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ABSTRACT

A process X(t) is self-similar with index H > 0 if the
finite-dimensional distributions of X(at) are identical to those

of aHX(t) for all a > 0. Consider self-similar processes X(t)
that are Gaussian or that can be represented through Wiener-Itd
integrals. The paper surveys functional laws of the iterated
logarithm for such processes X(t) and for sequences whose
normalized sums converge weakly to X(t). The goal is to motivate
the results by including outline of proofs and by highlighting
relationships between the various assumptions.

The paper starts with a general discussion of functional laws
of the iterated logarithm, states some of their formulations and
sketches the reproducing kernel Hilbert space set-up.

1. INTRODUCTION

This paper surveys results of Tagqu, Stout, Lai, Kono, Fox,
Mori and Qodaira concerning those functional laws of the iterated
logarithm which govern Gaussian and finite variance non-Gaussian

sequences whose normalized sums converge weakly to a self-similar
process X(t). The paper also includes a discussion of upper and
lower functional laws. We have attempted to motivate the results

by including outline of proofs and by highlighting relationships

between the various assumptions.



A process X(t) is self-similar with index H if for all
a >0, the finite-dimensional distributions of X(at) and
aHX(t) are identical. When X(t) has mean 0, satisfies
EXZ(T) = 1 and has stationary increments, its covariance is

r(s,t) = EX(s)X(t) = '12' T PR !
where 0 < H < 1. When X(t) 1is Gaussian, it is known as
Fractional Brownian motion. It becomes Brownian motion when
H=1/2. The process X(t), however, need not be Gaussian. It
can be for example an m-integral process (see Section 5).

Section 2 starts with an introduction to functional laws of
the iterated logarithm and their various formulations. The
reproducing kernel Hilbert space set-up is developed in Section
2.2. Section 2.3 states Kuelbs' Strong Convergence Theorem and
Section 2.4 gives Kono's one-sided laws for self-similar
processes,

Section 3 covers the main results concerning functional laws
for Gaussian self-similar processes. Two approaches are compared;
that of Oodaira-Taqqu and the one of Kono.

Section 4 deals with upper and lower functional laws for
Gaussian self-similar processes and the corresponding result of
Lai and Stout.

Section 5 concerns non-Gaussian m-integral processes. It
states unpublished upper functional laws due to Fox. It also
discusses the results of Mori and Oodaira concerning functional
laws for a subclass of m-integral self-similar processes.

2. BASIC CONCEPTS

2.1 Functional Law of the Iterated Logarithm
Let C[0,1] be the set of continuous functions on [0,1]
with the sup-norm topology; let

ifi. = sup (),
0<t<1

Tet



d(f,g) = af—gzc

be the distance in C[0,1] between the functions f and g, and
let
d(f,K) = inf if-gac.
geK
A functional law of the iterated logarithm for a sequence of

random functions fn(t,w), n>1 in C[0,1] 1is often expressed
as follows:

{f,> 1} fis relatively compact in C[0,1] with

(2.1)
probability 1.

The set of all possible limit points of ({f , n > 1}

(2.2)
is a.s. equal to a given compact set K in C[0,1].

Remarks

1. A sequence of functions in C[0,1] can be viewed as a set S
of points in C[0,1]. The sequence is relatively compact if the
closure of that set S is compact in C[0,1] with respect to the
sup-norm topology. Since C[0,1] 1is a complete metric space,
relative compactness is equivalent to the property that every

sequence in S contains a uniformly convergent subsequence. Note
that in this case, the cluster set, i.e. the set of all possible
1imit points, cannot be empty.

2. Symbolically, (2.2) is written as

c{f,, n21} =K a.s. (2.2)

where C{f
fn.

3. (2.2) does not imply (2.1). Statement (2.1) may not hold
because (2.2) does not ensure that every subsequence has a limit.

Consider for example the sequence of functions

p N > 1} s the set of limit points (cluster set) of

"

sin nt if n=z 0 (mod 3)
fa(t) ={ -1 if n=1 (mod 3) n>1,te [0,1].
+1 if n=2 (mod 3)

i

"



Statement (2.2) holds because
C{fn, n> 1} = [f(t) = -1, t ¢ (0,11} v {f(t) =+1, t ¢ [0,1]}

is obviously contained in a compact set in c[0,1]. However,
statement (2.1) does not hold because the subsequence fnk,
ne = 3k, k > 1, has no convergent subsequence.
4. A second formulation of the law of the iterated logarithm is

as follows:

For every ¢ > 0, P(fn € KE eventually) = 1. (2.3)

c{f ,n>1} =K a.s. (2.2)

n®
Here, Ke is the set of functions distant from K by less than
¢ and “"eventually" means “from a certain n on". We show, in
Remark 7 below, that this second formulation of the functional law
is equivalent to the previous one. This formulation expresses the
fact that the random functions fn are contained in an
¢-neighborhood of K when n s large and that their 1imit
points fill up the set K,

If (2.3) is put in the form (2.3') below, this second formu-
lation of the functional law of the iterated logarithm becomes:

P(1im d(f ,K) = 0) =1 (2.3")
N
c{f,, n21}=K a.s. (2.2)

or symbolically

f & K a.s.
n

5. A third formulation of the functional law of the iterated
logarithm, also justified in Remark 7 below, is as follows:

For every given ¢ > 0, P(fn € Ke eventually) =1 (2.3)
P(ﬁfn-xnC <g¢ i.o. for every xe K) =1 (2.4)

where i.0. means "for infinitely many n". Relation (2.4)
expresses the fact that every x ¢ K 1is a 1imit point of fn but
it does not exclude the existence of other limit points. Relation



(2.4) can also be stated as

P(1im inf afn—xﬁc =0 for every x ¢ K) = 1, (2.4')

N4

6. If (2.2) is replaced by the following weaker statement

cff ., n>1}cK a.s. (2.5)

n’

with K compact in C[0,1], then (2.1) and (2.5) are said to
form an upper functional law of the iterated logarithm for f
n>1.

n&

7. The following relations

(2.1)
(*) { <=> (2.3),

(2.5)
(2.1)
(**) { => (2.4),
(2.2)
(2.4)
(***) { = (2.2),
(2.5)
when combined as follows,
(2.1) {Ez'?’g
(2‘]) 2.1 t}? 2.2
¢ (2.5) »
{(2‘2) & (2.2) {(2.3)
(2.4)

establish the equivalence between the various formulations of the
functional law of the iterated logarithm,

We shall now verify Relations (*), (**) and (***), The
sufficiency in (*) holds because "not (2.3)" and (2.1) contradict
(2.5). Necessity holds because (2.3) yields (2.5) and it also
yields (2.1) since for any » outside a null set A, every subse-
quence fn. of fn has a convergent subsequence, Indeed, fix
we AS. If d(fn,(w),K) < ¢ for large n', then d(fn’(w)’xn‘) < g
for X € K. Since K 1is compact, Xt has a convergent sub-
sequence X . converging to x in K and therefore d(fn“(w),x) »> 0
as n" > ». This establishes Relation (*). To verify Relation



(**), note that "not (2.4)" and (2.1) contradict (2.2). Relation
(***) is obvious.

2.2 Reproducing Kernel Hilbert Space

In order to identify the set K that enters in the statement
of the functional law of the itefated logarithm, it is convenient
to introduce the notion of reproducing kernel Hilbert space (see
also Jain and Marcus [9], p. 118).

Let T(s,t) be a covariance kernel, continuous in
0 < s,t < 1. Consider the linear space

= n . i =
L= {Xj=1 ajr(tj, ), a; real, t; e (0,13, i = 1,.0e5n, n > 1}

and define an inner product on L by
n m . _¢h ¢m
<2j=]ajr(t3,-), zk=1bkr(sk")>' 2j=1zk=1ajbkr(tj’sk)' (2.6)

Let H(r) be the completion of L wunder the norm given by the
inner product. H(r) 1is called the reproducing kernel Hilbert
space (RKHS) corresponding to T with norm ‘H(r)‘

This Hilbert space has the so-called "reproducing kernel
property":

f(t) = <f,r(t,+)>, ¥V f e H(r). (2.7)

(2.7) follows directly from (2.6) for f e L and immediately
extends to f e H(T).

Using (2.7) and the Cauchy-Schwartz inequality, we get for
f e H(T)

f(s) - f(t)'

j<f,r(s,~) - r(t,-)>!

< 1f1 IT(s,«) - P(t")“H(r)'

H(T)
Therefore #H(r) consists of continuous functions. (The Hilbert

space H(T) can thus be realized as a subset of the Banach space
Cc[0,1].) Since

ifig 5'(Q§;§J IT(ts o)) Wy ¥ T e H(T), (2.8)

convergence in H(r) .implies convergence in cfo,1].



Furthermore, the unit ball
: }
{f ﬁfﬁH(F) € 1)

of H(r) 1is compact in the C[0,1] sup-norm topology. (The
compactnesékof the unit ball can be established by showing that it
is closed and relatively compact. Relative compactness is shown
by using Relation (2.8) to verify the conditions of the
Arzela-Ascoli Theorem. For details see Kuelbs ([13], Lemma
2.1(iv)). For an alternative proof see Oodaira ([21], Lemma 3).)

The compact set K that appears in (2.2) can often be
identified with the unit ball {f: nf'H(r) <1} of H(r) for
some suitable r. In the Gaussian case, the right 1 1is often
the covariance kernel of the Gaussian law that appears in a weak
convergence result involving the fn’ suitably normalized.

For instance, if Yn(t) is the linear interpolation of
K 25 0 <k <n, that is Y (t) = Lt 2w (nt-Dnt D Z g4
0<t<1, where 7, are i.i.d. random variables with mean O
and variance 1, then (1//H)Yn(t) converges weakly in C[0,1]
to Brownian motion B(t), whose covariance kernel is Tr(s,t) =
min(s,t). Then (Strassen [25]), the following functional law of
the iterated logarithm holds:

Yn(t)

fn(t) = 2 K a.s.
J2n Tog Tog n

where
K = unit ball of RKHS H(r) with r(s,t) equal to min(s,t).
In fact (see Jain and Marcus [9], p. 121).
K= {f ¢ C[0,1], f(0) =0, f is absolutely continuous,
fo €

Further examples will appear in Section 3.

f(t)y2
7S )=dt < 1}.

Thus, the functional law of the iterated logarithm is a
statement which involves two norms, namely the sup-norm f !C
and the Hilbert space norm | aH(P)' The paths fn(t,w) are



regarded as continuous functions of t and their distances to the
set K are measured using the norm 1§ ice The non-random
continuous functions f(t) forming the set K are also measured
with the Hilbert space norm SH(?) and are required to belong
to the unit ball of that Hilbert space.

2.3 A Strong Convergence Theorem for Banach Space Valued Random
Variables
The RKHS H(r) and its unit ball K can also be defined
when C[0,1] 1is replaced by a real separable Banach space B
(see Kuelbs [13] pp. 749-750). 1In this case H(r) can still be
realized as a subset of B. A basic tool for establishing the

functional law of the iterated logarithm is the strong convergence
theorem for Banach space valued random variables, due to Kuelbs
[13]. We shall apply that theorem in the case B = C[0,1].

Theorem 2.1 (Kuelbs [13], Theorem 3.1, p. 753). Let K denote
the unit ball of the RKHS H(r) realized as a subset of B, Let
{Yn, n > 1} be a sequence of B-valued random variables such that
for some sequence of positive constants {¢n} we have

Yn(w)

P{w: Tim sup g ) < sup g(x)} =1 for ge B*, (2.9)
N n xeK

where B* 1is the dual space of B.
Then:
I. We have

Yn(m)
Plw: ¢ ek}l =1 (2.10)
*n
and thus
Y (w)
Plw: { » n>1} is relatively compact in B} =1 (2.11)
n
if and only if
Y (w)
P{w: Tim d( , K} =0} =1 (2.12)
HE ¢ﬂ

where d(x,K) = inf tx-yt and 1 1 1is the norm in B,
xeK



1I. Suppose that

Y (w)
Plw: 1im sup gf " Y=sup g{x)} =1 for g in B* (2.13)
Ns>o o xeK
and
Yn(w)

Plo: { , n> 1} is relatively compact in B} =1 (2.14)

®n

hold. If the RKHS H(r) 1is infinite dimensional, then

Plo: C(—:n>1)=k}=1. (2.15)
¢y
Remark. From Part I of this theorem, we conclude that (2.9) and
(2.11) are sufficient conditions for an upper functional law of
the iterated logarithm. From Part Il of the theorem we see that

(2.13) and (2.14) are sufficient conditions for a functional law
of the iterated logarithm.

2.4 One-sided Laws for Self-Similar Processes

Let {X(t), 0 <t <=} be a self-similar process of order
H > 0. The proof of the following result makes full use of the
self-similarity of X and is straightfofward in that it uses only
Chebyshev's inequality and the Borel-Cantelli lemma. X need not
be Gaussian nor possess stationary increments. Stronger conclu-
sions will be obtained when we shall focus on special X's.

Theorem 2.2 (Kono [12]). Let f(x) and h(x) be positive,
continuous functions defined on the positive half line such that

Ef( sup [X(t)]) < = (2.16)
0<t<]1
and
" (2.17)

1 XFhG)

a) If both f and h are non-increasing, then
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sup [Xx(t)]
.. O<t<s
Tim inf == > 1 a.s. (2.18)
Sy sHh(s)

b) If both f and h are non-decreasing and

n
Tim Tim sup X ) -4 < o, (2.19)
then
X{s
1im sup [ )"5 a a.s. (2.20)
Proof. The process Y(s) = sup {x(t)! is also self-similar
E— 0<t<s

with index H. Suppose that f and h are both non-increasing.
Then

PIY(s) <y} = P{¥(1) < s7My} <p{r(y(1)) > f(sHy)y < A
f(sMy)

by Chebyshev where A = Ef(Y(1)) < «. At geometric times cn,
c>1, n=1,2,...

Y(c") > c"h(c")

a.s., for all large n, because by Borel-Cantelli,

@ H n o 1 @ dx
12PN < MR} <A TT g SN < e
"] =R T T xf(h(x)
Thus, a.s. for all large n and " <s 5}cn+},
n
Y(s) Y{c) > o

sHh(s) ”’C(ﬂ+}}Hh(Cn)"
since h is non-increasing. Lletting s » o and c ¢ 1 yields
the result (2.18).

The proof of (2.20) is similar. Assume f and h
non-decreasing. Then P{Y(s) z’y}_§~_—-ﬁ__— , and by Borel-

n nH,., n f(s_Hy)
Cantelli, Y(c') <c 'h(c’) a.s. for all large n. The

conclusion (2.20) follows from the assumptions on h. O
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Remarks

1. Lower laws such as (2.18) are typically harder to obtain than
upper laws such as (2.20). The lower law (2.18) applies only to
Y(s) = oSup [x(t)| which is a monotonization of [x(s)|. The
upper law (2.20) applies obviously to both jx(s)‘ and Y(s).

2. The function f does not enter into the conclusions (2.18)
and (2.20). However, it limits the applicability of the theorem
through (2.16) and it provides a check on the growth of h(x)
through (2.17). Condition (2.17) will be analyzed further in
Section 3.1 below.

3. FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR GAUSSIAN SELF-
SIMILAR PROCESSES

3.1 Statement of the Results and Discussion

kKono [10] makes the following assumption:

Assumption (K). Let {Y¥(t), 0 <t <=} be a centered, path
continuous Gaussian process with Y(0) = 0 and variance vz(t) =

E(Y(t)z), which satisfies the following conditions:
i) lim v(t) = =
tow
ii) There exists a nondegenerate, path continuous Gaussian

process {X(t), 0 <t <1} such that

Y(nt) L
v{n)

where "L" means weak convergence.

X(t) as ns> e in C[O,1]

Remarks
1. Lamperti [16] has shown that the resulting process X(t) is
necessarily self-similar (=semistable) with index H > 0 and that

the normalization function v(t) 1is regularly varying, i.e.
v(t) = tHL(t) with L(t) slowly varying.

2. Two crucial parts of ii) in assumption (K) are that Y(nt)

v{n)

converges weakly
a) to a Gaussian process
b) to a continuous process.
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Examples of processes which satisfy assumption (K)
1. Suppose that Y(nt) 1is the linear interpolation of z[nt] Z
where Zi are i.,i.d. random variables with mean zero and fxnxte

variance, Then X{t) -is Brownian motion.

2. In Example 1, suppose that Zi is a sequence of real station-
ary Gaussian random variables with mean O and covariances r(k) =
EZ.Z k > 1, satisfying either

i7i+k?
1/2 < H <1
) {r(k) kM2 () as ks e
or
0 <H<1/2
Z2H-2

(11) ¢ r(k) ~ -k L(k) as k+ =

r(0) + 2 Jp; rlk) =0

where L(k) 1is a slowly varying function. Then Assumption (K) is

satisfied with v(n) = (H|2H-1]) -1/2 HL”z(n) (see Taqqu [27]

p. 236.) In fact, the limiting process X(t) 1is Fractional

Brownian motion, a Gaussian process with mean 0 and covariances
EX(t)X(s) = .]2. (214 2 [t-s] 2.

The additional normalization function h{t). A functional law

of the iterated logarithm for Y(.) is a statement about the
Y(nt)

v(n)h(n)

additional normalization function h{(t) satisfies the following

behavior of as n » o, KBnq [10] assumes that the

conditions:

(h(t) 14s a positive, nondecreasing and continuous
function defined on the positive half line, such that

< - .}2.. (]“'s)hz(t) <o if g >0 (3.1)
® €

dt
J t =e if ¢ <0,

\.
Remarks
1. The usual normalization function h{t) = (2 log log t)”2

satisfies (3.1) because
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-

(1+e)n?(t) 1 ]
[ £ dt = | — dt = ———— for g # 0.
t t(log t) ¢ ~¢(log t)©

N -

2. Condition (3.1) with ¢ > 0 is identical to condjtion (2.17)
of Theorem 2.2 if one sets there f(t) = e(]/z)(]+g)tc

3. Let us examine Theorem 2.2 when ¢ > 0, f(t) = 8(1/2)(}+€)t
and h(t) = (2 log log t)l/z. We have remarked that condition
(3.1) holds and is identical to (2.17). However, this h(t) also
satisfies condition (2.19) of Theorem 2.2 with a = 1. Thus, if
X(t) is a self-similar process of index H > 0 satisfying

2

l. 1+ su X{t 2
.2 ( e)({)ﬂg1 [x(t)]) .. 5.2)
then
[x(t)]
1im sup <1 a.s.
trte Hi2 1og Tog t)]/zw~

Condition (3.2) is satisfied when X(t) 1is a Gaussian process
with stationary increments (use for instance Fernique's lemma 3.1
below). The conclusion holds in that case, but a stronger one,
involving a full functional law of the iterated logarithm, can be
established for such an X(t) (see Theorem 3.3 below).
4, If (3.1) is satisfied, then for every fixed & > 0 we have

- l.(1+5)h2(t) <o if ¢>0

h(t)ée
f; - dt

= if S<Oc
That last relation is used by Lai and Stout ([14], p. 732) to

characterize an upper-lower class test (see Section 4).

d-dimensional space. Results for the functional law of the
iterated logarithm can be formulated in the space of d-dimensional
continuous functions

Cd[O,lj = {fd: [0,1] » R4 continuous}

endowed with the norm
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d d d 2 1/2
f . = = . N
(e o2uR, () gy sup (T:=7 T5(t))

if fd = (f},...,fd). We use I I, to denote the usual Euclidean

norm in R, Let

d
(

Y t,w) = (Y] (tgw):-o-:vd(tsw))s

where Yi""’Yd are independent copies of the process Y, and let

d
= Y (nt,u)
fltw) = Tames, o<t <,

where the function h{(.) 1is defined as in (3.1). Let Kd be the

unit ball of the Hilbert space H(r)? = Hr) (@) ... (DH(T)

(d summands), where H(T) 1is the reproducing kernel Hilbert space
corresponding to the covariance kernel 1 of the Timit process
X(t), i.e.

T(s,t) = E(X(s)X(t)).

The norm of fd = (f],...,fd) € H(I')d is
d s 2 1/2
ifoa )¢ = (2= 'fi“H(r)) .

H(T
The following upper functional law of the iterated Togarithm
holds for Y9 = (Y],...,Yd).

Theorem 3.1 (Kéno [10], p. 14). Under the assumption (K) we have
P({fi(t,m), n> 1} is relatively compact in
¢4[0,17) = 1

Pleffd(t,w)) < K¥) = 1. (3.4)

(3.3)

The full functional law of the iterated logarithm, i.e,
(3.3) and

pleifdt,o)} = k%) =1 (3.4")

requires an additional condition.
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Theorem 3.2 (Kono [10], p. 14). Suppose that assumption (K) and
also

Tim E(Y(ms)Y(nt))

Moo vim)v{n
n/mre

=0 for every 0 <s,t <1 (3.5)

hold, then we have (3.3) and (3.4'), that is, fizs Kd.

The proof of Theorem 3.1 and Theorem 3.2 will be sketched in
Sectioh 3.2.

In practice, to verify assumption (K), one may have to use
the following, slightly more restrictive condition, used by
Oodaira [21] and Taqqu ([27], p. 230).

Assumption (T). Let r(s,t), 0 <s,t <1, be astrictly positive
definite covariance kernel with r(t,t) strictly increasing to
r(1,1) = 1. Suppose {Y(t), t > O} is Gaussian and has contin-
uous covariance kernel, satisfies Y(0) = 0 and also

ns)Y(nt))
vé(n)
where v(n) 4+ « as n» =,

i) lim o sup | E(Y( - r(s,t)| = 0

Mo O_S_S,

ii) There exists a non-negative, strictly increasing and
. . + . .
continuous function ¢ on R satisfying

i s(e”™ )du < = such that

E(Y(ns)-Y(nt))? < ¢2qs-tpv2(n)
for every 0 <s,t <1 and n > 0.

Remarks

1. Let {Xx(t), 0 <t <1} 1in Assumption (K) be the Gaussian
process with covariance . Since Y 1is also Gaussian, (T)
implies (K). Indeed, i) implies that the finite-dimensional dis-

tributions of ant) converge to those of X(t) as n+» « and
vin

ii) implies tightness. If the sup in i) is suppressed then (T)
still implies (K).




2. (K) implies condition i) of (T) without the sup. It does not
imply ii). Condition ii) is merely a sufficient condition for a
Gaussian process to be continuous.

3. The proof of Theorem 3.2 uses results of Carmona and Kdno [3]
which remain valid if (T) is replaced by (K). (See the prdof of
Corollary 4.1, Remark 3.4 and Theorem 4.1 of Carmona and Kono [3].)

3.2 Sketch of the Proof of Theorem 3.1 and 3.2

We start with Theorem 3.1. The typical way to establish the
relative compactness statement (3.3), is to use the Arzela-Ascoli
theorem. One must show that {fﬁ(t,w), n> 1} is a.s. equi-
continuous and uniformly bounded, that is

1im  sup sup ufi(t,w) - fg(s,w)nd =0 a.s.
8+0 m>1 0<s,t<]
[s-t]<é
and
sup sup ufS(t,w)!d <o a.s.
n  0<t<]

A.s. equicontinuity is shown by subdividing the real line into

intervals of the form [ck,ck+]], where ¢ > 1 and applying the

Borel-Cantelli lemma on sets of the form

d d
Ak = {w: sup sup !IY (nssb.)) - Y (nt,w)!!d —>- eh(ck)}
Ck<ﬂiﬁk+} 0<s,t<] v(n)
- 0<fs-t]<s

which are subsets of

Bk = {%: sup nAk(w)ad Z_Vgh(ck)j}.

0<s,t<1
0<}s-t|<8
Here,
A (o) = v (K s ,0) - YKt 0)
k k+1
vic )
and v = _ inf s t). To bound the probability of B, ,
e v(s)/v(t) u p y K

apply the following lemma of Fernique [6].

16



Lemma 3.1 (Fernique [6]). If Y 1is a nontrivial Gaussian vector
in a real separable Banach space B with norm 1 8, then there
exists an g > 0 so that
(i) E(exp(ai¥n)) < .
In particular,
(i1) E(nYn
and for every t > 2

2) < =>
. 2.1/2 t2

(ii1) P(aYn > t E(aY2") '") < exp[- §.E;.mg 3].
[Proof: for (i) see Fernique [6], Theorem 1.3.2, p. 11 and for
(iii1) see Carmona and Kono [3], Remark 2.1.]

Lemma 3.1 is applied to the Gaussian vector Ays viewed as an

element of the Banach space B of d-dimensional continuous
functions on the set {0 < s,t <1, 0 < |s-t| < 8}. The norm on

B is the sup norm, If a = E(supnAkng), then

ks8
P(A,) <P(B,) =P( sup A1, > th(ck) /2
k) <Py o K4E T I
A )
2 22
< exp(- __-Q_LE~1 log 3).
96a, )5
Let a, = g . 4(s)-x (t)ﬁd) The weak convergence
Qﬁ;s tlfp

assumption (ii) of (K) entails q 5 > 3 as k » » (Carmona and

Kono [3], Lemma 3.1, p. 245), so that < Ca, for some

a
k6 — 4 8
constant C. Furthermore by continuity of x~ and Fernique's

lemma 3.1 (ii), we have a. >0 as & + 0 and thus

8
2v252

ag §'§ETT~ETE log 3 for small enough &. Then )
(1+e)h"(c™)
Y1 P(A) < Vo_q ex 4!353231551 <52 e- 2
k=1 "\Rg) 2 lg=1 OXP 96Ca, 2 L=
_ (He)n?(ch)
2
C c= € k k-1
B e C -
c-1 Lk=1 Kk (™)
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which is finite by condition (3.1) on h. A.s. uniform boundedness
follows from a.s. equicontinuity and Yd(G) = 0,

We now sketch the proof of P[C{fg(t,m)} c Kd) = 1, Because
of a.s. equicontinuity, it is sufficient to show that
P(C{fdk, k> 1} e Kd) = 1. This is done by applying the Strong
Conve%gence Theorem 2.1, with B = Cd[O,lj. To verify
Ififififl_)‘i sup g(xd)} =1 (2.9)
v(ck)h(ck) xdeKd

P{w: 1im sup g

N>

for all g ¢ (Cd[0,13)*, use the fact (Kuelbs [13], Lemma 2.1(iv),
p. 750)

sip o0d) =, Loy Pduly)
xdng ¢ [0,1]

where u is the probability distribution on Cd[O,T] of the
process Xd. Then set

d 2 1/2

C, = {w: g(f (e 0) > [(1+e) | g (y)du(y)] "7}

k X ¢dr0,13

and proceed as before: use the weak convergence assumption and
Fernique's Lemma 3.1 (iii) to conclude X:=1 P(C,) < =. Then (2.9)

holds by the Borel-Cantelli Lemma. [

Remark. If (K) is replaced by (T), then Theorem 3.1 still holds,
since (T) => (K). Oodaira [21] provides a different proof of
Theorem 3.1, when (T) holds. Relative compactness is proved by
using Lemma 3.2 given below instead of Lemma 3.1. Lemma 3.2, which
is also due to Fernique [6] merely uses the tail behavior of the
Gaussian distribution and as such can be extended to cover the
non-Gaussian Hermite processes, as we will see in Section 5. This
is not the case for Lemma 3.1. Lemma 3.1 is based on Theorem 1.3.2
of Fernique ([6] p. 11), which uses properties of the Gaussian
distribution that have no counterparts in other distributions.

Lemma 3.2 (Fernique [6], pp. 48-51). Let {Y(t), 0 <t < 1} be a
real separable Gaussian process with mean 0 and let



oy = sup  LE(V()-v(t)) P12,
0<s,t<1
BRI

2
If f? ¢Y(e'x )dx < =, then Y(t) 1is a.s. sample continuous, and
for all p > 2, p integer, and all x >/T+74 log p we have

2
1/2 © -u
P Y(t)] > (E(Y(s)Y(t))) ""+4 ( )d
(tefg?l}t ’ - x{s,tifg,u fﬂ)y P “)

2
<4l 2 e o,

Incidentally, Oodaira [21] completes the proof of Theorem 3.1
under the assumption (T) without using the high powered Strong
Convergence Theorem 2.1.

Proof of Theorem 3.2. Suppose that h(t) = (2 log log t)]/z.

Carmona and Kdno ([3], Theorem 4.1), using a lemma of Nisio [20],

show that the conditions of the second part of the Strong Conver-
gence Theorem 2.1 of Kuelbs are satisfied and therefore the

conclusion of Theorem 3.2 holds for fg , where n = [ck],
k
¢ > 1. Now proceed as in Tagqu ([27], p. 231): Since relation

(3.4') holds for fn , it holds for fn as well, because
k

d d d

K = c{f‘ék} e cffl} e x

where the last inclusion is a consequence of Theorem 3.1.

Relation (3.3), i.e. relative compactness, holds by Theorem 3.1.
When h(t) merely satisfies the condition (3.1) one needs to

check that an analogue of Carmona and Kono's Theorem 4.1 [3] still

holds. [

3.3 The Case of Weak Convergence to Fractional Brownian Motion

Set

r(s,t) = - {2+ LA ,s-t'ZH}.

i
2
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This is the covariance kernel of the mean 0 Gaussian process BH(t)
known as Fractional Brownian Motion, Let K be the unit ball of
the RKHS #(r) and let k9 be the unit ball of #(r)%. Tagau
([27] Corollaries Al and A2) has shown that a functional law of the
iterated logarithm holds for Y(nt) = BH(
holds also for Y(nt) when defined as in Example 2 of Section 3.1.
The proof is based on the fact that both conditions (T) and (3.5)

are satisfied. KOno obtains the following more general result.

nt) and a similar one

Theorem 3.3 (Kano [101, p. 14). Suppose that Y(t) satisfies
Assumption (K), has stationary increments and that the limit in

c[0,1] of Y(nt) js the Fractional Brownian Motion process
v(n

X(t) = BH(t). Then the functional law of the iterated logarithm
holds, that is

P({fﬁ(t,m), n> 1} 1is relatively compact in CdEO,lj} = ]
and

Plef{fd(t,w)} = k¢ = 1.

Theorem 3.1 implies the relative compactness part so that the
result follows once condition (3.5) is established., Condition
(3.5) is easy to check for the Fractional Brownian Motion process
X but it is hard to prove for a general process Y. Kono introduces
a smoothing function &{a), such that condition (3.5) can be shown
to hold for the processes

X(tsw)

c jg X(at,w)6{a)da, ¢ = constant

T(t sw)

]

jg Y(at,w)s(a)da.

Since Y(nt) suitably normalized converges weakly to X, Theorem
3.2 holds for Y. Its conclusion will hold also for Y by choosing
8 appropriately.

3.4 Applications to Sums of Strongly Dependent Gaussian Random
Variables
Let Y(nt) be the linear interpolation of EEZ%l Z.. Suppose
now that Zi = G(Ui), where Ui is a stationary Gaussian seguence
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with mean zero and unit variance, and G 1is a function such that
EG(U) = 0 and EGS(
variable,

tet m>1 be the Hermite rank of G, that is, the first

non-zero term in the expansion of G in Hermite polynomials. The

U) <=, where U 1is an N(0,1) random

Hermite polynomials are given by

m 2
Ho(w) = ()" 2L e /2 ns01,2,.., (3.6)
du™
thus, Ho(u) =1, H](u) = u, H (u) = uz-l 3(u) = u3—3u. Suppose
further that the U; have covarwance ATV k(ZH'Z)/mg(k)

where 1/2 <H <1 and g{k) a slowly varying function at infinity
and bounded on bounded intervals. Then (Taqqu [28]; Dobrushin and
Major [5]) letting vz(n) = E(E?z.l G(Ui))2 and J(m) = E(G(U)Hm(u)),
we have

Y(nt) k J(m)

v(n) m!
where Xm(t) is a so-called "Hermite process". (See Section 5.)

When m =1, the limiting process X](t) is Fractional
Brownian motion with index H e (1/2,1). It is a Gaussian process.
If we choose G(u) = H1(u) = u, then Y(nt) 1is Gaussian as well
and we are in the case of Example 2(I) of Section 3, Assumption (K)
js satisfied and the conclusions of Theorem 3.1 and Theorem 3.3
hold. However, this continues to be true for more general func-

Xm(t) in C[0,1] as n=» =

tions G that have Hermite rank m = 1, This is because of the
following Strong Reduction Theorem.

Theorem 3.4 (Taqqu [27], p. 206). Let m>1 and 1/2 <H < 1.
Then

( )

14 =0 a.s.
N+§ v( 1<n<N IZT =1 3.3
if
EP(U) <=, p> 2 max(—— , _L_). (3.7)

2-2H ~ 2H-1

Kono [11] mentions that the additional condition (3.7) can
be dropped if instead of Serfling's inequality (see [24]) which was
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used in the original proof, one applies the following real variable
lemma.

Lemma 3.3 (Kono [11]). Let {ak, k = ]’23...’2n+1_}} be a
sequence of real numbers and set -

5(0,k) = S(K) = 5. a

S{a,k) = za+k a

and

Then we have
ﬂ"j“-‘

max =0

.
Is(2 2|2,
1<k<2

|s)f2 < (ne1) $04 I

n+1
This lemma is a slight modification of that of Rademacher
([23], p. 118) and Alexits ([1], p. 82).

4. UPPER AND LOWER CLASS RESULTS FOR GAUSSIAN SELF-SIMILAR
PROCESSES
From the functional law of the iterated logarithm for fg(t)
one can get the usual law of the iterated logarithm by setting
d =1 and applying the projection map ¢(x) = x(1) to x e C[0,1]
(see Stout [26], p. 290). Thus Theorem 3.2 yields the usual law of
the iterated logarithm

. Y{n
11§¢§UP ETF%?%HT =
with h(.) as in (3.1).
Statement (4.1) is equivalent to the following two statements
which hold for any ¢ > O:

a.s. (4.1)

The "upper class result”

pn) 5 (1+e)h(n) .0.) = 0 (4.2)
v(n)
and the "lower class result”
pn) 5 (1-e)n(n) d.0.) = 1 (4.3)
vin)
where, as usual, "i.0." means "for infinitely many n".
The function h{(n) (typically (2 log log n)}/z) which

appears in (4.1) has the property that (4.2) holds for the
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is the reproducing kernel Hilbert space attached to the covariance
kernel of Brownian motion (see Section 2.2).

The set Kf belongs to a Banach space of functions Cv{R+)
which we now define, Let

y(t) = [t](0 + pog;tn)‘/z, t#0
with y(0) =0, and let
o(t) = ¢ (M2) ym/2 o gHg |10g t‘)m/z, t > 0.

The Banach space of functions is defined by

¢ (R') = {y: R » &', continuous, with 1lim Y& = 1in ¥(8) g
v tre v(t) t>0 v(t)

. We have

and it is endowed with the norm ify1 = suB !Y(t)‘
+ v 0 v(t)
Ke = Cv(R ) because by Schwarz inequality and the scaling properties

of f

t’
X X
2 2,s.2m _ 2H-m 2,71 m s 2m
iy(t)' <affidg =t (ém f](E_-,..., E—)dx]...dxm)azlz
2H 2 s 2m
=t it Nzns .
1 L2(Rm) 2

The main result is

Theorem 5.2 (Mori and Oodaira [19], Theorem 3.1). Let Y(t) be
an m-integral process whose kernels ft satisfy assumption (MO) and
let

Yn(t) = Y(nt) t >0, n>3.

m/2 - -

nH(Z log log n)
Then

+
1. Yo € CV(R ) a.s. ¥ n>3

2. {Yn, n> 3} is a.s. relatively compact in CV(R+)

. . +
3. ¢{y,,n>3}= Ke a.s. and K is compact in CV(R ).

n!



function (1+e)h(n) and (4.3) holds for the function (1-e)h(n).
One may dissociate relation (4.2) from (4.3) and formulate the
following more general question. For which positive nondecreasing
function s{n) does one have

P(Y(n) > s(n) i.0.) =0, (4.4)
v(n)
and for which ones does one have
pYn) 5 s(n) i.0.) = 12 (4.5)
vin)
The function s(n) s called an upper class function of YEQ; if
v

Y(n)
vin

(4.4) holds and a lower class function of if (4.5) holds.

When Y can be represented as
Y(n) = 1%, Z; (4.6)

where {Zi’ i > 1} 1is a zero-mean stationary Gaussian sequence,
then Lai and Stout [14] provide the following answer to the
question,

Theorem 4.1 (Lai and Stout [14], p. 741). Llet Y have the
representation (4.6) and assume that Assumption (K) holds with X
self-similar of index 0 < H < 1, Assume also that v(n) = nHL(n)
satisfies the following conditions:

i) There exist constants M > 1,8 >0 and y > H such

that
v(n+m 2 .
-1 < MDY if sn > m > M
|( V(m) | < } >m>
ii) There exists a constant 8 > 0 such that
1im sup {max %;Ql.} <®
Mi>e n(log log n)™ <3<n (n)
and
. . L(J)
1im inf {min > 0.
N+ { L(n) }

n(log log n)'Bjjﬁp

Let s(t) be a positive nondecreasing function on [1,=).
Then
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P(%%%% > s{n) d.0.) =0 or 1 according to (4.7)
f? %.s(t)(]/H)'1exp{- %.sz(t))dt <o OF = o, (4.8)
Remarﬁg

1. Any Gaussian mean zero sequence Y(n) with stationary
increments admits the representation (4.6). Note also that the
limiting process X 1in Theorem 4.1 is necesssarily fractional
Brownian motion because fractional Brownian motion is the only
Gaussian self-similar process with stationary increments.
2. Suppose that the summands Zi are as in Example 2 of Section
3.1 and suppose in addition that the slowly varying function L(n)
satisfies condition ii) of Theorem 4.1. Then the upper-lower class
test (4.7) and (4.8) holds. (Lai and Stout [14], Corollary 3).
3. If h(t) satisfies (3.1) then it clearly satisfies (4.8) and
therefore (l1+g)h(t) is an upper-class function for Y(n)/v(n)
and (1-g)h(t) 1is a lower-class function for Y(n)/v(n) whenever
the remaining assumptions of Theorem 4.1 are satisfied.
4, The term s(t)(]/H)'] is negligible when the function is s(t)
= (1+e)x(2 log log t)]/z; however, it acquires importance when ¢
is replaced by e(t), e.g. when s(t) is the lower class function
(2 Tog log t + log log log t)]/z.
5. Not every regularly varying function v(n) satisfies i) of
Theorem 4.1, For example v{(n) = nH(log(n+3) + nssin(n)) is a
regularly varying function, but does not satisfy i) when g > -y/2
(see Taqqu [27], p. 232).
6. Condition i) implies (3.5), which is a hypothesis of Theorem
3.2. In Theorem 3.3 however, condition (3.5) is not assumed, The
result then follows from the assumed weak convergence to Fractional
Brownian Motion. This leads to the following question: does
Theorem 4.1 hold without assuming condition i}?

An answer cannot be obtained by adopting the method of proof
of Theorem 3.3. Indeed that method uses a smoothed process Y. It
can be shown that condition i) holds for Y and therefore the
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conclusion of Theorem 4.1 applies to Y. However, the passage from
Y to the original process Y introduces a factor of (lte) in
condition (4.8) which affects the divergence or convergence of the
integral.

5. FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR PROCESSES
REPRESENTED BY MULTIPLE-WIENER IT0 INTEGRALS

5.1 m-integral Processes

We start by defining the processes that we shall consider in
this section.

A random process {Y(t), t > 0} is said to be an m-integral

if there exist kernels ft € Lz(Rm), t > 0 such that
Y(t) = é&. i ft(x],...,xm)dB(x])...dB(xm) (5.1)

where the integral is a multiple Wiener-It0 integral with respect
to Brownian motion (see Itd [8]).

Relation (5.1) characterizes the finite-dimensional
distributions of the process Y(t). For fixed t, (5.1) defines
an m-integral random variable. The process Y(t) is non-Gaussian
when m > 1,

Examples of m-integrals: The Hermite processes

These processes were briefly introduced in Section 3.4, The
m-th Hermite processes {Xm(t), t > 0} are self-similar with index
1/2 < H < 1 and have stationary increments. They admit the
following m-integral representation (Taqqu [28], p. 77)

H - (3/2)
Knlt) =K [ oo Oy ((sx)h) ° ds1dB(x;)...dB(x )
R (5.2)
where
- _ (H-1) 1
Ho = Hotmt) = B0 w1 e (1=, 1)

and K a normalizing factor ensuring that Exg(}) = 1. Xm(t) has

finite moments and its covariance is given by
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P(s,t) = EX ()X (s) = & (s + 21 o [s-t] 2y, (5.3)

It is the same as that of Fractional Brownian Motion. Xm(t) is
non-Gaussian for m > 1 but it is the Gaussian process Fractional
Brownian Motion when m = 1.

Two approaches. There are presently two approaches that yield
results related to functional laws of the iterated logarithm. One
is due to Fox [7] and the other to Mori and Oodaira [19].

Fox's method is an extension to m-integral processes of the
Oodaira-Taqqu approach. It does not require the process to be

self-similar, but it has yielded at this point only upper
functional laws of the iterated logarithm,

Mori and Oodaira's method yields functional laws of the
iterated logarithm, but it has only been applied to certain types
of self-similar m-integral processes, e.g. the Hermite processes.
The method uses results available for Brownian motion and extends
them to m-integral processes through the application of continuous
mappings. It requires a judicious smoothing of the kernels ft'

5.2 Upper Functional Laws of the Iterated Logarithm for m-Integral

Processes

To formulate an upper functional law of the iterated logarithm
for m-integrals Y(t), we need to impose the following assumption
(T'), which extends assumption (T) to the cases m > 1.

Assumption (T'). A process {Y(t), t > 0} satisfies assumption
("), if vz(n) = E(Yz(n)) > ® as n-» o and there exist a
continuous covariance kernel Tr(s,t), s,t ¢ [0,1] and a positive
nondecreasing function g(x), x > 0 such that

i) 1im _sup . [ E(Y(ns)Y(nt))

- r(s,t)] =0
N>o 0__<__S,t_§'l VZ(n)

Z.S Vz(n)gz(‘s-tf) for all n > 0,

_ge/m
0<s,t <1 and [] g(e Jdu <

ii) E(Y(ns) - Y(nt))
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iii) r(s,t) s strictly positive definite and I(t,t)
strictly monotone increasing to r(1,1) = 1.

Remarks

1. When m=1 and {Y(t), t > 0} is a Gaussian process then
(T') = (T). The difference between (T') and (T) resides in
condition ii).

2. Condition (T') imposes only conditions on the second moments,
These do not determine the finite dimensional distributions in the
non-Gaussian cases m > 2,

The following upper functional law of the iterated logarithm
is an extension to functional spaces of a result of Lai and Stout
([15]1, Corollary 5). It holds for m-integrals and involves the
unit ball K of the reproducing kernel Hilbert space #H(r), where
I is the "limiting" covariance, which appears in (T').

Theorem 5.1 (Fox [7], Theorem 1.1). Let m > 0 be an integer.
Suppose that {Y(t), t > 0} is a separable, m-integral process
satisfying condition (T'). Then Y(t) has a.s. continuous paths.
Furthermore, there exists a constant ¢ = e(m) such that the set
of the functions

f(t): = Y(nt) 0<t<1,n>3

& v(n)(e log log n)m/2 B

is a.s. relatively compact in C[0,1] and its set of limit points
is a.s. contained in the unit ball K of the reproducing kernel
Hilbert space H(r).

Remark. It is important to note, that the constant e depends on
the Hermite rank m but not on the kernel f which appears in the
m-integral representation (5.1) of the process because Y{nt)/v(n)
has unit variance at t =1,

Remark on the proof of Theorem 5.1, The proof is similar to that
of Theorem 3.1 under condition (T). We shall need a generalization

to m-integrals of Fernique's Lemma 3.2, Such a generalization can



be obtained because Lemma 3.2 merely depends on the tail behavior
of Gaussian random variables; the tail behavior of m-integrals can
be characterized as follows:

Lemma 5.1 (Major [17], p. 68, McKean [18]). For every m > 1
there exists an N0 = No(m) >0 and ¢ = o(m) such that for all
m-integral random variables Y with unit variance, we have:

P('Yl > x) < exp{- il

)s ¥ x> Ny

To obtain a substitute for Fernique's Lemma 3.2, which is only
valid in the Gaussian case m = 1, use the modulus of continuity
of {Y(t), t ¢ [0,1]}

o (h): =  sup (EL[Y(s) - Y(t)lz)]/z,

|s-t]<h
s,t ¢ [0,1]

let 1 & denote the sup norm and set a = a(m) = Zm/Z/(Zm/Z-i)

and b = z:=0 Zkexp(%.- 1) < w. With this notation we have the
following substitute of Lemma 3.2.

Lemma 5.2 (Fox [7], Proposition 2.2). Let m,p > 2 bg integers
and N(m,p) = max{ND(m), [e(m) (1 + 4 log p)]m/z}. Furthermore,
let {Y(t), 0 <t <1} be a separable m-integral process with
covariance R(s,t). Assume that

2/m

I7 oyle”
Then Y(t) is a.s. continuous and for all x > N(m,p)

Z2/m

1 -u 2/m
P(aYn > x[/IRT + a [] ¢Y(§-p Jdu] < bp

2 X
exp| - - 1.

The proof of this lemma is similar to Lemma 3.2. (See also
Lemma 5.4 below.) We now apply Theorem 5.1 to the case where Y(t)
is a self-similar m-integral process with stationary increments.
Then (T') holds with the process Y(t) having covariance

2
r(s,t) = g_.{SZH + g2 ’s—t'ZH}.
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Applying Theorem 5.1, we get

Corollary 5.2: An m-integral self-similar process with stationary

increments satisfies an upper functional law of the iterated
Togarithm: the conclusion of Theorem 5.1 holds.

This result, for instance, can be applied to the Hermite
processes defined in Section 3.4. Note, however, that the Hermite
processes do not exhaust the class of finite variance, stationary
increments, self-similar processes (see Taqqu [29]).

Theorem 5.1 can also be applied to normalized partial sums
that converge weakly’to Hermite processes. For instance, consider
the following quantities which have been defined in Section 3.4:
the partial sums z[nt] G(U,), their linear interpolation Y(nt)
and the normalization factor v(n)., Let m be the Hermite rank of
G. Then, using the Strong Reduction Theorem 3.4 and the fact that

Hm(Ui) can be represented as an m-integral, we get:

Corollary 5.3 (Fox [7], Corollary 4.2). Suppose that the conditions
Y(nt)
v(n)

that ensure weak convergence of
hold (see Section 3.4). Then

to the Hermite processes

£ (t) = Y(nt)
4 v(in){s log log n)m/2

is a.s. relatively compact in C[0,1] and its set of limit points
is a.s. contained in the unit ball of the reproducing kernel
Hilbert space corresponding to T(s,t) = %-{SZH + g2 ‘s~t‘2H}.

5.3 The Functional Law of the Iterated Logarithm for Some

Self-Similar m-integral Processes

We now turn to the results for m-integral processes obtained
by Mori and Oodaira [19]. Let Y(t) be a m-integral process with
kernels f_ ¢ Lz(Rm), t > 0 and assume that f_ satisfies the

t t
following:

Assumption (MO). ft’ t > 0 can be expressed as

_(t
ft(x},...,xm) = IO q(v-x},...,v-xm)dv



where q: R™ 5+ R is a symmetric function with

q{cx],...,cx = c'xq(x],...,x where A =«§ + 1 -H (5.3)

and ! < H <1,

m) m)

2
[ -5 [ ‘q(xi,..‘,xm)q( Xp*+1, e X +1) f codx <o (5.4)

Condition (5.3) ensures that

X

_ JH-(m/2) X1 m
ft(x]"--sx ) = f]('{- seens ‘—l':-) for t > 0O

m
and fO = 0, Condition (5.3) and (5.4) ensure that ft € LZ(Rm).
Hence Y(t) 1is self-similar with index H and has stationary

increments., Since for every r > 1,

E[v(s) - ¥(0)]" = E|v([s-t]|" = |s-t|E(y()|"),

30

we can assume that Y has continuous paths (Billingsley [2], p. 96).

Note that the kernels of Hermite processes satisfy condition
(MO) but there are m-integral self-similar processes whose kernels
do not fulfill assumption (MO).

To formulate Mori and Qodaira's result let

Ke = {y(t) = [...] ft(x],...,xm)g(x])...g(xm)dxl,...,dxm:

RM

lgng_l}
where agu% = j+: lg(x)’zdx. It is more enlightening to set
g(x) = z(x) = dz/dx, and write

Ke = {y(t) = j.&.f ft(x],...,xm)z(x])...z(xm)dxl,...,dxm: zeH,

R

where
H= {z: R » R, absolutely continuous, z(0) = 0, Ze LZ(R)}



Remarks
1. The function v(t) 1is needed here because Yn(t) is a
function on [0,=) and not merely on [0,1] with Yn(O) = 0,
For a given function v(t), the faster v(t) tends to infinity,
the weaker the result; the faster v(t) tends to zero, the stronger
the result.
2. Let CO[D,]] = {y ¢ C[0,1]: y(0) = 0}. The theorem remains
valid if one replaces CV(R+) by CO[O,IJ, since the change merely
involves a continuous mapping.
3. Theorem 5.2 holds for Y(t) that are Hermite processes (see
(5.2)). In that case

Hy-(3/2)
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f (X aeeenny) = 5 Ty ((s2x)7) dx) 5ee 00X,
with 1 - 1/2m < H0 <1, and
Hy-(3/2) 3
ke = Iyt = [5 15 ((s=0)") " 2(x)dx]"ds: z € H 121, < 1),

Observe that every function y in Kf is non-decreasing when m
is even.

Corollaries from Theorem 5.2 can be obtained by using
continuous mappings. For example, one obtains the following
one-dimensional law of the iterated logarithm for Y.

Corollary 5.4 (Mori and Oodaira, [19], Corollary 3.2.). Under the
assumptions of Theorem 5.2, we have

1im sup Y(n) 5 =2y a.s.
N+ Hi2 1og Tog n)m/
N Y(n)

Tim inf = % a.s.
N m/2 2

nH(Z log log n)

where 2, = sup{y(1), y « Kf} and 2, = inf{y(1), y ¢ Kf}. In
particular, when m = 2, the constants 21 and 12 coincide
with the supremum and infimum respectively of the eigenvalues of
the integral operator on LZ(R) with kernel f,.



5.4, Sketch of the Proof of Theorem 5.2.

Step 1. Use Strassen's functional law of the iterated logarithm
(see Section 2,2) to show that Theorem 5.2 holds when Y s
Brownian motion B(t), == <t < «, In that case, m =?1, H=1/2,
v(t) is replaced by «v(t), the space of functions CV(R+} is
replaced by

Cy(R) = {z: R » R, continuous, with z(0) = 0 and

yim 28 gy 2(8)
tote y(t) >0 y(t)

endowed with the norm §z§ = sup lf&ill , and finally the set Kf

is replaced by t20 y(t)

K = {z: R » R, absolutely continuous, z(0) = 0, 1z8 < 1} (5.5)

Remarks

1. Because B(t) 1is unbounded at t = t=, we consider CY(R)
instead of C(-=,+=) and @ § instead of the sup-norm. We can
do this because IB(t)’ iCy(t)Y where C > 0.

2. The set Kc H is the same as in Strassen's law of the
iterated logarithm. Since z ¢ H satisfies 'z(t)' fi’t'1/zail2,
we have K c Hc CY(R).

Step 2. Establish Theorem 5.2 for m-integral processes with
*smooth" kernels kt’ t > 0 defined as follows:
_ H-(mr2) N *m
kt(x'i’...’xm) k(-t—— ’...,.t_— t > 0 (5.6)

with kO = 0, where k 1is an element of the following class Fm:

i) k: R"™ 5 R is continuous and symmetric
ii) D, ... D k exists (D, = _Q_J and satisfies
1 m J axJ

A(k) = [ W f ID‘...Dmk(x1,...,xm)fy(x}}...y(xm)dx}...dxm <=
iii) There exists an even function g e LZ(R) such that for
some o > 1/2, g(t) = o(,tl'“) as 't’ > » and

33



34

lk{)% ,...,Xm)' < H?:] Q(XJ).

Now introduce the mapping

Tt CR) > € (RY) )
Z yz
where
Y0 = DT [ DDk (e x ) T20x) ez
R

. dX"‘u 'Y odxmt
It is easy to show, that

1y, f}A(k)ﬁZﬂ?, ¥ze CY(R),

which implies that Ty is a continuous mapping. For 2z ¢ Kec He

Cy(R), where K s as in (5.5), we can perform integration by parts
and obtain

7 (K) = {y(t) = | éﬁ. [k (xgseeesx )20x) e z(x Jdxgodx o2
Since Ty is continuous, xk(K) is compact in CV(R).

Mori and QOodaira establish the following functional law for
m-integrals with smooth kernels kt:
Proposition 5.1 (Mori and Qodaira [19], Theorem 3.3). Let
Y(t) = | éﬁ. i kt(x],...,xm)dB(x])...dB(xm), t > 0, where k  is

as in (5.6) and

Y (t) = Y(nt) > t20,n23.
n nH(Z log log n)m/
Then
1. ¥ ec (R") a.s. ¥n
n v
2. {Vn, n > 3} 1is a.s. relatively compact in CV(R+)
3. C{Yn, n .i 3} = ‘Ck(K) a.s.

A main tool in the proof of Proposition 5.1 is the following
integration by parts formula for multiple Wiener integrals with
smooth kernels. First some notation. For Kk ¢ Fm, let



1M () = [ vun [ K(xqpeenX)dB(xq) .0 0B(x))

m

Cot
o
3
T
—
;’x
S
fn
) e

()™ een JIDqe e Dgk(Xqsene ) 3Bxg) 0 BUxg)

* dX]...de,

Rm

and also define the function kEr], 1 <r<m/2 by

k[rj(x

1""’Xm—2r) = | e f k(xi"“’xm-2r’v1’V1""’Vr’vr)

R « dv dv

'I"G r.

Condition (iii) in the definition of Fm ensures that I(m)(k) is
well-defined. Condition (ii) in the definition of Fm and the fact
that |B(x)| < Cy(x) ensure that J(m)(k) js well-defined. Note
also that k e F_ implies ke r 0 and (k) = bl
Lemma 5.3 (Mori and Oodaira [19], Lemma 5.2). For k e F,, we
have

[m/2]
¥

o

r=1

I(m)(k) - J(m)(k) + (-1)" m! J(m-Zr)(k[r])

r _or)!
where 2" r!(m-2r)!

3@ lrdy o [ i [ K(Vys¥gaeneaVsV )dV endV

This lemma is formally obtained by integration by parts and
can be proved precisely by approximating the integrals by sums over
finite intervals. The proof makes full use of the smoothness
properties of the kernel k.

With this lemma it is easy to prove Proposition 5.1, since

¥ - 1 (m)
Y (t) = (k)
: nH'm/Z(Zn log log n)m/2 "

- ! 2™ (x

nt)

nH'm/z(Zn log log n)m/2
(m-2r), [r]
+ [m§2] (_])r m! J (knt ) .
r=1

er!(m‘Zr)! nH'm/z(Zn 1og log n)m/2

But
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i (m)
)m/Z ! (k“t)

H»m/Z(

=

zZn log log n

L

-1)" J éﬁ‘ J Dy Dk (xqseeesxy JIB (X7 ).. B (x Jdxg .. dxy

= 7 (B (1))
whereas, for r > 1,
J(m ZF)(K[F]) .
= T [r](Bn(t)) -»> 0
(2 1og log n)r k

nH-m/Z( )m/Z

2n log log n

as n s . Proposition 5.1 follows from Step 1 and the continuity

Of Tko

Step 3. The next step involves delicate approximations, whose
details will be omitted., The goal is to approximate

Y(t) = | éﬁ. { ft(x],...,xm)dB(x])...dB(xm)
by

€ - £

Ye(t) = | éﬁ' i ft(x},...,xm)dB(x])...dB(xm)
such that

1) fEe Fn

£ L Hem/2,e, X Xmn
2) ft(x]s-“sxm) =1 f ('_E— seens ?) for t > 0

3 e}l 2H
3) [ o] }f - f]' dx, ...dx < Ah

5 [ for 0<h<1,

where A is a constant independent of ¢

4) [ ... tf - fsl dxg..odx < e
m
R
€
5) 11m Tim sup,l - HY (nt) 2’|v=
(2 log log ﬂ)m/2 n'(2 log log ﬂ)m/

a.s.

We need 5). To prove it one uses 1), 2), 3) and 4) and the
following lemma about tail probabilities of the sup of certain
m-integral processes,
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Lemma 5.4 {(Mori and Oodairo, [19], Lemma 6.3). Llet wu
t > 0, be symmetric functions and let

¢ e PR,

W(t) = [ ooo [ u (xgseensx )dB(x1)..‘d8(xm} t > 0.
R

Further assume that there exists constants A > 0 and 0 <H <1,
such that W(t) satisfies

E(‘w(t-t-h) - w(t)lz)]/2 < At t >0, 0<h<i
and

’2)1/2 <R for some integer N> 1.

E(IW(T
02%21 (, (t) NH+1

- 2
Then there exist constants d and M dependent on A, H, m, N
such that

2/m
P W(t)| > <3 -M , Y w>d.
(02%_%1 } ( )[ w) < 3 exp(-M w*'T), ¥ w

The proof of Lemma 5.4 is similar to that of Lemma 5.2 but it
uses a sharper tail inequality for m-integral random variables
obtained by Plikusas [22] (see also Mori-Oodaira [19], Lemma 6.1).

Step 4. let Kc Hc CY(R) be as in (5.5). In order to avoid
expressing the compact set as =« E(K), that is in terms of
f
the approximating smooth kernels f%, introduce the mapping
~ +
T H=» CV(R )
z by,

where

y,(t) = i s ffexqseeanxy)

Ne

(x])...i( dxg . edxp.

By step 3, for z ¢ K,

~

Bt(z)~1f (Z)§v = SU
£

lf H ...z(x )fdx]...

t (fm |F1-75 [Pdxy . ax RATTINE

A
ctin
A~
oo
<

—
[ d
po—g

| A
+wn
ve
oo
<
——
‘-..
g

]
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This implies that =(K) 1is compact in CV(R+) and can be used

instead of T¢ (K). Note finally that Z(K) s the Kf of

€

Theorem 5.2.

.‘o
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11.
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