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Within the broad area of social network analysis research, the study of com-
munities has become an important and popular topic. However, there is little
consensus within the field regarding the structure of communities, and the re-
search literature contains dozens of competing community detection algorithms
and community evaluation metrics.

In this dissertation, we present several connected contributions, each related
to the general theme of communities in social networks.

First, in order to motivate the study of communities in general, as well as the
work later in this dissertation, we present an application of community detec-
tion methods to the link prediction problem, in which one attempts to predict
which edges in an incomplete network dataset are most likely to exist in the
complete network dataset. We demonstrate that use of community member-
ship information can improve the accuracy of various simple link prediction
methods, sometimes by a large margin.

Next, we examine the structure of “real” annotated communities and present
a novel community detection method. In this chapter, we study real networks,
each containing metadata that allow us to identify “real” communities (e.g., all
graduate students in the same department). We study details of these commu-
nities” structures and, based on these results, create and evaluate an algorithm
for finding overlapping communities in networks. We show that this method

outperforms other state-of-the-art community detection methods.



Finally, we present two related sections. In the first of these two chapters,
we describe the Community Structure Analysis Framework (CSAF), a machine-
learning-based method for comparing and studying the structures and features
of communities produced through different methods. The CSAF allows a prac-
titioner to select a community detection method best suited for his or her ap-
plication needs, and allows a researcher to better understand the behavior of
different community detection algorithms. In the second of these chapters, we
apply the CSAF to a variety of network datasets from different domains, and
use it to obtain interesting results about the structures of communities identi-

tied algorithmically as well as through metadata annotation.
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CHAPTER 1
INTRODUCTION

Over the past decade, computational social network analysis has become an in-
creasingly relevant area of research, contributing tools and methods for under-
standing the intricate arrays of links and relationships that underlie complex
systems ranging from genetic interactions within a body to the whole of human
society itself. Although classically a social science area, the field has more re-
cently attracted attention from mathematical scientists such as physicists, statis-
ticians, and computer scientists, who have contributed powerful methods for
analyzing large networks, with important consequences for fields as diverse as

politics, epidemiology, and economics.

The field of social network analysis exists at the confluence of a myriad of
often-unrelated scientific disciplines, such as physics, psychology, and business.
Its history, however, can be traced back most strongly to the mathematical sub-

tield of graph theory and the sociological study of human interactions.

Graph theory as a branch of mathematical study dates back several cen-
turies to Euler’s study of the seven bridges of Konigsberg problem (which asked
whether one could trace a route over several landmasses and rivers using every
bridge exactly one time [16]), but the term “graph” was not coined until much

later by James Joseph Sylvester in an 1878 Nature paper [23].

Atits core, graph theory is the formal study of relationships between objects.
A graph or network is a mathematical structure containing nodes or vertices (ob-
jects) connected by edges or links (relationships). A graph is usefully represented

as an n X n square adjacency matrix A, where n is the number of nodes, and A;; is



1 (or some other non-zero value) if nodes i and j are joined by an edge (that is,
if they interact), and 0 if they are not. A graph may be weighted or unweighted;
in the simpler unweighted model, every edge is equally strong, whereas in the
weighted model, different edges may have different strengths (and correspond-
ingly different values in the adjacency matrix). Visually, a graph is typically
depicted as a set of dots, representing nodes, connected by lines, representing

edges.

Graph theoreticians are interested in the formal study of such structures, and
classically have asked questions such as: How many colors are needed to color a
map of a country so that no two adjacent territories are the same color? How can
one select a minimum-weight subset of edges such that every node in the graph
is adjacent to at least one of the edges in the subset? What is a fast algorithm that
allows us to efficiently route resources from one node in the graph to another

node in the graph?

Researchers in this area are additionally interested in models for producing
graphs. In the highly influential Erd6s-Rényi random graph model, one sets pa-
rameters n and p, which are used to produce a so-called G(n, p) graph containing

n nodes, in which the probability of any two nodes being connected is given by

P-

While abstract graph theory is of great theoretical interest, social scientists
have tended to be more interested in the structures and characteristics of real
networks, such as societies, organizations, or families. French sociologist Emile
Durkheim viewed sociology as the study of social facts: those values and social
structures that exist outside of any single individual [14]. Soon after, sociologist

Georg Simmel examined society through the associations of individuals with



one another [54].

In 1967, psychologist Stanley Milgram performed his famous “Small World”
experiment, in which individuals living in Nebraska were given a package, and
were asked to forward it closer to a “target” individual in Boston [62]. At each
step of the experiment, individuals with a package were only allowed to send
it to someone that they personally knew; that recipient then sent the package to
someone that they knew, and so on, until the “target” was reached. Through this
experiment, Milgram attempted to identify the “distance” between two random
individuals in a network. Soon after, sociologist Mark Granovetter published
the extremely influential paper “The Strength of Weak Ties,” demonstrating that
individuals often find jobs through “weak” ties (or casual acquaintances), and

arguing that society is held together through both strong and weak bonds [22].

More recently, the proliferation of computer and internet technologies have
resulted in vast quantities of network data of all sorts. Researchers in the area of
social network analysis are interested in the same types of questions that sociol-
ogists have studied before, but the large amount of available data has required
a fundamental shift in the methods and tools used to address these questions
(e.g., from individual interviews to automated algorithms). As such, researchers

have adapted formal techniques from graph theory for use on real data.

Real network data differs in several important ways from the abstract mod-
els typically studied by graph theorists. Most relevant to the topics in this dis-
sertation, real networks tend to demonstrate a great deal of clustering; that is,
unlike the random Erdds-Rényi graph model described earlier, we observe that
individuals in real networks often group together into distinct clusters or com-

munities. One important area of network research thus deals with identifying



and studying communities in networks [17, 20]. Although this topic has its roots
in the classic mathematical problems of graph clustering, current research has

tended to focus on the structure and characteristics of “real” communities.

Research into communities in social networks is valuable for several reasons,
both theoretical and applied. From a social scientific perspective, formally un-
derstanding the nature and characteristics of communities can give researchers
insight into the behavior of individuals within a society: for example, one might
use community analysis methods to study the tendencies of individuals to self-
organize within an unstructured business environment or determine the extent
to which network effects lead to the ostracization of children from a school
group. Within the area of social network analysis itself, the study of communi-
ties can be used within larger projects to understand the evolution of networks
or calculate the centrality of individual nodes. Commercially, community anal-
ysis is also of great value, with potential applications in tasks such as network

visualization or advertisement targeting.

Traditionally, researchers have approached the problem of identifying com-
munities by first creating mathematical definitions of what real communities
ought to look like, and then designing algorithms to identify sets of nodes that
match these descriptions. While this approach has advantages, it is typically not
clear whether a particular mathematical definition of “community” is correct or

appropriate.

Many such mathematical definitions are based in the principle that a com-
munity ought to contain elements that are tightly connected to one another and
poorly connected to the rest of the network. In the global human social network,

for example, such a community might correspond to an isolated island village,



in which individuals know nearly everybody else on the island but few people
off the island. Examples of such definitions include modularity and conduc-
tance, both of which consider a set of nodes with high internal connectivity and

low external connectivity to be a good community [48, 29].

However, although such metrics are commonly used in applications- for in-
stance, the professional networking website LinkedIn uses the Louvain method
for modularity optimization [7] for the purposes of community visualiza-
tion [63]-, they can suffer from serious drawbacks. Modularity in particular
is known to suffer from a “resolution limit” that causes poor performance on
large networks [18]. Thus, despite the popularity of certain algorithms within
various application arenas, there is little consensus within the social network
analysis research community as to which, if any, of these algorithms actually

produce reasonable results.

Much research effort has been exerted in creating new community detec-
tion methods and corresponding mathematical formalizations of “community”
([17], for instance, describes at least 20 broad categories of community detection
methods, each containing many individual algorithms). However, compara-
tively little time has been spent on characterizing and understanding the struc-
tures of real communities, in part because determining whether a community is

“real” can be a difficult task.



1.1 Community Evaluation Metrics and Community Detection

Algorithms

Communities can be understood and evaluated through the use of various met-
rics, and can be identified through the application of community detection algo-
rithms. A metric is simply a mathematical evaluation of whether a given set of
nodes is a good community: for example, as discussed earlier, several popular
community metrics are based on the general intuition that a good community
is internally well-connected and externally poorly-connected. These metrics are
typically mathematical formalizations based on human intuitions about what
a good community should be, and there is very little consensus within the re-
search community as to which metrics ought to be used. In some cases, one
may have an a priori belief that a metric is ‘good’, but directly optimizing for
that metric is computationally intractable. In such cases, one could develop
heuristic algorithms to optimize for the metric, or one may empirically demon-
strate that some algorithm (which may not have been intended to optimize for
the metric) tends to produces communities that score well when evaluated by
the metric. For a given metric, there may thus be any number of algorithms
intended to find sets that optimize for that metric; however, not all community

detection algorithms are based upon a metric.

In real networks, different edges are typically not equally important. For ex-
ample, in a social network, a connection between two siblings is likely stronger
than a connection between two casual acquaintances. There are community
metrics and community detection algorithms for both weighted networks, in

which edges may have different strengths, and unweighted networks, in which



all edges are viewed as equal. Many algorithms for identifying communi-
ties in weighted graphs are based on algorithms for finding communities in
unweighted graphs, but will assign greater importance to edges with heavy
weights. Because the datasets that we use in this paper do not generally have
edge weight information, we consider only versions of community evalua-
tion metrics and community detection algorithms that are appropriate for un-
weighted networks, where every edge is considered equal. However, many of
the tools and methods that we discuss in this dissertation can be trivially modi-

tied for use on weighted networks.

In this section, we begin by describing two commonly used metrics. We
then discuss several community detection algorithms, some of which are based

on metrics and others of which are not.

1.1.1 Community Metrics: Conductance and Modularity

Two metrics that epitomize the concept that good communities are dense, iso-
lated sets are conductance and modularity [48, 29]. Conductance, the simpler of
these two metrics, measures the ratio of the number of edges leaving a commu-
nity to the number of edges incident to that community. That is, for a network N
with nodes V and adjacency matrix A (with elements g;;), the conductance C(S)

of a set § is given by:
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A set of nodes with low conductance has few edges leaving the community,
and many edges within the community, and so is a good community, whereas
a set of nodes with high conductance is a weak community. Note that con-
ductance is a function of a single community within a larger network, rather
than an evaluation of a set of communities. Optimizing for conductance is com-
putationally intractable; however, there exist heuristic algorithms for finding

low-conductance cuts [41].

Unlike conductance, modularity is a function of a partitioning of a network’s
nodes. The modularity of a partition is defined as follows: Define m to be the
number of edges in the network, A;; as the number of edges between nodes i
and j, k; as the degree of node i, and (i, j) as 0 if i and j are in different parts of
the partition and 1 if they are in the same part [48]. Then the modularity Q of a

partition is:

| kikj| ..

i,J
This represents the number of edges within a set as compared to the number
of edges expected in that set had the edges been distributed at random: a set

with many in-links and few out-links is unexpected in a random graph, and

will thus contribute heavily to the total modularity of the partition.

1.1.2 Community Detection Algorithms

Community detection algorithms can be very broadly categorized into methods
that partition the network into disjoint sets and methods that find overlapping
communities. Algorithms of the former type tend to have roots in classical prob-

lems of graph clustering, whereas methods of the latter type are more firmly



grounded in the sociological intuition that real communities in real networks
are likely not disjoint (e.g., [44]). Of the algorithms discussed below, Greedy
Modularity Optimization and Infomap find a network partitoning, while Clique

Percolation, Link Communities, and OSLOM find overlapping communities.

Greedy Modularity Optimization

Although it is computationally intractable to find a modularity-maximizing par-
titioning, several heuristic algorithms exist for this task. In this dissertation,
we typically use the popular Louvain method for greedy modularity optimiza-
tion [7]. In this algorithm, modularity is first optimized locally by grouping
together nodes into small communities. These small communities are then
grouped together into larger and larger communities, until a maximum mod-

ularity value is attained.

Infomap

Many community detection methods are based on random walks [17]. These
methods are typically founded in the intuition that a random walk on a net-
work will tend to mostly stay within a community. One algorithm illustrat-
ing this general principle is the Infomap partitioning algorithm of Rosvall and
Bergstrom, which views a network as an analogue to a geographical map, and
the problem of partitioning a network into communities as similar to the prob-
lem of deciding how to draw a map [52]. Rosvall and Bergstrom describe ran-
dom walks along the network with a two-level encoding scheme in which each

node is described both by its cluster name as well as its own (relatively short)



local name within that cluster. Nodes in different clusters may share short local
names (e.g., many cities have a “Main St.”, but no city has more than one “Main

St.”).

Given a labeling, a random walk can be described in the following way:
When the walk enters a node in a different cluster, then the name of the cluster
is written, as well as the name of the node within the cluster. When the walk
stays within the same cluster, then only the local name of the node is written.
The goal of the Infomap partitioning algorithm is to identify clusters so as to
minimize the expected length of a random walk’s description. Intuitively, this
is accomplished by grouping together nodes that often appear close together in

random walks into appropriately sized clusters.

To identify a clustering, the Infomap algorithm uses a greedy algorithm. Ini-
tially, each node is placed in its own community, and communities are merged
together in such a way as to greedily minimize the expected length of a random
walk’s description. Simulated annealing is then used to improve this result.
Lancichinetti and Fortunato evaluated several algorithms and networks and

concluded that Infomap was the most reliable of the methods evaluated [33].

Clique Percolation

One common method for locating overlapping communities is the Clique Per-
colation method [49]. For a specified k, this method first locates all k-cliques
in the network and then “rolls” together adjacent cliques. Two k-cliques are
considered adjacent if they share k — 1 nodes. A community is formed by begin-

ning with one k-clique, adding all adjacent k-cliques, then adding all k-cliques

10



adjacent to those added in the last step, and so on, until no further growth is
possible. Because each node may appear in multiple cliques, this method can
produce overlapping communities. This algorithm is implemented by CFinder,

a freely available software package [3].

Clique Percolation is one of the earliest methods for identifying overlapping
communities, and so has been highly influential. However, it suffers from sev-
eral major drawbacks. First, finding and rolling together cliques in a network
can be impractically slow, particularly on dense networks. Second, it is not clear
how one can optimally select k, or even that a single value of k is appropriate
for the entire network (e.g., a higher value may be more appropriate for dense
sections of the network). Finally, the algorithm is very sensitive to missing data:

even one missing edge is sufficient to break a clique.

Link Communities

A more recent method for finding overlapping communities is the Link Com-
munities method [4]. This method is based on hierarchical clustering; however,
instead of clustering nodes, it clusters edges. For a network G, this method cre-
ates a new network H in which every node in H represents an edge from G.
Two nodes in H are linked by an edge if their associated edges are adjacent in
G. An edge between two nodes in H is weighted according to the similarity be-
tween the associated edges in G, defined as the Jaccard similarity between the

neighborhoods of their unshared nodes [28].

The algorithm then uses single-linkage hierarchical clustering to identify

“link communities” in H, stopping when a maximum network partition density,

11



defined as the average partition density D¢ for all communities C, is achieved.
The partition density D¢ for a community C containing m links and »n nodes is

defined as follows:
m—(n-1)

T an-hHn-2) (13)

C

Note that because a node can be represented by multiple edges, it can appear

in multiple communities.

OSLOM

OSLOM (“Order Statistics Local Optimization Method”) is a clustering method
intended to detect overlapping, hierarchical community structure and distin-
guish meaningful community structure from artifical communities that occur

even in random networks [34].

The OSLOM procedure consists of three main parts: first, finding signif-
icant clusters; second, analyzing the resulting clusters to determine whether
any should be merged or split; and third, identifying community hierarchies
by repeating the analysis on a new network representing the clusters already

detected.

To identify one cluster, the algorithm initially begins with a randomly se-
lected node as its own cluster, and then adds significant neighbors of that clus-
ter through a stochastic process that locates those nodes that have more edges
into the cluster than would be expected in a random network. A clean-up pro-
cedure is then applied to the cluster, in which significant nodes are added to
and insigificant nodes are removed from the cluster. Once clusters have been

identified, the algorithm then considers merging or splitting the clusters. Next,

12



the algorithm forms a new network in which the nodes represent clusters found
in the earlier steps. The process is then repeated on this network, and so on, to

produce a hierarchy of communities.

1.2 Organization

This dissertation contains four main contributions loosely connected by the

common theme of community structure in networks.

First, to motivate the importance of community research, we present an ap-
plication of community detection methods. We consider the link-prediction
problem, in which one attempts to predict which links in incomplete network
data are most likely to exist in the full data. This problem is relevant in fields
such as genetics, where interactions between genes are typically determined ex-
perimentally. In such cases, identification of likely genetic interactions could

assist researchers in their experiments, leading to savings of time and resources.

In the following section, we use external network annotation to identify
“real” or “annotated” communities in networks, such as graduate students in
the same department or books written by the same author. We examine prop-
erties of these annotated communities, and based on our conclusions, describe
a novel algorithm template for finding overlapping communities. We demon-
strate that this method outperforms other state-of-the-art methods when evalu-

ated on the task of correctly identifying annotated communities.

We conclude by presenting a pair of contributions, each also relating to the

structure of communities.

13



In the first of these two contributions, we present a three-part machine-
learning-based framework for comparing and contrasting the structures of com-
munities identified by different methods (e.g., community detection methods or
external annotation). This framework is suitable for researchers interested in ob-
taining a better understanding of community detection methods, as well as for
practitioners wishing to choose a suitable community detection method for a

given application.

Finally, we use this framework to compare the structures of annotated com-
munities to the structures of communities produced by various community de-
tection methods. We draw several interesting conclusions, including the result
that the class of annotated communities has a cohesive structure, but that the
structure is not adequately captured by any of the community detection algo-

rithms that we considered.
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CHAPTER 2
DATASETS AND ANNOTATED COMMUNITIES

Throughout this dissertation, we analyze many networks of various types, some
of which tag individual nodes with metadata. Some of these networks are orig-
inally directed or weighted, but we convert each network into an undirected,

unweighted graph by simply removing directions or weights on edges.

Because there are so many different mathematical formulations of “commu-
nity”, portions of this dissertation are concerned with characterizing or identi-
tying “real” communities. To this end, many of the network datasets that we
consider contain metadata that allow us to identify “annotated” communities.
For example, one network that we consider is a portion of the Facebook network
for graduate students at a university. For this network, we use the metadata to
identify students that are in the same department. One example of an annotated
community may be the set of all students within the Computer Science depart-
ment. Another network that we consider is the Amazon product co-purchasing
network. Here, each node is an product sold by Amazon.com, and an example

of an annotated community is the set of all books written by the same author.

Study of annotated communities is important for several reasons. First, ex-
amination of the structure of annotated communities is naturally a valuable sci-
entific topic in its own right, of interest to social scientists from many disci-
plines. Second, a better understanding of real communities helps lead to the de-
velopment of better community detection algorithms (and thus improved per-
formance in various applications) by both suggesting new mathematical for-
mulations of community, as well as by allowing more objective evaluation of

proposed community detection algorithms.
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While algorithms are typically evaluated by measuring how well their out-
put satisfies some mathematical formulation, such evaluation methods are nat-
urally subjective (e.g., when output communities are evaluated by their con-
ductance scores, an algorithm intended to optimize for conductance will out-
perform an algorithm intended to optimize for modularity, but this does not
necessarily demonstrate that the former algorithm is “better”). In contrast, the
existence of meaningful, structured “real” communities allows for an objective
ground truth that can be used to compare algorithms of fundamentally different

natures.

In general, we identify “annotated communities” by grouping together
nodes with the same annotation. In all the networks that we consider, a node
may appear in multiple communities. We consider only those annotated com-
munities that contain connected components with at least ten nodes. If some an-
notated community contains multiple components that are of size ten or larger,
we consider each to be a separate community. In this section, we describe each

dataset and some of its properties.

2.1 Networks with Annotation

Amazon is a product co-purchasing network from Amazon.com [36]. Each node
represents a book, and an edge exists between two nodes if one was frequently
purchased with the other. The network contains 270,347 nodes and 741, 142
edges. For each item in this network, Amazon.com provides several product
categories, such as “Chemistry Textbooks” or “Spy Thrillers”. We use these

annotations to create a set of 9474 communities.
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HS , DM, and SC are, respectively, biological networks describing protein-
protein interactions for H. Sapiens (human), D. Melanogaster (a fruit fly species),
and S. Cerevisiae (a type of yeast) [50, 55]. In these networks, a node represents a
protein, and two nodes are connected if their associated proteins are known to
interact with one another. HS contains 10,298 nodes and 54, 655 edges, DM con-
tains 15,326 nodes and 486,970 edges, and SC contains 5523 nodes and 82, 656
edges. Some proteins (though not all) are annotated with one or more gene on-
tology IDs describing the known function or functions that the protein serves.
We use these gene ontology values to identify communities. HS contains 70

communities, DM contains 56, and SC contains 77.

Grad and Undergrad (Ugrad) are, respectively, sections of the Facebook net-
work that correspond to graduate and undergraduate students at Rice Univer-
sity [45]. Grad contains 503 nodes and 3256 edges, and Undergrad contains
1220 nodes and 43,208 edges. For each graduate student, we are given their
anonymized department membership, college membership, and year. For each
undergraduate student, we are given major, dormitory of residence, and year.
We use this information to identify 24 communities in Grad and 41 communities

in Ugrad.

Manu is a small network describing interactions of employees at a manufac-
turing plant [13]. Two workers are linked if one of them reported that he or she
spoke to the other at least “somewhat infrequently”. Manu contains 77 nodes
and 705 edges. Using employment metadata for each worker, describing office
location (city), length of time employed, and “organizational level” (e.g., “Local

Department Manager”), we identify 10 communities.

DBLP is a computer science collaboration network, in which each node rep-
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resents a published computer scientist, and two nodes are linked if the corre-
sponding researchers have written at least one paper together. This network
contains 632,203 nodes and 2,391,252 edges. We identify annotated commu-
nities in DBLP by grouping together researchers who have participated in the
same publication venue (e.g., a conference or journal). We thus identify 10, 595

annotated communities in DBLP.

LJ1 and LJ2 are two portions of the blogging website LiveJournal [6]. In
these networks, each node represents a user of the LiveJournal website, and
users explicitly declare friendship links. This network contains several million
users, and as such, is too large for many of the community detection algorithms
that we consider. We thus consider two 500, 000-node subsets of the network,
each obtained by performing a breadth-first search at different locations in the
network. LJ1 contains 10, 736, 588 edges, and L]2 contains 10, 640,429 edges. In
addition to explicitly declaring friendship links, users may also explicitly de-
clare membership in various communities. These communities may be based
on interests (e.g., cooking), location, or other shared features. In L]J1, we identi-
fied 29, 955 annotated communities, and in L]2, we identified 39, 598 annotated

communities.

2.2 Networks without Annotation

In portions of this dissertation, we also consider networks without annotation.

HEP is a collaboration network drawn from research papers at the arxiv.com
paper repository in the High Energy Physics- Theory category [40]. It contains
9877 nodes and 25, 988 edges.
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Rel is a collaboration network drawn from papers at arxiv.com in the Gen-
eral Relativity and Quantum Cosmology category [40]. It contains 5242 nodes
and 14,496 edges.

Email is an e-mail network from the University Rovira i Virgili in Spain [24].
Email is a directed network, and we convert it to an undirected network by

changing all arcs into edges. It contains 1133 nodes and 5452 edges.

Wiki is a network in which nodes represent Wikipedia users, and an edge
between two nodes represents one node voting for or against promoting the
other to an administrator position [39, 38]. It contains 7115 nodes and 100, 762

edges.

Word is an associative thesaurus created experimentally [32]. Researchers
showed a few words to people, and the subjects replied with the first word that
came to mind. These words were then added to the set, and the process was
repeated, and so on. This is a directed network, and we convert it to an undi-
rected network by changing all arcs into edges. This network contains 23,219

nodes and 305, 500 edges.
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CHAPTER 3
LINK PREDICTION: AN APPLICATION OF COMMUNITY DETECTION
METHODS

In recent years, network analysis has become an increasingly popular topic for
computer science researchers. However, much of the available network data
is incomplete. For example, in a network representing interactions between
genes in some species, links are typically determined experimentally, and so the
known links may represent fewer than 1% of the actual links [60, 5]. Because of
this, researchers sometimes wish to know which pairs of nodes that are not con-
nected in the known network are likely to be connected in the actual network.
Such knowledge is useful in cases like a gene interaction network, because it
can suggest which experiments a biologist ought to perform to identify exist-
ing interactions. It is also useful for researchers designing or applying network
algorithms, as such algorithms may perform more accurately when more links

are known.

Algorithms for the link prediction problem typically compute the “similar-
ity” between two nodes, with the assumption that nodes that are highly similar
are more likely to be connected than those that are dissimilar [42]. The research
question, then, lies in the question of how best to define “similarity.” Simple
measures consider easy-to-compute factors like the number of neighbors shared
between two nodes, whereas more complex definitions partition the network
into groups, and then determine the probability that two nodes are connected
based on the group memberships of those nodes [10, 66]. Methods of the latter
type can be more accurate than those of the former type; however, they typically

run very slowly and may only be practical for small networks [42].
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In this chapter, we consider several simple methods that use local informa-
tion to predict the existence of a link between two nodes, but then supplement
this local information with community membership information. For example,
if two nodes, as well as some of their shared neighbors, are all in communities
together, then we may infer that a link between them is more likely than if they
and their shared neighbors are in different communities. We test our methods
on 10 datasets from a variety of domains, ranging from scientific collaboration
networks to friendship networks to gene interaction networks, and show that
using community information often increases the precision accuracy of the re-

sults.

The remainder of this chapter is organized as follows: First, we discuss rele-
vant background, beginning with a discussion of existing local similarity-based
link prediction methods. Next, we describe the experiments we perform and
list the datasets used in these experiments. After that, we discuss the results of

these experiments, and finally conclude with suggestions for future work.!

3.1 Background

3.1.1 Local Similarity Measures

We consider 5 types of local similarity measures. Throughout this paper, we
refer to these metrics as “base metrics”, as they provide the foundation for our
“enhanced metrics” that incorporate community information. For a vertex v, let

I'(v) be the set of all neighbors of v, and let d(v) be the degree of v. Then for nodes

'The work in this chapter originally appeared in [57].
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a and b, we use the following base metrics:

e Common Neighbors: [I['(a) NT'(b)|, the number of neighbors shared by
both a and b.

[C@NI(b)|

e Jaccard Similarity: 525G,

the number of vertices adjacent to both a and
b normalized by the number of vertices adjacent to either a or b [28].

[IC(@)N(b)|
d(a)+d(®) ’

e Sorensen Similarity: the number of vertices adjacent to both a and

b normalized by the sum of the degrees of a and b [56].

1
e Resource Allocation: Z ——, the sum of the inverses of the degrees
cel(a)nI'(b) d(C)
of vertices adjacent to both a and b. Intuitively, this is similar to the Com-
mon Neighbors measurement, but vertices with higher degree are worth
less than those with low degree, because it is assumed that a high degree
vertex connected to both a and b is less meaningful than a low degree ver-

tex connected to both a and b [67].

[IC(@NI(b)|

o Leicht-Holme-Newman: da)xd(®)

the number of vertices adjacent to both

a and b normalized by the product of the degrees of a and b [35].

The Common Neighbors metric has been used in collaboration networks, where
it has been shown that individuals who have collaborated with many of the
same people are more likely to collaborate together in the future [46]. The
Jaccard Similarity, Sorensen, and Leicht-Holme-Newman metrics use the same
principle, but normalize this value, because if a and b are of high degree, a large
number of shared neighbors is less meaningful than if a and b are of low degree.
The Sorensen Similarity metric is used primarily in ecological applications, but
we include it here for comparison. The Resource Allocation index is based on

the principles of distributing resources along the edges of a network. If a has
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some unit of resource and distributes it equally to its neighbors shared by b, and
each of those neighbors then allocates its portion of the resources equally be-
tween its neighbors, then the amount of resource that b receives is measured by
the Resource Allocation index. Over a variety of networks, the Resource Alloca-
tion index has been shown to generally perform better than the other measures

mentioned here [42].

3.1.2 Evaluating a Link Prediction Method

The success of a link prediction algorithm on a network N can be measured
by two methods: precision and area under the receiver operating characteristic
curve (AUROC) [42]. To calculate these, one can perform 10-fold cross valida-
tion. For each fold, 10% of the existing links are withheld from the network to
create a new network N’. This is done 10 times, and each time, a different 10%
of the links are withheld. This ensures that each link is withheld exactly once,
so all links are present in the training data and the test data an equal number of

times.

To measure precision, one uses N’ to identify the n links that are most likely
to exist in the full network, and then calculates the fraction of these n links that

are present in the withheld 10% of links.

When evaluating precision scores in this paper, it is important to note that
many of the network datasets are incomplete (even when none of the known
links are withheld). Consider, for example, a biological network in which pro-
tein interactions are identified experimentally, and only 5% of the interactions

have been identified. A perfect link prediction algorithm, then, might receive a

23



precision score of only 5%: even if all of its predictions are actually correct, only
5% of the predicted links have been confirmed and count toward the precision
score. Thus, while one should compare precision scores of different algorithms
against one another on the same network, they should not be compared across

datasets or against an absolute standard.

To measure AUROC, one samples m pairs of edges that are not in N’, where
one edge ¢ in the pair is present in the list of withheld edges and the other edge
e, is not in this list. The link prediction method is used to score each pair by
determining which of e, or e, is more likely to be present in the full network. If
the method determines that ¢, is more likely than e, to be in the full network,
then the pair is assigned a score of 1. If the method determines that ¢, and e; are
equally likely to be in the network, then the pair gets a score of 0.5, and if the
method determines that e, is more likely than ¢, to be in the network, then the
pair gets a score of 0. To estimate the AUROC, one averages these scores over

all sampled pairs.

3.2 Datasets

In this section, we use networks Amazon, Grad, Undergrad, HS, SC, Wiki,
Word, Rel, HEP, and Email. We do not consider any metadata annotations, but

simply use the raw link structure.
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3.3 Evaluation of Base Metrics

For each network N listed in 3.2, we perform experiments using 10-fold cross
validation. We partition N’s links into 10 equal sized sets. We then perform 10
rounds of experiments. In each round, each such set is used as test data in one
round, while the remaining 90% of the links are used as training data. For round
i, let N; denote the network defined by the links in the training data, and let T;

denote the set of links constituting the test data.

Then, using each of the base metrics described earlier, we identify the n most
likely links that are not present in N;, where n = 1. We then calculate how many
of the n found links are actually in 7;. This value, averaged over all 10 folds, is
the precision of the metric. As before, we caution that the precision scores not be
compared across networks or to an absolute standard. Many of the networks,
such as the biological networks in which links are experimentally determined,
are incomplete, even when links are not withheld. For such networks, even a
perfect link prediction method could get a low precision score because although
its predictions are all correct, the link does not exist in the known (incomplete)
network data. Thus, a low precision score should not be taken as an indication
that a method is objectively “bad”; rather, the precision scores should be used

to compare algorithm accuracy.

Table 3.1 shows the results of evaluating each of the base metrics on each of
the networks using 10-fold cross validation. For each network, the best perform-
ing metric has been bolded. Two metrics, Common Neighbors and Resource
Allocation, are each the best performing metric for half of the networks, and the

other metrics are not the best for any network.
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Table 3.1: Precision of base metrics

CN Jacc Sor LHN RA

Amazon | 0.3713 | 0.0193 | 0.0193 | 0.0139 | 0.350

Grad | 0.3713 | 0.5000 | 0.5000 | 0.0182 | 0.7212

Ugrad | 0.5757 | 0.5870 | 0.5870 | 0.0322 | 0.6889

HS 0.1110 | 0.0113 | 0.0113 | 0.0007 | 0.0726

SC 0.1944 | 0.0306 | 0.0306 | 0.0000 | 0.0825

Email | 0.3509 | 0.1000 | 0.1000 | 0.0018 | 0.3255

HEP 0.6988 | 0.6288 | 0.6288 | 0.0635 | 0.9227

Rel 0.9676 | 0.9828 | 0.9828 | 0.0717 | 0.9903

Word | 0.1402 | 0.0013 | 0.0013 | 0.0000 | 0.1471

Wiki | 0.1773 | 0.0001 | 0.0001 | 0.0000 | 0.1420

Caption: For every network, either base metric CN or base metric RA is the top per-
former.

3.4 Enhanced Link Prediction

In this section, we describe how we modify local similarity metrics, or “base

metrics”, to account for community membership.

3.4.1 Modification of Local Similarity Measures

We believe that community membership information can provide valuable in-
formation for the link prediction problem. Consider the Common Neighbors

similarity metric, one of the simplest local similarity measures. Under this met-
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ric, the similarity of two nodes a and b is defined by the number of neighbors
that a and b have in common. Suppose that we are using this metric to analyze

a friendship network.

Suppose that individual ¢ knows both a and b, but ¢ knows a from the com-
munity corresponding to some school, and ¢ knows b from the community cor-
responding to some workplace. Suppose additionally that a and b both have a
neighbor d in common, and d knows both a and b from the community corre-
sponding to some sports team. When calculating the probability that a and »
know one another, it is possible that the shared neighbor d should count more
heavily towards this probability than the shared neighbor c, since a and b both
know d from the same context. The fact that a and b are in at least one commu-

nity together should also count towards this probability.

Similarly, suppose that a is adjacent to some vertex c, and b is not adjacent
to c. Some metrics, such as the Jaccard Similarity metric, take into account all
vertices adjacent to either a or b, not just those adjacent to both a and b. In such
cases, we may wish to penalize more greatly those neighbors adjacent to only
one of a or b that are in a community with both a and b. Intuitively, if a, b,
and c are in a community together, and ¢ is connected to a but not to b, then
there is a greater sense that ¢ ought to be connected to b than if ¢ and b had
been in different communities, and so the modified similarity measure receives

a greater penalty for such cases.

Because Common Neighbors and Resource Allocation strongly outper-
formed the other local similarity-based metrics, we only consider these two
measures for modification. In some metrics, we assign extra points to a pair

of nodes a and b if they share neighbors in the same communities, or if a and b
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themselves are in the same communities.

For each method, we use the following shorthand: for nodes a and b, let
I'(a) be the set of neighbors of a, I'(b) be the set of neighbors of b, I'(a, b) be the
neighbors shared between a and b, d(a) be the degree of g, and d(b) be the degree
of b.

We generate communities using the Louvain method for greedy modularity
optimization, Infomap, and the Link Communities method. Because the Link
Communities method generates communities of edges rather than nodes, we
interpret its results in two ways: first, simply as a collection of overlapping
communities of nodes, and second, as a partitioning of edges. Call the former
method Link Communities- Node, and the latter method Link Communities-
Edge. Call the former type of community a node community, and the latter

type an edge community.

We consider a variety of modifications to the original local similarity mea-
sures. For a pair of nodes (a, b), most of these modifications either assign extra
points for neighbors shared between a and b that are in some of the same com-
munities as a and b, or assign extra points for all communities that a and b are

both in, or both.

For each of the metrics described below, given a particular community de-
tection method, let C(n) be the set of node communities to which node n be-
longs. For Link Communities- Edge, let C(n, m) be the set of edge communities
to which edge (n, m) belongs. For greedy modularity optimization and Infomap,
the size of C(n) is 1, and for Link Communities- Edge, the size of C(n,m) is 1. For

Link Communities- Node, the size of C(n) may be greater than 1.
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Common Neighbors

We enhance the Common Neighbors (CN) metric in 5 ways. For nodes a and b,
let CN(a, b) be the number of common neighbors between a and b. The first three
methods (CN1,CN2,CN3) can be computed using the node communities ob-
tained from greedy modularity optimization, Infomap, and Link Communities-
Node. The last two methods can be computed using the edge communities from

Link Communities- Edge.

e Common Neighbors 1 (CN1): In this measure, CN1(a, b) begins with the
base score given by CN(a,b), and then for every neighbor i shared by a
and b, CN1(a, b) receives an additional point for every community that q,
b, and i are all in.

CNl1(a,b) = CN(a,b) + Z |IC(i) N C(a) N C(D)]. 3.1)

iel'(a,b)

e Common Neighbors 2 (CN2): In this measure, CN2(a, b) begins with the
base score given by CN(a, b), and then receives an additional point for ev-

ery community that a and b are both a part of.

CN2(a,b) = CN(a,b) + |C(a) N C(b)|. (3.2)

e Common Neighbors 3 (CN3): This measure is a combination of CN1 and
CN2.
CN3(a,b) = CNI1(a,b) +|C(a) N C(b)|. (3.3)

e Common Neighbors Edge 1 (CNEdgel): In this measure, CNEdge(a, b) be-
gins with the base score given by CN(a, b), and then for every neighbor i

shared by both a and b, if the relationships between both a and i and b and
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i fall into the same community, CNEdgel(a, b) receives another point.

CNEdgel(a,b) = CN(a,b) + »_ |C(i,a) N C(i,b). (3.4)

iel'(a,b)

e Common Neighbors Edge 2 (CNEdge2): This is the same as CNEdgel, but

with additional points for every community that contains both a and b.

CNEdge2(a,b) = CNEdgel(a,b) + |C(a) N C(b)|. (3.5)

Resource Allocation

We enhance the Resource Allocation measure in 2 ways, the first computed us-
ing node communities from greedy modularity optimization, Infomap, or Link
Communities- Node, and the second computed using edge communities from

Link Communities- Edge.

e Resource Allocation 1 (RA1): RA1(a, b) is the sum over all vertices i € I'(a, b)

of 1+|C()NC(a,b)|

7o - his is similar to the original Resource Allocation definition,

but we give extra weight to shared neighbors i that are in at least one
community with both a and b, and weight i’s contribution toward the total

score by the number of communities that i shares with a and b.

RAl(a,b) = Z 1 +1C0) ﬂd(C;§a) n C(b)l. (3.6)
i€l'(a,b)

e Resource Allocation Edge 1 (RAEdgel): This is similar to RA1, except we
give extra weight to shared neighbors i such that (i,a) and (i, b) are in at

least one edge community together.

1 +|C@,a) N C(, D)l
d(@)

RAEdgel(a,b) = Z

iel(a,b)

(3.7)
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3.5 Experimental Methodology

For each network N listed above, we perform experiments using 10-fold cross
validation, as we did for the base metrics. We partition N’s links into 10 equal
sized sets. We then perform 10 rounds of experiments. In each round, each such
set is used as test data in one round, while the remaining 90% of the links are
used as training data. For round i, let N; denote the network defined by the links

in the training data, and let 7; denote the set of links constituting the test data.

For each round of experiments, we use only the training data to generate
communities using Infomap, the Louvain method for greedy modularity opti-
mization, and Link Communities (that is, the community detection algorithms

are only given 90% of the known links).

Then, using each of the base and enhanced metrics described in Section 3.4.1,

we follow the same cross-validation procedure as described in Section 3.3.

We also calculate the AUROC score. We select 1000 pairs of edges in which
the first edge is present in 7; and the second edge is not present in either N; or
T;, and then use each metric to score the two edges. Using this information and

averaging over all 10 folds, we estimate the AUROC value.

3.6 Results

In this section, we discuss the modified local similarity metrics from Sec-
tion 3.4.1. Our results show that the modified local similarity measures perform

quite well in comparison to the base local similarity measures.
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Table 3.2: Precision of base and enhanced metrics using Link Communi-
ties method

SC | Ugrad | HS HEP

CN 0.1944 | 0.5757 | 0.1110 | 0.6988

CN1 0.3746 | 0.6491 | 0.1572 | 0.7762

CN2 0.2441 | 0.6648 | 0.1343 | 0.7565

CN3 0.3733 | 0.6514 | 0.1422 | 0.7734

CNEdgel | 3486 | 0.6671 | 0.1402 | 0.8038

RA 0.0825 | 0.6689 | 0.0726 | 0.9227

RA1 0.3724 | 0.7007 | 0.1111 | 0.9281

RAEdgel | 0.4707 | 0.7144 | 0.1256 | 0.9277

Caption: One of RA1, RAEdgel, or CN1 is the top performer on each of these networks.

3.6.1 Modified Local Similarity Measures

Two main results emerge from our experiments on enhancing base local similar-
ity metrics with community information: first, the best community information
enhanced metrics outperform the best base metrics on precision, but the two
types of metrics perform roughly the same when evaluated using the AUROC

measure.

We see similar results when enhancing these base metrics with community
information: the enhanced Jaccard, Sorensen, and LHN metrics do not perform
the best on any network. To save space, we present only a few representative
results. Table 3.2 contains the precision results obtained by evaluating each base

and enhanced metric on the SC, Ugrad, HS, and HEP datasets using communi-
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ties obtained from the Link Communities algorithm. Again, for every network,
the best score (shown in bold) occurs with either CN1, CNEdgel, RA1. We see
similar results for every other network except Grad, in which the best metric is

the base Common Neighbors metric CN.

For the rest of this section, to save space, we thus only present results for CN,

CN1 (and the related CNEdgel), RA, and RA1 (and the related RAEdgel).

We now present the CN, CN1, CNEdgel, RA, RA1, and RAEdge] results for all
networks using all community detection methods. Tables 3.3 and 3.4 contain the

results for each network using communities found using the Link Communities

(LC) method, the Louvain method (Mod), and Infomap (IM).

On every network except Grad, the best performing metric is one that in-
corporates community information. On 7 out of the 10 networks, some form of
RA1 outperformed the other metrics, both base and enhanced (including ones
not presented here), although it is not clear which community detection method
is best. Additionally, regardless of choice of community detection algorithm, all
of CN1, CNEdgel, RA1, and RAEdgel outperform their corresponding base met-

rics on average, sometimes by a large factor.

Although for some networks, it appears that every metric does poorly, we
again caution that this is not necessarily the case. For some networks (espe-
cially the biological networks, like HS) only a very small fraction of all links
are known, and thus even a perfect link prediction would appear to have a low
score. For other networks, such as Rel, it appears that the enhanced metric im-
proves the base metric only slightly: for example, the precision of RA on Rel is

0.9903, and the precision of RAEdgel is 0.9945. While this is only an increase
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Table 3.3: Precision for base and enhanced Common Neighbors metrics

CN | CNI(mod) | CN1(LC) | CN1(IM) | CNEdgel

Amazon | 0.3713 0.3717 0.3220 0.3740 0.3326

Grad | 0.5515 0.5455 0.5364 0.5364 0.5484

Ugrad | 0.5757 0.6748 0.6491 0.6738 0.6671

HS 0.1110 0.1196 0.1572 0.1203 0.1402

SC 0.1944 0.2961 0.3746 0.2734 0.3486

Email | 0.3509 0.3509 0.3291 0.3418 0.3691

HEP 0.6988 0.6831 0.7762 0.7031 0.8038

Rel 0.9676 0.9676 0.9676 0.9676 0.9676

Word | 0.1402 0.1486 0.1015 0.1473 0.1101

Wiki 0.1772 0.1951 0.1437 0.1894 0.1515

Average | 0.4139 0.4353 0.4357 0.4327 0.4439

Caption: Boldface indicates the metric that had the highest accuracy; if no column in a
row is in boldface, then a RA-based metric was the top performer.

of 0.0042 in absolute terms, it covers nearly half of the distance from the base

metric to a perfect score.

These results demonstrate that enhancing CN and RA with community infor-
mation typically leads to an improvement in precision. We next consider how

community information affects AUROC.
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Table 3.4: Precision for base and enhanced Resource Allocation metrics

RA | RAl(mod) | RA1(LC) | RA1(IM) | RAEdgel

Amazon | 0.3507 0.3519 0.4114 0.3783 0.4097

Grad | 0.7212 0.7000 0.7152 0.6879 0.7030

Ugrad | 0.6889 0.7236 0.7007 0.7241 0.7144

HS 0.0726 0.0755 0.1111 0.0762 0.1256

SC 0.0825 0.1520 0.3724 0.1374 0.4707

Email | 0.3255 0.3455 0.3836 0.3473 0.3764

HEP 0.9227 0.9196 0.9281 0.9204 0.9277

Rel 0.9903 0.9917 0.9917 0.9917 0.9945

Word | 0.1471 0.1490 0.1276 0.1403 0.0940

Wiki 0.1420 0.1397 0.1459 0.1419 0.1187

Average | 0.4443 0.4548 0.4888 0.4546 0.4935

Caption: Boldface indicates the metric that had the highest accuracy; if no column in a
row is in boldface, then a CN-based metric was the top performer.

3.6.2 AUROC

When evaluating link prediction metrics through the AUROC score, we see in
Table 3.5 that the enhanced metrics perform nearly identically to base metrics;
their main advantage over base metrics occurs in the task of accurately predict-
ing the most likely links (i.e., the task measured by precision). The strength of

enhanced local similarity metrics, thus, lies in high precision scores.

Note that when we evaluate link prediction metrics through AUROC and

precision, we are evaluating performance in fundamentally different ways. The
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Table 3.5: AUROC for base and enhanced Metrics

CN CN1 | CN2 | CN3 RA RA1
Amazon | 0.8642 | 0.8669 | 0.8660 | 0.8712 | 0.8660 | 0.8641
Grad | 0.9451 | 0.9450 | 0.9494 | 0.9488 | 0.9484 | 0.9476
Ugrad | 0.9125 | 0.9142 | 0.9122 | 0.9108 | 0.9174 | 0.9216
HS 0.7709 | 0.7698 | 0.7847 | 0.7775 | 0.7719 | 0.7732
SC 0.8601 | 0.8525 | 0.8575 | 0.8537 | 0.8666 | 0.8749
Email | 0.8427 | 0.8389 | 0.8459 | 0.8499 | 0.8481 | 0.8431
HEP 0.8988 | 0.9006 | 0.8999 | 0.9038 | 0.9026 | 0.9037
Rel 0.9202 | 0.9209 | 0.9219 | 0.9230 | 0.9219 | 0.9237
Word | 0.7580 | 0.7597 | 0.7604 | 0.7568 | 0.7557 | 0.7555
Wiki 0.9264 | 0.9281 | 0.9242 | 0.9286 | 0.9342 | 0.9298

Caption: AUROC scores are roughly equal across all metrics.

AUROC score is useful for comparing metric performance over the set of all
missing links, whereas when we calculate precision, we only consider those
missing links that a metric considered very likely to exist in the full network.
Thus, for tasks in which the ability of a metric to determine the most likely links

is most important, enhanced local similarity measures are likely to be of great

value.
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3.7 Metric Selection

In nearly every case, the enhanced metrics outperformed the associated base
metrics. In the cases where the enhanced metrics performed equally to or worse
than the base metrics, it is possible that the community information was flawed.
To evaluate the likelihood of this possibility, we re-calculate each metric using
community information obtained by applying the community detection algo-
rithms to the entire set of edges. That is, when identifying communities, we
use all edges, rather than just the 90% of edges contained in the training set.
All other portions of each metric, such as the number of shared neighbors, are
still calculated using only the edges in the training set. Unsurprisingly, we
see a fairly significant improvement in performance: even for network Grad,
where the best metric was previously the base metric RA, the best metric is now
RAEdgel. Naturally, we are not proposing this as a solution to the metric selec-
tion problem: in a real application, a practitioner certainly will not have access
to the complete set of edges, and so must use inaccurate community informa-
tion, but this experiment demonstrates the importance of correct community

membership data.

In order to assist a practitioner in selecting an appropriate metric, we present

the following two methods.

3.7.1 Metric Selection through Cross-Validation

In our original experiments, we performed 10-fold cross-validation. In each it-

eration, 10% of the network’s edges were withheld for testing and the remaining
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90% used for generating communities and making predictions. For each of these
training sets containing 90% of the edges from the original network, we perform
another level of 10-fold cross-validation by further dividing those edges into 10
sets of training and testing edges. We apply the link prediction methods to this

second layer of cross-validation sets.

For example, consider network SC. In the previous section, we created 10
sets of training edges. Call these sets SC;, SC, ..., SCyo. For each SC;, metric
RAEdgel produces some fraction improvement f; over metric RA when evalu-
ated on the corresponding set of test edges (the ratio of the RAEdge1 score to the
RA score is approximately 6 on average, but varies for each SC;). For each SC;,
we create 10 more sets of training edges, SC;;, ..., SC; . For each SC;;, metric
RAEdgel gives some fractional improvement f; ; over metric RA when tested on
the corresponding set of test edges. For each SC;, we calculate the average f; ;

over all values j of f; ;.

We then plot f; against f;; for all values i, all networks, and all enhanced
metrics. Results are shown in Figure 3.1. The purpose of this experiment is to
show that f; ; is strongly related to f;: thus, to select a metric for some network,
one can observe that metric’s cross-validation performance on subsets of the

network.

We see that there is a fairly strong relationship between each f; and f;;. In
particular, when f; is extremely high (as in the case of network SC), f; is also

very high, and vice versa.

These results give guidance to users looking to apply these methods to real

data. Although no metric is best for every network, one can simply perform
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Figure 3.1: ]T, vs. f;

Caption: Cross-validation accuracies are a good predictor of actual accuracy.

cross-validation on that network to determine whether a particular metric is

likely to be successful when applied to the complete data.

3.7.2 Metric Selection through Comparison of Existing Edges

and Non-Edges

In addition to performing the cross-validation method of metric selection de-
scribed above, one can also use the existing data to compare pairs of nodes that
are connected and pairs of nodes that are not connected. In this experiment, for
every training network, we generate a list of all pairs of nodes (u, v) that share at
least one neighbor. For some of these pairs, u and v are connected, and for other
pairs, they are not. For each pair in the list, we calculate the value of the CN(u, v)

and CNEdgel(u,v) metrics. We then plot CNEdgel(u,v) — CN(u,v) vs. CN(u,v),
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Figure 3.2: Plots of CNEdgel — CN vs. CN
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and determine whether the CNEdgel(u,v) — CN(u,v) values differ significantly
between pairs of nodes that are connected and not connected, but have the same
CN(u,v) value. Intuitively, if metric CNEdgel is to be successful relative to met-
ric CN, then if u and v are connected, we expect CNEdgel(u,v) — CN(u,v) to be

higher than if they are not connected.

On Grad and Amazon, CNEdgel performed worse than CN, and on S C and
HS, CNEdgel outperformed CN. To save space, we present the plots for only
these networks in Figure 3.2. In Figure 3.2, the left column contains the plots
for connected pairs of nodes, and the right column contains the plots for un-
connected pairs of nodes. We limit the range of CN and CNEdgel — CN values
that we consider, and consider only those pairs of nodes that had high CN or
CNEdgel values, because these pairs of nodes are the ones that effect precision
scores (as precision only considers the most likely edges). In this case, we con-
sider the top e pairs of nodes as measured by either CN or CNEdgel, where e is

the number of edges in the test set. For each plot, we calculate the best-fit line.

From this figure, we quickly reach several conclusions. First, for those net-
works (SC and HS) on which CNEdgel outperformed CN, the slope of the best-
tit line is significantly higher for the connected nodes than for the un-connected
nodes (this is especially true for SC). This indicates that connected pairs of
nodes tend to have much higher CNEdgel values than un-connected nodes with
the same CN value, and so CNEdgel does a good job in discriminating between
connected and un-connected node pairs. In contrast, on Grad and Amazon, the
slopes of the best-fit lines are nearly identical. This strongly suggests that, for
these two networks, CNEdgel is unlikely to outperform CN (as is indeed the

case).
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Note also that for HS and SC, there are relatively few pairs of connected
nodes that have very high CN values and low CNEdgel — CN values (along the
x-axis). This is particularly apparent for HS, which has no pairs of connected
nodes along the x-axis with CN greater than approximately 70. In contrast, there
are many pairs of un-connected nodes in this location. Conversely, for Amazon
and Grad, the plot containing connected pairs has many elements with high CN

and CNEdgel — CN = 0.

This method of comparing plots is a simple way to determine whether the
incorporation of community information is likely to be useful, and unlike the
earlier cross-validation method, does not require reapplication of community

detection methods.

3.8 Conclusion and Future Work

We have considered the problem of link prediction in incomplete networks.
Much of available network data is incomplete, and so researchers are interested
in methods for predicting which edges are most likely to exist in the full net-
work. Many approaches to this problem use local similarity metrics to deter-
mine which pairs of nodes are most similar, and thus most likely to have an
edge between them. We consider several such metrics and enhance each one

with community membership information.

Of the 5 base metrics, Common Neighbors and Resource Allocation were the
most successful over all networks: each was the best performing network on 5
out of the 10 networks. We thus focused on these metrics and their modifica-

tions.
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Averaged over all 10 networks, enhanced metrics CN1, CNEdgel, RA1, and
RAEdgel had higher precision scores than their corresponding base metrics, and
similar AUROC scores. We thus conclude that the addition of community infor-
mation to the Common Neighbors and Resource Allocation metrics can improve
their performance on many types of networks. Although no single metric was
best for every network, we showed that one can perform cross-validation to

determine whether a particular method is likely to succeed on a given network.

Future directions for this problem might focus on other ways to determine
which community detection method is best suited for a particular network. In
our results, Link Communities- Edge seemed to be the most successful method,
but results were mixed. This problem is naturally related to the problem of de-
termining which community detection method is best suited for finding com-
munities within a network, but it it not obvious that the two problems are the
same. A related problem is that of determining which base local similarity met-
ric is best for a particular network. Of the base local similarity metrics that
we evaluated, Common Neighbors and Resource Allocation outperformed the
others, but can one determine which metric to use based on features of the net-

work?
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CHAPTER 4
ON CHARACTERIZING AND IDENTIFYING COMMUNITIES IN
NETWORKS

In the last chapter, we saw the need for reliable and accurate community de-
tection algorithms. Traditionally, researchers have approached the community
detection problem by first creating mathematical definitions of what real com-
munities ought to look like, and then designing algorithms to identify sets that
match these descriptions. While this approach has advantages, it is not always

clear whether a particular mathematical definition of “community” is correct.

Many such mathematical definitions are based in the principle that a com-
munity ought to be “round,” or well-connected throughout: for example, a good
community might resemble a G(n, p) graph within a larger network (with p large
relative to the overall edge density of the network). Classic examples of such
definitions include modularity and conductance, both of which reward a set of

nodes for having high connectivity throughout the entire set.

Another type of mathematical definition is founded in the belief that com-
munities are “long,” or formed of many small groups that are individually well-
connected, and while those small groups may be well-connected to one another,
each individual node in a group may not be well-connected to the rest of the
community. For example, the popular Clique Percolation algorithm [49] first
identifies cliques of a certain size, and then “rolls” together adjacent cliques
(those sharing all but one node) to find larger communities. While portions of
such a community are certainly well-connected (as they are cliques), an individ-

ual node need not have any connection to more distant cliques.
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Because there is little consensus about what real communities are, rather
than creating and evaluating our method based on some mathematical crite-
rion, we choose to design it and test it using real data. We use a collection of
seven network datasets from varied domains, including social, product, and bi-
ological. Each of these networks contains some sort of external annotation that
allows us to identify “annotated communities.” For example, in a social net-
work of students at a university, all students in the same department constitute

one annotated community.

First, in order to gain insight into which of the two concepts of “commu-
nity” is more realistic, we examine the annotated communities in detail. We
demonstrate that annotated communities tend to be much “longer” than ran-
dom graphs of the same size, and so conclude that the “long” model of com-
munities as sets of small groups may better charaterize annotated communities
than the “round” model of communities. We then decompose each annotated
community into several constituent parts, and show that these parts tend to fit

the “round” model much better than do the complete annotated communities.

Working with these principles, we create the Node Perception algorithm
template for finding overlapping communities in networks. Our method is
founded partly in the intuition that while individuals may belong to many dif-
ferent communities, a relationship between two individuals will generally fall
solidly into one community. Given this, individuals in a network should be able
to partition their neighbors into disjoint “sub-communities” that are portions of
larger communities. For example, an individual person may be in many com-
munities, such as her workplace, a university department at her school, an ex-

tended family, and so on. While she cannot name every individual in these com-
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munities, she can probably identify which of her acquaintances fall into each of
these communities, and so can group her neighbors into sub-communities (e.g.,
“my co-workers”, “my classmates”, etc.). These sub-communities can be iden-
tified through use of a simple graph partitioning algorithm, or, in some cases,
may be more accurately identified with available metadata (e.g., if several peo-
ple frequently appear together in photographs). We then identify communities
in a new network in which each node represents a sub-community. Each node
from the original network can be represented by multiple sub-communities,
so a node can appear in many different communities. Because a practitioner
may choose how to identify sub-communities, how to create a network of sub-
communities, and how to identify communities in that new network, this tem-
plate is highly flexible and can easily be tuned to meet the user’s needs. To
evaluate our method, we test how well it recovers the set of annotated commu-
nities. Because it is a flexible template, we consider several specific instances,
and show that all of these instances outperform several other popular methods

for identifying communities.

We finish with a brief discussion of how a practitioner might select a spe-
cific Node Perception implementation to suit his or her needs and based on the
network features. We give several case studies, in which we consider features
of actual networks, and show how modifications based on these features can

further increase the performance of Node Perception.

Our work is novel in several important ways. Publications in the community
detection arena typically present an algorithm and show that it is effective on
some datasets, but often do not examine why a method is successful. Alterna-

tively, they may present an algorithm and then give theoretical guarantees, with
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little justification for why a particular theoretical measure is best. Although
many other popular algorithms are based on the general principle of joining
together small, well-connected groups of nodes (including the recent DEMON
algorithm [12], which is a specific instance of our method), to our knowledge
our work is the first to propose an explanation based on real data for why such
methods of community detection are successful. Additionally, we demonstrate
that the general template is far more important than the specific implementa-
tion. Indeed, in most cases, each of the six implementations that we consider
outperforms the other algorithms. To both practitioners and researchers, this
conclusion is of greater value than demonstrating that one single algorithm out-
performs other methods. To practitioners, these results are particularly useful
because our method gives a user a great deal of flexibility, even allowing for the
easy incorporation of information external to the structure of the network, such
as in the case when some community memberships are known. Just as impor-
tantly, these results are valuable to researchers, because they give insight into
the structure of annotated communities by demonstrating that the template it-
self, rather than specific implementations, is responsible for Node Perception’s

success.

This paper is organized as follows: first, we discuss work related to ours, in-
cluding descriptions of other algorithms that we use for comparison. Next, we
list each of the datasets used for evaluation. After that, we discuss our method
in detail. We then compare the output from each algorithm to the annotated
communities from the datasets. We find that averaged over seven datasets, our
Node Perception methods outperform the other tested methods. We then dis-
cuss scalability and suitability of different Node Perception implementations,

and consider several case studies, in which we use features of individual net-
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works to select an appropriate Node Perception implementation. Finally, we

discuss some directions for future work.!

4.1 Related Work

Many traditional community detection algorithms are based on the principle
that a good community is a set of nodes that is well connected internally and
mostly separated from the rest of the network. This has led to the formula-
tion of measures such as modularity [48], which measures the number of edges
within a community as compared to the expected number if the edges had been
distributed randomly, and conductance [29], which measures the ratio of the
number of edges within a set to the number of edges outgoing from the set.
Such concepts have led to a diverse set of algorithms, which typically produce

a partitioning of the network.

Algorithms for finding overlapping communities are also quite diverse. As
with partitioning algorithms, some are intended to optimize some mathemat-
ical definition. Others, like Link Communities and Clique Percolation, are
founded on the concept that communities are based on very small, local groups.
Leskovec’s Kronecker graph generative model is a recursive model of graph
generation in which the structures of small portions of the graph resemble
the way that those portions are connected to one another [37]. Some algo-
rithms, such as described in [19], identify local sets that are similar to our “sub-
communities,” and then expand these “egomunities” into larger communities

so that a particular mathematical feature of the communities is maximized.

'The work in this chapter originally appeared in [58].

48



Unlike many of these algorithms, our method is not based on a rigid math-
ematical optimization, and can easily be modified for various network features
or to incorporate metadata. Clique Percolation and, in particular, Link Commu-
nities might also be considered templates, in the sense that they are easily mod-
ified. However, while these methods are superficially similar to our method
in the sense that they join local groups of nodes together, they have an inflex-
ible notion of local groups: Link Communities takes each edge to be its own
local group, and Clique Percolation identifies cliques. In contrast, our method

provides a flexible way for identifying such “sub-communities.”

Most similar to our work is the recent DEMON algorithm [12], which can be

viewed as a specific instance of our Node Perception template.

In this paper, we compare our method to several other algorithms, most of
which were discussed in Section 1.1. We include the Louvain method for greedy
modularity optimization and Infomap, two methods for partitioning the net-
work, as well as the Link Communities, OSLOM, and Clique Percolation algo-
rithms for identifying overlapping communities. In addition, we consider the
DEMON algorithm for finding overlapping communities, which, as an instance

of our template, we discuss in greater detail later in this chapter.

4.2 Datasets

In this chapter, we use the following network datasets and corresponding com-
munity annotations: student Facebook networks Grad and Undergrad; genetic
interaction networks HS, SC, DM; product co-purchasing network Amazon;

and employee interaction network Manu.
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4.3 Community Structure

As discussed earlier, many classic conceptions of community structure are based
on the belief that communities should be well-connected internally. Two such
examples, both of which are popular and frequently used, are modularity and
conductance. Observe that both of these metrics expect links throughout the
community: that is, these metrics are useful for finding “round” communi-
ties that are well-connected through the entire community, much like a G(n, p)
graph [15]. Such communities would tend to have low diameter and low clus-
tering coefficient.? The Infomap and OSLOM communities also fall into this

general category.

In contrast, other algorithms, such as Clique Percolation, find “long” com-
munities, in which there is no expectation that a node at one “end” of a com-
munity ought to be connected to a node at another “end.” These communities
may exhibit a higher clustering coefficient and higher diameter. For instance,
consider a community found by Clique Percolation that was identified by con-
necting adjacent k-cliques Cy, C, ...,C,, where two cliques are adjacent if they
share k — 1 nodes. If there is an edge between some node in C; and some node
in C,, the Clique Percolation algorithm does not view this community as any
stronger than if there is no such edge. Note that this model is not entirely the
same as a model of community hierarchy, although in both models, commu-
nities consist of small groups. Consider, for example, a community found by
Clique Percolation, which is clearly made of small groups, but may have have

no deep hierarchical structure.

2We do not claim that every community found by a modularity- or conductance-optimizing
algorithm will have this sort of structure, but rather that the metrics are based on the principle
that communities ought to look like this.
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At the extremes, this difference between “round” communities and “long”
communities is illustrated by the contrast between a “round” clique, in which
there must be connections throughout the entire set, and a “long” connected

component, in which the connectedness may be very localized.

4.3.1 Community Roundness

Rather than define “round” and “long” in absolute terms, we view them as op-
posite ends of a spectrum. We define the “roundness” of a community as the
ratio of its diameter to the diameter of a connected random Erdos-Rényi G(n, M)
graph with the same number of nodes and edges. A very “round” community
has a low diameter relative to the random graph; a “long” community has a
high diameter relative to the random graph. In this definition, an Erdos-Rényi
G(n, M) graph epitomizes the concept of a graph that is well-connected through-
out. Note, however, that some graphs may be “rounder” than a G(n, M) graph of
the same size: for example, a star graph with a large number of nodes has di-
ameter 2, while a G(n, M) graph of the same size will likely have a much larger
diameter. The “roundness” statistic of a community may thus take on any posi-
tive value, where small values indicate a “round” community and large values

indicate a “long” community.

In this chapter, to estimate a community’s roundness values, we perform the
following procedure: for a given set with n nodes and M edges, we produce a
random connected Erdos-Rényi G(n, M) graph with the same number of nodes
and edges. In each case, we make up to 10, 000 attempts to generate a connected

random graph of the same size. If we were unable to generate a connected
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graph, we discarded that community from consideration. This typically occured
when a graph had many nodes and relatively few edges. We then measure the

ratio of the community’s diameter to the diameter of the random graph.

4.3.2 Roundness Analysis

In order to determine whether the annotated communities from the networks
listed in the previous section are “round” or “long,” we calculate their round-
ness statistics. For each annotated community, we first identify a “core” of that
community by iteratively eliminating all nodes with only one edge into the com-
munity. We perform this trimming process in order to ensure that our diameter
calculations are not skewed by communities that are very weakly connected and
have large diameters (e.g., communities with long path-graph-like structures
on the fringe). We then calculate the roundness of the trimmed community.’.
Note that this trimming procedure can only decrease a community’s diameter,
and thus its roundness statistic (that is, the original community can never be
rounder than the trimmed community). If annotated communities are indeed
“round,” then we expect that, on average, their diameters will be roughly sim-
ilar to the diameters of the corresponding random graphs. In contrast, if the
annotated communities are “long,” then we expect that they will have larger

diameters than their corresponding random graphs.

The first row of Table 4.1 contains the results of these experiments. For each
network, we present the average roundness of the annotated communities. For

some networks, such as network HS, the diameters of the annotated communi-

3All network features in this chapter were calculated using the NetworkX software package
for Python [25].
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Table 4.1: Ratios of diameters of annotated communities, annotated com-
munity parts, and networks of parts to diameters of random

graphs of the same size.

Grad

Ugrad

HS

SC

DM

Amaz.

Manu

Ann. Community

Diameter Ratios
# nodes > 50

1.34

1.29

1.11

1.17

1.21

1.16

1.23

Ann. Community

Diameter Ratios
# nodes > 50

1.56

1.47

1.17

1.29

1.50

1.72

1.33

Ann. Community

Diameter Ratios
#nodes > 75

1.58

1.54

1.13

1.32

1.50

1.84

Ann. Community

Diameter Ratios
#nodes > 100

1.70

1.67

1.15

1.30

1.75

191

Community Parts
Diameter Ratios

1.07

1.16

1.04

1.06

1.01

1.03

1.02

Community Parts
Network Diam. Ratios

1.02

1.00

1.00

0.99

0.91

1.00

1.00

Caption: Annotated communities tend to not be “round”; this effect is magnified for

larger communities. However, they are formed of parts that are “round”, and these

parts are connected to one another in a “round” way.

ties are only slightly larger than the diameters of the random graphs. For other
networks, the difference is far more pronounced. These results suggest that
the various models of “round” communities may not be well-suited for char-
acterizing these annotated communities. Interestingly, for many networks, this
difference becomes increasingly pronounced as we consider larger and larger
communities: for example, in network DM, the average ratio was 1.50 when

considering communities of size at least 50, but 1.75 when considering only

communities of size at least 100.
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In our next experiment, we decompose each annotated community into sev-
eral parts, and examine whether each of these parts individually better fits a
“round” model. To perform these decompositions, we use the Louvain method
for greedy modularity optimization. This process gives us a large collection
of node-sets, each a subset of an annotated community, and for each of these
sets we perform the same roundness calculation as before. In this case, because
many of these community parts were quite small, we had to consider smaller
sets than in the previous experiment, and so we allow sets of any size. The
fourth row of Table 4.1 contains the results for this experiment. We see that
these ratios are much closer to 1 than were the ratios in the earlier experiment,
indicating that these community parts are generally much “rounder” than the

larger annotated communities.

Finally, we examine how these parts are related to one another. For every an-
notated community, we define a new network N in which every node n;, n,, ..., ng
in N represents one of the parts Py, P,, ..., P, of that annotated community, ob-
tained through the Louvain method. Because we only consider connected com-
munities, for every part P;, there is at least one edge between a node in P; and a
node in P, for some j # i. For each P;, we calculate T}, the total number of edges
outgoing from nodes in P; to nodes in other parts. Then, for each P;, if there are
at least = edges from nodes in P; to nodes in P;, we connect nodes n; and n; in
N. For example, if there are a total of 6 parts, and there are 100 edges outgoing
from nodes in P; to nodes in other parts, then we connect P; and P, if there are
at least 20 edges from nodes in P; to nodes in P;. Note that every pair (P;, P;) is
considered twice: once when we consider the total number of edges outgoing
from P;, and once when we consider the total number of edges outgoing from

P;. It may be, for instance, that if P; is very small and P; is very large, a large

54



portion of P;’s outgoing edges go to P;, but only a small portion of P;’s outgo-
ing edges go to P;. In this case, as long as the condition is met at least once, we
connect the two nodes. Note that it is possible that this network of parts might
be disconnected. In practice, for most of the network datasets we considered,
this did not occur, and for those network datasets where it did happen, fewer
than 1% of the annotated communities produced such a structure. When we
did encounter such a situation, we were unable to calculate roundness, and so

discarded such sets from consideration.

We then repeat the same experiment for these networks of parts. The re-
sults are contained in the fifth row of Table 4.1. From these values, it appears
that these networks fit the “round” model very well. However, we caution that
these networks are often very small: for all datasets, the vast majority of these
networks have fewer than 10 nodes (that is, most annotated communities de-
composed into fewer than 10 parts), and so have very small diameters. These
ratios would have been more informative if these networks were larger; nev-
ertheless, this is a reasonably good indication that the parts within annotated
communities are well-connected to one another, as opposed to being positioned

in a structure like a path graph.

We next supplement these results by calculating values of other network
features in addition to diameter, and then repeating the above experiments. For
each annotated community, community part, or network of parts, we calculate
the following features, and compare them to the value of those features on a

random graph:

e Median edge betweenness: To calculate edge betweenness, for every pair

of nodes, we identify all shortest paths between those two nodes. The edge
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Table 4.2: Ratios of median edge betweenness of annotated communities,
annotated community parts, and networks of parts to median
edge betweenness of random graphs of the same size.

Grad | Ugrad| HS SC DM Ama. | Manu
Ann. Comm. Ratios (> 50) 0.74 0.88 0.85 0.83 0.77 0.77 0.70
Comm. Parts Ratios 0.97 0.95 0.96 0.98 0.99 0.99 1.01
Comm. Parts Network Ratios | 1.02 1.02 0.98 1.00 1.03 1.00 1.00

Caption: Edge betweenness values again demonstrate that the annotated communities

do not resemble “round” graphs, but they are composed of “round” parts that are con-

nected to one another in a “round” way.

betweenness of an edge is defined as the fraction of all such shortest paths
that that edge appears in. Each edge has its own edge betweenness value,

and for each graph (annotated community, community part, or network

of parts), we identify the median edge betweenness value [8].

e Transitivity: The transitivity of a graph is defined as the fraction of all pairs

of adjacent edges (a, b), (b, ¢) for which nodes a and c are connected [65].

Tables 4.2 and 4.3 contains these ratios. Once again, we see that for every

network, both the annotated community parts and networks of parts resemble

random graphs much more closely than do the annotated communities.

The fact that parts of annotated communities closely resemble random
graphs is valuable, but somewhat unsurprising. These parts were identified
through use of greedy modularity optimization, which is based on the “round”
model of communities, and so it is natural that the communities that it finds

tit that model. The purpose of these experiments was not to demonstrate that
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Table 4.3: Ratios of median transitivity of annotated communities, anno-
tated community parts, and networks of parts to median transi-
tivity of random graphs of the same size.

Grad | Ugrad| HS SC DM Ama. | Manu

Ann. Comm. Ratios (> 50) 4.99 2.20 6.35 4.65 2.59 9.25 3.09

Comm. Parts Ratios 1.23 1.26 1.92 1.62 1.20 1.47 1.07

Comm. Parts Network Ratios | 1.08 0.95 1.11 1.06 1.03 1.09 1.0

Caption: Transitivity values again demonstrate that the annotated communities do not
resemble “round” graphs, but they are composed of “round” parts that are connected to

one another in a “round” way.

sets found by greedy modularity optimization are “round,” but rather to argue
that in general, annotated communities are not round, but for a given anno-
tated community, there generally exists a partitioning of that community such
that each individual part is “round” and that the parts are connected to one an-
other in a “round” way. Working from this intution, we next present the Node

Perception template for finding overlapping communities.

4.4 Node Perception Algorithm Template

Using the results from the previous section, we now present our Node Per-
ception algorithm template for finding overlapping communties. Unlike many
other popular methods, we do not attempt to optimize one particular math-
ematical measure. Rather, we describe a flexible template that is based on the
intuition that communities are made up of small groups that are linked together.

Because the template is not based on any one measure, users are able to use fea-
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tures of a network, as well as running time and memory constraints, to create an
algorithm appropriate for their needs. In this section, we give a broad overview

of our template, and then discuss the various implementations that we analyze.

441 Overview

Our method consists of three parts. For a network G, for every node v in G,
we separate v's neighbors into sub-communities, each containing a portion of a
larger community to which v belongs. Next, we create a new network H, such
that each node in H represents a sub-community from the first step. Two nodes
in H are connected if their associated sub-communities in G are related in some
way (e.g., share some number of elements). Finally, we identify communities
in H. To identify communities in the original network G, we decompose each
community in H into its member sub-communities, and each sub-community
into its member nodes from G. Each node from G can appear in multiple sub-
communities (nodes in H), and thus can appear in multiple communities. Many
different methods for performing each step are possible. For a graphical illus-

tration of this process, see Figures 4.1 and 4.2.

In the next section, we explain each of these three steps in greater detail.
Because each step can be performed in many different ways, portions of the
next section are intentionally non-specific. We present precise details of our

implementations in Section 4.5.
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Figure 4.1: Creation of sub-communities

Caption: Illustration of how one identify sub-communities.

Figure 4.2: Algorithm overview

Original network G

Each node with
neighbors

Creating sub-communities

New network H

Caption: Illustration of Node Perception process.

59




4.4.2 Detailed Description

Creation of Sub-Communities

Our analysis in Section 4.3 demonstrated that annotated communities may be
well-described by a model that joins together small “sub-communities.” In
this paper, we create these sub-communities by considering the node neighbor-
hoods of each individual node. Work by Gleich and Seshadhri, demonstrating
that node neighborhoods typically have low conductance scores [21], provides

some justification for this method, but other methods are likely possible.

The first step of this method is to identify sub-communities in network G. To
do this, we iterate over each node v in network G and group v’s neighbors into
sub-communities. A node v may belong to many large communities C, C, ...,
each containing v and some of v’s neighbors, as well as more distant nodes that
v is not connected to. Each sub-community S,,S,,... contains v and those of
V's neighbors that belong to C,,C, ...; i.e., the sub-communities correspond to
v’s local perception of the large communities. For example, in a social network,
separate sub-communities may represent the groups of an individual’s friends
from college, friends from a soccer team, acquaintances from work, and so on.
When we consider the subgraph immediately around a vertex v, those of v’s
neighbors that know one another from the same community are likely to be bet-
ter connected to one another than to those of v's neighbors that v knows from
a different group (e.g., v's friends from a soccer team likely know each other,
but are less likely to know v’s co-workers). It seems, then, that on this small
subgraph containing only v’s neighbors, a reasonable community detection al-

gorithm should easily be able to decompose the nodes into clear, separate sub-
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communities.

The method used to create this grouping should be suitable for the features
of G as well as the data available. If one believes that each of v’s neighbors is
likely to belong to only one of v's communities, one could apply a partitioning
algorithm to the subgraph of G induced by v’s neighbors. For greater accuracy,
one could include not only v's immediate neighbors, but also the neighbors of
those neighbors. One can also use a method for detecting overlapping com-
munities. This method could be, for example, the Link Communities method,
Clique Percolation, or even Node Perception used recursively. In this paper, we
use simple partitioning methods, which are sufficient for good performance on

many types of networks.

The same sub-community may be created multiple times: for example, when
considering sub-communities centered around node a, we may create sub-
community {a,b,c}. Later, when considering sub-communities around node
b, we may again create sub-community {a, b, c}. We choose to allow multiple
copies of the same sub-community, but one could also choose to consider only

one copy.

This step was based on the intuitive notion that although each person be-
longs to many communities, relationships between individuals can typically be
neatly placed into one community. However, the success of this step does not
depend on this intuition. Consider a pair of siblings A and B from some family.
Their relationship may fall into many communities, such as the family itself, a
local school, a neighborhood sports team, etc. When using a partitioning algo-
rithm to find sub-communities centering around A, we will place B into only

one of A’s sub-communities (e.g., the one corresponding to family). However,
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even in this case, other of B’s neighbors from her other communities may place
B into sub-communties representing those other communities: although A does
not primarily think of B as “a person with whom I play sports”, someone else
likely does. Thus, even when some relationships fall into many different com-
munities, each node might still be placed into at least one sub-community for
each of its communities. While there are obvious theoretical counterexamples to
these assumptions, our results provide strong evidence that they are generally

valid.

A unique and particularly useful feature of our approach is that supplemen-
tal data about the network can be used to improve this initial grouping of nodes
into sub-communities. For example, if G is the Facebook network, then in ad-
dition to using a partitioning method to create the sub-communities, groups of
people frequently appearing together in Facebook photographs could be used
to create additional sub-communities. If G is a co-authorship network, then
an additional sub-community could be a group of people who wrote a paper
together. In contrast, with an algorithm centered about some mathematical op-
timization, it is unclear how to use such information. If a set of people within a
community appears in pictures together, that does not modity, say, the conduc-
tance of that community. Because our evaluation methods rely on metadata,
we are unable to test such data inclusion methods in this paper (with the ex-
ception of a case study in Section 4.8.3); however, while our results demonstrate
that grouping based solely on the network structure is sufficient for this method
to exceed the performance of other community detection algorithms, we fully

expect supplemental data to boost its performance further.

62



Creation of Sub-Community Network

In the second step, we create a new network H such that every node in H repre-
sents one sub-community from the first step. Two nodes in H are joined by
an edge if the sub-communities that they represent are related (e.g., if they
share any nodes in G). This edge may be weighted in relation to the strength
of the relationship between the two sub-communities. One may also require
that two sub-communities share some threshold number of nodes before con-
necting them in H: this will result in a sparser network H, and so will speed up

the processing in the third step.

Identifying Communities in the Sub-Community Network

In the third step, based on the results from Section 4.3 that showed that small
portions of a community are typically well-connected to one another, we use an
existing community detection algorithm to group the elements of H into com-
munities. As with the first step, a method appropriate to the particular appli-
cation should be used. If speed is important, a fast partitioning method such
as greedy modularity optimization may be appropriate, or one could even set a
minimum edge weight and then find connected components. To find a specific
number of communities, a clustering algorithm may be best. If a slower method
is acceptable, then, as in step 1, a method for finding overlapping communities

can be used.

To determine the communities in G, for each community C in H, simply
take the union of all nodes from G that are contained in the sub-communities

represented by the nodes in C. Because each node v can appear in multiple sub-
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communities in step 1, and thus may be represented by multiple nodes in H,
v may appear in multiple communities in G. One could require that a node v
from G appear in at least k sub-communities from C, for some k, (i.e., at least
k nodes from G have “voted” to place v in community C), and this results in
smaller, more tightly-knit communities, with the possibility that some nodes
from G will not appear in any communities. Alternatively, the number of times
anode v appears in a sub-community in C could be interpreted as related to the

strength of v's membership in C.

4.5 Specific Details of our Implementations

We consider various specific implementations of the Node Perception template,
and present a few representative examples here. Naturally, not every implemen-
tation is appropriate for every network; in particular, some of the community
detection algorithms that we use in our templates are computationally intensive

and unsuitable for large or especially dense networks.

Our implementations are distinguished from other similar algorithms in two
important ways. First, other algorithms typically have rigid conceptions of
“sub-communities.” For example, in Link Communities, “sub-communities”
are simply edges from the original network, and Clique Percolation requires
sub-communities to be cliques of a fixed size. In contrast, our methods use
a community detection method to find sub-communities. This means that sub-
communities may have varying sizes and degrees of connectivity, depending on
the structure of the network in that location. Second, other methods typically

join sub-communities together by identifying connected components. Node
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Perception, however, can require more than simple connectedness: using a com-
munity detection algorithm to group the sub-communities ensures a high de-

gree of connectivity between these local groups.

In each implementation described, we perform the first step of identifying
sub-communities as follows: for every node v in network G, we consider the
subgraph K, induced by v’s neighbors (but not v). We then apply various com-
munity detection methods to K, to partition v’s neighbors into disjoint sets (de-
scribed in greater detail below). To each of these sets, we add v, and thus obtain

the sub-communities.

In network H, we create one node representing each sub-community from
the first step. If the same sub-community is created multiple times in the first
step, we allow it to appear multiple times in network H. In order for two nodes
in H to be connected, we require that they have a minimum Jaccard similarity
with each other. We chose to require a minimum Jaccard similarity rather than a
minimum number of shared nodes because we wanted the amount of required
overlap to be greater for larger sub-communities*. For this implementation, we
require a Jaccard similarity of at least 0.2. In addition to setting this threshold,
we weight each edge in H by the Jaccard similarity of the two adjacent sub-

communities.

We also attempted to use methods for finding overlapping sub-communities,
but this resulted in a large increase in the number of sub-communities, some-
times making network H impractically large. We also experimented with other
methods of creating network H, such as setting different similarity thresholds,

but the experimental results were effectively the same, and so we do not present

The Jaccard similarity of two sets is defined as the number of elements contained in the
intersection of those sets divided by the number of elements in their union [28].
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them here.

Each implementation that we describe produces a set of overlapping com-
munities. Two communities in this set may be very similar or even identical.
As a final clean-up procedure, we remove duplicates, but allow similar sets to
remain. For some networks, the number of communities output may thus be

quite large.

Modularity-Modularity (Mod-Mod): In the Mod-Mod implementation, we
create the initial sub-communities by applying Louvain greedy modularity op-
timization to each K, subgraph. Network H is formed as described above, and
we use Louvain greedy modularity optimization to partition the nodes of net-

work H.

Of all the implementations that we consider, Mod-Mod and IM-Mod (de-
scribed next) are based most strongly on the intuitions that we gained in Section
4.3. Modularity maximization algorithms attempt to find “round” communi-
ties, with connections throughout the entire set. As we saw in Section 4.3, when
we partition an annotated community into smaller communities, those smaller
communities tend to be “round.” Similarly, when we analyze the connections
between those smaller communities, we see that they tend to be connected in a
“round” manner. In this implementation, we thus use modularity maximization

both to identify sub-communities as well as to join those sub-communities.
Pseudocode for this process is presented in Algorithm 1.

Infomap-Modularity (IM-Mod): IM-Mod is identical to Mod-Mod, except
we use the Infomap partitioning algorithm to identify sub-communities. As

with Mod-Mod, this method finds “round” sub-communities, and joins them

66



together in a “round” way.

Components-Modularity (Comps-Mod): The Comps-Mod implementation
is the same as Mod-Mod and IM-Mod, except that the sub-communities are
formed by identifying connected components of each node neighborhood K,.
Although a connected component is not necessarily “round,” this method is

likely to be faster than either of the previous two methods.

Modularity-Link Communities (Mod-LC): In previous implementations,
we used greedy modularity optimization to identify communities in H. How-
ever, this method is known to suffer from certain flaws; namely, the existence of
modularity’s “resolution limit,” which hinders its ability to find communities in

very large networks [18]. Because the networks H of sub-communities may be

quite large, we also consider other community detection methods.

In the Mod-LC implementation, we again use greedy modularity optimiza-
tion to identify sub-communities, create network H as described earlier, and

then use the Link Communities method to identify communities in H.

Because Link Communities is a very memory intensive method, we were

unable to apply this implementation to one especially dense network (network

DM).

Modularity-Node Perception (Mod-NP): In the Mod-NP implementation,
we again create network H using greedy modularity optimization to find sub-
communities, and create network H as described before. We then use the Node
Perception Mod-Mod algorithm to find communities in H. Note that because
network H is typically larger than the original network G, Node Perception can-

not properly be considered a recursive algorithm, as there is no clear stopping
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ALGORITHM 1: Mod-Mod pseudocode

Input: A network G with vertices V(G) and edges E(G)
Output: Communities in network G

Multiset SUBCOMMS = 0; Set ALLCOMMS = 0;

for every vin V(G) do

K@) ={x: (x,v) € E(G)}; L = Louvain(K,); for every set S in L do
S=SU{};, Add S to SUBCOMMS ;

end
Create network H, where |V(H)| = |S UBCOMMS |; Define mapping
f:V(H) - SUBCOMMS for every s € V(H) do

for every t € V(H) do

if JaccardS imilarity(f(s), f(¢)) > 0.2 then
Add (s, 1) to E(H);

end
end
end
P = Louvain(H); for every P; € P do

C = 0; for every s in P; do
C=CUf(s)

end

Add C to ALLCOMMS ;

end

Return ALLCOMMS ;

end

condition. However, subject to memory and running time constraints, one can
repeatedly apply Node Perception an arbitrary number of times. While for some
smaller networks, we were able to perform many steps of recursion, only 1 or 2
steps were possible for most networks. Indeed, as with Mod-LC, we were again

unable to apply this method with even 1 step of recursion to one network (DM).
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For the other networks, the results presented were obtained by using 1 step of

recursion.

DEMON, or Label Propagation-Subset (LP-Subs): The DEMON (Demo-
cratic Estimate of the Modular Organization of a Network) algorithm is a
specific instance of our Node Perception template, and was created indepen-
dently by Coscia, et al. [12]. In this algorithm, the initial identification of sub-
communities is performed using the Label Propagation algorithm described
in [51]. The algorithm contains a tunable parameter that controls the identifi-
cation of communities in network H; however, in the version that is analyzed
most completely in [12] and that we consider here, the communities in H consist
of those sub-communities C such that there is no other sub-community D that is
a proper superset of C. Observe that in this method, communities are limited to
a maximum diameter of 2, because every community is also a sub-community;,
and every sub-community is contained within the immediate neighborhood of
some central node. Because the Label Propagation and subset determination

steps are quite fast, this method scales very well.

4.6 Evaluation Overview

In this section, we evaluate the implementations discussed in the last section, as

well as several other popular community detection methods.

Often, researchers in this area determine the quality of a community detec-
tion algorithm by evaluating its output with respect to a formal mathematical
conception of what a community ought to look like. This approach has ad-

vantages, but it is unclear that any particular mathematical definition is cor-

69



rect. Another common approach is to use synthetic benchmark networks with
planted communities, but this method is susceptible to similar problems. Be-
cause, despite years of research into social networks, there is still little consen-
sus on what a “real” community is, we choose to take a different approach to
evaluating community detection algorithms. Rather than assuming that a par-
ticular mathematical definition is correct, we evaluate algorithms through use

of the annotated communities described in Chapter 2.

This metadata describes characteristics of each node, and can be used to
identify sets of similar nodes. In some cases, the metadata identifies sets of
nodes that intuitively seem to be good communities: for example, graduate stu-
dents in a particular department probably form a good community. In other
cases, the metadata might identify sets of nodes that are seemingly poor com-
munities. This is not a problem with the approach that we take in this paper.
Because our goal is to compare our algorithms’ performances against those of
other algorithms, we do not compare against an absolute standard: if a partic-
ular annotated community is not represented in the network structure, then we
can expect that none of the algorithms will recover it, so each algorithm will be

penalized equally for failing to recover it.

Our evaluation approach differs from the norm, but we note that similar
strategies have been successfully used by other researchers, such as Ahn, et al.
(who incorporated metadata information into their evaluation of the Link Com-
munities algorithm) [4] and Backstrom, et al. (who used metadata to study the
evolution of communities over time) [6]. Although other evaluation methods
are common, they are based on a priori assumptions about the structure of com-

munities and networks, and so can be biased towards particular algorithms. In
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contrast, using metadata to identify annotated communities allows for an equal,

unbiased comparison between many different types of algorithms.

4.7 Methods and Results

For each network, we run our Node Perception templates Comps-Mod, IM-
Mod, Mod-Mod, Mod-LC, Mod-NP, and LP-Subs, as well as Infomap (IM),
Louvain method for greedy modularity optimization (Mod), Link Communi-
ties (LC), Clique Percolation (CP), and OSLOM (OS). Our results show that the
various Node Perception methods generally outperform all other community

detection methods.

For Mod-LC, due to running-time concerns, we used an approximation to
the Link Communities algorithm for networks Amazon and DM. Rather than
tfinding the threshold link weight that allows network H to be split at the optimal
partition density, we consider thresholdsin 0.1,0.2, ...,0.9, compute the partition
densities obtained by each partitioning, and select the partitioning that obtains
the greatest partition density. In experiments on smaller networks, the results
of this approximation method were largely indistinguishable from the original

method.

The Infomap algorithm is non-deterministic, and one parameter of the algo-
rithm specifies the number of partition attempts. For the smaller networks, we

used 10 iterations, but for the larger Amazon and DM, we used only 1 iteration.

Clique Percolation requires the user to specify the clique size. On these net-

works, a size of k = 4 gave the best overall results, and so we present those
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results here. Networks Undergrad, DM, and SC had especially dense regions,
and the Clique Percolation algorithm required an infeasibly large amount of
memory and running time, so we do not present its results for these networks

(and thus, also do not present its overall results).

OSLOM produces several output files, each corresponding to a different
level in the hierarchy of communities. For these networks, using the results
for the lowest level of the hierarchy produces the highest accuracies, and so we

present those results.

4,71 Evaluation Methods

Our evaluation strategy relies on the use of the Jaccard similarity index to de-

termine when an algorithm has recovered an annotated community.

For each network N and algorithm, we compare each annotated commu-
nity A in N to the communities C found by that algorithm. For each annotated
community A, we calculate the maximum Jaccard similarity J4 between A and a
community C found by the algorithm, over all communities found by the algo-
rithm (that is, J4 is the Jaccard similarity between A and the “closest” detected
community). We then take the average of all such J,s and report this value in
Table 4.4. This is the “Continuous Recall” score of the algorithm. Although
other methods of comparison are certainly possible, we chose to use Jaccard
similarity because it takes into account the size difference between the two sets
being compared. If, for example, a community detection algorithm returns the
entire network as one community, then it certainly contains every annotated

community, but it has given us no useful information.
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We additionally calculate a binary version of recall, which sets a threshold
for Jaccard similarity. In this measure, we say that an algorithm “found” an an-
notated community if it recovered it with a Jaccard similarity of at least ;. A
Jaccard similarity of } indicates that if the detected community is exactly the
same size as the annotated community, as few as half the elements from the an-
notated community were found, but if more elements are found, allows a size
differential of up to a factor of 3. We experimented with other thresholds, and
the algorithms each scored similarly relative to one another. Binary recall is sim-
ilar to continuous recall, but gives a better sense of the distribution of Jaccard
similarities: e.g., if an algorithm has a moderately high continuous recall score,
binary recall helps us understand whether this is because it found a few com-
munities very well, or many communities moderately well. Table 4.5 reports

the binary recall scores for each network and algorithm.

We also compute the “Continuous Precision” and “Binary Precision” scores
of the algorithm by performing the opposite calculation: for each community
C found by the algorithm, we compute the maximum Jaccard similarity J¢ be-
tween C and an annotated community A, and report the average of all such J¢s

(Table 4.6), or the fraction of such J¢s that are at least 5 (Table 4.7).

We caution that recall and precision should be interpreted carefully when
comparing a partitioning algorithm to an algorithm that finds overlapping com-
munities. A partitioning method, when compared to a method for finding over-
lapping communities, will typically find a smaller number of strong commu-
nities, and so may have lower recall and higher precision scores (indeed, our

results show that the algorithm with the lowest recall has the highest precision).

In all tables, the best performing algorithm for each network is presented
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in boldface. Additionally, because we are interested in comparing methods for
finding overlapping communities, the best performing overlapping community

detection method is italicized in Tables 4.6 and 4.7.

4.7.2 Results

Our results show that across 7 datasets, the Node Perception algorithms have
significantly higher continuous recall scores than the other methods (Table 4.4).
Of the algorithms that finished on every network, on average, every Node Per-
ception method outperformed every non-Node Perception method. IM-Mod
and Mod-Mod had an average recall of 0.38, a 15% improvement over Link
Communities, the best non-Node Perception algorithm. Comps-Mod and LP-
Subs (DEMON) did not perform as well as the other Node Perception methods,
but on average, still outperformed every non-Node Perception algorithm. We
see qualitatively similar results when evaluating algorithms using binary re-
call (Table 4.5). The output from Mod-LC performed comparably with IM-Mod
and Mod-Mod, but was much slower because the Link Communities method
is slower than greedy modularity optimization. The Mod-NP implementation
produced dramatically better recall scores, but could not be applied to network
DM. On 5 of the 6 networks on which we ran Mod-NP, it outperformed every

other algorithm, often by a large margin.

As expected, the two partitioning methods had the highest precision scores
(Tables 4.6 and 4.7). Of the Node Perception implementations, Mod-Mod had
the worst continuous precision, but it was still slightly better than the best of

the other overlapping community methods (Link Communities and OSLOM).
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Table 4.4: Recovery of annotated communities (continuous recall)

Amaz.| Grad | Ugrad | HS SC DM | Manu | Avg.

NP:
Comps-Mod | 0.47 0.56 0.27 0.19 0.21 0.25 0.58 0.36
NP:
IM-Mod 0.41 0.57 0.32 0.20 0.23 0.36 0.59 0.38
NP:
Mod-Mod | 0.45 0.54 0.31 0.19 0.25 0.38 0.56 0.38
NP:
Mod-LC 0.42 0.54 0.34 0.19 0.23 - 0.56 -
NP:
Mod-NP 0.50 0.61 0.35 0.21 0.24 - 0.61 -
NP:
LP-Subs 0.42 0.53 0.29 0.19 0.22 0.29 0.54 0.35
LC 0.41 0.50 0.19 0.17 0.20 0.33 0.55 0.33
CcP 0.36 0.47 - 0.11 - - 0.31 -

OSLOM 0.43 0.58 0.17 0.14 0.16 0.22 0.55 0.32

M 0.44 0.60 0.24 0.12 0.15 0.16 0.57 0.33

Mod 0.13 0.42 0.24 0.03 0.05 0.05 0.57 0.23

Caption: For each annotated community A, find the detected community C such that
the Jaccard similarity J, of A and C is maximized. This table presents the average of the

J4 values over all annotated communities A in a network.

The other Node Perception algorithms performed much better. We again see
that Mod-NP performs very well. On 3 of the 6 networks on which Mod-NP
was evaluated, it had the highest binary precision score of all methods for find-
ing overlapping communities (and in one case, it even outperformed the two
partitioning methods). In most cases, it outperformed the non-Node Percep-
tion algorithms by a very large margin (e.g., on network Ugrad, it has a binary

precision of over 0.5, while LC and OSLOM are both below 0.1). Mod-LC and
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Table 4.5: Recovery of annotated communities (binary recall)

Amaz.| Grad | Ugrad | HS SC DM | Manu | Avg.

NP:
Comps-Mod | 0.67 0.71 0.34 0.13 0.14 0.25 0.70 0.42
NP:
IM-Mod 0.53 0.71 0.39 0.16 0.19 0.46 0.70 0.45
NP:
Mod-Mod | 0.63 0.67 0.39 0.16 0.26 0.50 0.70 0.47
NP:
Mod-LC 0.62 0.71 0.39 0.17 0.25 - 0.70 -
NP:
Mod-NP 0.74 0.71 0.41 0.19 0.23 - 0.80 -
NP:
LP-Subs 0.61 0.71 0.37 0.11 0.14 0.43 0.70 0.43
LC 0.54 0.63 0.22 0.09 0.19 0.34 0.60 0.39
CcP 0.44 0.54 - 0.00 - - 0.30 -

OSLOM 0.58 0.71 0.24 0.09 0.12 0.18 0.60 0.36

M 0.58 0.71 0.22 0.04 0.05 0.16 0.60 0.34

Mod 0.15 0.50 0.22 0.00 0.00 0.05 0.60 0.22

Caption: For each annotated community A, find the detected community C such that
the Jaccard similarity J, of A and C is maximized. This table presents the fraction of

annotated communities A such that J, > %

LP-Subs (DEMON) also performed very well.

Although Mod-NP appears to be the best implementation of Node Percep-
tion (subject to efficiency constraints), the much simpler implementations often
perform nearly as well. Consider the binary recall for network Ugrad: all six
Node Perception implementations score between 0.34 and 0.41, while the next

best algorithm scores a 0.24. We see similar behavior on network HS.
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Table 4.6: Recovery of annotated communities (continuous precision)

Amaz.| Grad | Ugrad | HS SC DM | Manu | Avg.

NP:
Comps-Mod | 0.12 0.25 0.22 0.05 0.07 0.04 0.66 0.20
NP:
IM-Mod 0.13 0.22 0.14 0.05 0.06 0.04 0.63 0.18
NP:
Mod-Mod | 0.10 0.15 0.12 0.05 0.06 0.04 0.42 0.13
NP:
Mod-LC 0.14 0.20 0.20 0.07 0.07 - 0.40 -
NP:
Mod-NP 0.14 0.28 0.33 0.05 0.07 - 0.68 -
NP:
LP-Subs 0.14 0.24 0.21 0.06 0.08 0.05 0.65 0.20
LC 0.09 0.13 0.06 0.04 0.06 0.03 0.48 0.13
CcP 0.08 0.09 - 0.04 - - 0.25 -

OSLOM 0.06 0.11 0.10 0.01 0.03 0.01 0.60 0.13

M 0.17 0.37 0.60 0.03 0.05 0.10 1.00 0.33

Mod 0.18 0.51 0.81 0.03 0.12 0.12 1.00 0.40

Caption: For each detected community C, find the annotated community A such that
the Jaccard similarity Jc of C and A is maximized. This table presents the average of the

Jc values over all detected communities C in a network.

4.7.3 Discussion

The main implication of these results is that the general principle of joining to-
gether small sub-communities of varying size and structure is of far more im-
portance than the specific implementation used. These results confirm the anal-
ysis in Section 4.3, which showed that annotated communities are formed of

well-connected sets that are well-connected to one another. While the resource-
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Table 4.7: Recovery of annotated communities (binary precision)

Amaz.| Grad | Ugrad | HS SC DM | Manu | Avg.

NP:

Comps-Mod | 0.104 | 0.286 | 0.121 | 0.005 | 0.007 | 0.012 | 1.0 0.219
NP:

IM-Mod 0.125 | 0.241 | 0.101 | 0.004 | 0.005 | 0.019 | 0.878 | 0.196
NP:

Mod-Mod | 0.062 | 0.076 | 0.032 | 0.003 | 0.006 | 0.019 | 0.657 | 0.122
NP:

Mod-LC 0.108 | 0.149 | 0.165 | 0.004 | 0.004 | - 0394 | -
NP:

Mod-NP 0.109 | 0.376 | 0.506 | 0.006 | 0.008 | — 0920 | -
NP:

LP-Subs 0.124 | 0.299 | 0.128 | 0.006 | 0.010 | 0.019 | 0.930 | 0.217
LC 0.044 | 0.064 | 0.004 | 0.001 | 0.005 | 0.007 | 0.764 | 0.127
CcP 0.0.020f 0.031 | - 0.000 | - - 0.250 | -

OSLOM 0.042 | 0.104 | 0.084 | 0.001 | 0.005 | 0.003 | 0.500 | 0.106

M 0.194 | 0.419 | 0.643 | 0.006 | 0.010 | 0.115 | 1.000 | 0.341

Mod 0.198 | 0.727 | 0.900 | 0.000 | 0.000 | 0.189 | 1.000 | 0.430

Caption: For each detected community C, find the annotated community A such that
the Jaccard similarity Jc of C and A is maximized. This table presents the fraction of

detected communities C such that Jo > %

intensive Mod-NP method gives dramatically better results than any other
method that we analyzed here, even simple, fast methods such as Comps-Mod
are generally much better than any of the other methods for finding communi-
ties. Thus, rather than considering various instances of this template in isola-
tion, we ought to credit the success of these methods to the general principles
of the Node Perception template. This view allows a practitioner to modify the

template in order to suit his or her needs and to suit the features of the network
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under consideration.

4.8 Scalability and Suitability

Next, we discuss ways to modify the Node Perception algorithm to make it

suitable for different types of networks.

4.8.1 Running Time

With the exception of network DM (discussed later), the Node Perception im-
plementations finished quickly on all networks using a desktop computer. On
Amazon, our largest dataset, Mod-Mod took approximately 15 minutes, and
other networks took between a few seconds and a few minutes. Mod-Mod’s
running time was comparable to other methods for finding overlapping com-
munities. Mod-LC and Mod-NP generally took only slightly longer (again, ex-
cept for DM).

The slowest step in our algorithm is locating communities in the network
H of sub-communities. In general, the number of nodes in H will be m |[V(G)|,
where m is the average number of communities that each vertex belongs to.
The number of edges in network H is more difficult to analyze, and, as with
Clique Percolation, depends on the structure of dense regions of G. Network
DM possesses areas with a large amount of sub-community overlap, and thus
was very slow for Clique Percolation, Node Perception, and Link Communi-
ties: on a cluster node with 16GB of memory, Mod-Mod took approximately 12

hours to terminate and Link Communities took approximately one day. Clique
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Percolation, Mod-LC, and Mod-NP would have taken much longer (weeks or

months) if we had allowed them to terminate.

Although Mod-LC and Mod-NP were inappropriate for network DM, this
should not be interpreted as a flaw of Node Perception itself: due to its template
nature, one can produce both efficient and inefficient implementations. In cases
such as network DM, when network H is very dense, H’s size can be reduced
by filtering out smaller sub-communities, requiring a greater amount of over-
lap between sub-communities, or using a simple clustering scheme to identity
communities in H, rather than a slower, more resource intensive method such

as Link Communities.

4.8.2 Network Suitability

The Node Perception algorithm as we have presented it is highly dependent on
network transitivity. To create the sub-communities, we consider the neighbors
of a node and their connections to one another. Creating sub-communities thus
relies heavily on these neighbors being connected to other neighbors in the same
large community. Generally, many networks do possess high transitivity, which

is one reason why our approach was successful.

However, there may be networks with low transitivity that still possess com-
munity structure. For instance, instead of 3-cycles (transitivity) the network
may instead have many 4-cycles. In such a case, we might modify the method
used to identify the sub-communities. For example, if the network has many
4-cycles, then we might consider not just the neighbors of a node, but also those

neighbors’ neighbors.
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We emphasize that such modifications are generally unnecessary, and the
unmodified version of the algorithm worked well on all datasets evaluated.
Moreover, one can ascertain the need for modification by examining the net-
work structure by sampling random nodes and progressively widening the di-
ameter of their “local” neighborhoods until connections between nodes in the
neighborhoods are found. One might even select different diameters for differ-

ent nodes, depending on the graph structure around those nodes.

4.8.3 Implementation Selection and Case Studies

Our results have shown that many implementations of Node Perception will
outperform other algorithms. In this section, we provide guidance and exam-

ples for users wishing to choose between various implementations.

First, observe that the simple Mod-Mod implementation works efficiently
and accurately for all networks examined. It gives higher overall continuous
and binary recall scores than all non-Node Perception algorithms that we con-
sidered, and gives a higher continuous precision score than the other algo-
rithms for finding overlapping communities (although Link Communities has a
slightly higher binary precision score). Because the Louvain method for greedy
modularity optimization is more memory efficient than many other methods,
the Mod-Mod implementation runs easily for even large networks. However,
Mod-NP tended to give higher binary and continuous recall scores than Mod-

Mod, so it may be a better choice if the network is sufficiently small.

A user can also customize an implementation to the network being consid-

ered. To guide a practitioner in selecting an appropriate implementation of
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Node Perception, we provide the following three case studies.

Network Grad

Network Grad possesses some important features: it is small, with only 503
nodes and 3256 edges, and as a Facebook network, is an incomplete representa-
tion of the true underlying social network. Due in part to its small size, the aver-
age degree of each node is less than 13, and so, when finding sub-communities,
most subgraphs that we consider are quite small. Even if we consider the sub-
graphs obtained by going two steps out from each node, we still have a low av-
erage size of 76 nodes (in contrast, for network DM, each such subgraph would
have an average size of approximately 1000 nodes). Thus, even if we consider
these larger subgraphs, the Mod-Mod implementation is still likely to be fast.
Moreover, because we know that the data is an incomplete representation of the
complete network, considering these larger subgraphs will likely give us more
accurate sub-communities, because the modularity algorithm can take advan-
tage of information about nodes that were not included in the smaller subgraph.
Indeed, applying this method to network Grad gives us a continuous recall
score of 0.65 (as compared with 0.54 in the original Mod-Mod implementation),
a binary recall score of 0.79 (instead of 0.67), a continuous precision score of 0.25
(instead of 0.15), and a binary precision score of 0.276 (compared with 0.076).
We see that considering these larger subgraphs gives a startling increase in ac-
curacy. Note, however, that going out too far from each central node will defeat
the point of the algorithm, as the sub-communities are supposed to represent
each node’s perception of the network around it. The success of this method

thus depended on two important features of the network: its small size (which
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allowed for this method to be reasonably fast) and its known incompleteness.

If one had a network with both sparse and dense sections, one could use a
modification of this implementation by using the smaller subgraphs (i.e., those
obtained by going one step out from the central node) in dense regions, but

using the larger subgraphs in sparse regions.

Network SC

We now attempt to improve Node Perception’s running time on network SC,
while still obtaining good results. Although all of the Node Perception imple-
mentations that we considered previously were reasonably fast for network SC,
we consider the following modifications as an example for how one might im-

plement Node Perception for a network that is much larger.

As with many networks, SC has a degree distribution in which most nodes
have a very low degree, but some nodes have a much higher degree [11].
The creation of sub-communities is thus usually fast, but sometimes slow.
We demonstrated earlier that if we created sub-communities even through a
method as simple as finding connected components, Node Perception produced
reasonably strong results. Thus, to improve running time, we use greedy mod-
ularity optimization to partition the neighborhoods of low degree nodes, and
use the faster method of finding connected components to partition the neigh-
borhoods of high degree nodes (in this case, we define ‘high degree’ to be those
nodes that are in the top 1% of nodes, as ranked by degree). We then again
join the sub-communities using greedy modularity optimization. This process

produces results that are better than Comps-Mod, and nearly as good as the

83



original Mod-Mod algorithm, as measured by all four accuracy metrics (in all
cases, the decrease in accuracy is measurable only in the third significant digit
or later). The running time, however, is much improved, and as expected, lies

between the running times for Mod-Mod and Comps-Mod.

Network HS

Network HS is a genetic interaction network, and in such networks, the func-
tions of each gene, which we used to identify communities, are typically de-
termined experimentally by biologists on a per-gene basis. Identifying these
features can often be very time- and resource-intensive, and so it is highly
likely that a practitioner will have incomplete community membership infor-
mation [60, 5]. In this example, we demonstrate how one can use existing com-

munity membership information to boost the performance of Node Perception.

We use the standard Mod-Mod implementation; however, in addition to
using the sub-communities generated by greedy modularity optimization, for
each node n and every community C (genetic function) that » is known to be-
long to, we create an additional sub-community containing » and all of its neigh-
bors from C. If n is known to play multiple genetic functions, then there may
be multiple such sub-communities, and we add all of them to the list of sub-

communities.

To evaluate this method, we use some of the annotated community data. For
each node n in HS, we are given a set of known genetic functions that n plays.
We had originally used these functions to identify the annotated communities;

now, we randomly select half of these functions, and use this information to
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produce the additional sub-communities. This boosts the continuous recall of
the Mod-Mod implementation from 0.19 to 0.25, the binary recall from 0.16 to
0.30, the continuous precision from 0.050 to 0.055, and the binary precision from
0.002 to 0.005. When applying this same methodology to network SC, which is
also a genetic network, we see similar improvements in accuracy, with continu-
ous recall increasing from 0.25 to 0.30, binary recall from 0.26 to 0.38, continous

precision from 0.065 to 0.069, and binary precision from 0.006 to 0.009.

Naturally, this implementation does not allow for a fair comparison to other
algorithms, because we are taking advantage of information not given to the
other methods. However, the purpose of this case study is to illustrate the flex-
ibility of the Node Perception template, and show how information, both inter-

nal and external to the network, can be used to increase its performance.

Any community detection methods can be used in the Node Perception tem-
plate, and it is thus impossible to exactly characterize which methods are most
appropriate for particular networks. We emphasize that basic, fast implementa-
tions are likely to work very well for most networks, but the template nature of

Node Perception can also give users flexibility when desired.

4.9 Conclusion and Future Work

Mathematical formulations of community structure have traditionally fallen
into one of two categories: those that are based on the belief that communi-
ties are “round” and well-connected throughout (such as a G(n, p) graph), and
those that are based on the belief that communities consist of small, tightly-

connected groups that are well-connected to one another, although individual
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nodes themselves need not be well-connected to the rest of the community.

To carefully examine these general beliefs, we collected a set of seven net-
work datasets of different scales and from different domains. Each of these
networks contains some sort of external annotation that allowed us to identify
“annotated communities.” For example, in the product co-purchasing network
Amazon, products were annotated with various categories (such as books by
some author), and we grouped together all items from the same category into
one community. For each of these annotated communities, we next produced
a random graph of the same size, and calculated the ratio of the diameter of
the annotated community to the diameter of the random graph. For every net-
work, the annotated communities tended to have larger (in some cases, much
larger) diameters, indicating that the “round” model of community may not be
appropriate for these communities. We next used greedy modularity optimiza-
tion to decompose each annotated community into several parts, and showed
that these parts tended to be “rounder,” with diameters closer to those of the
random graphs. Finally, we examined how these parts are connected to one
another, and showed that the graph representing these connections also fit the
“round” model well. These results held even when we studied these graphs
with features other than diameter, and suggest that communities are indeed

made up of small, well-connected groups.

Using this intution, we developed the Node Perception algorithm template
for finding overlapping communities in networks. In this template, we first
identify sub-communities corresponding to each node’s perception of the net-
work around it. To perform this step, we consider each node individually, and

partition that node’s neighbors into communities using some existing commu-
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nity detection method. Next, we create a new network in which every node
corresponds to a sub-community, and two nodes are linked if their associated
sub-communities overlap by at least some threshold amount. Finally, we iden-
tify communities in this new network, and for every such community, merge
together the associated sub-communities to identify communities in the origi-

nal network.

We applied several different implementations of this method to each of our
seven networks, and showed that, typically, all Node Perception implementa-
tions outperformed other considered community detection algorithms. Itis par-
ticularly noteworthy that these results seemed to be independent of the specific
implementation; this strongly suggests that the template itself, rather than a
specific implementation, is responsible for this success. This conclusion is novel
and valuable for two reasons: first, it allows a practitioner a great deal of flex-
ibility in selecting an appropriate implementation, allowing him or her to take
advantage of network features both internal and external, and second, our anal-
ysis into the structure of annotated communities, which was validated by the
success of the Node Perception template, gives researchers insight into the fun-
damental nature of communities, justifying the general model of communities

as collections of small, well-connected groups.

For future work, we are primarily interested in identifying formal methods
for tailoring the Node Perception template to specific networks. In our case
studies, we considered modifications based on both external knowledge about
the network (such as its completeness or known community information) and
knowledge gained from the structure of the network itself (degree distribution).

To some extent, such modifications are necessarily ad hoc, as the range of pos-
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sible external knowledge is far too wide to be captured with a finite set of rules.
However, we may be able to formalize some modifications that are based on
structural features of the network. Features considered may include transitiv-
ity, clustering coefficient [53], degree distribution, assortativity [47], and so on.
Although even simple implementations of Node Perception were quite success-

tul, such modifications may further improve performance.

Additionally, we are interested in creating successful community detection
methods that are based on the same general principle of joining together small
groups of nodes, but which do not necessarily identify these groups by exam-
ining node neighborhoods. When we analyzed the structure of communities,
we decomposed each annotated community into several small groups by us-
ing greedy modularity optimization. How might an algorithm identify these
groups, which while small, may not correspond exactly to a ‘sub-community’
as we have described in this paper? We are also interested in identifying other
methods for joining together the small node-sets. It is possible that for other
datasets, these node-sets are not joined together in a “round” way, and so dif-

ferent methods for connecting them may be useful.
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CHAPTER 5
A MACHINE-LEARNING FRAMEWORK FOR UNDERSTANDING
COMMUNITY STRUCTURE

We now present the first of two closely-related chapters in which we introduce
and apply a machine-learning-based framework for comparing, contrasting,

and analyzing communities produced through different methods.

As discussed previously in this dissertation, there is little consensus within
the social network analysis research arena regarding the structure of real com-
munities. There are multitudes of competing community detection algorithms
and mathematical formulations of community, and different algorithms, in-
tended to optimize for different values, can naturally produce very different
communities. This is true not only for algorithms intended to find different
types of mathematical structures: because optimization of many mathematical
formulations is computationally intractable, even different heuristic algorithms
for the same mathematical function may produce dramatically different out-

puts.

As an illustration of these disparities, consider Figure 5.1, which contains
five communities of similar sizes from the blogging network L]1, produced by
the Metis community detection algorithm, a simple random walk with restart,
Infomap, Newman-Clauset-Moore modularity optimization, and Louvain mod-
ularity optimization, as well as one annotated community identified through
metadata. Immediately, structural differences are clear. The Louvain commu-
nity is very dense and compact, while the random walk is much wider and
looser. The annotated community seems to be between these extremes: it is

not nearly as tight as the Louvain community, but is better-connected than the
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Figure 5.1: Six communities produced by different methods on network
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Caption: These communities have clear structural differences.

random walk community. Also observe the differences between the Newman-
Clauset-Moore community and the Louvain community: both of these sets were
produced by algorithms intended to optimize modularity, but their structures

have obvious differences.

In a related issue, as discussed in Section 1.1, researchers have not settled
on a single way of evaluating communities, and so cannot easily identify which
algorithm produces the ‘best” output. Furthermore, while we may sometimes
have examples of “real” communities (e.g., the annotated communities used
throughout this dissertation), it can be difficult to characterize these sets in the

absence of negative examples.
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In this section, to address these issues, we propose the Community Struc-
ture Analysis Framework (CSAF), a highly scalable machine-learning-based
framework for analyzing the differences in structure for communities produced
through various different methods. It simultaneously considers communities
produced by many different methods, each characterized using many different
features, and allows a user to gain insight into the similarities and differences

between different types of communities.

Our framework begins by creating structural classes of communities by first
applying different community detection algorithms to a network and then cal-
culating important features of each community, such as diameter and edge den-
sity. We then apply a machine-learning classifier to these structural classes in

order to better understand the behaviors of different structural classes.

In this chapter, we first list the networks studied, and then describe the struc-
tural classes and their associated feature space. We then describe the Commu-
nity Structure Analysis Framework, and then end with a sample application

demonstrating how one might use the CSAF. !

5.1 Datasets

In this chapter, we use networks Grad, Undergrad, HS, SC, DM, Amazon, DBLP,

LJ1, and L]J2, as well as their associated metadata annotations.

!The work in this chapter originally appeared in [1] and [2].
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5.2 Algorithm Classes

We consider 10 community detection algorithms of various types. Each of these
algorithms produces some output; communities produced by the same method
form a class. Because we also include the set of annotated communities in our

analysis, we consider a total of eleven community classes.

Due to the vast numbers of community detection methods, it is not possible
for us to consider every such method; however, we have made an effort to create
a diverse set of algorithms that includes methods from important categories of
algorithms. Some of our methods partition the network, while others produce
overlapping communities. We have included algorithms that optimize impor-
tant community metrics, such as modularity or conductance. Some of the other
algorithms are not properly considered community detection algorithms at all,
but produce only one “community” at a time, and require the user to specify
a start-node (which we randomly select) and size (which we randomly select

from the sizes of annotated communities from that network).

e Breadth-First Search (BFS): Our first method is a simple breadth-first
search. In this method, for a randomly-selected starting node n and size,
we begin with a community that includes only node n. In each step, we
add to the set all neighbors of nodes currently in the set. We continue this

procedure until the desired size is reached.

e Random Walk Without Restart (RW0): The second method that we con-
sider is the classic random walk on a graph. Here, we again specify a
starting node n and a size. A random walker begins on node 7, and at

each step, randomly selects a neighbor of n to transition to, until the de-
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sired number of nodes have been visited.

Random Walk With Restart (RW15): The third method is a modification
of method RWO. In this method, we again perform a random walk, but at
each step the random walker has a 15% chance of returning to the starting
node. This method results in a set that is more tightly centered about the

starting node.

@ — 8 (AB): An @ — f community, for positive integers «,, @ < B is a set
of nodes such that every node within the community has at least 8 con-
nections within the community, and every node outside the community
has at most @ neighbors within the community [44]. To produce an a -
community, we begin with a BFS community produced earlier, and then
perform an iterative swap procedure. In each step, we remove the node in
the community that has the fewest links into the community, and add the
node from outside the community that has the most links into the commu-
nity. This procedure is performed until an @ — 8 community is obtained, or

until a maximum number of iterations has been reached.
InfoMap (IM): We use the InfoMap algorithm described in Section 1.1.

Link Communities: We use the Link Communities algorithm described in

Section 1.1.

Louvain Method for Greedy Modularity Optimization (Louvain): We use
the Louvain method for greedy modularity optimization described in Sec-

tion 1.1.

Newman-Clauset-Moore Method for Modularity Optimization (New-
man): In addition to the Louvain method for greedy modularity optimiza-
tion, we use the heuristic algorithm for modularity optimization as intro-

duced by Newman, Clauset, and Moore [48]. In this algorithm, each node
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begins in its own community. At each step, two communities are selected
for merging in such a way as to produce the greatest increase (or smallest
decrease) in global modularity. In such a way, a hierarchy of communities
is produced, and the resulting dendrogram is then split at the level that

maximizes modularity.

Markov Clustering Algorithm (MCL): The Markov Clustering Algorithm
is a random-walk-based method that consists of two alternating steps [30].
Beginning with a normalized adjacency matrix, the first step “expands”
the matrix, and the second step “inflates” the matrix. In the first step,
the matrix is squared: this corresponds to flow between communities. In
the second step, each element in the matrix is individually squared: this
corresponds to strengthening within-group links. This process eventually

converges to a stationary matrix from which communities are extracted.

Metis: Metis [30] is a partitioning method that is a variation of the
Kernighan-Lin algorithm [31]. The purpose of Metis is to partition a
weighted-node network into a given number of equal node-weight sets
such that the number of links between sets is minimized. We weight the
nodes in such a way as to produce sets with good conductance (that is,

sets that are internally well-connected with few links to the outside).

Each of these methods may produce a different number of communities of vary-

ing sizes. In our experiments, we are primarily interested in communities that
y

are not very small and not very large; we thus only include communities of be-

tween 10 and 1000 nodes. Additionally, some of these methods may produce

communities with multiple components, and we discard such sets. Naturally,

other researchers may make other choices.
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Because each method may produce very different numbers of communi-
ties, and our classification methods are sensitive to class balance, we over- and
under-sample the different classes to ensure that they are of the same sizes. For
the smaller networks (Grad, Undergrad, HS, SC, and DM), each class contains
100 communities, whereas the classes of the larger networks each contain 1000
communities. Again, other researchers may choose to have smaller or larger
classes: smaller classes generally lead to lower classification accuracy and faster
running time, while larger class sizes may have higher accuracy, but slower run-

ning times.

After applying each of these methods to a network and identifying anno-

tated communities, we have eleven classes of communities.

5.3 Features

Next, for each community in each class, we calculate a feature vector.

In our work, we consider 38 community features. Other users of our frame-
work may wish to calculate more or different features. Some of these features
are calculated using only information about the internal structure of the com-
munity (i.e., the community’s positioning within the larger network is not con-
sidered), while other features additionally incorporate information about nodes
that are not contained in the community, but have neighbors inside the com-
munity. Several features are community-wide measures, while others measure
statistics of single nodes, node pairs, or edges. For features of the latter type, we

report the quartile values for that feature over all nodes, node pairs, or edges.
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We calculate the following features:

Number of nodes n in community
Number of edges m in community
Diameter of community

Edge density of community: ratio of m to the maximum possible number

of edges given n

Conductance: ratio of m to the sum of the degrees of nodes (including

edges going outside the community)

Transitivity: ratio of the number of closed triangles to the number of 2-hop

paths

Triangle density: ratio of the number of closed triangles to the maximum

possible number of closed triangles given n

Shortest path quartiles: for every pair of nodes, calculate the minimum
distance between the two nodes. From the list of all such values, find the

lowest, 25th percentile, 50th percentile, 75th percentile, and highest value.

Edge betweenness: for each edge, calculate the fraction of shortest paths
between all pairs of nodes that use that edge. Edges with a high edge
betweenness score tend to be “bottleneck” edges linking different sections
of the community, as many shortest paths rely on these edges. From the
list of all edge betweenness values, find the lowest, 25th percentile, 50th

percentile, 75th percentile, and highest value.

Node betweenness: similar to edge betweenness, the node betweenness
of a node is the fraction of shortest paths that use that node. From the
list of all node betweenness values, find the lowest, 25th percentile, 50th

percentile, 75th percentile, and highest value.
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e a: for each node on the fringe of the community (connected to but not con-
tained in the community), calculate the number of in-community neigh-
bors of that node. From the list of all @ values, find the lowest, 25th per-

centile, 50th percentile, 75th percentile, and highest value.

e : for each node in the community, calculate the number of in-community
neighbors of that node. From the list of all 8 values, find the lowest, 25th

percentile, 50th percentile, 75th percentile, and highest value.

e Treesum: total number of spanning trees of the community, divided by
total number of spanning trees of an n-clique (calculated using Kirchoff’s

matrix tree theorem [43])

e Information centrality: similar to node betweenness, except instead of con-
sidering only shortest paths between nodes, consider all paths, weighted
inversely with path length [59]. From the list of all information central-
ity values, find the lowest, 25th percentile, 50th percentile, 75th percentile,

and highest value.

5.4 Class Separability

After producing the classes of communities and calculating a feature vector for
each set, we have eleven classes of community feature vectors (corresponding
to, for example, feature vectors for communities produced by Infomap, MCL,
or annotation). With this data, we can place the classes of feature vectors in
a feature space. Naturally, because we consider 38 features, we cannot visu-
ally depict this placement; Figure 5.2 contains a synthetic example of how one

might do this in a much lower-dimension feature space. In this figure, there
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are five classes, and points of the same color represent feature vectors from the
same class. In this toy example, one can immediately begin to compare differ-
ent classes. For example, we see that the classes are largely separable (occupy
different regions of the feature space). The classes of red circles and blue trian-
gles, on the lower left side of the plot, have some overlap, and so are somewhat
similar. The class of green triangles, at the bottom of the plot, is very compact,
indicating that feature vectors in this class are very similar to one another. On
the top right side of the plot, we see the classes of black crosses and yellow tri-
angles. These two classes resemble one another more than they resemble any
other class, but are still quite different. The class of black crosses is spread over

a large area, suggesting that there is a lot of diversity within this class.

In the feature space, one can perform a simplistic analysis to identify which

classes are fundamentally different, and which are similar.

Our initial attempts at measuring class separability use the J3 metric [61],
which is based on within-class and between-class variance. To calculate the J3
criterion, one calculates two scatter matrices: the between-class scatter matrix
Sm, which is simply the global covariance matrix, and the within-class scat-
ter matrix §,, which is the average of the covariance matrices of each class,
weighted by the size of that class. The ]J3 score is then defined as the trace of
SIS -

A high ]3 score indicates that the diagonal elements of |S ~1S | are high, so
within-class covariance is low, and global covariance is high. Intuitively, a high
J3 score thus suggests that each class has many similar elements, and the classes
are very different from one another. We calculate the J3 separability score for the

eleven classes of community feature vectors from each network in two ways:
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Figure 5.2: Community feature vectors plotted in 3-dimensional feature
space (synthetic example)

Diameter

Caption: Separability can sometimes be observed graphically.

tirst, we calculate the J3 score for the classes as they actually are, and second,
for the sake of calculating a baseline J3 value, we shuffle the class labels and
calculate the J3 scores for the new classes. In this latter calculation, shuffling the

class labels creates a dataset in which there is no separability between classes.

Table 5.1 contains the ratios of the original J3 score to the shuffled-labels J3
score. In this table, a value of 1 indicates that there is no class separability, and

higher values indicate greater separability.

Even with this very simplistic measure, we can see that different algorithms

produce communities with very different structures: in every network, there
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Table 5.1: Ratio of actual to shuffled J3 separability scores for each network

Grad | Ugrad | HS | SC | DM | DBLP | Amaz | LJ1 | LJ2

Global
Separability 1.44 211 1.7 | 1.81 | 1.35 1.58 1.38 1.68 | 1.76

Caption: Higher values indicate greater separability; a score of 1 indicates no separabil-

ity.

is at least some class separability. However, the ]3 measure is a coarse, global

metric, and we have not gained insight into the behaviors of individual classes.

We are interested in a much more fine-grained understanding of class sep-
arability, class differences, and structural tendencies of each class. To this end,

we present the Community Structure Analysis Framework.

5.5 Framework Outline

We present the Community Structure Analysis Framework (CSAF), a three-part
supervised machine-learning-based framework for analyzing community struc-

ture. It consists of the following steps:

1. Collect and Apply Community Detection Methods: In this step, a user
of the framework collects a set A, A,, ..., Ay of community identification
methods, and applies them to the network under study. Each method A,
produces a set C; of communities. These methods might be community
detection algorithms, but one might also identify communities by using

external metadata or other methods.
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2. Calculate Feature Vectors: In this step, for every community in every set
C;, the user calculates a feature vector that describes the community. In our
work, we consider only structural features such as number of nodes, num-
ber of edges, conductance, and so on, but depending on available data, a
user might include external information as well (e.g., in a friendship net-
work, the ratio of adults to children in the community). In this step, the

user creates k classes F, F», ..., F, of feature vectors.

3. Apply a Classification Method to the Classes of Feature Vectors: In the
final step, the user applies a classification algorithm to the & classes of fea-
ture vectors. Depending on how this step is performed, the learned model
may be used to answer questions such as: Are the classes separable from
one another (that is, are the classes sufficiently different that the classifier
can distinguish between them)? In which ways are the classes different?
Do any classes resemble one another (that is, do two methods tend to pro-
duce communities that have similar feature vectors)? For the results pre-
sented in this paper, we use a Support Vector Machine classifier; however,

other methods may be more appropriate for different tasks.

Through application of the CSAF, one can gain a better understanding of the
relationships between different classes of communities. For example, as we do
in the next chapter, one might apply a cross-validation strategy in order to eval-
uate the classification model: can the model correctly predict the class labels
of withheld community feature vectors, or are there many misclassifications?
Rather than simply looking at the global accuracy (which might give results
similar to the J3 metric presented earlier), one can examine the classification
accuracies of each class, and identify whether any pairs of classes are often con-

fused.
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To a researcher, the CSAF can give insight into the behavior of existing com-
munity detection methods. The CSAF is also potentially of value to practition-
ers, and in the next section, we present a sample application of the CSAF. In the
next chapter, we apply the CSAF to the datasets, algorithms, and features de-
scribed earlier, and present an in-depth analysis of separability and structural

tendencies of different classes.

5.6 Sample Application

This framework is relevant to both researchers and practitioners. Researchers
may use it to compare and analyze the structures of communities produced by
different methods, and thus better understand the behavior of different mathe-
matical metrics and algorithms on real data. One might use the framework to,
for instance, identify which ostensibly different algorithms produce very similar
communities (or vice versa). It is also valuable to practitioners: to demonstrate

this, we present an example application here.

Being a supervised method, the CSAF is suited for applications in which one
has examples of “real” communities and wishes to select a community detection
method that produces communities that are structurally similar to the “real”

communities.

Consider an administrator at a residential college who is responsible for as-
signing first-year students into dormitory floors. The incoming class must be
partitioned into non-overlapping sets (i.e., no student will live on multiple dor-
mitory floors). The administrator has access to the students’ social network

(perhaps from Facebook or surveys on residency paperwork), and has reason to
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believe that different dormitory floor social structures lead to different outcomes
in student grades: for example, perhaps a floor containing one large loosely-knit
community leads to more socializing and thus lower grades, while a floor con-
taining many small tightly-knit groups leads to fewer parties and higher grades.
The administrator cannot precisely formulate which structures lead to student
success, but has examples of successful communities from past years (i.e., dorm
floors that had high GPAs), and through the social network data, knows the

structures of those communities.

The administrator needs to partition the incoming first-year students into
communities. He or she has collected a set of potential community detection
algorithms that can do so, but does not know which algorithm is most likely
to produce communities that have “good” structure. Through use of the Com-
munity Structure Analysis Framework, the administrator can apply each of the
community detection algorithms to the student social networks from past years,
and thus obtain several classes of communities. They can then convert every
community in each class into a feature vector, and then train a classifier to learn
the structures of communities produced by each method. Finally, the adminis-
trator can apply the classifier model to the set of “good” communities, and by
observing how the model tends to classify those “good” communities, identify
which community detection algorithm is most likely to produce communities
that structurally resemble successful communities from past year, and thus are

most likely to result in high student success.
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CHAPTER 6
APPLICATION OF THE COMMUNITY STRUCTURE ANALYSIS
FRAMEWORK

In this chapter, we apply the Community Structure Analysis Framework to the
datasets listed in the previous chapter. As discussed earlier, a user of the CSAF
may select which classification algorithm to use. In this text, we present results
obtained through application of a Support Vector Machine classifier [64], as im-
plemented through the freely-available software package LibSVM [9]. For pur-
poses of verification, we also performed these experiments using the k-Nearest
Neighbors classification method, and obtained similar results.the Community
Structure Analysis Framework, and then end with a sample application demon-

strating how one might use the CSAF. !

6.1 Background

In this chapter, we use a multi-class probabilistic Support Vector Machine (SVM)
algorithm in the application of the Community Structure Analysis Framework.
An SVM is a supervised learning model used for classification tasks: that is,
given a set of training data points, each labeled with a class name, the SVM
learns a model for predicting class labels. For example, in the CSAF, an SVM
algorithm may be given many examples of feature vectors corresponding to
communities produced by different methods, each labeled with the name of
the method that produced the associated community. With this training data,

the SVM will learn a model for differentiating between the different method-

'The work in this chapter originally appeared in [1] and [2].
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classes (e.g., it will learn that a BFS community tends to have a specific type
of feature vector, and an Infomap community tends to have a different type of
feature vector). This model can then be used to classify unlabeled data: that
is, we can use the model to predict which method produced the community

corresponding to an unlabeled feature vector.

The simplest, and original, version of the SVM considered only two classes
and did not allow for mislabeled data. The goal of such an SVM is to find a
hyperplane that cleanly separates the two classes in such a way as to maximize
the distance from the nearest data point to the hyperplane (i.e., to maximize the
“margin”). Because this may not be possible in the original feature space, the
SVM will map the data points into a high- or infinite-dimensional space, and

find a separating hyperplane in this new space.

Because data is often mislabeled or noisy, a soft margin version of the above
is commonly used. In this model, data points may appear on the wrong side of
the separating hyperplane, but in such cases, a penalty is applied to the objective

function.

A multi-class SVM is produced by combining several single-class SVMs. In
the software we use, the “one vs. one” method is employed. Here, for k training

k(k 1)

classes, a single-class SVM is built for each of the pairs of classes. To deter-

mine the class label of a data point, each of these 5

models is applied to that
data point. The data point is then classified as the class that receives the most

votes from this process.

A standard SVM is non-probabilistic: that is, it simply assigns a data point

to a single class. The LibSVM software that we use implements a probabilistic
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version of the SVM; full details are availble in [9]. In this version, rather than
labeling a data point with a single class label, the model produces a probability
vector (pi, pa, ..., px), where p; + p, + ... + p; = 1, containing the probabilities that

the element belongs to each of the k classes.

6.2 Structural Consistency of Algorithm Classes

In our first and most basic set of experiments, we are interested in determining
whether the eleven classes of algorithm-produced and annotated communities
are internally consistent and separable from one another using the features de-
scribed in the previous chapter. To address this question, for each network, we

perform the following experiment:

For each network, we perform a three-fold cross-validation experiment. In
each of three rounds of this experiment, we withhold one third of the data from
each of the eleven classes of feature vectors for testing, and use the remaining
two thirds of the data to train a Support Vector Machine. During the training
phase of each round, the SVM learns a classification model, and then during
the testing phase, this model is applied to the withheld data. In the training
phases, the SVM learns to distinguish between the different classes of commu-
nity feature vectors: for example, it learns how to differentiate between a BFS
community feature vector and an annotated community feature vector. In the
test phases, this model is applied to withheld data in an attempt to identify how
well the model learned from the training data fits the test data. High classifica-
tion accuracy during the testing phase indicates that the model learned during

training is good; this indicates that the test data is similar to the training data,
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Figure 6.1: Cross-validation accuracy for network DBLP
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Caption: Diagonal dominance indicates high separability.

and so we can say that the classes are consistent. In contrast, if a class is struc-
turally inconsistent, then the test data will be dissimilar to the training data,
and so the model learned from the training data will produce low classification

accuracy when evaluated on the test data.

Figure 6.1 contains the cross-validation accuracy results for network DBLP.
In this figure, every row corresponds to a class of community feature vectors in
the test sets, and the class distribution within each row describes the average
of the probability vectors output by the classifier for elements from that class in

the test set.
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For example, the first row describes the classification probability vectors of
communities in the test set that were produced by the BFS algorithm. For these
communities, on average, approximately 60% of the probability mass was as-
signed to class BFS, 3% to class RW0, and so on. In this plot, diagonal domi-

nance indicates high cross-validation accuracy.

We see that for most classes, cross-validation accuracy is quite high, suggest-
ing that these classes are structurally consistent and distinct from other classes.
This is especially true for certain classes such as Metis and Link Communi-
ties, indicating that these classes are especially separable from the other classes:
these algorithms produce communities with structures very different from those
produced by other algorithms, and so the classifier tends to assign a high frac-
tion of the probability mass for communities in these classes to the correct class

label.

In some sense, the high cross-validation accuracy that we see here is unsur-
prising, as we naturally expect communities produced by the same algorithm
to resemble each other. The most surprising and important result here, thus, is
not the performance of the model on the algorithm classes, but rather the high
structural consistency of the class of annotated communities. We see nearly
50% accuracy in classifying annotated communities: while this figure is not as
high as for some of the other classes, it is still quite high given that there are
eleven classes. This result indicates that annotated communities share common
structural features, and this structure is not adequately captured by any of the

algorithms that we have considered.

In a related question, we identify which features are most valuable for dis-

tinguishing between classes, and thus gain insight into the structural tendencies
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of each class of communities. To address this, we apply the Correlation-based
Feature Selection algorithm, a method used to identify a discriminative subset
of features [27], as implemented in the machine-learning toolkit WEKA [26].
The goal of the CFS algorithm is to identify features that are highly correlated

with class label, but poorly correlated with one another.

For a given subset S containing k features, CFS defines a merit function Mj.

krer
M = Tef 6.1)

Vk+ k(k = Dy,

Here, 7.; represents the mean correlation between each individual feature

fin § with the class label ¢, and 7;; represents the mean correlation between
pairs of features in K. Sets of features that can accurately predict the class label,
but are not correlated with each other, have a high My score. CFS begins with
an initially empty set of features, and then applies a hill-climbing method to
identify a set of features with a high My score. It may backtrack up to 5 times

per iteration to search for a subset S with greater M.

We apply this algorithm to each of the nine network datasets, and see that
in all cases, a fairly small subset S of features capture most of the structural
differences between different classes of communities. Table 6.1 lists the features
that tended to be contained in these subsets. Conductance and diameter were
both often contained in S, and various centrality measures also tended to be
important for many networks. Table 6.2 contains the cross-validation accuracy
for the full and reduced sets of features for each network: we see that when
using the reduced set of features, there is typically a reduction in accuracy of at

most a few percentage points.
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Table 6.1: Summary of the feature selection results

Network Grad | Ugrad | HS | SC | DM | DBLP | Amaz | LJ1 | LJ2
# Features Selected 6 7 10 5 6 10 8 12 | 11
Feature
Conductance 1 1 1 1 1 1 1 1
Diameter 1 1 1 1 1 1 1 1
Info Centrality* 2 2 3 1 1 2 1 2 2
Node Betweenness* 2 2 2 1 5 5
Shortest Path* 1 3 2 1 1 1
B 1 1 1 2 1 1 1
a* 1 1 1 2 1
Edge
Den.
Trans- Tri
Other features itivity | Den

Caption: Important features for each network, as selected by CFS feature selection algo-
rithm. For features marked with a *, multiple quartiles were calculated; the number of
quartiles selected as important is contained in the table. For features not marked with a

*, only one value was calculated; if this feature was selected by CFS, the table contains

the value 1.

Table 6.2: k-Nearest-Neighbors classification performance using both the
full and reduced sets of features

Grad | Ugrad HS SC DM | DBLP | Amaz | LJ1 L)2
All Feats. | 62.9% | 86% | 82.2% | 80.9% | 93.6% | 81.3% | 65.3% | 89.1% | 88.5%
CFS Feats. | 61.5% | 84.7% | 85.1% | 81% | 90.6% | 794% | 63% | 78.8% | 76%

Caption: Subset of the most discriminative features is selected by CFS.
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Figure 6.2: Tendency of algorithms with respect to various features
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Caption: Scores are calculated by three times the number of networks on which the
feature had a high score on that class plus two times the number of networks on which
the feature had a medium score on that class plus the number of networks on which the

feature had a low score.

Using these features, we can study the various tendencies of each class.
Figure 6.2 contains seven important features, and shows whether the different
classes tend to have high, medium, or low values of each of those features across
the different networks. Using this figure, we can group together different algo-
rithm classes into common groups. We see some unsurprising results, such as
resemblance between the two random walk classes, as well as between the two

modularity-based classes. We also see less expected results: for instance Link
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Communities and a —  communities are quite similar overall, as are Infomap
and Metis. As we saw earlier in this section, the annotated communities do not

closely resemble any of the algorithm-based classes.

6.2.1 Structural Consistency of Algorithm Classes Across Net-

works

In our first experiment, we considered each network separately, and saw that
within a network, communities produced by the same method tended to resem-
ble one another. Now, we turn to the question of whether we see class consis-
tency across different networks. To approach this topic, we perform a variation
of the previous experiment, and rather than performing a cross-validation ex-
periment on a single network at a time, perform nine experiments (one for each
network), in each of which we train the SVM using examples from one network,

and evaluate it on examples from all other networks.

For example, in one experiment, we train the SVM using the eleven com-
munity feature vector classes from network Grad. We then apply the learned
model to examples from the other eight networks, and evaluate the model’s
accuracy on these examples. In this way, we learn whether, for example, a BFS

community from network DM resembles a BFS community from network Grad.

Table 6.3 contains the results of this experiment. Here, each column corre-
sponds to a different network, and the title of each column contains the name
of the network on which the SVM was trained in that experiment. The value in

each cell contains the classification accuracy for elements of that class from all
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other networks (in calculating this value, each of the eight test networks were

weighted equally).

We see that some classes are much more consistent across networks than
others. For example, with some exceptions, the SVM tended to correctly classify
BFS, RW0, RW15, and AB elements correctly, regardless of which network it
was trained on. For other classes, such as Louvain, we tend to see much lower
accuracy (though again, there are some exceptions to this, such as when the

SVM was trained on elements from networks Undergrad or DM).

The last row, corresponding to the class of annotated communities, is par-
ticularly interesting. As with most of the other classes, we generally see low
cross-network consistency. However, as with many of the other classes, there
are exceptions, such as networks HS, Amazon, L]1, and LJ2. It is quite surpris-
ing that we see any consistency in this class; although there is some expectation
that algorithms show consistency across different networks, it is shocking that
externally-defined communities from fundamentally different networks (e.g.,

genetic vs. social) bear any resemblance to one another.

6.3 Classification of Annotated Communities into Algorithm
Classes

We have seen that the structures of annotated communities are consistent and

are not well-captured by any of the algorithms that we considered; nevertheless,

we now attempt to determine which of these algorithms produces communities

that most resemble annotated communities.
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Table 6.3: The percentage of probability mass from each class that was cor-
rectly classified

Class Grad | Ugrad | HS | SC | DM | Amaz. | DBLP | LJ1 | LJ2

BFS 60.3 347 | 426|364 | 252 | 46.2 63.4 |37.1 |48.5

RWO 44.5 262 | 30.6|21.0| 208 | 38.8 30.8 | 228|209

RW15 410 | 236 |248|16.0|20.1 | 484 264 | 198|249

AB 584 | 417 |63.6|445| 99 20.0 55.1 | 643|628

InfoMap | 4.7 55 220|425 238 6.0 25.1 |34.0 | 33.0

LinkCom | 6.6 146 |294 338|156 | 148 27.7 1232|284

Louvain | 2.1 435 | 8.0 | 250 | 41.0 1.1 78 1209 9.1

Newman | 6.3 4.9 84 | 232 | 3.6 9.9 54 |34.2|536

MCL 7.3 139 | 2371203 |271 | 13.6 189 404 | 73

Metis 20.2 119 |31.0 | 121 | 34.8 3.5 59 |14.8 | 14.0

Ann. 5.8 19.7 | 23.8 |10.8 | 20.6 | 31.0 173 | 36.1 | 34.2
Caption: The column titles indicate the networks on which the classifiers were trained.

The values in row M, column N indicate the average percentage of probability mass

from each class over all networks except N that was correctly classified.

To answer this question, we again apply our Community Structure Analysis
Framework. In this experiment, we train the classifier using feature vectors of
communities from each of the ten algorithm classes, apply the learned model to
classify feature vectors of the annotated communities, and then identify which
algorithm the model tends to classify the annotated communities as. As before,
when classifying a particular annotated community, the classifier model out-
puts a probability vector containing the probabilities that that community was

produced by each algorithm class.
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Figure 6.3: Classification of annotated communities
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Caption: Annotated communities are generally classified as one of the two random walk
methods.

Figure 6.3 shows the results of this experiment. In this plot, every row cor-
responds to a network, and the class distribution within each row depicts the
average of the probability vectors output by the classifier for annotated commu-
nities from that network. We see that, with only two exceptions (network Grad
and network DM), the annotated communities from each network tend to, on

average, most strongly resemble one of the two random walk classes.

This result is particularly surprising because the random walk algorithms as
implemented are extremely simple methods, especially in comparison to many
of the more modern, sophisticated methods that we also included in our algo-

rithm set (e.g., Link Communities).
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Figure 6.4: Classification of annotated communities
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Caption: Trimmed annotated communities are generally classified as one of the two
random walk methods.

6.3.1 Classification of Annotated Community Cores

Recall that in order to identify annotated communities, we identified connected
sets of nodes that had at least one feature in common. For example, we iden-
tified all graduate students in the same department, considered the subgraph
induced by these nodes, and then took each connected component within this
subgraph to be a separate annotated community. Because we required only
simple connectivity, we allowed for the possibility of annotated communities
consisting of ‘tendrils” of nodes attached to a relatively dense community ‘core.’

For an example of such a community, refer to the annotated community in Fig-
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ure 5.1: in the center of the community, we see that most nodes are fairly well-
connected to one another, but there are many nodes along the fringe that have
only one or two connections into the rest of the set. We might expect to see sim-
ilar structure in communities generated by a random walk process, such as the

random walk community displayed in Figure 5.1.

We are thus interested in examining whether the structural similarity be-
tween annotated communities and random walk communities is merely an arti-
fact of our requiring only simple connectivity: if we had required that all nodes
in annotated communities have at least two connections into the community,

would we still see this resemblance?

To answer this question, we perform a trimming process on the annotated
communities by iteratively removing all nodes with only one connection into
the community. This process is repeated until each node in the community has
at least two connections to the set. We then repeat the previous experiment, and
identify which algorithm produces communities that most closely resemble the

trimmed annotated communities.

Figure 6.4 contains the results of this experiment. We again see that in a ma-
jority of the networks, a plurality of the probability mass of the trimmed anno-
tated communities is classified into one of the two random methods (though less
definitively than in the previous experiment). This suggests that the similarity

between random walks and annotated communities is deep and fundamental.
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6.4 Network Consistency

In our final experiments, we apply the Community Structure Analysis Frame-
work in a slightly different way, and ask whether communities from different

networks can be distinguished from one another.

In the first set of experiments here, we consider each method of defining
communities separately (that is, we perform a separate experiment for each of
BFS, RWO0, Annotated, etc.). Instead of labeling each community feature vector
with the method that produced it, we label it with the network that it came from.
We perform a 10-fold cross-validation experiment in which the SVM trains a
model using examples from each of the nine networks (labeled with the network
name), and then attempts to predict which network the withheld community

feature vectors came from.

For example, in our first experiment, we consider only BFS communities.
The SVM is trained on BFS community feature vectors from networks Grad,
Undergrad, HS, and so on, each labeled with the network name. We then cal-
culate the accuracy of the resulting model by evaluating how well it predicts

which network each of the withheld community feature vectors came from.

In this way, we gain insight into whether different networks have fundamen-
tally different structures from one another: e.g., we saw earlier that BFS sets had
structural similarities across networks, but are there also important structural

differences between BFS communities from different networks?

Table 6.4 contains the results of these experiments. Here, each row corre-

sponds to a different experiment, and the row label contains the name of the
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method that produced the communities that we considered. Each cell contains
the cross-validation classification accuracy for community feature vectors from
the specified network. We see very high accuracy scores in general, with the ex-
ception of communities produced by the Newman-Clauset-Moore modularity
algorithm (this may be because for many networks, this algorithm produced a
very small number of communities, resulting in a very small training set and
thus a less accurate SVM model). Interestingly, while we saw from earlier ex-
periments that the class of annotated communities was somewhat distinguish-
able from the algorithm classes, even across different networks, we see here
that annotated communities from different networks also have fundamental
dissimilarities. (Note that these results are not contradictory: the earlier ex-
periment demonstrated that annotated communities across networks have im-

portant similarities, and we see here that there are also important differences).

Next, we perform a similar experiment, but instead of evaluating each type
of community separately, we conduct a single cross-validation experiment in
which we consider all eleven methods of identifying communities separately.
Table 6.5 contains the results of this experiment. Here, the row labels contain the
names of the networks that community feature vectors actually belong to, and
the column labels contain the names of the networks that they were classified
as. For instance, of community feature vectors that are from network Grad, an
average of 0.5% of their probability mass was classified as network Undergrad.

In this table, diagonal dominance indicates high accuracy.

We see that, as in the previous experiment, communities from different net-
works tend to be separable from one another. We can interpret these results as

a network similarity matrix; if two networks are frequently confused with one
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Table 6.4: Network classification accuracy, training and test sets contain
elements from one algorithm class

Class Grad | Ugrad | HS SC DM | Amazon | DBLP | LJ1 LJ2

BFS 68.9% | 67.4% | 36.6% | 25.0% | 61.3% 78.6% 71.0% | 47.3% | 43.3%

RWO 67.5% | 74.2% | 45.1% | 49.5% | 68.2% | 82.8% 74.1% | 55.4% | 51.0%

RW15 69.3% | 76.2% | 47.6% | 50.1% | 77.2% | 83.7% 76.0% | 55.5% | 49.2%

AB 69.8% | 55.1% | 30.5% | 31.2% | 72.0% | 82.1% 70.9% | 43.4% | 40.4%

InfoMap | 33.2% | 87.8% | 47.6% | 51.9% | 54.7% | 82.1% 78.3% | 62.3% | 57.1%

LinkCom | 38.8% | 94.2% | 72.9% | 66.7% | 74.6% | 81.1% 781% | 54.1% | 53.5%

Louvain | 50.3% | 71.9% | 72.4% | 46.4% | 2.6% 90.1% 88.3% | 39.9% | 48.5%

Newman | 0.2% 01% | 03% | 01% | 0.1% 94.8% 21.5% | 15.2% | 60.8%

MCL 20.0% | 48.1% | 49.9% | 22.3% | 22.4% 80.6% 72.5% | 53.0% | 55.8%

Metis 92.3% | 98.1% | 88.5% | 83.9% | 81.5% | 98.2% 98.0% | 92.0% | 92.1%

Ann. 60.4% | 52.8% | 22.4% | 27.3% | 38.3% | 91.8% 85.7% | 44.5% | 45.8%
Caption: The percentage of probability mass from each network that was correctly clas-

sified as belonging to that network. The row titles indicate the class that the classifier

was trained on.

another by the SVM, then this indicates that their communities are structurally
similar. We see that, for instance, networks L]J1 and LJ2 are often confused with
one another: this is to be expected, because they are simply different portions
of the same larger network. We see some much more surprising results. For
example, although networks Grad and Undergrad are both Facebook networks
for students from the same university, there is very little confusion between the

two: communities from these two networks are very different from one another.

In our final experiments of this nature, we give the classifier a much more

difficult task. In the last two sets of experiments, the training data contained at
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Table 6.5: Network classification accuracy, training and test sets contain
elements from all algorithm classes

Grad | Ugrad | HS SC DM | Amazon | DBLP | LJ1 LJ2

Grad 62.5% | 05% | 6.0% | 1.8% | 0.6% 6.9% 83% | 45% | 8.8%

Ugrad 37% | 74.0% | 2.0% | 9.0% | 1.4% 0.4% 09% | 50% | 7.0%

HS 2.3% 1.6% | 44.2% | 71% | 2.0% 13.0% 59% | 11.4% | 12.6%

SC 1.6% | 49% | 6.3% | 42.8% | 4.3% 2.1% 47% | 17.7% | 15.5%

DM 05% | 22% | 41% | 6.5% | 60.7% 1.2% 31% | 11.7% | 9.9%

Amazon | 1.8% 03% | 4.6% | 0.8% | 0.4% 71.6% 11.3% | 34% | 5.3%

DBLP 2.4% 05% | 3.0% | 21% | 0.9% 12.5% 64.1% | 6.1% | 8.1%

LJ1 2.0% 1.9% | 64% | 7.7% | 4.3% 4.8% 6.8% | 35.8% | 30.3%

LJ2 28% | 22% | 61% | 74% | 3.9% 5.1% 81% | 27.3% | 37.3%
Caption: The percentage of probability mass from elements in each network that was

classified as each network. Row N1, Column N2 contains the fraction of probability

mass of elements from network N1 in the test set that was classified as network N2.

least some communities produced by the same method as the ones being classi-
tied: either the training and test sets contained only communities produced by
the same method (e.g., we considered only BFS communities), or the training
and test sets both contained many communities of all types (e.g., BES, Infomap,
Annotated). Here, we perform eleven separate experiments. In each, we train
the classifier on communities produced by a single method, again labeled with
the name of the network from which they came, and test the classifier on com-

munities produced by all other methods.

For example, we perform one experiment in which the classifier is trained
on BFS communities from all networks, labeled with the network names. The

classifier then attempts to predict the network labels of communities produced
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Table 6.6: Network classification accuracy, training and test sets contain
different types of communities

Training
Class Grad | Ugrad HS SC DM | Amazon | DBLP | LJ1 LJ2

BFS 43.5% | 11.5% | 11.0% | 9.7% | 79.2% 73.9% 45.4% | 31.2% | 5.2%

RWO 40.0% | 13.1% | 11.0% | 11.5% | 68.5% 76.0% 44.1% | 22.7% | 7.3%

RW15 35.9% | 14.7% | 10.9% | 15.2% | 48.8% 76.6% 47.7% | 19.5% | 9.2%

AB 30.5% | 12.0% | 8.7% | 12.6% | 44.3% 73.4% 46.8% | 18.2% | 11.2%

InfoMap | 25.4% | 12.7% | 9.0% | 19.2% | 49.6% 66.0% 44.8% | 17.5% | 14.2%

LinkCom | 21.8% | 11.7% | 14.4% | 21.8% | 49.1% | 60.4% 442% | 15.1% | 12.2%

Louvain | 19.2% | 10.6% | 13.4% | 19.8% | 43.2% | 52.8% 43.9% | 15.8% | 11.3%

Newman | 17.3% | 10.3% | 12.0% | 17.1% | 37.1% 50.3% 40.3% | 18.1% | 16.8%

MCL 16.4% | 11.1% | 142% | 18.2% | 32.7% | 49.0% 39.9% | 19.8% | 16.4%

Metis 16.8% | 11.4% | 14.6% | 16.7% | 39.2% | 45.9% 37.0% | 20.3% | 16.8%

Ann. | 28.6% | 20.5% | 10.9% | 12.8% | 60.4% | 60.3% | 41.7% | 22.3% | 16.8%
Caption: The percentage of probability mass from each network that was correctly clas-

sified as belonging to that network, where the training set contained elements from the

specified class.

by other methods: can it identify which network a community came from, even
when that community was produced through a method fundamentally differ-
ent from the ones that produced the communities on which the classifier was

trained?

Table 6.6 contains the results of these experiments. Here, each row corre-
sponds to a separate experiment. The row labels contain the name of the method
used to produce the communities in the training set, and the value in each cell
is the accuracy of the resulting classification model when predicting network

labels of communities produced through other methods. For example, when
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an SVM is trained using communities produced through a BFS, it has an aver-
age 43.5% accuracy at predicting which communities, produced through other

methods, came from network Grad.

We see that some networks, such as Grad, DM, Amazon, and DBLP, have an
extremely distinctive signature. An SVM classifier has very high accuracy rates
at identifying which communities came from these networks, even when the

training communities are fundamentally different from the test communities.

6.5 Conclusion and Future Work

The social network analysis literature contains many different community de-
tection algorithms; in nearly every case, the behavior of an specific algorithm is
not well understood. To address this issue, in Chapters 5 and 6 of this disser-
tation, we introduced and applied the Community Structure Analysis Frame-
work. The CSAF is a machine-learning-based system that allows both users and
practitioners to understand and compare the behaviors of different community
detection algorithms and select the best algorithm for a specific application and

network.

When using the CSAF, one first collects a set of kK community detection algo-
rithms and applies them to a network to produce k classes of communities. For
each community, one then calculates a feature vector containing important char-
acteristics of that community, such as size, conductance, and diameter, and thus
obtains k classes of community feature vectors. By applying an SVM (or other
type of classification method), one then learns a model to distinguish between

the different classes. This model can be used to understand important char-
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acteristics of each class (e.g., one community detection method may produce
communities that are large and have low conductance), analyze the internal
consistency of each class, or identify pairs of community detection algorithms

that produce very similar communities.

We used the CSAF to study a collection of 11 classes of community identifi-
cation methods (including 10 classes of algorithms and one class of annotated
communities), 38 community features, and 9 networks. We obtained several in-
teresting results, including the conclusion that the class of “real” annotated com-
munities had their own consistent structure that was distinct from the structures
of communities produced by algorithms. We saw that most algorithms tended
to produce consistent structure, even across different networks, and also saw

that communities from each network possessed a distinctive signature.

In future work, we are interested in using the CSAF to better understand
the structure of annotated communities. We saw in this chapter that annotated
communities tend to have a consistent structure, and we wish to better under-
stand the details of this structure. In addition, we are studying the possibility of
using the CSAF to build a supervised community detection algorithm: in such
an algorithm, a user would provide examples of “good” communities, the CSAF
would learn a model for these communities, and then search a network to find

other sets with similar structures.
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CHAPTER 7
CONCLUSION

The tools and techniques developed by researchers in the field of computational
social network analysis have fundamentally altered the way we study and un-
derstand real networks. An area that is of particular interest is the study of com-
munities. Although an understanding of community structure is critical to un-
derstanding networks as a whole, researchers within the field have not arrived

at a consensus regarding how to properly characterize community structure.

In this dissertation, we have presented several important contributions to

community research.

We began with an introduction to the area, an overview of related work, and

a description of the datasets that we used throughout our work.

In Chapter 3, in order to motivate the topic, we presented a simple applica-
tion of community detection to the link prediction problem. In this problem, one
is given incomplete network data, and must predict which missing links in the
incomplete data are most likely to exist in the actual network. We showed that
for simple link prediction metrics, incorporation of community membership in-
formation could substantially increase the performance of those metrics. In this
chapter, we considered a variety of similarity based link prediction methods,
such as the Common Neighbors metric, which calculates the number of shared
neighbors that two nodes have, and predicts that nodes with many neighbors in
common are most likely to be connected. We modified such metrics in ways that
used node community membership information; for example, if two nodes and

a common neighbor were all in the same community, then this shared neigh-
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bor was weighted more heavily than shared neighbors in different communities
from the two nodes being considered. Such modifications typically resulted in

large increases in link prediction accuracy over a variety of networks.

While the study of communities is important to a range of topics both within
and outside of computer science, it has been complicated by difficulties in char-
acterizing the structure of communities. Scientists in this area have developed
a wide range of mathematical measures of community, many based on the gen-
eral principle that a good community is well-connected internally and mostly
separate from the rest of the network. Some of these metrics, such as modu-
larity and conductance, are based in the principle that communities ought to
be “round”, or internally well-connected throughout, like a clique or a G(n, p)
graph. In contrast, other notions of community allow for “long” communities
that are formed of small, well-connected groups that are connected to one an-

other.

In Chapter 4, to study the validity of these two competing notions, we ex-
amined the structure of annotated communities identified through network
metadata. Examples of such communities included the set of all students in
the same department, or the set of all books by the same author. For each of
these annotated communities, we compared the diameter of that community to
the diameter of a random G(n, p) graph with the same number of nodes and
edges. We saw that the annotated communities tended to have significantly
higher dimaeters than the random graphs of the same size, and concluded that
the “round” model was not appropriate for these communities. We then de-
composed each of these communities into smaller sub-communities, and found

that these sub-communities did tend to be “round”; moreover, the graph repre-
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senting the connections between these sub-communities was also “round.” We
thus concluded that while real communities did not fully fit the “round” model
themselves, they could be represented as “round” sub-communities connected

in a “round” manner.

With this intuition in mind, we presented the Node Perception algorithm
template for community detection. This three-part method begins by consider-
ing each node separately, and finding “sub-communities” centered about that
node. This is done by, for each node n, considering the subgraph induced by
the neighbors of n, and applying a community detection method to that sub-
graph. This produces some number of sets, to each of which we add node n
to obtain the “sub-communities.” In the next step, we make a new network
in which every node represents a sub-community, and two nodes are linked if
their corresponding sub-communities have some amount of overlap. Finally,
we apply a community detection algorithm to this new network, and expand
of the resulting sets into communities from the original network. We show that
this algorithm outperforms several other state-of-the-art algorithms at the task

of recovering annotated communities over a wide variety of networks.

Finally, in Chapters 5 and 6, in order to further examine the structure of com-
munities, we presented and applied the Community Structure Analysis Frame-
work. In this machine-learning-based framework, one creates several classes
of communities, each containing communities produced by a different method
(e.g., an algorithm or metadata). For example, we created a class of commu-
nities produced through a breadth-first-search, another class of communities
produced through the Infomap community detection method, a third class of

communities identified through network metadata, and so on. For each com-
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munity, one then calculates a feature vector that includes characteristics such
as community size, diameter, or conductance, and in doing so, creates several
classes of feature vectors. Using these classes of feature vectors, one can train
a classifier model to better understand the similarities and differences between
different classes. One might ask, for example, whether the classifier tends to
confuse two classes: this would suggest that those two classes tend to have

communities with similar structure.

We then applied the Community Structure Analysis Framework to several
networks, each with metadata allowing us to identify annotated communities.
We obtained several interesting results. We saw that different algorithms tend
to produce very different community structures: that is, when evaluated via
cross-validation, the classifier model tended to accurately classify communities,
suggesting that each class of communities had a fundamentally different struc-
tural profile than the other classes. Interestingly, the class of annotated commu-
nities was also structurally consistent, and was not generally confused with any
other class, suggesting that none of the algorithms that we considered correctly
captured the structure of real communities. However, of the algorithms that we
considered, a very simple random-walk-based method tended to most closely

capture the structure of real communities.

We believe that the Community Structure Analysis Framework will be of
great use to practitioners, by allowing them to select an appropriate community
detection algorithm for their application, as well as to researchers, by permitting

a better understanding of the behavior of different algorithms.

Research in the field of social network analysis has contributed important

tools for analyzing and understanding the real networks that exist all around us.
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An especially active area of study within the field deals with detecting and char-
acterizing communities within networks. Here, we presented an application to
demonstrate the need for community research, analyzed the structure of real
communities and then described a novel community detection algorithm based
on these results, and finished with the presentation of a machine-learning-based
framework for understanding community structure. Through these contribu-
tions, this dissertation has illustrated and tied together several important facets

of community research.
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