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1 Executive Summary 

Type 2 diabetes is a metabolic disease characterized by high blood glucose due to insulin 
resistance and relative insulin deficiency. Primarily affecting those suffering from obesity, it 
comprises approximately 90% of all cases of diabetes. Currently, insulin and metformin 
injections are the most common methods of lowering blood glucose levels in type 2 diabetics. 
However, there are several disadvantages to these treatments, including the need for several 
injections a day and the risks associated with improper dosage or deviation from injection 
schedule. One proposed alternative treatment is to deliver microspheres embedded with exendin-
4, an insulin secretagogue with glucoregulatory effects on the body, via a single subcutaneous 
injection. Bioerodible microspheres allow for a slow, sustained release of drug that will decrease 
the required frequency of administration and subsequently improve patient compliance. 

This paper documents the release of exendin-4 from poly(lactic-co-glycolic acid) (PLGA) 
microspheres into the bloodstream and the phenomena that influence its transport, namely the 
diffusion through the polymer matrix and bloodstream and the convective mass transfer effected 
by the flow of blood in the vessel. Because the motivation behind using microspheres as the 
preferred method of delivery is to eliminate the need for repeated administration, it is necessary 
to achieve a controlled, prolonged delivery of the desired dosage of exendin-4.  

The goal of this study is to find the optimal formulation properties for a steady release of 
exendin-4 into the bloodstream for an extended period of treatment. To this end, we developed a 
2D-axisymmetric geometry in COMSOL to model a single microsphere in the human artery. A 
time varying boundary condition was implemented to simulate the changing radius of the 
microsphere, which steadily decreases due to surface degradation. A variety of parameters (e.g. 
PLGA composition, initial drug concentration, microsphere radius) were simulated using a series 
of parametric sweeps, and the effects of parametric changes were observed using sensitivity 
analysis. 

We found that the determination of the optimal diffusivity of exendin-4 in the PLGA 
microsphere depends on the desired balance between steadiness of release rate and total amount 
released after three weeks. Higher ratios of glycolic acid resulted in undesired bursts of drug 
release, whereas higher ratios of lactic acid did not result in appreciable rates of diffusion 
through the polymer matrix and thus did not achieve complete release by the end of the 
administration period. For any given composition of PLGA, we determined that an initial 
concentration of 1.505 mol/m3 (247 mg/mL) provided flux values within the reasonable range for 
effective delivery of exendin-4 over the desired period of administration. 

Our model does not provide conclusive evidence that the delivery of exendin-4 embedded 
in PLGA microspheres will achieve adequate therapeutic results. However, computational 
analysis of the concentration profiles attainable in the bloodstream provides a rough estimate of 
the formulation conditions required for controlled drug release; subsequent experiments will be 
conducted to evaluate its viability as a safer, less invasive alternative to periodic direct insulin 
injections for the treatment of type 2 diabetes. 
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2 Introduction 

 

2.1 Background 

 Type 2 diabetes, also known as adult-onset diabetes, is a chronic disease characterized by 

high levels of sugar in the blood due to insulin resistance and relative insulin deficiency [1]. 

Insulin is a peptide hormone that helps regulate blood sugar levels by storing glucose into cells. 

However, due to insulin resistance or relative insulin deficiency in people with type 2 diabetes, 

blood sugar does not move into cells and high levels of sugar build up in the blood. These 

individuals also lack glucose-sensitive regulation of glucagon and maintain constant glucagon 

levels even after food consumption. To mitigate insulin resistance, patients can undergo exercise 

and improve their eating habits, but some patients require further treatment. Doctors recommend 

medications to lower high blood glucose level by administering metformin and insulin injections 

to suppress glucose production in the liver [1]. However, due to risks associated with wrong 

dosages or improper administration of the drug, we will explore the viability of an alternate 

method of drug delivery. 

 Long-term controlled drug delivery would be optimal in administering the drug for 

patients. Without the need for frequent injections certain dosages of the drugs, microspheres of 

biodegradable polymers that provide a sustained-release delivery of the peptide improves patient 

compliance. Therefore, we are analyzing the sustained release delivery system of exendin-4 

encapsulated in PLGA microsphere. Exendin-4 is a glucose-dependent insulinotropic hormone 

that possesses glucoregulatory effects [2]. This drug helps with glycemic control by glucose-

dependent enhancement of insulin secretion, glucose-dependent suppression of inappropriately 

high glucagon secretion, slowing of gastric emptying, and reduction of food intake [3]. Exendin-

4 stimulates both β-cell replication and neogenesis, resulting in increased beta-cell mass and 

improved glucose tolerance in diabetics [4]. Its dual capability of inducing cells on the liver to 

produce insulin and suppressing glucagon production from α-cell contribute to the reduction in 

blood glucose levels in patients with type 2 diabetes [3]. Drug burst release in PLGA 

microspheres may induce hypoglycemia in diabetic patients [3]. However, since exendin-4 is 

glucose-dependent, it won’t induce hypoglycemia. Therefore, exendin-4 is the drug we want to 

be administered by the PLGA microspheres for the treatment of type 2 diabetes.  
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 Hence, we are modeling drug release from the PLGA microspheres in the blood stream to 

determine the optimal properties of the microsphere, such as PLGA monomer composition, 

sphere size, and diffusivity, for the long-term steady drug release of exendin-4. We want to 

develop a well sustained delivery system for the treatment of type 2 diabetes with exendin-4 by 

poly(lactic-co-glycolic acid) microspheres for user comfort and safety.  

 

2.2 Design Objectives 

 In this project, we model the release of the drug exendin-4 from a biodegradable PLGA 

microsphere and its concentration profile as it diffuses through the bloodstream. Our design 

objectives are twofold. The first objective is to simulate a controlled release of drug from the 

microsphere by means of constant flux at the microsphere-bloodstream interface. In order to do 

this, several parameters are considered, including the monomer composition of the poly(lactic-

co-glycolic acid) polymer matrix, the size of the microspheres to be administered, and the initial 

loading of drug in the sphere. In addition, the degradation of PLGA in the bloodstream, which 

affects the size of the sphere and concentration of encapsulated drug over time, is modeled and 

coupled with the drug release rate. The second objective is to ensure that enough exendin-4 is 

released into the bloodstream to meet an appropriate therapeutic quota, corresponding to 

standard exendin-4 dosages recommended by physicians. Because the drug will be transported 

through the bloodstream, the diffusive and convective properties and velocity of the blood flow 

must be taken into account. 

By developing a physically accurate model of the degradation kinetics of PLGA and 

diffusion of exendin-4 in the blood, we hope to investigate what will be the optimal properties of 

the microsphere to aid in the development of the pharmaceutical formulation. Completion of 

these objectives will demonstrate that the delivery of exendin-4 from PLGA microspheres is an 

acceptable method of administration and a viable alternative to the standard insulin and 

metformin injection formulations. 
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3 Problem Formulation 

 
3.1 Schematic and Model Design 

 The computational domain of our COMSOL model consists of two regions: the 

microsphere and the blood. Although the original problem involves diffusion of exendin-4 and 

blood flow around the microsphere in three dimensions, the geometry can be simplified for ease 

and efficiency of computation. For the purposes of this model, diffusion of drug from the sphere 

and through the bloodstream can be assumed to be spherically symmetrical about the origin. The 

bloodstream that carries the drug via convective mass transfer flows through the blood vessel in 

a specified direction, but the flow is axisymmetric in the θ-direction. Therefore, the geometry can 

be modeled as a semicircle in 2D axisymmetric cylindrical coordinates, with an axis of 

symmetry that is parallel to the direction of bulk blood flow. We are interested mainly in 

observing the concentration profile of exendin-4 in regions of the bloodstream relatively close to 

the microsphere and far away from the vessel walls, so the blood vessel is modeled as a 

rectangular semi-infinite domain, as shown in Figure 1. 

            

 

 

 

 

 

 

 

 

 

 
 
Figure 1. Schematic of the 2D axisymmetric exendin-4 loaded PLGA microsphere in the blood. The microsphere is 
modeled as a semicircle of radius 5 µm. Blood flowing relative to the sphere imposes a convective boundary 
condition, and the blood vessel is modeled as a semi-infinite domain due to the large distance of the vessel wall from 
the sphere. The edges of the blood vessel computational domain are relatively close to the sphere in the region near 
the blood flow inlet; the geometry was designed as such to reduce inessential computation, as the drug concentration 
does not diffuse radially very far in this region. 
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To implement the convective effects the blood flow around the microsphere has on the 

drug release, we modeled the flow of fluid using the Navier-Stokes governing equations. 

Because the velocity of the blood is not constant as it flows around the sphere, it is not sufficient 

to simply model the blood flow as a convective mass transfer boundary condition. Rather, the 

equations for fluid flow must be coupled with the diffusion equations and solved for the r- and z-

components of the blood velocity at every point.  

 Controlled release of exendin-4 occurs via several different mechanisms. In our system of 

interest, the primary mechanisms of drug release are diffusion of exendin-4 through the 

polymeric network, and release of exendin-4 into the blood by erosion of the encapsulating 

microsphere. The former is described by Fick’s law of diffusion and is primarily a function of 

the polymer’s diffusivity, which in turn is determined by the ratio of lactide to glycolide 

monomers in the PLGA. The latter is due to hydrolytic degradation of ester linkages in the 

PLGA polymer in the presence of aqueous solution [3].  

Erosion, or hydrolytic volume loss of the PLGA matrix, can be further broken down into 

two types: surface erosion and bulk erosion. In surface erosion, the degradation of the PLGA 

occurs solely at the surface, causing the microsphere to slowly decrease in size while the 

polymer density remains relatively constant. Bulk erosion occurs when water diffuses into the 

polymer matrix and initiates homogenous degradation throughout the sphere from the inside; in 

this case the sphere slowly becomes less and less dense while its volume stays the same [3]. Due 

to various complications with implementation of bulk erosion in COMSOL, we assume as a 

physical approximation that PLGA erosion occurs solely at the surface. 

We designed the semicircle in COMSOL as a flexible domain to simulate the shrinking 

of the sphere. The domain boundary, which represents the surface of the sphere, was made to 

move uniformly over time according to a specified velocity function. Because there are several 

mathematical models available in the literature for evaluating the kinetics of drug release from 

biodegradable polymeric microspheres, we initially thought of modeling the degradation 

mechanisms as closely and accurately as possible. However, in the end it proved difficult to 

simulate the net rate of degradation as a single function that could be written in COMSOL. We 

instead chose to prescribe a mesh velocity that is a function of the drug release (refer to 

Appendix A.2).  
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4 Results and Discussion 
 

4.1 Solution 

Using a time step of ∆t = 86400 s, or 1 day, we modeled the release of exendin-4 from 

the PLGA microsphere into the bloodstream over the total administration period of 21 days, or 

three weeks. The following section describes the details behind the development of our model in 

COMSOL. 

The rate of diffusion of drug from the microsphere is coupled with the rate of sphere 

surface degradation. To model this degradation in COMSOL, we implemented a moving 

boundary that causes the radius of the semicircle domain to shrink at a specified velocity, as 

discussed in Section 3.1. The changing volume of the sphere was plotted as a function of time 

and is shown in Figure 2. 

 

 
Figure 2. Volume of the microsphere expressed as a percentage of the initial volume versus time. Values were 

found in COMSOL at each time by computing the volumetric integral of the domain and dividing by the initial 

volume. 
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 Upon implementation of the moving boundary, we calculated an initial solution using a 

diffusivity value of SD  = 3.84×10-18 m²/s. The resulting concentration surface plot is shown in 

Figure 3. 

 

 
 

Figure 3a-d. Concentration profiles (in mol/m³) for exendin-4 loaded PLGA microspheres with a diffusivity value 

of 3.84×10-18 m²/s and an initial radius of 5 µm. a) At t = 1 day, the radius of the sphere has shrunk to about 4.5 µm. 

There is a concentration gradient localized at about 1µm from the surface, while the rest of the sphere maintains the 

initial concentration of approximately 1.5 mol/m³. b)  After t = 7 days, the radius of the microsphere has shrunk to 

less than 4 µm. The concentration in the sphere has visibly decreased, with a gradient covering a larger distance. c) 

At t = 14 days, the radius of the microsphere has not changed significantly, and the concentration levels within the 

sphere have reached close to 0. d) At t=21 days, the radius of the sphere remains unchanged, and almost all of the 

drug has diffused into the blood. 

 

We had initially thought that the diffusion of exendin-4 from the microsphere would 

result in a visible layer of drug surrounding the sphere due to spherically symmetric diffusion, 

and a visible trail of drug carried by convection at the front of the sphere’s movement. However, 

no visible concentration is apparent in the blood right outside the sphere, and the effects of 

convection on the path of drug release cannot be seen.  

Due to the inherent limitations of a color surface plot for a constant range of 

concentrations, there is no way to tell that drug is diffusing out from these profiles alone. To 

solve this problem, we decided to monitor drug concentration at a point in the bloodstream near 

(a) (b) (c) (d) 
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the microsphere surface, where drug should have just diffused from the sphere. Because the 

sphere radius changes over time, the measure point must change accordingly to stay close to the 

surface and get a consistent picture of the drug diffusion. We chose to track a point that stays at a 

distance of 2% of the current sphere radius from the sphere surface; in other words: 

02.1
sphere of Radius

origin point to measure from Distance
=  

A plot of the changing sphere radius over time, and the corresponding points used to monitor the 

diffused drug concentration, is shown in Figure 4. 

 

 
Figure 4. Solid line: radius of the microsphere; diamonds: points at which concentration of exendin-4 is measured. 

Measure points were determined by multiplying the current radius by a proportion factor of 1.02. 

 

Some complications arose due to the fact that we were unable to specify the location of 

the 2D cut point as a direct function of the time-varying sphere radius in COMSOL. To 

circumvent this issue, we manually found the specific measure points of interest at each time step 

and plotted the corresponding concentration profiles at each of these points (Figure 5). Using this 

data, we were able to generate a single plot of drug concentration vs. time for a measure point 

that changes appropriately with the sphere radius at a given time (Figure 6). 
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Figure 5. Concentration profiles of exendin-4 at selected distances from the origin. Each data point corresponds to a 

certain time point based on Figure 4. Concentration values of interest were solely the values at the time points of 

interest. 

 

 

 
Figure 6. Concentration profile of exendin-4 measured at a point immediately outside the microsphere surface. 

Points of measurement were chosen such that at any time t, the ratio (Distance from measure point to origin)/(Sphere 

radius) = 1.02, as shown in Figure 4. 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 3 6 9 12 15 18 21

Co
nc

en
tr

at
io

n 
(m

ol
/m

³)
 

Time (days) 

z = 5.07e-6
z = 4.68e-6
z = 4.43e-6
z = 4.23e-6
z = 4.08e-6
z = 3.96e-6
z = 3.86e-6
z = 3.79e-6
z = 3.73e-6
z = 3.69e-6
z = 3.66e-6
z = 3.63e-6
z = 3.61e-6
z = 3.60e-6
z = 3.59e-6
z = 3.58e-6
z = 3.57e-6
z = 3.56e-6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 3 6 9 12 15 18 21

Co
nc

en
tr

at
io

n 
(m

ol
/m

³)
 

Time (days) 



Page 12 of 27 
 

We can see from Fig. 5 that there is a buildup of drug concentration, confirming the 

release of exendin-4 into the bloodstream around the sphere. As expected, the concentration 

outside the sphere is zero at t = 0 before the drug has started diffusing, the concentration reaches 

its peak at intermediate times, and it starts to fall as the concentration of drug remaining in the 

sphere is depleted. 

While the concentration profile outside the microsphere confirms that exendin-4 is, in 

fact, diffusing out into the bloodstream, it does not provide any information about the direction 

of the flow. More specifically, the effect of convection on the path of drug release is not clear, 

and we cannot yet disprove the possibility that the mechanism of drug release might simply be 

limited to spherically symmetric diffusion. 

The reason the flow patterns of exendin-4 in the blood are not readily visible is that the 

difference between the diffusivity of exendin-4 in the bloodstream (on the order of 10-10 m²/s) 

and its diffusivity in the PLGA microsphere (on the order of 10-18 m²/s) is enormous, causing 

exendin-4 to diffuse through the blood much more quickly than it does in the sphere. Also, the 

relative velocity of the blood flow ensures that any drug that has diffused into the blood is 

immediately swept away. 

To get around this issue, we ran a modified simulation for a case in which the 

diffusivities of exendin-4 in the microsphere and in the blood are equal. The diffusivity of 

exendin-4 in the sphere was changed to match that of the blood and the time step was decreased 

so that the results of the more rapid mass transfer could be observed. The results are shown in 

Figure 7. 
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Figure 7. Concentration profiles of exendin-4 at times (a) 500, (b) 1000, and (c) 2000 seconds, for a modified 

simulation with equal drug diffusivity of 2×10-10 m²/s in the sphere and blood. Drug concentration in the blood 

exhibits a clear taper effect, confirming that blood is flowing over the sphere and that the net transport of exendin-4 

is in the direction of the blood flow. Decreasing concentration behavior similar to that of the actual case can be 

observed within the sphere. 

 

 The results of the modified simulation look similar to what we envisioned in our initial 

expectations. Because changes in magnitude of diffusivity only affect the rate of transport of 

exendin-4 and not the nature of the physics involved, this simulation proves that the convection 

due to blood flow facilitates the transport of exendin-4 from the microsphere through the 

bloodstream. In this way, the simulation can be considered as a form of sensitivity analysis 

because it shows that the model behaves in the way that it is expected to behave, helping us build 

confidence in our results. 

There were, however, some issues that we could not avoid, many of which are related to 

the moving boundary of the sphere. The largest problem we encountered was that the COMSOL 

model could not support the decreasing of the sphere domain size past a certain point. This is 

presumably due to complications in the mesh distribution when the domain gets too small; when 

we tried running the simulation for longer periods of time or faster sphere degradation, the 

results would not converge for sphere volumes that were less than ~35% of its initial value. This 

prevents us from analyzing drug release behavior for times at which the sphere is close to fully 

degraded. However, because the PLGA microsphere is likely to break apart into its monomeric 

or oligomeric units when it becomes sufficiently small [3], we may not be interested in diffusion 

rates for which the drug is not fully released before the microsphere reaches this size limit. 
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4.2 Sensitivity Analysis 

 To investigate the effects of various parameters on the outputs of the model, sensitivity 

analysis was performed on three parameters: diffusivity, blood flow velocity, and initial 

concentration. For each parameter, three different values were inputted into the model, using the 

original values as the base cases, and concentration values at the center of the sphere after half of 

the administration period had passed (1.5 weeks, or 10.5 days) were recorded. The results are 

shown in Figure 8. 

 
Figure 8. Sensitivity analysis performed on diffusivity, blood flow velocity, and initial concentration, with the 

concentration of exendin-4 at the center of the microsphere at t = 10.5 days as the monitored parameter. Diffusivity 

values ranging within the same order of magnitude have result different concentration values, and initial 

concentration values exhibit moderate effects on later concentration values. Velocity of convective blood flow 

demonstrates almost no effect on sphere concentration, with velocities spanning 2 orders of magnitude resulting in 

less than 5% change in concentration. 

  

The model is least sensitive to blood flow velocity. According to literature, blood flow 

velocity values range anywhere from 10 – 45 cm/sec depending on the type of blood vessel [13]. 

Theoretically, the amount of change in the microsphere velocity should equal the change in the 

blood flow velocity, maintaining a constant relative blood velocity. However, slight variations 

may occur due to differences in drag forces with varying flow velocities, and thus the effects of 

change in relative velocity were investigated. When performing sensitivity analysis for this 

parameter using the range of blood velocity found in literature, the results demonstrated minimal 
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variation. Since all values in this range are within the same order of magnitude, values that 

spanned multiple orders of magnitude were tested, and these results also demonstrated minimal 

variation. Thus our model is not highly sensitive to the value of relative blood velocity. 

 The model is somewhat more sensitive to initial concentration. Since the model assumes 

an initial concentration value of 1.505 mol/m3, the simulation was run at lower and higher values 

of 1.00 mol/m3 and 1.75 mol/m3, respectively. However, the results were not as we initially 

expected, as concentration at the center of the sphere decreased with increasing initial 

concentration. This may be attributed to the initial burst of drug: a larger initial drug 

concentration forms a larger initial gradient from the sphere interior to the blood and results in a 

more rapid initial burst of release, potentially leading to smaller sphere concentrations at later 

times due to the increased outward flux. Additionally, since these values were recorded at the 

center of the sphere, they do not necessarily reflect the average concentration within the entire 

sphere, which if measured exactly may agree more with our initial expectations. 

The model is most sensitive to the diffusivity of exendin-4 in PLGA. According to Figure 

8, diffusivity has a significant effect on concentration, exhibiting a 90% reduction in 

concentration with a more than threefold increase in diffusivity. Although diffusivity values can 

span several orders of magnitude depending on the ratio of PLGA [14], our sensitivity analysis 

only used values that were within the same order of magnitude. Nonetheless, the results showed 

extreme effects on concentration, and thus further investigation of the model sensitivity to 

diffusivity was performed. 

Upon further analysis of the effects of varying diffusivity, we found that the cumulative 

release profile more closely approaches a straight line for smaller diffusivities (Figure 9), 

indicating a more constant release rate. However, smaller diffusivity also results in a smaller 

total amount of drug released at the end of the administration period of 3 weeks.  
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 Figure 9. Cumulative percentage of drug release from the microsphere versus incubation time for various diffusivity 

values. Release rates become more constant as diffusivity decreases; however, total amount of administered drug 

decreases by the end of 3 weeks. 

 

 

4.3 Accuracy Check 

An accuracy check was conducted to compare drug release and/or concentration profiles 

with results from other papers that have used exendin-4 encapsulated in PLGA microspheres. In 

Figure 10, obtained from a patented method by Kwak et al. (2012) for preparing a biodegradable 

polymer microsphere containing a glucose-regulating peptide, the cumulative percent release of 

exendin-4 is plotted with respect to time [10]. The release profile seems to follow zero-order 

kinetics with no apparent initial burst of drug, and approximately 100 percent release is achieved 

within three weeks.  

Although the diffusivity value of drug within the polymer is unknown, we can 

approximate it using the same method we used to calculate our diffusivity value in the sphere. 

Using equation 1, the diffusivity was calculated to be 9.116x10-19 m2/s. To see if our model 

could accurately reproduce the experimental results, we implemented this diffusivity value and 

plotted percent release against time, as shown in Figure 11. The resulting graph exhibits a linear 

relationship similar to that of the experimental results; however, 100% release is not achieved by 

the end of the three-week period, and the percent release value of approximately 7% at the initial 

time suggests an initial burst. 
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Figure 10. Experimental data for the controlled release rate of exendin-4 from biodegradable microspheres obtained 

from a patented method by Kwak et al. (2012) 100% drug release is achieved after 3 weeks with approximately 

zero-order release kinetics and no initial burst of drug.  

 

 
Figure 11. Validation of the drug release rate physics implementation in COMSOL. Both experimental data and 

analytical solution exhibit linear relationship. Discrepancies in total percent release can be attributed to limitations 

of the model, i.e. no considerations of bulk erosion or contact between the microsphere and vessel wall. 
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The differences between the computed and experimental results in Figure 11 are mainly 

due to modeling limitations. COMSOL cannot model complete degradation of the sphere due to 

moving boundary limitations, and the model does not account for bulk erosion or contact 

between the sphere and vessel wall. The model cannot simulate the complete degradation of the 

sphere, as the moving boundary becomes irregular when the radius approaches small values. 

Since a large amount of drug is released when the sphere is very small, this limitation greatly 

impacts the resulting release profile. The model also does not account for several factors, such as 

contact between the sphere and vessel wall due to collision, and alternative methods of 

degradation, namely bulk erosion. The exclusion of these factors would further contribute to the 

error between the model and experimental data. Although the profile produced by the model and 

the experimental data do not completely coincide, the fact that the computation was able to 

achieve a linear release profile similar to the experimental results is extremely promising. 

Therefore, it was determined that the two solutions are sufficiently similar to validate the 

COMSOL model of the drug release rate physics. 
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5 Conclusion 
 

5.1 Design Recommendations/Realistic Constraints 

Our study showed that diffusivity has the most significant influence on the delivery of 

exendin-4 from the microsphere, and the results showed that there is a tradeoff between the 

steadiness of release rate and the total amount released at the end of the administration period. 

Decreasing the diffusivity will cause the release kinetics to approach zeroth order; however, 100 

percent release will not be achieved by the end of three weeks. Thus, although varying the PLGA 

ratio to achieve the desired diffusivity can enhance delivery, the constant release rate 

requirement will have to be compromised.  

The model results serve to demonstrate a range of potentially suitable diffusivities of 

exendin-4 in PLGA for drug-loaded microsphere fabrication. However, it is ultimately up to the 

scientists in the next stage of development to determine the optimal combination of release rate 

and total released amount that will fulfill their requirements for therapeutic viability. The 

concentration profiles obtained from this model should be used as reference in this decision 

process. 

There are significant advantages to having a constant release rate and total release by the 

end of the administration period. The advantage of achieving a constant release profile from the 

PLGA microsphere is the assurance that drug levels in the blood can always be determined, and 

thus overdose at any point can be avoided. If cumulative drug release is linear, the amount 

released can be determined based on the time elapsed, and determination of the next 

administration of microspheres can be planned accordingly. However, having irregular or non-

zero order release kinetics makes it much more difficult to determine how much drug has 

diffused into the blood, and it would be uncertain if the levels in the blood would have 

therapeutic effects at any time. In a situation as sensitive as increase in blood glucose levels after 

a meal, it is extremely necessary to ensure that effective amounts of drug are available in the 

blood to remedy the situation, while maintaining a level that is below excessive amounts. 

The advantage of having total release by the end of the administration period is being 

certain of the initial amount of drug required to be loaded in each microsphere. Knowledge of 

how much drug is required to achieve total release can serve to minimize costs associated with 

drug and drug loading. Additionally, total release ensures that there is no residual amount left at 
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the end of the administration period, and thus there is no buildup of drug with each subsequent 

dose of microspheres. This would avoid unwanted effects due to overdose and eliminate any 

complications associated with unknown variables. 

A possibility for reducing the need for a tradeoff between these two conditions is to 

couple an increased initial concentration with a lower diffusivity. In this way, more drug will be 

available initially and can theoretically achieve therapeutic levels for the duration of the 

administration period, while still maintaining a constant release profile. However, it is important 

to note that the use of more drug would increase complications in engineering the pharmaceutical 

formulation and would result in a more expensive treatment. Moreover, an initial concentration 

that is too high can result in dangerously rapid bursts of drug release at early times due to the 

large concentration gradient formed between the sphere and the blood, which can pose health 

risks to the patient. Therefore, the initial concentration that can be used is constrained by the cost 

of formulation development and safety issues related to drug dosage. 

 

5.3 Future Work 

The project was highly limited by the amount of available computing power, as 

COMSOL could only reach converged solutions for relatively coarse mesh sizes as the sphere 

computational domain decreased to small sizes. Increased computing power would allow the use 

of a finer mesh for small microsphere radii to generate more accurate solutions without resulting 

in computational failure. Furthermore, a better quantitative understanding of PLGA degradation 

mechanisms should be investigated. While the model accounts for surface erosion, it ignores 

bulk erosion and possible surface contact of the spheres with the vessel walls [12]. As the 

physics behind such dynamics are very complex and not fully understood, they are difficult to 

incorporate into the model but should be considered if more accurate results are desired. A more 

rigorous analysis of exendin-4 transport would also have to take into account the asymmetry in 

the microsphere polymeric structure due to the non-uniform distribution of lactide and glycolide 

monomers in PLGA. Faithful implementation of this asymmetry would require the use of a 

three-dimensional structure in the model, which could be achieved by simulating the geometries 

within an actual PLGA microsphere in a 3D modeling program such as SketchUp, and importing 

this geometry into COMSOL for analysis. Finally, the effect of using larger microspheres or 

longer administration periods may also be investigated in further studies. 
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Appendix A: Mathematical Statement of the Problem 
 

A.1 Governing Equations 

Assumptions/physical approximations: 

1. The microsphere is a perfect sphere. 

2. Diffusion and surface degradation is axisymmetric. 

3. The PLGA microsphere, which has a non-uniform composition ratio of lactide and 

glycolide monomers, has uniform material properties (diffusivity, density, etc.) 

4. PLGA erosion is entirely at the surface; the amount of absorbed water is low such that it 

does not cause erosion to the interior of the microspheres. 

 

The following equations provide a quantitative description of the problem’s underlying physics: 

1. Mass transfer equations for diffusion of exendin-4 

a. Within the sphere 
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2. Navier-Stokes equations for blood flow 

a. r – component 
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b. z – component 
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A.2 Computational Domain, Boundary and Initial Conditions 

 

Computational Domain 

The moving boundary was implemented by making the radius a function of the flux of drug 

across the boundary and therefore dependent on time. Since the primary effect of blood flow is to 

maintain a significant concentration gradient by sweeping away any drug that diffuses out, it is 

effectively changing the mass of drug within the sphere. Thus, coupling the flow to the flux is an 

accurate approach to implementing the moving boundary. The change in mass due to loss of drug 

was converted to change in volume using density, and change in radius was obtained from the 

volume change. 

 

Boundary Conditions 

1. At the wall of the blood vessel: 

=bc  0 mol/m3 

  No viscous stress 

2. At Inlet: 

=bc  0 mol/m3 

=bloodv  3×10-8 m/s 

Because the sphere is being carried with the flowing blood, the fluid bulk velocity 

is the relative velocity of the blood with respect to the sphere. It can be estimated 

as the settling velocity of the sphere, calculated using Stokes’ law: 

sd

bloodPLGAgd

vRF

RgFF

⋅⋅⋅=

⋅⋅⋅−==

µπ

πρρ

6
3
4)( 3

 

=sv ranges from around an order of magnitude of 10-6 m/s to 10-9 m/s for 

microsphere radii ranging from the initial 5 µm to less than 0.5 µm.  

The coupling of the blood flow with the degrading sphere is very difficult to 

incorporate into a boundary condition; instead, we assume a constant intermediate 

value of 3×10-8 m/s for the relative velocity of the blood. 
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3. Pressure at the outlet: 

  p  = 0 Pa 

4. Axisymmetry condition: no flux at left boundary (r=0) 

 

Initial Conditions 

1. Initial size of microsphere:  

=== 0,)0( mm rtr  5 µm 

2. Initial drug concentration in microsphere*: 

=== 0,)0( mm ctc  1.505 mol/m³ [3] 

3. Initial drug concentration in bloodstream: 

== )0(tcb 0 mol/m³ 

 

*The initial drug concentration in the microsphere was calculated using the ratio of drug mass to 

microsphere mass utilized in the drug loaded microsphere fabrication discussed in DeYoung et. 

al. [3]. The microsphere mass was divided by the density of PLGA [4], and the drug mass was 

divided by the resulting volume and converted to moles using the molecular weight of exendin-4 

(4186.57 g/mol) [5] to calculate concentration. 
 

A.3 Material Properties and Input Parameters 

 
Material properties 
Parameter Description Value Units Reference 

SD  Diffusivity of exendin-4 in 
sphere** 3.84×10-18 m²/s See below 

BD  Diffusivity of exendin-4 in 
bloodstream 2×10-10 m²/s based on Fig. 12 

bloodρ  Density of blood 1050 kg/m³ [7] 

bloodµ  Viscosity of blood 0.003 Pa ∙ s [7] 

PLGAρ  Density of PLGA 1260 kg/m³ [4] 
 

**Diffusivity in the sphere was approximated using the equation for Fickian diffusional release 

from a thin polymer sample found in Siepmann et. al. [6]: 
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where 𝑀𝑡
𝑀∞

 is the percent drug released at time t and L is the characteristic length, which in this 

case would be the radius of the sphere (5 µm). The percent released at a certain time was 

approximated using Figure 13 from Liu et. al. [2], which shows the release profiles for 

microspheres of different PLGA ratios. Because it exhibits the most ideal release kinetics, the 

50/50 ratio profile was used to estimate a 13% release after 1 day. Based on these values, a 

diffusivity of 3.84x10-18 m2/s was calculated. Though this value is very small, other studies have 

observed even smaller diffusivity values in PLGA for various drugs [14]. Thus we have 

determined our calculated value to be sufficiently accurate and within reason. 

 

 

 

 

  

Figure 13. Effect of the polymer type on the 
release profiles of exenatide loaded PLGA 
microspheres. PLGA 50/50 (triangle), PLGA 
75/25 (square) and PLA (x) (n=3). 
 

Figure 12. Variation of diffusivity with molecular 
weight for globular proteins in water. From Salzman 
(2001). 



Page 25 of 27 
 

Appendix B: Solution Strategy 

 

B.1 COMSOL Specifications 

 Because the problem is being solved with a relatively small number of elements (shown 

in Section B.2) and we are only dealing with three different physical governing equations, the 

simulation is best run using a direct solver. In our case, COMSOL is using the direct solver 

MUMPS. 

 

B.2 Mesh Convergence 

We performed a mesh convergence analysis to find the minimum number of elements 

that could be used for computation without introducing significant discretization error into the 

solution. The parameter chosen to be monitored is the concentration of exendin-4 at a point 

inside the microsphere at early times, as this displays a large amount of variation over time that 

can be monitored to check for convergence. Mesh distribution was chosen such that the mesh is 

finest at and around the surface of the sphere, which is where the greatest change in drug 

concentration occurs due to the transition in diffusion medium from PLGA to blood. 

Mesh convergence was performed at a radius value of 4.2 µm (within the sphere) from 

t=0 to t=20000 s. Since the surface of the degrading microsphere encounters the most change in 

concentration, the number of elements in the distribution for the mesh around the microsphere is 

varied. The greatest number of elements that we could run efficiently given the computational 

limitations of the software was 4477 elements; the results of this mesh size are somewhat similar 

to the next greatest number of elements (2370), so we can assume that it is close to converged.  
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Figure 14. Mesh convergence on concentration profile of exendin-4 at (r=4.2 µm, z=0 µm) for various numbers of 

free triangular elements. The mesh appears to be close to converging at 2370 elements, but a greater number of 

elements resulted in computational failure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Diagram of final mesh selection, with 2370 elements. Mesh element distribution is finest at the interface 
between the sphere and the blood. 
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