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 The membrane of the endoplasmic reticulum (ER) is the site of numerous 

complex activities essential to the survival of eukaryotic cells. In the membrane sheets 

of the rough ER (rER), integral membrane proteins are synthesized, folded, modified, 

and transported throughout the cell. In the smooth ER (sER) tubules, lipids are 

synthesized and processed with a variety of functionalities, and trafficked to specific 

membrane compartments. The sER is also the site of calcium storage and controlled 

release, an important function for several cell types including neurons and muscle.  

 The sER requires energy and the action of numerous proteins to maintain its 

highly curved, tubular shape and its reticular, interconnected structure. The recent 

discovery of a family of proteins called atlastins has helped answer some of the 

questions surrounding the tubular, reticular nature of the sER. Atlastins comprise a 

group of ER resident proteins that have been shown to facilitate the fusion of 

membrane tubules within this organelle. They are part of the dynamin superfamily of 

proteins, which use the energy stored in GTP to sculpt membranes throughout the cell. 

However, the exact molecular mechanism for how atlastin mediates membrane fusion 

remained mysterious. In this study, we have taken apart and analyzed atlastin-1, one of 

three isoforms of atlastin in humans. This isoform is found primarily in the central 

nervous system and is mutated in the neurodegenerative disorders Hereditary Spastic 

Paraplegia and Hereditary Sensory Neuropathy.  



 

 This study has resulted in a collection of three-dimensional, high-resolution 

structures of atlastin-1’s catalytic core fragment, comprising its GTPase and middle 

domains bound to various forms of the guanine nucleotide. These structures revealed 

key information about the catalytic mechanism of atlastin-1, as well as interesting and 

important conformational changes that occur within the structure. Using these 

structures, as well as information from small-angle X-ray scattering (SAXS), size-

exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), 

Förster resonance energy transfer (FRET), and enzymatic activity assays, we have put 

together a general working model for atlastin membrane fusion and have gathered 

important information about its mechanism that may be used to target the protein for 

the treatment of disease.  
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CHAPTER 1 

INTRODUCTION 
 

MEMBRANE FUNCTION AND DYNAMICS 

 In the world of the cell, the membrane is the supreme mediator of organization. 

It provides structure, a means of separation, and a platform for reactions that would 

otherwise be impossible in the environment of the cytoplasm. In some ways even 

more so than DNA, a lipid membrane is a universal component in all forms of life, 

including viruses.  

 In eukaryotes the membrane is an essential tool in a variety of tasks that allow 

for the cell’s intense complexity. Billions of years ago the simple prokaryotic cell 

evolved from a single plasma membrane enclosing the entire cell to an organism with 

several membrane-bound organelles within it (1). Importantly, the nucleus was 

cordoned off from the cytoplasm and an organelle called the mitochondria appeared 

that revolutionized the way cells produce energy. With the mitochondria, cells could 

use aerobic respiration to metabolize the same amount of their carbon-based energy 

sources (sugar) to make almost twenty-times as much energy for cellular activities as 

they could before using anaerobic respiration (1). This newfound energy would allow 

eukaryotes to develop more complex ways to take advantage of their environment and 

compete with other organisms. Eventually this would lead to the emergence of multi-

cellular life, including the metazoans to which human beings belong. 

 Modern eukaryotes not only contain a nuclear membrane and mitochondria, 

but have also developed a highly coordinated and intricate system for transportation, 

modification, and metabolism of nutrients, proteins, lipids, ions, and other signals the 

cell uses to survive and interact with the environment. This system includes a 

collection of membranous compartments that have specific jobs, but are all 
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interrelated in their activities. These include the endoplasmic reticulum (ER), the 

Golgi complex, and the endosomal membrane system. These organelles are involved 

in the synthesis, modification, targeting, and recycling of membrane proteins 

throughout the cell. Additionally, they orchestrate the production and organized 

shuffling of lipids.  

 Clearly, cellular membranes cannot be static, unchanging structures. Many 

years of research has revealed that membranes are anything but simple. The lipids that 

make up membranes are structurally and functionally diverse, with phosopholipids 

constituting the main components of biological membranes (Figure 1.1.). These types  

 

 
Figure 1.1. Chemical structure of phospholipids. Structures of three common phospholipids 
found in mammalian cell membranes: POPC (top), POPE (middle), and POPS (bottom). All 
phospholipids are made up of a hydrophobic, fatty acid tail that often contains unsaturated 
carbon-carbon double bonds. A glycerol moiety (in most cases) links these fatty acid tails to a 
phosphate group, which is followed by a simple organic molecule (called the headgroup). 
Variations in the identity of the headgroup and degree of saturation in the fatty acid tails 
determine the specific properties of phospholipids in the membrane.  
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of lipid are comprised primarily of three parts: a glycerol core, hydrophobic fatty-acid 

tails, and a phosphoester linked hydrophilic head group that can take on a variety of 

shapes, sizes, and charge states. Each membrane subcompartment can be comprised of 

numerous lipid types, differing both in their hydrophobic tails and their head groups. 

Some of these lipids are present for signaling purposes (i.e. Phosphatidylinositol 

phosphates [PIPs]), some serve to impart a certain structure to a membrane 

(curvature), while others are present to form platforms on which biological reactions 

and interactions can occur (rafts). Each organelle compartment is comprised of a 

specific mixture of lipids that both defines it and aids it in its function.  

Of particular relevance to the topic of this dissertation is the smooth ER (sER). 

The sER is the site of lipid synthesis, where they are assembled from cytosolic 

precursors, packaged into vesicles, and finally trafficked to their target organelle via 

endosomal transport or direct contact sites (2, 3). The tubular, reticular shape of the 

sER serves to maintain its luminal continuity and increase the surface area of this 

organelle in order for it to do the job of lipid synthesis, calcium buffering, and 

metabolism of various molecules in locations throughout the cell. This tubular 

structure requires energy to stabilize its highly curved structure. This can often be 

accomplished simply by distributing specific proteins and lipids unevenly across the 

two leaflets of the membrane. In particular, ER resident proteins called Receptor 

Accessory Proteins (REEPs) and reticulons (4) can insert into the outer leaflet of the 

bilayer, effectively increasing the surface area of that leaflet and causing the 

membrane to take on an inherently curved structure to accommodate the mismatched 

surface area of the two leaflets, a phenomenon called hydrophobic insertion (5, 6) 

(Figure 1.2.). Lipids can also accomplish this task if the headgroups of the lipids in 

one leaflet of the bilayer take up more volume than those on the opposite leaflet. In the 

sER, both of these strategies are used in order to create long tubules. The branched (or  
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Figure 1.2. Hydrophobic insertion. (A) Within the lipid membrane, the hydrophobic tails 
(black, curvy lines) of lipids are buried within the bilayer and protected from water exposure 
by hydrophilic headgroups (brown circles). (B) When a protein inserts a hydrophobic region 
into one leaflet of the membrane, the surface area of that leaflet is effectively increased. (C) 
This disparity in surface area can be accommodated on the opposite leaflet by curving the 
membrane.   

  

reticular) nature of the sER is achieved through the fusion of these tubules (3, 7-10). 

However, membrane fusion is a non-trivial process that also requires energy and 

importantly, specificity in order to control the shape of the resulting structure. In most 

fusion events throughout the secretory pathway, proteins called SNAREs (Soluble 

Attachment N-ethyl-maleimide-sensitive fusion Protein REceptor) mediate this 

process through the use of metastable protein-folding intermediates that store the 

potential energy used to power fusion (11-14). Within this family of proteins, there are 
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both target (t) and vesicle (v) SNAREs that are paired specifically to one another in 

order to fuse only vesicles containing the correct v-SNARE with a target membrane 

containing the corresponding t-SNARE. Although the sER contains SNAREs for 

exporting lipids and proteins, it was recently discovered that homotypic fusion of sER 

tubules into a reticular network is accomplished through a new family of fusogenic 

proteins called atlastins (8, 10, 15-17). Atlastins are integral membrane proteins 

belonging to the dynamin superfamily of proteins that use chemical energy to sculpt 

membranes. In the case of atlastins, the chemical energy stored in GTP is used to bring 

together and ultimately fuse opposing membranes in the sER. Atlastin’s fusion activity 

is necessary for both ER establishment and maintenance, with knockdowns of atlastin 

in Drosophila melanogaster exhibiting fragmentation of the ER (10).  

The ability of a membrane to be dynamic, to achieve fusion and fission, and to 

take on specific morphologies is not a unique requirement of the sER. These activities 

go on throughout the cell in every membrane, involving a vast number of proteins to 

control these processes. The dynamin-superfamily of large guanosine triphosphatases 

(GTPases, to which atlastin belongs), is a major player in these processes, especially 

membrane fusion and fission, and will be discussed further below.  

 

DYNAMIN RELATED PROTEINS 

 Proteins of the dynamin superfamily have ancestors dating all the way back to 

prokaryotes (18), highlighting their importance in mediating membrane dynamics in 

all types of cells. A major subset of this diverse group of proteins is primarily involved 

in facilitating membrane fission and fusion. These proteins take part in numerous 

essential cellular processes, including pathogen resistance, endocytosis, organelle 

fission and fusion, and cytokinesis (19, 20). The genetic locus of the family’s 

namesake, dynamin, was first discovered as a temperature-sensitive mutation in 
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Drosophila melanogaster that caused paralysis (21). Even before this, the protein 

dynamin was found in extracts of cow brain, associated with microtubules and 

reported as a mechanochemical enzyme (22). Presently, dynamin is the most 

intensively studied member of the superfamily, with numerous high-resolution 

structures that have helped shape our understanding of this important protein (23-27).  

 Dynamin and it’s related proteins are composed of a large GTPase domain as 

well as one or several domains that aid in their mechanochemical functions. The 

GTPase domains of proteins in the dynamin family are related to the well-known Ras-

like GTPases, but with several distinct differences. First, the GTPase domain of 

dynamin-like proteins is larger in size compared to Ras-like GTPases (~300 amino 

acids compared to ~180). Second, instead of relying on GTPase activating proteins 

(GAPs) many dynamin-like proteins have been shown to use homo-oligomerization to 

activate and accelerate their GTPase activity (28). In this regard, dimerization is 

believed to stabilize the conformation of the otherwise flexible switch regions and 

hence the catalytically active state. In addition, they do not need Guanine-nucleotide 

Exchange Factors (GEFs) in order to initially bind GTP in exchange for GDP, because 

they have a much lower affinity for nucleotide in general compared to Ras-like 

GTPases. Dynamin-like GTPases are also fundamentally different from their Ras-like 

cousins in that their main function is not for signaling using GTP and GDP as an on-

off switch, but instead they use it to do mechanical work in the cell. Because of this, 

all dynamin-like proteins contain other functionally relevant domains in addition to 

their GTPase domain. In particular, they all include a middle or helical domain that is 

involved in oligomerization and usually assists in the mechanics of the protein’s 

function. They are also all targeted to one or more membranes by an integrated 

membrane interaction domain or via post-translational modification with the addition 

of a lipid group such as an isoprenoid moiety (29). Some members also contain other 
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types of targeting domains, such as PRD (Proline-rich domain) to mediate protein-

protein interactions (Figure 1.3.).  

 

 
 

Figure 1.3. Dynamin superfamily proteins. Domain architecture of the human dynamin 
superfamily members, broken down into subfamilies according to Praefcke and McMahon 
(19). The Classical Dynamins include the three human isoforms, each containing the five 
domains shown above. The Dynamin-related Protein subfamily includes Dlp-1, MxA/B, OPA-
1, and Mitofusin-1 and 2. The last subfamily, and furthest related by sequence, are the GBP-
related Proteins, which include the five GBP isoforms and three atlastin isoforms. All domains 
and interdomain regions are drawn to scale and are color coded as follows: GTPase domains 
(off white), Middle domain (Blue), GED [GTPase effector domain] (Orange), PH [Pleckstrin 
homology] (Green), PRD [Proline-rich domain] (Purple), Transmembrane domains (Grey), 
HR [Heptad repeat] domains (Red), and MIS [Mitochondrial import sequence] (Teal).  
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Figure 1.4. Dynamin superfamily nucleotide binding and switch region homology. Switch 
regions G1-4, regions of homology. Sequence alignment of several dynamin superfamily 
members shows conserved regions involved in nucleotide binding and hydrolysis, with strictly 
conserved residues highlighted in green. Arginine-77, specifically conserved in atlastins and 
GBPs, is highlighted in black.  

 

Within the dynamin superfamily the sequence homology between members 

can vary widely; but in the GTPase domain the homology is closer, especially within 

the GTP binding motifs (switch regions G1-G4) that are essential for nucleotide 

binding and GTPase activity (Figure 1.4.). Using sequence homology, domain 

organization, and functional homology the dynamin superfamily can also be broken up 

into three subgroups, namely the classical dynamins, the dynamin-related proteins, and 

the GBP-related proteins. The classical dynamins all contain the following five 

domains: GTPase, middle, PH, GED, and PRD. By contrast, the dynamin-related 

proteins do not contain a PRD. This subfamily includes the proteins Dlp (Dynamin-

like protein), MxA and B, OPA1 (Optic-atrophy 1), and mitofusin1 and 2. The last 

subfamily, the GBP-related proteins, is made up of GBP1-5 (Guanylate binding 

proteins: isoforms 1 through 5) and the atlastin1-3 (Figure 1.3.).  

 Dynamin, the founding member of this superfamily, is the best characterized in 

the group. There are three isoforms of dynamin in mammals. Dynamin-1 is found 

mostly in the brain, where it is involved in vesicle recycling in the presynapse. 
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Dynamin-2 is found all throughout the body, and is involved in endocytosis generally. 

Dynamin-3 is found in the testis, as well as the brain but mostly postsynaptically in 

neurons. These classical dynamins have been shown to take part in not only clathrin-

mediated endocytosis (for which they are best known), but also budding of caveoli, 

podosome formation, phagocytosis, and cytokinesis. Much of the molecular 

mechanism for dynamin-mediated membrane fusion has been studied and is now well 

understood. Cyro-EM reconstructions of near full-length dynamin coated membrane 

tubes revealed that the middle domain and GED form a stalk-like structure involved in 

self-assembly. In addition, a three-helix bundle formed by the C terminus of the 

GTPase domain and the GED of dynamin, termed the bundle signaling element (BSE) 

was found to modulate dynamin function (26, 30), along with the PH domain, which 

regulates membrane binding and GTPase activity (31). Furthermore, membrane-

mediated higher-order oligomerization stimulates dynamin GTPase activity, properties 

that have also been shown to be important for the function of other dynamin family 

members including MxA and GBP (32, 33). In a recent report, it was shown that 

following dynamin assembly on nanotubes, GTP addition caused disassembly of 

dynamin coats, but allowed shorter segments (2-3 rungs) of dynamin rings to catalyze 

membrane fission by application of elastic stress and coordination of membrane 

rearrangements through its PH domain (34).  

 The members of the subfamily of dynamin-related proteins have a similar 

domain structure to the classical dynamins, containing the large GTPase domain, 

middle domain, and GED. Dlp1, the member most closely related to the classical 

dynamins, also contains a PH domain, but the other members (MxA/B, OPA-1, and 

the mitofusins) do not. Instead, the mitofusins and OPA-1 contain a transmembrane 

domain. In the case of MxA/B it is thought that a cluster of positively charged residues 

on an unstructured loop (Loop 4 in the recently solved structure; located between the 
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middle domain and GED) mediates its interaction with lipids, since charge-reversal 

mutations in this loop abolish lipid binding (35). Excluding MxA and B, the remaining 

members of this subfamily are all localized to the mitochondria and are indispensible 

parts of mitochondrial fission and fusion events. Specifically, Dlp-1 (called Dnm1 in 

yeast) is necessary for the fission of this organelle, and similar to dynamin, forms ring-

like structures around mitochondrial fission sites (36-38). Both mitofusin and OPA1 

are required for mitochondrial fusion, with the mitofusins involved in fusion of the 

outer mitochondrial membrane and OPA1 (called Mgm1 in yeast) the inner 

mitochondrial membrane (39, 40).  

The GBP-related subfamily of dynamin proteins contains only two subtypes, 

the GBPs and the atlastins (discussed in more detail in the next section); but these two 

protein types have very different functions and molecular details. Atlastins function as 

membrane fusogens, whereas GBPs function in pathogen resistance. The GBP’s are a 

large group of proteins (with at least 5 isoforms in humans) that have been studied 

extensively, with many aspects of its biochemical and structural characteristics 

revealed in the last ten years (41-46). In addition to its anti-microbial activities, GBPs 

have been linked to new functions including cell proliferation (47), inhibition of 

matrix metalloprotease expression (48), inhibition of cell spreading (49), and intestinal 

epithelial cell development and barrier functions (50, 51). Yet, it is still not well 

understood how these proteins perform these functions in vivo. What is known about 

GBP is that it can be targeted to membranes via lipid modification on its CaaX motif 

(29, 52), and that some isoforms have the unique ability among dynamin superfamily 

members not only to hydrolyze GTP to GDP, but also to subsequently hydrolyze GDP 

to GMP. In vitro experiments have shown that GBP does rely on homodimerization to 

accelerate these reactions (42-46). Two crystal structures of GBP-1 have been solved 

including one full-length, nucleotide-free form and one of the GTPase domain alone 
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bound to the non-hydrolyzable GTP analog GppNHp. The full-length structure 

illustrates how the GTPase and middle domains can interact with its C-terminal GED, 

while the GTPase domain structure shows how two of these proteins can 

homodimerize when bound to nucleotide, consistent with in vitro studies.  

 Although the dynamin-superfamily members are somewhat diverse in 

sequence and functionality, comparisons between them can also be enlightening. 

Numerous structures of dynamin family proteins have been solved to date (Table 1.1.), 

and while they have indeed helped shed light on their own molecular mechanisms they 

also all show striking structural similarity, suggesting that these proteins may have 

more in common than their sequences suggest. 

 
Table 1.1. Functions of mammalian Dynamin-like proteins at the membranea 

Name Location in the cell Functionality Structuresb Refs 
Classical 
Dynamin 

Endocytic sites at the PM, 
ARP2/3 containing actin 
meshworks 

Endocytic membrane 
fission, ARP2/3-
dependent actin 
dynamics regulation 

11 (23-27, 
53-56) 

Dynamin-
related protein 1 
(Dynamin 1-like 
protein) 

Mitochondrial outer membrane, 
peroxisomes 

Mitochondrial and 
peroxisomal 
fission/division 

1 (36, 
57-60) 

Mitofusins Mitochondrial outer membrane Mitochondrial fusion 1 (57-61) 
OPA1 Mitochondrial inner membrane Mitochondrial fusion 0 (57-60, 

62) 
Myxovirus 
resistant 
proteins 

ER Antiviral  2 (32, 63, 
64) 

Guanylate-
binding proteins 

Intracellular vesicles Viral and bacterial 
pathogen resistance 

6 (43, 45, 
65, 66) 

Atlastins ER, cis-Golgi ER membrane fusion 10 (3 
unique) 

(10, 17, 
67-70) 

amodified from Ferguson et al 2012 (20) 
bnumber of high-resolution structures solved to date; does not include EM reconstructions 
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ATLASTIN 

 As the most distantly related members of the dynamin superfamily, atlastin 

proteins have several unique features. Unlike dynamin they have been shown to 

catalyze membrane fusion as opposed to fission. They are the smallest members of the 

superfamily at around 60kDa in size, but still contain a large (280AA) GTPase 

domain, a helical middle domain, a membrane interaction domain in the form of two 

transmembrane alpha helices, and an amphipathic C-terminal tail. The N- and C-

termini of atlastin lie on the cytosolic side of the membrane, with the two 

transmembrane helices each spanning the membrane (16). Atlastin proteins have been 

found in all types of metazoans, and although there is no sequence homology, there 

are functional homologs of atlastin in yeast and plants, called Sey1p and RHD3 

respectively (71, 72). Presently, the most well studied forms of atlastin are the human 

isoforms (mainly isoform 1), atlastin from Drosophila melanogaster (DmAtl), and 

atlastin from the plant Arabidopsis thaliana (called Root Hair Defective-3, RHD3).   

In humans there exist three isoforms, named atlastin-1 through atlastin-3, with 

several alternative splice-forms listed in the Genbank. All three isoforms share a high 

degree of homology (66-72% identical) in their overall amino acid sequences, with 

most variability confined in the extreme N- and C-termini. The isoforms differ in their 

tissue expression patterns, with isoforms 2 and 3 expressed ubiquitously throughout 

the body and isoform 1 more restricted, found mostly in the central nervous system. 

Within the cell, all three isoforms contain ER retention signals on their C-termini and 

are found in the ER, with atlastin-1 also located in the cis-Golgi and growth cones of 

neurons (9). Within the ER atlastins are associated with three-way junctions. This 

reticular morphology is reduced and partially replaced by long, unbranched tubules 

when atlastin-2 and -3 are knocked down in HeLa cells (17, 73). A similar but more 

drastic phenotype is observed when DmAtl is knocked down in Drosophila, where the 
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authors observe extreme ER fragmentation in muscle and neurons (10). Since 

Drosophila only have a single isoform, the more pronounced effect of knocking down 

atlastin is unsurprising. It will take more study to figure out the functional disparities 

or overlaps between the three human isoforms and to determine whether they retain 

similar fusion capabilities as the Drosophila homolog.  

Atlastin-1 has several interacting protein partners, including spastin/SPG4 (74, 

75), reticulons/DP1 (17), REEP1/SPG31 (73), and NIPA1/SPG6 (76). Interestingly, 

atlastin-1 and most of its interaction partners have been identified as some of the most 

frequently mutated loci in Hereditary Spastic Paraplegia (HSP; also called Familial 

Spastic Paraplegia and Strumpell-Lorrain disease), a neurodegenerative disorder 

caused primarily by axonal degeneration of upper motor neurons (77). Atlastin-1 

mutations have also been found in patients of another neurodegenerative disease called 

Hereditary Sensory Neuropathy Type I (HSN I). Both of these disorders involve 

progressive axonal degeneration of neurons that control muscles, and will be discussed 

in more detail in the next section. Atlastin’s interaction with another HSP locus 

spastin, a microtubule severing enzyme, has been observed by a number of groups, but 

the exact mode of interaction remains unclear from these studies. In the case of 

atlastin’s interactions with the reticulon and REEP1 (receptor accessory protein-1) 

proteins (integral membrane proteins that stabilize the highly-curved tubules found in 

the sER) the most likely domain of interaction with atlastin-1 is in their membrane-

spanning domains (73). Although an interaction between HSP proteins NIPA-1 and 

atlastin-1 has been shown via immunoprecipitation studies (76), other groups have not 

confirmed this interaction, nor has the domain of interaction been identified.  

It has been assumed that all isoforms of atlastin are involved in membrane 

fusion of ER tubules, but no conclusive in vitro evidence for this exists for any atlastin 

isoforms in human. The only convincing case for atlastin-mediated membrane fusion 
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is for the Drosophila atlastin homolog. First, as stated previously, an RNAi 

knockdown of atlastin in Drosophila causes fragmented ER (10). Perhaps more 

convincingly, DmAtl has been shown to fuse membranes in vitro. Using a simple 

lipid-mixing assay, reconstituted full-length DmAtl is able to fuse synthetic liposomes 

when GTP and a divalent cation (magnesium) are added, an activity that is blocked 

when a GTPase defective mutant is used (10). Interestingly, both of atlastin’s 

transmembrane domains (the specific sequences of which was also important) and the 

C-terminal amphipathic helix are necessary for catalyzing membrane fusion (78). In 

addition to Drosophila, atlastins from Xenopus laevis gained some additional evidence 

for their role as fusogens when it was observed that antibodies against Xenopus 

atlastins (as well as GTP analogs) inhibited reformation of ER tubules from ER 

derived vesicles in Xenopus egg extracts (17).  

Although atlastin-1 is implicated in ER fusion, it has also been associated in 

other cellular processes such as vesicle transport and BMP (bone morphogenetic 

protein) signaling (79, 80). In addition, evidence suggests that atlastin is indirectly 

and/or directly involved in the transport of sER tubules down the axon via 

microtubules where they serve as calcium stores (81-83), a necessary function in 

axons of any length (84, 85). One possible mode of regulation of this process is 

through the protein spastin-1 (specifically the M1, or long form), a microtubule 

binding and severing AAA ATPase (85), whose activity atlastin-1 has been shown to 

modulate. For these reasons, it will be important for future research to not only 

address the role of atlastins in membrane fusion but also assess other possible cellular 

functions that may have evolved in higher eukaryotes and that could contribute to 

disease.  
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HEREDITARY SPASTIC PARAPLEGIA AND HEREDITARY SENSORY 

NEUROPATHY 

 Perhaps the most interesting aspect of neurons is their complexity. Neurons 

have amazing capabilities that we are just beginning to understand, and without them 

our ability to think, move, and sense our environment would be impossible. However, 

the complexity of neuronal cells can ultimately become their downfall. Many types of 

neurodegenerative diseases have been found that affect each of the different types of 

neurons in the human body, but unlike other diseases that can be treated, cured, or 

otherwise overcome with modern medicine, neurodegenerative diseases currently have 

few proven treatments, are generally devastating in their effects (physically and/or 

mentally), and are usually progressive in nature.  

 One of the reasons neurons tend to be more prone to disease is because of their 

unusual architecture. Neurons are made up of a cell body, dendrites, and an axon. The 

cell body contains the nucleus and all of the organelles found in other cells (i.e. ER, 

Golgi complex, mitochondria, etc.). In order to communicate between neurons, they 

also contain dendrites, which are long, branched projections containing many types of 

receptors to sense incoming chemical and electric signals from neighboring neurons. 

Dendrites receive these signals by forming a connection (called a synapse) with the 

axon of a neighboring neuron. The axon is usually a single, long projection from the 

cell body that transmits a chemical or electric signal (first sensed in the dendrite) to the 

next neuron. Axons in the human nervous system can span vast distances, especially 

those of upper and lower motor neurons (Figure 1.5.). The main problem neurons face 

is how to get nutrients and signals from the cell soma to the ends of the neurites. 

Neurons solve this problem in different ways for axons and dendrites. Dendrites have 

areas of ER extensions and “Golgi outposts” to provide them with the proteins 

necessary for their function (86, 87). In axons, smooth ER tubules and mitochondria  
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Figure 1.5. The human cortical spinal tract. Adapted from Goyal et al (7). Upper motor 
neurons that control voluntary muscle movement originate with their cell bodies in the motor 
cortex with axons that traverse down to the spinal cord (often crossing the midline) to connect 
to the cell body of lower motor neurons. Lower motor neuron cell bodies start in the spinal 
cord, where they receive signals from upper motor neurons, and extend their axons away 
eventually connecting directly to muscle cells. Green and blue boxes indicate areas affected by 
HSP and HSN, respectively.  
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are transported down the axon and are positioned strategically along the axon as well 

as in the synapse itself. These two organelles are necessary for axonal function and 

maintenance because of the axon’s high-energy needs and reliance on calcium 

signaling (81, 88). Mitochondria, for example, are found concentrated in areas with 

extreme energy needs such as nodes of Ranvier and at the synapse (89-91). Organelles 

as well as vesicles containing necessary proteins from the soma are transported down 

the axon via anterograde microtubule transport. When transport in either direction is 

compromised, axonal degeneration followed by apoptosis can occur (92). 

 Hereditary Spastic Paraplegia (HSP) comprises a group of related inherited 

disorders, which cause progressive weakness and spasticity beginning in the lower 

extremities (77). The disease is characterized by axonal degeneration at the distal tips 

of long, cortical motor neurons. While over 40 genetic loci have been identified to 

cause this disease, just three of these loci, spastin-1 (SPG4), atlastin-1 (SPG3A), and 

REEP1 (SPG31), account for over 60% of cases (77). First discovered in 2001 (15), 

over 40 mutations in atlastin-1 have been identified to date, with the majority being 

missense mutations (Figure 1.6.). Although atlastin-1 mutations cause only about 10% 

of autosomal dominant HSP cases, they are the most common when the disease occurs 

in infancy and early childhood. In these cases, the disease progresses slowly or has no 

apparent progression, leading to the presumption that atlastin-1 may be involved in 

development as opposed to maintenance of affected neurons (9). Recently, this 

conjecture has gained some support in a study using zebrafish, where researchers 

observed an apparent inhibition of BMP signaling by atlastin-1 during neuronal 

development via regulation of BMP receptor trafficking, which affected motor axon 

architecture and larval mobility (79).  

Hereditary Sensory Neuropathies (or Hereditary Sensory and Autonomic 

Neuropathies) are a group of five types of sensory/autonomic neuropathies (HSNI-V). 
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Juvenile and adult onset cases of HSN that are caused by autosomal dominant 

mutations are classified as HSN Type I, whereas the other four subtypes are autosomal 

recessive and are either congenital or early-onset diseases. It is a rare disease, though 

the exact prevalence is unknown. HSN I, for which atlastin-1 is one of four genetic 

loci identified to cause the disease, is characterized by progressive loss in sensation of 

the lower limbs with some motor involvement. Symptoms include general sensory 

loss, along with slow wound healing and chronic skin ulcers. Atlastin-1 was first 

discovered in HSN I patients in 2011, with two missense mutations and one truncation 

mutation so far identified (93) (Figure 1.6.). The other three genetic loci identified for 

HSN I include serine palmitoyltransferase long chain subunit 1 and 2 (SPTLC1 and 2) 

and Ras-related GTPase Rab7 (94-96).  

 

 
 

Figure 1.6. Atlastin-1 mutations. HSP and HSN mutations identified to date. Mutations are 
positioned at the location in the primary sequence in which they occur. An asterisk indicates 
mutations that are specific to HSN, while the remaining mutations are associated with only 
HSP.  
 

Currently, no drug-based therapies exist for treating either of these 

neurological disorders. By studying the molecular mechanisms of proteins associated 

with these diseases, we can gain a better understanding of disease pathogenesis as well 

as axonal maintenance and development. Not only will this result in the possibility of 

new and improved therapies for patients, but it can also lead to breakthroughs in our 

understanding of how the nervous system works in general. Since atlastin-1 and other 

dynamin superfamily members are involved in a number of different 
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neurodegenerative diseases (including Charcot-Marie Tooth 2A, HSP, HSN I, and 

Optic Atrophy Type 1), a better understanding of their molecular mechanisms and 

functions within the cell will push the field of neurobiology closer to finding better 

ways to combat these and perhaps other debilitating neurological disorders.  

 

OVERVIEW 
 
 Until now, most research pertaining to atlastin remained in vivo, which can 

yield significant and relevant results for figuring out the function of the protein in the 

cell. However, in vivo experiments are often complicated by many different factors 

such as the numerous unseen protein partners and chemical processes that occur in the 

cell, but not in a purified in vitro system. Furthermore, structural analysis of similar 

proteins, including dynamin and GBP, has contributed immensely to our 

understanding of how these proteins work and has guided new research efforts. The 

saying “form follows function” truly does apply to these and most biological 

molecules, and explains why structural biology has grown so rapidly in recent years. 

This thesis aims to use both biophysical and biochemical in vitro techniques to answer 

fundamental mechanistic questions pertaining to the protein atlastin-1. In particular, 

high-resolution structures solved via x-ray crystallography are used as a basis for 

designing more targeted biochemical and biophysical experiments in order to gain 

insight into the molecular mechanism of atlastin-1 membrane fusion.  

 In the second chapter, the first structures of atlastin are reported. In this study 

we utilized a construct of human atlastin-1 that contained the N-terminal soluble 

region of the protein, stopping just before the transmembrane domains but including 



20 

the large GTPase domain and middle domain (the catalytic core fragment). We were 

able to solve the structure of two completely different crystal forms from the same 

protein construct bound to the same nucleotide. Interestingly, these two crystal forms 

displayed distinct conformations, where the GTPase and middle domains were rotated 

with respect to one another, although it was unclear how the observed conformational 

change could occur with the same nucleotide. The protein also showed a weak dimeric 

assembly in the crystal structures. We were able to show that in solution the protein 

does indeed dimerize but not with the nucleotide contained in the crystal structures. In 

addition, we were able to map mutations in atlastin-1 that occur in patients suffering 

from HSP onto our structures, and analyze many of them for defects in activity and 

oligomerization.  

In the third chapter, we have solved new structures of atlastin-1 bound to two 

new nucleotides. The four resulting crystal structures are virtually identical, excluding 

the bound nucleotide. These new nucleotide bound states reveal a much tighter, 

physiologically relevant dimeric state. Additionally, the structures uncover important 

changes in the nucleotide binding and hydrolysis motifs that are of fundamental 

importance to the molecular mechanism. Using knowledge gained from the structures 

in both this chapter and the previous chapter, we designed and implemented an assay 

to track changes in the conformation of atlastin-1 during nucleotide binding and 

hydrolysis. This analysis allowed us to better understand and follow the order of 

events during the hydrolysis cycle. Lastly, using information from one of our first 

structures as well as studies from other groups, we discovered a unique mode of 

internal regulation within atlastin-1’s catalytic core. This mechanism allows atlastin-1 
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to regulate the process of nucleotide binding and possibly protein oligomerization. All 

of the data from chapters two and three have been condensed into a working model at 

the end of chapter three.  

Chapter four delves deeper into the mechanism of atlastin-1 nucleotide binding 

and hydrolysis with two new structures including the isolated GTPase domain and an 

arginine finger mutant. Using these and our previous structures as guides, we also 

made two mutations in the catalytic core of atlastin-1. The first mutation probes the 

importance of a bulky aromatic side chain in a conserved nucleotide-binding motif. 

The second deletes an interaction observed in all of the dimeric structures, revealing 

the importance of this interaction on atlastin’s GTPase activity.  

The last chapter provides a summary of the results found in this thesis and 

extends them to future directions in the study of atlastin. Some preliminary results are 

presented and used as a platform to discuss new opportunities for exploration. In 

addition, the remaining issues and questions about atlastin membrane fusion and 

disease will be reviewed. 
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CHAPTER 2 

STRUCTURAL BASIS FOR THE NUCLEOTIDE-DEPENDENT 

DIMERIZATION OF THE LARGE G PROTEIN ATLASTIN-1/SPG3A‡ 

 

ABSTRACT 

The large GTPase atlastin belongs to the dynamin superfamily that has been 

widely implicated in facilitating membrane tubulation, fission, and in select cases, 

fusion. Mutations spread across atlastin isoform 1 (atlastin-1) have been identified in 

patients suffering from hereditary spastic paraplegia (HSP), a neurodegenerative 

disorder affecting motor neuron function in the lower extremities. On a molecular 

level, atlastin-1 associates with high membrane curvature and fusion events at the 

endoplasmic reticulum and cis-Golgi. Here we report crystal structures of atlastin-1 

comprising the G and middle domains in two different conformations. Although the 

orientation of the middle domain relative to the G domain is different in the two 

structures, both reveal dimeric assemblies with a common, GDP-bound G domain 

dimer. In contrast, dimer formation in solution is observed only in the presence of 

GTP and transition state analogs, similar to other G proteins that are activated by 

nucleotide-dependent dimerization. Analyses of solution scattering data suggest that 

upon nucleotide binding, the protein adopts a somewhat extended, dimeric 

conformation that is reminiscent of one of the two crystal structures. These structural 

studies suggest a model for nucleotide-dependent regulation of atlastin with 

implications for membrane fusion. This mechanism is affected in several mutants 

associated with HSP, providing insights into disease pathogenesis. 

_______________________ 
‡ The following sections are reproduced from: Byrnes, L.J. and Sondermann, H. 2011. Structural basis 
for the conformational switching and GTP loading of the large G protein atlastin. PNAS. 108(6) 
pp2216-2221, doi: 10.1073/pnas.1012792108, with modifications to conform to the required format. 
LJB and HS conceived the project, designed and performed the experiments, analyzed the data, and 
wrote the paper. 
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INTRODUCTION 

 The superfamily of dynamin GTPases comprises a group of proteins that are 

involved in diverse cellular functions and are often closely associated with biological 

membranes (1). They function in a wide range of cellular scenarios including vesicle 

scission, fusion and fission of organelles, cytokinesis, and antiviral activity (1). 

Although they contain G domains that are structurally related to the small G proteins 

of the Ras superfamily, the corresponding domains in the dynamin superfamily are 

significantly larger (300 vs. 180 residues) and have a low intrinsic affinity for 

nucleotide. In addition, GTPases of this family often depend on nucleotide-dependent 

homodimerization to facilitate GTP hydrolysis rather than heterodimerization with a 

GTPase activating protein (2). Such a regulatory mechanism has been established for 

guanylate-binding protein (GBP) and dynamin (3, 4). 

Dynamin and most dynamin-related proteins have a common domain 

architecture comprising a middle domain and a GTPase effector domain (GED) in 

addition to the N-terminal G domain (1). To date, the molecular mechanism 

responsible for nucleotide-dependent functional and structural transitions is best 

understood for the prototypical member dynamin, a protein that catalyzes membrane 

fission (5). In low-resolution models of dynamin, the middle domain and GED form a 

stalk-like structure that is involved in self-assembly (6, 7). Furthermore, the GED and 

the C terminus of the G domain form a three-helix bundle, called the bundle signaling 

element (BSE), which modulates dynamin function (4, 8). A recent crystal structure of 

a minimal G domain-GED fusion protein revealed dimeric G domains in a 

catalytically competent transition state that was proposed to play a role in the 
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disassembly of dynamin coats from membrane tubes proceeding the fission event (4, 

9). Membrane binding and the GTPase of dynamin are further regulated by the 

pleckstrin homology (PH) domain, which is located at the tip of the stalk distal to the 

G domain and serves an autoregulatory function (7). Membrane-mediated, higher-

order oligomerization of dynamin stimulates its basal GTPase activity further (10, 11). 

A similar model has been proposed for MxA, a dynamin-like protein involved in 

innate immunity (12). 

Atlastin, a large G protein most closely related to the GBP subfamily, has been 

identified as a crucial protein in maintaining endoplasmic reticulum (ER) morphology 

and vesicle trafficking (13-17). Atlastin lacks a GED but instead contains two trans-

membrane helices and a C-terminal domain in addition to its large G and middle 

domains, both of which face the cytoplasm (1, 18). Three isoforms of atlastin are 

found in humans, differing in their N and C termini as well as their expression 

patterns. Atlastin-2 and -3 are found ubiquitously and localize to the ER. In contrast, 

atlastin-1 is mainly found in the central nervous system, especially in neurons of the 

corticospinal tract as well as the cerebral cortex and hippocampus and is localized to 

the cis-Golgi and to a lesser extent in the ER (1, 18, 19). On a microscopic level, they 

are found to associate with three-way junctions in the ER, and their absence results in 

a loss of this morphology in exchange for long, unbranched tubules (2, 14, 20). At the 

ER, atlastin interacts with proteins from the reticulon and DP1 families (3, 4, 14), 

spastin/SPG4 (1, 21, 22), and REEP1/SPG31 (5, 20). Notably, members of these 

families have been found to be among the most frequently mutated loci in the 
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neurodegenerative disorder hereditary spastic paraplegia (HSP; also known as familial 

spastic paraplegia or Strumpell–Lorrain disease) (6, 7, 23). 

HSP is a group of inherited disorders that cause progressive spasticity and 

weakness in the lower extremities. Mutations in the atlastin gene account for ∼10% of 

autosomal dominant HSP cases (4, 8, 20). Nearly 40 atlastin-1 mutations have been 

identified in HSP patients, which affect upper motor neurons of the cortical spinal 

tract (4, 9, 23). The vast majority of disease-associated alleles encode missense 

mutations, with one deletion and several nonsense mutations also identified (7, 24, 

25). Although atlastin accounts for only a tenth of the total HSP cases, it is the most 

common form in instances where the disorder occurs in infancy or childhood. In 

addition, many forms of atlastin show very slow progression or no apparent 

progression when the disease occurs in childhood, which led to the presumption that 

atlastin may have its effect in development rather than maintenance of affected 

neurons (10, 11, 26). 

Understanding the molecular basis of atlastin function and of HSP-associated 

alleles will be important for diagnostic and prognostic applications as well as for a 

basic understanding of HSP pathogenesis. Furthermore, a structural analysis may 

reveal basic mechanisms controlling the cellular function of atlastin and related 

proteins. In this study, we determined the crystal structure of the cytoplasmic domain 

of human atlastin-1 in two different crystal forms, both bound to GDP. This portion of 

the protein comprises the G domain followed by the middle domain, a common 

modular architecture found in other members of the large G-protein family. 

Additionally, we determined the apo- and nucleotide-bound oligomerization states and 
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low-resolution structures of the cytoplasmic domain in solution by using static light 

scattering and small-angle X-ray scattering (SAXS). Several mutations associated with 

HSP affect GTPase activity and/or nucleotide-dependent dimerization suggesting a 

basis of disease pathogenesis. 

 

MATERIALS AND METHODS 

Protein expression and purification 

The cytoplasmic domain of human atlastin-1 (residues 1–446) was amplified 

by standard PCR and cloned into a modified pET28a expression plasmid (Novagen) 

yielding N-terminally hexahistidine-tagged small ubiquitin-like modifier (SUMO) 

fusion proteins. The hexahistidine-tagged SUMO moiety was cleavable using the 

protease Ulp-1 from Saccharomyces cerevisiae. 

Native and selenomethionine-derivatized proteins were overexpressed in 

Escherichia coli BL21 (DE3) (Novagen) or T7 Crystal Express (NEB) cells, 

respectively. For the expression of native proteins, cells were grown in Terrific Broth 

media supplemented with 50 µg/mL kanamycin at 37 °C. At a cell optical density 

corresponding to an absorbance of 0.8–1.0 at 600 nm (OD600), the temperature was 

reduced to 18 °C, and protein production was induced with 1 mM IPTG. 

Selenomethionine-derivatized proteins were produced using a modified protocol (1, 

27). Cells were grown in 4 L of LB to an OD600 of 0.7. The cells were centrifuged at 

4,000 rpm for 20 min. Cell pellets were resuspended in 1 L of 1×M9 salt solution and 

centrifuged a second time. This step was repeated once more, and the final cell pellet 

was resuspended in 1 L of M9 minimal media supplemented with 50 µg/mL 



 35 

kanamycin, 1× vitamin mix, 0.4% glucose, 2 mM MgSO4, 25 µg/mL FeSO4, and 40 

µg/ml of each of the 20 amino acids with selenomethionine substituting for 

methionine. Cells were grown at 37 °C for an additional hour before reducing the 

temperature to 18 °C and inducing with 0.5 mM IPTG. After 16 h, cells were 

harvested by centrifugation, resuspended in NiNTA buffer A (25 mM Tris-Cl, pH 8.5, 

500 mM NaCl, and 20 mM imidazole), and flash-frozen in liquid nitrogen. 

After cell lysis by sonication and removal of cell debris by centrifugation, clear 

lysates were loaded onto NiNTA Superflow (Qiagen) equilibrated in NiNTA buffer A. 

The resin was washed with 20 column volumes of NiNTA buffer A, and proteins were 

eluted three times with 2 column volumes of NiNTA buffer A supplemented with 500 

mM imidazole. Proteins were buffer exchanged into desalting buffer (25 mM Tris-

HCl, pH 7.5, 400 mM NaCl, 5 mM β-mercaptoethanol), and affinity tags were 

removed by incubation with the yeast protease Ulp-1 at 4 °C overnight. Cleaved 

proteins were collected in the flow-through during NiNTA affinity chromatography 

and were subjected to size exclusion chromatography on a Superdex 200 column (GE 

Healthcare) equilibrated in gel filtration buffer (25 mM Tris-HCl, pH 7.5, 100 mM 

NaCl, 2 mM DTT). Proteins were concentrated on a Centricon ultrafiltration device 

(10 kDa cutoff; Millipore) to a final concentration of approximately 0.5–1 mM. 

Protein aliquots were flash-frozen in liquid nitrogen and stored at -80 °C. 

Site-directed mutagenesis was carried out using Quikchange (Agilent) 

following the manufacturer’s instructions, followed by validation through DNA 

sequencing. 
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Crystallization of atlastin-1 

Crystals were obtained by hanging drop vapor diffusion mixing equal volumes 

of protein (30 mg/mL) and reservoir solution followed by incubation at 20 °C. Initial 

crystals were obtained in the presence of 2 mM GTPγS (Sigma) and 5 mM MgCl2. For 

the P6522 crystals (form 1), the reservoir solution contained 0.1 M Bicine, pH 8.5, 

30% PEG-MME550, and 0.1 M succinic acid, pH 7.0. Diamond-shaped crystals 

appeared within 3 d with typical dimensions of 0.30 mm × 0.15 mm × 0.2 mm. For 

cryoprotection, crystals were soaked in reservoir solution supplemented with 25% 

glycerol. For the P212121 crystals (form 2), the reservoir solution contained 20% PEG 

3350 and 0.15 M ammonium phosphate dibasic. Crystals appeared as thin rods 

overnight with typical dimensions of 0.4 mm × 0.1 mm × 0.05 mm. Crystals were 

cryoprotected by soaking in the crystallization solutions supplemented with 15% 

xylitol. Cryopreserved crystals were flash-frozen and stored in liquid nitrogen. Data 

were collected on frozen crystals at 100 K. 

Data reduction was carried out with the software package HKL2000 (1, 28). 

Experimental phases for P6522 crystals were obtained from single anomalous 

diffraction (SAD) experiments on crystals grown from selenomethionine-derivatived 

proteins. By using the software package Phenix (2, 29), 10 (out of 10) heavy atom 

positions could be determined. The structure of the P212121 crystal was determined by 

Molecular Replacement by using the software package PHENIX (3, 4, 29) with the 

GTPase domain and the middle domain of atlastin-1 as separate search models. 

Refinement in PHENIX (1, 29) and COOT (5, 30) yielded the final models. Data 
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collection and refinement statistics are summarized in Table 2.1. Illustrations were 

made in Pymol (DeLano Scientific). 

 

Small-angle X-ray scattering (SAXS) data collection and processing 

SAXS experiments were carried out at the Cornell High Energy Synchrotron 

Source (CHESS, beamline G1) at an electron energy of 8 KeV. Protein samples were 

prepared by incubating 100 µM protein with 1 mM nucleotide (or no nucleotide in the 

case of the apo-protein) and 5 mM MgCl2 for 30 min at room temperature, and then 

loaded onto a size exclusion column (Superdex 200 GE 10/300) equilibrated in 

multiangle light scattering (MALS) buffer (25 mM Tris-HCl pH 7.4, 100 mM NaCl, 2 

mM EGTA, 4 mM MgCl2). Peak fractions were collected and concentrated. Protein 

concentrations were determined using UV Abs280 and theoretical extinction 

coefficients. Proteins were centrifuged at 13,200 rpm and 4 °C for 10 min prior to 

loading into a flow cell. Scattering data were collected in triplicate at protein 

concentrations between 1 and 10 mg/mL. Only data showing no sign of radiation 

damage or aggregation based on inspection of Guinier plots were used for further 

analysis. Background scattering was collected from MALS buffer. Scattering data 

were background corrected, averaged, and scaled by using the program BioXtas 

(Soeren Nielson) and were analyzed by using the programs GNOM and CRYSOL (6, 

7, 31-33). Only scattering data with Smax * Rg < 1.3, computed from Guinier plots at 

low-angle regions, were considered for further analysis. Kratky plots were used to 

assess the folded state of the proteins and overall data quality. Distance distribution 

functions P(r), Rg, and Dmax were determined by using the program GNOM (4, 8, 33). 
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Distance distribution function from crystallographic models was calculated by using 

CRYSOL (4, 9, 32). SAXS-based shape reconstructions were carried out with the 

program GASBOR (7, 34) by using the P(r) function as the target. For each sample, 20 

models were calculated, superimposed, averaged, and filtered by using the program 

DAMAVER (10, 11, 35). Similar results were obtained by using the scattering 

intensity as the target. During the modeling of the dimeric states, P2 symmetry was 

applied. Crystal structures were docked in the models using SUPCOMB (12, 36). 

 

Size-exclusion chromatography-coupled multiangle light scattering (SEC-MALS) 

Purified protein (∼1 µg⁄µL or 20 µM, injected concentration) was subjected to 

SEC using a WTC-030S5 column (Wyatt Technology) equilibrated in MALS buffer 

(25 mM Tris-HCl pH 7.5, 100 mM NaCl, 4 mM MgCl2, and 2 mM EGTA). Where 

specified, wild-type or mutant atlastin was incubated with GDP, GppNHp, or 

GDP•AlFx (2 mM) for 30 min at room temperature prior to injection. The SEC was 

coupled to a static 18-angle light scattering detector (DAWN HELEOS-II) and a 

refractive index detector (Optilab T-rEX) (Wyatt Technology). Data were collected 

every second at a flow rate of 1 mL⁄ min. Data analysis was carried out using the 

program ASTRA, yielding the molar mass and mass distribution (polydispersity) of 

the sample. Molecular weight distributions were determined by using the Multipeak 

Fitting Package in Igor Pro (WaveMetrics). For normalization of the light scattering 

detectors and data quality control, monomeric BSA (Sigma) was used. 
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GTPase activity assay 

GTPase activity was measured using the Enzchek Phosphate Assay kit 

(Molecular Probes) following the manufacturer’s instructions. Measurements were 

carried out in a 96-well plate (Nunc) in a total volume of 250 µL. Recombinant wild-

type or mutant atlastin-1 was combined with 1 U/mL Purine Nucleoside 

Phosphorylase, 200 µM 2-amino-6-mercapto-7-methylpurine riboside, and provided 

buffer (20 mM Tris-HCl pH 7.5, 1 mM MgCl2, 0.1 mM sodium azide). The plate was 

incubated at room temperature for 10 min, after which reactions were started by 

addition of 400 µM GTP (or alternatively, 50 mM Tris-HCl pH 7.5 for controls). 

Plates were assayed at 37 °C in a Powerwave XS microplate reader (BioTek). 

Absorbance at 360 nm was monitored in 30 s intervals for 30 min. Data were 

normalized to a phosphate standard curve, and initial velocities were calculated using 

the portion of the curve corresponding to the first 5% of consumed product. Data 

reported in Table 2.2. are means ± SD of three independent experiments. 

 

Thermal melting 

The circular dichroism signal of proteins (0.5 mg/mL) in CD buffer (10 mM 

NaH2PO4 pH 7.4, 100 mM NaCl) was monitored at 222 nm using an Aviv Circular 

Dichroism Spectrometer (Model 62ADS) between 10–90°C (cell pathlength, 1 mm; 

bandwidth, 1.5 nm; signal averaging time, 10 s; temperature step, 1 °C). Curves were 

differentiated and fitted to a Lorentzian distribution to estimate the melting 

temperature and errors of the measurement. 
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Nucleotide binding 

Purified protein (~10 mg/mL) was subjected to size-exclusion chromatography 

(SEC) using a Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 

MALS buffer. Where specified, wild-type or mutant atlastin-1 was incubated with no 

nucleotide, GDP, GppNHp, or GDP•AlFx (2 mM) for 30 min at room temperature 

prior to gel filtration. The entire elution peak was concentrated and subjected to heat 

denaturation. Denatured proteins were precipitated by high-speed centrifugation and 

supernatants were filtered in 10 kDa-cutoff spin filters before injection into a reverse-

phase HPLC column (Phenomenex Gemini C18) equilibrated in HPLC buffer (100 

mM KH2PO4 pH 6.5, 10 mM tetrabutylammonium bromide, 7.5% acetonitrile, and 

0.02% NaN3). 

 
RESULTS AND DISCUSSION 

Crystal Structures of Atlastin-1.  

The purified, cytoplasmic domain of human atlastin-1 (residues 1–446; Figure 

2.1.A) crystallized in two distinct crystal forms (form 1: space group p6522; form 2: 

p212121; Table 2.1.). The form 1 crystals grown from selenomethionine-derivatized 

protein diffracted X-rays to a maximal resolution of 2.7 Å with one molecule in the 

asymmetric unit, and the structure was solved with single anomalous dispersion 

phasing (Figure 2.1.B). The form 2 crystals yielded a native dataset at 3.0 Å (four 

molecules⁄asymmetric unit), and the structure was solved by molecular replacement 

using the separated GTPase and middle domains as the search models (Figure 2.1.C).  
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Figure 2.1. Structure of atlastin-1. (A) Domain organization of atlastin-1. The large G 
domain (orange) is connected to the middle domain (blue) by a short flexible linker (green) 
and is followed by two transmembrane helices (black) that span the membrane and a C-
terminal domain. A topological model is shown (Right). The fragment used in this study 
consists of residues 1–446 of human atlastin-1. (B) Protomer structure of atlastin-1 in crystal 
form 1. (Inset) GDP⁄Mg2+-coordinating residues as sticks. (C) Protomer structure of atlastin-1 
in crystal form 2. The G domain is shown in a similar orientation as shown in B. GDP and 
Mg2+ are shown as sticks and spheres, respectively. 
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Table 2.1. Data collection and refinement statistics.  

 Atlastin-1 (1-446) form 1 Atlastin-1 (1-446) form 2 

Data collection   
X-ray source CHESS A1 CHESS A1 
Wavelength (Å) 0.987 0.987 
Space group P6522 P212121 
Unit cell parameters   
      a, b, c, (Å) 145.4, 145.4, 104.2 104.4, 133.6, 175.8 
      α, β, γ (°) 90, 90, 120 90, 90, 90 
Resolution range (Å) 50-2.70 (2.80-2.70) 50-3.00 (3.11-3.00) 
No. of reflections   
      Total 425,973 406,102 
      Unique 18,381 (1,795) 48,872 (4,788) 
Completeness (%) 100 (100) 99.7 (99.0) 
Redundancy 23.2 (18.3) 8.3 (7.3) 
I/σ (I) 38.1 (3.2) 19.2 (2.8) 
Rmeas (%) 7.7 (84.4) 11.3 (68.3) 

Refinement   
Phasing SAD MR 
Unit cell content 1 GDP!Mg2+-bound 

protomer 
4 GDP!Mg2+-bound 

protomers 
Rwork/Rfree (%) 18.57/24.73 19.04/26.53 
r.m.s. deviations   
      Bond length (Å) 0.008 0.008 
      Bond angles (°) 1.252 1.241 
No. of atoms   
      Protein 3,289 12,732 
      Water 5 - 
      GDP!Mg2+ 29 116 
 

Although crystallization for both forms was carried out in the presence of GTPγS, 

only density for the GDP moiety and a magnesium ion was observed (Figure 2.1.B, 

inset and Figure 2.2.A). In the present structures, the side chain of F76 within the P 

loop is positioned in such a way that the γ-phosphate moiety cannot be accommodated 

(Figure 2.2.A). Conformational changes typically accompanying GTP binding to G 

proteins would allow F76 to flip out to accommodate the terminal phosphate. Both the 
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slow hydrolysis of GTPγS as well as the presence of GDP as a major contaminant in 

the nucleotide solution may have contributed to this result (Figure 2.3.). 

In both crystal forms, the N terminus of atlastin forms a globular GTPase domain fold 

similar to that of GBP1 (rmsd of 4.5 Å) (13-17, 37). The middle domain that connects 

to the transmembrane helices folds into a three-helix bundle (Figure 2.1.B and C). 

Most strikingly, the structures in the two crystal forms differ in their relative 

orientation of the G and middle domains with minimal variance of the individual 

domains (rmsd of 0.7 Å for both the G and middle domains; Figures 2.1. and 2.2.D). A 

rigid body rotation by ∼90° of the middle domain relative to the G domain separates 

the two conformations, with the difference being realized by an alternative 

conformation of the connecting linker segment (residues 337–346). In contrast to the 

extended, random-coil conformation of the linker in form 1, it adopts a U-shaped turn 

in the form 2 crystals. In the latter case, it contributes an additional turn to the first 

helix of the middle domain, consistent with secondary structure predictions, and one 

of the two proline residues (P344) in the linker segment serves as a helix cap (Figure 

2.2.D). Mutation of this residue in the cytoplasmic domain of atlastin-1 (P344G) 

renders the protein insoluble. The second proline (P342) is located at the center of the 

linker. Similarly, proline residues are present at comparable positions in dynamin and 

other G proteins, where they serve as pivot points during nucleotide-dependent 

transitions (4, 18). 

Although atlastin lacks a GED and its sequence conservation to other dynamin-

like proteins predominantly resides in the G domain, there is a remarkable 

conservation with regard to domain arrangements, in particular, when the form 2  
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Figure 2.2. Crystal structures of GDP-bound atlastin-1. (A) Nucleotide binding site. 
Switch and nucleotide binding regions are highlighted as shades of blue. Conserved residues 
and the nucleotide are shown as sticks. A (|Fobs|-|Fcalc|) electron density map contoured at 3.6σ 
is shown as calculated from a model before inclusion of GDP and magnesium. (Right) An 
overview of the G domain dimer observed in crystal form 1. (B) Sequence alignment of 
dynamin superfamily members in the conserved regions involved in nucleotide binding and 
hydrolysis. Conserved residues are highlighted in green and are shown below in the consensus 
sequence. Residues in the form 1 atlastin-1 dimers that form interfacial contacts are marked 
with an asterisk below the alignment. (C) Superposition of G domain dimers observed in 
crystal form 1 (space group P6522) and 2 (space group P212121). Protomer A from each dimer 
(gray and orange domain, respectively) were used as the reference for the superposition. (D) 
Superposition of the cytosolic domain of atlastin-1 in crystal form 1 and form 2 using the 
respective G domains as the reference. (Right) The major conformational differences that 
concern a G domain-internal helix and position of the middle domain accompanied by a 
restructuring of the linker segment. 
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Figure 2.3. Nucleotide-bound state of atlastin wild-type and R217Q. (A) Nucleotide 
standards for GDP (purple), GppNHp (green), and GTPγS (blue). (B) Wild-type atlastin-1. 
Protein was incubated with no nucleotide (red), GDP•AlFx (orange), GDP (purple), or 
GppNHp (green). Excess nucleotide was removed by gel filtration. Nucleotides extracted from 
protein by heat denaturation were subjected to reverse-phase HPLC. Vertical dashed lines 
indicate elution positions for nucleotide standards. (C) Atlastin-1 mutant R217Q. A similar 
analysis was performed for the point mutant R217Q. 
 

crystal structure is considered. In this conformation, atlastin’s middle domain folds 

back onto the G domain and protrudes at a similar position as the BSE (including the 

GED) and middle domain in dynamin and GBP1, respectively (3, 4, 18, 19, 37, 38) 

(Figure 2.4.A and B). Although the contact region in GBP1 and atlastin is preserved, 

containing in part hydrophobic contacts between corresponding secondary structure 

motifs (Figure 2.5.A), the available dynamin structures lack the middle domain 
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impeding a more detailed comparison. Based on low-resolution structural 

reconstructions of near-full-length dynamin, the BSE and middle domain form a 

structural unit (7, 14, 20), and the BSE position in the crystal structure serves as an 

approximate projection of the middle domain (4, 14). The conservation of the overall 

architecture suggests a common molecular mechanism underlying the regulation and 

function of these distantly related proteins. 

GBP1 and dynamin form G domain-mediated homooligomers in the presence 

of GTP and transition state analogs, but not in their apo- and GDP-bound states 

(Figure 2.4.A and B) (4, 21, 22, 37). Considering the symmetry mates in each crystal 

lattice, the atlastin structures provide insights into potential modes for dimerization, 

revealing a common interface observed in both structures formed between adjacent G 

domains (Figure 2.4.C). The two atlastin-1 G domain dimers align with an rmsd of 2 

Å, with the main difference observed in the angle the G domains take with respect to 

each other (Figure 2.2.C). As a result, the interfacial area differs by 470 Å2 

considering only interactions between the G domains (1226 Å2 and 756 Å2 for form 1 

and form 2 G domain dimers, respectively; Figure 2.5.C and D). The dimerization 

involves residues close to the nucleotide-binding pocket, especially within the P loop 

(G1), Walker B (G3) motif, and the guanosine-binding loop (G4) (Figure 2.2.A and 

B). 

The relative position and orientation of the G domains and nucleotide are 

reminiscent of those seen in the crystal structures of GppNHp-bound GBP1 and 

dynamin when bound to GDP• AlF4
− (Figures 2.4. and 2.5.B) (4, 23, 37). Specifically, 

there is a remarkable structural conservation with regard to the involvement of  
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Figure 2.4. Crystallographic dimers of atlastin-1. (A) GBP1. A model for GTP-bound, full-
length GBP1 was constructed according to (20, 37). (B) Dynamin. A dynamin G domain-GED 
fusion dimer bound to GDP•AlF4

− is shown (PDB ID code 2X2E) (4, 23). (C) Atlastin-1. 
Dimers observed in crystal lattices with P212121 symmetry (form 2, Upper) and with P6522 
symmetry (form 1, Lower) are shown. GDP and Mg2+ positions are indicated and are shown as 
sticks and spheres, respectively. Hypothetical membrane positions based on the location of the 
C terminus of the cytosolic domain are indicated. Positions of missense mutation associated 
with HSP are shown as residues displayed as red spheres in both forms. (D) Nucleotide 
arrangement and G domain dimer interface. The G domain dimer interfaces of atlastin-1 (form 
1; Left) and GBP1 (Right; PDB ID code 2BC9) (3, 20) are shown. The protomers are colored 
in light and dark gray, with the nucleotide-binding regions (G1–G4) shown in shades of blue. 
Nucleotide and Mg2+ are shown as sticks and spheres, respectively. The dashed, red line 
separates the dimer halves, marking the interfacial region. 
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Figure 2.5. Comparison of atlastin-1 and GBP1 dimers. (A) Interdomain interface in GBP1 
and atlastin-1. The G domain of GBP1 (green; PDB ID code 1DG3) was superimposed on the 
G domain of atlastin-1 (orange). The middle domains of GBP1 and atlastin-1 are colored in 
gray and blue, respectively. (B) The G domain dimer of GBP1 bound to GppNHp (PDB ID 
code 2BC9) was superimposed on the form 1 G domain dimer of atlastin-1 bound to GDP. (C) 
Form 1 G domain dimer interface. (D) Form 2 G domain dimer interface. Interfacial residues 
in form 1 dimers (C) or form 2 dimers (D) are shown in color on the surface of one half of the 
dimer. Key residues for dimer formation, R77 and its binding partners F221 and E224 in the 
adjacent G domain, are colored in red. (E) R77E mutant. Based on the crystal structures, we 
introduced a mutation into atlastin-1 at the dimerization interface and determined its 
oligomerization behavior by light scattering as described in Figure 2.6. 
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nucleotide-binding motifs between GBP1 and atlastin-1 (regions G1–G4) in 

dimerization, despite the difference in bound nucleotide species (Figure 2.4.D). 

Dynamin and GBP1 dimers bound to GDP•AlF4
− or GppNHp, respectively, involve 

more extensive contributions of the P loop (G1) and the Walker A (G2) motif 

compared to the GDP-bound dimers of atlastin-1 (Figure 2.4.D) (3, 4, 24, 25). Most 

notably, the two crystallographic atlastin-1 dimer forms differ in their relative position 

of the middle domains with respect to the G domain dimers (Figure 2.4.C). Although 

the form 2 dimer resembles GBP1 or dynamin assemblies with the middle domains 

pointing in opposite directions (3, 4, 26, 37), the form 1 dimer of atlastin is distinct 

from those because the middle domains run in parallel (Figure 2.4.). In this 

conformation, the linker segments and middle domains cross over, contributing an 

additional 1571 Å2 to the overall interfacial area (Figures 2.4.C and 2.5.C). Although 

the middle domains in the form 1 structure protrude in the same direction and would 

locate to proximal membrane regions via the successive transmembrane domains 

(Figure 2.4.C), the functional relevance for this conformation remains elusive.  

 

Nucleotide-Dependent Dimerization of Atlastin.  

GTP-dependent dimerization of dynamin and GBP1 establish the catalysis-

competent states of these enzymes (4, 37). Several lines of evidence support the 

presence of a conserved dimerization-based GTPase mechanism for atlastin-1, in 

addition to the crystallographic observation that GDP-bound atlastin dimers are 

reminiscent of dimeric states of dynamin and GBP1. Similar to the latter cases, 

nucleotide-free (apo) and GDP-bound atlastin-1 (residues 1–446) elute in single peaks 
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from a size-exclusion column with molecular weights determined by in-line, 

multiangle light scattering close to that calculated for monomers based on the primary 

sequence (49.2 or 49.3 kDa, respectively; theoretical molecular weight: 51.1 kDa) 

(Figure 2.6. and Table 2.2.). Incubation of the protein with the GTP analog GppNHp 

or the transition state analog GDP• AlFx promotes dimerization, indicated by an earlier 

elution volume and an average molecular weight of 99.2 kDa or 98.2 kDa, 

respectively. 

A nonconservative mutation in residue R77 (R77E), a residue located at the G 

domain dimer interface in the crystal structures of atlastin (Figure 2.5.C), renders the 

protein monomeric in the presence of GDP•AlFx, and only partially dimeric when 

bound to GppNHp, indicating that the crystallographic interface is also involved in the 

nucleotide-dependent dimerization of the protein in solution (Figure 2.5.E and Table 

2.2.). The mutant protein is also devoid of GTPase activity (Table 2.2.), indicating that 

dimerization can have an impact on enzymatic activity. 

 

Figure 2.6. Atlastin-1 oligomerization in solution. SEC-MALS data are shown for wild-type 
atlastin-1 (residues 1–446) in its apo-state (red) or bound to GppNHp (green), GDP (purple), 
or GDP•AlFx (orange). The signal from the 90°-scattering detector and refractive index 
detector are shown as solid, colored lines and black dashed lines, respectively (Left, Y axis). 
Average molecular weight as calculated every second across the protein elution peak is shown 
as black circles (Right, Y axis). Theoretical molecular weights based on primary sequence for 
the monomer and dimer are indicated as horizontal, dashed lines. Proteins (20 µM) were 
incubated with nucleotides (2 mM) prior to SEC-MALS analysis. 
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Table 2.2. Oligomeric state and GTPase activity of wild-type and mutant atlastin-1.a 
Protein Property Apo GppNHp GDP•AlF4

- 
wild-type     
 Molecular weightb 49.2kDa 99.2kDa 98.2kDa 
 Polydispersityb 1.001 (±0.004) 1.000 (±0.004) 1.000 (±0.003) 
 Tm (C)c 51.23 (±0.92)   
 GTPase activity (µM 

Pi/min/µM Enz) 
5.33 (±0.09)   

R77E     
 Molecular weightb 50.4kDa 101.2kDa 51.4kDa 
 Polydispersityb 1.000 (±0.010) 1.000 (±0.010) 1.000 (±0.020) 
 Tm (C)c n.d.    
 GTPase activity (µM 

Pi/min/µM Enz) 
0.01 (±0.01)   

T156I     
 Molecular weightb 47.9kDa 96.6kDa 96.9kDa 
 Polydispersityb 1.000 (±0.002) 1.000 (±0.002) 1.000 (±0.003) 
 Tm (C)c 52.77 (±0.1.43)   
 GTPase activity (µM 

Pi/min/µM Enz) 
2.25 (±0.03)   

T157W     
 Molecular weightb 50.9kDa 99.8kDa 102.3kDa 
 Polydispersityb 1.001 (±0.010) 1.000 (±0.020) 1.000 (±0.020) 
 Tm (C)c 51.74 (±1.03)   
 GTPase activity (µM 

Pi/min/µM Enz) 
5.35 (±0.04)   

H189D     
 Molecular weightb 50.5kDa 100.6kDa 103.3kDa 
 Polydispersityb 1.000 (±0.020) 1.000 (±0.010) 1.000 (±0.040) 
 Tm (C)c 52.88 (±1.09)   
 GTPase activity (µM 

Pi/min/µM Enz) 
3.14 (±0.25)   

Q191R     
 Molecular weightb 50.5kDa 52.7kDa 100.8kDa 
 Polydispersityb 1.000 (±0.020) 1.001 (±0.040) 1.000 (±0.020) 
 Tm (C)c 50.49 (±0.93)   
 GTPase activity (µM 

Pi/min/µM Enz) 
4.48 (±0.08)   

Y196C     
 Molecular weightb 52.8kDa 98.1kDa 100.1kDa 
 Polydispersityb 1.000 (±0.050) 1.000 (±0.010) 1.000 (±0.020) 
 Tm (C)c 51.91 (±1.11)   
 GTPase activity (µM 

Pi/min/µM Enz) 
5.38 (±0.06)   

R217Q     
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 Molecular weightb 49.0kDa 49.0kDa 48.9kDa 
 Polydispersityb 1.000 (±0.003) 1.001 (±0.003) 1.001 (±0.003) 
 Tm (C)c 55.82 (±1.76)   
 GTPase activity (µM 

Pi/min/µM Enz) 
0.01 (±0.01)   

R239C     
 Molecular weightb 48.7kDa 98.8kDa 97.3 
 Polydispersityb 1.000 (±0.003) 1.000 (±0.003) 1.000 (±0.003) 
 Tm (C)c 52.60 (±1.01)   
 GTPase activity (µM 

Pi/min/µM Enz) 
2.74 (±0.17)   

H247R     
 Molecular weightb 51.0kDa 99.1kDa 

53.3kDa 
100.1kDa 

 Polydispersityb 1.000 (±0.020) 1.000 (±0.010), 
1.000 (±0.030) 

1.000 (±0.010) 

 Tm (C)c 51.87 (±1.04)   
 GTPase activity (µM 

Pi/min/µM Enz) 
1.48 (±0.04)   

L250P     
 Molecular weightb 53.1kDa 100.4kDa 100.7kDa 
 Polydispersityb 1.004 (±0.060) 1.000 (±0.010) 1.000 (±0.020) 
 Tm (C)c 52.12 (±1.22)   
 GTPase activity (µM 

Pi/min/µM Enz) 
3.31 (±0.21)   

H258R     
 Molecular weightb 48.2kDa 95.9kDa 95.9kDa 
 Polydispersityb 1.000 (±0.002) 1.000 (±0.002) 1.000 (±0.002) 
 Tm (C)c 50.83 (±1.21)   
 GTPase activity (µM 

Pi/min/µM Enz) 
2.50 (±0.09)   

S259F     
 Molecular weightb 50.7kDa 99.2kDa 100.3kDa 
 Polydispersityb 1.000 (±0.020) 1.000 (±0.010) 1.0 (±0.010) 
 Tm (C)c 52.09 (±1.21)   
 GTPase activity (µM 

Pi/min/µM Enz) 
2.34 (±0.04)   

I315S     
 Molecular weightb 47.2kDa 92.0kDa 93.5kDa 
 Polydispersityb 1.001 (±0.005) 1.000 (±0.003) 1.000 (±0.003) 
 Tm (C)c 52.06 (±1.28)   
 GTPase activity (µM 

Pi/min/µM Enz) 
3.42 (±0.04)   

Y336H     
 Molecular weightb 50.4kDa 92.7kDa 

53.1kDa 
99.0kDa 
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 Polydispersityb 1.000 (±0.020) 1.000 (±0.020) 
1.000 (±0.020) 

1.000 (±0.010) 

 Tm (C)c 50.57 (±0.96)   
 GTPase activity (µM 

Pi/min/µM Enz) 
4.24 (±0.11)   

S398Y     
 Molecular weightb 48.8kDa 98.6kDa 98.0kDa 
 Polydispersityb 1.001 (±0.003) 1.000 (±0.003) 1.000 (±0.003) 
 Tm (C)c 44.99 (±2.79)   
 GTPase activity (µM 

Pi/min/µM Enz) 
3.25 (±0.03)   

M408T     
 Molecular weightb 50.4kDa 87.0kDa 

53.4kDa 
99.6kDa 

 Polydispersityb 1.000 (±0.020) 1.000 (±0.050) 
1.002 (±0.020) 

1.000 (±0.010) 

 Tm (C)c 49.22 (±0.93)   
 GTPase activity (µM 

Pi/min/µM Enz) 
5.12 (±0.17)   

M408V     
 Molecular weightb 49.1kDa 91.0kDa 

49.8kDa 
97.0kDa 

 Polydispersityb 1.000 (±0.004) 1.000 (±0.005) 
1.000 (±0.005) 

1.000 (±0.003) 

 Tm (C)c 50.45 (±0.95)   
 GTPase activity (µM 

Pi/min/µM Enz) 
3.11 (±0.14)   

a: The soluble, cytoplasmic domain of atlastin-1 (residues 1-446) was used in these 
experiments.  
b: Molecular weight and polydispersity indices were determined by using SEC-MALS.  
c: protein stability was determined based on measurements of the melting temperature by 
circular dichroism spectroscopy.  
 

Next, we turned to SAXS to gain further insight into the solution structure of 

dimeric atlastin. By using a monodisperse protein sample in diffraction experiments, 

accurate shape information in the form of the radius of gyration (Rg), the maximal 

diameter of the particle (Dmax), and the distance distribution function (P(r)) can be 

obtained (39, 40). The experimental scattering curves and P(r) functions for the 

cytoplasmic domain of atlastin-1 differ in the nucleotide-free, GDP-, GppNHp- and 
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GDP•AlFx-bound states (Figure 2.7.A), indicating that the structures of these 

intermediates feature differences (a detailed analysis of the monomeric, apo-, and 

GDP-bound states is provided as SI Text). The dimeric, GppNHp-, and GDP•AlFx-

bound states have overall similar P(r) profiles but vary slightly in their Dmax and Rg 

with the GDP•AlF -bound specimen being more extended (Dmax ⁄Rg: 120⁄36 Å vs. 

125⁄37 Å for the GppNHp- and GDP•AlFx-bound states, respectively; Figure 2.7.A 

and Table 2.3.). 

We compared the solution scattering data with the crystallographic dimer 

models (Figure 2.8.). Both solution states are more extended than the crystallographic 

form 1 dimer but shorter than the form 2 dimer (Figure 2.8.A and Table 2.3.). The 

position and shape of the main peak in the theoretical P(r) functions calculated from  

 

Figure 2.7. Small-angle X-ray scattering. (A) Solution scattering data for atlastin-1. 
Intensity plots and P(r) functions for apo (red), GDP-bound (purple), GppNHp-bound (green), 
and GDP•AlFx-bound (orange) atlastin-1 (residues 1–446) are shown. (Left, Inset) 
Corresponding Guinier plots. (B) SAXS-based shape reconstructions for nucleotide-bound 
solution states of atlastin-1. The dimeric form 2 crystal structure was docked in the models as 
a reference and is shown as a cartoon presentation. 
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Table 2.3. SAXS data statistics and dimensions of crystallographic models.  
 Rg (Å)a Dmax (Å)a Vp (nm3)b χbest

c 
SAXS data 
Apo 30±0.1 97±2.5 90.4 1.694 
GDP 33±0.1 101±2.5 138.7 1.563 
GppNHp 36±0.1 120±2.5 157.7 1.093 
GDP•AlFx 37±0.1 125±2.5 156.7 1.325 
Crystallographic models  
Form 1 monomer 29 104 n. a. n. a. 
Form 2 monomer 24 86 n. a. n. a. 
Form 1 dimerd 31 104 n. a. n. a. 
Form 2 dimere 37 150 n. a. n. a. 
a: Rg and Dmax were determined using the program GNOM (6). Similar values for Rg were 
obtained from analysis of the Guinier equation and data that satisfies Qmax×Rg<1.3. Values for 
the crystallographic models were calculated with Crysol (5).  
b: Vp is the excluded volume (Porod volume). n.a., not applicable 
c: χbest is the lowest χ value obtained for a free atom model from the ab initio shape 
determinations. n.a., not applicable.  
d: χ values for the fit between this model and the SAXS data are 4.89 (GppNHp data) and 6.65 
(GDP•AlFx data).  
e: χ values for the fit between this model and the SAXS data are 2.56 (GppNHp data) and 2.95 
(GDP•AlFx data).  
 

the two crystallographic, GDP-bound dimers are very similar to the corresponding 

region of the experimental curves, consistent with common folds of the domains and 

similar G domain dimerization. Yet, in general the crystalline conformations represent 

inaccurate models for GTP-bound atlastin based on the overall fit (Table 2.3. and 

Figure 2.8.A). Modeling of the SAXS data can yield low-resolution reconstructions 

representing the shape of a protein. A similar approach has been described recently for 

near-full-length dynamin revealing the overall organization of the protein in solution 

(7). Unbiased models for the solution states of GTP-bound and the transition state 

atlastin-1 were obtained by using a free-atom, simulated annealing approach with the 

respective P(r) functions as the target (34). For each state, 20 models were computed, 

averaged, and filtered to yield a consensus envelope. The shape reconstructions for  



 57 

 

 
 
 
 
 
 
 
 
 
 
Figure 2.8. SAXS data. (A) P(r) for the form 1 dimer (gray, solid) and the form 2 dimer 
(black, dashed) were calculated by using the respective crystal structures. P(r) based on 
experimental scattering data for GppNHp-bound and GDP•AlFx-bound atlastin-1 (residues 1–
446) are shown in green and orange, respectively. (B) Kratky plots calculated based on 
intensity data from apo (red), GDP added (purple), GppNHp-bound (green), and GDP•AlFx-
bound (orange) atlastin-1. The SAXS data for the nucleotide-free state of atlastin-1 indicated 
an unfolded or flexible component evident in Kratky plots, which was suppressed upon 
binding of GDP. Both flexibility within the G domain and a dislodged middle domain in the 
absence of nucleotide may contribute to these differences. (C) P(r) functions of monomeric 
atlastin-1 species. The apo-state (red) and atlastin-1 incubated in GDP (purple) are shown. 
Theoretical P(r) functions for the form 1 protomer (gray, solid) and form 2 protomer (black, 
dashed) are shown in both plots. The crystallographic conformations of the monomers are 
inaccurate models for the solution state. (D) SAXS-based shape reconstructions for 
monomeric solution states of atlastin-1. Models were calculated by using the P(r) function as 
the target. The monomeric crystal structure protomers (form 1 and 2) were docked in the 
models as a reference and are shown as a cartoon presentation. Modeling the SAXS data from 
apo-atlastin-1 or the GDP-bound protein revealed a large upper lobe that accommodates a G 
domain. A stalk-like extension resembles the middle domain. In the presence of GDP, the 
overall solution conformation of the G domain appears more compressed and globular. Both 
the nucleotide-unbound and GDP-bound solution models could accommodate either crystal 
structure protomer. Relatively high % values for the comparison between the crystalline states 
and the solution scattering data (ranging between 5.51–8.10) suggest that the exact solution 
conformation may be different from the crystallographic states. Given this ambiguity, we 
refrained from modeling the solution states beyond this analysis. 
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atlastin-1 bound to GppNHp or GDP•AlFx are consistent with a central G domain 

dimer carrying lateral middle domains. Despite the inaccurate fits between the SAXS 

data and crystallographic models (Table 2.3.), the overall conformation of the dimeric 

solution states has some resemblance with the extended conformation of the dimeric, 

form 2 crystal structure, in which the middle domains fold back onto their respective 

G domains and point in opposite directions (Figure 2.7.B). The G domain dimer fits 

the mass observed at the center of both models, placing the middle domains roughly 

into the skinnier density at the distal tips. Subtle differences in the SAXS-based 

models for atlastin-1 bound to GppNHp and GDP•AlFx concern these distal regions, 

extending radially from the center of the G domain dimer, but a more exact prediction 

of the structural changes is likely beyond the accuracy of the method. 

In summary, the nucleotide-dependent oligomerization via central G domain 

dimers indicates related mechanisms between atlastin, GBP, dynamin, and other large 

G proteins that are activated by nucleotide-dependent dimerization (2). As described 

in the next section, further corroboration comes from several atlastin-1 mutants 

associated with the neurodegenerative disorder HSP, many of which display defects in 

GTP-dependent dimerization when introduced into the cytosolic domain, suggesting 

that disruption of this mechanism contributes to the pathogenesis in HSP.  

 

Structure-Based Mapping and Characterization of HSP-Associated Mutations of 

Atlastin-1.  

To date, 28 atlastin-1 missense mutants associated with cases of HSP have 

been identified within the construct studied here (24, 25). Within the primary 
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sequence, the mutations are located in the second half of the G domain and the middle 

domain (Figure 2.9.A). By mapping the mutations onto the three-dimensional 

structures determined here, HSP-associated mutants cluster in the regions of the 

protein that vary most between the two crystal forms, including the putative dimer 

interface, the nucleotide-binding pocket, and the region of the intramolecular rigid 

body rotation (Figures 2.4. and 2.9.). 

For a functional characterization, we introduced the HSP-associated, single-

point mutations into the soluble, cytoplasmic domain of atlastin-1 used in this study. 

The majority of the mutants (16 out of 28) expressed and purified indistinguishably 

compared to the wild-type protein and elute from the gel filtration column as a single, 

monodisperse peak (Table 2.2.). Those mutants that did not express in our system 

likely introduce significant folding defects (black spheres, Figure 2.9.). In contrast, the 

soluble mutants exhibit similar thermal melting temperatures that are comparable to 

that of the wild-type protein (Table 2.2. and Figure 2.10.C), indicating that folding 

defects, if any, are local with no apparent effect on protein stability. 

Half of the soluble mutants exhibited dimerization behavior indistinguishable 

from the wild-type protein (Figure 2.10.A and Table 2.2.). In contrast, several mutant 

proteins displayed defects in dimerization (Figures 2.10.A, 2.11., and 2.12.). These 

include L157W, Q191R, Y196C, R217Q, H247R, Y336H, and M408V⁄T (orange and red 

residues, Figure 2.9.). R217Q, the only mutation located in the nucleotide-binding site, 

displays the most drastic effect. R217 is the first residue in the RD motif and interacts 

with the nucleotide’s guanine base (Figure 2.1.B; red residue, Figure 2.9.) (41). The 

protein remains monomeric irrespective of the presence of nucleotide and is defective  
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Figure 2.9. Mapping of hereditary spastic paraplegia (HSP) mutant residues onto the 
primary and tertiary structure of atlastin-1. (A) Overview of the position of HSP 
mutations. The atlastin-1 domain organization is shown as in Fig. 1, with the locations of all 
missense mutations that fall into the crystallized construct being marked. HSP mutations were 
mapped onto the tertiary structure of atlastin-1 (form 1, Right; form 2, Left). The two 
protomers of each dimer are colored in light and dark gray, respectively. Positions of missense 
mutations associated with HSP are shown as spheres and color-coded according to their 
biochemical properties. Position of the dimerization-defective mutants in the form 1 (B) and 
form 2 (C) dimer models for atlastin-1. Detailed views of several HSP mutation sites in 
atlastin-1 that show defects in nucleotide binding and/or oligomerization are shown. Color-
coding is shown as in A. 



 62 

with regard to nucleotide binding and GTPase activity (Figures 2.3., 2.11. and 2.12.), 

consistent with its direct role in nucleotide coordination. The oligomerization 

propensities of the mutants T157W, Q191R, Y196C, H247R, Y336H, and M408V⁄T are 

peculiar in that they exhibit dimer formation similar to wild-type protein upon binding 

of the transition state analog, but show a significant fraction of monomeric species 

upon incubation with GppNHp (Figures 2.11. and 2.12.). Although they show variable 

degrees of GTPase activity and no direct correlation between GppNHp-dependent 

dimer formation and activity, they coalesce at or close to a surface on the G domain 

that is part of the interdomain interfaces in both crystal forms (Figures 2.9. and 2.11.). 

Although the location of the mutations in the crystal structures and type of amino acid 

change do not allow for any obvious predictions regarding their effect on 

oligomerization or enzymatic activity, the defective dimerization upon GppNHp 

incubation and the spatial proximity suggest a common mode of action. 

Taken together, the subset of atlastin-1 mutations with reduced dimerization 

propensity further support a dimer-dependent molecular mechanism for atlastin 

function and reveal a prominent mode of action for genetic alterations that contribute 

to HSP pathogenesis. Despite the measurable reduction in dimer formation upon 

incubation with GppNHp, the transition state dimers appear to be less affected by the 

mutations (with the exception of the nucleotide-binding-deficient mutant R217Q), 

which may explain why changes in GTPase activity are less pronounced. 

Alternatively, nucleotide binding and dimerization may not be necessarily 

interdependent and could potentially constitute distinct mechanisms underlying HSP.  
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Figure 2.10. Solution properties of HSP-associated mutations introduced in the 
cytoplasmic domain of atlastin-1. (A) Nucleotide-dependent dimerization of HSP-associated 
atlastin-1 mutants. Molecular weight distributions for GppNHp- or AlFx-bound atlastin-1 
variants (residues 1–446) were determined by static multiangle light scattering. Errors 
correspond to calculated errors in the fitting function parameters. (B) GTPase activity. GTPase 
activity was determined by measuring the production of inorganic phosphate upon GTP 
hydrolysis (see Material and Methods for details). (C) Protein stability was determined based 
on measurements of the melting temperature by circular dichroism spectroscopy. 
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In addition, other mutants showed only modestly decreased GTPase activity and near 

wild-type dimerization (green spheres, Figures 2.9. and 2.10.; Table 2.2.), indicating 

that they confer defects in some other, yet unknown aspect.  

 

 

 

Figure 2.11. Characterization of HSP-associated mutations in atlastin-1. (A) Mapping of 
HSP mutant residues that affect dimerization (red and orange) onto the crystal structures of 
atlastin-1. Protomers are colored in light and dark gray. R217 (red) is located in the nucleotide-
binding pocket. Dimer interface mutant R77 (blue) is not associated with HSP but was chosen 
based on the crystallographic dimer interface. (B) Nucleotide-dependent dimerization of HSP-
associated atlastin-1 mutants. Molecular weight distributions for GppNHp- or AlFx -bound 
atlastin-1 variants (residues 1–446) were determined by static multiangle light scattering. 
Errors correspond to calculated errors in the fitting function parameters. (C) GTPase activity. 
GTPase activity was determined by measuring the production of inorganic phosphate upon 
GTP hydrolysis. 
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Figure 2.12. SEC-MALS data for selected HSP mutants. SEC-MALS of atlastin-1 Q191R, 
R217Q, H247R, Y336H, and M408T bound to GDP•AlFx (Left) or GppNHp (Right). Plotted on the 
left Y axis, the signal from the 90°-scattering detector and refractive index detector is shown 
in a solid colored line and a black dashed line, respectively. On the right Y axis, average 
molecular weight as calculated every second across the protein elution peak is shown as black 
circles. Theoretical molecular weights based on primary sequence for the monomer and dimer 
are indicated as horizontal, dashed lines. Proteins (20 µM) were incubated with nucleotides (2 
mM) prior to SEC-MALS analysis in a mobile phase lacking nucleotides. 
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CONCLUSIONS 

In summary, the structural and functional analyses revealed a mechanistic 

conservation between atlastin and other dynamin superfamily proteins with regard to 

overall architecture, in particular the position of the respective stalk-like protrusions 

relative to their G domains, and nucleotide-dependent homodimerization. The 

apparent differences in the solution structures in different nucleotide-bound states, the 

distinct conformations observed in the two different crystal forms, and the unique 

behavior of several HSP-associated mutants lead one to speculate that the overall 

structure and function of atlastin is coupled to its GTP hydrolysis cycle. The indication 

that GppNHp and GDP•AlFx induce distinct conformational and functional states is 

analogous to both Gα subunits and small GTPases where these differences are 

attributed to the GTP-bound ground state and transition state for GTP hydrolysis (42, 

43). 

The antiparallel orientation of the middle domains in one of the crystal 

structures (form 2) and the elongated, dimeric solution states suggests that atlastin 

monomers from opposite membranes may engage in this oligomerization. GTP 

hydrolysis and/or the transition state may trigger a conformational change in atlastin, 

facilitating the formation of three-way junctions and membrane fusion (14, 15). The 

association with highly curved membranes and interactions with other proteins will 

further contribute to these processes (14, 20). Such interactions could trigger allosteric 

changes across the middle domain modulating atlastin’s GTPase activity, similar to 

the autoregulatory role of the PH domain in dynamin (7). Although we have not 

observed the second crystalline conformation (form 1) in solution, we speculate it may 
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be relevant in the native environment of the protein and could represent an end state 

(and/or inhibited, GDP-bound state). 

Many mutations occurring in HSP patients impair oligomerization of atlastin, 

nucleotide hydrolysis, or both. Given the minor impact of several mutants on protein 

stability, it is likely that they retain the ability to interact with some (if not all) binding 

partners in the cell. Mixed dimer formation and engagement in dysfunctional 

complexes may affect the wild-type alleles, providing a rationale for the dominant 

phenotype of the mutations. Although many mutations coalesce in the region between 

the nucleotide-binding site and the intramolecular domain interface, their exact 

pathological mechanism remains elusive. One hypothesis awaiting further analysis is 

that these alterations may perturb communication between the G domain and middle 

domain during the nucleotide-dependent, functional cycle. 

Other mutations associated with HSP that occur in regions outside of the 

crystallized fragment would be predicted to affect atlastin’s stability in the membrane 

as well as its interactions with the reticulon and DP1 families (e.g., mutations near or 

in the transmembrane domains; Y459C, G469A, G482V, R495W) (14, 15). Furthermore, 

there are several mutations within the C-terminal domain of atlastin, including 

missense or nonsense mutations, that truncate the C terminus (A492fsX522, 

E502fsX522, I507fsX522, S519N), which would be expected to affect atlastin’s 

interactions with other binding partners, such as spastin, as has been shown previously 

for I507fsX522 (21). 
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CHAPTER 3 

STRUCTURAL BASIS FOR THE CONFORMATIONAL SWITCHING AND 

GTP LOADING OF THE LARGE G PROTEIN ATLASTIN§ 

 

ABSTRACT 

Atlastin, a member of the dynamin superfamily, is known to catalyze 

homotypic membrane fusion in the smooth endoplasmic reticulum (ER). Recent 

studies of atlastin have elucidated key features about its structure and function; 

however, several mechanistic details, including the catalytic mechanism and GTP 

hydrolysis-driven conformational changes, are yet to be determined. Here, we present 

the crystal structures of atlastin-1 bound to GDP!AlF4
- and GppNHp, uncovering an 

intramolecular arginine finger that stimulates GTP hydrolysis when correctly oriented 

through rearrangements within the G domain. Utilizing Förster Resonance Energy 

Transfer, we describe nucleotide binding and hydrolysis-driven conformational 

changes in atlastin and their sequence. Furthermore, we discovered a nucleotide 

exchange mechanism that is intrinsic to atlastin’s N-terminal domains. Our results 

indicate that the cytoplasmic domain of atlastin acts as a tether and homotypic 

interactions are timed by GTP binding and hydrolysis. Perturbation of these 

mechanisms may be implicated in a group of atlastin-associated hereditary 

neurodegenerative diseases. 

 

_______________________ 
§ The following sections are reproduced from: Byrnes, L.J., Singh, A., Szeto, K., Benvin, N.M., 
O’Donnell, J.P., Zipfel, W.R., and Sondermann, H. 2013. Structural basis for the conformational 
switching and GTP loading of the large G protein atlastin. EMBO J. 32 pp369-384, doi: 
10.1038/emboj.2012.353, with modifications to conform to the required format. LJB and HS conceived 
the project. LJB, AS, KS, WRZ, and HS designed the experiments. LJB, AS, KS, NMB, and HS 
performed the experiments. LJB, AS, KS, JPO, WRZ, and HS analyzed the data. LJB and HS wrote the 
paper. 
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INTRODUCTION 

Hereditary Spastic Paraplegia (HSP) is a progressive spastic weakness of the 

lower extremities due to the degeneration of axons in corticospinal motor neurons at 

their distal ends (1, 2). While it is a rare disease, affecting 2–7.4 in 100 000 people (1, 

3-5), extensive genetic studies have revealed several hot spots associated with the 

disease, with >50% of cases caused by mutations in just three loci: Spastin-1, REEP-1, 

and atlastin-1 (5, 6). Atlastin-1/SPG3A mutations account for ~10% of autosomal 

dominant HSP cases; however, this locus is the primary site for mutations in children 

affected with the disease (7). Mutations in atlastin-1 have also been detected in 

patients suffering from hereditary sensory neuropathy (HSN), a related 

neurodegenerative disorder affecting lower motor neurons (8). 

Atlastin-1 is found in neurons at the cis-Golgi, endoplasmic reticulum (ER), 

and axon growth cones, where it is part of a complex containing spastin, reticulons, 

and REEP proteins (9-12). Atlastins and reticulons are involved in generating and 

maintaining the tubular ER network (11-15), where atlastin promotes homotypic 

fusion of membranes, generating three-way junctions (11, 15). On a molecular level, 

atlastins are related to large G proteins such as dynamin, MxA, GBP1, and mitofusin, 

many of which are involved in membrane fission or fusion (16). Structural studies on 

near full-length dynamin, MxA, and GBP1 revealed remarkable similarities to atlastin 

regarding the molecular architecture of the G proteins (17-25). All the proteins of this 

family contain a globular G domain followed by an α-helical, stalk-like middle 

domain (Figure 3.1.A). For dynamin, the prototypical member of this family, GTP 

hydrolysis is coupled to conformational changes that alter the position of the stalk-like 
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domain (called the bundle signaling element or BSE) relative to the G domain dimer 

(22-24), yet full activation requires a membrane-dependent, higher order assembly 

(22-24, 26-32). 

A prominent feature of several dynamin superfamily proteins is the 

oligomerization-dependent activation of their GTPase activity, which is in contrast to 

small GTPases that rely on the action of heterologous GTPase activating proteins (15, 

33-35). Recent studies yielded the first crystal structures of atlastin (forms 1 and 2 

with a ‘disengaged’ and ‘engaged’ middle domain, respectively, relative to their G 

domain; Figure 3.1.B), revealing two dimeric conformations that presumably represent 

pre- and post-fusion states and hint at an overall conserved mechanism (20, 21). These 

studies also suggested a model by which GTP binding tethers two opposing 

membranes via G domain dimerization, with GTP hydrolysis being coupled to 

intramolecular conformational changes that drive membrane fusion (36). However, the 

structures depict only GDP-bound states, hence, the exact catalytic mechanism for 

atlastin and the concurrent conformational switching upon GTP hydrolysis remained 

unknown. It has also been established that the middle domain is required for 

dimerization and GTPase activity (37-39), the reason for which is not obvious from 

the initial models. In addition, a recent report demonstrated, using single-particle 

electron microscopy, that atlastin-2 bound to the GTP-mimic GppNHp adopts both the 

presumed pre- and post-fusion conformations, the latter of which depends on an 

intramolecular salt bridge between the middle domain and the adjacent linker (37). 

The authors argued that GTP hydrolysis might not be the direct trigger for 

conformational changes leading to fusion. While this presents an apparent 
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contradiction to earlier studies (20, 21), we now present an alternative model based on 

novel crystal structures and approaches that report on dynamic changes and kinetics 

within the cytoplasmic, N-terminal module of human atlastin-1. Our studies address 

several fundamental questions regarding the intrinsic regulation of atlastin with 

relevance to the mechanism of membrane fusion, in particular: (1) the molecular basis 

for GTP hydrolysis; (2) the conformational changes and their timing along atlastin’s 

GTPase cycle; and (3) the surprising discovery of an intrinsic, middle domain-

mediated mechanism for GTP loading in atlastin. 

 

MATERIALS AND METHODS 

Protein expression and purification 

The cytoplasmic domain (residues 1-446), G domain (1-339), middle domain 

(340-446), truncated middle domain (1-366), and C-terminal ECFP/EYFP fusions 

(atlastin1 1-446 followed by a short linker containing amino acid sequence GSTSTG 

followed by either ECFP or EYFP) of human atlastin-1 were amplified by standard 

PCR and cloned into a modified pET28a expression plasmid (Novagen) yielding N-

terminally hexahistidine-tagged SUMO fusion proteins. The hexahistidine-tagged 

SUMO-moiety was cleavable using the protease Ulp-1 from S. cerevisiae. The 

cytoplasmic domain (1-446) used for crystallization of wild-type atlastin was cloned 

into pET21, yielding C-terminally hexahistidine-tagged protein, which was not 

cleaved during purification. 

Proteins were overexpressed in E. coli BL21 (DE3) (Novagen) or T7 Crystal 

Express (NEB) cells, respectively. For the expression of native proteins, cells were 
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grown in Terrific Broth (TB) media supplemented with 50 µg/ml kanamycin (for 

expression from pET28) or 100 µg/ml ampicillin (for expression from pET21) at 

37°C. At an optical density corresponding to an absorbance of 0.8-1.0 at 600 nm 

(OD600), the temperature was reduced to 18°C, and protein production was induced 

with 0.5 mM IPTG. After 16 hours, cells were harvested by centrifugation, 

resuspended in NiNTA buffer A (25 mM Tris-HCl, pH 8.5, 500 mM NaCl and 20 mM 

imidazole), and flash-frozen in liquid nitrogen. 

After cell lysis by sonication and removal of cell debris by centrifugation, clear 

lysates were loaded onto NiNTA Superflow (Qiagen) equilibrated in NiNTA buffer A. 

The resin was washed with 20 column volumes of NiNTA buffer A, and proteins were 

eluted three times with 2 column volumes of NiNTA buffer A supplemented with 500 

mM imidazole. Proteins were buffer exchanged into desalting buffer (25 mM Tris-

HCl, pH 7.5, 400 mM NaCl, 5mM β-mercaptoethanol), with proteins expressed in 

pET21 constructs immediately subjected to size exclusion chromatography. In the case 

of proteins expressed with a SUMO moiety, affinity tags were removed by incubation 

with the yeast protease Ulp-1 at 4°C overnight. Cleaved proteins were collected in the 

flow-through during NiNTA affinity chromatography, and were subjected to size 

exclusion chromatography on a Superdex 200 column (GE Healthcare) equilibrated in 

gel filtration buffer (25 mM Tris-HCl, pH 7.5, 100 mM NaCl). Proteins were 

concentrated on a Centricon ultrafiltration device (10 kDa cutoff; Millipore) to a final 

concentration of approximately 0.5-1 mM. Protein aliquots were flash frozen in liquid 

nitrogen and stored at -80°C. 
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Site-directed mutagenesis was carried out using Quikchange (Agilent) 

following the manufacturer’s instructions, followed by validation through DNA 

sequencing. 

 

Crystallization, data collection, and structure solution 

Crystals were obtained by sitting drop vapor diffusion mixing equal volumes 

of protein (10–30mg/ml) and reservoir solution followed by incubation at 20°C. Initial 

crystals were obtained using atlastin-1 protein in gel filtration buffer in the presence of 

2 mM GppNHp (Sigma) and 4 mM MgCl2. In the case of GDP!AlF4
-, crystals were 

obtained in the presence of 2 mM GDP (Sigma), 4 mM MgCl2, 2 mM EGTA, 2 mM 

AlCl2, and 20 mM NaF. Rod-shaped crystals belonging to space group P21212 

(atlastin-11–446-N440T) grew in reservoir solution containing 0.2M lithium citrate 

tribasic tetrahydrate and 20% PEG-3350 (for both GppNHp and GDP!AlF4
- crystals). 

For cryo-protection, crystals were soaked in reservoir solution supplemented with 25% 

glycerol. For proteins crystallizing in space group P212121 (atlastin-11–446-Chis), the 

reservoir solution contained 0.1 M imidazole, pH 7.0 and 20% v/v Jeffamine ED-

2001, pH 7.0 (GppNHp) or 0.2 M ammonium phosphate dibasic and 20% PEG-3350 

(GDP!AlF4
-). Crystals were cryo-protected by soaking in the crystallization solutions 

supplemented with 20% xylitol. Cryo-preserved crystals were flash-frozen and stored 

in liquid nitrogen. Data were collected on frozen crystals at 100 K. 

Data reduction was carried out with the software package HKL2000 (40). 

Phases were obtained either by Single-wavelength Anomalous Dispersion (SAD) or 

Molecular Replacement (MR) methods by using the software package PHENIX (41) 
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with the isolated G and middle domains of atlastin-1 as separate search models for 

MR. Refinement in PHENIX (41) and COOT (42) yielded the final models. Data 

collection and refinement statistics are summarized in Table 3.1. Illustrations were 

made in Pymol (43). 

 

Size-exclusion chromatography-coupled multi-angle light scattering 

Purified protein (<2 mg/ml or 40 mM, injected concentration) was subjected to 

size-exclusion chromatography using a BioSep-SEC-S 3000 column (Phenomenex) 

equilibrated in MALS buffer (25 mM Tris–HCl, pH 7.5, 100 mM NaCl, 4 mM MgCl2, 

and 2 mM EGTA). Where specified, wild-type or mutant atlastin-1 was incubated with 

GDP, GppNHp, or GDP!AlFx (2 mM) for 30 min at room temperature prior to 

injection. The column was coupled to a static 18-angle light scattering detector 

(DAWN HELEOS-II) and a refractive index detector (Optilab T-rEX) (Wyatt 

Technology). Data were collected every second at a flow rate of 1 ml/min. Data 

analysis was carried out using the program ASTRA V, yielding the molar mass and 

mass distribution (polydispersity) of the sample. For normalization of the light 

scattering detectors and data quality control, monomeric BSA (Sigma) was used. 

Molecular weight distributions were determined by using the Multipeak Fitting 

Package in Igor Pro (WaveMetrics). 

 

GTPase assay 

GTPase activity was measured using the Enzchek Phosphate Assay kit 

(Molecular Probes) following the manufacturer’s instructions. Measurements were 
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carried out in a 96-well plate (Nunc) in a total volume of 250 µl. Recombinant wild-

type or mutant atlastin-1 (at concentrations 0, 0.25, 0.5, 1, 2, and 4 µM) was combined 

with 1 U/ml purine nucleoside phosphorylase (PNP), 200 µM 2-amino-6-mercapto-7-

methylpurine riboside (MESG), and provided buffer (20mM Tris–HCl, pH 7.5, 1mM 

MgCl2, 0.1mM sodium azide). The plate was incubated at room temperature for 10 

min, after which reactions were started by addition of 400 µM GTP (or alternatively, 

50 mM Tris–HCl pH 7.5 for controls). Plates were assayed at 37°C in a Powerwave 

XS microplate reader (BioTek). Absorbance at 360 nm was monitored in 30 s intervals 

for 30 min. Data were normalized to a phosphate standard curve, and initial velocities 

were calculated using the portion of the curve corresponding to the first 5% of 

consumed product. Data reported are means ± s.e.m. of three independent 

experiments. 

 

Dye labeling of atlastin-1 

Dye labeling using Alexa dyes 488-C5 maleimide and 647-C2 maleimide 

(Invitrogen) for donor and acceptor, respectively, was performed using the 

manufacturer’s guidelines. In brief, protein at a final concentration of ~80 µM was 

mixed with a 15× molar excess of the dye molecule in a final buffer composition of 25 

mM Tris–HCl, pH 7.4, 100 mM NaCl, and 0.5 mM TCEP. Protein was incubated with 

the reducing agent TCEP for ~15 min prior to mixing with dye. All reactions were 

topped off with nitrogen before sealing off the reaction tubes to reduce reactive 

oxygen species. Reactions were kept at room temperature for 2 h, followed by 

overnight incubation at 4°C, all in the absence of light. Reactions were quenched by 



 80 

the addition of 50 mM β-mercaptoethanol. Excess dye was then removed using 

Millipore concentrators (30kDa cutoff) with several rounds of buffer exchange, 

followed by determination of degree-of-labeling (DOL). All reactions used for FRET 

measurements reached a DOL of 90–110%. 

 

FRET measurements 

FRET measurements were made by mixing 1 µM of donor atlastin-1 (ECFP 

tagged or Alexa 488 labeled) and 20 µM acceptor atlastin-1 (EYFP tagged or Alexa 

647 labeled) in assay buffer (25mM Tris–HCl, pH 7.4, 100 mM NaCl, and 4 mM 

MgCl2), with or without 2 mM GTP, GDP, or GppNHp. Measurements taken for 

GDP!AlF4
- were done using 25 mM Tris–HCl, pH 7.4, 100 mM NaCl, 4 mM MgCl2, 

2 mM EGTA, 2 mM AlCl2, and 20 mM NaF with or without 2 mM GDP. 

Measurements were taken on a UV–Vis spectrofluorometer (PTI Quantamaster 40), 

exciting at 445 nm (ECFP) or 493 nm (Alexa 488) and scanning emission spectra 

between 455 and 650 nm (ECFP/EYFP) or 505 and 800nm (Alexa 488/647). All 

measurements were performed in triplicate. FRET efficiencies were calculated by 

using the emission intensity of the apo state (no nucleotide) at 473 nm (emission peak 

of ECFP) or 516 nm (emission peak of Alexa 488) as the no-FRET scenario. The 

following equation was used to calculate the FRET efficiency for equilibrium 

experiments: 

! = 1− !!"!!
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where E is FRET efficiency, FDA is the fluorescence intensity of the donor with the 

acceptor present, and FD is the fluorescence intensity of the donor without the 

acceptor. Distance estimates were calculated using the equation: 

! = 1
1+ !

!!
! 

where E is the FRET efficiency, calculated above, r is the actual distance (to be 

calculated), and R0 is the Förster distance for a particular FRET pair. For ECFP/EYFP, 

R0 is 47 Å, and for Alexa 488/647 is 56 Å. 

Kinetic FRET data were recorded using a stopped-flow instrument (Kintek SF-

2004) with submillisecond mixing dead times. A mixture of donor and acceptor 

atlastin-1 (both at 1 µM) in assay buffer were mixed with either buffer alone or buffer 

supplemented with nucleotide (2 mM GDP, GTP, GppNHp, or GTPγS) using the 

stopped-flow drive syringes. In the case of GDP!AlFx, the protein donor/acceptor 

mixture was in a buffer containing 25 mM Tris–HCl, pH 7.4, 100 mM NaCl, and 4 

mM MgCl2, 2 mM EGTA, 2 mM AlCl2, and 20 mM NaF. This was then mixed with 

this buffer supplemented with 2 mM GDP. The two solutions were mixed at a ratio of 

1:1, at a flow rate of 8 ml/s in a total cell volume of 30 µl. The cell was illuminated by 

light from a xenon arc lamp, with a monochromator used to select a narrow band 

around 445 nm (the excitation of ECFP) or 493 nm (the excitation of Alexa 488). 

Fluorescence signals from ECFP/EYFP or Alexa 488/647 were recorded using two 

independent photomultiplier tubes with appropriate filters (Chroma) in place (B460-

490, D535/25 for ECFP/EYFP; D525/50, HQ645/75 for 488/647). 
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Kinetic modeling of fast-mixing FRET 

FRET simulations were programmed and performed using MATLAB R2010b 

(Mathworks). First, time-dependent binding was modeled by simple second-order 

kinetics for dimerization constrained by the mass conservation law. Discrete time 

steps of 10 ms were used to match instrumentation resolution. The bound-state model 

for the dimer consisted of two quasi-stable configuration states: the initial dimerization 

state D1 and a relaxed dimer state D2. Transitions between these states were governed 

by a relaxation rate constant k12, the transition time t12, and a set of transition states 

D12. Finally, by assuming the proximity of conjugate labels within dimers at each 

configuration and transition state, the Förster equation was used to determine FRET 

efficiencies, and to calculate the total simulated FRET signal at each time step. A full 

description of equations used and assumptions made are described in Appendix A. 

 

N-Methylanthraniloyl (Mant)-nucleotide binding 

On and off rates of mant nucleotides (mant-GppNHp, mant-GDP, or mant-

GTP) were determined by measuring the change in fluorescence of the mant 

nucleotide over time upon mixing with atlastin-1 constructs. Using a Kintek stopped-

flow apparatus (Kintek SF-2004), a final concentration of 2.5 µM mant-GDP, mant-

GTP, or mant-GppNHp (Invitrogen) was mixed with increasing concentrations of 

atlastin-1 (10–50 µM). Mant fluorescence (λexc = 366 nm, emission filter HQ460/40M; 

Chroma) was measured and the first 500ms of data was fit to a single-exponential 

decay curve. Observed rate constants from exponential fits were plotted versus protein 

concentration, with the resulting slope of the linear fit corresponding to kon, and the y 
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intercept to koff. In parallel experiments, the off rate (koff diss.) was also directly 

measured by preloading atlastin-1 proteins with mant nucleotide and chasing with a 

high concentration (2.5 mM) of unlabeled nucleotide (GDP). The first 500ms of the 

resulting fluorescence decay curve was fit to a single-exponential decay, whose 

observed rate constant corresponds directly to the off rate (koff). All fits were 

performed using Prism 5 (GraphPad Software Inc.). Rates obtained from both 

techniques are listed in Table 3.2. 

 

RESULTS AND DISCUSSION 

Crystallization of atlastin-1 bound to GppNHp and GDP-AlF4
- 

We determined two sets of crystal structures for the N-terminal, cytoplasmic 

module of human atlastin-1 comprising the G and middle domains (residues 1–446), 

bound to a transition state analogue GDP!AlF4
- or non-hydrolysable GTP-mimic 

GppNHp (Table 3.1.). For the first set, we used the HSP disease mutant variant N440T 

(space group P21212; 4 molecules/asymmetric unit), while the second set made use of 

the wild-type protein containing a C-terminal hexahistidine tag (space group P212121; 

2 molecules/asymmetric unit). Crystallization conditions differed between the mutant 

and wild-type proteins, but for each variant the conditions were nearly identical for 

both nucleotide-bound states. The different conditions and constructs resulted in 

unique crystal packing interactions for N440T and wild-type atlastin-1 variants, 

respectively (Figures 3.2. and 3.3.). Nevertheless, the conformation of the protomers 

and dimeric assemblies within the crystals were virtually identical in all four crystal 

structures (Table 3.3.), with the exception of the identity of the bound nucleotide and  
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Figure 3.1. Structures of atlastin-1. (A) Topology of atlastin-1. The globular G domain 
(orange) is connected to the middle domain (blue) by a short linker (green). This N-terminal, 
cytoplasmic unit is followed by two transmembrane a helices (black) and a C-terminal 
amphipathic helix (grey), which has been shown to interact with the lipid membrane. (B) 
Protomer structures of crystal forms 1 and 2. The GDP-bound structures of atlastin-11–446 were 
aligned relative to their G domains (Byrnes and Sondermann, 2011). Nucleotide and Mg2+ are 
shown as sticks and spheres, respectively. (C) Protomer structures of crystal form 3. The 
GDP!AlF4

--bound form 3 structure of atlastin-11–446-N440T was superimposed on the GDP-
bound form 1 structure with the G domain as the reference. The form 1 structure is shown in 
grey and the form 3 structure is colored according to (A). Position of missense mutation in 
form 3 structure is indicated and its Cα is shown as a black sphere. An Fo − Fc omit map for 
the nucleotide (inset) is contoured at 4.0 sigma. 
 

the extreme C-termini that contain either the N440T mutation or the hexahistidine tag 

(and are involved in specific crystal lattice contacts) (Figures 3.2. and 3.3.). The 

crystallographic data suggest nucleotide-bound dimers as the biologically relevant 

unit, which is supported by size-exclusion chromatography-coupled static multi-angle 

light scattering (SEC-MALS), a method for determining the absolute molecular weight 

of particles in solution. In these experiments, there is no evidence of higher order 

oligomerization beyond dimers for the soluble, wild-type protein or the N440T mutant  



 85 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2. Crystal structure of atlastin-11-446-N440T form 3 crystal structure bound to 
GppNHp or GDP•AlF4

-. (A) Overview of asymmetric unit. Atlastin-11-446-N440T crystallizes 
as a tetramer in the asymmetric unit. An interaction of the C-terminal tail of one protomer with 
the G domain of an adjacent molecule is shown in the inset. (B) Detailed view of interactions 
of the C-terminal tail with an adjacent G domain. Residues 440-446 (grey) from molecule B 
and residues from the G domain of molecule C (yellow) that interact with them are shown as 
sticks and labeled. An Fo� − Fc omit map for the tail motif is contoured at 3.5 sigma. (C) 
Superposition of crystal form 1 and 3. The respective G domains of crystal form 1 and 3 were 
superimposed to assess whether tail packing interactions coincide with conformational 
changes in the G domain. No significant changes were observed. (D) Nucleotide binding 
pocket of form 3 crystal structures. The protein is shown in cartoon presentation, GDP!AlF4

- 
(upper panel) or GppNHp (lower panel) are shown as sticks, and Mg2+ and waters are shown 
as green and red spheres, respectively. Nucleotide Fo�− Fc omit map is contoured at 4.0 sigma. 
(E) Catalytic residues in the nucleotide binding pocket of form 3 crystal structures. The 
protein is shown in cartoon presentation except for residues that interact with the phosphates 
of the nucleotide, which are shown as sticks. GDP!AlF4

- (upper panel) or GppNHp (lower) are 
shown as sticks, and Mg2+ is shown as spheres. 
 

 

 

 

 

 

 

 



 86 

 

 

 

 

 

 



 87 

 

Figure 3.3. Crystal packing interactions. (A) Asymmetric unit and crystal packing of 
atlastin11-446-N440T bound to GppNHp or GDP!AlF4

-. The asymmetric unit contains 4 
protomers, forming an anti-parallel dimer of dimers. (B) Asymmetric unit and crystal packing 
of atlastin11-446-C-His6 bound to GppNHp or GDP!AlF4

-. The asymmetric unit contains 2 
protomers that form a very similar dimer as observed in atlastin11-446-N440T structures bound to 
the same nucleotides. 
 

variant when bound to GppNHp or GDP!AlF4
- (Figure 3.4.). We chose the atlastin 

N440T mutant bound to GDP!AlF4
- for our illustration of this particular state, yet the 

crystallographic results apply to all four structures considering the striking similarities 

between them. We refer to this state as crystal form 3. 

The structures reveal several previously unseen features that provide novel 

insights into the catalytic mechanism of atlastin-mediated membrane fusion, which  
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Figure 3.4. Atlastin-11-446-N440T oligomerization in solution. (A) SEC-MALS data for wild-
type Atlastin-11-446. The signal from the 90°-light scattering detector and refractive index 
detector are shown as colored, solid lines (apo, red; GppNHp-bound, green; GDP-bound, 
purple; GDP!AlFx-bound, orange) and black, dashed lines respectively (left Y axis). Average 
molecular weight calculations across the protein peak are shown as black circles (right Y 
axis). The theoretical molecular weight (based on primary sequence) for the monomer and 
dimer are shown as horizontal dashed lines. Proteins (30-40 µM) were incubated with 
nucleotides (2 mM) at least 30 min prior to SEC-MALS analysis. (B) SEC-MALS data for the 
N440T mutant introduced into atlastin-11-446.  
 

will be discussed in detail below. Notably, we observe clear density for the γ-

phosphate or AlF4
- moiety, in the GppNHp- and GDP!AlF4

--bound structures, 

respectively (Figure 3.1.C). Dimerization in solution is only observed in the presence 

of GppNHp or GDP!AlF4
-, but not in the apo state or when bound to GDP (21), 

indicating that we crystallized a physiologically relevant conformation. In addition, we 

observe conformational changes of the G domain’s switch regions and G domain 

dimer interface associated with GTP analogue binding. Overall, the form 3 crystal 

structure is most similar in conformation to the previously determined, GDP-bound 

form 1 structure, characterized by the middle domain being dislodged from the G 

domain, with one difference being an 18°-rigid-body rotation of the middle domain 

relative to the G domain (Figure 3.1.C). 
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Table 3.1. X-ray data collection and refinement statistics.  
 atlastin-1 

1-446, N440T 
GDP!AlF4

- 

atlastin-1 
1-446, N440T 

GppNHp 

atlastin-1 
wildtype, CHis6 

GDP!AlF4
- 

atlastin-1 
wildtype, CHis6 

GppNHp 

Data collection     
X-ray source CHESS A1 CHESS A1 CHESS A1 CHESS A1 
Wavelength (Å) 0.9771 0.9771 0.9771 0.9771 
Space group P21212 P21212 P212121 P212121 
Unit cell parameters     
     a, b, c, (Å) 129.0, 267.1, 

62.1 
132.0, 268.1, 

62.4 
49.6, 116.4, 

185.4 
49.7, 115.8, 

181.1 

     α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 
Resolution range 
(Å)a 

50-2.3 (2.38-
2.30) 

50-2.6 (2.69-
2.60) 

50-2.1 (2.18-
2.09) 

50-2.2 (2.28-
2.20) 

No. of reflections     
     Total 743,898 

(45,513) 
540,312 (44,595) 512,721 (43,745) 334,053 (9,968) 

     Unique 92,313 (7,714) 69,639 (6,656) 63,782 (6,730) 47,929 (2,167) 
Completeness (%) 95.3 (81.1) 99.7 (97.4) 98.9 (96.8) 90.3 (41.7) 
Redundancy 14.6 (3.0) 7.8 (6.7) 8.0 (6.5) 7.0 (4.6) 
I/σ (I) 35.6 (10.5) 12.3 (3.1) 23.3 (4.1) 16.1 (1.9) 
Rmeas (%) 12.0 (50.4) 16.0 (61.1) 8.1 (47.4) 10.1 (59.3) 

Refinement     
Rwork/Rfree (%) 20.6/25.6 20.1/23.6 19.9/24.9 17.3/21.8 
r.m.s. deviations     
     Bond length (Å) 0.008 0.014 0.008 0.006 
     Bond angles (°) 1.19 1.68 1.23 0.98 
No. of atoms 14,506 14,015 7,459 7,192 
     Protein 13,486 13,480 6,730 6,762 
     Ligands 212 132 68 66 
     Water 704 403 661 364 
Ave. B-factors (Å2)     
     Protein 27.8 28.2 30.7 41.5 
     Water 32.8 24.5 34.0 40.6 
Ramachandran (%)     
      Favored 99 98 98 98 
      Outliers 0 0 0 0.1 
aValues in brackets are for the highest resolution bin.   
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Table 3.2. Nucleotide binding to human atlastin-1. !
Protein Nucleotide kon (1/µM s) koff (1/s) koff

diss. (1/s) Kd (µM)!
Atlastin-11-446 wt GDP 0.40±0.015 4.80 ±0.384 2.31 ±0.171 5.77 ±0.479!
 GTP 0.32±0.021 4.05±0.594 3.72±0.287 11.63±1.18!
 GppNHp 0.51±0.079 19.36±2.23 20.63±3.285 40.45±8.99!
     !

Atlastin-11-446 R77A GDP 0.34±0.013 5.92±0.302 2.77±0.170 8.14±0.589!
 GTP 0.64±0.030 4.38±0.828 8.02±0.166 12.53±0.642!
 GppNHp 0.70±0.093 5.08±2.73 4.25±1.465 6.07±2.243!
     !

Atlastin-11-339 wt GDP 0.20±0.009 7.21±0.214 4.53±0.592 22.65±3.13!
 GTP ND ND ND ND!
 GppNHp ND ND ND ND!
     !

Atlastin-11-446 wt GDP 0.108±0.010 8.30±0.245 6.55±0.673 60.65±8.39!
+ GTP 0.055±0.040 9.34±1.24 7.30±4.47 132.7±126.2!

Atlastin-1340-446 wt GppNHp ND ND ND ND!
     !

Atlastin-11-446 wt GDP 0.086±0.010 9.07±0.252 8.12±0.674 94.42±13.49!
+ GTP ND ND ND ND!

Atlastin-1340-446 M347E GppNHp ND ND ND ND!
     !

Atlastin-11-366 wt GDP 0.128±0.020 8.65±0.520 6.36±0.551 49.69±8.88!
 GTP 0.153±0.041 7.93±1.11 7.12±2.865 46.54±22.50!
 GppNHp ND ND ND ND!
     !

Atlastin-11-446 M347E GDP 0.186±0.010 5.63±0.165 4.13±0.108 22.2±1.33!
 GTP 0.128±0.027 4.29±0.661 4.21±1.00 32.9±10.45!
 GppNHp ND ND ND ND!
Abbreviations: ND, not detected; wt, wild type. amant derivatives were used to determine on and 
off rates using stopped-flow fluorescence spectroscopy. !
 
Table 3.3. Comparison of G and middle domains in atlastin-1 crystal structure. !
Protomer RMSD:     

 C-His GppNHp C-His GDP!AlF4
- N440T GppNHp N440T GDP!AlF4

- 
C-His GppNHp ✕ 0.209 0.268 0.271 
C-His GDP!AlF4

- 0.209 ✕ 0.276 0.265 
N440T GppNHp 0.268 0.276 ✕ 0.157 
N440T GDP!AlF4

- 0.271 0.265 0.157 ✕ 
     

Dimer RMSD:     
 C-His GppNHp C-His GDP!AlF4

- N440T GppNHp N440T GDP!AlF4
- 

C-His GppNHp ✕ 0.220 0.301 0.320 
C-His GDP!AlF4

- 0.220 ✕ 0.335 0.310 
N440T GppNHp 0.301 0.335 ✕ 0.163 
N440T GDP!AlF4

- 0.320 0.310 0.163 ✕ 
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Extensive dimerization in the GppNHp and transition state-bound structure 

Distinct crystallographic dimers of GDP-bound atlastin-1 were apparent in the 

previously determined structures (form 1, ‘relaxed-parallel’; form 2, ‘extended’; 

Figure 3.5.A) (20, 21). Both had dimerized G domains, but they differed in the spatial 

arrangement of their middle domains. In the form 2 dimer, the middle domains fold 

back onto and are engaged with their respective G domains, with the C-termini 

pointing in opposite directions. In contrast, the protomers in the form 1 dimer are 

crisscrossed with the middle domains running in parallel without interacting with each 

other. Despite the new form 3 dimer having similar topology to the original GDP-

bound form 1, the interfaces are quite different. In general, the interfacial area is larger 

in the structures of atlastin bound to GppNHp and GDP!AlF4
- than in the GDP-bound 

models (3852 versus 2797 Å2), both considering the G domain dimerization as well as 

the interactions between the middle domains (G domain dimer: 1886 versus 1226 Å2; 

linker/ middle domain dimer: 1257 versus 406 Å2). The middle domains in the parallel 

dimers interact at the crossover point, which involves the linker between the G and 

middle domains (Figure 3.5.). In addition, the interfacial surface extends to the first 

and third helix of the middle domains in the form 3 dimer (Figure 3.5.B), forming a 

tight-parallel state with respect to middle domain packing and orientation, 

respectively. The more extensive buried surface area in the tight-parallel form 3 dimer 

is consistent with atlastin’s ability to dimerize in solution in the presence of GppNHp 

and GDP!AlF4
- (Figure 3.4.A; (21)). 
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Figure 3.5. Crystallographic dimers of atlastin-11–446. (A) Atlastin-1 dimers. 
Crystallographic dimers observed in crystal form 2 (extended, P212121 symmetry, left), form 1 
(relaxed-parallel, P6522 symmetry, middle), and form 3 (tight-parallel, P21212 symmetry, 
right) are shown. Bound nucleotides and metal ions are shown as sticks and spheres, 
respectively. (B) Crystal form 3 dimer interface. Interface residues are shown in color on the 
surface of one half of the dimer. 

 

The catalytic mechanism of atlastin-1 

 As with other G proteins, binding of GTP and transition state analogues, 

GppNHp or GDP!AlF4
-, respectively, has profound effects on the conformation of the 

switch regions within the G domain of atlastin (Figure 3.6.). While the GDP-bound G 

domains adopt a somewhat open conformation with regard to the nucleotide-binding 

pocket, switch motifs G2 (switch 1) and G3 (switch 2) in the newly determined 
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structures undergo major conformational changes, folding over the phosphate and 

AlF4
- moieties (Figure 3.6.A). The conformational change positions R77 of the G1 

motif (P-loop) above the phosphate moiety, with the guanidinium group interacting 

with the α- and γ-phosphate (or AlF4
-) of the nucleotide (Figure 3.6.B), establishing its 

role as a catalytic arginine finger. R77 is conserved in the atlastin and GBP families of 

dynamin-related proteins, but not in dynamins, mitofusins, MxA, or Sey1p, a 

functional atlastin paralogue in yeast (Figure 3.6.A; (11)). This observation suggests 

that GBP and atlastin are more closely related and use an intramolecular arginine 

finger, whereas Sey1p employs a catalytic mechanism potentially involving an 

accessory metal ion and residues of an adjacent G domain within a dimeric assembly, 

as has been described for dynamin (19). 

It is worth noting that in the GDP-bound structures, the side chain of R77 is 

surface exposed and forms a salt bridge with a glutamate residue of an adjacent G 

domain, and hence is central to the G domain dimer interface in these structures (20, 

21). In our previous study, we introduced a charge-reversal mutation at position R77 

(R77E) to probe its involvement in dimerization of the N-terminal, cytoplasmic module 

used for crystallization. We noticed a markedly destabilized GppNHp-bound dimer 

and no dimerization in the presence of GDP!AlFx (21). The mutant protein is also 

devoid of enzymatic activity and binds nucleotide poorly (20, 21). Here, we 

introduced a more subtle mutation by replacing R77 with alanine. In contrast to the 

R77E mutant, simple removal of the side chain (R77A) has little effect on nucleotide-

dependent dimerization in light scattering-based assays (Figure 3.6.C). Both wild-type 
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Figure 3.6. Catalytic mechanism of atlastin-1. (A) Conformational changes upon GTP 
analogue binding. The conformational changes in the nucleotide binding site between GDP-
bound form 1 (grey) versus GDP!AlF4

--bound form 3 (colored) are shown after 
superpositioning of the respective G domains. Nucleotide binding and switch motifs (motifs 
G1–G4) of the form 3 crystal structure are colored in shades of blue. On the right, a sequence 
alignment of several dynamin superfamily members shows conserved regions involved in 
nucleotide binding and hydrolysis. Strictly conserved residues are highlighted in green. 
Residues shown in (B) are marked with an asterisk. (B) Residues involved in nucleotide 
hydrolysis. The nucleotide binding pocket of crystal form 3 (upper) is shown, with residues 
making direct or indirect contacts with the phosphate groups of the nucleotide analogue are 
shown as sticks. Mg2+ is shown as a green sphere. The attacking water molecule (labeled ‘aw’) 
and Mg2+-coordinating water molecules are shown as red spheres. Mutation of R77 to alanine 
abolishes GTPase activity (lower panel). The GTPase activity was determined by measuring 
the production of inorganic phosphate over time at various protein concentrations. (C) 
Nucleotide-dependent oligomerization of atlastin-11–446-R77A SEC-MALS data for wild-type 
(left panels) and mutant (R77A, right panels) atlastin-11–446 is shown. The signal from the 90°-
light scattering detector and refractive index detector is shown as colored, solid lines (apo, red; 
GppNHp bound, green; GDP bound, purple; GDP!AlFx bound, orange) and black, dashed 
lines, respectively (left Y axis). Average molecular weight calculations across the protein peak 
are shown as black circles (right Y axis). The theoretical molecular weight (based on primary 
sequence) for the monomer and dimer is shown as horizontal dashed lines. Proteins (30–40 
µM) were incubated with nucleotides (2 mM) at least 30 min prior to SEC-MALS analysis. 
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atlastin and the R77A mutant variant form dimers in the presence of GppNHp and 

GDP!AlFx, but are monomeric in GDP or in the absence of any nucleotide. Yet, R77A 

mutant protein has negligible GTPase activity of 0.1M µM Pi/min/µM when compared 

to 4.1mM µM Pi/min/µM for wild type (Figure 3.6.B), corroborating the role of R77 as 

atlastin’s arginine finger. Based on the structural and mutagenesis data, one cannot 

rule out the possibility that R77 may have a dual function as an interfacial residue as 

well as a catalytic residue. 

Thus far, we established that crystal form 3 depicts a catalytically competent, 

dimeric state of atlastin. Together with the observation of form 1-like, relaxed-parallel 

atlastin-2 dimers bound to GppNHp in electron micrographs (37), these new structures 

deviate from our modeling of small-angle X-ray scattering (SAXS) data that indicated 

GppNHp- and transition state analogue-bound atlastin adopting an extended 

conformation in solution, more similar to the crystal form 2 dimer (21). Yet, the fits 

between the crystallographic models and the solution scattering data were imperfect, 

suggesting either the presence of an alternative conformation or an ensemble of 

conformations in solution. Indeed, modeling of the SAXS data with multiple 

conformations (e.g., form 1, 2, and 3 dimers) improves the fits significantly, and 

points to a conformational heterogeneity of GppNHp- and GDP!AlF4
--bound atlastin-

1 (data not shown). 
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Measuring middle domain dimerization in atlastin via Förster Resonance Energy 

Transfer 

While we revealed the catalytic core of atlastin, it is less clear what functional 

state the new crystal form 3 structure depicts and what role GTP hydrolysis plays 

during membrane fusion. The aforementioned studies focused on states that were 

bound to non-hydrolysable nucleotide analogues, limiting the insight into the 

molecular consequences of catalysis. To further investigate the solution conformation 

of atlastin and to later measure the kinetics of conformational changes within the 

dimer, we developed a Förster Resonance Energy Transfer (FRET)-based assay. 

Based on the crystal structures, we would predict that the extended form 2 dimer 

would not support FRET between fluorescent probes fused to the distal tips of the 

middle domains, while in the parallel dimers (forms 1 and 3) the fluorophores would 

come into close proximity allowing FRET to occur. We fused ECFP or EYFP to the 

C-terminus of the middle domain using a short linker segment to increase the 

rotational freedom of the fluorescent proteins (human atlastin-1, residues 1–446; 

linker: GTSTSG). Fusion proteins showed dimerization propensity similar to the 

parent proteins without the fluorescent moiety when analyzed by SEC-MALS, with 

dimerization occurring in the presence of GppNHp and GDP!AlFx, but not in GDP or 

in the absence of any nucleotide (Figure 3.7.B). In addition, GTPase rates were almost 

identical (Figure 3.7.C) indicating proper functionality of the proteins used in the 

FRET assays. 

First, we measured FRET at equilibrium in the presence of different 

nucleotides (Figure 3.7.D and E). Based on previous data, we predicted that no FRET  
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Figure 3.7. Atlastin-1 middle domain FRET using C-terminal ECFP/EYFP fusions. (A) 
Experimental design of measuring middle domain dimerization. Cartoon depiction of 
fluorescent protein-labeled atlastin-11–446 in various crystallographic dimer conformations. 
Estimated length measurements are based on the crystal structures shown in Figure 3.5.A. (B) 
Nucleotide-dependent dimerization of atlastin-11–446-ECFP/ EYFP-fusion proteins. Molecular 
weight fractions for GppNHp- or GDP!AlF4

--bound atlastin-1 were determined by SEC-
MALS and fitted using the Multipeak Fitting Package in Igor Pro. Error bars correspond to 
calculated errors in the fitting function parameters. (C) GTPase activity atlastin-11–446-
ECFP/EYFP-fusion proteins. GTPase activity was determined by measuring the production of 
inorganic phosphate over time upon GTP hydrolysis at various protein concentrations. (D) 
Emission spectra of atlastin-11–446-ECFP/atlastin-11–446-EYFP mixtures at equilibrium. Protein 
(20µM total, 1:20 ratio of donor to acceptor) was mixed with either buffer or nucleotide for at 
least 20min prior to measurement, and was excited at 445 nm (apo, red dashed line; GDP, 
purple; GppNHp, green). (E) FRET efficiencies. FRET efficiencies of wild-type (black) and 
R77A mutant (white) atlastin-11–446-ECFP/EYFP in the presence of various nucleotides were 
calculated as stated in Materials and methods. (F) FRET efficiency versus time of wild type 
and mutant R77A in the presence of GTP. Either wild-type (dark blue) or mutant R77A (light 
blue) atlastin-11–446-ECFP/EYFP were mixed with an excess of GTP. Emission spectra were 
measured immediately after mixing, every 2 min up to 10 min, at 15 min, and at 30 min. The 
sample was then spiked with additional GTP, mixed, and measured again. Lamp shutters were 
closed in between measurements. A black dashed line represents the FRET efficiency of wild-
type FRET pair in the presence of GppNHp at equilibrium. 
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would occur in the presence of GDP or absence of any nucleotide and there would be 

an increase in FRET efficiency in the presence of GTP or GTP analogues, although it 

was not clear to what extent or time-scale. Indeed, no change in either donor (ECFP) 

or acceptor (EYFP) fluorescence was detected between the apo state and the GDP-

bound state (FRET efficiency of <0.02%). For incubations in the presence of GppNHp 

or GDP!AlFx, we observed a decrease in donor fluorescence intensity and 

concomitant increase in acceptor fluorescence intensity, indicating robust FRET, with 

the FRET efficiency being comparable in both samples (30% in GppNHp and 22% in 

GDP!AlFx). Using the FRET efficiencies obtained from the measurements in the 

presence of GppNHp and GDP!AlFx, average distances of 54 and 57 Å were 

determined, respectively. In general, the FRET efficiency depends on the distance 

between the donor and acceptor fluorophores but also on the fraction of proteins in an 

FRET-competent state, and we cannot distinguish between the relative contributions 

with the current assay. Nevertheless, the apparent distances establish that the middle 

domains come into close proximity, at least for a fraction of the population, within 

atlastin dimers in solution. 

Middle domain-mediated FRET was higher in GDP!AlFx and GppNHp, or for 

the catalytically inactive R77A mutant in GTP than that observed for wild-type 

atlastin-1 in the presence of GTP (Figure 3.7.F). Since GTP will be hydrolyzed 

efficiently by atlastin-1 over the course of the assay, a lower FRET efficiency can be 

explained by sample heterogeneity and by exhaustion of the available GTP pool and a 

build-up of GDP, which does not support dimerization and therefore FRET. This 

argument was corroborated by the observation that FRET decreased over time in 
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solution containing GTP and reached a minimum after about 10 min under the chosen 

conditions (Figure 3.7.F). Addition of GTP at a later time point brought the signal up 

again to the initial value. The aforementioned differences in apparent FRET maxima 

may be due to fast rates of hydrolysis and the fact that GTP-bound wild-type atlastin 

likely populates different conformations than the catalytically inactive mutant. It may 

also indicate that the FRET-competent state is rather short-lived for a nucleotide 

hydrolyzing system. 

 

Kinetics of middle domain dimerization 

The equilibrium FRET data suggest that at least a fraction of atlastin resides in 

the more compact conformation, characterized by parallel middle domains (crystal 

form 1 or 3), when bound to GppNHp or GDP!AlF4
- (Figure 3.7.). In addition, it 

appears that the states interconvert over time, suggesting that the protein may populate 

several conformations. To determine the kinetics of this conformational switch, we 

turned to rapid-mixing fluorescence measurements. An equimolar mixture of ECFP- 

and EYFP-fusion proteins (0.5µM each, final concentration) was mixed with buffer or 

buffer containing an excess concentration of nucleotide (1mM final concentration) 

using the syringe drive from a submillisecond-dead time stopped-flow instrument, and 

the subsequent changes in donor and acceptor fluorescence were monitored 

simultaneously over time. 

Both donor and acceptor fluorescence traces showed little to no change when 

the FRET pair was mixed with either buffer alone or GDP-containing buffer. 

However, after mixing with GTP, GppNHp, GTPγS, or the transition state analogue 
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GDP!AlFx, the proteins exhibited concurrent, inverse changes of donor and acceptor 

fluorescence intensity, indicating FRET (Figures 3.8.A and 3.9.A). When incubated 

with GppNHp, GTPγS, or GDP!AlFx, fluorescence intensities change gradually over 

about a 10-min period. In contrast, when the FRET pair is mixed with GTP, there is a 

rapid decrease in donor fluorescence and simultaneous increase in acceptor 

fluorescence, with maximal FRET being reached after only ~2s. Subsequently, the 

system relaxes to an intermediate FRET level before it drops off after several minutes 

when the GTP pool is consumed (Figures 3.7.F and 3.8.A). Since the on-rates of 

nucleotide binding for both GTP and GppNHp are approximately the same (Table 

3.2.), this sharp difference in timescale can be explained by a driving force incurred by 

GTP hydrolysis. In addition, the unique appearance of the minimum/maximum 

observed in the donor/acceptor time trace with GTP can possibly be rationalized by an 

initial synchronization of the GTP hydrolysis reaction, where the dimer takes on a 

very close conformation (i.e., the tight-parallel form 3 conformation; Figure 3.5.A) 

followed by a more relaxed FRET state (i.e., the relaxed-parallel form 1 conformation; 

Figure 3.5.A), possibly coupled with post-hydrolysis events such as phosphate release. 

Although dimerization of the catalytically inactive mutant R77A has been 

observed in light scattering and steady-state FRET experiments, the kinetics appear to 

be rather slow (Figure 3.8.A, right panel), indicating a crucial role of the arginine 

finger in the catalytic mechanism and conformational switching. Interestingly, binding 

on-rates of fluorescently labeled nucleotides are comparable for wild-type and R77A  
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Figure 3.8. Kinetics of atlastin-1 middle domain FRET. (A) Stopped-flow FRET 
measurements. A mixture of atlastin-11–446-ECFP/EYFP fusion proteins (1 µM each) was 
prepared in the absence of nucleotide, and mixed 1:1 with either buffer (apo) or nucleotide-
containing buffer (GDP, GTP, GppNHp, or GDP!AlFx; concentration: 2 mM) using a 
stopped-flow apparatus. A xenon arc lamp was set to 445 nm excitation, and two 
photomultiplier tubes with appropriate filters in place were used to measure emission output 
over time. (B) Simulations of FRET data. A three-state system was used for a hydrolysis 
competent reaction (left, green), whereas a two-state system (right, orange) was applied to 
model nucleotide-dependent processes in the absence of GTP hydrolysis. Both simulations 
start with a monomeric assembly, which is then allowed to interconvert to a tight-parallel 
(form 3-like) dimer. In the hydrolysis competent case, this dimer is then allowed to 
interconvert to a relaxed-parallel (form 1-like) dimer. 
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Figure 3.9. FRET in an alternative GTP analog and middle domain interaction 
characterization. (A) Middle and G domain time-resolved FRET following mixing with the 
GTP analog GTPγS. A mixture (1µM final) of atlastin-11-446-ECFP/EYFP fusion proteins (left 
panel) or Alexa 488 and 647-labeled atlastin-11-446 (right panel) was prepared in the absence of 
nucleotide, and mixed 1:1 with nucleotide-containing buffer (GTPγS; 2 mM) using a stopped-
flow apparatus. Experimental details are as stated in Figures 3.8A and 3.11. Time scale of 
FRET change was monitored over 10 min, and proceeds with similar kinetics to the GTP 
analog GppNHp (see Figures 3.8.A and 3.11. for comparison). (B) Middle domain titration 
increases G domain activity. With a G domain concentration of 2 µM, middle domain 
concentrations (either wild-type [squares] or point mutant M347E [triangles]) were varied from 
0.5 µM to 500 µM and the resulting change in activity compared to G domain alone was 
plotted versus the concentration of middle domain added on a log10 scale. The data were fit to 
a one-site saturated binding equation with a variable hill coefficient (fit shown in grey for 
wild-type; no fit could be determined for M347E data). The fit resulted in an apparent Kd of 
62.2±6.6 µM and a hill coefficient of 0.931±0.048. Experiments were conducted in triplicate. 
We report the means with the error bars representing SEM. (C) Middle domain point mutation 
M347E reduces the GTPase activity of the N-terminal cytoplasmic domains of atlastin-1 
(residues 1-446). The M347E mutation was introduced into the soluble atlastin-11-446 construct, 
and its GTPase activity was determined by measuring the production of inorganic phosphate 
over time upon GTP hydrolysis at various protein concentrations. 
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atlastin-11–446 (Table 3.2.), and occur at a faster timescale than dimerization for 

reactions that do not undergo catalysis. 

Using simple kinetic equations and our structural information (see Materials 

and methods and Appendix A), the time-resolved FRET data could be modeled using 

a molecular simulation, replicating the main features of the time-resolved FRET 

experiments (Figure 3.8.B). A two-state model describes well the data observed in the 

absence of hydrolysis. Addition of a third state representing a relaxed FRET 

constellation reproduces the appearance of a peak in the FRET data followed by a 

drop-off of the signal. These simulations corroborate our experimental observations, 

indicating that our interpretations provide a feasible framework. 

 

Correlation between G and middle domain dimerization kinetics 

Thus far, we defined the catalytic core of atlastin-1 and showed that nucleotide 

hydrolysis drives middle domain dimerization. Yet, considering the structural and 

FRET data, the question arises as to whether G domain dimerization precedes middle 

domain dimerization or occurs at a similar timescale. The two different scenarios have 

distinct implications for the molecular mechanism of atlastin-mediated membrane 

fusion and the role of GTP hydrolysis in the functional cycle. In the former model, 

GTP binding to atlastin would tether two opposing membranes via G domain 

dimerization, with the middle domains contributing to the interaction only 

subsequently following GTP hydrolysis, bringing the opposing membranes into closer 

proximity. In the alternative model, GTP hydrolysis would act as the timer for the 

formation of a tight tethering dimer, involving G and middle domains simultaneously. 
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Determining the sequence of G and middle domain dimerization will allow us to 

distinguish between these models. 

To measure G domain dimerization, we mutated the sole cysteine in the middle 

domain (C375A) and introduced a cysteine in the G domain at a non-conserved and 

solvent-exposed position (K295C), which, based on all three dimeric crystal structures, 

would support FRET when labeled with appropriate fluorophores (Figure 3.10.A and 

B). These atlastin-1 mutants showed similar dimerization and GTPase characteristics 

as the wild-type proteins (Figure 3.10.C and D). Alexa dyes 488-C5 maleimide (FRET 

donor) and 647-C2 maleimide (FRET acceptor) were reacted with this mutant protein. 

FRET efficiency was measured based on changes in the donor fluorescence. Although 

we report a minor FRET signal in the case of GDP (efficiency of <10%), the drop in 

donor fluorescence was not accompanied by a rise in acceptor fluorescence (Figure 

3.10.E). We interpret this result as a no-FRET state, consistent with the lack of 

dimerization in independent assays (e.g., Figure 3.4.). Importantly, in the presence of 

GppNHp and GDP!AlFx, we observed a significant drop in donor fluorescence, with a 

concomitant rise in acceptor emission, indicating robust FRET. The extent of FRET 

was comparable in both samples (51% in GppNHp and 56% in GDP!AlFx; Figure 

3.10.F), corresponding to apparent distances of 55 and 54 Å, respectively. The 

discrepancy to the measured distance of ~32 Å (between Cβ positions of K295) based 

on the crystal structures may be rationalized considering the linker length of the 

fluorophore (a C5 linker for Alexa 488 and a C2 linker for Alexa 647, which 

correspond to an additional ~8 and ~3 Å, respectively) and/or a minor fraction of 

monomeric protein. 
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Figure 3.10. Atlastin-1 G domain FRET using Alexa 488/647 dye-labeled proteins. (A) 
Experimental design of measuring G domain dimerization. Cartoon depiction of fluorescently 
labeled atlastin-11–446 in various crystallographic dimer conformations. Estimated distances 
between Cβ atoms of K295, which is mutated to a cysteine for site-specific labeling, are based 
on the crystal structures shown in Figure 3.5.A. (B) SDS–PAGE of dye-labeled atlastin-11–446. 
Atlastin-1 mutants were first labeled with Alexa 488-C5 Maleimide as described in Materials 
and methods. Two gels run side-by-side were loaded with 2.5 µg of indicated atlastin-1 
proteins. One gel was stained with Coomassie brilliant blue (protein dye). The second, 
unstained gel was imaged upon excitation of the fluorophore. (C) Nucleotide-dependent 
dimerization of dye-labeled atlastin-11–446 proteins. SEC-MALS experiments were carried out 
and analyzed as in Figure 3.7.B. (D) GTPase activity of atlastin-11–446 mutant proteins used for 
dye labeling. GTPase activity was determined as shown in Figure 3.7.C. (E) Emission spectra 
of dye-labeled atlastin-11–446 mixtures at equilibrium. Alexa Protein (20 µM total, 1:20 ratio of 
donor to acceptor) was mixed with either buffer or nucleotide for at least 20 min prior to 
fluorescence measurement (apo, red dashed line; GDP, purple; GppNHp, green). (F) FRET 
efficiencies. FRET efficiencies of wild-type (black) and R77A mutant (white) calculated for 
dye-labeled atlastin-11–446 donor/acceptor mixtures in the presence of various nucleotides were 
carried out as stated in Materials and methods. (G) G domain-mediated FRET efficiency 
versus time of wild type and mutant R77A in the presence of GTP. Either wild-type (dark 
green) or mutant R77A (light green), dye-labeled atlastin-11–446 was mixed with an excess of 
GTP essentially as in (E). Emission spectra were measured right after mixing, every 2 min up 
to 10 min, at 15 min, and at 30 min. The sample was then spiked with additional GTP, mixed, 
and measured immediately. Lamp shutters were closed in between measurements. A black 
dashed line represents the FRET efficiency of wild-type FRET pair in the presence of 
GppNHp at equilibrium. 
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In contrast to middle domain-mediated FRET that never achieved the same 

efficiencies in the presence of GTP as it did when mixed with GppNHp or the 

transition-state analogue (Figure 3.7.E and F), GTP binding to G domain-labeled 

atlastin-1 peaked at a comparable maximum value as all other dimerization-supporting 

conditions before FRET decreased again due to GTP hydrolysis (Figures 3.10.F and 

G). As before, the drop-off could be reversed by the addition of GTP (Figure 3.10.G). 

On the other hand, GTP-induced FRET via G domain dimerization of a catalytically 

inactive atlastin-1 variant (R77A) rose to a maximum value over the course of 5 min 

and remained unchanged, approaching the steady-state FRET efficiency of 

catalytically competent atlastin-1 in the presence of GppNHp (Figure 3.10.G). Taken 

together, these observations suggest that G domains adopt an invariable, stable dimer, 

unlike the middle domains that appear to exist in equilibrium between different 

dimeric arrangements or populations. 

Next, we assessed the kinetics of G domain dimerization, and compared it to 

those of middle domain-supported FRET. Interestingly, fluorescence changes in both 

the G domain and middle domain FRET pairs followed similar kinetics, with fast rises 

in FRET when mixed with GTP (second timescale), and slower kinetics when the 

catalytically dead mutant was used and/or in the presence of GDP!AlFx, GppNHp, and 

GTPγS (minute timescale) (Figure 3.9. and 3.11.). Similarly to the middle domain 

dimerization kinetics, G domain dimerization is overall slower for the inactive R77A 

mutant compared to the catalytically active parent protein. Since nucleotide binding 

kinetics and affinities are similar for active and inactive proteins (Table 3.2.), it is 

likely that the arginine finger is involved in dimerization and/or allosteric switching of  
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atlastin-1. 

These results indicate that the GTPase activity of atlastin is required to drive a 

conformational change allowing concomitant G and middle domain dimerization. 

Rather than bringing opposing membranes into close proximity via sequential steps, 

the entire N-terminal, cytoplasmic module acts as the tethering unit. Consequently, the 

tight-parallel dimer structures bound to GTP analogues (crystal form 3; Figure 3.5.) 

are likely depicting a post-hydrolysis state.  

 

Figure 3.11. Rapid-mixing, stopped-flow kinetics of G domain-mediated FRET. Alexa 
488 and 647-labeled atlastin-11–446 mixtures were prepared in a 1:1 ratio of donor to acceptor 
in a nucleotide-free buffer. Samples were mixed 1:1 with either buffer (apo) or buffer 
containing the indicated nucleotides (2 mM) using a stopped-flow apparatus. A xenon arc 
lamp was set to 493 nm excitation, and two photomultiplier tubes with appropriate filters in 
place were used to measure emission output over time. 



 109 

The middle domain promotes GTP loading at the G domain and supports dimerization 

If indeed the middle domain is released from the G domain prior to or 

concomitant with dimerization upon GTP hydrolysis, what is the relevance of the form 

2 crystal structure, in which the middle domain folds back onto the G domain? Other 

observations not explained by the current model include the impaired GTPase activity 

of the isolated G domain, its inability to dimerize in the presence of any nucleotide, 

and its failure to act as a competitive inhibitor in membrane fusion (38, 39). Likewise, 

mutations that are predicted to impact the fold of the middle domain generate a non-

functional protein, yet the exact mechanism remained elusive (37, 39). 

A comparison of form 2 and 3 crystal structures highlights differences in the 

linker region and immediate docking site of the middle domain on the G domain, 

foremost the conformation of a central helix (residues 184–204; Figure 3.12.A). This 

helix is bent in form 2, providing a cradle for the middle domain, but is straight in 

form 3 occluding the middle domain-docking site. Spatially, it is adjacent to the 

nucleotide binding regions, which may indicate an overall regulatory role. We 

speculated that it might impact nucleotide binding, which could explain the 

aforementioned gaps in our mechanistic understanding. To test this hypothesis, we 

conducted nucleotide-binding assays using mant-labeled derivatives that change 

fluorescence upon interacting with protein (mant-GDP, mant-GTP, and mant-

GppNHp). We noted that the isolated G domain binds mant-GDP readily with  
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Figure 3.12. Middle domain-mediated control of atlastin’s GTPase activity. (A) 
Comparison of the G-middle domain interface in form 2 and form 3 crystal structures. The G 
domain of atlastin-1 is shown in orange except for switch regions (shades of blue) and 
residues 184–204 (dark red), which form a helix that changes its conformation between the 
form 2 and form 3 (or form 1) structures. In the GDP-bound form 2, the helix is bent to 
accommodate the first helix of the middle domain (blue with linker in green), while in the 
GDP!AlF4

--bound form 3 (and GDP-bound form 1) structure, the helix straightens out, 
preventing this interaction. Nucleotide positions are indicated and shown as fuzzy spheres. (B) 
The G-middle domain interface in the form 2 crystal structure. The area of the structure boxed 
in red is shown, with the same coloring introduced in (A). Positions of point mutants used in 
(C) and (E) and the last residue of the truncated atlastin-1 construct (atlastin-11–366) are shown 
as sticks. (C) GTPase activity. The catalytic activity of atlastin-1 constructs 1–446, 1–339 (G), 
and 1–366 were measured. In addition, the effect of the isolated middle domain (M; residues 
340–446) on the activity of the G domain was determined. Structure-guided mutants of the 
middle domain were included as well. (D) Effect of the middle domain on the nucleotide-
dependent oligomerization of the G domain. SEC-MALS data for the isolated G domain 
(atlastin-11–339; left panel) alone or with addition of a 10× molar excess of the isolated middle 
domain (atlastin-1340–446; right panel) in the presence of GppNHp are shown. The signal from 
the 90°-light scattering detector and refractive index detector is shown as colored, solid lines 
(G domain alone, green; G and M domains mixed, blue) and black, dashed lines, respectively 
(left Y axis). Average molecular weight calculations across the protein peak are shown as 
black circles (right Y axis). The theoretical molecular weight (based on primary sequence) for 
the monomer and dimer of the G domain, as well as the middle domain in the right panel, is 
shown as horizontal dashed lines. Proteins (30–40 µM) were incubated with nucleotides 
(2mM) at least 30min prior to SEC-MALS analysis. (E) Quantification of nucleotide-
dependent dimerization of atlastin-1’s G domain. SEC-MALS data for the indicated atlastin-1 
constructs in the absence or presence of isolated middle domain variants are shown. Data for 
samples incubated with GppNHp or GDP!AlFx are shown. The experimental approach and 
presentation was as in Figure 3.7.B. 
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comparable kinetics as the construct also containing the middle domain (Table 3.2.). 

Yet, only the latter binds mant-GTP and the GTP-analogue mant-GppNHp, suggesting 

an influence of the middle domain on GTP loading. 

As further corroboration, we used the separate G and middle domains (atlastin-

11–339 and atlastin-1340–446, respectively). In addition, we made a construct comprising 

the G domain and a short stretch of the first middle domain helix, which is buttressed 

by the G domain in our form 2 crystal structure (atlastin-11–366; Figure 3.12.B). First, 

we asked whether the middle domain has an effect on nucleotide binding of the 

isolated G domain, when it is added in trans. While the isolated G domain failed to 

bind mant-GTP (and mant-GppNHp) under the conditions used here, we observed a 

rescue of mant-GTP binding when the isolated middle domain was present, albeit with 

weaker affinity than the intact cytoplasmic unit (atlastin-11–446). A similar result was 

obtained with the protein that contained the truncated middle domain (atlastin-11–366), 

confirming the middle domain’s role in GTP loading (Table 3.2.). 

We predicted that efficient GTP loading is a prerequisite for GTPase activity, 

and hence we would expect an effect of the middle domain on catalysis. While the 

isolated G domain has close to background activity, similar to its Drosophila 

counterpart (38), co-incubation with the middle domain (10× molar excess over the G 

domain) yielded an activity of about five times the initial value (Figure 3.12.C). The 

middle domain truncation mutant leaving the G domain interaction region intact 

(atlastin-11–366) was also able to similarly rescue GTPase activity. No stimulation 

effect was seen when the middle domain was added to the entire N-terminal 
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cytoplasmic domain of atlastin, which includes the middle domain in the same 

polypeptide chain and has robust activity (data not shown). 

Next, we asked whether the G-middle domain interface, which is unique to the 

form 2 crystal structure, is involved in the activation of the G domain, possibly as an 

allosteric site for nucleotide loading control (Figure 3.12.B). We introduced several 

single-point mutations into the isolated middle domain along this interface. 

Remarkably, mutant middle domains with changes across this largely hydrophobic 

surface were significantly impaired in the activation of the GTPase that was observed 

with addition of wild-type middle domain, and interestingly this effect was lessened 

the further from the top of the middle domain the mutant was located (Figure 3.12.B 

and C). Using middle domain titration experiments and the GTPase activity of the 

isolated G domain as the readout, we estimated that the wild-type middle domain 

associates with the G domain with an apparent affinity of 62.2 µM, whereas no 

stimulation was observed with a middle domain mutant (M347E) across the entire 

concentration gradient (Figure 3.9.B). Likewise, the same mutation introduced into the 

construct comprising both G and middle domains affected nucleotide binding (Table 

3.2.) and GTPase activity (Figure 3.9.C), corroborating the findings with the isolated 

domains. 

Since GTP binding (and hydrolysis) facilitates G domain dimerization (see 

above), we assessed the dimerization propensity of the isolated domain in the absence 

and presence of the middle domain or its point mutants. When subjected to SEC-

MALS-based analysis, the G domain alone elutes predominantly in a monomeric state 

in the presence of GppNHp (~8% dimer fraction) or GDP!AlFx (no detectable dimer) 
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(Figures 3.12.D and E). In samples with 10× molar excess of wild-type middle 

domain, a large fraction of the G domain formed dimers in GppNHp (~49%), but not 

in GDP!AlFx. Similar to their decreased effect on GTPase stimulation, middle 

domains with mutations in the G domain interface failed to induce G domain 

dimerization (Figure 3.12.E). Again, mutants further along the middle domain affected 

dimerization slightly less than those at the top of the middle domain. Notably, the 

dimer seen on the SEC-MALS trace corresponds to a G domain dimer alone, 

suggesting that the middle domain interaction with the G domain is rather transient 

and, based on our structural analysis, possibly incompatible with the GTP-bound 

conformation of the G domain (Figure 3.12.A). 

In summary, we demonstrated a dual role for the middle domain in the reaction 

cycle of human atlastin-1 (Figure 3.13.). Initially, it is required for the efficient 

binding of GTP to the G domain via an intramolecular interaction, presumably by 

allosterically altering the conformation or dynamics of the switch regions, which could 

render the G domain more promiscuous for nucleotide binding (Table 3.2.). This role 

is important for atlastin’s GTPase activity and dimerization of the G domains. Upon 

GTP binding, the middle domain dislodges from the G domain, likely involving a 

conformational change within the G domain imposing a steric clash with the middle 

domain. The middle domain then contributes to homotypic dimerization of atlastin. 

This transition is faster upon GTP hydrolysis, suggesting that hydrolysis could 

potentially occur in the context of a monomeric G domain. This notion is supported 

not only by the different timescales at which nucleotide binding and dimerization 

occur in the absence of hydrolysis, but also by the absence of apparent cooperativity in  
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Figure 3.13. Model for atlastin-mediated membrane fusion. Atlastin begins in a form 2-
like, GTP-loading-competent state with the middle domain engaging the G domain. GTP 
binding and hydrolysis drive rapid disengagement of the middle domain from the G domain, 
immediately followed by G and middle domain dimerization. Once in this tethering complex, 
membrane curvature and stress caused by atlastin’s transmembrane domains and C-terminal 
amphipathic helix would allow fusion to occur spontaneously. Phosphate release follows, with 
relaxation and subsequent disassembly of the dimer. Other proteins that may interact with 
atlastin and contribute to membrane curvature, such as reticulons, are not shown. 
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the GTPase kinetics. GTPase rates appear slower than GTP binding and atlastin 

dimerization in GTP. Rather than indicating a requirement of G domain dimerization 

for enzymatic activity, the somewhat slower GTPase rate compared to both nucleotide 

binding and protein dimerization can be explained by the fact that we measure 

phosphate release in the activity assay, which may be rate limiting. We predict that the 

actual rate of hydrolysis is faster than the apparent rate we measured (Figure 3.6.B). 

As a side note, non-hydrolysable nucleotides or transition state analogues and likewise 

the catalytically inactive R77A mutant may only capture parts of the reaction cycle, 

while experiments under GTP-hydrolyzing conditions provide insight into the entire 

functional cycle and its timing. 

 

CONCLUSIONS 

 While they have some common features, membranes of different cellular 

organelles are specialized environments that support particular biological functions. 

The ER is a prime example of this specialization, as lipids form an interconnected 

system of cisternae, vesicles, and tubules, which provides a highly compartmentalized 

structure for a multitude of biochemical processes. Its unique reticular structure has 

functional relevance, as mutations in atlastin-1, a protein involved in maintaining the 

ER’s morphology by mediating homotypic membrane fusion (11, 15), are associated 

with hereditary, neurodegenerative disorders (6, 8). Interestingly, the majority of 

mutations cluster around the nucleotide binding site, and extend towards the site of 

intra-molecular interaction between the G and middle domains in the crystal form 2 

dimer (20, 21). This observation in conjunction with our current data could indicate a 
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compromised allosteric network, which we would predict to couple middle domain 

interaction, GTP binding, and hydrolysis. 

Our results suggest that membrane fusion follows a tethering step, involving 

the N-terminal cytoplasmic G and middle domains, which dimerize upon GTP binding 

and hydrolysis. This tight pairwise interaction would bring opposing membranes or 

membrane tubules into close proximity, the distance of which is critical since an 

increase in the length of the linker between the N-terminal module and the 

transmembrane segments impairs fusion (39). Once membranes are in close proximity, 

increased membrane curvature and stress mediated by the transmembrane helices and 

the amphipathic C-terminus of atlastin facilitate membrane fusion (38, 44, 45). By 

analogy to molecular mechanisms described for dynamin-mediated membrane fission 

(22, 29), membrane fusion may proceed spontaneously, probably upon release or 

relaxation of the tether. In that sense, the underlying principles of dynamin-mediated 

vesicle scission and atlastin-mediated membrane fusion appear to follow a conserved 

mechanism via G domain-regulated processes and implementation of protein domains 

or complexes that increase membrane curvature. While there are many parallels to be 

drawn between members of the dynamin superfamily, their differences pertain to their 

intrinsic control (e.g., self-assembly and catalytic mechanism), fine-tuning of the 

reaction (e.g., cooperativity and nucleotide exchange), and basic requirements that 

differ between fusion and fission. For example, unlike in atlastin, the isolated G 

domain of human GBP1 dimerizes readily in the presence of GTP and its analogues 

(18). Interestingly, GBP1 also shows cooperativity with regard to nucleotide 

hydrolysis, which relies on G domain dimerization, while atlastin apparently lacks this 
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mode of higher order regulation. Also, while membrane fission can originate from one 

membrane, fusion relies on bringing two opposing membranes into close proximity. 

While we cannot formally rule out a mechanism by which the N-terminal domains of 

atlastin dimerize on the same membrane (e.g., to further increase membrane curvature 

leading to the formation of three-way junctions in the ER), the observation that full-

length, Drosophila atlastin is sufficient to facilitate proteoliposome fusion indicates a 

canonical fusion reaction (15). It remains to be seen whether other G proteins employ 

similar mechanism as we described here for atlastin, or if they are subject to unique 

modes of control. 
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CHAPTER 4 

STRUCTUAL SUPPORT OF AN INTRINSIC GTP LOADING MECHANISM 

IN HUMAN ATLASTIN-1 

 

ABSTRACT 

 Atlastin related proteins belong to the superfamily of large, dynamin-related G 

proteins, which are involved in membrane fusion and fission events. Recent data 

identified atlastin as a fusion protein in the endoplasmic reticulum (ER), where it 

facilitates the formation of three-way junctions. Subsequent crystallographic studies 

yielded several high-resolution structures of human atlastin-1 in different nucleotide-

bound states, revealing numerous conformations that the protein may sample during 

its nucleotide hydrolysis cycle. These, along with biochemical and biophysical 

evidence have begun to elucidate the molecular mechanisms of how atlastin proteins 

mediate homotypic membrane fusion. However, several aspects of atlastin regulation 

remain poorly understood. Here, we focus on the requirements for nucleotide binding 

and hydrolysis by using both reported and new structures as a guide. The crystal 

structure of wild-type atlastin-1’s GTPase domain confirms the reliance of GTP 

binding on a previously discovered interaction between the GTPase and middle 

domains. A second structure of a mutated catalytic core fragment comprising the 

GTPase and middle domains of atlastin-1 bound to GDP shows atlastin in a 

monomeric form, revealing a more biologically relevant structural model for this state. 

Lastly, a mutational analysis gives insight into nucleotide loading and hydrolysis, as 

well as the importance of dimerization in the molecular mechanism of atlastin-1.  
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INTRODUCTION 

 In just over a decade, the family of atlastin GTPases has gone from a simple 

genetic locus identified in patients with a hereditary axonopathy, to having numerous 

high-resolution structures solved and cellular functions described (1-6). The human 

atlastin-1 gene was first found in patients suffering from a subtype of autosomal 

dominant Hereditary Spastic Paraplegia (HSP, subtype SPG3A) and was classified as 

a member of the dynamin superfamily of large GTPases (7). Subsequently, in vivo 

studies of atlastin-1 found that it was expressed predominantly in neurons of the 

central nervous system, where it localizes to the cis-Golgi, growth cones, and the 

endoplasmic reticulum (ER) (8-11). Two other mammalian isoforms (atlastin-2 and 3) 

were also identified, with more ubiquitous expression patterns (11). Like other 

dynamin family members, the atlastins exhibited GTPase activity and were found to 

self-associate (8, 9). Recent studies revealed atlastin’s function as a membrane 

fusogen similar to mitofusins (also in the dynamin superfamily) as opposed to a 

membrane scission molecule, a reaction catalyzed by several other dynamin-related 

proteins (11-14). As major evidence, a knockdown of atlastin in Drosophila 

melanogaster caused ER fragmentation, while atlastin reconstitution into liposomes 

catalyzed fusion of proteoliposomes in the presence of GTP and magnesium (12). A 

loss of atlastin isoforms or expression of dominant-negative alleles in mammalian 

cells results in the loss of three-way junction in the reticular ER (11, 12, 14). A 

functional ortholog in Saccharomyces cerevisiae, Sey1p, is thought to have a similar 

role in yeast, a conjecture that was recently verified with both in vivo and in vitro 

experiments (14-18). 
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 Structures of atlastin have since emerged, and provided a more detailed picture 

of its internal molecular mechanism (19-21). All structures solved to-date have been 

comprised of the N-terminal catalytic core fragment of atlastin, which consists of the 

GTPase and middle (helical) domains, ending just before the two transmembrane 

domains of the protein. The first structures revealed two intriguing conformations (19, 

21), which we call form 1 and form 2. Both structures were bound to the nucleotide 

GDP, and their respective GTPase and middle domains have nearly identical 

conformations. Strikingly though, the position of the middle domain, which forms a 

three-helix bundle, differs by nearly a ninety-degree rigid-body rotation relative to the 

GTPase domain. In the case of the form 1 structure the middle domain does not 

interact with the GTPase domain, but in the form 2 structure it bends back onto the 

GTPase domain in a docked conformation. The crystal lattice symmetry also revealed 

a weak dimerization interface between two atlastin GTPase domains. This hinted at 

pre- and post-fusion conformations when the position of the middle domains was 

considered as membrane proximal points. Subsequently determined structures 

(collectively called form 3) bound to GTP or transition state analogs uncovered the 

molecular mechanism of GTP hydrolysis in atlastin’s catalytic core fragment and 

revealed a much tighter, biologically relevant dimer interface that is also observed in 

solution (20). Furthermore, this study indicated an unanticipated dependence for 

nucleotide loading on an interaction between the GTPase and middle domains. 

Additionally, the dynamics of domain interactions during nucleotide binding and 

hydrolysis were monitored using Förster Resonance Energy Transfer (FRET). 

Together, a working model emerged where GTP binding to the G domain occurs 
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within an atlastin monomer, facilitated by the middle domain. GTP hydrolysis would 

introduce a coordinated conformational change allowing the G and middle domain to 

dimerize. 

 Despite these significant advances in the understanding of atlastin proteins, 

many of the details have yet to be uncovered and many questions remain. In particular, 

the available crystal structures rely on G domain dimers, even when the protein is 

bound to GDP, a nucleotide which does not support dimerization in solution (22, 23). 

To shed light on the conformation(s) of atlastin prior to dimerization, we obtained a 

crystal form in which the switch regions are not involved in crystal packing contacts, 

as is the case in all other structures determined to date. The resulting structural model 

and the biochemical characterization of structure-guided mutants provide additional 

insight into the nucleotide loading mechanism and the role of oligomerization in 

atlastin’s GTPase activity, an essential part of its function as a membrane fusogen. 

 

MATERIALS AND METHODS 

Protein expression and purification 

The catalytic core fragment (residues 1-446) and G domain (1-339) of human 

atlastin-1 were amplified by standard PCR and cloned into a modified pET28a 

expression plasmid (Novagen) yielding N-terminally hexahistidine-tagged SUMO 

fusion proteins. The hexahistidine-tagged SUMO-moiety was cleavable using the 

protease Ulp-1 from S. cerevisiae. Proteins were overexpressed in E. coli BL21 (DE3) 

cells (Novagen), which were grown in Terrific Broth (TB) media supplemented with 

50 µg/ml kanamycin at 37°C. At an optical density corresponding to an absorbance of 
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0.8-1.0 at 600 nm (OD600), the temperature was reduced to 18°C, and protein 

production was induced with 0.5 mM IPTG. After 16 hours, cells were harvested by 

centrifugation, resuspended in NiNTA buffer A (25 mM Tris-HCl, pH 8.5, 500 mM 

NaCl and 20 mM imidazole), and flash-frozen in liquid nitrogen. 

After cell lysis by sonication and removal of cell debris by centrifugation, clear 

lysates were loaded onto NiNTA Superflow (Qiagen) equilibrated in NiNTA buffer A. 

The resin was washed with 20 column volumes of NiNTA buffer A, and proteins were 

eluted three times with 2 column volumes of NiNTA buffer A supplemented with 500 

mM imidazole. Proteins were buffer exchanged into desalting buffer (25 mM Tris-

HCl, pH 7.5, 400 mM NaCl, 5mM β-mercaptoethanol). Affinity tags were removed by 

incubation with the yeast protease Ulp-1 at 4°C overnight. Cleaved proteins were 

collected in the flow-through during NiNTA affinity chromatography, and were 

subjected to size exclusion chromatography on a Superdex 200 column (GE 

Healthcare) equilibrated in gel filtration buffer (25 mM Tris-HCl, pH 7.5, 100 mM 

NaCl). Proteins were concentrated on a Centricon ultrafiltration device (10 kDa cutoff; 

Millipore) to a final concentration of approximately 0.5-1 mM. Protein aliquots were 

flash frozen in liquid nitrogen and stored at -80°C. 

Site-directed mutagenesis was carried out using Quikchange (Agilent) 

following the manufacturer’s instructions, followed by validation through DNA 

sequencing. 
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Crystallization, data collection, and structure solution 

Crystals were obtained by sitting drop vapor diffusion mixing equal volumes 

of protein (10–30mg/ml) and reservoir solution followed by incubation at 20°C. Initial 

crystals were obtained using atlastin-1 protein in gel filtration buffer in the presence of 

2 mM GDP (Sigma) and 4 mM MgCl2. Rectangular-shaped crystals belonging to 

space group F23 (atlastin-11–339) grew in reservoir solution containing 0.1M 

ammonium citrate tribasic pH7.0 and 12% PEG-3350. For cryo-protection, crystals 

were soaked in reservoir solution supplemented with 25% glycerol. For proteins 

crystallizing in space group P1 (atlastin-11–446-R77A), the reservoir solution contained 

0.2 M sodium malonate pH6.0, 20% PEG-3350. Crystals were cryo-protected by 

soaking in the crystallization solutions supplemented with 25% glycerol. Cryo-

preserved crystals were flash-frozen and stored in liquid nitrogen. Data were collected 

on frozen crystals at 100 K. 

Data reduction was carried out with the software package HKL2000 (24). 

Phases were obtained by Molecular Replacement (MR) methods by using the software 

package PHENIX (25) with the isolated G and middle domains of atlastin-1 as 

separate search models for MR. Refinement in PHENIX (25) and COOT (26) yielded 

the final models. Data collection and refinement statistics are summarized in Table 

4.1. Illustrations were made in Pymol (27). 

 

Size-exclusion chromatography-coupled multi-angle light scattering (SEC-MALS) 

Purified protein (<2 mg/ml or 40 mM, injected concentration) was subjected to 

size-exclusion chromatography using a BioSep-SEC-S3000 column (Phenomenex) 
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equilibrated in SEC-MALS buffer (25 mM Tris-HCl, pH 7.5, 100 mM NaCl, 4 mM 

MgCl2, and 2 mM EGTA). Where specified, wild-type or mutant atlastin-1 was 

incubated with GDP, GppNHp, or GDP!AlFx (2 mM) for 30 min at room temperature 

prior to injection. The column was coupled to a static 18-angle light scattering detector 

(DAWN HELEOS-II) and a refractive index detector (Optilab T-rEX) (Wyatt 

Technology). Data were collected every second at a flow rate of 1 ml/min. Data 

analysis was carried out using the program ASTRA V, yielding the molar mass and 

mass distribution (polydispersity) of the sample. For normalization of the light 

scattering detectors and data quality control, monomeric BSA (Sigma) was used. 

Molecular weight distributions were determined by using the Multipeak Fitting 

Package in Igor Pro (WaveMetrics). 

 

GTPase assay 

GTPase activity was measured using the Enzchek Phosphate Assay kit 

(Molecular Probes) following the manufacturer’s instructions. Measurements were 

carried out in a 96-well plate (Nunc) in a total volume of 250 µl. Recombinant wild-

type or mutant atlastin-1 (at concentrations 0, 0.25, 0.5, 1, 2, and 4 µM) was combined 

with 1 U/ml purine nucleoside phosphorylase (PNP), 200 µM 2-amino-6- mercapto-7-

methylpurine riboside (MESG), and provided buffer (20mM Tris–HCl, pH 7.5, 1mM 

MgCl2, 0.1mM sodium azide). The plate was incubated at room temperature for 10 

min, after which reactions were started by addition of 400 µM GTP (or alternatively, 

50 mM Tris–HCl pH 7.5 for controls). Plates were assayed at 37°C in a Powerwave 

XS microplate reader (BioTek). Absorbance at 360 nm was monitored in 30 s intervals 
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for 30 min. Data were normalized to a phosphate standard curve, and initial velocities 

were calculated using the portion of the curve corresponding to the first 5% of 

consumed product. Data reported are means ± s.e.m. of three independent 

experiments. 

 

N-Methylanthraniloyl (Mant)-nucleotide binding 

On and off rates of mant nucleotides (mant-GppNHp, mant-GDP, or mant-

GTP) were determined by measuring the change in fluorescence of the mant 

nucleotide over time upon mixing with atlastin-1 constructs. Using a Kintek stopped-

flow apparatus (Kintek SF-2004), a final concentration of 2.5 µM mant-GDP, mant- 

GTP, or mant-GppNHp (Invitrogen) was mixed with increasing concentrations of 

atlastin-1 (10–50 µM). Mant fluorescence (λexc = 366 nm, emission filter HQ460/40M; 

Chroma) was measured and the first 500 ms of data were fit to a single-exponential 

decay curve. Observed rate constants from exponential fits were plotted versus protein 

concentration, with the resulting slope of the linear fit corresponding to kon, and the y 

intercept to koff. In parallel experiments, the off rate (koff diss.) was also directly 

measured by preloading atlastin-1 proteins with mant nucleotide and chasing with a 

high concentration (2.5 mM) of unlabeled nucleotide (GDP). The first 500 ms of the 

resulting fluorescence decay curve was fit to a single-exponential decay, whose 

observed rate constant corresponds directly to the off rate (koff diss.). All fits were 

performed using Prism 5 (GraphPad Software Inc.).  
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RESULTS AND DISCUSSION 

Crystallization of the isolated GTPase domain bound to GDP 

 The purified GTPase domain of atlastin-1 (residues 1-339, Figure 4.1.) 

crystallized in a single crystal form bound to GDP (spacegroup F23). The structure, 

solved by molecular replacement, diffracted X-rays to a maximal resolution of 3.15Å 

with four protomers in the asymmetric unit (Table 4.1.). Crystals were grown in the 

presence of GDP and magnesium, and electron density for both of these moieties are 

present in each of the four protomers, though density was weaker for magnesium 

(Figure 4.1.A). The structure is generally well ordered, except for the surface exposed 

loop containing residues 114 through 117 for which electron density was not apparent, 

most likely due to disorder or multiple conformations. This loop comprises the switch 

1 GTP-binding motif. Overall, the structure takes on a conformation most similar to 

that seen in the form 1, undocked middle domain crystal structure of the catalytic core 

fragment of atlastin (19), with significant overlaps in secondary structure (Figure 

4.1.B, RMSD of 0.435Å).  

The isolated GTPase domains of Drosophila atlastin and human atlastin-1 

were shown in previous studies to have lost the ability to bind and therefore hydrolyze 

GTP (20, 23). The GTPase domain of human atlastin-1 is able to bind to GDP 

independently, but depends on the middle domain interaction observed in crystal form 

2 to allow it to bind to GTP, and can catalyze its hydrolysis once bound (20). The 

crystal structure presented here of the GTPase domain of atlastin-1 in isolation 

presents some evidence as to why this occurs. Without the middle domain present and 

docked onto the GTPase domain, all helices involved in the interaction remain in the 
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positions observed in the form 1 structure suggesting this may be the “default” 

conformation of the GTPase domain when the middle domain is undocked. Similar to 

the form 1 structure, the nucleotide binding motifs take on a more closed 

conformation, in which F76 is positioned towards and above the nucleotide, effectively 

blocking the position that would be occupied by the gamma phosphate of GTP. In the 

form 2 structure (in which the middle domain is docked onto the GTPase domain) this 

residue swings into a more open conformation, though it still needs to move further to 

fully accommodate the gamma phosphate, as observed in the form 3 catalytically 

competent structure (Figure 4.1.C). The function of F76 will be further discussed in a 

later section, where we analyze the effect of mutating this residue. 

Within the crystal, a dimer interface is apparent and resembles that of the form 

1 structure. Towards the bottom of the dimer (where the middle domains would cross 

over in form 1) the dimer interface is looser (Figure 4.1.D) most likely due to the fact 

that the interactions between adjacent middle domains and linker regions are absent. 

Within the interface, a number of specific contacts between the molecules are 

preserved as in the form 1 structure, including that between R77 and E224. However, 

like the first structures of atlastin-1 this dimer interface is most likely the result of a 

relatively high protein concentration within the crystal as well as preferred crystal 

packing interactions, since dimers are not observed in solution when the protein is 

bound to GDP.  
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Table 4.1. X-ray data collection and refinement statistics.  
 Human atlastin-1 

1-339, GDP 
Human atlastin-1 
1-446, R77A, GDP 

Data collection   
X-ray source CHESS A1 CHESS A1 
Wavelength (Å) 0.9771 0.9771 
Space group F23 P1 
Unit cell parameters   
     a, b, c, (Å) 307.95, 307.95, 307.95 51.1, 68.5, 75.7 
     α, β, γ (°) 90, 90, 90 63.3, 82.0, 80.9 
Resolution range (Å)a 50-3.15 (3.26-3.15) 50-1.95 (2.02-1.95) 
No. of reflections   
     Total 1,037,464 149,932 
     Unique 41,762 (4,116) 62,895 (6,137) 
Completeness (%) 99.95 (100) 95.93 (88.35) 
Redundancy 24.8 (23.7) 2.4 (2.3) 
I/σ (I) 27.13 (4.97) 7.12 (2.19) 
Rmeas (%) 14.1 (74.2) 8.1 (36.1) 

Refinement   
Rwork/Rfree (%) 15.7/19.7 21.0/27.4 
r.m.s. deviations   
     Bond length (Å) 0.009 0.009 
     Bond angles (°) 1.21 1.27 
No. of atoms 9,925 6,485 
     Protein 9,809 5,899 
     Ligands 116 58 
     Water 0 528 
Ave. B-factors (Å2)   
     Protein 50.1 34.4 
     Water 31.1 38.3 
Ramachandran (%)   
      Favored 96 97 
      Outliers 0.5 0.41 
aValues in brackets are for the highest resolution bin.  
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Figure 4.1. GTPase domain structure. (A) Domain organization of atlastin-1. The large G 
domain (orange) is connected to the middle domain by a short flexible linker and is followed 
by two transmembrane helices that span the membrane and a C-terminal domain. A 
topological model is shown (right panel). The fragment crystallized consists of residues 1–339 
of human atlastin-1 (orange, lower panel). An inset displays a larger view of the binding 
pocket with GDP and magnesium, with an Fo–Fc omit map contoured at 4.0σ (B) Protomer 
overlay of the GTPase domain structure (orange) with crystal form 1 (grey) from (19). (C) 
Differing orientations of F76 (sticks, various colors) from atlastin-1 structures solved to-date. 
(D) Overlay of atlastin-1 GTPase dimer onto form 1 dimer structure (shown as cartoon 
cylinders). Black arrows indicate a region of secondary structure that shifts in the new 
structure due to lack of linker and middle domain interactions found in the form 1 structure.  
 

Crystal structure of the arginine finger mutant bound to GDP 

 The catalytic core fragment containing the mutation R77A was purified and 

crystallized, resulting in a single crystal form bound to GDP and magnesium 

(spacegroup P1, two molecules/asymmetric unit; Table 4.1. and Figure 4.2.). Mutant 
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crystals diffracted X-rays to 1.95Å and the structure was solved using molecular 

replacement with the GTPase domain and middle domains from the form 2 structure 

(PDB ID code 3Q5E) as separate search models (19). Despite the high resolution of 

the acquired data, many surface exposed loops of the structure are disordered and 

remain absent from the model. These include residues 102-106, 112-117 (switch 1), 

149-156 (switch 2), 338-339 (flexible, inter-domain linker), and 376-379 (loop 

connecting the first and second helices of the middle domain). The loop containing the 

R77A mutation is well ordered, and appears to take on the same conformation as it 

does in the form 2 crystal structure (Figure 4.2.B).  

 

 
 
Figure 4.2. R77A structure. (A) Asymetric unit cell contents. (B) Protomer overlay of the 
R77A structure (orange and blue) with crystal form 2 (grey) from (19). Two views are shown 
(top and bottom). Inset shows an expanded view of binding pocket of the two aligned with the 
mutation and nucleotide displayed as sticks. (C) Middle domain interactions between unit 
cells. A protomer from one unit cell (colored orange and blue) and that of its neighboring unit 
cell (grey), with an inset to show the details of the interactions between residues in their 
middle domains. (D) Detailed view of F76. Residue (shown as sticks) is modeled as an alanine 
with GDP and magnesium; an Fo–Fc omit map around the residue is contoured at 3.0σ.  
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 One of the most noteworthy features of the structure is that it shows atlastin-1 

in a monomeric state. There are no molecules in the asymmetric unit that form 

biologically relevant interfaces (28), and adjacent unit cells do not present any 

additional interactions with the protein’s GTPase domain. In particular, the switch 

regions of the G domain, which are the elements that presumably change conformation 

in a nucleotide-dependent manner, are not involved in any interactions. Despite this, 

the overall conformation is very similar to that of the form 2 atlastin-1 structure 

(RMSD 0.819Å, Figure 4.2.). Like the form 2 structure, the middle domain docks 

against the GTPase domain, interacting with the same surfaces and residues. 

Interestingly, the middle domain three-helix bundle packs together in a slightly 

different way, with the third helix of the middle domain kinking at residue 415, which 

presumably causes the remaining two helices to adjust their positions. This minor 

change in angle is most likely a result of crystal packing interactions, as there are 

several significant points of contact between molecules in adjacent unit cells along the 

middle domain’s third helix (Figure 4.2.) but could have some biological relevance. 

Other areas of the structure that vary between the R77A mutant and the form 2 

structure include loops close to the dimer interface, several of which are disordered in 

the new structure. Considering the relatively large number of disordered regions 

(many of which are conserved and crucial parts of the protein) this structure would 

suggest that most of these loops are flexible in solution where the protein is 

monomeric and with the middle domain docked at the G domain. This would allow the 

protein to sample many conformations in solution. Notably, the F76 residue in the P-
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loop has little electron density associated with it (difference density is limited to a 

small area around Cβ) suggesting multiple conformations (Figure 4.2.D).  

 

Mutations in the P-loop and dimer interface perturb nucleotide binding, hydrolysis, 

and dimerization 

 Both the structures discussed above and those that have already been published 

have allowed us to design mutations in atlastin-1 that shed light onto the more detailed 

mechanisms of nucleotide binding as well as the role of dimerization in hydrolysis. 

Specifically, we targeted two residues in the GTPase domain of human atlastin-1 

within the construct of the catalytic core fragment (amino acids 1-446). Mutants 

included F76 (located in the P-loop) mutated to either alanine or glycine, and E224 

(located at the G domain dimer interface) mutated to either alanine or histadine 

(Figure 4.3.A). The first, F76 of the P-loop, is in close proximity to the nucleotide beta 

and gamma phosphate groups in the binding pocket. In the GDP bound structures it is 

positioned such that the gamma phosphate cannot be accommodated, suggesting it 

could play a role in gating this area of the binding pocket. Residue E224 forms cross- 

dimer interactions in all dimeric atlastin structures, including a salt bridge with R77 in 

those bound to GDP and hydrogen bonds in those bound to GTP and transition state 

analogs. All mutants expressed and purified with similar purity and stability as the 

wild-type. These four mutants were all tested for GTPase activity, oligomerization, 

and nucleotide binding.  
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Figure 4.3. GTPase activity and nucleotide binding properties of atlastin mutants. (A) 
Position of mutants probing for nucleotide binding and dimerization properties of atlastin-1. 
The form 1 atlastin-1 dimer is shown. Mutant residues are shown as spheres, with those on the 
left protomer in red and the right protomer in orange (B) GTPase activity. GTPase activity 
was determined by measuring the production of inorganic phosphate upon GTP hydrolysis at 
various protein concentrations. (C) Nucleotide on rates (left), off rates (middle), and Kd (right) 
of mant-GDP, mant-GTP, and mant-GppNHp.  
 

All four mutants exhibited a decrease in activity as tested in a velocity vs. 

enzyme concentration assay (Figure 4.3.B). The most severely affected mutant was 

F76G, retaining less than a quarter of the wild-type activity. The remaining three 

mutants retained approximately one third of wild-type activity. Interestingly, the 

mutants located at residue E224 showed some non-linearity in the plot of activity vs. 

enzyme concentration, suggesting some degree of cooperativity may be present 

(Figure 4.3.B). 

Next, oligomerization propensity in the presence of various nucleotides was 

tested using multi-angle light scattering coupled to a size exclusion column (SEC-

MALS). All mutants tested were monomeric in their apo and GDP-bound forms 
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(Figure 4.4., red and purple traces, respectively). In the presence of the GTP analog 

GppNHp (green traces), all of the mutants exhibited a dominant, shifted peak that 

corresponded to the molecular weight of a dimer. The wild-type atlastin-1 catalytic 

core in the presence of GppNHp was also predominantly a dimer, with a very small 

(<5%) portion of the population running as a monomer. In both E224A/H mutants, this 

monomeric species was slightly more populated. Lastly, in the transition state analog 

GDP!AlFx, all mutants showed a single, monodisperse peak at the molecular weight 

corresponding to a dimer (Figure 4.4., orange traces). These results suggest that while 

the F76A/G mutants do not perturb the dimer interface, both E224A/H mutants seem to 

have some (if only a weak) effect on dimerization over a longer, near equilibrium 

timescale after nucleotide binding.  

Finally, we assessed the binding kinetics of the different mutants for several 

nucleotides, in particular mant-GDP, mant-GTP, and mant-GppNHp. All four mutants 

were able to bind the three nucleotides tested, with both kon and koff measured directly 

and Kd calculated from these experimental values. Both F76A/G mutants showed a 

higher affinity for all three nucleotides, especially GTP and GDP as a result of faster 

on-rates for these nucleotides and slower off-rates. Interestingly, differences in GTP 

on-rates correlated with the side chain length of residue 76, with phenylalanine 

showing the slowest on-rates, alanine showing an intermediated level and glycine 

showing the fasted on-rates of the three. The E224A/H mutants in contrast, showed 

very little difference from wild-type values except for in mant-GppNHp, where the Kd 

was lower than wild-type due to a lower average koff (Figure 4.3.C). 
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Figure 4.4. SEC-MALS for function-probing mutants. SEC-MALS of atlastin-1 WT, F76A, 
F76G, E224A, or E224H nucleotide free (Left, red) or bound to GppNHp (Left, green), GDP 
(Right, purple), or GDP•AlFx (Right, orange). Plotted on the left Y axis, the signal from the 
90°-scattering detector and refractive index detector is shown in a solid colored line and a 
black dashed line, respectively. On the right Y axis, average molecular weight as calculated 
every second across the protein elution peak is shown as black circles for the major peak and 
grey circles for the second, minor peak (if present). Theoretical molecular weights based on 
primary sequence for the monomer and dimer are indicated as horizontal, dashed lines. 
Proteins (40 µM) were incubated with nucleotides (2 mM) prior to SEC-MALS analysis in a 
mobile phase lacking nucleotides.  



 141 

All four mutants showed at least a two-fold decrease in GTPase activity, 

indicating they have some significant effect on hydrolysis. The first mutants, located 

at F76, do not have any effect on the protein’s ability to dimerize but both mutations of 

this residue drastically increased the binding affinity of mant-GDP and mant-GTP, 

with a more muted effect on the affinity for mant-GppNHp. In previously solved 

structures as well as the GTPase domain structure presented here, this phenylalanine 

takes on an important position within the enzyme. Along with F151 and two conserved 

glycines G74 (in the P-loop) and G149 (in the switch 2 motif), these two aromatic side 

chains form a “glycine brace”, like those described for Ras-like GTPases (29), when 

the protein is in its form 2 conformation (Figure 4.5.). This interaction involves C–H-π 

interactions between F76-G149 and F151-G74, which are both 4-4.5Å apart in the form 2 

structure (consistent with this type of interaction (30)), but they are ~7-8Å apart in 

both the form 1 and new isolated GTPase domain structures. This form of structural 

stabilization would be lost upon mutation of F76 to alanine or glycine, and would allow 

the P-loop a greater degree of flexibility that could result in a faster nucleotide-binding 

on-rate, but also slow down hydrolysis by altering the kinetics of how the nucleotide 

binding motifs rearrange around GTP to form a tight and efficient binding pocket.  

While it also shows a significant decrease in activity, the E224 mutant displays 

little change in nucleotide affinity and a minor defect in dimerization. More interesting 

is the potential cooperativity exhibited by these mutants, which would suggest they 

affect the Kd of dimerization in atlastin-1, and that dimerization is indeed important 

for its catalytic activity like other dynamin superfamily members. In the past, we have  
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Figure 4.5. Intra- and intermolecular contacts of mutations. Structure-guided mutant 
positions and environments are shown for all three published crystal forms, including form 1 
(top panels), form 2 (middle panels), and form 3 (bottom panels). Nucleotide, residues 
selected for mutation, and important residues in their vicinity are shown as sticks, with F76 
illustrated on the left and E224 on the right. Displayed residues that are located on the main 
protomer (dark grey) are colored orange, and those on the opposing protomer (light grey) are 
colored in cyan. Residue names are labeled proximally, and residue distances (black, dashed 
lines) are displayed.  

 

never observed cooperativity in the wild-type atlastin-1 catalytic core fragment, 

although it is possible that the Kd for dimerization is much lower than the 

concentrations that can be measured in our current assay (the lowest being 250 nM) 

making cooperativity difficult to detect. This residue (conserved in atlastins) makes 

cross-dimer contacts in both GDP-bound and GTP-bound structures. In form 1 and 2 
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structures, as well as our newest GTPase domain structure, E224 makes a salt bridge 

with R77 in the opposing dimer. Alternatively, in the form 3 structures (bound to either 

GppNHp or GDP!AlF4
-) this residue instead contacts S116 in the opposing dimer with 

a hydrogen bond, pulling switch 1 into a position that covers the nucleotide-binding 

pocket. Disruption of this interaction and subsequent destabilization of nucleotide 

binding motif arrangement could lead to the reduction in hydrolysis efficiency 

observed for this mutant, although we did not see evidence for dimerization prior to 

hydrolysis in our previous FRET and GTPase activity results (20). Altogether, we 

have reported two novel atlastin-1 structures as well as mutagenesis data that enhance 

the working model of how the G domain may be activated by the middle domain and a 

potential role for cooperativity in hydrolysis.  

 

CONCLUSIONS 

 The superfamily of dynamin-related GTPases has become an area of intense 

study, not only because of their involvement in diverse and important cellular 

functions, but also because many are implicated in human disease. Although they do 

share some commonalities in domain architecture and sequence, new evidence 

continues to show that they each have many unique characteristics as well. Atlastins 

are relatively new to this group and most of their molecular details only started being 

worked out in the last five years. As the furthest related member of the dynamin 

family, atlastins have proved themselves to be unique and interesting in their own 

right.  

The two structures and mutagenesis experiments presented here provide more 

insight into these differences and add to our understanding of atlastin’s function as a 

GTPase, which will help uncover the mechanism of its fusogenic activity in future 

studies. The GTPase domain takes on a form 1-like conformation, which could 
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represent the conformation found in solution of this domain alone. We have shown in 

the past that the interaction between the GTPase and middle domain observed in the 

form 2 crystal structure is indispensible for GTP loading and subsequent hydrolysis 

(20). This mode of regulation is unique in the atlastin subfamily. The second structure, 

that of the R77A mutant in the catalytic core of atlastin-1, presents a monomeric 

atlastin bound to GDP. This oligomeric state coincides with experiments done in 

solution, and could represent a better picture of how atlastin behaves in its monomeric, 

middle domain docked state. The numerous exposed, disordered loops in this structure 

are common in other structures of small GTPases, as well as some dynamin family 

protein structures especially in the absence of a gamma phosphate (31-33). This 

flexibility and dynamic movement of critical binding motifs is important for these 

proteins’ overall function as nucleotide binding and hydrolysis machines. 

In addition to these structures, our mutant data provide interesting clues for the 

role of two residues, F76 in the P-loop and E224 at the dimer interface. All four residues 

involved in the “glycine brace” discussed above (G74, F76, G149, and F151) are 

completely conserved in atlastins. Moreover, F151 is a known disease locus in patients 

with the neurodegenerative disorder Hereditary Spastic Paraplegia (HSP), highlighting 

the importance of this structural motif. E224 serves as a contact in all dimeric structures 

of atlastin-1 solved to-date. In GDP bound structures it pairs with R77 from the P-loop, 

while in GTP analog and transition state analog structures it forms a hydrogen bond 

with S116 from the opposite monomer’s switch 1 (G2) motif that caps the nucleotide 

binding pocket after GTP is bound. The disruption of this contact results in the 

destabilization of the dimer itself, and lowered efficiency for hydrolysis possibly due 

to improper positioning of this important loop. While it still may be possible that 

atlastin-1 can hydrolyze GTP in its monomeric state, the efficiency of this event could 

be lowered dramatically without this and other cross-dimer contacts forcing the 
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binding pocket into the optimal position. Our current model shows atlastin first 

binding to GTP in a form 2-like state, and proceeding with hydrolysis just before 

dimerization of both GTPase and middle domains simultaneously. Minor alterations to 

accommodate these results, perhaps by bringing dimerization and hydrolysis into the 

same, simultaneous step could help reconcile our data with the current model. In data 

published recently by our lab, FRET based analysis showed that simultaneous 

dimerization by the GTPase and middle domains happens on a fast timescale only in 

conditions where GTP hydrolysis can occur. When a catalytically dead mutant or GTP 

analogs are used, dimerization does take place but on a much slower timescale (over 

the course of 10 minutes vs. 5 seconds). It’s important to note that all other dynamin 

superfamily members rely on oligomerization to accelerate hydrolysis (34-40), though 

the possibility that atlastin could possess this and other unique molecular features 

should not be discounted. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

STRUCTURAL AND BIOCHEMICAL STUDIES OF ATLASTIN-1 

Summary of findings 

 Membrane fusion is a complex but necessary function in every eukaryotic cell for 

tasks ranging from mitochondrial and ER fusion to exocytosis and endosomal trafficking. 

This biophysical phenomenon serves many vital purposes for maintaining cellular health 

with its importance epitomized in the diseases that result when these processes go wrong. 

SNAREs and viral fusion proteins were some of the first fusogens discovered and 

intensively studied, resulting in huge leaps in our understanding of how membrane fusion 

and dynamics work in general (1, 2). The atlastin proteins are relative newcomers to this 

field, with work on their molecular details beginning only about five years ago.  

 Studying the catalytic core of atlastin has resulted in numerous high-resolution 

crystal structures, revealing novel modes of regulation and intriguing conformational 

changes. Eight crystal structures in total have resulted in models for states bound to 

different forms of guanine nucleotide including GDP, GppNHp (a GTP analog), and 

GDP!AlF4
- (a transition state analog). The first two structures were the first solved for 

atlastin, and were both bound to GDP (3, 4). However, there was a striking difference 

between the two structures that suggested they could represent pre- and post-fusion 

conformations. While this finding is still somewhat puzzling, the current hypothesis 

remains that the first structure (called form 1) is the post-hydrolysis, GDP-bound state, 

while the second (form 2) structure is an inhibited GDP-bound form. In the same study, we 

showed for the first time in vitro that the catalytic core of atlastin could dimerize upon 

binding to GTP and transition state analogs. This is somewhat at odds with previous 

findings of cellular extracts that suggested atlastin is a tetramer in the membrane (5-7), 
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however since our studies only use the N-terminal soluble portion of the protein, there is a 

possibility that oligomerization of atlastin could be different in the context of the full-

length protein in the membrane. Additionally, GTPase activity was confirmed for the 

human isoform 1 of atlastin, having only been observed once before (8). Along with these 

biochemical characterizations of wild-type atlastin-1, we tested numerous HSP mutant 

forms of the protein and found several with deficiencies in their ability to dimerize or 

hydrolyze GTP, sheading some light onto disease pathogenesis.  

 These two initial structures, while informative, contained only a few clues about 

the catalytic mechanism of these proteins. We subsequently solved four nearly identical 

structures, two bound to the GTP analog GppNHp and two bound to the transition state 

analog GDP!AlF4
-, that demonstrated how the conserved nucleotide binding motifs 

position themselves for GTP hydrolysis (9). The dimeric structures observed in all four 

crystals also proved to be biologically relevant, showing that an interaction between the 

GTPase and the middle domains contributes to a robust dimer interface. These structures 

added a new conformation (which we call form 3) to the two previously mentioned GDP-

bound structures. From these, we designed a FRET-based assay system to detect the 

movements of the GTPase and the middle domains when they came into close proximity to 

another protomer. The results of these experiments forced us to reconsider the current 

model of atlastin-mediated fusion, which was originally based on the two crystal structures 

bound to GDP. In the original model, atlastin GTPase domains would bind GTP and 

dimerize, followed by GTP hydrolysis and a subsequent “power stroke” of the middle 

domain, bringing them and opposing membranes together. However, FRET data have 

revealed that both the GTPase and middle domains come together on approximately the 

same timescale. In addition, other groups working on atlastin found that the GTPase 

domain in isolation could not hydrolyze GTP efficiently and could not interact with itself 

(i.e. dimerize), which was also inconsistent with the model at the time. When we looked 
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carefully at all of the structures, the form 2 structure stood out because of an interaction 

region between the GTPase and middle domain. Separated GTPase and middle domain 

constructs mixed together rescued the ability of the GTPase domain to bind to GTP, 

hydrolyze it, and dimerize with itself. Moreover, mutations to the region where the GTPase 

and middle domain interact in the form 2 structure abolish this ability. From the 

compilation of this and all available data, we proposed a new model (9). This model 

(Figure 5.1.) starts with a monomeric atlastin GTPase domain, with the middle domain 

docked against it, as is observed in the form 2 structure. This conformation allows GTP to 

bind, and once this occurs the middle domain disengages the GTPase domain and both 

domains come together to dimerize in a form 3-like conformation. This tight dimer 

conformation would also bring together opposing membranes and with the help of the 

transmembrane domains and C-terminal amphipathic helix these membranes would fuse, 

followed by phosphate release and subsequent relaxation of the dimer (into a more form 1-

like conformation, bound to GDP).  
 

 
 

Figure 5.1. Working Model (9). 1.) Atlastin begins in a form 2-like, GTP-loading-competent state 
with the middle domain engaging the G domain. 2.) GTP binding and hydrolysis drive rapid 
disengagement of the middle domain from the G domain, immediately followed by G and middle 
domain dimerization. Once in this tethering complex, membrane curvature and stress caused by 
atlastin’s transmembrane domains and C-terminal amphipathic helix would allow fusion to occur 
spontaneously. 3.) Phosphate release follows, with relaxation and subsequent disassembly of the 
dimer.  
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The aforementioned crystal structures, three unique conformations in total, were 

novel contributions to the current understanding of atlastin proteins. In the midst of these 

discoveries, smaller pieces of the puzzle came together including the structures of the 

isolated GTPase domain and an arginine finger mutant, both bound to GDP. While these 

two structures did not present new conformations, they have added some details to the 

atlastin story. The GTPase domain structure resembles the conformation this domain takes 

on in the form 1 structure, suggesting that the form 2 conformation of the GTPase domain 

most likely arises only when in contact with the middle domain. The arginine finger 

mutant (R77A) structure of the catalytic core fragment bound to GDP was the first structure 

not to crystallize in the typical dimerized GTPase domain conformation, a more 

biologically relevant state since no oligomerization is ever observed with atlastin bound to 

GDP. This mutation to the catalytic arginine finger is devoid of GTPase activity but retains 

its ability to dimerize when bound to GTP and transition state analogs, but it requires long 

incubation times since hydrolysis-driven conformational changes are impaired. Other 

functional mutants were also designed based on all of the structures solved to-date, 

including F76A/G (a mutation to the switch 1 GTP binding motif) and E224A/H (a dimer-

interface mutant). All mutations reduced the activity of atlastin-1 by at least half, with the 

strongest mutation (F76G) retaining less than 20% of wild-type activity. Despite this, both 

F76 mutants displayed an increase in nucleotide binding affinity, suggesting a type of “gate 

keeper” role for this bulky residue. The mutations to the dimer interface located at E224, 

while they decrease the activity of the enzyme did not affect nucleotide binding rates or 

affinities. However, they did have a subtle effect on dimerization in the GTP analog 

GppNHp, and showed a small degree of cooperativity in the GTPase activity experiment, 

suggesting they could affect the affinity for dimerization of the enzyme and that 

dimerization is indeed important for catalysis. 
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Future directions 

 The atlastins represent a new and interesting family of proteins that catalyze 

membrane fusion in a way that has not yet been studied extensively. While the studies 

presented here contribute to the overall understanding of atlastin’s molecular mechanism 

and internal regulation, many unanswered questions remain with regard to disease 

mutations, conformational changes, and full-length atlastin’s behavior in the membrane.  

The majority of HSP mutations occur on the soluble portion of atlastin-1, 

suggesting that they may impact the protein’s fundamental enzymatic properties. However, 

many of the mutations tested in Chapter 2 had no effect on either GTPase activity or 

atlastin’s ability to dimerize in response to nucleotide binding. To further investigate the 

effects of these mutations we can implement our newest experimental approaches such as 

the FRET assay presented in Chapter 3. The result of this assay will indicate whether or 

not the mutants allow the protein to perform the same type of conformational switching as 

the wild type, and whether or not the kinetics of this process are affected. In addition, a 

new version of the FRET assay that can monitor intramolecular interactions and 

conformational changes is currently being developed using non-natural amino acid 

incorporation (10) to introduce two distinct dyes onto the same protein (donor and 

acceptor) (Figure 5.2.). This assay will reveal which mutations affect the interaction 

between the GTPase and middle domains, an interaction necessary for GTP binding. In 

addition to FRET, mant-nucleotide binding experiments and analytical ultracentrifugation 

could uncover other defects previously undetected by our original methods. Once their 

effects on the soluble domain are clearer, addressing the outcome on atlastin in the context 

of the full-length protein will also be important to understanding disease pathogenesis.  
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Figure 5.2. Protein labeling. (A) Labeling will proceed through thiol-modification on engineered 
cysteines (top; (9)) or click chemistry on incorporated azido-phenyl-alanine (bottom). (B) Click 
chemistry-based labeling of atlastin-1’s catalytic core fragment. The wild-type protein without 
azido-phenylalanine did not label. (C) Strategy for measuring intra-molecular conformational 
changes. 

 

The major lingering question in the study of atlastin proteins concerns whether or 

not molecular mechanisms established for the soluble domain apply to the full-length 

protein. For instance, does atlastin change its oligomeric state when going from a 

nucleotide-free or GDP-bound to a GTP-bound form? Do conformations observed in our 

crystal structures and confirmed in solution also take place during fusion? Early studies 

suggest that atlastin forms constitutive oligomers (tetramers) in the membrane, 

confounding our data on the soluble domain (5-7). Indeed, our initial purification and 

characterization efforts for full-length Drosophila atlastin revealed constitutive dimers in 

solution (Figure 5.3.B), and partial tetramerization upon addition of the GTP analog 

GppNHp. This additional degree of oligomerization has been suggested to occur through 

the transmembrane domains of atlastin, which would explain the apparent discrepancy 

with studies of the soluble domain. Regardless, these observations do not negate the 

possibility that the oligomerization interfaces observed in our structures are valid. 

Verification of these interactions and determination of participating domains are both 

necessary to compose a better picture of atlastin in the membrane. In the same way, 

conformational changes observed in the soluble domains must be confirmed or redefined 

in the full-length context. To accomplish this, FRET probes can still be used in  
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Figure 5.3. Purified, full-length atlastin. (A) SDS-PAGE of Drosophila and human atlastin 
(expressed in E.coli) prior to gel filtration. (B) SEC-MALS analysis of Drosophila atlastin in 
detergent micelles with (green) and without (red) GppNHp. A shift in the dimer peak may indicate 
a conformational change. Grey and black symbols across the protein peaks indicate absolute 
molecular weights determined by MALS. (C) Reconstituted membrane fusion (assay established by 
the McNew group (11)). 
 

reconstituted lipid systems to monitor domain motions as was done for the soluble domain. 

Another approach would be to use electron microscopy (EM) to reconstruct full-length 

atlastin as has been done for the G-protein coupled receptor, β2-adrenergic receptor in 

complex with its heterotrimeric G-protein complex (12). This approach has been shown to 

work for the soluble domain of atlastin by ours (Figure 5.4.) as well as another group (13), 

and will uncover important details on the overall structure while efforts for crystallizing 

the full-length protein continue.  

During the time of this thesis, new details have emerged regarding the requirements 

for fusion activity of full-length atlastin from Drosophila melanogaster. Perhaps most 

obviously, early experiments confirmed a requirement for GTP hydrolysis (11). More 

interestingly, fusion of membranes in vitro was nearly abolished without atlastin’s C-

terminus, but could be rescued by adding it in trans (5, 14). This part of atlastin was 

thought to be unstructured, but a more detailed analysis suggests that it most likely forms 

an amphipathic helix that dips into the membrane and causes local membrane curvature 

and disruption to lipid order. The same study revealed that the specific sequence of 

atlastin’s transmembrane domains was also important for fusion activity. Other studies 

have also demonstrated a necessity for dimerization through the middle domain to achieve  
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Figure 5.4. Atlastin-1 TEM class averages. (A) Sample class averages (showing various 
orientations) of atlastin-1 soluble domain bound to GppNHp. Two lobes are visible in most images, 
consistent with crystal structures of this nucleotide-bound state. Images were compiled from 
approximately 500 particles, using negative stain TEM on the FEI Tecnai F20 in Cornell’s NBTC. 
(B) Raw particle image showing the scale of the particles is similar to those found in the crystal 
structures.  
 

fusion (14, 15). To better understand how this family of proteins catalyzes membrane 

fusion, additional studies to work out the timing of domain interactions and conformational 

changes during this process must move forward. Several labs (including our own) have 

successfully purified full-length, recombinant Drosophila atlastin protein and have 

confirmed that it is competent for GTP-dependent membrane fusion when reconstituted 

into liposomes in an assay established by the McNew lab (11) (Figure 5.3.C). Full-length 

human atlastin-1 can be purified similarly, but attempts to demonstrate fusion activity have 

been unsuccessful so far. While the other two isoforms have yet to be tested, the fact that 

atlastin-1 cannot fuse membranes in vitro is puzzling. Though we simply may not have 

determined the correct environmental requirements for human atlastin-1 to catalyze fusion, 

another possibility is that it has lost this ability over the course of evolution. Perhaps only 

one or two of the three human isoforms has retained its ability to fuse membranes, leaving 

the remaining redundant copy(ies) to perform other, more specific functions. Human 

atlastin-1 is not expressed ubiquitously like the other two isoforms and is mainly found in 

neurons, leaving this explanation as a distinct possibility (6, 7). Drosophila only have a 

single atlastin isoform, therefore the essential function of fusing ER tubules must be 
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retained considering the lack of redundancy in the system. For these reasons it is necessary 

to expand the techniques used here to other isoforms and homologs to gain a better 

understanding of what qualities are necessary for fusion-competent atlastins. At the same 

time, determining atlastin-1’s role in the cell via other cell biological and biochemical 

methods should be pursued. Two hereditary neuropathies caused by atlastin-1 mutations 

give a not-so-subtle hint of its necessity to these highly specialized and essential cells. 

Future research combined with the knowledge outlined here may ultimately lead to new 

treatments and a better understanding of axonopathies in general, carving a path to prevent 

these devastating diseases.  
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APPENDIX A 

 
MODELING OF THE TIME-RESOLVED FRET DATA. 

Dimerization kinetics 

For time-dependent FRET simulations, we propose a simple three-state model 

based on the available structural information: a monomeric non-FRET state M, an 

initial dimerization state D1, and a possible “relaxed” dimer state D2. We assume that 

the dynamics of nucleotide binding is sufficiently fast as to not significantly contribute 

to apparent dimerization and FRET behavior and is therefore ignored. Dimerization is 

modeled by the 2nd order kinetic equation: 

! !
!" = !!" ! ! − !!"" !  

Where [D] is the dimer concentration, [M] is concentration of free monomers, kon is 

the rate constant for dimerization, and koff is the rate constant for dissociation. The two 

populations are related by the mass conservation equation: 

!! = ! + 2 !  

Where [M0] is the initial monomer concentration at time equals 0 and the initial dimer 

concentration ([D0]) equals 0. The monomer concentration as a function of time 

([M(t)]) can be modeled numerically by discretizing the kinetic equation above: 

∆ ! ∆!! = !!" ! ∆!! ! − !!"" ! ∆!! ∆! 

! ∆!!!! = ! ∆!! − 2∆ ! ∆!!  

Where ∆! is the discretized time interval, and the subscript n indicates the nth interval 

such that ! = !∆!. The dimer concentration [D] is modeled similarly.  
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However, with the incorporation of a second possible “relaxed” dimer state, 

the populations are determined by: 

!! ∆!!!! = !! ∆!! 1− !!""∆! − !!"∆! + [! ∆!! ]!!!"∆! 

!! ∆!!!! = !! ∆!! 1− !!""∆! + !! ∆!! !!"∆! 

Where D1 is the initial dimerization state and hence receives all new dimerization 

events at each time interval. D2 is the relaxed dimer state and is acquired through D1 at 

the relaxation rate k12. A second, backward rate constant k21 could have also been 

incorporated, but was found to be an unnecessary parameter for simulating the 

observed FRET signal. 

The above equations are sufficient for instantaneous transitions between D1 

and D2. However, for a finite relaxation time, an additional set of transition states D12 

is acquired with a total transition time of !!" = !∆!. Here, m is an integer 

representing the number of concentration elements of the vector [D12]. The final time-

dependent equations can be written: 

!! ∆!!!! = !! ∆!! 1− !!""∆! − !!"∆! + [! ∆!! ]!!!"∆! 

!!" !,∆!!!! = !! ∆!! !!"∆!, ! = 1
[!!"(! − 1,∆!!)](1− !!""∆!), 2 ≤ ! ≤ ! 

 
!! ∆!!!! = !! ∆!! 1− !!""∆! + !!" !,∆!! !!"∆! 

Where i indicates the ith element of the set of states D12 and the total time a 

subpopulation of dimers has spent in transition is ! = !∆!. 

 

FRET calculations 

FRET can be determined by applying the Förster equation: 
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! = 1
1+ !

!!!
! 

Where E is the FRET efficiency, r is the distance between the donor and the acceptor, 

and R0 is the Förster distance at which ! = !
!!. If the fraction of donor molecules is F, 

and acceptor molecules is (1-F), then the distribution of dimer pairs is given by the 

binomial distribution:   

2
! !! 1− ! !!! !!!!!!"#!! = 0,1,2 

For any sub-population of dimers, the donor fluorescence (SDONOR) and the FRET 

signal (SFRET) are proportional to the probability of getting a FRET pair: 

!!" = 2!(1− !) 

!!"#$ ∝ !!"!(!) ! !  

!!"#"$ ∝ !!" 1− ! ! ! !  

By assigning a value for r for each state D1, D2, and a set of r-values for the vector of 

states D12, we can determine the FRET efficiency at each state (E1, E2, E12). The total 

signal is given by: 

!!"#$ ∆!! = 2! 1− ! !![!! ∆!! ]+ !![!! ∆!! ]+ !!" ! !!" !,∆!!
!

!!!
 

!!"#"$ ∆!! = ! ! ∆!! + 2!! ! ∆!!

+ 2! 1− ! (1− !!)[!! ∆!! ]+ (1− !!)[!! ∆!! ]

+ 1− !!" ! !!" !,∆!!
!

!!!
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Simulation parameters 

For the GTP-binding dimer simulations, the Förster distance R0 we used was 

the calculated value of 47 Å. The value of r for D1 and D2 were 30 Å and 50 Å as 

determined from structural data. We estimate that the equilibrium dissociation 

constant for dimerization to be better than 1µM, therefore we assumed a dissociation 

constant !! =
!!""
!!"

 of 500 nM. Assuming a kon of about 0.32 µM-1s-1 koff was 

calculated to be 0.16 s-1. The relaxation rate k12 was taken to be 0.50 s-1 with a 

transition time τ12 of 0.10 s. The time interval ∆! was 0.01 s, which matches the time 

resolution of the relevant instrumentation. Finally the transition states D12 were 

calculated by assuming a uniform transition speed: 

∆!
∆! =

!! − !!
!!"

 

!!" !! = !! − !!
!!!"

!∆!!!!!!"#!! = 1…! 

For the GppNHp-binding dimer simulations, only the kinetic parameters are 

assumed to change. Since this system cannot undergo hydrolysis, it is assumed that the 

relaxation rate constant k12 is zero and hence does not undergo any transition (i.e. D12 

and D2 are always zero). We also observed a significantly longer time scale for 

equilibration of over an order of magnitude. Assuming the equilibrium dissociation 

constant for dimerization is unchanged, we chose to use a lower kon of 0.006  µM-1s-1 

and thus a calculated koff of 0.003 s-1
. 


