all analysis and data refers to case A.

The difference between the local energy and the numerically evaluated

eigenvalue E gives a local measure of the error in ψ in a particular calculation.

Define

∆Eloc = Eloc − E. (3.107)

For the PS method, ∆Eloc is zero at all grid points (subject to limits of finite

precision arithmetic). Nonzero differences exist between grid points. Figure

3.13 illustrates the convergence of local energy at four different points. Of the
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Figure 3.13: (Color online). The convergence of the local energy of H−

at a four points in the domain: the center of the computa-
tional domain (black circles), near the triple coalescence point
(blue crosses), near the proton-electron coalescence point (red
pluses), and at large ρ (green stars). Their geometric fits are
given by the solid black, dashed blue, dotted red, and dot-
dashed green lines, respectively. See Appendix B for fitting
functions and method.

four points, the error in local energy is lowest at the point in the center of the

computational domain ({ρ, φ, C} = {1, π/8, 0}). It is larger in magnitude near

the singularities ({ρ, φ, C} = {10−4, π/8, 0} and {1, 10−4, 0}) because near these

points Eloc → ∞ for any nonexact ψ. However, the geometric fits show that the

rate of convergence is approximately the same at all three of those points. A

different behavior is seen at {ρ, φ, C} = {15, π/8, 0}. The error is roughly con-

stant over much of the graph, but begins to decrease at high resolution. This is

not surprising given the fact that there are only a few grid points at such large

hyperradius.
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Figure 3.14: (Color online). The error in the local energy of H− as a func-
tion of x with r1 = 2r2, and C = −1 (the electrons are on the
same side of the nucleus) at four different resolutions: n = 5
green dot-dashed, n = 8 red dotted, n = 11 blue dashed,
n = 14 black solid.

Figure 3.14 displays the convergence of the local energy as a function of x

at fixed angular coordinates. For a perfect exponential decrease in local energy

error, the curves would be equidistant from each other. This is approximately

true throughout the domain except near x = ±1 (small and large ρ).

If the numerical solution is considered to be trustworthy where the local

energy error is less than some threshold (e.g. |∆Eloc| < 10−2), then the wave

function is well represented in an intermediate range of ρ (10−2 < ρ < 101.3) but

not near the triple coalescence point nor at infinity 10.

10The error in the function value is roughly constant everywhere in the domain, but the mag-
nitude of derivatives and the wave function becomes large compared to the magnitude of the
wave function at small and large ρ.
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At large ρ (x ≈ −1), the true wave function falls off exponentially (in fact,

with respect to the x coordinate it falls off even faster). The PS method repre-

sents the exponential in terms of a polynomial. When one extrapolates using

the polynomial to x = −1, the wave function is small but nonzero (the exact

value should be zero). However, the Hamiltonian acting on the polynomial is

guaranteed to be zero because every coefficient in the Hamiltonian operator has

a factor of (1 + x). So

lim
ρ→∞

Hψ
ψ

= 0, (3.108)

and ∆Eloc → −E, a constant at large ρ as seen in Fig. 3.14. Detailed inspection

of the data near x = −1 suggests that for any finite ρ there exists a resolution

above which the solution becomes trustworthy.

The local energy behavior near the triple-coalescence point (ρ = 0) is of spe-

cial interest as a probe of the wave function’s nonanalytic behavior. Figure 3.15

displays ∆Eloc as a function of θ12, the angle between the two electrons, for fixed

r2/r1 and for a number of choices of ρ, following a similar figure from Myers et

al [113]. In this small ρ regime, the terms that dominate the Hamiltonian are

the kinetic energies in the various directions. Each of these, individually, scales

as 1/ρ2 [see Eq. (3.25)]. For the exact solution, these terms cancel each other,

but for almost any solution which is not exact, the local energy scales as 1/ρ2.

This scaling is shown in Figs. 3.14 and 3.15. Again detailed inspection of the

data near x = 1 suggests that for any finite nonzero ρ there exists a resolution

above which the solution becomes trustworthy. Furthermore, Fig. 3.13 shows

that there is no sign of the convergence rate being slowed due to the logarithmic

terms at this resolution.
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Figure 3.15: (Color online). The error in local energy of H− plotted at
different values of the angle θ12 with r1 = 2r2 and at resolution
n = 14 and at ρ = 1 (solid black), ρ = 0.1 (dashed blue),
ρ = 0.01 (dotted red), ρ = 0.001 (solid greed), and ρ = 0.0001
(dot-dashed purple).

3.11.3 Cauchy errors

Throughout this subsection all data refers to cases A, B, and C. The Cauchy

error is a measure of the difference between numerical solutions with different

resolution. One such measure is the normed quantity

∆n =

√
∫

d3r1 d3r2 (ψn − ψn−1)2. (3.109)

The true ψ satisfies

1 =

∫

d3r1 d3r2 ψ
2, (3.110)

but integrating ψn all the way to ρ = ∞ would diverge. This is a consequence

of having small but nonzero errors at ρ = ∞ in the value of ψn. An upper limit
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Figure 3.16: (Color online). The root-mean-square average Cauchy er-
ror is plotted with increasing resolution for three cases: H−

with noninteracting electrons (blue circles); H− with interact-
ing electrons (red crosses); and helium with interacting elec-
trons (green pluses) with dashed blue, solid red, and dotted
green fits, respectively. See Appendix B for fitting functions
and method.

ρ = 10 is adopted in the normalization of ψn and calculation of ∆n. It is arbitrary

but encompasses most of the physical extent of the solution. The Cauchy error

in any subinterval of the full interval must converge. To the extent that the error

in the interval calculated is dominant, the rate of convergence can be assessed.

Figure 3.16 gives ∆n as a function of resolution while Fig. 3.17 gives the

pointwise difference at ρ = 0 where the wave function is maximum. Both plots

show that convergence is approximately exponential.
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Figure 3.17: (Color online). Pointwise differences in the wave function
evaluated at ρ = 0 for increasing resolution for three cases:
H− with noninteracting electrons (blue circles); H− with in-
teracting electrons (red crosses); and helium with interacting
electrons (green pluses) with dashed blue, solid red, and dot-
ted green fits, respectively. See Appendix B for fitting func-
tions and method.

3.11.4 The logarithmic derivative at the triple coalescence point

Throughout this subsection all data refers to cases A, B, and C. The only di-

rect evidence that the convergence of the solutions is slowed by the logarithmic

terms in the exact solution comes from evaluating the logarithmic derivative

with respect to ρ at ρ = 0. The exact value is

∂xψ

ψ

∣
∣
∣
∣
x=1

= −1

2

(

−Z(cos φ+ sinφ) +
α

2
σ[C, φ]

)

. (3.111)

The root-mean-square error is

δRMS =

√
∫

dΩ

(
∂xψ

ψ
− ∂xψn

ψn

)2

x=1

, (3.112)
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Figure 3.18: (Color online). The root-mean-square error in the logarithmic
derivative evaluated at ρ = 0 with increasing resolution for
three cases: H− with noninteracting electrons (blue circles);
H− with interacting electrons (red crosses); and helium with
interacting electrons (green pluses) with dashed blue, solid
red, and dotted green fits, respectively. See Appendix B for
fitting functions and method.

where
∫

dΩ =

∫ π/4

0

dφ sin2 2φ

∫ 1

−1

dC. (3.113)

Figure 3.18 displays δRMS. Turning off the electron-electron interaction, the con-

vergence is noticeably faster. The important conclusion is that the wave func-

tions’ convergence is indistinguishable from exponentially fast, while the con-

vergence of its derivatives, at least near ρ = 0 is slower. Of course, the second

derivative with respect to ρ is infinitely wrong at ρ = 0. It converges to a finite

value, and the exact value is infinite.
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3.12 Conclusion

This article demonstrates the application of PS methods for solving the non-

relativistic Schrödinger equation for a system with two electrons. The method

successfully handled both ground and excited S states of heliumlike systems.

The rate of convergence for most properties measured was indistinguishable

from being exponentially fast. Local errors decrease in the same manner.

The choice of variables in the vicinity of the two-particle coalescence and

the use of multiple, overlapping domains are the critical requirements. These

are important so the PS method can represent the analytic form of the solu-

tion near all the two-particle cusps and ensure a more efficient algorithm. In

other respects the most straightforward choices work well. For example, grid

points are determined by the roots of Chebyshev polynomials, which experi-

ence shows generally produce the best convergence in PS methods [62, 25]. Be-

havioral boundary conditions (no explicit regularity conditions) are sufficient

to handle the wave function in the vicinity of the coalescence points and also

produce convergence as good as or better than the other possibilities tested.

The energy eigenvalue found by the variational method converges most ef-

ficiently when basis functions which behave like the exact solution are included

but this selection process can be time-consuming and problematic. Of course,

much higher precision than reported here was obtained long ago by variational

methods. The PS method has the advantage in new and possibly also in more

complex applications of not needing the same sort of specialized tuning that

has benefited variational calculations. Although this article does not attempt

to reproduce the ultra-high-precision results achieved by variational methods
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it strongly suggests that the PS method will ultimately prove to be a superior

approach for reaching such results in systems with a small number of electrons.

The local energy is not directly controlled when total energy is minimized.

Local energy minimization schemes exist and have the advantage that excited

states are found at local minima of the variance in local energy instead of just

the ground state as is true for the standard variational method [145]. However,

they lead to nonlinear problems which may be difficult to handle numerically

(minimization of the variance in local energy with respect to parameters in the

trial wave function), but still tractable because one need not calculate the energy

at each step. By contrast, the PS method controls local energy while the numeri-

cal solution remains a linear one. At the same time, the PS method is superior in

terms of its convergence rate to other direct partial differential equation solvers

(grid based methods) such as finite differencing and finite element which also

control the local error.

We plan to extend the method to calculate non-S states and continuum two-

electron states to compute the photoabsorption bound-free cross sections with

both initial and final states evaluated with the same methodology.
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CHAPTER 4

PSEUDOSPECTRAL CALCULATIONOF HELIUMWAVE FUNCTIONS,

EXPECTATION VALUES, ANDOSCILLATOR STRENGTH

This chapter is material which will be submitted to Physical Review A.
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4.1 Abstract

We extend the pseudospectral formalism and the associated numerical method-

ology for solving Schrödinger’s equation for two-electron atoms from S states

to arbitrary angular momentum states. We use the calculated wave functions to

evaluate the oscillator strength for the helium 11S → 21P transition. The result,

0.27616499(27) compares favorably to the best determination in the literature.

We compare the length, velocity, and acceleration expressions for the oscillator

strength and conclude that all have roughly the same accuracy in a pseudospec-

tral treatment.

We also evaluate the leading order finite nuclear mass and relativistic correc-

tions for the helium ground state. The pseudospectral method achieves state-of-

the-art accuracy without requiring the implementation of any special-purpose

numerical treatments. We find all the relevant quantities we tested – energy

eigenvalues, S state expectation values and bound-bound dipole transitions

for S and P states – converge exponentially with increasing resolution and at

roughly the same rate. Expectation values, which depend on most strongly on

different parts of configuration space, converge to roughly the same accuracy.

Quantum mechanical matrix elements are directly and reliably calculable with

pseudospectral methods.

A general prescription is given for choosing subdomains needed for expo-

nential convergence. With this prescription and the overall general applicability

of the method, we conclude pseudospectral methods can be applied to general

few-electron problems.

82



4.2 Introduction

The nonrelativistic helium atom problem has been studied extensively since

quantum mechanics was first developed. The most widely used method to find

the ground state is the variational method in which the expectation value of the

Hamiltonian is minimized with respect to parameters in the trial wave func-

tion. The calculated energy provides an upper bound for the exact energy.1 The

method leads to accurate energies provided one starts with an appropriate trial

wave function, i.e. one capable of representing the exact wave function to a

good approximation. To achieve ever-more accurate answers, one must select a

sequence of ever-better trial wave functions. There is more than a little art and

intuition required for the selection, especially for a nonstandard problem where

one may have only a vague idea what the wave function actually looks like. Ex-

ponentially small errors (i.e. e−an) with increasing basis size n can be achieved

if the trial wave function reproduces the analytic properties of the exact wave

function. Otherwise, convergence is algebraic (i.e. n−2).

Although achieving small errors in the value of the energy of a given state

implies that the square of the wave function is correspondingly accurate in an

average sense, it does not imply that local errors are as small. The variational

approach optimizes the wave function weighted by its contributions to the to-

tal energy. At a fixed energy error, no bound exists for the error in the wave

function at a specific point in configuration space.

A method which can be applied to many different problems (e.g. differ-

ent interaction potentials, excitation levels, symmetries, etc.) without tinkering

1The method is not limited to ground states. A trial wave function, exactly orthonormal to
all lower energy states, has calculated energy which is an upper bound to the exact result.
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with or modifying the basis and which has direct, rigorous control of local er-

rors can serve as a valuable alternative to variational methods and is the subject

of the present work.

Recently, we applied pseudospectral methods to solve the nonrelativistic

Schrödinger equation for helium and the negatively charged hydrogen ion with

zero total angular momentum [73]. We found exponentially fast convergence of

many measures of error, including the energy eigenvalues, local energy errors

(e.g. (HΨ)/Ψ − E as a function of position) and Cauchy wave function differ-

ences. Only the error in the logarithmic derivative at the triple coallescence

point had discernably slower convergence, presumably due to the logarithmic

singularity located there [14, 59, 60]. The key virtues were: no explicit assump-

tions had to be made about the asymptotic behavior of the wave function near

cusps or at large distances, the Schrödinger equation was satisfied at all grid

points, local errors decreased exponentially fast with increasing resolution, and

the method required no fine tuning.

In this article, we extend our previous work to higher angular momentum

calculations and utilize the results to evaluate matrix elements for combinations

of states. To be systematic, we consider two sorts of matrix elements: the dipole

absorption oscillator strength (between S and P states) and first-order mass

polarization and α2 relativistic corrections to the nonrelativistic finite-nuclear-

mass Hamiltonian (for the S ground state). All have been the subject of much

investigation. Our main focus is on testing the pseudospectral method’s capa-

bilities by comparing results to effectively “exact” solutions that others have

previously calculated.
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4.3 Review of pseudospectral methods

The application of pseudospectral methods has found success in fluid dynamics

[34], numerical relativity [93, 122], and quantum chemistry [65, 66, 67, 127, 74,

112, 111, 96, 84]. Some problems in one-electron quantum mechanics [24, 26]

have been treated but only recently has the method been applied to a fully cor-

related system with multiple electron atoms [73]. General background on pseu-

dospectral methods can be found in Refs. [25, 62, 122, 124, 73].

The pseudospectral method is a grid-based finite differencemethod inwhich

the order of the finite differencing is equal to the resolution of the grid in each

direction. As the grid size increases it becomes more accurate than any fixed

finite-order difference method. If a solution is smooth over an entire domain

(or smooth in each subdomain) the pseudospectral method converges exponen-

tially fast to the solution. A spectral basis expansion and a pseudospectral ex-

pansion of the same order are nearly equivalent with differences that are expo-

nentially small.

The grid points in the pseudospectral method are located at the roots of Ja-

cobi polynomials or their antinodes plus endpoints. They are clustered more

closely near the boundary of a domain than in its center. Such an arrangement

is essential for the method to limit numerical oscillations sourced by singulari-

ties beyond the numerical domain [62]. These singularities typically occur in the

analytic continuation of solutions to non-physical regimes and in the extension

of coordinates beyond the patches on which they are defined to be differen-

tiable. The grid point arrangement facilitates a representation of a function and

its derivative that is more uniformly accurate across the domain of interest than
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is possible using an equal number of equidistant points. Finite difference meth-

ods typically use an equal-spaced grid and the derivatives are less accurate at

the edge than at the center.

Consider the representation of the hamiltonian for a single domain prob-

lem in the pseudospectral method. Let {xk
i }k=1,2,...N be a set of grid points (also

called collocation points) that lie on the roots of anN th order Jacobi polynomial

in the ith dimension (xi) of the domain. Define the cardinal functions

Cj[xi] =

N∏

k=1
k 6=j

xi − xk
i

xj
i − xk

i

(4.1)

with may easily be seen to satisfy the relation

Cj[x
k
i ] = δk

j . (4.2)

For an nd dimensional problem, one defines

CJ [x] =

nd∏

i=1

Cji
[xi], (4.3)

where the convention that capital letters represent nd lowercase indices has been

used and x = {x1, x2, . . . , xnd
}. The multidimensional cardinal functions also

have the property

CJ [xK ] = δK
J , (4.4)

where xK is the grid point {xk1

1 , x
k2

2 , . . . , x
knd
nd }. These functions are an effective

basis, in the sense that a function f can be written

f [x] =
∑

J

f [xJ ]CJ [x], (4.5)

where f [xJ ] is a pseudospectral coefficient (“pseudo” because it is more easily

identified as the function value at the grid point).
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In terms of bases constructed from position eigenstates xK and CJ , the pseu-

dospectral hamiltonian operator is

ĤPS =
∑

JK

|xK〉〈xK |Ĥ|CJ〉〈CJ |. (4.6)

The operator ĤPS is non-Hermitian for any finite resolution. Complex eigenval-

ues are possible for ĤPS, but these eigenvalues do not converge with increasing

resolution and so are easily discarded.

The pseudospectral matrix must be diagonalized to find the energy eigen-

values. In this representation the eigenvectors are simply the function values at

the grid points. This contrasts with a spectral representation in which the eigen-

vectors are sums of basis functions. The latter is less efficient for determining

local wave function values.

The pseudospectral method is not variational. Therefore, it is possible for

pseudospectral energies to be too high or too low, and the energy convergence

is not monotonic.

4.4 The nonrelativistic two-electron atom

Two-electron atoms form a three-particle system requiring nine spatial coordi-

nates for a full description. Three coordinates are eliminated by taking out the

center-of-mass motion. In the infinite-nuclear-mass and nonrelativistic approx-

imations the Hamiltonian is

Ĥ0 = −1

2
(p2

1 + p2
2) + V, (4.7)
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where p1,2 are the momenta of the two electrons and the potential is

V = −Z

r1
− Z

r2
+

1

r12
. (4.8)

Here and throughout this article, atomic units are used. Whenever the infinite-

nuclear-mass approximation is not used, the reduced mass of the electron and

nucleus is set to one instead of the electron mass. This form of Schrödinger’s

equation involves six-dimensional fully correlated wave functions.

A further reduction is possible for S states. Hylleraas [87] proposed the

ansatz that the wave function be written in terms of three internal coordinates.

Typical choices for these coordinates are r1, r2, and r12, the magnitudes of the

vectors pointing from the nucleus to each electron and the vector pointing from

one electron to the other, respectively. Altenatively, r12 may be replaced by θ12,

the angle between the two electrons. The S state is independent of the remain-

ing three coordinates that describe the orientation of the triangle with vertices

at the two electrons and nucleus.

The situation for states of general angular momentum is more complicated.

Bhatia and Temkin [21] introduced a particular set of Euler angles {Θ,Φ,Ψ} to

describe the triangle’s orientation. They defined2 a set of generalized spherical

harmonics which are eigenstates of the total angular momentum, its z compo-

nent, parity, and exchange operators:

L̂2Dν
κlm = l(l + 1)Dν

κlm (4.9)

L̂zD
ν
κlm = mDν

κlm (4.10)

Π̂Dν
κlm = (−1)κDν

κlm (4.11)

Ê12D
ν
κlm = (−1)l+κ+νDν

κlm. (4.12)

2The notation used here is slightly different so that the equations can be written in a simpli-
fied form.
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These four operators all commute with the Hamiltonian. Therefore, a stationary

state wave function with total spin s, total angular momentum l, z component

of angular momentumm, and parity k obeys

L̂2ψklms[r1, r2] = l(l + 1)ψklms[r1, r2] (4.13)

L̂zψklms[r1, r2] = mψklms[r1, r2] (4.14)

Π̂ψklms[r1, r2] = ±ψklms[r1, r2] (4.15)

Ê12ψklms[r1, r2] = (−1)sψklms[r1, r2], (4.16)

where in the third of the above equations the plus sign corresponds to even

parity and the minus sign to odd. Equations 4.9-4.16 imply

ψklms[r1, r2] =

1∑

ν=0

l∑

κ=0
κ, even/odd

(1 − δ1νδ0κ)g
ν
κls[r1, r2, θ12]D

ν
κlm[Θ,Φ,Ψ], (4.17)

where the sum over κ is restricted to even or odd numbers if k is even or odd,

respectively and gν
κls is a real function of the internal coordinates. The conve-

nience of the Bhatia and Temkin [21] coordinate choice is most evident in how

one imposes total antisymmetry of the wave function. The spin singlet (triplet)

must have a symmetric (antisymmetric) spatial wave function. The properties

of the Dν
κlm functions reduce this requirement to

Ê12g
ν
κls = (−1)ν+κ+l+sgν

κls. (4.18)

The full six-dimensional Schrödinger equation for given l, s, even/odd par-

ity, and anym yields l or l + 1 coupled three-dimensional equations

0 = (ĤS −E)gγ
kls +

1∑

ν=0

1∑

n=−1

Ĥγ
νκng

ν
κ+2n,s. (4.19)

Here, γ = 0 or 1 and 0 ≤ κ ≤ l (even or odd κ for even or odd parity). For explicit

forms of the above Hamiltonian operators, see Appendix C.
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4.5 Review of dipole radiative transitions

The absorption dipole oscillator strength measures the likelihood of a transition

between two eigenstates of Ĥ0 on account of interactions with a perturbing elec-

tromagnetic field. We review the derivation of the oscillator strength (see Baym

[18] and Bethe and Salpeter [20] for details).

The nonrelativistic Hamiltonian of a two-electron atom in the presence of an

electromagnetic field with the mass of the nucleus to infinity may be written

ĤEM = Ĥ0 + Ĥint. (4.20)

where Ĥ0 describes the time-independent atom in the absence of radiation (Eq.

4.7) and Ĥint describes the interaction of the atom with radiation,

Ĥint =
∑

i

(

−pi ·Ai + Ai · pi

2c
− A2

i

2c2
+ ϕi

)

, (4.21)

where Ai and ϕi are the vector and scalar potential, respectively, at the location

of the ith electron (excluding the atomic Coulomb interactions included in V ),

and c is the speed of light. When the density of photons is small the second

term, corresponding to two-photon processes, is much smaller than the first. In

the transverse gauge the third term is zero. With these assumptions only the

terms linear in the vector potential contribute.

The oscillator strength is a measure of how strongly Ĥint couples eigenstates

of Ĥ0. Three distinct forms [85] for the oscillator strength in the dipole approx-

imation are well-known. The are denoted as length, velocity, and acceleration
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forms:

f l
ij =

2

3
(Ej −Ei)|〈j|R|i〉|2 (4.22)

f v
ij =

2

3

1

Ej − Ei
|〈j|P|i〉|2 (4.23)

fa
ij =

2

3

Z2

(Ej −Ei)3
|〈j |A| i〉|2 . (4.24)

Here Ei and Ej are the energies of the initial and final states. The two-particle

operators are

R = r1 + r2 (4.25)

P = p1 + p2 (4.26)

A =
r1

r3
1

+
r2

r3
2

, (4.27)

i.e. the position, momentum and acceleration of the electrons. For the detailed

forms used for calculating the oscillator strength in this article, see Appendix D.

If the wave functions, energies, and operators were exact, all three forms

would give exactly the same result. However, in a numerical calculation the

exact agreement may be destroyed whenever the commutator rule

P = i[Ĥ0,R] (4.28)

is violated. This may occur due to approximations to Ĥ0, P, or R, or approxi-

mations to their actions on the eigenstates. Agreement between the three forms

is a necessary but not sufficient condition for convergence of the final answer

[133, 85] because approximations made in constructing the wave function are

identical for each form. A more stringent test for convergence is to check the

convergence as a function of resolution or basis size, along with agreement be-

tween the three forms.
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The oscillator strengths f0n for transitions, 11S→ n1P of helium obey several

sum rules [39]

S(−1) =
2

3
〈(r1 + r2)

2〉 (4.29)

S(0) = 2 (4.30)

S(1) = −4

3
〈Ĥ0 − p1 · p2〉 (4.31)

S(2) =
2πZ

3
〈δ(r1) + δ(r2)〉, (4.32)

where

S(k) =
∑

n

|∆E0n|kf0n. (4.33)

All the expectation values above are for the ground state, the summation is over

all other states, including the continuum, and ∆E0n is the difference in energies

between the ground state and the n1P state. These sum rules provide checks

that the theoretical values for the oscillator strengths are correct. Independent

evaluation of S(k) involves using multiple methods to solve for all the final

states, which include the low energy highly correlated states, countably infinite

highly excited states, and uncountably many in the continuum. For a detailed

discussion see Ref. [19], in which it is shown that the two sides of Eqs. 4.29-4.32

agree to about one percent using a combination of theoretical and experimental

values for f0n.

4.6 Methods for calculating oscillator strengths

Oscillator strength calculations have taken many forms over the last half cen-

tury. The fundamental issue is the calculation of the initial and final wave func-

tions. The preferred method depends on how large the electron correlation en-

ergy is. Historically, variational methods have been used when correlations are
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important. Such methods are usually inapplicable to highly excited states be-

cause errors in the eigenproblem are cumulative as one goes to higher excita-

tions. Other approximate methods may yield satisfactory results in such cases.

We review the methodologies for determining the wave function.

4.6.1 Approximate methods

The central field approximation (see Ref. [20]) is a good approximation when

electrons are nearly uncorrelated and exchange effects are negligible. Their

wave function is then well represented by a single product of one-electron func-

tions. Each electron experiences some potential which is only a function of its

distance to the nucleus. This allows one to write the Schrödinger equation as a

system of possibly coupled ordinary differential equations.

The Hamiltonian for a two-electron atom is approximated by

Ĥ0 ≈ Ĥ1 + Ĥ2 (4.34)

Ĥi =
p2

i

2
+ Ui[ri], (4.35)

for some Ui, which takes into account the screening of the nucleus by the elec-

tron cloud. Green et al. [75] used this approximation, with wave functions of the

configuration interaction form, to produce tables of S→P and P→S transitions.

If the further approximation is made that the asymptotic form of the potential

at large ri is valid at all ri, one arrives at the Coulomb approximation [17],

Ui[ri] ≈ −Z − 1

ri

. (4.36)

Because the regularity condition at r = 0 no longer applies, one needs an al-

ternate method of determining the discrete energy eigenvalues. These may be
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borrowed from experimental measurements or other theoretical calculations.

Wiese et al. [148, 149] used this approximation adding exchange effects to calcu-

late oscillator strengths for hydrogen to calcium, Cameron et al. [32] tabulated

95 different transitions, and Theodosiou [144] produced extensive tables with

errors better than 10% and used a more sophisticated form [41] of Ui to calculate

the oscillator strength of the 11S→ 21P transition to four decimal places. Runge

and Valance [129] developed a similar approach which used the atomic Fues

potential for the valance electron,

U [r] =
Z

r
+

∞∑

l=0

BlP̂l

r2
, (4.37)

where Bl is an adjustable parameter and P̂l is the projection operator to a sub-

space defined by a given angular momentum l.

These methods greatly simplify the calculations and are advantageous if one

is attempting to produce a large catalogue of values, especially for high angular

momentum or highly excited states. However, the main limitation is for highly

correlated states, which are not well-represented by any of these approxima-

tions.

Multiconfiguration Hartree-Fock [57] and coupled cluster methods [56] give

much better results, but are more complicated.

4.6.2 Perturbation theory

Unlike the approximations above, perturbation theory can yield numerically

exact results in the limit of large order. Sanders, Scherr, and Knight [131, 130]

developed a 1/Z expansion, in which the electron-electron interaction is the
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perturbation. Even though Z is small, the perturbations can be carried out to

high order to produce good convergence and their oscillator strengths were con-

verged to three decimal places for the helium 11S→ 21P transition. The accuracy

improves with increasing Z and excitation.

Devine and Stewart [42, 43] divided the Hamiltonian as

Ĥ0 = ĤHF + Ĥ1, (4.38)

where ĤHF is the Hamiltonian projected into the subspace spanned by solutions

of the Hartree-Fock type and Ĥ1 is the difference between this operator and the

full nonrelativistic Hamiltonian H0. They were able to produce results correct

to three correct decimal places.

4.6.3 Variational methods

The main difference between various variational methods is the choice of basis.

Some bases are able to represent parts of the wave function critical to oscillator

strength calculations better than others. Configuration interaction (CI) calcu-

lations [134, 28, 29, 40, 36] can be precise but suffer from the absence of odd

powers of the interelectronic distance [46]. One includes this value along with

electron-proton distances (or linear combinations of these) in the bases using

perimetric [118] coordinates [133, 45, 46, 48, 53, 50, 52] or Hylleraas [87] coor-

dinates [146, 5, 97, 155], both of which have yielded some of the more accurate

calculations to date. One can also use a large, simple exponential basis [33]. Of

these, the most precise is Drake [45] who has calculated oscillator strengths to

seven decimal places as well as some finite nuclear mass and relativistic correc-

tions.
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Higher precision is not warranted until higher order corrections are in-

cluded.

4.6.4 Miscellaneous

Some other works, which do not fit into the above categories, are notable. An-

derson and Weinhold [5] calculated oscillator strengths with a Hylleraas basis

and derived rigorous bounds on their values. Roginsky et al. [128] present a

method to change the wave function so that the length and velocity forms agree,

getting a better result. Abrashkevisch et al. [2] used the hyperspherical adiabatic

approach. The most complete tabulation of transitions is given by Wiese and

Fuhr [147].

4.7 Variables and domains

To achieve exponentially fast convergence with a pseudospectral method, it is

imperative that the solution be smooth for the choice of coordinates everywhere.

This typically requires smooth representations on several computational subdo-

mains. It is useful to have a guide for choosing coordinates.

If one has the ordinary differential equation
(
d2

dx2
+
pa[x]

x− a

d

dx
+

qa[x]

(x− a)2

)

f = 0, (4.39)

where both pa[x] and qa[x] are analytic at x = a, then x = a is a regular singular

point and f has at least one Frobenius type solution about x = a of the form,

f [x] = (x− a)ta

∞∑

n=0

cn(x− a)n, (4.40)
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where the coefficients cn can be derived by directly plugging into Eq. 4.39 and

ta is the greatest of the solutions to the indicial equation

ta(ta − 1) + pa[a]ta + qa[a] = 0. (4.41)

For a proof, see Ref. [37]. Exponential convergence of the pseudospectral

method for a differential equation of the form of Eq. 4.39 for all a in the compu-

tational domain requires ta be a nonnegative integer for all a in the domain.3

A simple example is the radial Schrödinger equation for a hydrogenic atom

(
d2

dr2
+

2

r

d

dr
− l(l + 1) − 2Zr − 2Er2

r2

)

Rnl = 0, (4.42)

where Rnl is the radial part of the full wave function. The only point at which

the above condition is nontrivial is r = 0. A comparison with Eq. 4.39 yields

p0[0] = 2 and q0[0] = l(l + 1), which gives t0 = l, the well known result for

hydrogenic wave functions.

This result tells us that spherical coordinates are a good choice for solving

hydrogenic wave functions using pseudospectral methods. A bad choice would

be cartesian coordinates. For simplicity, restrict the Schrödinger equation to the

z axis

d2ψ

dz2
+

(
2Z

|z| + 2E

)

ψ = 0, (4.43)

where ψ is the wave function. It is easy to see that at z = 0, q0[z] is not analytic.

Therefore the Frobenius method fails. The ground state solution is

ψ = e−Z|z|. (4.44)

3The full class of one dimensional problems that would have exponentially fast conver-
gence is larger because pseudospectral method just needs that the solution is smooth which
is a slightly weaker statement than the function needs to be analytic. However, for all problem
points discussed here, this distinction does not make any difference.
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There is a cusp at z = 0, which the pseudospectral method would not handle

well and convergence would be limited to being algebraic.

An arbitrary second order partial differential equation (PDE) may have sin-

gularities that occur on some convoluted hypersurface. Deriving the analytic

properties of a solution near such a surface is a daunting task. A restriction is

made to PDE’s with singularities on a flat surface determined by xi = ai for

some coordinate xi. Focusing on this one coordinate and singularity, the PDE

can be written in the form

(

∂2

∂xi
2

+
P̂ i

ai
[x]

xi − ai

∂

∂xi
+

Q̂i
ai

[x]

(xi − ai)2

)

f = 0 (4.45)

for each dimension xi, where P̂ i
ai

and Q̂i
ai

are linear second order differential

operators that do not include derivatives with respect to xi and only include

functions that are analytic with respect to xi at a. There is no generalization of

the above theorem that allows one to conclude that f is analytic at x = ai. The

Schrödinger equation for two-electron atoms can be written in this form about

the point ρ =
√

r2
1 + r2

2 = 0. If such a theorem existed, the wave function could

be expanded about ρ = 0 as

ψ =

∞∑

n=0

Anρ
n, (4.46)

where An is an analytic function of the five remaining variables. However,

Bartlett [14] proved that this cannot be the case. Instead, Fock [59, 60] suggested

a solution of the form

ψ =
∞∑

n=0

⌊n/2⌋
∑

m=0

Bnmρ
n(log ρ)m, (4.47)

where Bnm is an analytic function of the remaining five variables. This solution

has been shown to have a continuous value of the local energy Ĥψ/ψ near ρ = 0

by Myers et al. [113]. The logarithmic singularity has only a slight effect on

98



the convergence of variational energies [139] and for most measures of error

does not affect pseudospectral calculations until very high resolutions [73], so

we ignore it here.

In the absence of a definite theorem, we state as a rule of thumb, that one

should require that the operators P̂ i
ai

and Q̂i
ai

have forms in a neighborhood

about ai which satisfy

P̂ i
ai

=
∞∑

n=0

(xi − ai)
np̂i

ain
(4.48)

Q̂i
ai

=
∞∑

n=0

(xi − ai)
nq̂i

ain
, (4.49)

where p̂i
ain

and q̂i
ain

are linear differential operators not containing xi or its

derivatives, for all coordinates xi and ai within the domain of xi.

The obvious places where Eqs. 4.48 and 4.49 might fail is where coefficients

of the derivatives in the Hamiltonian (See Appendix C) are singular. These are

r1, r2, r12 = 0 and θ12 = 0, π. The first three are physical singularities explored

in detail in Ref. [73]. These cannot be treated separately until one changes vari-

ables because it is possible for r1, r2, and r12 to be zero simultaneously and so

Eqs. 4.48 and 4.49 would be impossible to satisfy for all three coordinates at the

same time. It is for this reason, the coordinate ρ is used. The point ρ = 0 cor-

responds to both electrons being at the nucleus. The latter two are coordinate

singularities corresponding to a colinear arrangement of the two electrons and

the nucleus. These do not exist for S states, hence, the slight change in coordi-

nate choice for the third variable used in each domain from Ref. [73] (i.e. from

the coordinate C = − cos θ12 to just θ12).

One choice of coordinates and subdomains which satisfy Eqs. 4.48 and 4.49
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is given here. Let

r1 = ρ cosφ (4.50)

r2 = ρ sinφ (4.51)

r12 = ρ
√

2 sin ζ (4.52)

√
2 sin ζ =

√

1 − cos θ12 sin 2φ (4.53)

cosβ12 = − cos 2φ
√

1 − cos2 θ12 sin2 2φ
(4.54)

x =
1 − ρ

1 + ρ
. (4.55)

The full ranges of these variables are given by:

0 ≤ r1, r2, ρ <∞

|r1 − r2| ≤ r12 ≤ r1 + r2

0 ≤ θ12, β12 ≤ π

0 ≤ φ, ζ ≤ π/2

−1 ≤ x ≤ 1.

(4.56)

The coordinate x maps the semi-infinite domain to a finite domain. Two differ-

ent sets of variables are used: {x, φ, θ12} and {x, ζ, β12}, in three domains shown

in Fig. 4.1 and given below.

D1 : −1 ≤ x ≤ 1, 0 ≤ φ ≤ 1
2
, −1 ≤ cos θ12 ≤ 1

D2 : −1 ≤ x ≤ 1, 1
2
≤ φ ≤ π

4
, −1 ≤ cos θ12 ≤ 2

3

D3 : −1 ≤ x ≤ 1, 0 ≤ ζ ≤ 1
2
, −1 ≤ cosβ12 ≤ 0.

(4.57)
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Figure 4.1: (Color online). This is the arrangement of grid points of the
three domains at a constant value of ρ in φ and θ12 coordinates
for n = 20. Note that the point density becomes larger at the
boundary of each subdomain and that no grid points sit on the
Coulomb singularities. The blue circles, red crosses, and green
pluses belong to domains D1, D2, and D3, respectively. D1 and
D2 are rectangular domains, whileD3 has the curved boundary
in φ, θ12 coordinates but is rectangular in ζ , β12 coordinates. The
electron-proton singularity occurs on the left side (solid line
at φ = 0). The entire line corresponds to one physical point.
The electron-electron singularity occurs at the lower right hand
corner (solid disk at φ = π/4, θ12 = 0). A line of symmetry falls
on the right side (dashed line at φ = π/4 where r1 = r2).

101



4.8 Boundary conditions

4.8.1 Internal boundary conditions

It is necessary to ensure continuity of the wavefunction and its normal deriva-

tive at internal boundaries. There are two ways in which the subdomains can

touch: they can overlap or they can barely touch. For clarity, consider a one-

dimensional problem with two domains. Let the first domain be domain 1 and

the second be domain 2 with extrema x1,min < x2,min ≤ x1,max < x2,max, where the

1 and 2 now refer to domain number. The first case corresponds to x2,min < x1,max

and the second to x2,min = x1,max ≡ x∗. For both cases, exactly two conditions

are need to make the wavefunction and its derivative continuous. The simplest

choice for the first case is

ψ1[x1,max] = ψ2[x1,max] (4.58)

ψ1[x2,min] = ψ2[x2,min], (4.59)

and for the second case is

ψ1[x∗] = ψ2[x∗] (4.60)

d

dx
ψ1[x∗] =

d

dx
ψ2[x∗]. (4.61)

For multi-dimensional grids, the situation is analogous. The conditions are

applied on surfaces of overlap. In this case the derivatives are surface normal

derivatives. On a discrete grid, a finite number of conditions are given which, in

the limit of an infinitely fine mesh, would cover the entire surface. Additional

discussion and illustrations of the technique are in Ref. [73].
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4.8.2 The symmetry condition

The Hamiltonian (see appendix C) is symmetric with respect to particle ex-

change. Therefore, there are two types of eigenstates: those with symmetric

spatial wave functions (singlets) and those with antisymmetric spatial wave

functions (triplets). The radial wave functions gν
κls satisfying the appropriate

symmetry must obey Eq. 4.18. This condition corresponds to setting the ra-

dial wave functions or their derivatives with respect to φ or β12 equal to zero at

φ = π/4 or β12 = π/2, respectively.

4.9 Matrix methods

To solve for the wave function, given k, l and s, one must calculate the values

of gν
κls for each k and i that enters the summation in Eq. 4.17. There are two

types of conditions which must be satisfied: the Schrödinger equation and the

boundary conditions. The first can be represented in matrix form as






H0
0 + (HS − E)1 H0

1

H1
0 H1

1 + (HS − E)1











g0

g1




 = 0, (4.62)

where E is the energy, 1 is the identity matrix, Hγ
ν is the tridiagonal matrix

Hγ
ν =















Hγ
νPν0 Hγ

νPν1 0 · · · 0

Hγ
ν,Pν+2,−1 Hγ

ν,Pν+2,0 Hγ
ν,Pν+2,1

. . .
...

0 Hγ
ν,Pν+4,−1 Hγ

ν,Pν+4,0

. . . 0

...
. . . . . . . . . Hγ

ν,km−2,1

0 · · · 0 Hγ
ν,km,−1 Hγ

ν,km,0















, (4.63)
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with P0 is zero (one) and P1 is two (one) for even (odd) parity states and km =

2⌊l/2⌋ + P0, and

gν =









gν
Pν ls

...

gν
kmls









, (4.64)

with each gν
κls being a vector containing all the values of the corresponding func-

tion on the grid points. The length of the vector gν is either ⌊l/2⌋ or ⌈l/2⌉, de-

pending on the angular momentum, spin, and parity. For the S and P states

calculated in this article, Hγ
ν is only a one by one matrix. Each Hγ

νκn and HS are

block diagonal matrices, where each block corresponds to a subdomain and is

a pseudospectral matrix constructed from Eq. 4.6 with Ĥ replaced by Ĥγ
νκn or

ĤS , respectively (see appendix C) and using the grid points of that subdomain.

So the number of columns and rows of Hγ
νκn and HS are both equal to the total

number of grid points.

Similarly the boundary conditions can be written as





B0 0

0 B1











g0

g1




 = 0, (4.65)

where

Bν =












Bjν
ν 0 · · · 0

0 Bjν
ν

. . .
...

...
. . . . . . 0

0 · · · 0 Bjν
ν












, (4.66)

is a diagonal matrix of the same size as Hγ
ν , and jν = ν + Pν + l + s, Bjν

ν is a

rectangular matrix of the same width as Hγ
νκn, but a smaller height correspond-

ing to the number of grid points near internal boundaries or where a symmetry

condition holds. If ν+Pν + l+s is even (odd) Bν+Pν+l+s
ν enforces zero derivative

(value) along the symmetry plane.
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As in Ref. [73] each of the Bjν
ν matrices can be split into two submatrices.

Bjν

ν =
(
Bjν

ν1B
jν

ν2

)
, (4.67)

and similarly splitting the vector gν
κls

gν
κls =






gν
κls1

gν
κls2




 , (4.68)

yields the equation

Bjν

ν1g
ν
κls1 +Bjν

ν2g
ν
κls2 = 0, (4.69)

where the vector and matrix have been ordered so that the index 1 refers to the

nb boundary points and the index 2 refers to the ni interior points. The grid

point nearest to the boundary, at which an explicit boundary condition is given

is considered a boundary point. Bjν

ν1 is an nb by nb matrix and Bjν

ν2 is an nb by ni

matrix. The total number of grid points is nt = nb + ni.

Each nt by nt block of the Hamiltonian matrix Hγ
ν (Eq. 4.63) can be split in a

similar way,

Hγ
νκn =

nb{

ni{






Hγ
νκn11

Hγ
νκn21

Hγ
νκn12

Hγ
νκn22






︸ ︷︷ ︸

nb+ni

. (4.70)

So there are nt + nb equations and nt unknowns (g1 and g2) as well as the

eigenvalue. One could approximately solve these equations with singular value

decomposition [124], but it is much faster to simply discard the first nb rows of

each Hγ
νκn (one should still check after finding a solution that it approximately

satisfies those rows of the matrix equation) and incorporate the boundary con-

ditions into the remaining eigenvalue problem by replacing each Hγ
νκn with

Hγ
νκn → Hγ

νκn22 −Hγ
νκn21(B

jν

ν1)
−1Bjν

ν2, (4.71)
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where Bjν

ν1 has an inverse because all of its rows are linearly independent (other-

wise more than one boundary condition would have been specified for a given

boundary point). Calculating the inverse is computationally inexpensive since

nb ≪ nt. One solves for gν
κls1 afterwards with

gν
κls1 = −(Bjν

ν1)
−1Bjν

ν2g
ν
κls2. (4.72)

The number of grid points in each subdomain was nt = 2n × n × n (greater

resolution is needed along the semi-infinite coordinate). This leads to a Hamil-

tonian matrix size of nt × nt for S states and 2nt × 2nt for odd parity P states.

After solving for boundary conditions with the above procedure, these are re-

duced to nm × nm, where nm = ni = 6n3 − 12n2 + 6n and nm = 2ni, respectively.

The number of nonzero elements nNZ scales as n4. For n = 20, this corresponds

to 560 MB and 1.8 GB, respectively, of memory required to store the matrix4.

The sizes of the matrices and the number of nonzero elements is given in Tab.

4.1.

The method of inverse iteration [124] was used to find eigenvalues with a

shift equal to the known eigenvalues plus 10−4 so that the matrix is not too sin-

gular. Each iteration requires a matrix solve. For the smaller matrices (up to

17, 000×17, 000), these solves were performed using Mathematica’s [153] multi-

frontal matrix solve routine. This method is fast (eigenvalues can be calculated

in about 10 minutes for that size) but 8 GB or RAMwas not enough to do larger

sizes. For larger matrices, the generalizedminimal residual (GMRES) method of

PETSc [10, 9, 11] was used. The GMRES method produces a solution with the

Krylov space of the matrix and is more memory efficient.

4Note: some eigenvalue solvers do not require one to store this matrix and simply require a
function which can calculate the matrix times a given vector.
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Table 4.1: The matrix sizes nm and number of nonzero elements nNZ for
each resolution n.

Resolution 1S States 1P States

n nm nNZ nm nNZ

7 1 512 182 952 3 024 573 720

8 2 352 381 024 4 704 1 204 448

9 3 456 722 304 6 912 2 297 276

10 4 860 1 273 320 9 720 4 069 800

11 6 600 2 118 600 13 200 6 798 440

12 8 712 3 362 832 17 424 10 826 640

13 11 232 5 133 024 22 464 16 571 568

14 14 196 7 580 664 28 392 24 531 416

15 17 640 10 883 880 35 280 35 292 600

16 21 600 15 249 600 43 200 49 536 960

17 26 112 20 915 712 52 224 68 048 960

18 31 212 28 153 224 62 424 91 722 888

19 36 936 37 268 424 73 872 121 570 056

20 43 320 48 605 040 86 640 158 726 000

21 50 400 62 546 400

22 58 212 79 517 592

23 66 792 99 987 624
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Figure 4.2: (Color online). A log-log plot of the approximate condition
number c of the pseudospectral matrices as a function of reso-
lution.

All calculations were done with double precision arithmetic. This gives a

lower bound to the error in the calculated eigenstate. The effect is relatively

big for the small exponential tail. We observe the wave functions to no longer

follow their true asymptote at about the level of 10−8.7 of their maximum value.

This value is independent of resolution. Since a constant value for the wave

function on a semi-infinite domain leads to divergent matrix elements,5 we set

any value of the eigenvector below this threshold to zero.

Condition numbers of pseudospectral matrices grow rather fast [121]. The

matrices are not normal (the matrices and their transposes do not commute);

nonetheless, we approximate the condition number by the ratio of the largest

5For a finite resolution, the quadrature still leads to a finite result with an error enhanced by
at most 104.
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to smallest eigenvalues. This approximation is plotted versus resolution in Fig.

4.2. It starts out large and grows asymptotically as n12. An ill-posed problem

has a condition number which grows exponentially. This problem is well-posed

but in order to solve this system of equations preconditioning is necessary. A

reasonable preconditioner is a matrix produced by a second order finite differ-

encing scheme on the same set of grid points. [121] The preconditioning matrix

solves are further preconditioned with a block Jacobi preconditioner.

The modified Gramm-Schmidt procedure was used to orthogonalize the

Krylov subspace. Furthermore, the GMRES restart parameter, m needs to be

very large for convergence, empirically, m = 1.3n
3/4
m , where nm × nm is the ma-

trix size. The computation time scales as n3
m, which for n = 20 was about a day

running on six 2 GHz processors. The eigenvalue solver is the slowest part of

the entire computation.

4.9.1 Quadrature

In this article, we calculate matrix elements of the form 〈i|Ô|j〉, where |i〉 and |j〉

are two quantum states and Ô is some operator. This calculation requires nu-

merical integration. Pseudospectral methods, by design, use quadrature points

as the grid points. A one dimensional function f [x] can be numerically inte-

grated from x = −1 to x = 1 with weight function g[x] by

∫ 1

−1

f [x]g[x]dx ≈
∑

wif [xi], (4.73)

where wi are the quadrature weights specific to the weighting function g at grid

point xi. This quadrature formula is exponentially accurate with increasing res-

olution if f is smooth over the domain −1 ≤ x ≤ 1. The problems solved in this
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article are three-dimensional with three overlapping subdomains. A separate

quadrature can be done in each domain. This is illustrated for domain D1. The

three coordinates used in this domain are x, φ, and θ12 with ranges −1 ≤ x ≤ 1,

0 ≤ φ ≤ 1, and 0 ≤ θ12 ≤ π. Define

x1 = x (4.74)

x2 = 4φ− 1 (4.75)

x3 =
2θ12
π

− 1, (4.76)

so that −1 ≤ x1, x2, x3 ≤ 1. Then integrals over D1 can be done with three

quadratures like Eq. 4.73. To satisfy the requirement that f is smooth (up to

the logarithmic singularity at ρ = 0), we choose g = 1, which corresponds to

Legendre quadrature points, which are used for all calculations in this article

instead of Chebyshev which were used in Ref. [73].

If all the subdomains are nonoverlapping, then the above scheme is suffi-

cient for all integrals. However, no set of nonoverlapping subdomains for which

f is smooth could be found.6 A method is needed for handling overlapping re-

gions, which the above scheme double counts if a quadrature is performed in

each subdomain. For these regions, an interpolation was performed to two new

2n × n × n grids spanning the overlap regions, shown in Fig 4.3. For the pseu-

dospectral method, interpolation is done to the same order as the grid size. A

quadrature can then be done over the overlap region, which are used to correct

the overall integration.

6Some do exist which are only nonanalytic on some edges, but these produce nonexponential
convergence.
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Figure 4.3: (Color online). This is the arrangement of grid points of the
three domains at a constant value of ρ in φ and θ12 coordinates
for n = 10. As in Fig. 4.1, the blue circles, red crosses, and
green pluses belong to domains D1, D2, and D3, respectively.
Also shown are the overlap grid points in D1 ∩ D3 (purple
stars) and D2 ∩ D3 (brown squares). The electron-electron sin-
gularity is visible at the lower right hand corner (solid disk at
φ = π/4, θ12 = 0) as well as the line of symmetry on the right
side (dashed line at φ = π/4 where r1 = r2).

The overlap region is divided into two subdomains

D13 = D1 ∩D3 (4.77)

D23 = D2 ∩D3 (4.78)

These definitions are equivalent to

D13 : −1 ≤ x ≤ 1, φmin ≤ φ ≤ 1
2
, 0 ≤ θ12 ≤ θ12,max[φ]

D23 : −1 ≤ x ≤ 1, 1
2
≤ π

4
, arccos 2

3
≤ θ12 ≤ θ12,max[φ],

(4.79)

where φmin = π/4 − 1/2 is determined by ζ = 1/2 and θ12 = 0 and θ12,max[φ] =
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arccos[cos 1 csc 2φ] is determined by ζ = 1/2. For these quadratures one must

redefine x1, x2, x3. For example, in D13

x1 = x (4.80)

x2 = 2

(
1

2
− φmin

)

(φ− φmin) − 1 (4.81)

x3 = 2θ12,max[φ]θ12 − 1. (4.82)

One preceeds by numerically integrating x3 first and then the others as normal.

The function values at the points necessary for the quadrature {xi′ , φj′, θj′k′

12 }

are calculated with interpolation

f [xj′1, φj′2, θ
j′
2
j′
3

12 ] ≈
∑

J

f [xj1, φj2, θj3
12]CJ [xj′1 , φj′2, θ

j′
2
j′
3

12 ]. (4.83)

where CJ refers to the effective basis defined in Eq. 4.3.

Sometimes f will include a Dirac delta function. In such a case, one inte-

grates out the delta function analytically. One is left with a two dimensional

integral on the surface where the argument of the delta function is zero. This

entails first interpolating to that surface using Eq. 4.83. One can then proceed

normally.

4.10 Energy and oscillator strength results

The purpose of this article is to generalize the pseudospectral methods we pre-

viously developed for S states to the general angular momentum case, calculate

oscillator strengths, and test how local errors in the wave function vary with

resolution. We study the convergence of the energies of S and P states and the

absorption oscillator strength of the transition between them.
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Tab. 4.2).

The most widely quoted number to ascertain convergence of a quantum

method is the energy. This value gives a global measure of accuracy. Figure

4.4 shows the convergence rate of the energy of the 11S and 21P states of helium.

Here and throughout the results section the high precision values of Drake [45]

are taken to be exact. The energy error for both states decreases exponentially

with resolution. Convergence for the S state is similar to that reported in Ref.

[73] with slight differences related to a different choice of coordinates. The cur-

rent calculation also goes to n = 20 instead of n = 14 in Ref. [73].

A common feature of the energy convergence and all other convergence

plots in this article is nonmonotonic convergence. This method is not varia-
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Figure 4.5: (Color online). The logarithm base 10 of the error in the oscil-
lator strength of the 11S→ 21P transition of helium. The dark
blue circles are for the length form, the light red crosses are
for the velocity form, and the green plusses for the acceleration
form with dashed blue, dotted red, and dot-dashed green fits,
respectively (see Tab. 4.2).

tional, so there is no reason to expect monotonic convergence. All quantities

calculated can be above or below their actual value, with the error being quasir-

andomly determined by the exact positions of all the grid points. As is shown

in these plots, the “random” jumps in error decrease in magnitude as the reso-

lution is increased.

As described in Sec. 4.5, there are three commonly used forms for the oscilla-

tor strength. The length, velocity, and acceleration forms depend most strongly

on the value of the wave function at positions in configuration space corre-

sponding to large, medium, and small separations. Their relative errors can be
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indicate where the wave function is more accurate. For most variational calcu-

lations, the acceleration form tends to be much less accurate than the other two

forms, indicating errors in the wave function at small separation that have lit-

tle effect on the variational energy. The length and velocity forms give roughly

equally accurate results.

The oscillator strength of the 11 S → 21P transition was calculated using all

three forms with errors shown in Fig. 4.5. Here, all three forms give roughly the

same results. At most resolutions the points are on top of one another and their

fits are indistinguishable. One interpretation is that the wave function errors in

the oscillator strength calculation are constant relative errors (excluding the part

of space where the wave function is so small that roundoff error dominates).

It should be noted that the value used as the exact value [45] is given to

seven decimal places. Consequently, the errors inferred for the highest resolu-

tion pseudospectral results in Fig. 4.5 are not too precise. There is little practical

need for additional digits since a host of other effects including finite nuclear

mass, relativistic, and quadrupole corrections would contribute to any hypo-

thetical, high precision experimental measurement of the oscillator strength at

greater levels.

As pointed out by Schiff et al. [133] and reviewed by Hibbert [85], the as-

sumption that the differences between the values of the oscillator strength from

the different forms give a measure of the accuracy of the method is not valid,

and they suggest also checking the difference between the calculated value and

the extrapolated value. This latter procedure is not possible to do for a pseu-

dospectral method with nonmonotonic convergence. In Fig. 4.6 the error in the

average of the three oscillator strength forms is plotted with the standard de-
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Figure 4.6: (Color online). The logarithm base 10 of the error in the aver-
age of the length, velocity, and acceleration forms of the oscil-
lator strength (dark blue circles) and their standard deviation
(light red crosses) for the 11S → 21P transition of helium, with
dashed blue and dotted red fits, respectively (see Tab. 4.2).

viation. The standard deviation is about an order of magnitude less than the

error in the average value of the oscillator strength. The trend lines suggest that

the standard deviation is approaching the error. A possible explanation is that

the calculation at the highest resolutions is starting to become sensitive to our

truncation of the wave function when it is small (see Sec. 4.9) and so this error

becomes the dominant contribution to both the standard deviation and the total

error. So at n = 20, we assume the standard deviation and total error are equal

and get a value for the oscillator strength of 0.27616499(27) which compares fa-

vorably to Drake’s [45] 0.2761647.

All convergence data were fit to functions of the form A10−β(n−20) using the
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Table 4.2: The fit parameters to all the convergence plots of quantities Q
in this section.

Q Figure A β

E(11S) 4.4 9.0 × 10−10 0.46

E(21P) 4.4 5.2 × 10−9 0.42

f l
12 4.5 8.4 × 10−8 0.40

f v
12 4.5 9.2 × 10−8 0.39

fa
12 4.5 8.6 × 10−8 0.40

favg
12 4.6 8.7 × 10−8 0.40

fSD
12 4.6 2.2 × 10−8 0.34

same procedure as in Ref. [73]. Because of uncertainty in the errors for the

largest resolutions (n = 19 and n = 20) these points were not used in the fits of

f l
12, f

v
12, f

a
12, and f

avg
12 . All pairs of fit parameters are roughly the same, especially

for the oscillator strength convergence fits.

4.11 Corrections to the Hamiltonian

There are two small parameters in which the full Hamiltonian is often exanded:

the ratio of the reduced mass of the electron-nucleus pair to the nuclear mass,

µ/M = 1.37074563559(58)× 10−4 [107, 108] (for 4He) and the fine structure con-

stant α = 7.2973525376(50)× 10−3 [107, 108]. Here, the lowest order corrections

in µ/M and α are considered. For very high-precision work, one needs the per-

turbative corrections in powers of each small quantity.
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4.11.1 Finite nuclear mass correction

The nonrelativistic (α0) Hamiltonian for two-electron atoms can be written

Ĥnr = Ĥ0 + Ĥcm + Ĥmp, (4.84)

where Ĥ0 is the fixed nucleus approximation to the hamiltonian with the elec-

tron mass set to µ, Ĥcm is the kinetic energy of the center of mass, and Ĥmp is the

mass polarization term:

Ĥ0 =
1

2
(p2

1 + p2
2) + V̂ (4.85)

Ĥcm =
1

2(M + 2me)
p2

cm (4.86)

Ĥmp =
1

M
p1 · p2, (4.87)

where V̂ is the potential energy operator, me is the electron mass, pcm is the

momentum operator of the center of mass, and reduced mass atomic units (µ =

1) are being used. The second term is removed in center-of-mass coordinates

and the last term provides the dominant nontrivial correction for finite nuclear

mass (the trivial one being the scaling of the energy by me/µ).

4.11.2 Relativistic corrections

The Schrödinger equation is a nonrelativistic approximation to the true equa-

tion of motion. The lowest order relativistic corrections enter at order (Zα2), as

summarized in Ref. [58]. The Breit-Pauli Hamiltonian encapsulates the correc-

tion

ĤBP = Ĥnr + Ĥrel, (4.88)
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where Ĥnr is the usual nonrelativistic Hamiltonian used in Schrödinger’s equa-

tion and Ĥrel is the lowest order relativistic correction. The latter can be further

divided into nonfine-structure (NFS) and fine-structure (FS) contributions:

ĤNFS = Ĥmass + ĤD + ĤSSC + ĤOO (4.89)

ĤFS = ĤSO + ĤSOO + ĤSS. (4.90)

The separate contributions to the Hamiltonian are the mass-velocity (mass),

two-body Darwin (D), spin-spin contact (SSC), orbit-orbit (OO), spin-orbit (SO),

spin-other-orbit (SOO), and the spin-spin (SS) terms. These are explicitly given

by

Ĥmass = −α
2

8

∑

i

p4
i (4.91)

ĤD = −α
2Z

8

∑

i

∇2
i r

−1
i +

α2

4

∑

i<j

∇2
i r

−1
ij (4.92)

ĤSSC = −8πα2

3
(s1 · s2)δ(r12) (4.93)

ĤOO = −α
2

2

(
p1 · p2

r12
+

r12(r12 · p1) · p2

r3
12

)

(4.94)

ĤSO =
α2Z

2

∑

i

l̂i · ŝi

r3
i

(4.95)

ĤSOO = −α
2

2

∑

i6=j

(
rij

r3
ij

× pi

)

· (si + 2sj) (4.96)

ĤSS =
α2

r3
12

(

s1 · s2 −
3

r2
12

(s1 · r12)(s2 · r12)

)

, (4.97)

where i and j can be 1 or 2, pi and ri are the momentum and position of the

ith electron with respect to the nucleus, respectively, r12 is the vector pointing

from the first electron to the second, and ŝi and l̂i are the one-electron spin and

angular momentum operators of the ith electron, respectively. The last three

terms are zero for 1S states due to symmetry considerations.

There are many higher order terms (see Refs. [46, 50, 52]) but we do not
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consider any of them.

4.12 Mass polarization and relativistic correction calculations

The mass polarization and low order relativistic corrections to the nonrelativis-

tic Hamiltonian have been known for some time [20]. The main challenge in

calculating these terms has been in numerical improvements to the wave func-

tions. Early calculations [94, 89, 142, 6] were critical for comparing experimental

and theoretical energies, confirming that Schrödinger’s equation is correct in the

nonrelativistic limit for helium.

The developement of computers enabled Pekeris and coworkers [118, 119,

132] and others [136, 138, 82, 105, 40] to reach theoretical uncertainties in the

energy of about 10−2 cm−1. Such precision allowed Lewis and Serafino [105] to

calculate the fine structure constant by comparing with experimental measure-

ments of the 23P splitting. They obtained α−1 = 137.03608(13) only surpassed

at the time by the measurements of the electron anomolous magnetic moment

(g− 2) by a factor of two in estimated uncertainty and the a c Josephson experi-

ments by a factor of four.

Drake and collaborators [44, 51, 154, 49, 46, 47, 53] and Pachucki [116] have

pushed relativistic corrections up to order α5 and beyond. Drake [47] matched

theoretical and observed energy differences in the J = 0, 1 splitting of the 23P

state to determine α−1 = 137.0359893(23), which differs from the g − 2 result

137.0359996(8), but agrees with the ac Josephson results 137.0359872(43) [47].

However, the J = 1, 2 splitting gives an unreasonable value, indicating that the

helium fine structure needs to be understood better.
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4.13 Expectation values
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Figure 4.7: (Color online). The logarithm base 10 of the error in the expec-
tation values of operators that scale as ρ2 for helium. The dark
blue circles are for 〈r2

1〉, the light red crosses are for 〈r2
12〉, and

the green plusses are for 〈r1r2 cos θ12〉with dashed blue, dotted
red, and dot-dashed green fits, respectively (see Tab. 4.3).

This article does not attempt to compete with the above works, merely to test

the pseudospectral method’s ability to accurately represent the wave function in

different parts of configuration space and to compare the convergence rates of

the errors with that of the energies and oscillator strengths. To produce a repre-

sentative set of calculations, the expectation values of all the operators needed

for leading order relativistic (Sec. 4.11.2) and finite nuclear mass (Sec. 4.11.1)

corrections, for the oscillator strength sum rules (Eqs. 4.29-4.32), and 〈V 2〉 are

presented here. They are organized by type, which stress different parts of the

wave function or different parts of the calculation.
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Figure 4.8: (Color online). The logarithm base 10 of the error in the expec-
tation values of operators that scale as ρ for helium. The dark
blue circles are for 〈r1〉 and the light red crosses are for 〈r12〉
with dashed blue and dotted red fits, respectively (see Tab. 4.3).

One way to analyze local convergence is to look at the convergence of vari-

ous operators that give different weights to different parts of the wave function.

One can see that in all calculations of expectation values shown in Figs. 4.7, 4.8,

4.9, 4.10, 4.11, and 4.12, not only are the rates of convergence roughly the same,

but also the magnitudes of the errors. These errors decrease exponentially until

they reach roughly the level of error produced by truncating the wave function

(see Sec. 4.9) at the highest resolutions. The differences that are seen in these

plots are at low resolution, for which the representation of the wave function at

large ρ is particularly poor and so the expectation values that scale as ρ2 and ρ

have larger errors there. However, at high resolution the errors are about the

same. This is reflected in the fits (see Tab. 4.3).
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Figure 4.9: (Color online). The logarithm base 10 of the error in the ex-
pectation values of operators that scale as 1/ρ for helium. The
dark blue circles are for 〈1/r1〉 and the light red crosses are for
〈1/r12〉 with dashed blue and dotted red fits, respectively (see
Tab. 4.3).

Even the expectation values of delta functions (See Fig. 4.11) which are most

sensitive to the Kato cusp conditions [92] have the same convergence properties.

This provides evidence that our choices of coordinates allowed the pseudospec-

tral method to infer the solution in the vicinity of a cusp.

The error in the mass polarization and orbit-orbit terms are also shown in

Fig. 4.12. Again, the convergence rates are the same. Calculations of deriva-

tives (needed to form the appropriate operators) appear to be just as accurate

as the function values, even when they are most strongly weighted close to the

electron-electron cusp, as is the case for the orbit-orbit interaction.
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Figure 4.10: (Color online). The logarithm base 10 of the error in the ex-
pectation values of operators that scale as 1/ρ2 for helium. The
dark blue circles are for 〈1/r2

1〉, the light red crosses are for
〈1/r2

12〉, the green plusses are for 〈1/r1r2〉, and the black stars
are for 〈1/r1r12〉 with dashed blue, dotted red, dot-dashed
green, and solid black fits, respectively (see Tab. 4.3).

All convergence data were fit to functions of the form A10−β(n−23) using the

same procedure as in Ref. [73]. The fit parameters are shown in Tab. 4.3. The

most striking feature is how similar the magnitudes of the errors are at n = 23.

Also, the exponential parameter β is roughly the same for all expectation val-

ues and the energies and oscillator strengths (see Tab. 4.2) with the differences

already discussed. So as one increases resolution, one increases the accuracy of

all expectation values or oscillator strengths by roughly the same amount.
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Figure 4.11: (Color online). The logarithm base 10 of the error in the ex-
pectation values of delta function operators for helium. The
dark blue circles are for 〈δ(r1)〉 and the light red crosses are
for 〈δ(r12)〉 with dashed blue and dotted red fits, respectively
(see Tab. 4.3).

4.14 Conclusions

A general prescription has been given for choosing subdomains for a pseu-

dospectral method. This prescription has been applied to the helium problem

with success.

The pseudospectral method provides exponentially fast convergence for

many expectation values and the oscillator strength. The magnitudes of the

errors and the convergence rates are roughly the same as that of the energy. The

calculations were performed out to near the limits of double precision arith-

metic. Higher precision will be necessary to improve these calculations. No fine
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Figure 4.12: (Color online). The logarithm base 10 of the error in the ex-
pectation values of the mass polarization and the orbit-orbit
interaction operators for helium. The dark blue circles are for

〈p1 ·p2〉 and the light red crosses are for 〈ĤOO〉/α2 with dashed
blue and dotted red fits, respectively (see Tab. 4.3).

tuning was done to improve convergence other than ensuring nonanalytic be-

havior was treated properly. This result means that the pseudospectral method

should be widely applicable to many other calculations.

The method has been generalized to handle P states and can be trivially ex-

tended to higher angular momenta, albeit at larger computational cost. The

GMRES method has been shown to be able to solve these large matrix problems

with modest computational resources.

The oscillator strength of the helium 11 S→ 21P transition was calculated to

about the same accuracy as the most accurate value in the literature [45] and
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Table 4.3: The fit parameters to all the convergence plots of quantities Q
in this section.

Q Figure A β

〈r2
1〉 4.7 3.3 × 10−11 0.54

〈r2
12〉 4.7 1.2 × 10−10 0.53

〈r1 · r2〉 4.7 4.9 × 10−11 0.47

〈r1〉 4.8 1.2 × 10−11 0.48

〈r12〉 4.8 7.5 × 10−11 0.46

〈1/r1〉 4.9 1.1 × 10−10 0.37

〈1/r12〉 4.9 1.2 × 10−10 0.37

〈1/r2
1〉 4.10 7.1 × 10−10 0.36

〈1/r2
12〉 4.10 3.1 × 10−10 0.38

〈1/r1r2〉 4.10 3.9 × 10−10 0.37

〈1/r1r12〉 4.10 2.6 × 10−10 0.37

〈δ(r1)〉 4.11 2.4 × 10−10 0.36

〈δ(r12)〉 4.11 6.5 × 10−11 0.36

〈p1 · p2〉 4.12 2.4 × 10−10 0.39

〈ĤOO〉/α2 4.12 4.3 × 10−10 0.38

was found to agree to the expected precision.

127



CHAPTER 5

DISCUSSION

5.1 Future work

5.1.1 Continuum states

The most difficult problems in quantum mechanics involve continuum states.

These are difficult to calculate because of the numerical problem of resolving an

infinite number of oscillations with a finite computer. Themain variational tech-

niques employed are R-matrix [31], Schwinger variational [86], and the complex

Kohn variational [126] methods. Accuracy for these methods lags far behind

that of bound-state calculations. They are also limited by the understanding of

the asymptotic form of the continuum state at large separation. For helium, this

is still an active area of research (see Ref. [123]). For hydrogen, for which there is

a known analytic solution, the asymptotic expansion is divergent. A way to by-

pass this problem is to use the complex rotation method [125]. In this method an

oscillation e±ikr is transformed to exponential growth or decay. This approach

allows the entire method developed here to be extended to continuum states

at only the cost of complexifying the Hamiltonian matrix and solution, which

would double the memory requirements. A virtue of this method is it does not

require knowledge of the precise asymptotic form.

New continuum state solutions can yield accurate photoabsorption cross

sections, improving accuracies of results, currently known to about a percent

[88]. This improvement seems feasible from extrapolation of our oscillator
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strength calculations. At the cost of increasing the dimensionality of the sys-

tem, and hence reducing accuracy, strong effects (i.e. large magnetic fields and

densities) can be included nonperturbatively. The very general nature of the

setup would lead to nonbiased wave functions in terms of where they are most

accurate.

The pseudospectral method may prove to be particularly powerful in the

energy regimes near thresholds and Fano resonances, energies at which the final

state and cross section, rapidly change as a function of energy. In these regimes,

it is particularly important not to be biased towards one outgoing channel over

another.

5.1.2 Asymptotic forms

While the above scheme bypasses the need for the asymptotic form of the wave

function at large distances, it is still interesting from a fundamental physics

standpoint and for helping other methods. The pseudospectral method is ideal

for checking theoretical forms because no explicit form has been given as input.

It is also possible to numerically solve Fock’s expansion [59, 60], which gives

the analytic form of the triple coallescence point. Such singularities are still

poorly understood and often ignored.
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5.2 Conclusion

We have established pseudospectral methods as a high precision numerical tool

to calculate fully correlated few electron wave functions. The method produces

exponential convergence for most measures of error, including local errors. We

presented calculations of the absorption oscillator strength of the transition from

the ground state to lowest energy P state. These calculations had a precision

matching the best in the literature [45]. We also calculated all the expectation

values required for the oscillator strength sum rules and leading order finite-

nuclear-mass and relativistic corrections.

By using pseudospectral methods, we have confirmed the analytic structure

of the two-electron atom wave function. Proper treatment of the Kato cusps [92]

is necessary for exponential convergence. The logarithmic terms [14, 59, 60],

in the expansion about the triple coallescence point, affect convergence of the

logarithmic derivative about that singularity, thus confirming the nonanalytic

structure there. However, no other error measures of physical quantities given

here are affected.

The pseudospectral method can now be readily employed to solve many

few-electron problems. It serves as a robust alternative to variational methods,

having the advantage of local convergence and needing no explicit assumptions

of the form of the wave function. The requirements for exponential convergence

have been outlined and can be extended to many problems.
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APPENDIX A

SETTING ρMAX FOR THE TRUNCATED DOMAIN

When truncating the domain at a finite ρ, it is wise to balance the error pro-

duced by the cutoff with that given by the finite resolution. The former was

studied by calculating the energy of case H as a function of ρmax. Figure A.1

shows that difference between the truncated energy and the correct value of the

H− energy falls off as an exponential. The calculation was done with n = 14.

We see at large values of ρmax that this finite resolution ruins the exponential be-

havior. There is a minimum at ρmax = 31. This is probably where the resolution

error happens to cancel the truncation error. At larger ρmax, the resolution error

dominates. Therefore, only the points with 15 ≤ ρmax ≤ 25 were used for the

fit, log10 |∆E| = Aρmax + B. A and B were found to be −0.2089 and −0.4313,

respectively.

In order to measure the effect of finite resolution ρmax was fixed at 20 and

the difference between the energy at resolution n and 14 was plotted in Fig. A.2.

The error from resolution effects should increase when ρmax is increased because

the density of points goes down. So the resolution error is assumed to be of the

form log10 |∆E| = Cn/ρmax + D. C/20 and D were found to be −0.6387 and

1.1344, respectively.

Setting the two errors equal to each other yields the formula

ρmax = −3.7476 + 7.8100
√
n+ 0.2297. (A.1)

It is technically possible to get better energies as was shown in Fig. A.1 (due

to error cancellations), but taking advantage of that kind of effect is fine-tuning.
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Figure A.1: Energy error from truncation as a function of ρmax with a fit to
the points from ρmax = 15 to ρmax = 25.
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APPENDIX B

FITS

Table B.1: The convergence fits of quantities, Q, dis-

played in figures throughout chapter 3

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

δN
RMS[g1] 3.1 a1n

a2

0.470 −1.852

0.189 0.206

δN
RMS[g1] 3.1 a1(a2)

na3

0.895 0.4031 1.3846

0.070 0.0015 0.0017

|∆f [ρ = 10−6]| 3.2 a1(a2)
n + a3n

a4

0.0818 0.696 0.295 −3.822

0.0487 0.022 0.113 0.092

|∆f [ρ = 10−1]| 3.2 a1(a2)
n + a3n

a4

0.0264 0.725 0.472 −5.172

0.0306 0.027 0.595 0.290

|∆f [ρ = 104]| 3.2 a1(a2)
n + a3n

a4

0.161 0.743 1.29 × 10−7 −2.460

0.112 0.011 2.16 × 10−7 0.372

|∆Hmax
N |(α = 1) 3.3 a1(a2)

na3

936. 0.5943 0.8348

Continued on next page
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Table B.1 – continued from previous page

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

418. 0.0089 0.0067

|∆Hmax
N |(α = 0) 3.3 a1(a2)

na3

14.6 0.3282 0.7209

6.0 0.0073 0.0047

|(∆HN)i∗|(α = 1) 3.4 a1(a2)
n + a3n

a4

1.96 × 10−7 0.491 0.263 −10.358

1.36 × 10−7 0.018 0.091 0.083

|(∆HN)i∗|(α = 0) 3.4 a1(a2)
na3

181. 2.90 × 10−6 0.3733

84. 3.1 × 10−7 0.0020

|∆E| (Case A)
3.8, 3.9, 3.10

3.11, 3.12
a1(a2)

na3

121000. 0.00138 0.549

64000. 0.00022 0.01

|∆E| (Case B) 3.8 a1(a2)
na3

1.17 × 1011 1.53 × 10−8 0.3262

6.7 × 1010 4.3 × 10−9 0.0070

|∆E| (Case C) 3.8 a1(a2)
na3

1.28 × 1011 5.71 × 10−9 0.2796

5.7 × 1010 1.39 × 10−9 0.0057

|∆E| (Case D) 3.8 a1(a2)
na3

Continued on next page
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Table B.1 – continued from previous page

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

1.62 × 106 0.000385 0.478

880000. 0.000073 0.011

|∆E| (Case E) 3.9 a1(a2)
n + a3n

a4

193. 0.169 0.190 −3.39

140. 0.021 0.087 0.18

|∆E| (Case F) 3.9 a1(a2)
na3

286000. 0.00100 0.5604

126000. 0.00012 0.0069

|∆E| (Case G) 3.12 a1(a2)
na3

30.0 0.0972 0.819

19.3 0.0100 0.019

|∆E| (Case H) 3.10 a1(a2)
na3

2.10 × 1010 5.73 × 10−9 0.2614

1.52 × 1010 2.36 × 10−9 0.0097

|∆E| (Case I) 3.11 a1(a2)
na3

3.89 × 109 4.08 × 10−8 0.289

3.10 × 109 1.73 × 10−8 0.011

|∆E| (Case J) 3.11 a1(a2)
na3

5.68 × 106 0.0000114 0.018

5.68 × 106 0.0000114 0.018

Continued on next page
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Table B.1 – continued from previous page

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

|∆Eloc|1 3.13 a1(a2)
n

2.35 0.426

1.97 0.037

|∆Eloc|2 3.13 a1(a2)
n

2.02 × 107 0.395

2.42 × 107 0.050

|∆Eloc|3 3.13 a1(a2)
n

21700. 0.415

21900. 0.044

|∆Eloc|4 3.13 a1(a2)
n

9.33 0.616

10.73 0.074

∆n(Z = 1, α = 0) 3.16 a1(a2)
na3

7260. 0.0394 0.6282

1200. 0.0016 0.0053

∆n(Z = 1, α = 1) 3.16 a1(a2)
na3

2.77 × 106 0.000876 0.4541

590000. 0.000068 0.0047

∆n(Z = 2, α = 1) 3.16 a1(a2)
na3

Continued on next page

1ρ = 1, φ = π/8, C = 0
2ρ = 10−4, φ = π/8, C = 0
3ρ = 1, φ = 10−4, C = 0
4ρ = 15, φ = π/8, C = 0
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Table B.1 – continued from previous page

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

472. 0.2406 0.9001

58. 0.0038 0.0047

|ψn(ρ = 0) − ψn−1|5 3.17 a1(a2)
na3

27300. 0.0520 0.7833

5900. 0.0019 0.0052

|ψn(ρ = 0) − ψn−1|6 3.17 a1(a2)
na3

1.17 × 1012 1.49 × 10−8 0.3046

6.9 × 1011 4.5 × 10−9 0.0073

|ψn(ρ = 0) − ψn−1|7 3.17 a1(a2)
na3

1.63 × 1014 1.49 × 10−8 0.3475

8.6 × 1013 3.6 × 10−9 0.0059

δRMS(Z = 1, α = 0) 3.18 a1(a2)
na3

170. 0.00418 0.4404

23. 0.00022 0.0041

δRMS(Z = 1, α = 1) 3.18 a1n
a2

10.3 −3.71

6.1 0.27

δRMS(Z = 2, α = 1) 3.18 a1n
a2

0.883 −2.65

Continued on next page

5ρ = 0, (Z = 1, α = 0)
6ρ = 0, (Z = 1, α = 1)
7ρ = 0, (Z = 2, α = 1)
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Table B.1 – continued from previous page

Q Figure(s) Fitting Function

a1 a2 a3 a4

∆a1 ∆a2 ∆a3 ∆a4

0.275 0.14

Numerical rates for convergence are summarized in Table B.1. The method

is as follows: let Qn be the quantity converging to zero as n goes to infinity,

consider fitting functions of the forms

fgeom[n] = a1(a2)
n (B.1)

falg[n] = a1n
a2 (B.2)

fsup/sub[n] = a1(a2)
na3 (B.3)

fgeom/alg[n] = a1(a2)
n + a3n

a4 , (B.4)

which are geometric, algebraic, supergeometric (a3 > 1) or subgeometric (a3 <

1), and mixed geometric and algebraic fits, respectively. A χ2 fitting method is

used:

χ2 =
∑

n

(

log10

∣
∣
∣
∣

Qn

f [n]

∣
∣
∣
∣

)2

, (B.5)

where Qn is the quantity Q evaluated at resolution n and the sum over n goes

from the even numbers from 8 to 100 for the one-dimensional models, 5 to 14 for

the Cauchy errors, and from 4 to 14 for all others. χ2 is minimized with respect

to all ai for the fit which is most reasonable on theoretical grounds. Errors in the

ai are estimated by calculating

∆ai =

√

χ2

∂aiai
χ2

(B.6)
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at the minimum of χ2. Of course large error in the values of amplitudes a1 and

a3 for the mixed geometric and algebraic fit imply that the other parameters that

multiply that amplitude may be meaningless.
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APPENDIX C

BHATIA AND TEMKIN HAMILTONIAN

Bhatia and Temkin [21] derived and we checked the following explicit expres-

sions that make up the Hamiltonian

ĤS = −1

2

2∑

i=1

1

r2
i

(
∂

∂ri

r2
i

∂

∂ri

+
1

sin θ12

∂

∂θ12
sin θ12

∂

∂θ12

)

+ V̂ (C.1)

V̂ = −Z

r1
− Z

r2
+

1

r12
(C.2)

Ĥγ
ν,κ,−1 = (1 − δ0κ − δ1κ + (−1)jδ2κ)h

γ
νBlκ,−1







cot θ12 if ν = γ

(−1)ν if ν 6= γ
(C.3)

Ĥγ
νκ0 = hγ

ν







2 l(l+1)−κ2

sin θ12
+ κ2 sin θ12 − γ cot θ12l(l + 1)δ1κ if ν = γ

νκ(2 cos θ12 + 4 sin θ12
∂

∂θ12
) − l(l + 1)δ1κ if ν 6= γ

(C.4)

Ĥγ
νκ1 = (1 − νδ0κ)h

γ
νBl,κ+2,1







cot θ12 if ν = γ

(−1)γ if ν 6= γ
(C.5)

hγ
ν =

1

8 sin θ12

(
1

r2
2

+
νγ

r2
1

)

(C.6)

Blκn = (1 + δ2κ(
√

2 − 1))n
√

(l − κ + 1)(l − κ+ 2)(l + κ)(l + κ− 1).(C.7)
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APPENDIX D

CALCULATING THE OSCILLATOR STRENGTH WITH BHATIA AND

TEMKIN’S RADIAL FUNCTIONS

In the Bhatia and Temkin three-three splitting [21], the matrix elements for

an 1S→ 1P oscillator strength transition are written:

∑

m

|〈i|D̂|j〉|2 =

[∫

r2
1r

2
2 sin θ12dr1dr2dθ12g

0
000

(
d0

Dg
0
110 + d1

Dg
1
110

)
]2

, (D.1)

where D is one of the operators found inside the matrix elements of Eqs. 4.22

and the functions di
D are given by

d0
R = (r1 + r2) cos

θ12
2

(D.2)

d1
R = (r1 − r2) sin

θ12
2

(D.3)

d0
P =

(r1 + r2)(3 + cos θ12)

4r1r2 cos θ12

2

+ cos
θ12
2

(
∂

∂r1
+

∂

∂r2

)

−(r1 + r2) sin θ12

2

r1r2

∂

∂θ12
(D.4)

d1
P =

(r1 − r2)(−3 + cos θ12)

4r1r2 sin θ12

2

+ sin
θ12
2

(
∂

∂r1
− ∂

∂r2

)

−(r1 − r2) cos θ12

2

r1r2

∂

∂θ12
(D.5)

d0
A =

(r2
1 + r2

2) cos θ12

2

r2
1r

2
2

(D.6)

d1
A =

(r2
1 − r2

2) sin θ12

2

r2
1r

2
2

. (D.7)
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