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As the use of computer simulation for scientific discovery increases there is a

growing need for reliable multiphysics simulations. Although an exact definition

for multiphysics problems is difficult to state, these problems include simulations

where two or more component models are coupled to simulate events beyond either

individual component. Aware of the growing prevalence of multiphysics simula-

tions, this work identifies potential impediments to efficient and stable computation

and proposes procedures to address the concerns.

We first introduce the implicitly coupled multiphysics framework, through

which we limit the domain of problems we consider, and Jacobian-free Newton-

Krylov methods, which will be the primary technique for solving these nonlinear

systems. Kernel-based approximation theory is introduced, providing a method for

coupling component models with different discretizations. These topics have both

theoretical and computational implications which are later applied in the context

of multiphysics simulations.

Our first contribution is the analysis of preconditioning nonlinear systems pro-

duced during multiphysics simulations. The motivating application is computa-

tional plasma physics, specifically, the edge region of a tokamak reactor performing

magnetic confinement fusion. For sufficiently difficult parameter choices, existing

preconditioners have proved ineffective or inefficient at producing useful Newton

steps. We analyze the various components of this simulation and determine why

preconditioners acting on the entire simulation do not perform well. Using these



insights we develop an operator-specific (or physics based) preconditioner which

allows for better performance while improving parallel scalability.

Preconditioning is an important component of the Jacobian-free Newton-

Krylov method because it allows a faster solution of the Newton search directions.

Equally critical, although less susceptible to poor performance, are the Jacobian-

vector products within the linear solvers which are approximated using Taylor

series. We study this process in the multiphysics setting and propose improve-

ments that allow for greater accuracy when two components on different scales are

coupled together.

The final issue we consider in multiphysics systems also receives the most treat-

ment. Simulating a multiphysics system requires coupling between the individual

components, and in this thesis we discuss the use of kernel-based scattered data

interpolation to perform the coupling. A new technique, based on an orthonormal

expansion of the kernel, is developed which allows us to evaluate meshfree radial

basis interpolants in arbitrary dimensions without the ill-conditioning often present

for accurate kernel choices. These eigenfunctions are derived using Hilbert-Schmidt

theory, and tested on interpolation problems in up to five dimensions.

After the eigenfunction method is validated, we show how it can be used to ap-

proximate derivatives of a function given only scattered data. Once this is proven,

results are given for a multiphysics simulation using meshfree interpolation. These

results are compared to the standard discretization scheme for interpolating be-

tween models, with higher order results possible using meshfree interpolation. Ad-

ditionally, because the meshfree approach works with scattered data, it provides

a more general method for coupling two models with mismatched grids. In ad-

dition to the viability of meshfree coupling for multiphysics, we also consider the

computational cost. The preconditioning discussion from earlier is applied here to



choose a good preconditioner for the fully coupled system, which is important for

reducing the cost of linear solves.

The remaining content focuses on other aspects of the eigenfunction expansion

which are relevant to the wider computational community. Using the derivative

approximation method created for coupling multiphysics components, we show

how boundary value problems can be solved by collocation using the eigenfunction

basis. We also explore the use of the eigenfunction technique in the Method of Par-

ticular Solutions, which demonstrates the benefit of solving elliptic problems with

a joint collocation/Method of Fundamental Solutions approach. The final results

deal with a statistical framework for determining appropriate parameterizations of

kernels, which is necessary to realize the optimal interpolation accuracy discussed

earlier. These methods have previously suffered from the ill-conditioning addressed

by the eigenfunction approach, and, using the new stable basis, we reconsider their

viability as predictive tools.
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CHAPTER 1

INTRODUCTION

There exists significant mathematical theory and computational means to dis-

cretize and solve a set of partial differential equations (PDEs) based on a sin-

gle model, or a single set of underlying physical phenomena. Currently, appli-

cations scientists are interested in performing simulations with multiple indepen-

dent components coupled together. Techniques to run such multiphysics simu-

lations have been developed within individual communities interested in the re-

sults, but numerous complicated issues remain for general multiphysics simulations

[106, 28, 160, 175].

When using the term multiphysics in this work, we mean specifically the cou-

pling of two simulations through an interface, although that interface may be the

entire domain. Other works discussing multiphysics take a more targeted view (the

component simulations may need contradictory views of the universe), or a more

relaxed view (arbitrarily many simulations may be coupled in some way which

varies with time) but we maintain a specific focus in this work to identify systems

for which these new contributions are relevant.

Often times multiphysics problems are coupled together through an operator

splitting allowing individual physics to be described separately. This is the nat-

ural extension of a bottom-up approach of assembling component models into a

coupled simulation. Doing so introduces both algorithmic and analytic issues with

several possible resolutions; many of those already present in existing applications

is discussed to varying degrees in this thesis. Here we mostly consider problems

which are intrinsically coupled, and whose components are asymptotic limits of

parameters within the coupled simulation. Analysis on “real world” problems is
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not always practical, both in production level simulations and in this thesis, so the

use of model problems is needed.

This chapter introduces some existing multiphysics problems and related model

problems as well as our preferred approach for solving these nonlinear problems,

Jacobian-free Newton-Krylov. Kernel-based interpolation is also introduced, as

this is the focus of several contributions in this thesis, most notably in the cou-

pling of multiphysics simulations. A physics-based approach to preconditioning

the Jacobian-free Newton-Krylov solver is developed in Chapter 2 for edge plasma

simulation in a magnetic confinement fusion reactor. Though it is focused specifi-

cally on the plasma physics application, this preconditioning strategy is applicable

elsewhere, including examples later in this thesis. Chapter 3 considers the error

associated with finite difference matrix-vector products for linear solves of multi-

physics problems.

The following two chapters transition away from multiphysics centric content

towards kernel-based approximation theory, specifically, using Gaussian kernels.

Chapter 4 develops new techniques for stably approximating the solution to Gaus-

sian interpolation problems in arbitrary dimensions using eigenfunctions of an as-

sociated Hilbert-Schmidt operator. Computationally efficient implementations of

these eigenfunction methods are derived in Chapter 5, and iterative methods in-

volving them are discussed, although no contribution is made on that front.

Returning to the multiphysics setting, Chapter 6 develops a new technique for

reducing the error and easing the logistical complexity associated with coupling

multiphysics systems together. An example is discussed in Section 6.3.1 involving

the new kernel-based approximation techniques of Chapter 4, the preconditioning

techniques of Chapter 2, and the split finite differencing approach of Chapter
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3. Beyond the approximation realm, Gaussian eigenfunctions are used to solve

boundary value problems in Chapter 7, both through collocation and the Method

of Particular Solutions. Chapter 8 explores statistical approaches for determining

effective kernel parameterizations to take advantage of the newly found stable

basis.

1.1 Multiphysics simulations

Because of the various communities involved in multiphysics projects and the con-

tributions of a wide range of areas it is difficult to isolate specific problems which

are emblematic of all multiphysics concerns. Select examples are discussed in this

thesis, but a comprehensive review of this topic can be found in [106].

We cover key points of that paper now to help introduce the general structure

of multiphysics systems; a more specific description is presented in Chapter 6,

focusing on the coupling between the components. The simplest system which we

shall consider “multiphysics” is a coupled equilibrium system

F1(u1,u2) = 0,

F2(u1,u2) = 0,

in which functions F1 and F2 represent components 1 and 2 with solutions u1

and u2 respectively. Because both models depend on each other, the solutions

must be found simultaneously. A problem involving time can be discretized to

yield this system (although other solution methods are available), so we limit our

concerns to problems of the coupled equilibrium form. Also note that both F1

and F2 could themselves be multiphysics simulations, allowing for more than two

coupled systems to still be described in this framework.
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The functions F1 and F2 should be thought of as the component residuals, and,

if so inclined, we could write a full system residual in the form

F (u1,u2) =

F1(u1,u2)

F2(u1,u2)

 .

This notation emphasizes the point that the system should be solved simulta-

neously, although Chapter 2 discusses the value of understanding the individual

components within the full system solve.

Many applications currently use a Gauss-Seidel, or nonlinear Schwarz, solu-

tion approach, where each component is solved in an alternating fashion until

convergence to the coupled solution is attained [156, 172]. While this technique

is certainly the simplest method for coupling two components in a multiphysics

simulation, researchers have found this technique causes problems in many cir-

cumstances [47, 170, 53, 54]. To prevent the instabilities which may accompany

the nonlinear Gauss-Seidel, we choose to solve the fully coupled nonlinear system

simultaneously. We use the Jacobian-free Newton Krylov method for this, which

is introduced in Section 1.2.

The remainder of this section is spent briefly discussing two examples of mul-

tiphysics simulations which are used later in this thesis. In Chapter 2, the main

example studied is magnetic confinement fusion within a tokamak [162]. The toka-

mak is a type of magnetic confinement fusion reactor. Despite the fact that this

simulation consists of Boltzmann’s equation solved throughout the domain, sim-

plifying assumptions are made which break the problem apart into two regions:

the edge and the core. Some work involves also separately simulating the material

wall [36], which would produce a profile similar to Figure 1.1.

Ignoring the physics assumptions which must be made to reduce the standard
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Figure 1.1: A plasma temperature profile for a core-edge-wall simulation within a
tokamak reactor [106].

gyrokinetic model to this coupled MHD model, there are also computational tech-

niques which must be developed to facilitate such a splitting in a high performance

environment. Presently, research is underway to surpass the complications of a cou-

pled core-edge-wall simulation [35], but work presented here focuses more intently

on just the edge section. An explicit description of the relevant plasma transport

equations is provided in Section 2.2.1.

We approach the edge region with the multiphysics approach described earlier -

within the edge region is the coupled transport of plasma and neutral gases. Some

transport codes traditionally consider only plasma terms due to ill-conditioning

which arises when the coupled system is simulated. One of the topics we will

analyze here is: How can knowledge of these components (the plasmas and neu-

tral gases) be leveraged to improve the condition of the system, and thus the

efficiency of a simulation? Chapter 2 considers the two components of the simula-
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tion individually to expose key physical aspects, and then incorporate those into

a preconditioning scheme.

Another multiphysics model, which is much further removed from a practical

application but still of great use, is the linear critical gradient model [99]. In this

model, a diffusion is simulated with nonlinear diffusivity which varies with the

gradient of the temperature; depending on the choice of source for the problem,

this can produce a pedestal similarly to what occurs at the core-edge interface

of a tokamak [38]. This model is introduced in further detail in Chapter 3, and

discussed in the coupling context in Chapter 6. We consider its solution using a

new kernel-based technique in Chapter 7.

1.2 Jacobian-free Newton-Krylov

The method of spatial and time discretizations will not be analyzed here, as each

application has its own assumptions and limitations which make certain choices

more appropriate. In Chapter 7 we introduce a new technique for spatially dis-

cretizing PDEs, but outside of that section we will assume that the decision has

been previously made by researchers in the various communities. Possible spatial

discretizations are covered in various books including [116, 97], and specific time

discretizations will be discussed as needed in Section 2.3.2 and Section 7.3.4. The

end result of discretization is often a nonlinear system of the form

F (uk) = 0,

which has the solution uk at the time tk; this structure for multiphysics problems

is described in Section 1.1. At times, fixed point iteration [107] can be used to

solve this system, but the preferred approach in this work is Newton’s method
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[105] because of its potential for quadratic convergence.

Labeling uk the unknown at the kth time step, we can write this as

For n = 0, 1, ...

J(F )(un
k)∆u

n+1
k = −F (un

k) (1.1a)

un+1
k = un

k +∆un+1
k (1.1b)

where un
k is the result of the n

th iteration of this scheme and J(F )(u) is the Jacobian

of F evaluated at u. Once convergence is declared (discussed in Section 1.2.1) at

step N , the next time step is set as uk = u
N
k . The initial guess u

0
k must be provided

to the algorithm and the standard choice is the previous time step u0
k = uk−1. The

first initial guess u0
1 is the initial profile of the solution.

The usual practical barriers to the applicability of Newton’s method include:

• Lack of an initial guess - Newton’s method only converges quadratically with

a sufficiently close initial guess. Finding one can, at times, be difficult.

• Lack of a Jacobian - Using Newton’s method to solve F (u) = 0 requires

solving (1.1a); therefore, not only is F needed, but also J(F ). For most

applications, that Jacobian is unavailable or prohibitively expensive.

• Inefficiency of the linear solve - Even assuming that (1.1a) can be solved,

that could become the most expensive part of the Newton iteration. How

can the linear solve be performed efficiently?

These issues are addressed by the Jacobian-free Newton-Krylov [109].

For practical applications, (1.1b) is not the actual update used at each Newton

step. Instead, a line search [104] is used which damps the magnitude of ∆un+1
k
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so as to prevent oscillatory convergence behavior common during nonlinear solves.

This changes the update portion of the nonlinear solve from (1.1b) to

un+1
k = un

k + αn+1∆un+1
k (1.2)

where 0 < αmin < αn+1 ≤ 1 is chosen according to some scheme. Experiments in

Chapter 2 use a cubic interpolation scheme described in [50]. By using line search,

a previously infeasible initial guess can be used and oscillations which might slow

or prevent convergence will be damped. Other globalization approaches include

physics trust regions [109] and pseudotransient continuation [85], but they are not

discussed here.

Now we consider practical techniques used to circumvent explicit formulation of

the Jacobian. In [48] it was determined that the superlinear convergence associated

with Newton methods is preserved even when (1.1a) is solved only approximately.

This revelation opens nonlinear solvers to the possibility of solving (1.1a) with an

iterative method, thus introducing the Krylov half into the term Newton-Krylov

method. When this Newton-Krylov method is performed in the absence of the true

Jacobian, it is often called a matrix-free or Jacobian-free Newton-Krylov (JFNK)

solve.

The iterative method of choice in this thesis is GMRES [84], since J(F ) is rarely

symmetric or positive definite and J(F )T is unavailable. For practical purposes

J(F ) is actually also unavailable as commonly values of F (u) are computed in a

black-box fashion. This prevents the exact solve of (1.1a), but leaves the possibility

of solving the system iteratively if the matrix vector product J(F )(u)b can be
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performed. By using finite differences, J(F )(u)b can be approximated as

F (u+ δb) = F (u) + δJ(F )(u)b+O(δ2)
b

∥b∥
,

⇐⇒ J(F )(u)b ≈ F (u+ δb)− F (u)
δ

, (1.3)

for sufficiently small values of δ. Issues involving the accuracy of this approach are

discussed in Chapter 3.

These approximate Jacobian-vector products are used in place of the true prod-

ucts during GMRES, which allows for a linear solve without ever actually com-

puting the full Jacobian. As is often the case, the efficiency of the iterative linear

solver is subject to the condition of the linear system in question, and many ap-

plications of scientific interest have poorly conditioned systems. To speed these

linear solves, a preconditioner [84] needs to be created, and this topic is covered in

Chapter 2.

The operator used to develop a preconditioner is created via Jacobian coloring

[45], which allows for an approximate Jacobian to be computed via finite differences

using a reduced number of function evaluations based on the nonzero structure of

the matrix. This technique helps to overcome the third barrier to Newton’s method

mentioned above.

When written out in algorithmic notation, Jacobian-free Newton-Krylov looks

like Algorithm 1. Some of these steps are left intentionally vague, such as the

measure of convergence, choice of iterative linear solver and the method for line

search. These choices are discussed in Section 1.2.1.

While it is assumed that the iterative method is preconditioned, it is not explic-

itly stated above as that process can be encapsulated totally within the iterative

solver. Conversely, it is possible for the preconditioner to span multiple Newton
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Algorithm 1 Jacobian-free Newton-Krylov

Given F , u0

Choose nMAX {Max nonlinear iterations}
u← u0

while n = 1, 2, ..., nMAX and not converged do
b← F (u)
Solve A∆u = b iteratively, where Ab = (F (u+ hb)− F (u))/h
Determine α via line search
u← u− α∆u

end while
return u

iterations (if the Jacobian were not expected to vary greatly between consecu-

tive u values) and so the production level Jacobian-free Newton-Krylov algorithm

can actually be much more complicated than the relatively näıve concept shown

above. Doing so is of value in some simulations, and the improvement in cost will

be discussed in Section 2.6.

1.2.1 Convergence criteria

As with any approximation or iterative scheme implemented computationally, de-

cisions must be made regarding termination. This section explains the technical

details behind declaring convergence, as well as some of the parameters which

remains constant throughout this thesis. In the algorithm described above, the

Newton iteration is continued for nMAX steps, with the caveat that the iteration

has not yet converged. For a general Newton-Krylov solver, there are several pos-

sible convergence criteria:

• Absolute Norm: Convergence is declared at step n < N if ∥F (un)∥ < ϵ.

Unless otherwise noted, this will be the active convergence criterion, and

ϵ = 10−10.
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• Relative Norm: Convergence is declared at step n < N if

∥F (un)∥/∥F (u0)∥ < γ.

• Relative Step Size: Convergence is declared at step n < N if

∥∆un+1
k ∥/∥∆un

k∥ < β.

Unless otherwise noted, all norms are 2-norms (i.e., ∥·∥ ≡ ∥·∥2). If the nonlinear it-

eration reaches step N without satisfying the prescribed convergence requirements,

the iteration is considered to have failed/diverged. There are other possible causes

for divergence, including line search failure or divergence of the linear solve (1.1a).

The line search can fail if the αmin value is chosen too large to find an α which

decreases the norm; often this is the fault of a poor linear solve producing an

inappropriate ∆u. For our experiments, αmin = 10−4.

The linear solve declares convergence when either the absolute or relative toler-

ance of the norm of the residual is small enough. Both of these criteria is checked

at every linear iteration, so either of them can signal convergence to the linear

solver; in practice, convergence is almost always due to the relative tolerance,

set at 10−5. GMRES could declare divergence if too many iterations pass without

convergence (10000) or if the norm of the solution is greater than some preset max-

imum (105). Additionally GMRES has parameters which are of little consequence

but are listed here for completeness: classical Gram-Schmidt orthogonalization is

used; the restart value is 30.

Using finite differences to approximate matrix-vector multiplication introduces

a parameter δ, as seen in (1.3). The accuracy of the finite difference approximation

must be balanced by the error introduced from cancelation in the numerator,
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meaning that sending δ → 0 is not a viable choice. The choice of

δ =
√
εrel

√
1 + ∥u∥
∥b∥

is used in the experiments of Chapter 2, unless otherwise noted. This choice is

motivated by [135]. εrel is the relative error present in conducting a function evalu-

ation, which here is estimated to be 10−14, slightly higher than machine precision.

For speed, the ∥u∥ term noted above can be retained from previous computa-

tion rather than recomputed for each application of (1.3). We will reevaluate the

validity of this choice in some experiments in Chapter 3.

1.3 Multiphysics coupling

Multiphysics systems have many possible forms [106], but for the study of coupling

within this thesis we will focus on one form: two independent boundary value

problems which are coupled through an interface. An example of such a system,

where two 2D models are coupled through a shared 1D boundary is depicted in

Figure 1.2.

For a multiphysics problem of this form, each model consists of three regions.

These regions are defined by their governing equations and their dependence on

other regions to produce a solution, and are encapsulated in Table 1.1.

• Interior region - This region is governed by the PDE and its boundary

conditions, and can be determined without using data from the other model.

In fact, the solution here is also independent of the interface region, which is

what differentiates them from the coupling region.
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Interface

Coupling region

Model 1 Interior
Model 2 Interior

Coupling values

owned by Model 1

Coupling values

owned by Model 2

Figure 1.2: Two independent models are coupled through an interface. Each model
has three distinct regions: the interior, coupling and interface regions.

• Coupling region - This region is governed by the PDE and its boundary

conditions, and can be determined without using data from the other model.

These values require data from both the local interior region and the local

interface region.

• Interface region - This region is governed by the interface conditions, and

requires values from the external model as well as the local model. These

values require data from the local coupling region as well as the external

coupling and interface regions.

Solution components
u1 u2 uC

1 uI
1 uC

2 uI
2

R
es
id
u
al
s

F1 × ×
F2 × ×
FC
1 × × ×
F I
1 × × × ×

FC
2 × × ×
F I
2 × × × ×

Table 1.1: This table notes which regions of the coupled multiphysics system
are required to compute each residual. If a “×” symbol is absent, then those
components can be ignored when computing that residual.
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Two methods are commonly used to couple the simulations on these two do-

mains: mortar methods and interpolation. Mortar element methods [15] involve

creating an additional computational grid between the two existing grids. This

introduces additional unknowns which play the role of boundary data for both

subdomains. These methods have been applied to porous media [9], fluid-structure

interaction [7], and other multiphysics and domain decomposition problems.

In contrast to mortar methods, interpolation methods use data present in one

model to produce approximate boundary conditions for the other model. The

effects of this approximation are difficult to analyze (error present in the input to

the problem as well as computational error) and there are few results concerning

the a priori convergence order of models coupled in this fashion. More solid footing

can be found in a posteriori error estimation of multiphysics simulations [53, 33],

but their implementation is beyond the scope of this thesis. Even with the meager

error analysis, interpolation is a popular technique because of its simplicity, both

in concept and in execution: take data that you have and use it to create data

that you need.

The general form of a fully coupled multiphysics problem fitting the criteria

described above is F (u) = 0, as described in Section 1.1. Note that other multi-

physics problems exist which cannot be written in this form; see [106] for a more

thorough discussion. When written in terms of the regions described earlier, and

using interpolation between domains rather than mortar methods which produce
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additional unknowns, the solution vector and nonlinear residual function are

u =



u1

u2

uC
1

uI
1

uC
2

uI
2


, F (u) =



F1(u)

F2(u)

FC
1 (u)

F I
1 (u)

FC
2 (u)

F I
2 (u)


. (1.4)

Here, u1, u
C
1 and uI

1 are the solutions of model 1 in the interior, coupling and

interface regions respectively. u2, u
C
2 and uI

2 are the corresponding solution blocks

for model 2.

Each of the function blocks has the same notation as the solution vector, e.g.,

FC
1 (u) is the residual of the coupling region of model 1 and F I

2 (u) is the residual of

the interface region of model 2. As described in the itemized list above, F1 and F
C
1

are defined by the PDE in model 1, F2 and FC
2 are defined by the PDE in model

2, and F I
1 and F I

2 are defined by the interface conditions. Notice that each of the

regional functions are evaluated using the full solution vector u for conciseness; as

shown in Table 1.1 each region only depends on part of u.

Because the coupling and interior equations are defined by the PDE and bound-

ary conditions, their discretization is left to the judgment of the application com-

munity — we want to study the effect of different discretizations of the interface

conditions. Thus far little has been said about the interface; to ensure some level of

consistency throughout the coupled model, the actual choice of interface conditions

needs to be made by the scientists running the simulation.

Because it is impractical to consider all the possible coupling strategies in use

today (see [106] for a survey) we restrict our study here to interface conditions
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involving matched values and derivatives along the interface. Thus, the general

form of interface conditions that we consider is

F I(u) =
r−1∑
k=0

a1,kLku
I
1 −

r−1∑
k=0

a2,kLku
I
2 = 0, (1.5)

where r is the order of the PDEs, and L is some linear operator involving the

derivatives (such as Lk(u) = u, Lk(u) =
∂
∂n
u or Lk(u) = ∇2u). The coefficients

a1,k, and a2,k may depend on x, and they define the relationship between the

models in the interface conditions.

Interface conditions can be treated as boundary conditions, with similar termi-

nology:

• Dirichlet : a1,0 = a2,0 = 1, all other ak = 0, and L0(u) = u is the identity.

This produces the interface condition uI
1 = u

I
2 which matches solution values

at the interface.

• Neumann : a1,1 = a2,1 = 1, all other ak = 0, and L1(u) = ∂
∂n

(u). This

produces the interface condition ∂
∂n
uI

1 = ∂
∂n
uI

2, that the normal derivatives

are equal.

• Robin : a1,0, a2,0, a1,1, a2,1 potentially nonzero, L0(u) = u, and L1(u) =

∂
∂n

(u). This produces the interface condition a1,0u
I
1 + a1,1

∂
∂n
uI

1 = a2,0u
I
2 +

a2,2
∂
∂n
uI

2, and may relate to a flux being conserved across the interface.

• Laplace : a1,2 = a2,2 = 1, all other ak = 0, and L2(u) = ∇2u. This produces

the interface condition ∇2uI
1 = ∇2uI

2, and is more common in biharmonic,

or other fourth order, problems.

Each model needs an interface condition, and the interface conditions must be

independent for the problem to be well-posed [106], which explains why both F I
1
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and F I
2 are necessary. This general form of the interface conditions is made more

concrete in Section 6.3.

The discretization of the Lk operators almost certainly involves values off the

interface because of the presence of derivatives. The values required to approximate

Lk on the interface define the coupling region. By choosing a specific interface

discretization scheme, the coupling region is fixed to provide the necessary values.

Conversely, a coupling region could be chosen and then a discretization could

be built which best approximates Lk given that data. This relationship between

choosing a coupling region and the quality of the resulting interface discretization

is studied in the example in Section 6.3.1.

Solving the nonlinear system F (u) = 0 with Newton’s method involves a Ja-

cobian J(F )(u) with the block sparsity structure

J1(F1) JC1 (F1)

J2(F2) JC2 (F2)

J1(F
C
1 ) JC1 (F

C
1 ) JI1(F

C
1 )

JC1 (F
I
1 ) JI1(F

I
1 ) JC2 (F

I
1 ) JI2(F

I
1 )

J2(F
C
2 ) JC2 (F

C
2 ) JI2(F

C
2 )

JC1 (F
I
2 ) JI1(F

I
2 ) JC2 (F

I
2 ) JI2(F

I
2 )


. (1.6)

The notation used for the blocks is similar to the notation for the components of

the residual, e.g., JC1 (F
I
2 ) is the Jacobian with respect to the coupling variables of

model 1 applied to the interface equations of model 2. Each of these blocks may

also be sparse depending on the discretization of the components.

Even when using Jacobian-free Newton-Krylov, it is still useful to know the

structure of the Jacobian to understand the cost of matrix vector products, and

for approximating a full Jacobian using coloring. Note that the location of the

17



nonzero blocks corresponds to the dependencies described in Table 1.1. Also, all

the Jacobians are evaluated with the same argument u, so it is omitted to save

space.

1.4 Kernel-based approximation methods

Section 1.3 discussed the coupling of multiphysics components, primarily facilitated

through the transfer of data between component simulations. Error introduced in

this transfer can be detrimental to the accuracy of the multiphysics simulation and

therefore the transfer should be conducted as accurately as possible. This process

is complicated by the potentially incompatible nature of the spatial discretizations

in the component simulations. Our plan is to use kernel-based approximations

to facilitate this coupling with high accuracy, but without the struggle of match-

ing two disparate computational grids. Multiphysics coupling via kernel-based

approximation is discussed in Chapter 6, but before we can address our new mech-

anism we must first introduce the use of kernel-based methods for scattered data

approximation.

Many applications need to solve scattered data interpolation problems, where a

set of N unique inputs {xk}Nk=1 and associated outputs {yk}Nk=1 are used to approx-

imate the function that generated that data [41]. The input data is assumed to be

d-dimensional (xk ∈ Rd), and the outputs should be scalars yk ∈ R; these restric-

tions are not necessary for more general problems in machine learning, but all the

problems in this thesis are of this form. To solve scattered data interpolation prob-

lems, we assume that the underlying function of interest f can be approximated

using a linear combination of N basis functions {ϕk}Nk=1. This approximation is
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denoted by s,

s(x) =
N∑
k=1

akϕk(x),

and the coefficients ak are determined by solving the interpolation equations

s(xk) = yk, 1 ≤ k ≤ N.

This is a linear system of equations, which can be written as
ϕ1(x1) · · · ϕN(x1)

...

ϕ1(xN) · · · ϕN(xN)



a1
...

aN

 =


y1
...

yN

 . (1.7)

The choice of basis functions is significant both in the well-posedness of the

problem and in the quality of the approximation. A common choice, especially

for d = 1 (one dimensional) data, is to use polynomials. Even for this choice

though there is flexibility, because a different choice of polynomial basis may allow

for a more accurate interpolant by minimizing ill-conditioning during the solution

process. For instance, the monomial basis

ϕk(x) = xk−1, 1 ≤ k ≤ N,

will produce a notoriously ill-conditioned Vandermonde matrix, while the Cheby-

shev basis

ϕk(x) = cos((k − 1) cos−1(x)), 1 ≤ k ≤ N,

will produce the same result in exact arithmetic but with less ill-conditioning [168]

when solving (1.7).

While uniqueness can be guaranteed for the interpolating polynomial in 1D for

very basic conditions on {xk}Nk=1, the same cannot be said in higher dimensions.
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This suggests that polynomials are not an appropriate basis for multidimensional

interpolation; this idea was formalized in the Mairhuber-Curtis theorem on Haar

spaces [121]. To ensure the existence of a unique interpolant s, we will implement

a kernel-based interpolation scheme. Put simply, a kernel is any function of two

variables K ≡ K(x,y), but for the purposes of this work, we will only consider

kernels defined using radial basis functions,

K(x,y) = Φ(∥x− y∥).

Note that this restriction results in K always being symmetric with respect to its

two arguments, i.e., K(x,y) = K(y,x). To further simplify the situation, we will

be predominantly considering the Gaussian kernel

K(x,y) = exp(−ε2∥x− y∥2),

and, unless otherwise noted, this will be the function denoted by K. The value

ε is a free parameter, often called a shape parameter, which determines the width

of the Gaussians; small ε would produce Gaussians with very wide support, and

large ε would produce Gaussians with very narrow support.

Because this kernel basis is a function of two variables, we have the opportunity

to position, or orient, our basis functions in a useful manner. By choosing to

position our positive definite basis functions at locations where data is provided,

a unique interpolant must exist for arbitrary d. That means that the interpolant

s must exist uniquely when

s(x) =
N∑
k=1

akK(x,xk). (1.8)

This stems from both the fact that xi ̸= xj if i ̸= j and the fact thatK is a positive

definite kernel and therefore the matrix in (1.7) must be symmetric positive definite

[60].
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The freedom to interpolate scattered (unstructured) data without fear of a sin-

gular linear system or structural knowledge of the geometry of the data is one

of the main benefits of kernel-based approximation; often times this approach is

referred to as meshfree to emphasize this point. Applications in higher dimen-

sions, including computer graphics [34], machine learning [137], data mining [95],

and finance [126], use meshfree methods because of the impracticality associated

with high dimensional structured sampling. Alleviating the curse of dimensional-

ity is a powerful motivation for kernel-based schemes, but it is less significant in

the multiphysics setting because most multiphysics problems occur in a relatively

small number of dimensions. Instead, we are interested in the use of kernel-based

schemes because their meshfree nature will allow us to connect individual com-

ponents in a multiphysics simulation without worrying about the nature of their

spatial discretizations.

Before we can consider the use of Gaussians to facilitate multiphysics coupling,

we need to address a problem which has stymied the use of Gaussians and other

very smooth kernels. Some very accurate choices of kernels, especially Gaussians,

are associated with irrevocably ill-conditioned linear systems. This is caused by

the flattening of the kernel, which allows it to more effectively include data in the

interpolation, but at the cost of stability; see Figure 1.3 for an example.

In the past this has been termed the uncertainty principle [151], and it was

believed by some to be intrinsic to very smooth kernels. Recent work has demon-

strated that the interpolation problem is not ill-conditioned, but that the standard

basis {K(·, xk)}Nk=1 is an unstable basis for performing these computations. By

writing our solution using a stable basis which spans the same space as the Gaus-

sians, we can safely compute the interpolant. This approach has been explored for
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Figure 1.3: A sample set of N = 6 Gaussians is shown for three ε values, along
with the condition number of the associated linear system. As ε decreases, the
condition of the system increases.

problems on the sphere, using spherical harmonics as the stable basis [70].

Our approach uses an eigenfunction expansion of the Gaussians to produce

a stable basis in Rd; this is described in Chapter 4. After the mechanics of this

stable approximation scheme have been established, Chapter 5 discusses a fast least

squares solver for certain versions of this eigenfunction expansion. Its importance

in reducing the computational cost is established, as well as its negative impact on

stability. Iterative solvers for linear systems arising from the stable basis are also

discussed, although no significant advances on this front have yet been performed.

Using this stable meshfree interpolation scheme, Chapter 6 demonstrates how

function derivatives can be approximated with high accuracy. This infrastructure

tool allows us to demonstrate how multiphysics simulations can be connected sta-

bly and accurately. Building on the success of the meshfree coupling, Chapter 7

adds another tool to our infrastructure by discussing the solution of boundary value

problems using the stable basis. Chapter 8 studies methods for producing opti-

mal kernel parameters, and analyzes the impact of the stable basis in successfully

parameterizing kernels.
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CHAPTER 2

PHYSICS PRECONDITIONING FOR EDGE PLASMAS IN

TOKAMAKS

2.1 Introduction

Many systems of partial differential equations motivated by engineering and physics

applications exhibit a wide range of temporal and spatial scales; increasingly these

already complicated models are being coupled together for multiphysics simula-

tions. Application-specific examples include compressible and reactive flow [31],

porous media [42], fluid structure interaction [29], and fission power plants [78].

In each of these examples knowledge about the components of the system is used

to produce a stable and efficient simulation that may provide new insights into

physics or mathematical aspects of the models.

This chapter focuses on a numerical model that describes the transport of

plasma and neutral species in the edge region of toroidal magnetic fusion energy

devices. The strong external toroidal magnetic field (B) in these devices results

in a large transport anisotropy for the plasma with transport along the magnetic

field (termed parallel) having a much faster timescale than transport across the

magnetic field (termed perpendicular or radial). Note that in this chapter, parallel

is used as an adjective in two different senses; one is transport along B just men-

tioned, and the second is using multi-processor parallel computational algorithms,

and which meaning applies will be made clear from the context of a given section.

Modeling magnetically confined fusion in the presence of neutral gases is an

ill-conditioned problem owing to the multiple time scales present, the complicated

23



geometry of the system and the competing physical effects of the various degrees of

freedom. Coupling plasma and neutral transport together in a simulation produces

a problem with multiple time scales which suffers, resulting in an ill-conditioned

system, despite the fact that both components can be simulated effectively. This

new difficulty arising from the joint simulation makes this application a suitable

test case for building our multiphysics infrastructure.

The beginning of this chapter analyzes the contributions to the solution cost by

the component terms under several simulation parameters including the time step

∆t, parallel partitioning and solver design. Using insights gathered from this initial

analysis, a physics-based preconditioner is constructed. This preconditioner shows

improved solution time and scalability over simpler algebraic (such as ILU) and

domain decomposition preconditioners. Finally, this approach to conducting the

simulation is applied successfully to more complicated models with more degrees

of freedom.

“Physics-based preconditioner” [129] is at times an ambiguous term, which we

use here to describe an operator which uses more than just algebraic insight to

improve the condition of a linear system. Some common purely algebraic precon-

ditioners are discussed in Section 2.2.3 as well as [8]. Difficulty in physics-based

preconditioning arises when determining how to incorporate physics knowledge

into the operator. When this problem is handled successfully, the performance can

benefit greatly, as was demonstrated for plasma transport in [37].

Our initial simulations motivated a split approach to preconditioning where

variables with similar physical attributes are solved more cheaply. Each group of

variables is then approximated and solved with different methods tailored to the

physics of that group. This is in contrast to the approach of [37], where a semi-
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implicit approximation was made to the fully implicit system which produced a

preconditioner for the fully coupled system targeted to handle the different time

scales with an easily invertible operator.

This chapter is based significantly on

M. McCourt, T. D. Rognlien, L. C. McInnes, H. Zhang, Improving parallel

scalability for edge plasma transport simulations with neutral gas species,

Computational Science & Discovery, 2012

which is cited as [124]. It is organized as follows. In Section 2.2 there is introduc-

tory information regarding the relevant plasma physics equations, the discretiza-

tion used on those equations and the technique by which those discretized equa-

tions are solved. The plasma and neutral components of the system are analyzed

in Section 2.3 through computations via PETSc [8]; insights are made regarding

the viability of different solution schemes, and the infeasibility of existing precon-

ditioners is inferred. In Section 2.4, a componentwise preconditioner (referred to

as FieldSplit) is developed based on the study in the previous chapter, and is com-

pared favorably to a global LU preconditioner. Finally, Section 2.5 explores the use

of this Fieldsplit preconditioner on a variety of magnetic confinement simulations

for which the existing preconditioners have had limited success. All experiments

were conducted on the Fusion LCRC at Argonne National Laboratory.

2.1.1 A brief primer on computational plasma transport

The motivation for modeling transport in the edge region arises from a number of

key questions that need to be answered, such as:

25



1. How is the exhaust plasma power that escapes from the core region dis-

tributed to material surfaces and what is its peak amplitude?

2. What is the rate of material erosion from plasma bombardment and what

level of sputtered impurities get transported to the core plasma region?

3. How does exhausted tritium flow into and accumulate in materials?

4. How does helium ash from the fusion reaction get removed (pumped) at the

periphery?

5. How does the core plasma get fueled by gas injection near the wall?

6. How does an edge energy transport barrier form?

The basic equation set used here for the plasma is a two-dimensional (2D),

toroidally axisymmetric fluid model that describes the evolution of the ion den-

sity, parallel ion momentum, and separately, electron and ion temperatures. The

neutral species are described by two possible fluid models, one where only particle

transport is evolved, and the second where parallel neutral particle momentum is

included. For either neutral model, the ion and neutral temperatures are assumed

strongly coupled through collisions and are thus described by a common temper-

ature. Both plasma and neutral equations have strong nonlinearities representing

diffusive transport and coupled source/sink terms as will be shown explicitly in

Section 2.2. It should be mentioned that there are also kinetic plasma transport

models beginning to appear (XGC [38] and COGENT [51]) that include two added

velocity space dimensions for describing the particle distribution functions. Also,

kinetic Monte Carlo neutral codes (EIRENE [138] and DEGAS2[164]) are some-

times used, but these kinetic models are not considered here.

An early example of implementation of such an edge plasma model is the B2

code [24]. The numerical solver scheme used here was the SIMPLE algorithm [133]
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used for codes that solve the Navier-Stokes neutral fluid equations. SIMPLE is an

iterative algorithm that solves the equations in a certain order and uses a specific

approximation to the pressure update to converge. More recently, B2 has evolved

to SOLPS [20] that uses a partially implicit iterative scheme. The approach taken

by UEDGE [142] was to solve the complete system of equations fully implicitly

via a preconditioned Newton-Krylov method. Here a numerical finite-difference

preconditioning Jacobian is formed and approximately inverted using ILUT [147].

All of these implementations were based on a single processor model where the

variables of the global system were solved simultaneously. Subsequently, initial

work was performed on a domain-decomposed parallel algorithm for the plasma

equations where the preconditioner was solved independent on each subdomain

with no overlap of information from the other subdomains [144].

2.1.2 Existing physics preconditioning techniques

The idea of using physics knowledge to improve the efficiency of a simulation

is not new. Reactive transport simulations [90] have been performed where the

preconditioner for the full Jacobian of the system is split into global transport and

local reaction components. The same can be said for radiation diffusion systems

[129]. Physics preconditioning in fluid dynamics codes has been successful [179]

where the preconditioner served to accelerate a solution scheme already in place.

Even within plasma physics, the concept of physics preconditioning has proven

successful. In [37] the authors determined that they could improve the stability of

simulating in multiple time scales by using a semi-implicit time stepping scheme

to precondition the fully implicit solve. For a more exhaustive report of physics

preconditioning ideas, refer to [106].
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2.2 Physics equations and basic solver strategy

The basic equation set for the plasma is a two-dimensional (2D), toroidally ax-

isymmetric fluid model that describes the evolution of the ion density, ion parallel

momentum, electron temperature and ion temperature. The neutral species are

described by two possible fluid models: one in which the neutral parallel velocity

is computed by including only charge-exchange coupling to ions and the neutral

pressure gradient, and the second in which neutral parallel inertia and viscosity

are included. For either neutral model, the ion and neutral temperatures are as-

sumed strongly coupled through charge-exchange collisions and are thus described

by a common “ion” temperature. Both plasma and neutral equations have strong

nonlinearities representing convective/diffusive transport and coupled source/sink

terms, as shown in Section 2.2.1.

The UEDGE description of plasma transport here is not unique within the

plasma physics community. Kinetic edge plasma transport models, including XGC

[38] and COGENT [51], and kinetic Monte Carlo neutral codes, including EIRENE

[138] and DEGAS2 [164], provide alternate methods of simulation with different

advantages. The fluid transport model chosen in UEDGE more easily allows for

longer time scale simulations to reach steady state.

2.2.1 Physics of the system

Edge plasma transport can be characterized via fluid moments of the underlying

collisional kinetic equation for a plasma in a strong magnetic field; a general de-

scription is found in [25], or more recently [162]. Here studies are conducted using

equations for plasma particle continuity, parallel momentum density, separate ion
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and electron thermal densities, neutral particle continuity, and (at times) neutral

particle momentum as described in [143]:

∂

∂t
(ni) =−∇ · (nivi) + SP

i (2.1a)

∂

∂t
(nimivi∥) =−∇ · (nimivi∥vi)−∇∥(niTi) + eniE∥ − (∇ · Πi)∥

−Ri∥ −minnνcx(vi|| − vn||) + Sm
i (2.1b)

∂

∂t

(
3

2
ni,eTi,e

)
=−∇ ·

(
5

2
ni,eTi,evi,e

)
+ vi,e · ∇(ni,eTi,e)−∇ · qi,e

− Πi,e · ∇vi,e +Qi,e + SE
i,e (2.1c)

∂

∂t
(nn) =−∇ · (nnvn) +K i

Hnenn −Kr
Hnine (2.1d)

∂

∂t
(nnmnvn∥) =−∇ · (nnmnvn∥vn)−∇∥(nnTn)− (∇ · Πn)∥

+minnνcx(vi|| − vn||) + Sm
n . (2.1e)

Note that all terms except those with time derivative have been moved to the

right-hand side of each equation, so that these use the same form as employed in

the discussion of the time stepping in Section 2.3.2.

We analyze cases using deuterium (denoted D, having a proton-neutron nucleus

with a single electron), typical of most present-day fusion devices. The primary

variables evolved are ni and nn for D+ and D0 densities, vi∥ and vn∥ for ion and

neutral velocities along B, Ti = Tn for the common ion/neutral temperature, and

Te for the electron temperature. Quasineutrality (ni = ne) is assumed. The parallel

electric field, E∥, can be replaced with plasma variables by using the electron

parallel momentum equation, neglecting inertia and electrical current:

eE∥ = −Te∇∥(lnne)− 1.71∇∥(Te), (2.2)

where ne = ni is the electron density in this quasi-neutral plasma.

Boundary conditions are applied to the second order differential set in Eqs. (1)
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based on physical considerations. A more detailed discussion is available [143]. In

summary, on the boundaries touching the hot core plasma or the side walls, either

Dirichlet or Neumann boundary conditions can be applied to the densities and

temperatures, specifying the variable value or its flux into or out of the simulation

volume. Here we use Dirichlet conditions, and the numerical behavior is not sen-

sitive to this choice. For the parallel velocities, on the core or outer wall, a radial

slip condition is used, i.e., zero normal derivative of the velocities. For the in-

ner/outer divertor plate boundaries, the magnetic field lines intersect the material

surfaces with strong plasma particle and energy flows onto the plates. The ion and

electron temperature equations use mixed Robin boundary conditions to describe

the flow of heat. The ion parallel velocity is set to the ion acoustic speed with the

neutral parallel velocity being a fraction of that of the ion. A Neumann condition

is applied to the ion density. The neutral flux into the plasma is proportional to

the D+ incident flux; that is, ΓD0 = −RpΓD+1 . This particle recycling is a major

process at the divertor plates (and walls) and is characterized by Rp near unity.

The simplest neutral model neglects inertial and viscous terms in (2.1e), in

which case vn∥ can be computed algebraically from other variables, yielding a five-

variable equation set used for some of the calculations in later sections. Physical

terms and parameters include: Sp
i - source for neutral ionization and recombina-

tion, e - charge of an D+ ion, E∥ - electric field, Πi,e - viscous force, Ri,e∥ - friction

force, qi,e - heat fluxes, Qi,e - volume heating terms, SE
i,e - external source terms,

K i
H - ionization rate coefficient, Kr

J - recombination rate coefficient. The term νcx

is the ion/neutral charge-exchange rate. The parallel transport coefficients come

from collisional theory [25], whereas the perpendicular transport coefficients arise

from plasma turbulence and are typically deduced from comparison of midplane

profiles with experimental data. Sample time scales present in an edge plasma

30



transport simulation are presented in Figure 2.1.
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Figure 2.1: Significant phenomena in an edge simulation, and their associated time
scales

The plasma transport is an anisotropic fluid flow problem, where the plasma

fluid is charged and thus strongly affected by the external magnetic field. The

plasma equations for density (2.1a), momentum (2.1b) and energy (2.1c) all gov-

ern variables which can be characterized as anisotropic fluids. The interaction

between these quantities is significant in the poloidal direction, but much less so

in the radial direction which contributes greatly to the magnetic confinement phe-

nomenon. Indeed it is because of this that we see a significant anisotropy in the

diffusion of plasma particles: a common ratio of effective diffusion constants for

the plasma terms is

D⊥

D∥
∼
(ρ
λ

)2
where D⊥ is the effective diffusion coefficient in the radial direction, D∥ is the

effective diffusion coefficient in the poloidal direction, ρ is the gyroradius, and λ is

the mean free path.

In contrast to the plasma terms, the neutral density governed by (2.1d) diffuses

isotropically because neutral deuterium is unaffected by the external electric field.
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This has a significant effect on the condition of the system because the physical

discretization is designed in deference to the plasma terms and thus is extremely

anisotropic. Section 2.3.3 will analyze this conditioning issue. The equations above

describe the simplest transport simulation of interest involving both plasma and

neutral gas terms; using this will allow physicists to study recycling and radioac-

tivity within the material wall, among other phenomena.

Complexity can be added by removing the assumption that neutral inertial

terms are negligible and thus increasing the number of unknowns to 6 by requiring

the solution for the parallel neutral velocity (2.1e) within the system of differential

equations. Alternatively, the neutral inertial term could be ignored and instead

an impurity species of Neon gas can be added to the simulation. Electron impact

excitation and ionization on Neon, as well as electron-ion recombination, results

in a net energy loss to electrons via radiation loss (escaping photons). In the

core region, such radiation degrades fusion power gain, but in the edge region,

this radiative energy loss can be beneficial by distributing the plasma exhaust

power over a wide area on the wall, thus minimizing the localized hot spots. Neon

increases the number of independent fluid variables by 11 per cell because of the

additional 10 Neon charge states (Ne+1 through Ne+10) and one Neon gas species.

Analysis of these simulations is presented in Section 2.5.

2.2.2 Domain discretization and decomposition

One of the complicating factors in simulating edge-plasma transport is the geom-

etry. A quadrilateral-cell mesh is used for finite-volume discretization, with one

coordinate being along magnetic flux surfaces and the other coordinate being or-

thogonal to the first or sometimes modified to fit along material surfaces; metric
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coefficients preserve the original geometrical features in the logically rectangular

domain. The finite-volume spatial discretization stencil contains 9 points: the cen-

tral cell of interest and the 8 surrounding cells adjacent to the center. For each

of the simulations we are running, the global grid sizes considered are production

level; the exact grid size will be mentioned for each simulation.

In addition to the spatial discretization, we also discretize in time to convert

the continuous transport equations to a fully discrete set of equations. For stability

purposes, we choose the backward Euler method of time stepping. This discrete

set of equations can now be fully encapsulated in the equation F (uk) = 0, where

uk is the solution at time tk. This concept of writing the full system as a single

nonlinear residual problem was described in Section 1.1.

This thesis is not interested in the physical implications of the geometry or

choice of boundary conditions, but it is necessary to consider the effectiveness of

domain partitioning schemes on scalability. Consider the choice between a 1D

(anisotropic) or a 2D (isotropic) decomposition posed in the right-most portion of

Figure 2.2.

Figure 2.2: Different domain partitions are available depending on which cells
should be more easily able to communicate with each other.

The 1D partitioning produces long strips with fewer necessary values in each

partition; this is because all the neighboring values are needed, not just those
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in the same radial strip. The 2D partitioning tries to accommodate this by in-

cluding neighbors which are geometrically close in both the radial and poloidal

directions. When considering the cost of parallel communication, occurring when

data is passed between adjacent domains, the 2D decomposition scales better than

the 1D variant because the domain surface-area-to-volume ratio is lower, resulting

in less communication. This is confirmed for various processor counts in Figure 2.3,

where 600 evaluations of the nonlinear residual (formed by discretizing in space

and time) are computed with both partitioning strategies for an increasing number

of processors..
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Figure 2.3: Parallel evaluations of F (uk) prefer the 2D partition because the volume
to surface area ratio is lower, and thus less communication is required between
domain partitions. 600 residual evaluations are used as a benchmark, without any
problem specific significance.

When only 8 processors are used on the 256×128 mesh, there is little difference

in the cost of function evaluations conducted on the 1D or 2D decomposition. Mov-

ing to more processors helps expose the different cost of communication between

the choice of decompositions, with the 1D decomposition running more slowly. The

choice of partition has a more complicated effect when the function evaluation is
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considered within the context of the full solve; this will be discussed in Section

2.3.1.

Note that the presence of the branch cut in the rectangular domain prevents

the use of a 2D decomposition in UEDGE with less than 6 processors. The 6

processor domain partition is shown in the bottom right of Figure 2.2. For a 2D

decomposition, the first division of the domain occurs at the top of the branch

cut to prevent a partition from having some of its terms crossing the branch cut

and some not. The next two divisions occur on the branch cuts to simplify the

communication. Because UEDGE enforces these requirements during domain de-

composition, NP = 6 is the minimum for a 2D partition, and in fact NP = 8 will

be the lowest processor node count for which a 2D partition is considered.

2.2.3 Preconditioner options and performance

PETSc provides a layered approach to solving PDEs consisting of time stepping

tools, nonlinear solvers, linear solvers and preconditioners. Section 1.2 described

the procedure for nonlinear solvers and linear solvers, but does not cover the topic

of preconditioning. When we use the term preconditioning, we refer specifically

to right preconditioning, which is the process by which a linear system Ax = b

is transformed into a new system (AM−1)(Mx) = b with the same answer but a

better condition number [84]. Left preconditioning is also useful in some circum-

stances, but we do not use it here.

Having a good condition number is significant because it allows iterative meth-

ods like GMRES to converge in fewer iterations. The ideal condition number is 1,

which can be achieved by preconditioning with the true inverse M−1 = A−1; this
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is an unacceptable solution for our current problem both because the true matrix

A is unavailable (recall the approximate matrix-vector product from Section 1.2.1)

and because the exact inverse is prohibitively expensive.

In the absence of the true inverse, and in fact the true Jacobian, a precondi-

tioner M−1 ≈ A−1 must be used which accurately solves as much of the spectrum

as possible subject to the cost of applying it. The first approximation comes from

the use of finite differences with coloring [45] to compute the matrix A which is

used to represent J(F )(u) during the linear solve. Recall that this finite differ-

ence approach only affects the computation of J(F ) and has no effect on F or the

solution to F (u) = 0.

Now that an A has been produced, the question remains “How will M−1 be

designed so that it resemble A−1 but can computed at less cost?” There is no

unique technique which will effortlessly optimize computational cost, but here is a

discussion of options which have found varying degrees of success for this problem:

• LU - Some problems may be so ill-conditioned that the fastest preconditioner

is the true inverse A−1. This method requires the most computational cost,

but also the fewest linear iterations. Within this research, serial and parallel

LU decomposition and solves are conducted with MUMPS [5].

• ILU(k) - If the LU preconditioner is too costly, the ILU(k) preconditioner

[148] computes part of the LU decomposition. k is referred to as the level,

and can be any nonnegative integer; this is roughly related to the additional

nonzeros which may enter the matrix during factorization. This is often

chosen small so as to minimize the memory allocation during factorization

and the additional communication during solves.

• ILUdt - Like ILU(k), this also computes an incomplete LU decomposition;
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however, rather than fixing a level of fill-in, this chooses to discard all nonze-

ros below some drop-tolerance. This is more difficult to apply effectively

because the nonzero structure of the matrix cannot be determined prior to

the factorization.

• AMG - Algebraic Multigrid [56] is a multilevel preconditioner with restric-

tion and interpolation operators defined graph-theoretically. There are nu-

merous tuning parameters available for AMG within the HYPRE [57] pack-

age which is used for experiments in this research. It should be noted that

multigrid preconditioners are especially effective at solving elliptic problems.

• ASM(n) - When preconditioning in parallel, it is desirable to move as little

data as possible between processor nodes. To accomplish this, the Additive

Schwarz [161] preconditioner allows each processor to independently solve

the portion of the domain it owns. This domain decomposition based pre-

conditioner has a tuning parameter n which determines the overlap across

subdomains to include in the solve. Also, within each subdomain a precon-

ditioning strategy must be used, and often LU is chosen.

There are other preconditioners available, both within PETSc and in general,

but the discussion in this section will be limited to those listed above for simplicity.

2.3 Preliminary Results

Having described the plasma transport simulation and the structure of the associ-

ated solver, we now analyze its efficiency for typical edge plasma parameters. The

geometry corresponds to the DIII-D tokamak as shown in Figure 2.2. The initial

conditions for these simulations are taken from a steady-state solution obtained for
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core-boundary input parameters of fixed Te = Ti = 100 eV and ni = 2.5×1019 m−3.

The radial transport coefficients for all plasma variables are set to 1 m2/s for sim-

plicity, a value that is in the range typically deduced for present-day devices. The

divertor plate particle recycling coefficient is set to Rp = 0.9. For the simulations

presented in this section, the core-boundary values of Te and Ti are then raised to

120 eV, and the new system is solved to a convergence level where the L2-norm of

the residual is reduced by a factor of 108 from the initial residual for a given time

step.

2.3.1 Exploring the solver in the absence of neutral gases

Because the computational grid is laid out anisotropically in deference to the dom-

inant plasma terms, there should be a well-conditioned problem when the plasma

terms are handled separately and the neutral terms fixed. The timing results for

“plasma only” simulation, involving (2.1a)-(2.1c), on a 256x128 grid are displayed

in Table 2.1; the preconditioners being considered are the LU preconditioner and

the ASM preconditioner with overlap 1 and LU on each block. Note that for

NP = 1 these two preconditioners are actually the same since no domain decom-

position is taking place.

Processor Nodes Time (sec) Speedup
LU ASM LU ASM

2 109 93 1.85 2.18
4 61 46 3.33 4.43
8 37 24 5.50 8.44
16 25 14 8.01 14.83
32 18 10 11.03 20.94

Table 2.1: Plasma terms are easily solved with domain decomposition methods

By choosing a domain decomposition which respects the physics of the plasma
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transport, the ASM preconditioner is able to scale much more effectively than the

LU preconditioner. ASM is less effective than LU on ill-conditioned systems so its

success here shows that the “plasma terms only” problem is rather well conditioned

with ∆t = 10−4.

The outstanding performance in Section 2.3 is a benefit of the domain de-

composition, since the blocks selected by ASM are the same blocks chosen during

domain partitioning. To determine the effect of the partitioning on the quality of

the preconditioner, refer to Figure 2.4a which compares the solve times using both

a 1D and 2D domain partition.
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(b) Overall cost is greater in 2D than 1D

Figure 2.4: When using ASM on plasma only simulations, 1D partitioned solves
are faster because nonlinear solve cost overwhelms the function evaluation savings
in 2D.

Processor nodes Linear Iterations
1D 2D

8 21 129
16 30 134
32 50 161

Table 2.2: 1D partitioned ASM requires fewer linear solve iterations.

Clearly, Figure 2.4a indicates that the ASM preconditioner prefers a 1D over a
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2D domain decomposition. This is supported by the physics of the system in which

the plasma terms prefer to not cross magnetic lines and thus the most significant

coupling for the plasma variables is in the poloidal direction and not the radial

direction. The 1D domain decomposition most respects that by retaining all the

couplings in each radial strip and then neglecting some of the couplings across

radial strips. Because less information is lost when using the 1D decomposition

(i.e., few terms cross the radial partition) the quality of the preconditioner remains

high and the solve is conducted more quickly.

Figure 2.4b shows the proportion of time during the nonlinear solve spent in

each of the components. The components listed here are

• Jac Eval - Once per nonlinear iteration - Evaluation of the approximate

Jacobian used for preconditioning only,

• Line Search -Once per nonlinear iteration - Improves globalization of JFNK

by reducing the size of the suggested Newton step (see Section 1.2),

• LU Factor - Once per nonlinear iteration - Production of triangular factors

needed during preconditioning, but may not be full LU decomposition,

• PC Apply - Once per linear iteration - Preconditioning linear solve using

factors from LU Factor,

• KSP Solve - Once per linear iteration - Jacobian-free matrix vector prod-

ucts and optimization required by Krylov SubsPace (KSP) methods, in this

problem GMRES is used,

• Other - Convergence monitor updating, incidental memory allocations,

other trivial costs.
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If the quality and speed of the preconditioner were unchanged by the choice of

partition, then the isotropic partition would consistently provide a faster solve.

Figure 2.4b instead shows that despite the function evaluations scaling better in

2D than 1D, the speed of the solve is still much slower; this is because the 2D pre-

conditioner is less effective, as can be seen in Table 2.2 where the needed number

of KSP iterations is much greater for the 2D than 1D partition. The difference in

linear iterations, and also computational time, associated with the ASM precondi-

tioner is directly related to the difference in sparsity structure of the matrix, which

can be seen in Figure 2.5.

(a) 1D nonzero pattern (b) 2D nonzero pattern

Figure 2.5: The 1D and 2D decompositions produce different global matrix order-
ings

Even though there are more nonzeros in the off-diagonal blocks of the 1D de-

composition, they are more easily recovered through small increases in the overlap

of the Additive Schwarz (ASM) preconditioner. In contrast, the values lost in the

2D partition are very difficult to recover through increased overlap. This additional

cost allows the 1D decomposition to be competitive with the 2D decomposition

despite the greater communication cost during function evaluation.
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2.3.2 Effect of time stepping

It was discussed in [85] that when problems of the form

du

dt
− F (u) = 0,

are solved with Newton iteration, the associated linear systems will have improved

condition with a smaller time step ∆t. This can be seen for a simple implicit time

discretization scheme

uk − uk−1

∆t
− F (uk) = 0

which then has the linearized system(
I −∆t J(F )

(
u
(n)
k

))
︸ ︷︷ ︸

=A

∆u
(n)
k = u

(n)
k − uk−1 −∆t F

(
u
(n)
k

)
that needs to be solved iteratively. As is well known [169], an iterative system is

best solved when the spectrum of the system matrix, in this case A, has eigenvalues

clustered away from 0.

Assuming the Jacobian term J(F )
(
u
(n)
k

)
is ill-conditioned (were it not this

problem is easily solved) it has eigenvalues which are spread out over a large

region of the complex plane. By multiplying these eigenvalues by a small ∆t term

the region they encompass is shrunk towards zero by a factor of ∆t.

By itself this would not cause any difference in the condition because both the

largest and smallest eigenvalues would be scaled by the same factor and thus the

ratio of the two would remain unchanged. When A is actually formed, the identity

matrix is added to the scaled Jacobian pushing these eigenvalues which have been

scaled away from 0. As the ∆t → 0 the eigenvalues should approach a cluster

around 1 on the real axis. Such a matrix is extremely well conditioned and solving

such a system should therefore require little effort.
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Figure 2.6 shows this effect on the ASM preconditioner. Because most of the

values exchanged between domains are neglected by this preconditioner it is not

appropriate for an extremely ill-conditioned system. Its ineffectiveness is apparent

in Table 2.3b where, for ∆t = 1, 78 linear iterations are required on average for

each nonlinear iteration. That number decreases to 4 linear iterations on average

for ∆t = 10−5 which in turn cuts the average nonlinear iteration time in half.
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(a) Nonlinear solves are easier with smaller
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(b) Linear solve proportion decreases with
time step

Figure 2.6: Decreasing the time step improves the quality of ASM preconditioners

Time step Total linear
iterations

1 127
.1 126
.01 120
.001 78
.0001 34
.00001 15

(a) Total linear iterations decrease
with the time step

Time step Average linear
iterations

1 78
.1 78
.01 67
.001 41
.0001 7
.00001 4

(b) Average linear iterations per nonlin-
ear iteration decrease with time step

Table 2.3: Significantly fewer linear solves are required for smaller time steps.

As the quality of the preconditioner improves the number of linear iterations

required per nonlinear iteration should decrease. This is noticeable in Figure 2.6a

where the proportion of time spent on Once per linear iteration costs (PC Apply

and KSP Solve) decreases significantly as ∆t decreases.
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A decrease in ∆tmay also change the number of nonlinear iterations in addition

to the observed change in the cost of linear iteration per nonlinear iteration. This

happens not because the preconditioner is better but because the initial guess is

closer to the solution. For a time dependent problem it is often the case that the

initial guess at time tn, u
(0)
n , is chosen to be the solution from the previous time

step un−1. As a result, choosing a smaller time step provides an initial guess closer

to the solution because the solution should change less over the shorter period of

time. The quality of the preconditioner is independent of the number of nonlinear

iterations (assuming the linear solves converge) and thus the Once per nonlinear

iteration costs should not change with the time step.

Although it has been determined that the time for a nonlinear solve decreases

with the time step, it has not been concluded that doing so is more efficient.

If our goal is to reach a final time of T = .1 then it may be more efficient to

take one very slow step of ∆t = .1 than to take 1000 faster steps of ∆t = 10−4.

Because the relationship between ∆t and total solve time is too complex to study

analytically, computational analysis is appropriate. In Figure 2.6 the total solve

time is obviously decreasing, but it would have to be decreasing exponentially to

compensate for the significantly smaller time steps.

For smaller time steps, the increased number of nonlinear solves would over-

whelm the shorter solve time, indicating that in general there may be an optimal

time step for a given simulation and preconditioner at which the computational

cost per simulation second is minimized. Additionally, it may be possible to lag

Jacobian computations and reuse Jacobians across time steps, thereby increasing

the efficiency of smaller time steps. While a time step ∆t ∈ [10−4, 10−3] is appro-

priate for a coupled core-edge simulation, steady state problems have a final time
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T = O(1). These ideas allow for a steady state simulation to potentially be solved

more quickly with a smaller time step, although actual experiments involving Ja-

cobian lag will not be covered here.

2.3.3 Result for neutral components with fixed plasma

background

The plasma transport can be thought of as having two components - ionized plas-

mas and neutral gases. Because those two components have different physical

properties, it seems prudent to understand each of them individually before draw-

ing any conclusions about their coupling within the simulation.

To gain the same insight on neutral gas terms in the absence of plasma terms,

the experiments from Section 2.3.1 should be repeated. There are small technical

complications, namely the fact that a 2D decomposition cannot be performed on

any less than 6 processors; refer back to Section 2.2.2 for a discussion of this.

Within Table 2.4, this causes experiments with less than 8 processors (NP < 8) to

be on a 1D decomposition despite larger experiments using a 2D decomposition.

Processor Nodes Time (sec) Speedup
LU ASM LU ASM

2 6.31 42.6 2.04 0.30
4 3.30 38.7 3.91 0.33
8 1.81 11.0 7.14 1.17
16 1.10 9.67 11.8 1.33
32 0.80 12.53 16.21 1.03

Table 2.4: Neutral terms are poorly solved with ASM preconditioner

Table 2.4 shows that there is significantly better performance for the LU precon-

ditioner over ASM, even for the 2D domain decomposition which would logically
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be preferred by the neutral terms as they diffuse isotropically. To confirm that

2D is the proper choice of partition, both 1D and 2D partitions are tested for 8

and 16 processors in Figure 2.7a. There it is apparent that the best domain de-

composition is the 2D decomposition, but it was unable to scale as well as the LU

preconditioner from Table 2.4.
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(b) Overall cost is greater in 1D than 2D

Figure 2.7: With only neutrals, 2D ASM is superior to 1D ASM, but both are
inferior to full LU.

Processor nodes Linear Iterations
1D 2D

8 454 114
16 782 200
32 1498 477

Table 2.5: 2D partitioned ASM requires fewer linear iterations.

The main point of these results is to note that for the neutral deuterium species,

the preferred preconditioner seems to be LU regardless of the choice of decomposi-

tion; this is in contrast to the results from Section 2.3.1 for the plasma terms only.

One of the contributing factors to this surprising occurrence may be the size of the

problem under review: there are only 32768 unknowns for the neutral only problem

which may be too small for the cost of fill-in and communication associated with
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the LU preconditioner to outweigh the savings in fewer linear iterations. This idea

is supported by Table 2.5 which notes that ASM is consistently taking hundreds

of linear iterations per nonlinear iteration - Figure 2.7b shows that the time spent

in KSP Solve is nearly the entire cost of the nonlinear solver.

Another possibility is that the condition of the neutral only problem is so severe

that solving it iteratively becomes prohibitively expensive. A condition estimate

[92] of the neutral only system shows κ = 1.8 × 1011 whereas the plasma only

system, which is 4 times larger, has condition estimate κ = 3.1×107. One possible

cause of this ill-conditioning is discussed in the Section 2.3.4, but regardless of

the cause, this significant disparity would surely contribute to the contrasting

performance of ASM for the “plasma only” and “neutral only” simulations.

2.3.4 Analysis of neutrals on an anisotropic mesh

To understand the impact of adding the neutral component on the parallel scal-

ing, we first consider the properties of the neutral continuity equation. For a

high-density plasma typical of the edge plasma region, the neutral flow velocity is

determined largely by the pressure gradient and charge-exchange friction terms in

(2.1e). Thus,

vn ≈ vi −∇(nnTn/mn)/(nnνcx),

where Tn = Ti is the approximate neutral temperature and νcx is the charge-

exchange collision frequency. Consequently, the neutral particle continuity equa-

tion (2.1d) has the form of a simple isotropic diffusion equation.

For the purposes of this example, we consider a simple rectangular grid shown

in Figure 2.8 with ∆y = α∆x for 0 < α ≪ 1. The governing PDE is the Poisson
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Figure 2.8: Grid spacing for ∆x is α times greater than ∆y

equation with homogeneous Dirichlet boundary conditions(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y) Interior,

u(x, y) = 0 Boundary.

Using finite differences to discretize the PDE onto the anisotropic grid from Figure

2.8 produces a system of equations

−2ui j + ui+1 j + ui−1 j

(∆x)2
+
−2ui j + ui j+1 + ui j−1

(∆y)2
= fi j i = j = 1

ui j = 0 else

where f11 is f evaluated at the same location as u11. Because of the structure of

this particular stencil, the corner points do not affect the interior point, so their

value need not be included in the solution of the system. Their omission leaves a

system of 5 unknowns which after substituting ∆y = α∆x takes the Ax = b form

1

1

1

1

α2 1 1 α2 −(2 + 2α2)





u01

u10

u12

u21

u11


=



0

0

0

0

α2(∆x)2f11


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This particular system can be easily inverted to the form x = A−1b

u01

u10

u12

u21

u11


=



1

1

1

1

α2

2+2α2
1

2+2α2
1

2+2α2
α2

2+2α2
−1

2+2α2





0

0

0

0

α2(∆x)2f11


giving the 1-norm condition number of the system as

κ1(A) = ∥A∥1∥A−1∥1

= (2 + 2α2)

(
1 +

1

2 + 2α2

)
= 3 + 2α2

Since the restriction was made that 0 < α ≪ 1, κ1(A) ∈ (3, 5], which is a well-

conditioned system. Initially that may seem like a positive outcome, but the

situation muddies when the implications of that assumption on the right hand are

analyzed. As α → 0, α2(∆x)2f11 → 0 as well, which leaves a right hand side

which begins to look homogeneous as the anisotropic grid becomes more extreme.

To compensate for this shrinking nonzero term the matrix condition number should

increase, but instead it is bounded from above by 5 and thus the system becomes

insensitive to the very small terms.

It is tempting to think then that this issue is simply a function of the choice of

∆y = α∆x for 0 < α ≪ 1 rather than ∆x = γ∆y for γ ≫ 1. Reformulating the

system with this discretization as Â produces a very similar matrix and a similarly

structured condition number

κ1(Â) = (2 + 2γ2)

(
1 +

γ2

2 + 2γ2

)
= 2 + 3γ2
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Unfortunately, an anistoropic grid is characterized in this formulation as γ →∞,

which shows not only is the condition number not bounded for this system, but

it grows quadratically with γ. Thus, in this more traditional sense, the system is

rather ill-conditioned as a direct result of the isotropic diffusion on the anisotropic

grid.

2.3.5 Coupled plasma and neutral solver results

Initial experiments involving UEDGE [142] were attempts to study the steady state

behavior of the simulation. The time step of choice was ∆t = 1, after one step of

which the plasma transport simulation is in its steady state. Unfortunately, using

such a large time step produced a linear system so ill-conditioned that it could

only be solved using the full LU factorization as the preconditioner. Choosing a

simpler preconditioner than LU, such as incomplete LU (ILU(k)) or SSOR, proved

ineffective as did the more complicated algebraic multigrid (AMG): the linear solves

failed to converge in each of those cases. ILUdt was only successful with a very low

drop tolerance, to the point that the cost is comparable to the LU preconditioner.

One of our significant goals is to run UEDGE scalably on multiprocessor ma-

chines, and for this purpose the LU preconditioner is limited. As has been docu-

mented [84], the full LU decomposition loses scalability because of the additional

nonzeros generated during the factorization which change the nonzero structure

of the factored matrices. Figure 2.9 shows this lack of strong scalability when we

solve the fully coupled plasma/neutral simulation involving (2.1a)-(2.1d).

In Figure 2.9a there is a clear dropoff in performance of the solver as the number

of processor nodes in the computation increases. Figure 2.9b analyzes this result
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(b) Time spent factoring the matrix stops scaling

Figure 2.9: A LU preconditioner shows limited strong scalability for this problem

and shows that the time required for performing the LU factorization fails to scale

as the number of processors increases. To understand Figure 2.9b it is important

to note that for NP = 1 all the components of the solve are visible. Each of the

components either scales well (Jac Eval) or becomes neglible compared to the

cost of the solve (e.g., Line Search) except the LU Factor bar. That bar stops

decreasing in size for NP > 4 and in fact grows as more processor nodes are used

- this means that even as more processors are used in the computation, more total

time is spent factoring the preconditioner.

This troubling performance indicates that the choice of preconditioner is a sig-

nificant concern for scalability, and also that the LU preconditioner may not be

ideal for larger problems. Because other preconditioners have failed under these

same conditions, we must consider a new preconditioner which can solve the cou-

pled problem without the computational limitations of the global LU precondi-

tioner.
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2.4 A field-split preconditioner for improved plasma/neu-

tral performance

Section 2.3.5 concluded with the belief that solving the coupled neutral and plasma

species simultaneously on an anisotropic grid is too ill-conditioned for a domain

decomposition based preconditioner such as ASM to succeed efficiently. This is

in fact an oversimplification, since with some large amount of overlap between

domains preserved in the preconditioner the full LU would be recovered from ASM;

doing so would however negate the reduction in communication desired by using

ASM and thus is no better than the LU factorization.

The ASM was shown to be successful when preconditioning the solve involving

only the plasma terms in Section 2.3.1. This could be interpreted as part of the

system being amenable to a weaker preconditioner which proves ineffective when

applied to the coupled system. Along this line of thought, consider the coupled

system as organized in the traditional block structure of one block of unknowns
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per grid point:



ni

miv∥

Ti

Te

nn


1


u1

...

ni

miv∥

Ti

Te

nn


M


uM


︸ ︷︷ ︸

unknowns

,




J1(F )(u1)


· · ·


J1(F )(uM )


...

. . .
...

JM (F )(u1)


· · ·


JM (F )(uM )




︸ ︷︷ ︸

Jacobian

where Jk(F )(uℓ) is the Jacobian of F with respect to the set of unknowns uk

evaluated at the set of unknowns uℓ, assuming that there are M total unknowns.

The matrix above is a M ×M block matrix, with 5 × 5 blocks. If the vector of

unknowns were reordered so that the neutral terms were all segregated from the
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plasma terms, the resulting ordering would produce the Jacobian





(ni)1

(miv∥)1

(Ti)1

(Te)1
...

(ni)M

(miv∥)M

(Ti)M

(Te)M





uP ,


(nn)1

...

(nn)N


uN


︸ ︷︷ ︸

unknowns





JP (F )(uP )





JP (F )(uN )




JN (F )(uP )




JN (F )(uN )




︸ ︷︷ ︸

Jacobian

where now JP (F )(uN) is the Jacobian of F with respect to the plasma terms

evaluated at the neutral variables uN , assuming again that there are M total

unknowns. This reordered matrix is a 2 × 2 block matrix with blocks of varying

size: 4M × 4M for JP (F )(uP ), 4M ×M for JP (F )(uN), M × 4M for JN(F )(uP ),

M ×M for JN(F )(uN).

One might ask about the purpose of this reordering, as doing so will likely im-

pact the sparsity structure of the matrix which was already well banded in the 1D

partition case as shown in Figure 2.5a. While true for the full LU factorization, if

the nonzeros moved away from the diagonal were neglected during the precondi-

tioning, then the nonzero structure would not be adversely affected. Of course this

would be detrimental to the quality of such a preconditioner, but if the terms being

neglected were already unimportant, then the terms that were retained would be
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sufficient for the linear solve.

Applying this logic to the reordered Jacobian from this problem would produce

J(F )(u) =

JP (F )(uP ) JP (F )(uN )

JN (F )(uP ) JN (F )(uN )

 −→ PBJ =

JP (F )(uP )

JN (F )(uN )

 (2.3)

where PBJ is a block Jacobi preconditioner void of the off-diagonal blocks present

in the true Jacobian. There are two key benefits to considering this preconditioner

over a strictly algebraic preconditioner such as SSOR or ILU(k) or the domain

decomposition preconditioner ASM:

1. By neglecting the off-diagonal coupling terms JP (F )(uN) and JN(F )(uP ) the

system is broken into smaller sub problems, each of which can potentially be

handled by a different solver.

2. The plasma and neutral terms have now been segregated. As was described in

Section 2.3 these two systems have different physics and solving the systems

together was very ill-conditioned. Now the most ill-conditioned terms can be

handled separately from other variables.

Combining these two ideas with the preconditioning results from Section 2.3.1

and Section 2.3.3 provides a logical method of inverting the two diagonal blocks

from PBJ : JP (F )(uP )
−1 will be produced with ASM and JN(F )(uN)

−1 will be

computed with a stronger preconditioner. In this way each system requires exactly

the amount of care demanded by the component physics.

The classical method of matrix splitting would expect the system to be written
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as J(F )(x) = A− B producing a linear iteration of the form

J(F )(u)δ = −F (u)

(A− B)δ = −F (u)

Aδk = −F (u) + Bδk−1

δk = −A−1F (u) + A−1Bδk−1

whose convergence depends upon the spectrum of A−1B. Here, since the problem

is being solved in the Krylov subspace framework this exact iteration need not

take place because convergence is guaranteed by GMRES. Instead, the splitting is

only a preconditioner, and as such it need not produce the exact solution. This

allows us to treat the PBJ matrix as A in the splitting; the off-diagonal blocks

are B which is actually disregarded during the preconditioning. In PETSc [8],

this splitting is termed Additive FieldSplit (FS) because the individual blocks are

inverted separately and then the results are added together.

2.5 Numerical results for field-split

In this section we will experiment with the field-split preconditioner on several sim-

ulations. The first experiment reproduces the five variable simulation from Section

2.3.5 and demonstrates that by splitting the preconditioning, we can significantly

improve the scalability of the solver. We then increase the time step (and increase

the condition of the system as described in Section 2.3.2) and study the effect on

the new preconditioner. Section 2.5.3 studies the inclusion of the parallel neutral

velocity in the simulation, and the final set of experiments includes a Neon impu-

rity which increases the number of unknowns per grid point to sixteen. In each of

these instances, the field-split preconditioner outperforms existing methods.
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2.5.1 Comparison to earlier results

We implement the approach proposed in the Section 4.4 using PETSc’s latest

developed FieldSplit (FS) preconditioner, which allows users to describe the indi-

vidual blocks of the Jacobian matrix and then “tell” the solver how to compose the

full preconditioner based on smaller inner preconditioners associated with blocks

and Schur complements. With this new approach to preconditioning - handling

the plasma and neutral terms separately - there is improvement in the solve speed

and scalability, as shown in Figure 2.10.
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(c) Little increase in LU factorization cost

Figure 2.10: FieldSplit preconditioning outperforms LU at ∆t = 10−4
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NP Avg. linear iterations Solve time (sec)
LU ASM FS LU ASM FS

1 7 7 13 331 331 228
2 7 87 17 176 208 105
4 7 136 17 95 128 50
8 7 255 22 54 119 27
16 7 650 32 35 115 17
32 7 1585 44 26 154 10

Table 2.6: FieldSplit iterations are fewer and less costly.

Gains made by the FieldSplit preconditioner over the global LU come from the

reduced cost of the LU factorization within FieldSplit. Recall that the two disjoint

blocks present in the preconditioner are inverted with two different methods:

• JP (F )(uP )
−1 is computed via ASM where the domain is divided into n par-

titions, where n is the number of processors present. Each domain, along

with a small overlap from neighboring domains, is then solved with LU fac-

torization. Each LU factorization is then on a block roughly 1/n times the

size of JP (F )(uP )
−1 and requires no communication for each component fac-

torization.

• JN(F )(uN)
−1 is computed via Algebraic Multigrid (using HYPRE) over the

entire domain without any terms lost because of the parallel partitioning.

This requires communication between processes during the factorization and

becomes less efficient as the number of processors increases because less work

is being done by each core without a reduction in the cost of communication.

Other solves can be conducted on these blocks, including a Block Jacobi solve on

the plasma block allowing for no overlap between domains and full LU on the neu-

tral block which would be appropriate given its ill-conditioning. Initially though,

the approach described above is sufficient to demonstrate the potential of FieldSplit
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on the edge plasma transport problem. Figure 2.10a shows the FieldSplit precon-

ditioner consistently outperforming the LU preconditioner to the point where for

NP = 32 the FieldSplit is roughly 2.5 times faster.

For the LU preconditioner, the cost of computing the decomposition is scaling

very poorly, as should be expected because of the level of fill-in which requires ad-

ditional memory allocation and inter-processor communication. It is also apparent

that the PC Apply is failing to scale as the size of the yellow bar is constant.

Given the fact that the number of linear iterations per nonlinear iteration is con-

stant at 7, this extra cost is likely caused by the increase in communication required

to perform the triangular solve: as NP increases, the share of the relevant vectors

and matrices stored on each processor decreases requiring extra data transfer given

the same nonzero structure.

Within FS, the cost of LU Factor drops to negligible, mostly because the size

of the subdomains conducting those factorizations gets shrinks. The increase in

linear iterations per nonlinear iteration as seen in Table 2.6 causes the PC Apply

and KSP Solve bars to maintain their size rather than continuing to scale as well

as they could. This corresponds then to a small loss in scalability for NP = 32 (as

seen in Figure 2.10b) because the LU Factor bar is already as small as possible

and the other linear solve terms are bounded by the number of linear iterations.

To consider things more qualitatively, FS can be thought of as a targeted pre-

conditioner which uses slower techniques where necessary. Its performance is pred-

icated on being able to solve the plasma terms effectively with ASM even though

Figure 2.10a shows that ASM scales very poorly on the plasma/neutral coupled

system. FieldSplit takes advantage of the results from Figure 2.6b which show

that ASM works well on the plasma terms, and uses a slower, more powerful solver
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(Algebraic Multigrid) on the tougher terms which prevent ASM from working well.

In conclusion, the significant improvement from LU preconditioning to Field-

Split can be attributed to selective use of a domain decomposition preconditioner

on variables which do not demand global coupling during the solve.

2.5.2 Larger time steps

Many significant tokamak dynamics can be observed with small time steps (refer to

Figure 2.1), but in order to conduct a steady-state simulation, larger time steps may

be appropriate. Unfortunately, as discussed in Section 2.3.2, some preconditioners

fail to perform when applied to larger time steps. Figure 2.11 shows results for

time steps 10 and 100 times larger than previous experiments.
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(a) FieldSplit outperforms LU for ∆t = 10−3
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(b) FieldSplit falters near ∆t = 10−2

Figure 2.11: FieldSplit performs adequately for ∆t < 10−2.

The LU preconditioner performs independently of ∆t because the time step

does not change the nonzero structure of the matrix. The same cannot be said
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NP Preconditioner
LU FS ASM

1 7 25 7
2 7 26 52
4 8 22 103
8 8 33 240
16 8 43 621
32 8 53 **

(a) Linear iterations per nonlinear
iteration for ∆t = 10−3

NP Preconditioner
LU FS ASM

1 7 39 7
2 7 46 51
4 6 44 180
8 6 56 427
16 6 89 **
32 6 113 **

(b) Linear iterations per nonlinear
iteration for ∆t = 10−2

Table 2.7: There is a distinct increase in the needed number of linear iterations
between ∆t = 10−3 and ∆t = 10−2.

for the FieldSplit preconditioner, whose quality decreases with an increase in time

step. This is in agreement with Section 2.3.2 and is likely brought on by the

increasingly poor performance of ASM. In both Figure 2.11a and Figure 2.11b the

Additive Schwarz preconditioner ASM fails to converge for larger NP and thus

FieldSplit suffers accordingly.

These results bring to the forefront the significance of the ASM component

of the FieldSplit preconditioner. FieldSplit outperforms the LU preconditioner

when large portions of the system do not require the full LU factorization, and

thus are well-conditioned. As the time step increases, the plasma terms become

more difficult to solve and the ASM preconditioner fails to provide an adequate

speedup over the LU preconditioner. This may motivate a more general process

for identifying appropriate FieldSplit components: sets of variables which can be

solved cheaply should be isolated from those that require more attention. For this

particular problem the fields were chosen for physics reasons, but here it is obvious

that, despite the physics, the plasma terms cease to be sufficiently trivial given

larger time steps.

It should also be noted that the quality of the initial guess will generally degrade
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given a larger time step. For this example there is no significant effect, but it is

conceivable that the choice of initial guess could have an effect on the convergence

of FieldSplit given the longer path that each linear solve takes to convergence.

2.5.3 Solving for the neutral parallel velocity

One of the main goals of studying different preconditioning techniques is to allow

for flexibility in the solver for different physical simulations. In addition to the

5 degrees of freedom which exist in experiments thus far (D+ temperature, D+

velocity, D+ density, e density, D density), it is also possible to solve for the

D parallel velocity in the system of differential equations; until now it has been

computed algebraically using the solution to the 5 variable differential system as

described in Section 2.2. Doing so increases the share of equations describing the

neutral terms from 20% to 33% (from 1 of 5 to 2 of 6).

It is reasonable to assume that this shift will have an effect on the solve strategy

- for 5 variables the 1D domain decomposition was preferred by the neutrals and

thus was preferred by FieldSplit because only a single neutral term dissented.

Doubling the number of neutral terms has shifted the balance of power, as can be

seen in Figure 2.12 where the 2D discretization is preferred to the 1D discretization.

NP Preconditioner
LU FS

1D 2D
8 2 89 41
16 2 175 53

Table 2.8: There is a clear difference in average linear iterations per nonlinear
iteration

One small thing to note is that the NP=4 2D case does not exist, because of
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(a) In 1D FieldSplit fails to perform
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(b) In 2D FieldSplit outperforms LU precondi-
tioner
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(c) 1D and 2D results differ significantly

Figure 2.12: The 6 variable case sees better performance with FieldSplit using a
2D partitioning

restrictions made to the structure of the 2D partitioning - to prevent a cell from

having neighboring values both adjacent and across the branch cut, a 4 proces-

sor case is not viable. Also of note is that 3 fields are chosen in this FieldSplit

preconditioner instead of 2 previously: plasma terms, neutral density, neutral mo-

mentum. This means that in the preconditioner, the terms coupling the neutral

density with other variables are ignored, as well as the terms coupling the neutral
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momentum to other variables. In matrix form this looks like
JP (F )(uP ) JP (F )(uN) JP (F )(uM)

JN(F )(uP ) JN(F )(uN) JN(F )(uM)

JM(F )(uP ) JM(F )(uN) JM(F )(uM)


where uM are the momentum variables and JM(F ) is the Jacobian of F with

respect to uM .

Obviously, the most significant point in Figure 2.12c is the better performance

of FieldSplit on the 2D partition than the 1D partition. This is in direct contrast to

the performance in Section 2.5.1 which seems to indicate that a greater contribution

by neutral terms requires a shift to a 2D decomposition to maintain solver speed.

The main reason for the improved behavior with the 2D partition is the fewer

linear iterations required per nonlinear iteration, as seen in Table 2.8. Because the

JN(F )(uN) and JM(F )(uM) blocks are solved directly with the full factorization,

the only difference between the 1D and 2D cases is the JP (F )(uP ) solve which

is conducted with ASM using sequential LU on each subset of plasma terms. By

ordering the plasma variables into 2D blocks rather than 1D strips, more significant

terms are retained making the preconditioner more effective. It is interesting that

for this experiment the plasma terms prefer the 2D decomposition whereas when

treated in Section 2.3.1 separately they prefer the 1D decomposition.

The LU preconditioner stumbled when applied to the 2D partition because

more terms appeared off diagonal causing more fill-in during the factorization and

communication during the triangular solves; recall the difference in structure shown

in Figure 2.5. Unlike the FieldSplit preconditioner, there was no possible gain in

reducing the number of linear solve iterations because the LU preconditioner was

already taking as few as possible.
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2.5.4 Adding a Neon impurity

It has been established that impurity seeding of a plasma discharge can decrease

turbulence and improve confinement [125]. Introducing a Neon impurity to the

UEDGE simulation increases the complexity of the simulation because 10 new

ion densities must be computed (one for each possible charge that a Neon could

take) as well as a neutral Neon species. For a UEDGE simulation, this increases

the total degrees of freedom at each grid point in the simulation to 16, with 5

original deuterium variables and 11 Neon variables - the neutral deuterium and

Neon momentums with be solved for algebraically and not included in the system

of differential equations.

Using a 128x64 grid, experiments were conducted using LU, ASM and Field-

Split preconditioners; the outcomes are compared in Figure 2.13. The FieldSplit

performed here resembles the structure from Section 2.4 where all the plasma terms

(now including the Neon ions) are segregated from the neutral terms (now includ-

ing neutral Neon). Table 2.9 shows that both FieldSplit and LU incur almost

no change in average linear iterations - this coupled with the diminishing cost of

FieldSplit for more processors explain the better scalability on display in Figure

2.13b. It should be noted that on this smaller grid it is only possible to run up to

NP = 16 for the 1D partition.

NP Average KSP its Solve time (sec)
LU ASM FS LU ASM FS

1 8 8 21 964 964 913
2 8 79 19 500 556 411
4 8 128 21 273 326 211
8 8 281 29 152 235 116
16 8 622 51 89 233 67

Table 2.9: FieldSplit iterations are fewer and less costly for Neon simulations.
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Figure 2.13: FieldSplit preconditioning outperforms LU when simulating a Neon
impurity

Although this simulation involves more unknowns than the 5 variable (Section

2.5.1) and 6 variable (Section 2.5.3) cases, it is being run on the same size mesh.

The greater degrees of freedom per node create a larger system with similar block

structure, but larger blocks which are more dense. This is in contrast to a system

with 5 active variables being run on a 256x128 mesh which would have roughly the

same size, but a very different, and more sparse, nonzero pattern. Understanding

the structure of the system is crucial to choosing an appropriate preconditioner,

and this is especially true for FieldSplit given the free parameters needed during

its construction (selecting fields, choosing coupling, sub solvers/parameters).
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2.6 Summary

Jacobian-Free Newton Krylov is a powerful tool for solving nonlinear systems, but

it requires the use of preconditioning, which may be costly. Traditional precon-

ditioners have been algebraic in nature, requiring only the operator in question

and manipulating it to some easily invertible approximation of the true system.

Physics-based preconditioning is the idea that leveraging knowledge of the physics

which created the operator can produce a better preconditioner absent any purely

algebraic motivation.

For the system discussed here, our numerical experiments demonstrate that

two different physical phenomena exist in the coupled plasma/neutral simulation.

Because existing preconditioners either fail to perform or scale poorly, we have de-

veloped a new preconditioner. By separating the preconditioner into neutral and

plasma components, each is solved with an appropriate method to maximize scal-

ability. This approach is called FieldSplit within the PETSc library, and elsewhere

may be referred to as operator-specific preconditioning.

By preconditioning the troublesome neutral terms directly and the plasma

terms with a domain decomposition solver in Section 2.4 the maximum scalability

is preserved while still solving the system with both sets of variables. Figure 2.10

shows this operator-specific preconditioner to be faster and have greater scalability

than using the LU or ASM preconditioner on the full system. This technique of

breaking a coupled problem into components and handling the components and

the coupling individually can be applied to more complicated problems in magnetic

confinement fusion, including the addition of a neutral deuterium momentum term

or a Neon species.
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The main contributions of this chapter are the insights gained on the com-

putational complexity of the coupled plasma/neutral transport problem, and the

associated FieldSplit preconditioner developed to confront these problems. This

FieldSplit approach to physics preconditioning will be used in Chapter 6 to solve a

different coupled problem. This chapter has shown that the flexibility of FieldSplit

gives it the potential to be more efficient than the LU preconditioner when applied

to stiff problems for which a full factorization was traditionally required. It is how-

ever incumbent upon the user to convert insights about the physical system into

the structure of the FieldSplit preconditioner to create the most efficient solver.

FieldSplit can be augmented to fit the specifics of an alternate problem be-

yond those discussed here. Some of these ideas can be implemented quickly in

the PETSc framework, while others require more programming. Of course, the

validity of any of these methods is subject to the constraints of the problem under

consideration, and thus evidence (either analytical or computational) should be

gathered to support their use.

If the off-diagonal coupling terms of the Jacobian were needed to speed up

the convergence of the iterative solver, more complicated matrix splittings are

available. Each of these have the ability to retain the coupling terms present in

the reordered Jacobian, as well as potentially using the Schur complement which

is currently available in PETSc. The Schur Complement [84] of a matrixA1 A2

A3 A4


−1

=

JP (F )(uP ) JP (F )(uN)

JN(F )(uP ) JN(F )(uN)


−1
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is written as I 0

−A−1
4 A3 I


︸ ︷︷ ︸

CL

(A1 − A2A
−1
4 A3)

−1 0

0 A−1
4


︸ ︷︷ ︸

C

 I −A2A
−1
4

0 I


︸ ︷︷ ︸

CR

and this multiplicative decomposition which would maintain the block diagonal

spirit of PBJ without fully disregarding the off-diagonal terms. When the off-

diagonal block are needed, this provides a mechanism to include them, albeit at

additional cost.

Beyond changing the preconditioner to improve its quality, there may also be

improvements on how the blocks JP (F )(uP )
−1 and JN(F )(uN)

−1 within Additive

FieldSplit are computed so as to improve speed. One possible goal would be to

determine what level of overlap is appropriate for the plasma terms. As Figure

2.14 shows when ASM is applied to the full system, increasing the retained overlap

between domains improves the speed of the solve.

When the plasma terms are considered separately in Figure 2.14a, as they

are in FieldSplit, this improvement seems limited as the reduction in the number

of linear iterations appears counterbalanced by the increase in LU Factor for

sufficiently large overlap. For both plasma and neutral terms acting together on a

2D partition as seen in Figure 2.14b, the best performance is for very high overlap

which confirms our belief that adding neutral terms to the problem requires a much

stronger solver.
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Figure 2.14: The best ASM overlap is dependent on many factors, including: the
problem type, the domain partition and the number of processors.
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CHAPTER 3

FINITE DIFFERENCE ACCURACY FOR NONLINEAR SYSTEMS

3.1 Introduction

In Section 1.2 we introduced Jacobian-free Newton-Krylov as a method for solving

nonlinear systems F (u) = 0. At each Newton iteration, the system

J(F )(un)∆un+1 = −F (un) (3.1)

must be solved, where un is the nth Newton iterate, ∆un+1 is the next Newton

step to be taken, and J(F )(un) is the Jacobian of F evaluated at un. The initial

guess u0 needs to be provided, and often the full search direction ∆un+1 is reduced

by a factor 0 < α < 1 to help accommodate poor initial guesses. These points are

not discussed in this chapter so that we can focus on the specific goal of solving

the linear system.

We are generally interested in solving (3.1) iteratively, because many physi-

cal discretizations of continuous problems yield sparse or well-structured matrices.

Because actual computation of J(F )(un) is impractical we often instead use ap-

proximate Jacobian-vector products to for the requisite Krylov space. The values

J(F )(u)b can be approximated via finite differences:

J(F )(u)b ≈ F (u+ hb)− F (u)
h

.

This idea is discussed in [50, 27], among other references. It has become popular in

many applications because it eliminates the need for the true Jacobian, and because

of the ease with which it can be applied: all that is needed is the function F and

a differencing parameter h. Researchers in biogeochemical transport [90], fission
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reactors [86], conjugate heat transfer [183], hydrodynamics [101], fluid-structure

interaction [174] and many other fields have successfully used this finite difference

approximation in their work. We do not intend to debunk the value of this method,

but rather propose that it can be improved with a reasonable amount of additional

computation.

This chapter begins by introducing some existing methods for choosing a differ-

encing parameter; Section 3.1.1 discusses the logic behind these choices. Section

3.2 describes examples where the existing methods have limited accuracy, and

identifies the various scales present in the solution as the cause of this trouble.

Our main contribution in this chapter appears in Section 3.3, where an algorithm

involving split finite differencing is used to improve the accuracy of the finite dif-

ference approximation. This approach is applied in Chapter 6.

3.1.1 Current differencing parameter choices

There are many ways to determine the h parameter which is used to approximate

Jacobian-vector products

J(F )(u)b ≈ F (u+ hb)− F (u)
h

.

It is assumed that b is a unit vector, since any magnitude could be absorbed in

the h term. An appropriate choice should balance two sources of error [107]: the

error from the Taylor series approximation which is minimized for a small h, and

the error from the cancelation which occurs when h is small and F (u + hb) and

F (u) are close. Thorough analysis of this idea and the following methods for finite

differencing was performed in [182].

The most basic choice for balancing the need for a large h (near 1 to minimize
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cancelation) and a small h (near unit roundoff to minimize truncation error) would

be to split the difference and choose

hb :=
√
ϵmach,

where ϵmach is machine precision. In the future, this will be referred to as “Basic”.

This choice is geometrically half way between ϵmach where no truncation error exists

and 100 where no cancelation exists.

Another common choice comes from [135], considers the magnitude of the two

vectors involved to produce

hp :=

√
ϵmach

bTb

√
1 + ∥u∥2. (3.2)

Named after the authors, we will refer to this method as “Walker-Pernice”. Al-

though this approach is more costly than hb, it has the advantage of introducing

some consideration of the scale of the problem, which is significant as was discussed

earlier. The cost is also reduced significantly when using this approach to compute

a full finite difference Jacobian as the vector u is constant for all rows, thus saving

many norm computations.

The most popular choice in Jacobian-free Newton-Krylov literature will be

named “Dennis-Schnabel”, and comes from [50]. This is a more complicated equa-

tion designed to incorporate the relationship between u and b:

hd :=

√
ϵmach

bTb
σd (3.3)

where

σd =


uTb if |uTb| > umin∥b∥1

sign(uTb)umin∥b∥1 else

.
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The umin parameter here is a tunable parameter whose default is set to be 10−6

– the purpose of the parameter is to account for the possibility that u and b are

nearly orthogonal. This would be problematic because the differencing parameter

could get too small and cancelation error would grow substantially.

3.1.2 Finite differences for multiphysics problems

One problem with the finite difference approach for Newton-Krylov, brought up

in [50], appears when the values of F (u) are on wildly different scales: this is

of significance here because multiphysics problems often present themselves on

multiple scales. There are specific examples of the error introduced by this, but

for now consider the following reasoning: if one subset of variables F1(u) is on

the order of 103 and the other variables F2(u) are on the order of 10−3 then the

convergence of the nonlinear solver is dominated by F1(u). This should be the

case because the F1(u) terms contribute much more significantly to the residual

F (u) despite the fact that F2(u) may still be far from the solution on its scale.

The common solution to this problem is to apply a scaling to the function

evaluation to accommodate this disparity and move all the variables to the same

scale. This technique, discussed in [27], is used in many instances (e.g., the UEDGE

simulation from Chapter 2 scaled its components) and should work well as long

as there is a typical scale associated with each of the variables. Even if that scale

changes during the problem, it is still possible to apply a scaling as long as it is

known a priori. In the simplest sense, the problem F (u) = 0 is rephrased as

F (u) =

F1(u)

F2(u)

⇒
C1F1(u)

C2F2(u)

 =

C1 0

0 C2

F (u) (3.4)
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where C1, C2 are positive valued diagonal matrices which scale the F1 and F2

vectors. These matrices should be constants determined by the physics of the

system, and in the situation described above, C1 = 10−3 and C2 = 103 would be

appropriate choices.

While scaling is an option, it seems unlikely that all situations can produce a

C matrix a priori. Producing a different scaling at each time step may be costly

or impractical if multiple time steps are being taken simultaneously, or if the

system varies wildly within the “neighborhood” of the solution. Theoretically,

we could make some restriction that the neighborhood be chosen small enough

so that there is a restricted amount of variation, but in a practical setting that

may not be reasonable. The likelihood of a poor initial guess is high which is why

globalization techniques such as line search are often implemented within a modern

Newton-Krylov solver; globalization methods were briefly discussed in Section 1.2.

There may also be some situations where the finite difference approximation

produces unphysical results. One example involving groundwater transport ap-

peared in [89], and demonstrated that the finite difference approximation produced

a negative concentration. This suggests again that the multiphysics setting is more

sensitive and troublesome than a single component individually.

3.2 Shortcomings of finite differencing

As discussed in the previous section, mismatched component scales and an inability

to define a small “neighborhood” where the solution exists may cause the full

nonlinear system to exist on multiple scales during the Newton iteration. To that

end, we may need to consider other methods than the diagonal scaling described
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in (3.4) to improve the accuracy of finite difference Jacobian-vector products. We

begin with a simple example, where the residual function squares each element of

the input vector,

F (u) = u2.

Input values are produced by 100 data points evenly distributed in the region

x ∈ [−10, 10], where (u)i(x) = 1 − x4i , and the vector b is simply a vector of all

ones. These u values which are now input for the F evaluation are spread over the

range [−10000, 1], and in turn, the output from the F (u) evaluation exists over

the range [0, 108]. This wide range of possible outputs impairs the finite difference

evaluation, as can be seen in Figure 3.1.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−7

10
−6

10
−5

10
−4

differencing parameter h

R
M

S
 r

el
at

iv
e 

er
ro

r

 

 
FD err
Dennis−Schnabel
Walker−Pernice

(a) Neither standard guess for h produces
optimal accuracy.

h for large terms

h 
fo

r 
sm

al
l t

er
m

s

small/large break point at 100

 

 

10
−8

10
−7

10
−6

10
−5

10
−4

10
−8

10
−7

10
−6

10
−5

10
−4

lo
g 10

(R
M

S
 r

el
at

iv
e 

er
ro

r)

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

(b) If different parameters are used for the
largest and smallest terms, the optimal ac-
curacy can be improved.

Figure 3.1: The accuracy of finite difference computation is related to the param-
eter h but bounded by the complexity of the function.

In Figure 3.1 the term RMS relative error is used; this term is computed by

errRMS =
1√
n

√√√√ n∑
k=1

(
FDbk − Jbk
|Jbk|+

√
ϵmach

)2

where Jbk is the kth element of the true Jacobian-vector product, FDbk is the kth

element of the finite difference approximation and n is the number of elements in
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the residual evaluation. This method of computing the error makes sure that each

value is treated on its own scale, so that one very large value does not dominate the

accuracy of the finite differencing. The term
√
ϵmach appears in the denominator

to prevent division by a number less than
√
ϵmach, which would cause values near

0 to unacceptably dominate the error measure.

Figure 3.1a shows that the optimal accuracy for a single differencing param-

eter used on the entire function is better than any of the parameter approaches

described in Section 3.1.1. Of course determining that optimal parameter requires

knowledge of the true Jacobian so we are not recommending here that the optimal

parameter needs to be found. Rather this picture is supposed to show that one

does exist and that finding it is not as trivial as the approaches described earlier.

See Table 3.1 for a listing of the notable h values and associated errors.

Choice of h Label h errRMS

Basic hb 1.0e-8 2.6e-5
Dennis-Schnabel hd 2.1e-5 6.4e-6
Walker-Pernice hp 1.9e-7 8.5e-7

Optimal h̃ 6.0e-7 2.6e-7
Split h1 & h2 5.9e-8 & 1.3e-5 2.5e-8

Table 3.1: The result of various differencing parameters on the finite difference
accuracy.

These results show that, in this example, the best accuracy that can be achieved

for the optimal differencing parameter h̃ is 2.6e-7. Many factors contribute to this

particular value: the machine precision ϵmach, the residual function F , the RHS

vector b, and the range in scales of F (u). The first three factors are generally out

of our control, and when a single h parameter is used, we are likewise unable to

dissociate the various scales present in the problem.

To attempt to separate the scales, we could consider the use of different h
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values to compute the Jacobian-vector product for the larger and smaller scales.

If we separated our residual into 2 components based on scale, and call h1 the

differencing parameter for the large scale and h2 the differencing parameter for the

small scale, we could choose h1 and h2 separately to optimally account for error on

only those scales. The full finite difference approximation would be computed once

each using h1 and h2, but the final approximation would be composed of terms

from the large scale using h1 and from the small scale using h2.

The results of such an experiment are presented in Figure 3.1b and there is a

significant improvement in accuracy to be gained when isolating the largest and

smallest components of F (u). The break point between scales for this example is

chosen to isolate the 32 values of F (u) less than 104 from the 68 values of F (u)

greater than 104. This choice was arbitrary, and many other break points would

have worked as well. When we locate the optimal error on the contour plot, we see

it is 2.5e-8, which is a full order of magnitude better than any single h could ever

be. All values for the single differencing parameter case are restricted to h1 = h2

which lies on the anti-diagonal of the contour plot; because the optimal value on

that plot does not lie on that line, it would never be possible to be that accurate

with only one differencing parameter.

A more realistic example than the simplistic one just noted might involve a 2-pt

boundary value problem. Suppose x ∈ [−10, 10] again, this time with (u)i(x) =

1−x2i and the vector b chosen randomly from a Unif(0,1) distribution. The residual

function is chosen to be F (u) = ∇2u−u2, which is discretized with second order

finite differences. The results are on display in Figure 3.2 and Table 3.2.

The improvement that we are seeing here is a result of the large and small

terms being handled on their own scales rather than jointly. Drawing a line from
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Figure 3.2: For an ODE, there is better accuracy when splitting scales.

Choice of h Label h errRMS

Basic hb 1.0e-8 2.2e-5
Dennis-Schnabel hd 2.1e-5 1.1e-6
Walker-Pernice hp 1.9e-7 2.0e-5

Optimal h̃ 6.0e-7 2.6e-7
Split h1 & h2 1.5e-7 & 7.9e-6 5.8e-8

Table 3.2: Various differencing parameters have varying effects on the finite dif-
ference accuracy, but no one parameter can match the accuracy of the multiple
parameter scheme.

the bottom left to the top right of image Figure 3.1b would show the manifold

to which the single h value computation is restricted. As we can see, the optimal

values for h lie far off that diagonal meaning that there is a region of accuracy that

could never be reached using only a single differencing parameter.

3.3 An algorithm for split finite differences

Now that we have described the potential hazard associated with choosing only a

single differencing parameter, we can consider an algorithm which would allow for

Jacobian-vector approximation using multiple differencing parameters. We have
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already described the basic components in Section 3.2, but we must also define

some important terms.

First we define nt and nb as the indices associated with the largest and smallest

scales respectively. To identify the vector components associated with those in-

dices, we use the notation u[nb] and b[nb], and the term F (u[nb]) means to evaluate

F (u) and then remove all indices not in nb. The value tol is the break point be-

tween the largest and smallest scales, such that indices in nb are chosen to require

|F (u[nb])| < tol. The final approximation is denoted by Ju,b.

Algorithm 2 Split Finite Differencing

Given F , u, b
Choose tol
F u ← F (u)
Sort F u to find elements less than tol
nb ← the indices of F u less than tol
nt ← the indices of F u not present in nb

Choose hb based on F (u[nb]) and b[nb]
Choose ht based on F (u[nt]) and b[nt]
F b ← F (u+ hbb)
F t ← F (u+ htb)
Ju,b[nb]← 1/hb(F b[nb]− F u[nb])
Ju,b[nt]← 1/ht(F b[nt]− F u[nt])
return Ju,b

You can notice that this algorithm has 3 “Choose” statements in it, which

have been left intentionally ambiguous: one involves the choice of how the splitting

between scales is done, and the other two require a choice of differencing parameter.

The tol parameter is a free parameter which the must input. The other two choices

involve how the values hb and ht are selected. For future experiments, we choose

specific values of hb and ht; however, the choice could be automated by using the

Walker-Pernice or Dennis-Schnabel method on the components F (u[nb]) and b[nb]

to compute hb, and a similar approach for ht.
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In the same way that there is more than one way to choose hb and ht, there

are other ways to split the scales of F (u). A fixed number of terms m could be

expected for the lower scale, and then the smallest m terms would be included in

the index nb. Of even more practical significance would be some sort of clustering

[4] approach to choosing appropriate scale divisions based on the values present

in F (u). This is an especially promising approach because it takes advantage of

information which would not be present a priori and thus could not be used to

determine the diagonal scaling which is traditionally applied. Furthermore, this

splitting is not fixed across Jacobian-vector products, and thus, unlike the diagonal

scaling, a different splitting could be chosen for every product.

3.4 Studying finite differences within a nonlinear solver

Recall that solving nonlinear systems with Newton’s method requires solving linear

systems of the form (3.1) at each Newton step. In the absence of a true Jacobian,

we can only approximate matrix-vector products, which introduces error into the

linear system. We use this section to study the effect of such an error on a gen-

eral linear system Ax = b. Then we consider the potentially negative effect of

finite differences on a nonlinear solver for a relatively simple problem. Finally we

demonstrate on a more difficult problem the value of the split finite differences

algorithm in improving the accuracy of the nonlinear solver.

81



3.4.1 Error analysis for finite differencing

From [84], error bounds are available for linear systems of the form (A+ ϵF)x(ϵ) =

b+ ϵf ,

∥x(ϵ)− x∥
∥x∥

≤ ϵ∥A−1∥
[
∥f∥
∥x∥

+ ∥F∥
]
+O(ϵ2)

≤ ϵκ(A)

[
∥f∥
∥b∥

+
∥F∥
∥A∥

]
+O(ϵ2), (3.5)

where 0 < ϵ ≪ 1 which makes a Taylor expansion appropriate. When we think

about the system we are solving here, we need to consider the amount of error

present both in the linear system and the right hand side. The problem here is

that the error in the linear system is at a much higher scale because of the finite

difference evaluations.

It is reasonable to assume the error present from the finite difference approx-

imation is O(
√
ϵmach) (see [50]), although it may be much greater as we saw in

Section 3.2. Note here that we are referring to only the relative error in evalua-

tion of the matrix, not its application to general vectors, although the evaluation

can of course be done by matrix vector multiplication with columns of the iden-

tity. If we can assume that there is only machine precision relative error in the

function evaluation, which is the minimum possible error, then we should have

∥ϵF∥ = √ϵmach∥A∥ and ∥ϵf∥ = ϵmach∥b∥. Plugging this in to (3.5) gives us

∥x(ϵ)− x∥
∥x∥

≤ ϵκ(A)

[
ϵmach

ϵ
+

√
ϵmach

ϵ

]
+O(ϵ2),

≤
√
ϵmachκ(A) [

√
ϵmach + 1] +O(ϵ2).

This indicates that for a sufficiently poorly conditioned system we could expect

the use of finite differences to be problematic.
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3.4.2 A basic example

For this problem, we are interested in solving the 2 point nonlinear BVP

d2

dx2
u+ e−σu = 0, σ > 0, u(−10) = u(10) = 1

with a finite difference discretization on 100 evenly spaced points. For σ = 0

this reduces to just a linear problem with a source, for which the solution u(x) =

51− 1
2
x2 can be found analytically. As σ →∞, the nonlinear term fades away and

the solution approaches a straight line. An initial guess of all ones is chosen for

the nonlinear solve. See Figure 3.3 for an example performance of finite difference

approximation as compared to the true Jacobian solve.
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Figure 3.3: Even for a small nonlinearity, the finite difference approximation may
stray significantly depending on the choice of differencing parameter.

Although certainly not indicative of all nonlinear solves, this example shows

that the presence of error in the linear solve may produce worse Newton iterations.

Here each linear solve was performed with preconditioned GMRES, using the true

inverse as a preconditioner; this is essentially a direct solve except that the matrix-

vector products are not performed with the matrix Jacobian but rather matrix-free

methods. The search directions found by the finite difference approximation are a
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function of the error in the linear system, which is in turn a function of h.

In Figure 3.3 different h values produce different paths to convergence for the

finite difference approximation. This is logical given the previous results but serves

to underscore the significance of choosing the “right” h. Even when using more

advanced choices of h such as (3.2) or (3.3) issues can arise involving the accuracy

of the ∆uk terms being computed. This is especially true at later steps where the

magnitude of each step ∥∆uk∥ is very small. Because the value σ = .001 is very

close to zero, this problem is very nearly linear, and cancelation is less significant

than roundoff error. That is why h = 1e− 8 was much closer to the true Jacobian

than h = 1e− 4.

3.4.3 Improving convergence with split finite differences

Now we use the split finite differences technique to improve convergence for a non-

linear solver. Consider the linear critical gradient model [99], which is sometimes

used as a simplified model of nuclear fusion; this was briefly introduced in Section

1.1. The BVP is

ut − (κ(ux)ux)x = f, u(−1) = u(1) = 0,

where the diffusivity is a function of the derivative ux

κ(ux) =
α

2z
log(cosh(2zux) + cosh(2zC))− αC +

α− 2

2z
log(2) + κ0 −B, (3.6)

and the source is chosen so that the true solution is

u(x, t) = e−t(1− x2).

The parameters appearing in the diffusivity κ determine the nonlinearity in the

problem:
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• α - The steepness of the nonlinearity

• z - The severity of the change between constant and nonlinear diffusivity

• C - For |ux| ≪ zC the diffusivity is basically constant

• κ0 - The minimum diffusivity

• B - An integration constant to assure κ(0) = κ0

Using a finite volume discretization in space and a backward Euler discretization

in time produces a nonlinear system at each time step. Attempting to solve for a

single time step of size ∆t = .1 with ∆x = .04 (i.e., N = 50 total volumes) using

both the true Jacobian and finite differences produced Figure 3.4.
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Figure 3.4: Adapting the finite differences using traditional schemes can limit the
accuracy of the nonlinear iteration. Greater accuracy can be achieved by using
split finite differencing with two differencing parameters. The finite differencing
parameters considered are WP=Walker-Pernice (3.2) and DS=Dennis-Schnabel
(3.3).

Here the initial guess is chosen as the previous time step (the initial profile)

and the diffusivity parameters are all equal to 1. All the finite difference methods
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fail to converge as accurately as the true Jacobian, as should be expected given the

error in the finite difference approximation. The split finite differencing was much

more accurate than either the “Walker-Pernice” (3.2) or the “Dennis-Schnabel”

(3.3) methods which are traditionally used.

Here, the splitting strategy used was simple: F (u) values were divided in half

by magnitude, with larger values differenced with ht and smaller values differenced

with hb. The differencing values start at ht = 10−7 and hb = 10−5 respectively, and

increase gradually up to ht = 10−5 and hb = 10−3 as the residual norm decreases.

Recall that for smaller residual vectors F (u) the differencing parameter needs to

increase, justifying this otherwise ad hoc approach. Going forward, it will be

useful to somehow implement the WP or DS methods within the splitting scheme

to automate the finite difference choice, as mentioned in Section 3.3.

3.5 Summary

Finite difference Jacobian-vector products are a useful tool for solving nonlinear

systems because they allow for linear solves without the full Jacobian. As presented

in this chapter, there is limited accuracy attainable for this approach. We propose

a new technique for splitting the finite difference approximation into components

based on the magnitude of the values in the residual evaluation. This choice helps

to isolate the different scales in the function evaluation for situations when the

scales are unknown prior to finding the solution, or when the path of the Newton

iteration includes values of uncommon scale.

This new technique allows for more accurate finite differences, which in turn

may allow for a more accurate nonlinear solve because better search directions

86



are available. Moreover, as suggested in Figure 3.4, it may not be necessary to

always incur the additional cost associated with split finite differencing; only after

the residual norm has decreased beyond the accuracy of single finite difference

methods is the improvement in accuracy significant. We have not suggested that

finite difference methods with only a single differencing parameter are invalid,

but rather proposed an additional computational step which may increase the

accuracy of approximate matrix-vector products for multiscale systems. Split finite

differencing is another tool in our multiphysics infrastructure with the potential to

improve the convergence of Jacobian-free Newton-Krylov methods.

There are more advances which can be made on this project. We briefly mention

two topics here which are worthy of further thought, but are too complex for this

work. The first is a more in depth study of the approach of split finite differencing.

Improving accuracy of the Jacobian-vector products with this split approach comes

with issues.

Computational cost There is now a need/opportunity to determine this break

point between the high and low scales within the function. How is this choice

made?

Flexibility Perhaps there are more than 2 scales which should be separated into

their own finite difference computations. At what point are you experiencing

diminished returns, since each scale requires an additional function evalua-

tion?

The bigger picture Splitting the finite differencing increases the number of func-

tion evaluations which need to take place during the linear solve. Why/when

would that be worth it when considering the nonlinear solve?
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A general algorithm for optimally splitting the finite difference computation must

balance the extra time spent computing a more accurate Jacobian-vector product

with the time saved during the nonlinear solve by producing a better search di-

rection. Unfortunately, the quality of the path taken during the full Newton solve

cannot be determined a priori. One set of tunable parameters which would allow

the user to take advantage of the splitting includes

• maximum number of splits - This would cap the total number of function

evaluations used to conduct finite differencing.

• suggested splitting points - Given an idea what the scales of the problem are,

the algorithm would have a better chance of finding optimal splittings.

• kurtosis - If the user knows the peakedness of the residual function, that

would help the algorithm understand the local/global nature of the function,

and automatically pick better splits.

The second point of future interest is the study of finite difference approxima-

tions as a regularization technique. When Jacobian-vector products are approx-

imated, error is introduced in the system, and the actual problem being solved

is

(J(F )(u) + E)x = F (u) + δ.

The matrix E is the error associated with the finite differences, and δ is the vector

of error associated with the function evaluation F (u). This δ vector is typically

small (or at least as small as is allowed by the application), but the E matrix

may be much larger because there is more error in the finite differencing than the

residual evaluation. This error is unwanted because the solution of this system is
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further from the optimal search direction, so in pure math we would like to set E

to 0 by exactly evaluating the Jacobian.

If, on the other hand, the matrix J(F )(u) were ill-conditioned, then the small

error in δ would potentially be magnified significantly in J(F )(u)−1δ. This could

overwhelm the true solution J(F )(u)−1F (u), yielding a terrible Newton step. The

presence of the error matrix E could actually serve to stabilize the accuracy of

search direction by producing a better conditioned system. Research would need

to be conducted on the practicality of this method, but this could open up the use

of the differencing parameter as a regularization tool. The h, or multiple h values if

split differencing is used, would become a free parameter, used to balance accuracy

in the Jacobian-vector products with condition of the system. Their value could

be determined statistically, as is discussed for a different set of free parameters in

Chapter 8.
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CHAPTER 4

STABLE INTERPOLATION WITH GAUSSIANS USING

EIGENFUNCTIONS

4.1 Introduction

Many multiphysics simulations consist of component models which exist indepen-

dently and are coupled together at shared boundaries, as discussed in Section

1.3. These component models are often developed without input from each other,

meaning that important design choices are made without considering the model

to which they will be coupled. This is often the result of two or more successful

models being developed in different communities over several years or decades,

not the intentional ignorance of an important aspect of the component simula-

tion. Nonetheless, the individuality of the two models has an inimical effect on

the simplicity of the coupling between them, because by design neither model is

intrinsically aware of the other.

Beyond the complicated physical issues which arise when two disjoint models

(with potentially contradictory assumptions about the universe [13, 30, 26, 146])

are coupled, there are also mathematical/computational issues present. One of

the issues is the worry that coupling between two high order models will lower the

order of accuracy of the full simulation. Another concern is the problem of relating

the results of one model as input to the other – because components are often

encapsulated, they likely exist on incompatible discretizations. The mechanism by

which this data is transferred may be trivial if the grids are chosen very carefully,

or mortar methods [58, 7, 108] may be used to produce a special coupling grid

between the two models.
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Interpolation between the two grids using geometry [98, 19] is also common,

although more difficult beyond 1 dimension. The approach of meshfree interpola-

tion to couple two models together is however much less common, mostly appearing

only in fluid-structure interaction [3, 177, 178]. Although the meshfree approach

to interpolation is a natural choice given its indifference towards the disparate

meshes in the components, one of the drawbacks is the potential ill-conditioning

associated with kernel methods. This is discussed further in Section 4.2, but if the

ill-conditioning were not an issue, meshfree approximation would be an ideal choice

for interpolation between models given its freedom to move between meshes and

high-order accuracy. Here we address the ill-conditioning issue for the scattered

data approximation problem. This chapter lays the groundwork so that Chapter 6

can add meshfree coupling via stable kernel-based interpolation to our multiphysics

infrastructure.

Section 4.2 discusses existing literature concerned with the conditioning issue.

A possible solution to this conditioning problem is described in Section 4.3, using

eigenfunctions of an associated Hilbert-Schmidt operator. A stable basis for per-

forming Gaussian interpolation is derived in Section 4.4, and numerical results are

presented in Section 4.5. To reduce the computational cost in higher dimensions,

a low-rank expansion of the Gaussians is derived in Section 4.6; numerical results

for this technique are presented in Section 4.7. This chapter is based largely on

the paper

G. E. Fasshauer, M. McCourt, Stable evaluation of Gaussian RBF interpolants,

SIAM Journal on Scientific Computing, 2012

and it is cited as [63].
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4.2 Moving away from the standard basis

It is well-known that the standard or direct approach to interpolation at locations

{x1, . . . ,xN} ⊂ Rd with Gaussian kernels

K(x,z) = e−ε2∥x−z∥2 , x, z ∈ Rd, (4.1)

leads to a notoriously ill-conditioned interpolation matrix K = [K(xi,xj)]
N
i,j=1

whenever ε, the so-called shape parameter of the Gaussian, is small, i.e., when

the set {e−ε2∥x−xj∥2), j = 1, . . . , N} becomes numerically linearly dependent. This

leads to severe numerical instabilities and limits the practical use of Gaussians

— even though it is well known that one can approximate a function from the

native reproducing kernel Hilbert space associated with the Gaussian kernel with

spectral approximation rates (see, e.g., [61, 176]). The fact that most people are

content with working in the “wrong” basis therefore has sparked many discussions,

including the so-called uncertainty or trade-off principle [60, 151]. This uncertainty

principle is tied directly to the use of the standard (“wrong”) basis, and we believe

it can be circumvented by choosing a better — orthonormal — basis.

The idea of using a “better basis” for RBF interpolation is not a new one.

It was successfully employed in [12] to obtain well-conditioned (and therefore nu-

merically stable) interpolation matrices for polyharmonic splines in the context

of a domain decomposition method. The technique used there — reverting to a

homogeneous modification of the positive definite reproducing kernel associated

with the conditionally positive definite polyharmonic spline kernel — was totally

different from the one we pursue here. Our basis comes from a series expansion of

the positive definite kernel and is rooted in the pioneering work of [127] and [157].

Combining series expansions of the kernel with a QR decomposition of the
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interpolation matrix to obtain a so-called RBF-QR algorithm was first proposed

in [72] for interpolation with zonal kernels on the unit sphere S2 and in [70] for

interpolation with Gaussian kernels in R2. These latter two papers motivated

the results presented here. The main improvements provided by our work lie in

establishing the general connection between the RBF-QR algorithm and Mercer or

Hilbert-Schmidt series expansions of a positive definite kernel K defined on Ω×Ω

of the form

K(x, z) =
∞∑

m=1

λmφm(x)φm(z), x, z ∈ Ω,

with appropriate positive scalars λm and functions φm. Here Ω can be a rather

general set; however, in this thesis following we focus on Ω ⊆ Rd (see Section 4.3.2

for more details).

Having such an expansion allows us to formulate interpolation and approxi-

mation algorithms that can be implemented stably in any space dimension. We

also consider an alternate highly accurate least-squares approximation algorithm

for scattered data fitting with Gaussian kernels that in this form seems to be new

to the literature even though general least-squares theory clearly suggests such an

approach. In the following section we will discuss the expansion we use for the

Gaussian kernel, review the idea of the RBF-QR algorithm and discuss a number

of details that are crucial for the implementation of our algorithms. Everything

is supported with numerical experiments of Gaussian kernel interpolation and ap-

proximation of scattered data in space dimensions ranging from d = 1 to d = 5.
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4.3 An eigenfunction expansion for Gaussians in L2(R, ρ)

For this section we concentrate on the one-dimensional situation. The general-

ization to multiple space dimensions d is established in a straightforward manner

using the product form of the Gaussian kernel.

It turns out that one can derive (see [137, 184]) a Mercer expansion

e−ε2(x−z)2 =
∞∑

m=1

λmφm(x)φm(z)

for the Gaussian kernel (4.1), with the functions φm being orthonormal in L2(R, ρ).

Here the inner product that determines how we measure orthogonality of functions

in L2(R) is weighted by

ρ(x) =
α√
π
e−α2x2

, α > 0. (4.2)

This formulation ensures that the weight function has unit integral, and that the

parameter α acts on the same scale as the shape parameter ε of the Gaussian

kernel. Moreover, both of these parameters act as length scales for the spatial

variable x and use the same units. Since the parameter α determines how the

global domain R is “localized” we can interpret it as a global scale parameter.

In order to match up our choice of parameters with those used in [137], we

replace the original parameters a, b, and c =
√
a2 + 2ab with our own parameters

α, β (to be introduced below) and ε in the following way:

a =
α2

2
, b = ε2, c =

α2β2

2
.

Using this setup along with the following auxiliary parameters β, γm and δ defined
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in terms of α and ε, i.e.,

β =

(
1 +

(
2ε

α

)2
) 1

4

, (4.3a)

γm =

√
β

2m−1Γ(m)
, (4.3b)

δ2 =
α2

2

(
β2 − 1

)
, (4.3c)

the eigenfunctions φm of the Gaussian turn out to be

φm(x) = γme
−δ2x2

Hm−1(βαx), m = 1, 2, . . . , (4.4a)

where Hm−1 are the classical Hermite polynomials of degree m−1 defined by their

Rodrigues’ formula

Hm−1(x) = (−1)m−1ex
2 dm−1

dxm−1
e−x2

for all x ∈ R, m = 1, 2, . . . .

In order to get a perfect match of our formulas with those in [137], the reader

needs to take into account the corrected normalization provided in the errata for

[137]. It should be noted that this formulation is related to Mehler’s formula and

rescaled Hermite functions [165, Problems and Exercises, Item 23]) multiplied by

an extra exponential factor due to the localization effects mentioned above.

The corresponding eigenvalues are

λm =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)m−1

, m = 1, 2, . . . . (4.4b)

As already mentioned, the shape parameter ε is related to the local scale of

the problem, while α is related to the global scale of the problem. In addition,

the parameter δ also reflects the local scale of the problem. However, while ε

gives us the scale of the kernel (which in turn defines the underlying reproducing
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kernel Hilbert space along with a length scale reflected in its norm), the auxiliary

parameter δ reflects the length scale of the eigenfunctions.

In principle, the parameters α and ε (or α and δ) can be chosen freely. Unfortu-

nately, this choice is not totally independent if one wants a convergent and stable

algorithm (see the discussion in Section 4.5.2 for more details). As mentioned in

the introduction, the shape parameter ε has important consequences for the stabil-

ity and accuracy of Gaussian kernel interpolants. In this chapter are generally be

interested in small values of ε as this is the range of values of the shape parameter

that incurs numerical instability, often with the promise of higher accuracy. It is

our goal to circumvent this instability by working with eigenfunctions instead of

the usual translates of the Gaussian kernel.

Note that for ε → 0, i.e., for “flat” Gaussians, and fixed α we always have

β → 1 and δ → 0. We see that the eigenfunctions φn converge to the normalized

Hermite polynomials H̃m−1(x) =
1√

2m−1Γ(m)
Hm−1(αx), and the eigenvalues behave

like
(

ε2

α2

)m−1

. This shows that the main source of ill-conditioning of the Gaussian

basis is associated with the eigenvalues, and the RBF-QR strategy suggested in

[70, 72] can be employed as explained in the next section.

These observations also provide another simple explanation as to why the “flat

limit” of a Gaussian interpolant is a polynomial (see, e.g., [21, 52, 74, 112, 113,

115, 153]).

Looking at (4.4b), one can observe that the eigenvalues λm → 0 exponentially

fast as m → ∞ since the inequality ε2 < α2 + δ2 + ε2 is always true. This

idea was used in [61, 62] to establish dimension-independent convergence rates for

approximation with Gaussian kernels.
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4.3.1 Eigenfunction orthonormality

Because the Gaussian kernel is symmetric positive definite, the eigenfunctions are

orthonormal in the L2(R, ρ) norm. We establish that fact now, primarily using the

orthogonality of the Hermite polynomials,∫
R
Hj−1(x)Hk−1(x) e

−x2

dx =
√
π 2j−1Γ(j)δj,k, (4.5)

where δj,k is the Kronecker delta function, as established in [1].

To begin, we insert (4.4b) and (4.2) into the orthogonality equation above to

find∫
R
φj(x)φk(x)ρ(x)dx =

∫
R
γje

−δ2x2

Hj−1(βαx)γke
−δ2x2

Hk−1(βαx)
α√
π
e−α2x2

dx ,

= γjγk
α√
π

∫
R
Hj−1(βαx)Hk−1(βαx) e

−(2δ2+α2)x2

dx .

Now we use the substitution u = βαx, which implies x = 1
βα
u, to convert the

integral to∫
R
φj(x)φk(x)ρ(x)dx = = γjγk

α√
π

1

βα

∫
R
Hj−1(u)Hk−1(u) e

−(2δ2+α2)(u/βα)2du .

We have used the restriction α > 0, and by definition β > 0, to maintain the

positive orientation of the integral; if α < 0 then the integral would have an

additional “−” in front.

At this point, we need to simplify the term in the exponential. Substituting in

the defined value of δ2 from (4.3c) shows

2δ2 + α2

(βα)2
=

2α2

2
(β2 − 1) + α2

(βα)2

=
α2β2 − α2 + α2

(βα)2

= 1.
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The orthogonality integral then becomes∫
R
φj(x)φk(x)ρ(x)dx =

γjγk
β
√
π

∫
R
Hj−1(u)Hk−1(u) e

−u2

du .

Using (4.5) we can replace the integral with∫
R
φj(x)φk(x)ρ(x)dx =

γjγk
β
√
π

√
π 2j−1Γ(j)δj, k .

At this point, we have the necessary orthogonality when j ̸= k because δj, k = 0.

If j = k, the integral simplifies to∫
R
φj(x)

2ρ(x)dx = γ2j
2j−1Γ(j)

β
.

Substituting in γj from (4.3b) yields∫
R
φj(x)

2ρ(x)dx =

(√
β

2j−1Γ(j)

)2

2j−1Γ(j)

β

= 1 ,

which is the desired result.

4.3.2 Multivariate eigenfunction expansion

As mentioned earlier, the multivariate case is easily obtained using the tensor

product form of the Gaussian kernel, i.e., for d-variate functions we have

K(x,z) = exp
(
−ε21(x1 − z1)2 − ...− ε2d(xd − zd)2

)
=

d∏
j=1

exp
(
−ε2j(xj − zj)2

)
=

d∏
j=1

∞∑
m=1

λmφm(x)φm(z)

=
∑
m∈Nd

λmφm(x)φm(z),
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where

λm =
d∏

j=1

λ(m)j =
d∏

j=1

√
α2
j

δ2j + α2
j + ε2j

(
ε2j

δ2j + α2
j + ε2j

)(m)j−1

, (4.6a)

φm(x) =
d∏

j=1

φ(m)j(xj) =
d∏

j=1

γ(m)j exp
(
−δ2jx2j

)
H(m)j−1(βjαjxj), (4.6b)

and x = (x1, . . . , xd) ∈ Rd. The multiindexm has d components, of which the jth

is referenced by (m)j. This is done to distinguish referencing within a multiindex,

or between several multiindices, e.g., (m1)j and (m2)j.

Note that here we are allowed to take different shape parameters εj for different

space dimensions (i.e., K would be an anisotropic kernel), or we can take them all

equal, i.e., εj = ε, j = 1, . . . , d (and then K is isotropic or radial). Because εj is

allowed to vary by dimension, αj may also vary by dimension. For the purposes

of this work, we restrict ourselves to using the same εj in all dimensions (i.e.,

εj = ε for j = 1, . . . , d), but future work will investigate the use of individual

εj for each dimension. This is significant in attempting to achieve predictable,

dimension-independent rates of convergence [61].

4.4 A stable evaluation algorithm

The starting point in [70] was an expansion of the form

e−ε2(x−z)2 =
∞∑

m=0

(2ε2)m

m!
xme−ε2x2

zme−ε2z2 . (4.7)

However, the authors claimed that this series is not ideal for stable “flat” limit cal-

culations since it does not provide an effective separation of the terms that cause

the ill-conditioning associated with small ε-values. Most likely, the poor condition-

ing of this new basis is due to the fact that the functions x 7→ xme−ε2x2
are not
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orthogonal in L2(R). Indeed, for ε → 0 these functions converge to the standard

monomial basis giving rise to the notoriously ill-conditioned Vandermonde matrix.

Therefore, the authors followed up their initial expansion with a transformation

to polar coordinates and an expansion in terms of Chebyshev polynomials.

If one instead uses an eigenfunction expansion as discussed in the previous sec-

tion, then the source of ill-conditioning of the Gaussian basis can be separated from

the eigenfunctions and moved into the eigenvalues. Moreover, for a smooth kernel

such as the Gaussian the eigenvalues decay very quickly so that we should now be

able to directly (i.e., without having to deal with an additional transformation to

Chebyshev polynomials) follow the QR-based strategy suggested in [70].

4.4.1 The RBF-QR algorithm

In particular, we now use the Gaussian kernel (4.1) along with its eigenvalues (4.6a)

and eigenfunctions (4.6b) as discussed above. To keep the notation simple, we

assume that the eigenvalues and their associated eigenfunctions have been sorted

linearly so that we can enumerate them with integer subscripts instead of the

multi-index notation used in (4.6a-4.6b). This matter is not a trivial one and

needs to be dealt with carefully in the implementation. The QR-based algorithm

of [70] corresponds to the following: using the eigen-decomposition of the kernel

function K, we can rewrite the kernel matrix K appearing in the linear system for
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the interpolation problem as

K =


K(x1,x1) . . . K(x1,xN)

...
...

K(xN ,x1) . . . K(xN ,xN)



=


φ1(x1) . . . φM (x1) . . .

.

..
.
..

φ1(xN ) . . . φM (xN ) . . .




λ1

. . .

λM

. . .




φ1(x1) . . . φ1(xN )

..

.
..
.

φM (x1) . . . φM (xN )

..

.
..
.

 .

Of course we can not conduct computation on infinite matrices, so we must choose a

truncation valueM after which we neglect the remaining terms in the series. Since

the eigenvalues λm → 0 as m → ∞ we have a necessary condition to encourage

such a truncation. A particular choice of M is discussed in Section 4.6, but given

that we have chosen one the system changes to the much more manageable

K =


φ1(x1) . . . φM(x1)

...
...

φ1(xN) . . . φM(xN)


︸ ︷︷ ︸

=Φ


λ1

. . .

λM


︸ ︷︷ ︸

=Λ


φ1(x1) . . . φ1(xN)

...
...

φM(x1) . . . φM(xN)


︸ ︷︷ ︸

=ΦT

,

or simply

K = ΦΛΦT . (4.8)

Although our specific choice of M is postponed until later, it is important to note

that since it is our immediate goal to avoid the ill-conditioning associated with

radial basis interpolation as ε → 0, we require M ≥ N . This is in accordance

with the work of Fornberg, and seeks to ensure that all of the eigenfunctions φm,

m = 1, . . . ,M , used above are obtained to machine precision. This also justifies

— for all practical computations — our continued use of an equality sign for the

matrix factorization of K.
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We are interested in determining a new basis where the interpolation can be

conducted without the condition issues associated with the matrix K, while still

remaining in the same space spanned by the Gaussian kernel function K. Thus

an invertible matrix X−1 is needed such that KX−1 is better conditioned than K.

Of course, the simple choice would be X−1 = K−1, but if that were available to

machine precision this problem would be trivial.

The structure of the matrix Φ provides one possible avenue since itsmth column

contains only values of the mth eigenfunction at all the data sites x1, . . . ,xN . This

provides the opportunity to conduct a QR decomposition of Φ without mixing

eigenfunctions of different orders. For M > N , the matrix Φ is “short and fat”,

meaning that the QR decomposition takes the form
φ1(x1) . . . φN(x1) | φN+1(x1) . . . φM(x1)

...
... | ...

...

φ1(xN) . . . φN(xN) | φN+1(xN) . . . φM(xN)

 = Q


|

R1 | R2

|

 ,

where the R1 block is a square matrix of size N and R2 is N × (M −N).

Substituting this decomposition for ΦT in (4.8) we see

K = ΦΛRTQT .

By imposing the same block structure on Λ that was imposed on R we can rewrite
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this full system in blocks as

K = Φ

Λ1

Λ2


RT

1

RT
2

QT

= Φ

Λ1R
T
1

Λ2R
T
2

QT

= Φ

 IN

Λ2R
T
2 R

−T
1 Λ−1

1

Λ1R
T
1Q

T . (4.9)

The final form of this representation is significant because of the structure of the

Λ2R
T
2 R

−T
1 Λ−1

1 term. In Section 4.3 we noticed that the eigenvalues λm → 0 as

m→∞ (and especially quickly if ε2 is small relative to δ2 +α2). This means that

the eigenvalues in Λ2 are smaller than those in Λ1 and thus none of the entries in

RT
2 R

−T
1 are magnified when we form Λ2R

T
2 R

−T
1 Λ−1

1 .

Since we can perform the multiplications by the diagonal matrices Λ2 and Λ−1
1

analytically we avoid the ill-conditioning that would otherwise be associated with

underflow (the values in Λ2 are as small as ε2M−2) or overflow (the values in Λ−1
1

are as large as ε−2N−2).

Let us now return to the original goal of determining a new basis that allows

us to conduct the interpolation in a safe and stable manner. Since we have now

concluded that as ε → 0 the Λ2R
T
2 R

−T
1 Λ−1

1 term poses no problems, we are left

to consider the Λ1R
T
1Q

T term. This matrix is nonsingular if ΦT has full row rank

because Λ1 is diagonal with nonzero (in exact arithmetic) values and R1 is upper

triangular and has the same rank as ΦT . Because of the orthogonality of the

eigenfunctions φm, m = 1, . . . ,M , we have nonsingularity of R1 and thus a good
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choice for the matrix X is given by

X = Λ1R
T
1Q

T . (4.10)

We are now interested in the new system defined by

Ψ = KX−1

=

Φ
 IN

Λ2R
T
2 R

−T
1 Λ−1

1

Λ1R
T
1Q

T

 [Λ1R
T
1Q

T
]−1

= Φ

 IN

Λ2R
T
2 R

−T
1 Λ−1

1

 . (4.11)

Here we used (4.10) and the decomposition (4.9) of K.

We can interpret the columns of Ψ as being created by new basis functions

which can be thought of as the first N eigenfunctions plus a correction involving

a linear combination of the next M −N eigenfunctions:

Ψ =


φ1(x1) . . . φN(x1) | φN+1(x1) . . . φM(x1)

...
... | ...

...

φ1(xN) . . . φN(x1) | φN+1(x1) . . . φM(xN)


 IN

Λ2R
T
2 R

−T
1 Λ−1

1



=


|

Φ1 | Φ2

|


 IN

Λ2R
T
2 R

−T
1 Λ−1

1


= Φ1 + Φ2

[
Λ2R

T
2 R

−T
1 Λ−1

1

]
. (4.12)

In order to see the actual basis functions we consider the vector Ψ(x) defined as

Ψ(x)T =

(
ψ1(x) . . . ψN(x)

)

=

(
φ1(x) . . . φM(x)

) IN

Λ2R
T
2 R

−T
1 Λ−1

1

 .
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This representation is in the same fashion that the standard kernel basis could be

written as

k(x)T =

(
K(x,x1) . . . K(x,xN)

)
=

(
φ1(x) . . . φM(x)

)
ΛΦT (4.13)

=

(
φ1(x) . . . φM(x)

) IN

Λ2R
T
2 R

−T
1 Λ−1

1

Λ1R
T
1Q

T ,

only now the ill-conditioning related to Λ1 has been removed from the basis.

It is tempting to think of this as a preconditioning technique, as our goal

of producing a well conditioned matrix KX−1 is the same as a preconditioner in

an iterative method. In reality, X is not a preconditioner, because we are no

longer interested in solving the original system. Instead, X−1 is applied as a linear

transformation, or a change of basis, to allow us to describe the interpolation

system in a stable basis rather than the ill-conditioned Gaussian basis. The linear

system is different than the original linear system, but because the transformation

matrix X is nonsingular, the interpolants span the same function space.

The approach described in this section should be applicable whenever one knows

the eigenfunction (or other orthonormal basis) expansion of a positive definite

kernel. One such example is provided by the approach taken in [72] for stable radial

basis function approximation on the sphere, where the connection between the

(zonal) kernels being employed on the sphere and spherical harmonics, which are

the eigenfunctions of the Laplace-Beltrami operator on the sphere, has traditionally

been a much closer one (see, e.g., [64]).
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4.4.2 Implementation details

The interpolation problem described in Section 4.2 can be written in matrix nota-

tion as

Kc = y, (4.14)

where K is the N ×N kernel matrix, y = (y1, . . . , yN)
T is input data denoting the

function values to be fitted at the points xn, n = 1, . . . , N , and c is the unknown

vector of coefficients. In the new basis Ψ = (ψ1, . . . , ψN)
T the system is still of size

N ×N and can be written in the form

Ψb = y,

where the matrix Ψ was defined in (4.11), y is as above, and b is a new vector

of coefficients. Once we have solved for these coefficients, the Gaussian kernel

interpolant s can be evaluated at an arbitrary point x ∈ Rd via

s(x) = Ψ(x)Tb.

Using (4.11), the linear solve itself takes the form

Φ

 IN

Λ2R
T
2 R

−T
1 Λ−1

1

 b = y, (4.15)

where as before

ΦT =

 RT
1

RT
2

QT ,

and the block structure is defined with first blocks of size N ×N ,

Λ =

Λ1

Λ2

 , Φ =

 Φ1 Φ2

 .
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At this point, the system (4.15) could be solved by conducting the matrix-matrix

multiplication and working with the resulting N ×N matrix:

[
Φ1 + Φ2

[
Λ2R

T
2 R

−T
1 Λ−1

1

]]
b = y.

Doing so, however, would disregard the QR decomposition that was already com-

puted. Instead, we can use the fact that Φ = QR in (4.15) to rewrite the system

as

Q

(
R1 R2

) IN

Λ2R
T
2 R

−T
1 Λ−1

1

 b = y
⇐⇒ QR1

(
IN R−1

1 R2

) IN

Λ2R
T
2 R

−T
1 Λ−1

1

 b = y
⇐⇒ QR1

[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]
b = y .

This is especially nice because the term R−1
1 R2 is just the transpose of R

T
2 R

−T
1 and

thus its value can be saved from earlier and the cost of O(N2(M − N)) can be

saved.

Now the linear solve can be broken into two parts, where

QR1b̂ = y, (4.16a)[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]
b = b̂. (4.16b)

Solving (4.16a) is almost trivial, since Q is orthonormal and R1 is upper triangular.

Solving (4.16b) can be done cleverly depending on the value of M :

• If M is chosen such that M < 2N , then the linear system can be treated as

a low rank update to the identity and the inverse can be applied with the

Sherman-Morrison formula. Total cost would be O ((N2(M −N))).
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• If M ≥ 2N , the cost of the interior inverse in the Sherman-Morrison formula

would be greater than simply solving the original system, so a direct approach

is preferred. Total cost would be O(N3).

Because this search for a new basis is conducted with the goal of working in the

“flat” kernel regime, it is logical to assume that we are dealing with small ε.

Therefore, it is reasonable to assume that the value of M can be chosen relatively

close to N because additional terms would be truncated. As a result, (4.16b) could

be solved using the Sherman-Morrison formula:

b =
[
IN + R−1

1 R2Λ2R
T
2 R

−T
1 Λ−1

1

]−1
b̂

=
[
IN − R−1

1 R2

[
IM−N + Λ2R

T
2 R

−T
1 Λ−1

1 R−1
1 R2

]−1
Λ2R

T
2 R

−T
1 Λ−1

1

]
b̂ .

In some circumstances it may be preferable to compute Ψ and invert it directly,

in lieu of using Q and R1 separately. Because this chapter is concerned with the

stability of the solution method, not the speed with which it is computed, we always

compute Ψ and solve Ψb = y. In the future, we hope to study the condition of

each of the solution options and study their practicality.

Choosing the length of the eigenfunction expansion

Thus far the value ofM has been fixed but left unknown. Our choice ofM coincides

with that of [72], where M is the smallest value that satisfies λM < ϵmachλN . ϵmach

is machine precision (assumed to be 10−16 and λm is defined in (4.4b)). Solving
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that inequality for M produces√
α2

δ2 + α2 + ε2

(
ε2

δ2 + α2 + ε2

)M−1

< ϵmach

√
α2

δ2 + α2 + ε2

(
ε2

δ2 + α2 + ε2

)N−1

(
ε2

δ2 + α2 + ε2

)M−N

< ϵmach

(M −N) log

(
ε2

δ2 + α2 + ε2

)
< log(ϵmach)

M > N + log(ϵmach)

(
log

(
ε2

δ2 + α2 + ε2

))−1

.

(4.17)

This bound is derived in 1D, although it extends naturally to multiple dimen-

sions. In doing so, the uniqueness of the eigenfunction expansion is lost because

there may be several multiindicesM which satisfy the inequality. Rederiving this

for a d dimensional problem using |M | =
∑

j Mj and (4.6a) produces(
α2

δ2+α2+ε2

)d/2(
ε2

δ2+α2+ε2

)|M |−d

<ϵmach

(
α2

δ2+α2+ε2

)d/2(
ε2

δ2+α2+ε2

)|N |−d

(
ε2

δ2+α2+ε2

)|M |−|N |

< ϵmach

|M | > |N |+ log(ϵmach)

(
log

(
ε2

δ2+α2+ε2

))−1

.

(4.18)

For a simple example, suppose d = 2, e2/(δ2+α2+ε2) = e−1, N = 5, ϵmach = 10−16.

That makes the inequality

|M | > |N |+ 16.

When trying to determine N to separate the eigenfunctions from the correction

we need to consider the leading eigenvalue indices:

N1 = 1 2 1 3 2∗ 1 4 ...

N2 = 1 1 2 1 2∗ 3 1 ...
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The entries that are starred are in the fifth index so they are included in the Φ1

matrix and any higher terms are pushed to the correction. Those that are in bold

are all of the same magnitude as the fifth index and could just as easily have been

chosen for the Φ1 matrix instead. This exposes the nonuniqueness, but we don’t

believe this to be a problem thanks to the nonuniqueness results described in [70].

Because N = 5 for this problem we know |N | = 4, and thus to meet the trun-

cation criteria we would need |M | > 20. Of course, thanks to Pascal’s Triangle,

we know that there are 19 different values which satisfy |M | = 20 meaning that

the number of eigenfunctions needed in the correction Φ2 may be quite significant.

Stability and numerical concers

There are numerous technical details which need to be addressed before this Gaus-

sian eigenfunction solution via RBF-QR can be successfully implemented. The first

of these points deals with the computation of δ2: when β2 ≈ 1, the computation

of

δ2 =
α2

2
(β2 − 1)

suffers from cancelation error. We can alleviate this problem by considering the

structure of β2,

β2 =

√
1 + 4

( ε
α

)2
.

From the definition, we realize that β2 → 1 as ε
α
→ 0, and we can expand β2 in a

series around that point,

β2 = 1 + 2
( ε
α

)2
− 2

( ε
α

)4
+O

(( ε
α

)6)
.
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Using this, we see that δ2 can be safely approximated for ε → 0 or α → ∞ by

using the series

δ2 ≈ α2

2

(
1 + 2

( ε
α

)2
− 2

( ε
α

)4
− 1

)
≈ ε2 − ε4

α2
.

This series expansion also resolves the indeterminate form for δ2 which would arise

for α→∞ and β2 − 1→ 0.

For large values of m, evaluating φm(x) is problematic because each of the

components of the eigenfunctions are potentially of very large scale. The actual

eigenfunctions themselves may be of a reasonable size, but each of the components

of the eigenfunctions may experience overflow or underflow if evaluated individu-

ally. Because the eigenfunctions are formed by a product of 3 components (γm,

e−δ2x2
and Hm−1(βαx)) we can safely compute φm(x) using logarithms:

logφm(x) = log γm − δ2x2 + logHm−1(βαx).

=
1

2
(log β − (m− 1) log 2− log Γ(m))− δ2x2 + logHm−1(βαx).

This form is useful because log Γ(m) can be computed directly, but we must still

consider the logHm−1(βαx). There is a worry about the fact that Hm−1(βαx) can

be negative, but taking the log of that here is not a problem in exact arithmetic

because when the exponential is applied to recover φm(x) the imaginary term drops

out.

The more serious concern is that for large arguments, or large indices, this

polynomial is very large, which means that an asymptotic form of it must be

found for safe computation. Referring to [1], we see that three different regions

need to be considered:
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• |βαx| ≪
√
2m - The inner region has the asymptotic expansion

Hm−1(βαx) ≈
√
2(1− ξ2)1/4 ·

exp
(
m/2(log(2m))− 1 + 2ξ2)

)
·

cos
(
m(ξ

√
1− ξ2 − π/2) + (m+ 1/2) sin−1(ξ)

)
,

where ξ = βαx/
√
2n.

• |βαx| ≈
√
2m - The transition region has the asymptotic expansion

Hm−1(βαx) ≈
√
2πm1/6 exp (m/2 log(2m)− 3m/2) ·

exp
(√

2nβαx
)
·

Ai
(√

2m1/6(βαx−
√
2m)

)
,

where Ai is the Airy function. It should be noted that Ai(x) itself actu-

ally needs the asymptotic expansion exp(−2x3/2/3)/(2
√
πx1/4) when x is too

large.

• |βαx| ≫
√
2m - The outer region has the asymptotic expansion

Hm−1(βαx) ≈
√

(1 + x/ζ)/2 ·

exp
(
(x2 − ζx−m)/2 +m log(ζ + x)

)
,

where ζ =
√
x2 − 2m.

For each of these regions, the sign of the output is determined before the logarithm

is applied to make sure that complex terms do not arise during the computation.

It is possible that some of these concerns regarding domain of evaluation can

be neglected by a skillful rescaling of the input data. More research needs to be

performed before a statement can be made, given the interaction of the α term

with the domain of the data.
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4.5 Numerical experiments for interpolation

To determine the eigenfunction expansion’s ability to accurately carry out radial

basis interpolation with Gaussian kernels in the ε→ 0 limit, some experiments need

to be conducted. This computation was conducted in Matlab, using the built-in

QR factorization and triangular solvers for the RBF-QR results. A Matlab im-

plementation of a direct solver via the “backslash” operator \ was used to produce

the RBF-Direct results for comparison. The polynomial fits were generated with

the Matlab function polyfit. The first part of this section demonstrates the

accuracy of the stable basis in reaching the ε → 0 limit without ill-conditioning.

In the second part we identify issues related to the α parameter which need to be

addressed for larger problems.

4.5.1 1D and 2D interpolation

The first set of experiments is limited to 1D and studies the effect of increasing

the number of data points N . All the data points are located at the Chebyshev

nodes within an interval [xa, xb]

xi =
1

2
(xb + xa)−

1

2
(xb − xa) cos

(
π
i− 1

N − 1

)
, i = 1, . . . , N. (4.19)

The interpolation is conducted using the eigenfunction-QR algorithm (abbrevi-

ated RBF-QR) over shape parameter values logarithmically spaced within ε ∈

[10−2, 100.4]. For comparison, the solution to (4.14) is computed using the tradi-

tional [60] RBF solution (abbreviated RBF-Direct) over ε ∈ [10−2, 101].

Input values are produced by a function f and the error in the interpolant s is
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computed by

error =
1

N̄

1

∥f(x̄)∥2

√√√√ N̄∑
k=1

(f(x̄k)− s(x̄k))2, (4.20)

where x̄k are N̄ uniformly spaced points at which s is compared to f . The term

∥f(x̄)∥2 =

√√√√ N∑
k=1

f(x̄k)2

accounts for the magnitude of the function on the domain. For the 1D experiments,

N̄ = 1000, although this choice was made arbitrarily.

The experiments in 1D can be seen in Figure 4.1. Two functions were consid-

ered, first

f1(x) =
sinhx

1 + cosh x
, x ∈ [−3, 3],

using N = {10, 20, 30} and α = 1, which can be seen in Figure 4.1a. The second

function considered was

f2(x) = sin
(x
2

)
− 2 cos x+ 4 sin(πx), x ∈ [−4, 4],

using N = {10, 20, 30} and α = .65, which can be seen in Figure 4.1b.

These initial results confirm that for ε → 0 the RBF-QR algorithm evaluates

the Gaussian interpolant without the ill-conditioning associated with RBF-Direct.

Note that two different choices of α were used for these two problems - more on

this to follow.

The examples presented here also illustrate that interpolation with Gaussian

kernels is more accurate than polynomial interpolation (which corresponds to the

ε → 0 limit) — even though both methods are known to be spectrally accurate.

The errors for the corresponding polynomial interpolants are included as dashed

horizontal lines in Figure 4.1.
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(a) f1(x) = sinhx(1 + coshx)−1
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Figure 4.1: Comparison of RBF-QR and RBF-Direct; dashed horizontal lines rep-
resent errors of limiting polynomial interpolants.

See Figure 4.2 for the interpolation results of a small 2D problem involving the

function

f4(x, y) = cos(x2 + y2), (x, y) ∈ [−3, 3]2,

sampled at the aforementioned Chebyshev nodes. The RBF-QR scheme works as
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Figure 4.2: RBF-QR is able to resolve the interpolant accurately as ε→ 0

it should, but the computational cost is quite significant, which is why fewer ε

values were considered than in the previous 1D graphs. This issue is discussed

115



further in Section 4.6.

4.5.2 Complications for the interpolation algorithm

Although the previous experiments successfully illustrate the usefulness of the

eigenfunction expansion for the solution of the interpolation problem, performing

a similar test with the function

f3(x) = 10e−x2

+ x2, x ∈ [−3, 3],

exposes some subtle complexities of our RBF-QR interpolation algorithm, as seen

in Figure 4.3. Specific attention should be paid to the effect of increasing N on

the emerging oscillations in the error of the interpolant.
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(a) α = 1 produces bad results for small ε and
larger N
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(b) α = 3 produces bad results for large ε

Figure 4.3: Different α values have a significant effect on the stability of the inter-
polation

This new source of error is separate from the instability encountered in the

ε→ 0 limit, although it has similar roots. Recall the structure of the eigenfunctions

from earlier:

φm(x) = γm exp
(
−δ2x2

)
Hm−1(βαx). (4.4a)
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Much in the same way that ε is a significant source of ill-conditioning for the

Gaussian basis, so the δ value (and more directly the α value) may be a source of

ill-conditioning for the eigenfunction basis.

The reader may recall that the interpolation problems under consideration all

exist on a compact domain, but the orthogonality properties of the eigenfunctions

demand integration to infinity. The choice of α is a balancing act between inter-

acting eigenfunctions to achieve accuracy (small α) and quickly decaying eigen-

functions to numerically maintain orthogonality (large α).

To see why, we fix α and analyze two limits

as ε→ 0, β → 1, δ2 → ε2,

as ε→∞, β →
√

2ε

α
, δ2 → εα,

and the effect they have on the eigenfunctions

lim
ε→0

φm(x) = γm exp(−ε2x2)Hm−1(αx)

lim
ε→∞

φm(x) = γm exp(−εαx2)Hm−1(
√
2εαx)

In the ε → 0 case, the two parameters ε and α are decoupled and each can

be handled according to its needs (ε for accuracy and α for orthogonality). When

ε→∞ this is no longer the case, and both the exponential and polynomial portions

of the eigenfunctions exist on the same scale
√
εαx. This is one reason why RBF-

QR should not be used for larger ε.

To gain some insight on choosing α we study the eigenfunctions graphically on

the domain [−4, 4] in Figure 4.4. For the eigenfunctions of α = .1, the exponential

decay has not yet appeared and because of that the orthogonality is not preserved

on that domain. For α = 10, the eigenfunctions exist on drastically different
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Figure 4.4: The first 8 eigenfunctions evaluated when ε = 1 for several α values
behave very differently.

scales, meaning that effectively only the largest eigenfunctions are contributing to

the solution because the smaller functions are indistinguishable from each other.

When α = 1 there is a “good” balance of locality and distinction for the

eigenfunctions. This discussion has been entirely qualitative, but it is meant to

explain holistically why there is an optimal value for α to produce the true RBF

interpolant for a given ε. See Figure 4.5 for computational evidence that there is

an α for each ε to alleviate the instability shown in Figure 4.3.

These results show that given a set of data points x, a function f and an ε

for which you want to want to produce a Gaussian interpolant there should exist

an α to let you accomplish that without the ε→ 0 ill-conditioning. Furthermore,

we see that as ε exits the asymptotically small regime, the actions of α becomes a

function of ε as was predicted earlier when discussing ε→∞.

Unfortunately, these results do not describe an approach to choosing the ap-

propriate α, they only suggest that one exists and that there may be some rela-

tionship to ε. Because this research is only interested in allowing for exploration of

the ε→ 0 regime, we do not pursue this issue further. Determining an appropriate
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Figure 4.5: An α can be found for each ε to produce an accurate interpolant.

α a priori, and efficiently, will certainly be of significance in future work.

4.6 Early truncation

RBF-QR allows one to consider shrinking ε values for which RBF-Direct is too ill-

conditioned. Unfortunately, the cost associated with RBF-QR grows substantially

for increasing ε and in multiple dimensions. For larger ε RBF-Direct is a viable

option, but the cost of RBF-QR in multiple dimensions is unavoidable. This is a

direct result of the M definition from Section 4.4.2: assuming all the combina-

tions of eigenfunctions are needed which satisfy (4.18), for a 2D problem the total

number of columns in Φ is

|M |∑
k=1

k =
|M |(|M |+ 1)

2

For comparison, this means that an N = 25 point 2D interpolation problem with

ε = .1 and α = 1 would produce |N | = 7 and |M | = 15 which requires 120 eigen-

functions. If ε = 1, |M | = 45 which requires 1035 eigenfunctions to approximate
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a problem of size only N = 25. This is obviously not a reasonable approach going

forward considering the time required to perform a solution, as can be seen in

Figure 4.6 for example.

In Figure 4.6 we illustrate how the cost of performing RBF-QR using the trun-

cation strategy outlined in Section 4.4.2 is unreasonable for dimension d = 2 (and

even more so in higher dimensions). Here cost is defined as the time required to

find the coefficients associated with the interpolation; associated with this cost is

the required memory for conducting the interpolation as referenced in Table 4.1a

and Table 4.1b. We use a value of ε = .1 together with several other values of N .

While the cost of doing RBF-QR in 1D is reasonable, and the payoff in terms of

accuracy gain is high, this is no longer true in 2D. Clearly, we would benefit from

using some other approach in higher dimensions.
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(a) RBF-QR cost about half an order of
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(b) RBF-QR costs multiple orders of mag-
nitude more than RBF-Direct in 2D

Figure 4.6: For ε only as small as .1, the cost of RBF-QR becomes unsustainable
in higher dimensions

The dominant cost of RBF-QR is the QR factorization of matrix Φ, which

is of greater cost than the LU factorization used to solve the RBF-Direct system,

although on the same order whenM ≈ N . Because of the aforementioned explosion
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N M
640 645
1280 1285
2560 2565
5120 5125

(a) Eigenfunction correction size remains
reasonable in 1D

N M
25 435
64 2346
121 7875
196 20100
289 43071
400 81810
529 142311

(b) The cost of storing the eigenfunction
correction becomes unreasonable in 2D

Table 4.1: There is a significant increase between the maximum necessary series
length from 1D to 2D.

in M as the dimension increases, there is no possible viability of RBF-QR for high

dimensional problems. To combat that, this section explores the concept that M

could be chosen smaller that N .

4.6.1 Low-rank approximation

Our goal for this section is to produce a low-rank approximation to the N -term

RBF interpolant using M < N eigenfunctions. The motivation behind this is to

eliminate high-order eigenfunctions which contribute minimally to the solution, but

greatly to the computational cost. Additionally, this may reduce the sensitivity of

the solution to α as seen in Figure 4.3. The discussion from Section 4.5.2 shows

that the choice of an “optimal” α depends on ε and is more sensitive with increasing

M . We therefore hope that reducing M helps to mitigate the sensitivity.

To introduce this problem in the same context as Section 4.4, M ≤ N is fixed

and all the eigenvalues λm with M < m ≤ N are set to zero. This results in an
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approximate kernel matrix decomposition

K ≈ ΦΛ̃ΦT

=

 Φ1 Φ2


Λ1

0


 Φ1 Φ2


T

,

where Φ1 contains the first M eigenfunctions, Λ1 contains the first M (and only

nonzero) eigenvalues, and Φ2 contains the remaining N −M eigenfunctions. Note

that all these matrices are N ×N , and thus the QR decomposition from before is

no longer necessary because ΦT is invertible.

Defining the basis transformation matrix X analogously to (4.10) we now have

X = Λ̃ΦT ,

and because Λ̃ is not invertible we must instead consider the pseudoinverse [84]

X+ = Φ−T Λ̃+

= Φ−T

Λ−1
1

0

 .

This means that our new basis functions are

Ψ(x)T = k(x)TX+,

which when expressed in terms of the eigenfunctions by expanding the kernel as
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in (4.13) yields

Ψ(x) = (φ1(x) . . . φN(x))ΛΦ
TX+

= (φ1(x) . . . φN(x))ΛΦ
TΦ−T Λ̃+

= (φ1(x) . . . φN(x))ΛΛ̃
+

= (φ1(x) . . . φN(x))

IM

0


= (φ1(x) . . . φM(x) 0 . . . 0)

analytically setting the lastN−M eigenfunctions equal to 0. Recasting the original

linear system in this new basis then gives

Ψb = y

⇐⇒ ΦΛΦTX+b = y

⇐⇒

 Φ1 Φ2


IM

0

 b = y.
As this is written, it is clearly a low rank system, which is appropriate since M

nonzero functions are being fit to N > M data points. There are two ways,

identical in exact arithmetic, to solve this low-rank linear system in a least squares

sense: the first uses the theoretically guaranteed invertibility of Φ in applying the

pseudoinverse, i.e.,

b =

IM

0

Φ−1y.

This of course requires forming Φ−1y, which would subject this problem to the

same sensitivity issues as before that stem from the unreasonably large M values

given increasing N and/or ε. Moreover, inverting the matrix Φ would be more
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costly than is necessary since the final solution is a least-squares solution of rank

at most M whereas Φ has rank N . Instead, it seems that the more efficient and

logical method of solving this system is to perform the matrix-matrix multiplication

ΦΛΛ+ analytically, leaving the system Φ1 0

 b = y. (4.21)

Zeroing out the eigenvalues analytically has the effect of ignoring the final N −M

components of the coefficient vector b during the solve, as should be expected.

Solving this in a least-squares sense requires solving

min
b

∥∥∥∥∥∥∥(Φ1 0)

b1
b2

− y
∥∥∥∥∥∥∥
2

2

⇐⇒ min
b
∥Φ1b1 − y∥22 ,

where the components b1 and b2 of the coefficient vector b are of size M and

N −M , respectively. Following this logic, the solution is

b1 = Φ+
1 y,

and b2 is unconstrained because the eigenfunctions associated with b2 are all iden-

tically zero.

4.6.2 Implementing truncation

The implementation of this regression approach is more straightforward than that

of the interpolation problem because this system can be rephrased as an over-

determined least squares problem. One aspect that has thus far been omitted

from our discussion is the selection of an M -value appropriate for early trunca-

tion. This choice is significant in reducing the computational complexity of the
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approximation, but the most important factor in choosingM is producing a quality

approximation.

To give an initial idea of the effect of M on the quality of the approximation,

let us consider a simple scattered data fitting problem. Given f(x) = cos x +

e−(x−1)2 + e−(x+1)2 and fixing ε = α = 1, we consider N evenly spaced values of f

on the interval [−3, 3]. Different values of N ranging from 10 to 500 are chosen

to conduct the regression with five different sets of M -values corresponding to

{.1N, .2N, .3N, .4N, .5N}. The approximation error curves are displayed in Figure

4.7.

0 100 200 300 400 500

10
−15

10
−10

10
−5

10
0

f(x)=cos(x)+e−(x−1)
2

+e−(x+1)
2

, α=1, ε=1

N

A
ve

ra
ge

 e
rr

or

 

 
M=.1N
M=.2N
M=.3N
M=.4N
M=.5N

Figure 4.7: For any number N of data sites (and fixed ε = α = 1), M ≈ 40
eigenfunctions are adequate for optimal accuracy of the QR regression algorithm.

Regardless of the size of N , Figure 4.7 shows that the optimal accuracy of

the approximation consistently occurs for the same value of M ≈ 40. This is

encouraging because it indicates possibly that for fixed ε, given any problem size

N , there is a maximum space R that the eigenfunctions can effectively span, and

that increasing M beyond R is not helpful.

The fact that the effective dimension of the space needed for an accurate kernel
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approximation is often rather small seems to be mathematical folklore and appears

in different guises in various communities dealing with kernels. In the RBF liter-

ature we have, e.g., [75, 152] or the unpublished lecture notes [155]. In [155], for

example, one can read that “there are low-rank subsystems which already provide

good approximate solutions”. In the statistical learning literature, the authors of

[184] state that their main goal is “to find a fixed optimal m-dimensional linear

model independent of the input data x [of sample size n], where the dimension

m is also independent of n”. Matrices that are of the same type as the kernel

interpolation matrix K also arise in the method of fundamental solutions (MFS)

for which the authors of [39] make similar observations regarding the non-trivial

singular values, i.e., numerical rank, of K. In particular, in one of their examples

[39, Figure 5] they see “no significant difference in accuracy using more than 40

[of 100] singular values”.

To consider cases with varying ε, refer to Figure 4.8a. The contour plot there

shows the approximation error, for fixed N = 200, obtained with values of M

and ε that vary independently. The function used to generate the data for the

approximation problem is

f3(x) = 10e−x2

+ x2.

f3 is a useful function because in the absence of the exponential function term,

the polynomial alone would be best interpolated with M on the same order as

the polynomial and ε → 0 [60]. The additional term gives rise to a region of

optimal M and ε centered around (M, ε) ≈ (60, 0.7) far from the ε = 0 axis. Also

note that the M with least error is far away from the RBF-QR realm of M > N ,

although the difference in accuracy between the optimal error at M = 66 overall

and the optimal error forM = 180 is small at 10−16.4 and 10−15.1 respectively. Here

the error is computed with (4.20) by evaluating the interpolant at 1000 points in
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[−5, 5].
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M
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increases.

Figure 4.8: Over a range of ε values (with fixed N), experiments show an optimal
M range.

Finding an optimal value ofM is still an open problem, as it probably depends

not only on the choice of ε, but also on such factors as the location of the data

points, anisotropy in higher dimensions, the choice of α for (4.4b) and more. It

is possible that future work can examine optimal values of both M and ε simul-

taneously to determine an optimal approximation. For the purposes of this work,

we are interested primarily in exploring the ε → 0 limit and thus we assume for

future experiments that a good value of M is already chosen.

4.6.3 The effects of M and α on regression condition

Thus far we have been concerned exclusively with exploring the ε → 0 limit for

radial basis interpolation, which cannot be explored via the RBF-Direct approach

because of ill-conditioning. Transitioning the traditional RBF problem into the

RBF-QR formulation shifts the ill-conditioning from the radial basis functions to

the eigenvalues which are inverted analytically. In Figure 4.3 it was shown that
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the eigenfunctions could themselves become ill-conditioned for some values of α,

and the sensitivity to the choice of α increased as the number of data points

included in the problem, and thus the degree of the eigenfunctions, grew. This

helped motivate RBF-QRr (QR regression) as discussed in Section 4.6.1, but in

truncating the problem new issues arise.

Those issues can be isolated in the choices of series truncation value M and

α, which first appeared in (4.2) when defining the weight function ρ. For RBF-

QR as discussed in Section 4.4.2, α was chosen to represent the global size of the

problem so that orthogonality via the weight function was best preserved, and

M was chosen via (4.18) large enough so that λM < ϵmachλN . In RBF-QRr we

want to choose M at some value smaller than N , preferably much smaller for

computational purposes.

It is known that for any fixed value of α, the truncated eigenfunction expansion

provides the best M -term approximation (see, e.g., [167]). However, the precise

relationship between α andM (and also ε) and condition is as yet unknown because

we are no longer considering the entire space spanned by the Gaussians, but rather

an optimal M -term approximation to it parametrized by α.

Examine Figure 4.9 as a snapshot of the typical condition of the least-squares

regression system (4.21) for various values of M , α, N and ε. Here the condition

number is defined as σ1/σM where σk is the k
th largest singular value of the matrix

Φ1 as used in (4.21).

There are many implications to consider from Figure 4.9, keeping in mind that

the purpose of RBF-QRr is to allow us to explore the ε → 0 regime for RBF

interpolation.
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Figure 4.9: Contour lines at condition values of {102, 105, 108, 1011, 1014}. Data
points are evenly spaced in [−5, 5].

• As ε→ 0 (i.e., looking at the columns of plots from right to left) there seems

to be a limiting condition distribution. This is to be expected as it has

already been shown in, e.g., [115] and mentioned in Sections 4.3 and 4.5.2

that RBF interpolation reaches a polynomial limit as ε→ 0.

• As ε→∞ (corresponding to the right-most column of plots) greater values of

M can be chosen without incurring a condition penalty. This corresponds to

the RBF-Direct case where allowing ε→∞ produces more peaked/localized

functions and a well-conditioned interpolation matrix.

• For a given M , there is a single value of α which produces the optimally

conditioned system. When interpreted as the scale of the weight function

ρ in (4.2) defining the inner product in which we measure orthogonality, it

seems logical that there is a minimum α which best represents the scale. This

was alluded to graphically in Figure 4.4.

• Increasing the number N of data points (i.e., looking at the plots from top
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to bottom) has no negative effect on the condition. The only visible effect

is with larger ε, which generates more localized Gaussians and in turn a

better conditioned system. The ε = 10 pictures show the region of low

condition significantly larger as N grows which we attribute to there being

more “space” to fill with more eigenfunctions, and thus higherM is permitted

without compromising condition.

• There is a region M ∈ (Mmax,∞) for which no α exists such that the

condition of the system is less than 1/ϵmach. In some sense, this means

that the dimension of the space we are interested in approximating can only

be stably represented using M < Mmax eigenfunctions. This reinforces our

findings of Section 4.5.2.

Following from these ideas, the following guidelines for choosing M and α may be

appropriate:

1. Given a value of ε, M should be chosen as large as possible under the con-

straint that the condition κ of the system (4.21) be less than κmax. κmax

would have to be chosen based on the specific problem.

2. α should be chosen to minimize the condition of the regression system.

Much of the motivation behind RBF-QRr was avoiding the computational cost of

RBF-QR by solving smaller systems. At present we see no way to satisfy those

guidelines without significantly increasing the cost of RBF-QRr; it should be noted

though that the cost is still less than RBF-QR. These guidelines are meant to be a

summary of our insights thus far, and hopefully a starting point for future research.

For the following experiments, multipleM values are sampled and one is chosen

to represent RBF-QRr; when experiments have RBF-QR results, those M values
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are be chosen via (4.17). For each ε, α is chosen as small as possible such that

orthogonality is guaranteed for the first 25 eigenfunctions. Keep in mind that these

are just choices made to display the usefulness of RBF-QRr to explore the ε → 0

region, and more work needs to be done to determine optimal M and α values in

general.

4.7 Numerical experiments for regression

In this section we provide comparisons of the RBF-QRr regression algorithm to the

RBF-direct method and — in Section 4.7.1 to RBF-QR as described in Section 4.4

— for various data sets in various space dimensions. In each of these experiments,

the truncation range for the value of M used in the regression is specified.

4.7.1 1D approximation

In this series of experiments the data is generated by two different univariate

functions f evaluated at N evenly spaced points.

For Figure 4.10a we reprise the function from Figure 4.7 on the domain x ∈

[−3, 3] and see that better accuracy can be achieved with RBF-QRr approximation

instead of RBF-QR interpolation, even at less cost. In Figure 4.10b RBF-QRr

maintains higher accuracy than both RBF-QR and RBF-Direct. Note that the

function used in Figure 4.10b is the notorious Runge function on the domain

x ∈ [−4, 4] and is much harder to approximate by polynomials than the function

used in Figure 4.10a. In fact, we can see that theMatlab algorithm polyfit is no

longer stable and the “flat limit” Gaussian approximation, which uses orthogonal
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(b) f(x) = (1 + x2)−1, N = 150, M = 90

Figure 4.10: Regression avoids both the sensitivity in RBF-QR associated with
large N , and the ε→ 0 ill-conditioning in RBF-Direct.

polynomials instead of a Vandermonde matrix, is considerably more accurate than

the polynomial interpolant. Moreover, the Gaussian approximation for ε ≈ 1.5 is

many orders of magnitude more accurate that the polynomial interpolant.

What should be noted in these two graphs is that RBF-QRr fails to reproduce

RBF-Direct as ε grows and RBF-Direct is sufficiently well conditioned. This is

because the eigenvalues decay more slowly for larger ε and thus the choice of

M small is no longer appropriate. M > N would be required to conduct the

approximation as ε → ∞, but there would be no reason to use RBF-QR in that

realm because RBF-Direct is well conditioned.

4.7.2 Higher-dimensional approximation

One of the great benefits of considering radial basis functions for interpolation is

their natural adaptation to use in higher dimensions. That flexibility is not lost

when using an eigenfunction expansion to approximate the Gaussian, as was ini-
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tially described in Section 4.3.2. For the experiments in this section only regression

is considered because of the computational cost of RBF-QR in higher dimensions.

α is chosen to satisfy orthogonality for up to the fourth eigenfunction; this choice

is somewhat arbitrary, but seems to produce good results in the ε → 0 region of

interest.

In Figure 4.11 we present examples of RBF-QRr compared to RBF-Direct for

two different test functions. The data is generated by sampling these functions

at N evenly spaced points (see, e.g., [60]) in the region [−1, 1]2. As before, RBF-

QRr drifts further from the true RBF interpolant for large values of the shape

parameter ε because the necessary number of eigenfunctions to conduct a quality

approximation is too great to complete a regression. For this region, it is not

necessary to use RBF-QRr because RBF-Direct has acceptable condition, but it is

worth noting that also the RBF-QRr method has its limitations.
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Figure 4.11: Comparison of RBF-Direct and RBF-QRr regression in 2D using
various evenly spaced data points in [−1, 1]2.

Just as in the 2D setting, eigenfunction expansions work for higher-dimensional

settings as well. Figure 4.12 shows examples for two functions of five variables with

very different ε profiles. As one would expect, the polynomial in Figure 4.12a is
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reproduced to within machine precision as soon as enough eigenfunctions are used

and ε is chosen small enough (note that the dimension of the space of polynomials

of degree five in five variables is 252). For the trigonometric test function illustrated

in Figure 4.12b the RBF-QRr method is again more accurate and more stable than

RBF-Direct. However, the accuracy of the approximation is weak for larger ε, as

was seen previously.
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(b) f(x) = cos(.2(x1 + x2 + x3 + x4 + x5))

Figure 4.12: Comparison of RBF-Direct and RBF-QRr regression in 5D using a
different number, N , of Halton data points in [−1, 1]5.

4.8 Conclusions and remarks about future work

The stated purpose of this chapter was to provide a technique to allow for stable

evaluation of RBF interpolants when the shape parameter values are so small that

ill-conditioning overwhelms the traditional approach to RBF interpolation. This

“flat-limit” regime is of particular practical interest since this often corresponds to

the range of the shape parameter that provides the most accurate RBF interpolant

(provided it can be stably computed and evaluated). By adding this accurate

interpolant to our infrastructure, we can couple multiphysics simulations via stable

kernel-based interpolation. This is described in Chapter 6.
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Our initial approach closely followed [72] replacing the use of spherical har-

monics with an eigenfunction decomposition parametrized by a value α related to

the global scale of the problem. This technique consists of replacing the Gaussian

basis functions centered at the N data sites with M > N new basis functions that

reproduce the Gaussian kernel within the limits of machine precision. The choice

of this new basis was driven by the desire to have condition properties superior

to the Gaussian for sufficiently small ε, but it introduces some redundancy in the

representation of the N -dimensional Gaussian approximation space which leads to

some of the conditioning problems observed in Figure 4.3.

For certain values of N and ε this approach worked well, but for larger values

of N we encountered limitations incurred by the condition of the eigenfunctions

which were absent from the work involving spherical harmonics. To compensate

for this new source of ill-conditioning (independent of the shape parameter) a new

approach was devised involvingM < N basis functions and a least squares solution

to the approximation problem. This technique overcame the ill-conditioning of the

interpolation problem using careful choices of α and M to balance the condition

of the problem against producing the best approximation to the space spanned by

the Gaussians.

Given that we have seen the potential for success with this eigenfunction ap-

proximation of the Gaussian kernels, there is still much to be investigated to fully

understand the work started here. We end by briefly discussing some of these

topics, and pointing to sections where those problems are addressed. These is-

sues vary in complexity and significance, but their thorough understanding would

require much more research than can be included here.
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4.8.1 Location of data points

In our work thus far, we have studied input data on an evenly spaced grid, on the

Chebyshev points and at the Halton points. Overall we have noticed very little

effect of the data point distribution on the condition and accuracy of the RBF-QR

and RBF-QRr solutions provided the domain is “covered well” by the data points.

Is this true in general; will the distribution of points have little or no significance

on the effectiveness of RBF-QR and RBF-QRr?

4.8.2 Analytic relationship of the parameters ε, M and α

In Figure 4.9 we illustrated how the truncation valueM and global scale parameter

α affect the condition of the RBF-QRr regression algorithm for given values of ε

and varying problem size N . Rigorous analysis needs to be done on the relationship

between α and ε. Every Gaussian kernel with shape parameter ε has a family of

equivalent eigenfunction expansions parametrized by α. In exact arithmetic with

M → ∞ all of these series are equal to the Gaussian kernel, but for a finite M

there are significant differences which may lead to ill-conditioned systems. Can

we determine analytically what α-value is appropriate for each M , or if there even

always exists such a (unique) value?

4.8.3 Anisotropic approximation

In this chapter we have worked under the assumption that the same shape param-

eter ε should be used in each space dimension. As mentioned in Section 4.3.2, the

theoretical possibilities of our eigenfunction-based QR algorithms are much more
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general. We could choose to write the kernel as K(x,z) = exp((x−z)TE(x−z)),

where the standard isotropic Gaussian would correspond to E = ε2IN . The deriva-

tion in Section 4.3.2 provides a natural route to using eigenfunction expansions

for anisotropic Gaussians (i.e., with E diagonal, but not a scalar multiple of the

identity). However, in so doing there is also the opportunity to use a strategy to

employ different choices of M and α in different dimensions. What flexibility and

accuracy does this added freedom offer? How does this affect the complexity of the

implementation and execution of the method? A different choice of E (still positive

definite) would result in a different kernel and more flexibility when conducting

interpolation in higher dimensions. Can the theoretical foundation be extended to

cover eigenfunction decompositions for a nondiagonal E?

4.8.4 Other kernels

We have thus far only considered the Gaussian kernel and its associated eigen-

expansion. There are many other positive definite kernels (see, e.g., [60]) that

involve a shape parameter for which the RBF-Direct method is associated with

the trade-off principle, i.e., increased accuracy comes at the price of a loss in nu-

merical stability. In [70] some ideas for the oscillatory Bessel or Poisson kernels are

presented. What about inverse multiquadrics, Matérn kernels, and many others?
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CHAPTER 5

COMPUTATIONAL IMPROVEMENTS FOR EIGENFUNCTIONS

5.1 Introduction

The 1D Gaussian,

K(x, z) = e−ε2(x−z)2 ,

is a common choice of radial basis function (RBF) because of its attractive ap-

proximation properties (see, e.g., [61, 176]). Applications ranging from statistics,

machine learning, computer graphics, and boundary value problems have all found

Gaussians useful, and at times optimal, for sufficiently smooth problems. Because

Gaussians approach polynomials in the ε → 0 limit [52, 115], techniques using

polynomials may potentially benefit from a kernel-based approach.

One of the significant barriers to realizing this potential benefit is the ill-

conditioning associated with the ε → 0 limit, as discussed in [60, 151]. In the

previous chapter, an eigenfunction expansion was developed to produce a stable

basis for Gaussian RBFs. For small ε the series converges very quickly, allowing for

a compact approximation to the Gaussians of interest without the ill-conditioning.

As discussed in Chapter 4, the eigenfunction expansion has the form

K(x, z) =
M∑
k=1

λkφk(x)φk(z), (5.1)

where M is the truncation point of the otherwise infinite series, and

λk =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)k−1

,

φk(x) = γke
−δ2x2

Hk−1(βαx).
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The value α is the global scale parameter as defined in Section 4.3, and the auxiliary

parameters

β =

(
1 +

(
2ε

α

)2
) 1

4

, γk =

√
β

2k−1Γ(k)
, δ2 =

α2

2

(
β2 − 1

)
,

are fixed once α and ε are chosen. Working with these eigenfunctions allows for

stable computations with Gaussians, but can be more costly than working in the

traditional basis because of the need to perform a QR factorization.

Because these eigenfunctions involve Hermite polynomials, they are also defined

by a three-term recurrence. That recurrence relation is

φ1(x) =
√
βe−δ2x2

,

φ2(x) =
√
2βαx

√
βe−δ2x2

,

φk+1(x) =

√
2

k
βαxφk(x)−

√
k − 1

k
φk−1(x), k ≥ 1, (5.2)

and is only valid in one dimension; multiple dimensions rely on the one dimensional

case, and will potentially be considered later.

This chapter derives a fast QR decomposition of the matrix (Φ)n,m = φm(xn)

using the recurrence relation above. The matrix Φ appears in scattered data

approximation using Gaussians: the traditional Gaussian interpolant is defined by

the N ×N system

Kc = y, (4.14)

where (K)i,j = K(xi, xj). Here x = (x1 · · · xN)T are the function value locations,

y are the function values at x and c is the coefficient vector, so that the interpolant

s can be evaluated via the inner product

s(x) = (K(x, x1) · · · K(x, xN)) c.
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The eigenfunction expansion (5.1) with M < N yields the approximation K ≈

ΦΛΦT . By making this substitution into (4.14), we are left with the low rank

system

ΦΛΦTc = y,

or the least squares system

Φc̃ = y, (5.3)

as described in Section 4.6.1, where c̃ = ΛΦTc. This derivation was discussed in

Section 4.6.

The system (5.3) benefits from the fast QR decomposition

Φ = QΣU (5.4)

derived in this chapter. The recurrence relation for Hermite polynomials, described

in Section 5.1.1, is extended to Gaussian eigenfunctions in Section 5.1.2. Two

algorithms are presented to produce (5.4): one based on computing U−1 in Section

5.3 and the other based on computing Q in Section 5.4. These sections are based

in part on

M. McCourt, A fast least squares solver for stable Gaussian computations,

Proceedings of the Eighth International Conference on Scientific Computing and

Applications, accepted

which is cited as [122]. The error properties of these algorithms are analyzed in

Section 5.4.3 to determine their viability in solving systems. These algorithms

are also studied as a potential method to determine an appropriate M for the

Gaussian approximation. Finally, Section 5.6 introduces iterative linear solvers

involving eigenfunctions, but does not draw any significant conclusions.
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5.1.1 Recurrence relations for Hermite polynomials

Much of this section parallels the methods from [81], and serves to introduce rel-

evant theory involving Hermite polynomials. That work dealt with orthogonal

polynomials in general, but because of the structure of Gaussian eigenfunctions,

we concern ourselves only with Hermite polynomials. Hermite polynomials satisfy

the recurrence relation

H0(βαx) = 1,

H1(βαx) = 2βαx,

Hk(βαx) = 2βαxHk−1(βαx)− 2(k − 1)Hk−2(βαx), k ≥ 2. (5.5)

Note the βα factor is not necessary, but rather is inserted here to preserve consis-

tency with later sections. The matrices

H =


H0(βαx1) · · · HM−1(βαx1)

...

H0(βαxN) · · · HM−1(βαxN)

 , X =


1 · · · (βαx1)

M−1

...

1 · · · (βαxN)
M−1


satisfy the relationship H = XLT , where the lower triangular matrix (L)k,j = ℓk,j is

defined by the Hermite coefficients

Hk−1(βαx) =
M∑
j=1

ℓk,j(βαx)
j−1.

These matrices have a special structure: X is a Vandermonde matrix [84], and

H is a Vandermonde-like matrix [32]. Often Vandermonde matrices are unde-

sirable, because despite their simplistic structure they are rather ill-conditioned.

Vandermonde-like matrices, generated by orthogonal polynomials, often have much

better condition [79].

When the points xk are distinct (xk ̸= xj for k ̸= j), HTH is symmetric positive
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definite, and we know it has an LDL factorization

HTH = LXTXLT

= UTDU.

This is useful, but does not directly allow for a fast factorization. Rather, the

Hankel matrix XTX does have a fast method for computing the factorization

XTX = ŨT D̃Ũ

using the recurrence relation

ũk+1 = (Z+ ck+1IM)ũk − bkũk−1, (5.6)

where ũk is the kth column of Ũ−1. This was presented in [49]. Above, ck+1 and

bk are related to the location of the points x, and

Z =

 0 0

IM−1 0

 .

For a symmetric distribution of x around 0, ck+1 = 0.

In [81], the author extends (5.6) to orthogonal polynomials which are con-

structed using a three-term recursion. Section 5.1.2 performs a similar derivation

on the eigenfunctions.
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5.1.2 Recurrence relations for Gaussian eigenfunctions

The structure of Φ from (5.3) is significant, because it can be factored as
φ1(x1) · · · φM(x1)

...

φ1(xN) · · · φM(xN)

 =


e−δ2x2

1

. . .

e−δ2x2
N



1 · · · (βαx1)

M−1

...

1 · · · (βαxN)
M−1



×


ℓ1,1 · · · ℓM,1

. . .
...

ℓM,M



γ1

. . .

γM


or, more succinctly, as

Φ = DXLTG = DHG, (5.7)

where D is diagonal with e−δ2x2
n in the nth position, G is diagonal with γm in the

mth position, and X and L are defined in Section 5.1.1. We may also at times use

the notation

Φ =

ϕ1(x) · · · ϕM(x)

 ,

where

x =


x1
...

xN

 , ϕk(x) =


φk(x1)

...

φk(xN)

 .

Let us take this opportunity to prove the three-term recurrence (5.2). The early

terms can be constructed by directly substituting in the Hermite polynomials of

degree 0,

φ1(x) = γ1︸︷︷︸
√
β

exp(−δ2x2)H0(βαx)︸ ︷︷ ︸
=1

=
√
βe−δ2x2

,
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and degree 1,

φ2(x) = γ2︸︷︷︸√
β/2

exp(−δ2x2)H1(βαx)︸ ︷︷ ︸
=2βαx

=
√
2βαx

√
βe−δ2x2

.

Starting from (5.5) we can multiply by γk+1e
−δ2x2

to start the conversion to eigen-

functions:

γk+1e
−δ2x2

Hk(βαx)︸ ︷︷ ︸
=φk+1(x)

= 2βαxγk+1e
−δ2x2

Hk−1(βαx)− 2(k − 1)γk+1e
−δ2x2

Hk−2(βαx).

Now we can examine the structure of γk+1 to see

γk+1 =

√
β

2kΓ(k + 1)
=

√
1

2k

√
β

2k−1Γ(k)
=

√
1

2k
γk,

γk+1 =

√
β

2kΓ(k + 1)
=

√
1

4k(k − 1)

√
β

2k−2Γ(k − 1)
=

√
1

4k(k − 1)
γk−1.

Plugging those in above gives

φk+1(x) = 2βαx

√
1

2k
γke

−δ2x2

Hk−1(βαx)︸ ︷︷ ︸
=φk(x)

− 2(k − 1)

√
1

4k(k − 1)
γk−1e

−δ2x2

Hk−2(βαx)︸ ︷︷ ︸
=φk−1(x)

,

which, after simplifying the coefficients, produces the recurrence (5.2).

5.2 Developing a recurrence for the QR factors

In [81] the author develops a fast method to compute the Q, Σ and U components

from (5.4) when the Φ matrix consists of terms from an orthogonal polynomial.

This section uses an analogous derivation to factorize the Φ matrix when it is built

from the 1D Gaussian eigenfunctions. We begin in Section 5.2.1 by exploiting

the structure of the matrix ΦTΦ to construct U, and compute the rest of the

decomposition in the remaining subsections.
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5.2.1 A recurrence for the upper triangular factor

Following an analogous statement from earlier, both operators

XTD2X = ŨT Σ̃2Ũ, (5.8)

ΦTΦ = UTΣ2U (5.9)

have LDL factorizations because they are positive definite. Unfortunately, comput-

ing (5.8) is dangerous because of the ill-conditioning associated with the Vander-

monde matrix X. This is the same ill-conditioning mentioned earlier with the XTX

matrix, although for the eigenfunctions, the relevant inner product is (DX)T (DX),

which yields the additional factor D2 seen above.

Though we do not want to work with X, XTD2X is a Hankel matrix (see [18]

for a proof), and (5.6) does apply, which provides a foundation for computing

U−1. Using (5.7), (5.8), and (5.9) we can develop a direct relationship between the

columns of U−1 and Ũ−1:

ΦTΦ = (DXLTG)TDXLTG

= GL(XTD2X)LTG,

UTΣ2U = GL(ŨT Σ̃2Ũ)LTG,

(ΣU)T (ΣU) = (Σ̃ŨLTG)T Σ̃ŨLTG.

Because both ΣU and Σ̃ŨLTG are upper triangular, the relation

ΣU = Σ̃ŨLTG,

Σ̃−1ΣU = ŨLTG

U−1
(
Σ̃−1Σ

)−1

=
(
LTG

)−1
Ũ−1,(

LTG
)
U−1

(
Σ̃−1Σ

)−1

= Ũ−1
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must hold. Studying this at the column level produces the relationship

1

sk
LTGuk = ũk, 1 ≤ k ≤M, (5.10)

where sk is the kth diagonal value of Σ̃−1Σ and uk is the kth column of the matrix

U−1.

The product (LTG)Ũ−1 is between upper triangular matrices LTG and Ũ−1,

thus the diagonal values of the product are the product of the diagonal elements.

Because the diagonal values of Ũ−1 are all 1 (by design), the diagonal of (LTG)Ũ−1

is equal to the diagonal of LTG. Therefore, since the diagonal values of U−1 are

also 1, we know that the diagonal matrix Σ̃−1Σ has entries equal to the diagonal

of LTG. To ensure the unit diagonal of U−1, we require

sk = ℓk,kγk = 2k−1

√
β

2k−1Γ(k)
=

√
2k−1β

Γ(k)
. (5.11)

Note that ℓk,k = 2k−1 appears on the diagonal of L as the coefficient of the leading

term of the k − 1 Hermite polynomial.

Making the replacement from (5.10) in (5.6) produces

1

sk+1

LTGuk+1 = (Z+ ck+1IM)
1

sk
LTGuk − bk

1

sk−1

LTGuk−1 ,

uk+1 = (G−1L−TZLTG+ ck+1IM)
sk+1

sk
uk − bk

sk+1

sk−1

uk−1 .

Simplifying this using (5.11), and fixing u−1 = 0, produces the recurrence

uk+1 = (G−1L−TZLTG+ ck+1IM)

√
2

k
uk −

2bk√
k2 − k

uk−1, 1 ≤ k ≤M. (5.12)

To reduce the cost of computing this, we need to simplify G−1L−TZLTG. To do
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this, we need to establish the relationship

x



φ1(x)

φ2(x)

...

φM(x)


= T



φ1(x)

φ2(x)

...

φM(x)


+



0

0

...

φM+1(x)
1
βα

√
M
2


, (5.13)

where T is the symmetric tridiagonal matrix

T =
1√
2βα



0 1

1 0
√
2

√
2 0

. . .

. . . . . .
√
M − 1

√
M − 1 0


.

The rows of the system (5.13) comes directly from the three-term recurrence (5.2),

which can be written as

xφk(x) =

√
k − 1

2

1

βα
φk−1(x) +

√
k

2

1

βα
φk+1(x).

Note that given the structure of the eigenfunctions (5.7), we know ΦT =

GLXTD, and at a column level we can write

φ1(x)

φ2(x)

...

φM(x)


=



γ1e
−δ2x2

H0(βαx)

γ2e
−δ2x2

H1(βαx)

...

γMe
−δ2x2

HM−1(βαx)


= e−δ2x2

GL



1

βαx

...

(βαx)M−1


.
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Applying L−1G−1 to (5.13) produces the equation

xe−δ2x2



1

βαx

...

(βαx)M−1


= L−1G−1TGLe−δ2x2



1

βαx

...

(βαx)M−1


+



0

0

...

φM+1(x)
1

sM+1βα


.

(5.14)

Note that the 1/sM term that would appear in the vector to the right absorbed

the existing
√
M/2 to become a 1/sM+1.

As described in [81], this relation is satisfied by a unique lower Hessenberg

matrix, allowing us to conclude that

L−1G−1TGL = F (HM)
1

βα
, (5.15)

where F (HM) is the Frobenius matrix [136] associated with HM . By definition,

F (HM) = ZT − eMhT
M , (5.16)

where

hT
M =

(
h0
hM

h1
hM

· · · hM−2

hM

hM−1

hM

)
is defined using the coefficients of the Hermite polynomial HM(x) =

∑M
k=0 hkx

k.

The structure of this F (HM) matrix is

F (HM) =



1

1

. . .

1

h0

hM

h1

hM

h2

hM
· · · hM−1

hM


,
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which helps explain why it is relevant. When applied to one column of a Vander-

monde matrix, such as the vectors in (5.14), it yields

1

1

. . .

1

h0

hM

h1

hM

h2

hM
· · · hM−1

hM





1

x

...

xM−2

xM−1


=



x

x2

...

xM−1

1
hM
HM−1(x)


.

The compact design of F (HM) is a result of the three-term recurrence, where the

“shift” effect seen here allows us to describe x(βαx)k in terms of (βαx)k+1 except

for k =M − 1. Because (βαx)M is not present in the vector, the final term needs

to be handled directly with the three-term recurrence, rather than just the shift,

necessitating the rank-one correction on the right side of (5.14).

Some matrix manipulations involving (5.15) and (5.16) produce a useful result:

L−1G−1TGL = (ZT − eMhT
M)

1

βα
,

βαT = GLZTL−1G−1 − GLeMh
T
ML−1G−1,

βαTT + ρeTM = G−1L−TZLTG, (5.17)

where

ρ = sMG−1L−ThM .

Using (5.17) in (5.12) yields

uk+1 = (βαTT + ρeTM + ck+1IM)

√
2

k
uk −

2bk√
k2 − k

uk−1.

We know that

ρeTMuk = 0, 1 ≤ k ≤M − 1, (5.18)

149



because U is upper triangular. This, combined with the symmetry of T, produces

the final recurrence

uk+1 = (βαT+ ck+1IM)

√
2

k
uk −

2bk√
k2 − k

uk−1, 1 ≤ k ≤M − 1, (5.19)

with u−1 = 0.

5.2.2 Computing the diagonal factor

Now we have the ability to compute U−1, and we must consider the rest of the

(5.4) decomposition. The values of Σ can be recovered by exploiting the LDL

factorization (5.9) to get

U−TΦTΦU−1 = Σ.

Considering this for each column of U exposes the orthogonality condition

uT
kΦ

TΦuℓ = v
T
kuℓ =

 σ2
k, k = ℓ

0, k ̸= ℓ
, (5.20)

where we define vk = ΦTΦuk. This provides a method for computing σk given uk.

Computing vk at each step of the recurrence is unacceptably expensive, so we

benefit by producing a recurrence for vk. Premultiplying (5.19) by ΦTΦ gives

vk+1 = ck+1

√
2

k
vk −

2bk√
k2 − k

vk−1 + βα

√
2

k
ΦTΦTuk, 1 ≤ k ≤M − 1. (5.21)

At this point, we use the identity

ΦTΦT = TΦTΦ+ δeTM − eMδT , (5.22)

derived in [81]. This identity is built upon the low displacement rank [102] of ΦTΦ

with respect to the operator

∆T,T(X) = TX− XT.
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In this case, rank(∆T,T(Φ
TΦ)) = 2, and the specific nature of that low rank matrix

was discussed in [81]. (δ)k = δk can be determined by considering ∆T,T(Φ
TΦ)eM :

(TΦTΦ− ΦTΦT)eM = (δeTM − eMδT )eM ,

TΦTΦeM − ΦTΦTeM = δ − eMδTeM ,

TΦTΦeM − ΦTΦTeM = δ − δMeM .

At this point, we realize that the first M − 1 values of δ can be determined by

δ = ΦTΦTeM − TΦTΦeM .

The Mth term in δ can arbitrarily be set to 0 because it is never needed. This can

be verified by considering the use of (5.22) in (5.21):

ΦTΦTuk = (TΦTΦ+ δeTM − eMδT )uk,

ΦTΦTuk = TΦTΦuk + δ e
T
Muk︸ ︷︷ ︸
=0

−eMδTuk,

ΦTΦTuk = TΦTΦuk − eMδTuk.

Because uk has 0 for its Mth value the inner product δTuk never involves δM , and

thus it can be set to anything. Using this, and fixing v−1 = 0, we can simplify the

v recurrence to

vk+1 = (βαT+ ck+1IM)

√
2

k
vk −

2bk√
k2 − k

vk−1 − βα
√

2

k
eMδ

Tuk, 1 ≤ k ≤M − 1.

The terms ck+1 and bk can be determined by using the orthogonality condition

(5.20). First, premultiplying (5.19) by vTk gives

vTkuk+1 = v
T
k (βαT+ ck+1IM)

√
2

k
uk −

2bk√
k2 − k

vTkuk−1,

0 = vTk (βαT+ ck+1IM)

√
2

k
uk,

ck+1v
T
kuk = −βαvTkTuk,

ck+1 = −
βα

σ2
k

vTkTuk. (5.23)
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Now we can premultiply (5.19) by vTk+1 to produce a useful identity

vTk+1uk+1 = v
T
k+1(βαT+ ck+1IM)

√
2

k
uk −

2bk√
k2 − k

vTk+1uk−1,

σ2
k+1 = βα

√
2

k
vTk+1Tuk,

σ2
k+1

βα

√
k

2
= vTk+1Tuk. (5.24)

To determine bk we premultiply (5.19) by vTk−1:

vTk−1uk+1 = v
T
k−1(βαT+ ck+1IM)

√
2

k
uk −

2bk√
k2 − k

vTk−1uk−1,

0 = βα

√
2

k
vTk−1Tuk −

2bk√
k2 − k

σ2
k−1,

bk =
βα

σ2
k−1

√
k − 1

2
vTk−1Tuk. (5.25)

It is possible to further simplify vTk−1Tuk, first by exploiting (5.22) to produce

vTk−1Tuk = u
T
k−1Φ

TΦTuk,

= uT
k−1(TΦ

TΦ+ δeTM − eMδT )uk,

= uT
k−1TΦTΦuk︸ ︷︷ ︸

vk

+uT
k−1δ e

T
Muk︸ ︷︷ ︸
=0

−uT
k−1eM︸ ︷︷ ︸
=0

δTuk,

= uT
k−1Tvk = vkTu

T
k−1,

where the final line is valid because T is symmetric. Now we can substitute (5.24)

to get

vTk−1Tuk = vkTu
T
k−1

=
σ2
k

βα

√
k − 1

2

which, when used in (5.26), allows us to write

bk =
k − 1

2

(
σk
σk−1

)2

. (5.26)
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5.2.3 Computing the orthogonal factor

The final necessary piece of the least squares solver is to compute the Q component

of (5.4). That equation can be rewritten as ΦU−1 = QΣ, or at the column level,

σkqk = Φuk.

To leverage (5.19) in computing Q, we premultiply by Φ and make that column

level substitution

σk+1qk+1 = βα

√
2

k
ΦTuk + ck+1

√
2

k
σkqk −

2bk√
k2 − k

σk−1qk−1. (5.27)

Now ΦTuk must be considered. We start with the result from [81],

HT̃T = βαDxH+ ωeTM , (5.28)

where ω is an as yet unknown vector related to the values of x, and

T̃ =



0 .5

1 0 .5

2 0
. . .

. . . . . . .5

M − 1 0


, Dx =



x1

x2

. . .

xN−1

xN


.

The matrix T̃ is the analog of T for the Hermite polynomials, which is to say that

it is derived from the associated Hermite three-term recurrence (5.5). Note that

we can determine the displacement rank of H by writing

∆βαDx,T̃T (H) = βαDxH− HT̃T

= −ωeTM .

Therefore, we know that rank(∆βαDx,T̃T (H)) = 1, which allows for the fast decom-

position for Hermite polynomials. We want to determine if there are matrices A
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and B so that

rank(∆A,B(Φ)) = 1.

Finding A and B is necessary to convert the ΦTuk term in (5.27) to something

which can be computed cheaply.

We notice that there is a distinct relationship between the T and T̃ matrices,

and we can exploit that to determine the A and B matrices. The relationship

happens to be

GT̃ = TGβα, (5.29)

which can be confirmed by studying the subdiagonals and superdiagonals (since

everything else is zero),

GT̃ = TGβα, row k, superdiagonal: γk(.5) = γk+1

(√
k + 1√
2βα

)
βα,

γk
γk+1

=
√
2(k + 1), X

GT̃ = TGβα, row k, subdiagonal: γk(k − 1) = γk−1

(√
k − 1√
2βα

)
βα,

γk
γk−1

=
1√

2(k − 1)
. X

Starting with (5.28) we premultiply by D and postmultiply by G to find

HT̃T = βαDxH+ ωeTM ,

DHT̃TG = DβαDxHG+ DωeTMG.

Now we use the transpose of (5.29) to convert the T̃ matrix to T,

DHGTβα = DβαDxHG+ DωeTMG.
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Swapping diagonal matrices D and Dx, and substiting (5.7) gives us the needed

result

ΦT = DxΦ+ ω̄eTM ,

where ω̄ = γMDω/(βα). Using this in (5.27) produces

σk+1qk+1 = βα

√
2

k
(DxΦ+ ω̄eTM)uk + ck+1

√
2

k
σkqk −

2bk√
k2 − k

σk−1qk−1.

= βα

√
2

k
DxΦuk + βα

√
2

k
ω̄ eTMuk︸ ︷︷ ︸

=0

+ck+1

√
2

k
σkqk −

2bk√
k2 − k

σk−1qk−1.

Replacing Φuk with qk produces the desired recurrence,

σk+1qk+1 = (βαDx + ck+1IM)

√
2

k
σkqk −

2bk√
k2 − k

σk−1qk−1, 1 ≤ k ≤M − 1.

(5.30)

The first column q0 is chosen to be the normalized first eigenfunction,

q0 =
ϕ1(x)

∥ϕ1(x)∥2
,

which is the first column of Φ, the standard choice for a QR factorization.

5.3 A fast QR algorithm for eigenfunctions

Below is the algorithm to compute Φ = QΣU, where Q ∈ RN×M has orthonormal

columns, Σ ∈ RM×M is diagonal with positive entries, and U ∈ RM×M is upper

triangular with unit diagonal. This algorithm is called the U-centric fast QR

decomposition because the iterative updates b, c and σk are computed using uk,

which must be computed first. In Section 5.4 we reconsider this choice by deriving

a factorization which is Q-centric, which lends relevance to this distinction. Note

that the algorithm is split in to initialization and iteration components.
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Algorithm 3.a U-centric fast QR decomposition: intialization

Given x, Φ, β, α
p1 ← ΦTϕ1(x), pM−1 ← ΦTϕM−1(x), pM ← ΦTϕM(x)

δ ←
√
M − 1/(

√
2βα)pM−1 − TpM , Dx ← diag(x)

u1 ← e1, v1 ← p1, σ1 ←
√
vT1u1, q1 ← φ1(x)

T/σ1
c← −(βα/σ2

1)v
T
1Tu1

u2 ← (βαTu1 + cu1)
√
2

v2 ← (βα(Tv1 − δTu1eM) + cv1)
√
2

σ2 ←
√
vT2u2

q2 ← (βαDxq1 + cq1)
√
2(σ1/σ2)

return u1, v1, σ1, q1, u2, v2, σ2, q2, δ, Dx

Algorithm 3.b U-centric fast QR decomposition: iteration

Execute Algorithm 3.a
for k = 2 to M − 1 do
b← (σk/σk−1)

2(k − 1)/2
c← −(βα/σ2

k)v
T
kTuk

uk+1 ←
√

2/k(βαTuk + cuk)− 2b/
√
k2 − kuk−1

vk+1 ← (βα(Tvk − δTukeM) + cvk)
√
2/k − 2b/

√
k2 − kvk−1

σk+1 ←
√
vTk+1uk+1

qk+1 ← (βαDxqk + cqk)
√
2/k(σk/σk+1)− (2b/

√
k2 − k)(σk−1/σk+1)qk−1

end for
return U, Σ, Q
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It should be noted that U−1 can be computed without computing Q; all the uk

computations are independent of the values of qk. This is useful because (5.3) can

be converted to its associated normal equations by premultiplying by ΦT ,

Φc = y,

ΦTΦc = ΦTy,

UTΣ2Uc = ỹ.

The third line invokes (5.9) to produce the LDL factorization, and redefines the

right hand side to ỹ = ΦTy. This system is now a square M ×M system, which

may be a valid solution technique depending on the condition of the Φ system.

To ensure that the algorithm indeed performs better than generic QR, consider

the following cost analysis. Bear in mind that this should only be considered as a

statement of the order of magnitude, as the actual number of flops will vary based

on the implementation. In flops, the initialization phase incurs

• 6MN for finding p, the first and last two columns of ΦTΦ,

• 5M for finding δ,

• 2M +N for finding u1, v1, σ1 and q1, and

• 20M + 4N for finding c, u2, v2, σ2, q2,

which amounts to 6MN + 5N + 27M total initialization flops. Each iteration of

the algorithm requires

• 6M to find b and c, and

• 20M + 6Nto find uk+1, vk+1, σk+1 and qk+1.
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Since this algorithm iterates M − 2 times, the cost of the iterations is 6NM +

20M2 − 12N − 34M . Asymptotically, the cost of this fast QR method is roughly

12NM+20M2, which is indeed faster than the O(NM2) generally associated with

QR factorizations.
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Figure 5.1: For N fixed at 50000, the fast QR algorithm performs better than
standard QR when M > 8.

Figure 5.1 shows the timing results from a numerical experiment solving (5.3)

when N = 50000 and M varies between 8 and 1024. The fast QR method has

O(M) complexity, while the standard QR method available in Matlab appears

near O(M2) complexity. When N ≫M (i.e., the left of the figure,) the dominant

cost for fast QR and Matlab QR is roughly of the same order, but the coefficient

for fast QR is 12, whereas it is only 4/3 for standard QR. This explains why the

fast and standard methods are comparable when M is very small.
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5.4 Reconsidering the fast QR decomposition

The driving force in the QR factorization from Section 5.3 is the decomposition

of U−1: ck and σk (and therefore also bk−1) are computed from uk, whereas qk

is updated using those values. This need not be the case, and in this section we

derive an algorithm using qk as the foundation of the decomposition. Starting

from (5.30), we can determine b and c using QTQ = IM . First, premultiplying by

qTk gives

σk+1q
T
k qk+1 = q

T
k (βαDx + ck+1IM)

√
2

k
σkqk −

2bk√
k2 − k

σk−1q
T
k qk−1,

0 = qTk (βαDx + ck+1IM)

√
2

k
σkqk,

qTk ck+1IMqk = −qTk βαDxqk,

ck+1 = −βαqTkDxqk. (5.31)

Premultiplying by qTk−1 gives

σk+1q
T
k−1qk+1 = q

T
k−1(βαDx + ck+1IM)

√
2

k
σkqk −

2bk√
k2 − k

σk−1q
T
k−1qk−1,

2bk√
k2 − k

σk−1 = q
T
k−1(βαDx + ck+1IM)

√
2

k
σkqk,

√
2bkσk−1 = q

T
k−1βαDx

√
k − 1σkqk,

bk = βα

√
k − 1

2

σk
σk−1

qTk−1Dxqk.

We can simplify this by premultiplying (5.30) by qTk+1

σk+1q
T
k+1qk+1 = q

T
k+1(βαDx + ck+1IM)

√
2

k
σkqk −

2bk√
k2 − k

σk−1q
T
k+1qk−1,

σk+1 = q
T
k+1(βαDx + ck+1IM)

√
2

k
σkqk,

1

βα

σk+1

σk

√
k

2
= qTk+1Dxqk.

159



Using this identity we can finally define bk as

bk = βα

√
k − 1

2

σk
σk−1

(
1

βα

σk
σk−1

√
k − 1

2

)

=
k − 1

2

(
σk
σk−1

)2

,

which is (fortunately) the same value as was derived in (5.26). Notice that by

defining the problem through qk rather than uk, we no longer need to keep track

of vk.

5.4.1 A fast QR algorithm through qk

In Section 5.3 the fast QR algorithm computed σk using the columns uk. Here

we present the algorithm which instead computes σk using the columns qk. The

structure of this algorithm is very similar, but it has significant advantages which

are discussed.

Algorithm 4.a Q-centric fast QR decomposition: intialization

Given x, β, α
Dx ← diag(x)
u1 ← e1, σ1 ← ∥ϕ1(x)∥2, q1 ← ϕ1(x)

T/σ1
c← −βαqT1Dxq1
p←

√
2(βαDx + cIN)σ1q1

σ2 ← ∥p∥2
q2 ← p/σ2
u2 ←

√
2(βαT+ cIM)u1

return u1, q1, u2, σ2, q2, Dx

One of the main advantages of computing the decomposition using this Q cen-

tric approach is that vk no longer needs to be calculated. This saves costs and

memory throughout the iteration, and also avoids the initialization work associated

with computing δ. The earlier algorithm did allow for a solution of the normal
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Algorithm 4.b Q-centric fast QR decomposition: iteration

Execute Algorithm 4.a
for k = 2 to M − 1 do
b← (σk/σk−1)

2(k − 1)/2
c← −βαqTkDxqk
p←

√
2/k(βαDx + cIN)σkqk − (2b/

√
k2 − k)σk−1qk−1

σk+1 ← ∥p∥2
qk+1 ← p/σk+1

uk+1 ←
√

2/k(βαT+ cIM)uk − (2b/
√
k2 − k)uk−1

end for
return U, Σ, Q

equations without computing the Q term, which is obviously not possible here if

Q is used to propagate the iteration, so there is some tradeoff.

Another benefit to this approach is thatM need not be fixed prior to beginning

the factorization. In the earlier algorithm, ϕM(x) was required to compute δ; for

this Q centric algorithm there is no such requirement. This allows for the possibility

of an adaptive algorithm, where the σk values are monitored and the factorization

is truncated at σM < σtol. Doing this would perforate the insulation between

the approximation scheme and the linear solver (by allowing the linear solver to

dictate the appropriate complexity of the kernel-based approximation), but this

may allow for less work overall.

5.4.2 Q-centric QR algorithm complexity analysis

The same complexity analysis conducted for the earlier fast QR algorithm can

be used here to study the leading order cost. This algorithm assumes a cost

of 5 flops to compute the first eigenfunction, which is not present in the earlier

algorithm. There it was assumed that the user had already computed Φ, whereas

here the algorithm computes the first eigenfunction. The 5 flop assumption is just
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an estimate, and does not affect the final asymptotic complexity order.

In flops, the initialization phase incurs

• 8N for finding u1, v1, σ1 and q1, and

• 9N + 6M for finding c, u2, v2, σ2, q2,

which amounts to 17N + 6M total initialization flops. Each iteration of the algo-

rithm requires

• 3N to find b and c, and

• 8N + 8M to find uk+1, vk+1, σk+1 and qk+1.

Since this algorithm iterates M − 2 times, the cost of the iterations is 11NM +

8M2−22N−16M . Asymptotically, the cost of this version of the fast QR method is

roughly 11NM+8M2, which is both faster than the O(NM2) generally associated

with QR factorizations, and slightly faster than the earlier algorithm.

5.4.3 Analysis of error for the fast QR algorithms

One of the common fears when computing orthonormal factorizations using non-

orthogonal transformations (such as this three-term recurrence) is that round-off

error will accumulate and orthonormality will be lost. One method we use to help

determine the stability of these fast algorithms is to analyze the quantity

Θ(M) = ∥QTQ− IM∥F , (5.32)
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where Q is the orthonormal matrix from (5.4). If this value is 0, then Q is orthonor-

mal, which should always be true for a Q produced via Householder reflections or

some other orthogonal technique.

At this point, we note that the qk centric algorithm is expected to produce

better results for (5.32) for two reasons. The first is that the b and c values produced

during the iteration are computed under the assumption that Q is orthonormal,

which may help maintain orthogonality throughout the iteration. The second

reason is that all ∥qk∥2 = 1 by design; qk is normalized in step k, so only off

diagonal terms contribute to (5.32). These benefits, as well as the reduced cost,

lead us to limit our error study to only the q centric fast QR algorithm.

To study the value of Θ(M) we consider a numerical experiment. We place

N = 200 points at the Halton nodes [180], and N = 200 points at the roots of the

Chebyshev polynomial on the domain x ∈ [−1, 1]. The resulting values of Θ(M)

are displayed in Figure 5.2a and Figure 5.2b respectively.
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(a) On quasi-uniform points, orthogonality is
lost quickly for M > 50.
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(b) While not perfect, orthogonality is rela-
tively well-preserved on the Chebyshev nodes.

Figure 5.2: The distribution of points is significant for preserving orthogonality.
These graphs were produced with α = 1 and ε = .001.

What is immediately obvious when viewing Figure 5.2 is that the fast QR algo-

rithm loses some degree of orthogonality in all circumstances. The traditional QR

decomposition (which requires O(M2N) work) should be considered as a baseline,
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as the best possible orthogonality which could be achieved. For the Chebyshev

nodes, orthogonality is maintained rather well, suggesting that this fast QR ap-

proach is useful when we have the ability to choose the points at which the function

is sampled. When studying the pseudo-randomly spaced Halton points, we see that

orthogonality is lost at an exponential rate for M > .25N . This suggests that for

scattered data locations, fast QR is only appropriate when M is small relative to

N .

Loss of orthogonality is only one way to measure the viability of this fast QR

algorithm. Perhaps the more appropriate way to study the viability of this method

is to consider its accuracy when applied to an approximation problem. Consider

again N = 200 points, this time sampling the two Bessel functions

f1(x) = J0(3(x+ 1))

f2(x) = J0(6(x+ 1))

at the Halton nodes on the domain x ∈ [−1, 1]. In Figure 5.3 both traditional

QR and fast QR solves are compared, with error computed at 1000 evenly spaced

nodes throughout the domain.

As we can see here, the quality of the fast QR solution is strongly dependent on

the choice of M . The idea that there is an optimal M value for the approximation

was discussed in Section 4.6.2, but the divergent behavior of the traditional and fast

QR solutions indicates that we are instead seeing the effects of error. Specifically,

the errors in Q become the dominant source of error for the solution.

To see this clearly, consider the iteration which produces the approximate so-

lution ck to Φc = y at step k

ck = ck−1 +
qTk y

σk
uk, k = 1, ...,M, (5.33)
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(b) Because this function is more complex, the
fast QR method is unable to achieve optimal
accuracy.

Figure 5.3: The fast QR method mirrors the Householder QR, until the error in
the Q computation degrades the solution. For sufficiently simple functions, this
occurs for small M , and thus fast QR is appropriate. When the function requires
higher M , the fast QR algorithm may produce too much error to be useful. These
experiments used ε = .001 and α = 1.

with an initial iterate c0 of all zeros. Note that the traditional QR factorization

can be made equivalent to the fast QR factorization with small manipulations:

Φ = QSRS

= QSDS D
−1
S RS︸ ︷︷ ︸
=U

where D−1
S = diag(RS). This is almost the Φ = QΣU decomposition, but we don’t

necessarily have positive values on the diagonal matrix. By defining (PS)kk =

sign((DS)kk) we can fix this ±1 issue and write

Φ = QSDSD
−1
S RS

= QSPS︸ ︷︷ ︸
=Q

PSDS︸ ︷︷ ︸
=Σ

D−1
S RS︸ ︷︷ ︸
=U

Now that we can compare the provably stable Householder QR to the fast QR,

examine Table 5.1, where the progress of the solution using (5.33) is monitored.

Table 5.1a shows that there is significant error in the calculation even before

orthogonality was noticeably lost in Figure 5.2a. This by itself is not necessarily
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Fast Slow
k qTk y σk qTk y σk
19 1.285e-07 4.943e-10 1.285e-07 4.943e-10
20 9.608e-09 7.975e-11 9.610e-09 7.971e-11
21 3.037e-09 1.264e-11 3.029e-09 1.277e-11
22 1.968e-10 1.932e-12 1.882e-10 2.790e-12
23 5.771e-11 2.876e-13 2.658e-10 3.461e-12

(a) Incorrect digits have been underlined and put in red. The
errors in the qk computation have permeated the iteration and
caused the factorization to be dominated by error.

k qTk y/σk
Fast Slow

7 1.356e+001 1.356e+001
14 1.047e+002 1.047e+002
21 2.402e+002 2.372e+002
28 5.971e+001 2.982e+000
35 1.330e+008 1.817e-001

(b) The magnitude of later terms is in-
appropriately large for fast QR, leading
to instability.

Table 5.1: N = 200 Halton points are used to approximate f2(x). The fast QR
algorithm is acceptable when M is sufficiently small. When M is too large, error
dominates qTk y which prevents the stability seen in slow QR.

a problem, because as long as orthogonality is reasonably well maintained, the

factorization (5.4) is still valid. The problem caused by this error accumulation is

more obvious in Table 5.1b, where rather than the reduced emphasis of higher order

terms as seen for the slow QR, the higher order terms are fallaciously magnified

with fast QR. This discrepancy exists because the fast QR algorithm causes σk → 0,

but qTk y → ϵmach because of the error always present in qk. As a result, qTk y/σk →

∞ after the error accumulation dominates, which happens in Table 5.1a for k ≈ 20.
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5.4.4 An adaptive, fast least-squares solver

While we must acknowledge that the error issue presented in Section 5.4.3 does

limit the applicability of the fast QR algorithm, it is still a viable method for

small M systems. One of the advantages of using the eigenfunction expansion

is that it is the optimal M -term approximation to the Gaussian; therefore, at

whatever point we choose to terminate (5.33) we have the best possible M -term

series approximation to the observed function f . Furthermore, Table 5.1a suggests

a method for terminating the iteration before error dominates the solution of Φc =

y.

Algorithm 5 Adaptive fast least squares solver

Given x, y, ε, α, M
Set c0 = 0
Choose an Mtol, to terminate when qTk y < Mtol
for k = 1 to M do
Compute qk, σk and uk using Algorithm 4.b
if qTk y > Mtol then

ck ← ck−1 +
qT
k y

σk
uk

else
return ck−1

end if
end for
return ck

This algorithm uses the magnitude of the value qTk y to determine early trun-

cation. If this inner product is ever too small, the algorithm decides that it is as

accurate as possible; if the algorithm reaches theMth iteration, then it returns the

rank M least squares solution. The value Mtol would need to be problem depen-

dent to make sure that the algorithm uses as many terms as possible. A general

guideline might be to simply use a value no less than Mtol ≈ 10−14 because Figure

5.2 suggests that is roughly the minimum level of lost orthogonolization for fast

QR. Using a Mtol less than that would open the solution to potentially significant
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incorrect contributions.

5.5 Conclusions regarding recurrence relations

We have developed a technique to allow for fast least squares solves of eigenfunc-

tion approximations arising from 1D interpolation with Gaussians. This technique

leverages the recurrence relation of the eigenfunctions, and was demonstrated to

be asymptotically faster than the generic QR factorization.

Looking forward, it is important to continue to study the error properties of

this fast QR method. Because Gaussians are expected to be spectrally accurate

when recovering analytic functions, any error accumulation may be significant. At

the same time, many kriging applications assume some level of noise is always

present with the Gaussian process [163]. If the level of error introduced from the

fast solve were less than that noise, there may be no penalty to using the fast

method.

One of the great advantages of using radial basis functions for scattered data

interpolation is the natural step to higher dimensions. As was seen in Section 4.3.2,

the tensor product nature of the Gaussian kernel provides the eigenfunctions with

a similar product structure. There is no such analogy for this fast QR method,

unfortunately, which means that more analysis is needed to extend it to scattered

data approximation in higher dimensions.
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5.6 Future work on iterative methods for eigenfunctions

The main motivation behind the use of regression for the RBF-QRr algorithm was

the growing computational cost of RBF-QR for higher dimensions. Beyond the

use of M < N , there may be other avenues to improving the performance of RBF-

QRr. One possible opportunity involves the recursive evaluation of eigenfunctions

by exploiting the recursive nature of the Hermite polynomials. This section is

more interested in solving the least squares system (4.21) iteratively. Here again

we drop down to 1D for the analysis for simplicity.

One aspect of the low-rank approximation of the kernel comes which may be

of use computationally comes from a more efficient evaluation of the interpolant.

Recall that an RBF approximation s(x) is evaluated via

s(x) =
N∑
k=1

K(x,xk)ck

where c = K−1y are the coefficients determined from the interpolation. Using the

M -term eigenfunction expansion K(x,z) ≈
∑M

j=1 λjφj(x)φj(z) to approximate

the kernel gives

s(x) ≈
N∑
k=1

M∑
j=1

λjφj(x)φj(xk)ck.

We can do some rearranging in the treecode or fast multipole style to come up

with a more useful way to evaluate this double summation:

s(x) ≈
M∑
j=1

φj(x)λj

N∑
k=1

φj(xk)ck︸ ︷︷ ︸
bj

s(x) ≈
M∑
j=1

φj(x)bj
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This means that, by precomputing the b vector from the c vector, future function

evaluations s(x) can be computed at cost O(M).

We are in some sense already taking advantage of this when we do the regression

because for RBF-QRr we are solving the system

Kc = y

ΦΛΦTc︸ ︷︷ ︸
=b

≈ y

Φb ≈ y

which is a least squares problem given that M < N is the number of nonzero

diagonal values in Λ. What we are not taking advantage of is the encapsulation

that the FMM approach provides us: the operation of evaluating the interpolant

is not necessarily related to finding b. Instead of choosing M equal for both

determining c and evaluating s(x), we could instead approach the problem in the

following way

1. Choose an M2 which will be used to evaluate s(x).

2. Choose a different (likely smaller) M1 which will be used to solve the least

squares problem.

These choices are then used in an iterative solver as the matrix-vector product and

preconditioner respectively.

At this point, there are several items to consider. For instance, what effect does

the error from the series approximated matrix-vector product have on the iterative

solve? It seems logical that, because the quality of the summation improves with

M , that the matrix vector product is more accurate as M2 increases. Perhaps of
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more use is the fact that as ε → 0 the eigenvalues decay more quickly, meaning

that later terms in the series have less significance. Therefore, for small ε, the

error in the matrix-vector product should be quite small, as should its effect. This

process is similar to the Jacobian-free matrix-vector products discussed in Chapter

3, where some loss in accuracy was beneficial computationally.

We must also consider how our solution is affected by using a low-rank precon-

ditioner for our iterative method. The system we hope to solve is rank M2 < N ,

so we are already restricting ourselves to methods like GMRES which can han-

dle singular systems. A likely choice of method is Minres-QLP [44], or its sibling

CS-Minres, which is currently under development. In [43], suggestions were given

about preconditioning inconsistent, singular linear systems, but no specific com-

ments were made regarding the effect of a singular preconditioner.

The computational cost of each s(x) evaluation in such a setting is O(M2), and

since there are N points at which it needs to be evaluated, the cost of each matrix-

vector product here is O(M2N). Considering the work of finding the b terms is

O(M2N) that makes the total cost of matrix-vector multiplication O(M2N).

The cost of preconditioning is more complicated, because we are no longer just

solving the least squares problem Φb = y. Let’s write the approximation that we

are using in matrix form

K ≈

Φ1 Φ2 Φ3



Λ1

Λ2

0




ΦT
1

ΦT
2

ΦT
3

 .

The least squares system we need to solve for the preconditioner is

Φ1Λ1Φ
T
1 c = y,
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which means that we still need the QR factorization QR = Φ1 as we did for the

RBF-QRr approximation. Here we need to use it both for the overdetermined

system (to get b) and the underdetermined system to return c for the fast matrix-

vector product. After Q and R are found, we can find

QRΛ1R
TQTc = y,

c = QR−TΛ−1
1 R−1QTy.

The cost of finding the QR inverse is O(NM2
1 ), and the cost of solving for c is

O(NM1 + N2) meaning that the total cost of preconditioning is O(NM2
1 ). Bal-

ancing the work of preconditioning with the work of matrix-vector products would

make M2 =M2
1 the logical choice, although that does not necessarily mean that a

solution of rank M1 is sufficient for accuracy purposes.

Let’s see if we can simplify the work needed at all. Specifically, we might be

able to leverage the fact that the structure of the matrix-vector multiplication is

similar to the preconditioner. The preconditioned Krylov space we are generating

for the system

Kc = y,(
Φ1Λ1Φ

T
1 + Φ2Λ2Φ

T
2

) (
Φ1Λ1Φ

T
1

)+ (
Φ1Λ1Φ

T
1

)
c ≈ y

is

K =
{
y,
(
Φ1Λ1Φ

T
1 + Φ2Λ2Φ

T
2

) (
Φ1Λ1Φ

T
1

)+
y, ...

}
.

This system can simplify somewhat to

(
Φ1Λ1Φ

T
1 + Φ2Λ2Φ

T
2

) (
Φ1Λ1Φ

T
1

)+
= QQT + Φ2Λ2Φ

T
2QR

−TΛ−1
1 R−1QT .

Looking at this, we can see a few important things. First of all the QQT term

appears in each Krylov vector because it represents the solution to the M1 least
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squares system. Second the magnitude of the correction is mostly small because

the values in Λ2 are much smaller than Λ1 and thus the product is small. This is

analogous to the RBF-QR structure seen in (4.11).

If we could find a way to cheaply apply this correction term we could form

the Krylov space at little cost because the QQT term can be carried over between

iterations. Maybe another thought is we could first form ΦQR−T , then analytically

apply the diagonal scalings of Λ2 and Λ−1
1 . R−1QT is the least squares solution

operator, so applying that is essentially applying the preconditioner to a vector

but leaving it in the M1 space rather than bringing it back to the M2 space.

More thought and analysis is needed to convert the existing eigenfunction

framework to an approach suitable for iterative methods. Given the success of

other research in performing scattered data approximation using iterative linear

solvers [110], it would seem that this approach too would benefit from that possi-

bility.
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CHAPTER 6

APPROXIMATING DERIVATIVES WITH EIGENFUNCTIONS

FOR MESHFREE COUPLING

6.1 Introduction

Scattered data interpolation with Gaussian kernels

K(x,z) = exp(−ε2∥x− z∥2), x, z ∈ Rd,

can achieve spectral approximation rates [176], but high accuracy with few in-

put points often occurs when the shape parameter ε produces an ill-conditioned

interpolation system. This has been historically referred to as the trade-off or un-

certainty principle [151] as ε→ 0. In Chapter 4, an eigenvalue series approximation

to Gaussians in arbitrary dimensions was developed for interpolating data.

The eigenvalue decomposition method was tested on examples in 1, 2 and 5

dimensions in Chapter 4; with an appropriate choice of parameters, we were able

to avoid the ill-conditioning present in the standard Gaussian basis, while still

preserving the high order of accuracy associated with Gaussians. Because this

technique is related to the RBF-QR method [70], we refer to it as GaussQR, or

GaussQRr in the low-rank version of the algorithm.

Once higher order approximations can be conducted stably with Gaussians,

derivatives of those approximations can also be computed stably. Previously, ra-

dial basis function (RBF) derivatives have appeared in boundary value problem

solutions using collocation [152], and the method of fundamental solutions [55].

The first use of series expansions to stably compute derivatives appeared in [72] to

solve differential equations on a sphere. RBF-FD methods involving differentiation
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on a scattered grid have been presented in [181, 71] and a more general discussion

of RBF derivative accuracy is found in [76].

This chapter analyzes the technique of approximating derivatives using the

eigenfunction expansion, and compare the structure to the RBF-PS structure dis-

cussed in [60]. Numerical results are presented in Section 6.2.2 showing the validity

of that technique for approximating various functions. Multiphysics coupling in

general was discussed in Section 1.3, with the specific use of GaussQR implemented

in Section 6.3. Stable derivative approximations are applied in Section 6.3.1 to an

example, with improved convergence resulting from the higher order derivatives.

Techniques for managing the computational cost of GaussQRr were introduced in

[122], and expanded upon in Chapter 5. These computational issues, along with

other coupling specific items, are addressed in Section 6.3.2. Finally, Section 6.4

describes future improvements to this method.

6.2 Approximating derivatives with eigenfunctions

The eigenfunction expansion for Gaussians in Rd was first discussed in [137], and

further developed in Chapter 4. It was determined that

exp(−ε2∥x− z∥2) ≈
M∑

m=1

λmφm(x)φm(z), (5.1)

where the eigenvalues and eigenfunctions are

λm =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)m−1

, (4.4b)

φm(x) = γm exp(−δ2x2)Hm−1(βαx). (4.4a)

Above, M is the truncation point of an otherwise infinite series, Hm−1 is the Her-

mite polynomial of degree m − 1, and α is the global scale parameter defined in
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Chapter 4. The free parameter α must be chosen to uniquely define the eigenfunc-

tions; this is analogous to how ε must be chosen to uniquely define the reproducing

kernel Hilbert space spanned by the Gaussians. The other parameters are fixed to

α and ε:

β =

(
1 +

(
2ε

α

)2
) 1

4

, γm =

√
β

2m−1Γ(m)
, δ2 =

α2

2

(
β2 − 1

)
.

The expansion above can be extended to multiple dimensions by exploiting the

tensor product structure of the Gaussian in multiple dimensions; that was described

in Chapter 4.

This section works with the eigenfunctions to establish their derivatives and

express those derivatives using the recurrence relation defined in Section 5.1.2.

Section 6.2.2 establishes the use of differentiation matrices which allow for the eval-

uation of the derivatives of interpolants computed using GaussQR and GaussQRr.

These differentiation matrices are tested to determine their stability on sample

problems, as well as the order of accuracy for higher derivatives.

6.2.1 Differentiating the eigenfunctions

To consider the derivatives of the eigenfunctions, we can directly differentiate

(4.4a),

d

dx
φm(x) =− 2γmδ

2x exp(−δ2x2)Hm−1(βαx)

+ γm exp(−δ2x2) d

dx
Hm−1(βαx).

From [165], the derivative of a Hermite polynomial is

d

dx
Hm(x) = 2mHm−1(x),

d

dx
H0(x) = 0.
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Plugging this in above gives

d

dx
φm(x) =− 2γmδ

2x exp(−δ2x2)Hm−1(βαx)

+ 2(m− 1)βαγm exp(−δ2x2)Hm−2(βαx),

to which we can apply the identity
√

2(m− 1)γm = γm−1,

d

dx
φm(x) =− 2δ2xγm exp(−δ2x2)Hm−1(βαx)

+ 2(m− 1)βα
γm−1√
2(m− 1)

exp(−δ2x2)Hm−2(βαx).

Finally, making the substitution of (4.4a) produces

d

dx
φm(x) = −2δ2 x φm(x) +

√
2(m− 1)βα φm−1(x). (6.1)

This allows us to compute the derivatives of eigenfunctions using the eigenfunctions

themselves. Higher order derivatives can also be computed via direct differentiation

and substitution, producing the second derivative

d2

dx2
φm(x) =2δ2 (2δ2x− 1) φm(x) −

4
√
2δ2βα

√
m− 1 x φm−1(x) +

2(βα)2
√

(m− 1)(m− 2) φm−2(x),

the third derivative

d3

dx3
φm(x) =− 4δ4 x(2δ2x2 − 3) φm(x) +

6
√
2δ2βα

√
m− 1 (2δ2x2 − 1) φm−1(x) −

12δ2(βα)2
√
(m− 1)(m− 2) x φm−2(x) +

2
√
2(βα)3

√
(m− 1)(m− 2)(m− 3) φm−3(x),
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and the fourth derivative

d4

dx4
φm(x) =4δ4 (4δ2x4 − 12δ2x2 + 3) φm(x) −

16
√
2δ4βα

√
m− 1 x(2δ2x2 − 3) φm−1(x) +

24δ2(βα)2
√

(m− 1)(m− 2) (2δ2x2 − 1) φm−2(x) −

16
√
2δ2(βα)3

√
(m− 1)(m− 2)(m− 3) x φm−3(x) +

4(βα)4
√
(m− 1)(m− 2)(m− 3)(m− 4) φm−4(x).

As discussed in Chapter 5, the structure of the Hermite polynomials induces a

three-term recurrence underlying the eigenfunctions:

φ1(x) =
√
βe−δ2x2

,

φ2(x) =
√
2βαx

√
βe−δ2x2

,

φm(x) =

√
2

m− 1
βαxφm−1(x)−

√
m− 2

m− 1
φm−2(x). (6.2)

Applying (6.2) multiple times produces the relations

φm−2(x) =
1√
m− 2

√
2βα x φm−1(x)−

√
m− 1 φm(x),

φm−3(x) =
2(βα)2x2 −m√
(m− 2)(m− 3)

φm−1(x)−
√
2
√
m− 1βα x φm(x),

φm−4(x) =

√
2βαx(2(βα)2x2 − 2m+ 3)√
(m− 2)(m− 3)(m− 4)

φm−1(x)

−
√
m− 1(2(βα)2x2 −m+ 3) φm(x).

This allows all the derivatives of φm(x) to be written only in terms of φm(x) and
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φm−1(x):

d2

dx2
φm(x) =

[
2δ2(2δ2x2 − 1)− 2(βα)2(m− 1)

]
φm(x) +

2βα((βα)2 − 2δ2)
√

2(m− 1) x φm−1(x),

d3

dx3
φm(x) =

[
− 8δ6x3 + (4(βα)2(m− 1)(3δ2 − (βα)2) + 12δ4)x

]
φm(x) +

2βα
√

2(m− 1)
[
(6δ4 + 2(βα)4 − 6(βα)2δ2)x2−

((βα)2(m− 2) + 3δ2)
]
φm−1(x),

d4

dx4
φm(x) = 4

[
2(4δ2(βα)4(m− 1)− 6δ2(βα)2(m− 1)− (βα)6(m− 1)− 6δ6)x2+

4δ8x4 + (βα)4(m− 3)(m− 1) + 3δ4 + 6δ2(βα)2(m− 1)
]
φm(x) +

4βα
√

2(m− 1)
[
2((βα)6 − 4δ2(βα)4 + 6δ4(βα)2 − 4δ6)x2+

2(βα)2(m− 1)(2δ2 − (βα)2) + 12δ4+

3(βα)4 − 10δ2(βα)2
]
x φm−1(x).

We list here only the first four derivatives because those are the only ones

considered in this thesis. Higher derivatives can be determined following the same

pattern as above.

6.2.2 Using differentiation matrices on interpolants

Now that we have the ability to differentiate eigenfunctions in one dimension, we

need to determine how to evaluate the derivative of multidimensional interpolants

produced using GaussQR. Traditional kernel interpolation in Rd takes N function

values (yn)
N
n=1 evaluated at N nodes (xn)

N
n=1 where xn ∈ Rd and produces an

approximation s(x) to the unknown function y(x). The interpolant takes the
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form

s(x) =
N∑

n=1

cnK(x,xn),

where the c values are determined by solving the interpolation equations

Kc = y. (4.14)

The matrix (K)i,j = K(xi,xj) is symmetric positive definite when K is the

Gaussian, and (y)i = yi and (c)i = ci as should be expected. We can write

s(x) = k(x)Tc, where

k(x)T = (K(x,x1), · · · , K(x,xN)).

Replacing the kernel matrix K by the eigenfunction expansion using (5.1) pro-

duces

K ≈ ΦΛΦT .

Here, Φ ∈ RN×M has ith row (Φ)i,: = ϕ(xi)
T where

ϕ(x)T = (φm1(x) · · · φmM
(x)),

and Λ ∈ RM×M is a diagonal matrix with ith diagonal value λmi
. The ith multi-

index is mi, which has d values and describes the order of the components of the

ith eigenfunction,

φmi
(x) =

d∏
k=1

φ(mi)k(xk). (6.3)

This was first introduced in Section 4.3.2. As an example, φ[3,5](x1, x2) =

φ3(x1)φ5(x2).

It is necessary to consider two cases for the length of the eigenfunction expan-

sion M : M < N or M ≥ N . If we choose M < N , which is more likely when N is
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large, the low rank approximation system

Φb = y (6.4)

replaces (4.14). We refer to this low rank regression method as GaussQRr, to

correspond to the RBF-QRr terminology defined in Chapter 4. The solution b ∈

RM can be thought of as ΛΦTc, although not computed that way because of the

danger of computing c. In this formulation, s(x) = ϕ(x)Tb.

Differentiating s(x) is straightforward because the only dependence on x ap-

pears in the eigenfunctions. Using Dk to indicate the derivative with respect to

the kth dimension,

Dks(x) = Dkϕ(x)
Tb, (6.5)

Dks(x) = (Dkφm1(x) · · · DkφmM
(x))b.

Since multiple dimension eigenfunctions are formed by the tensor product structure

in (6.3), the derivative in one dimension does not affect the others, thus

Dkφm(x) = φ′
(m)k

(xk)
d∏

j=1
j ̸=k

φ(m)j(xj). (6.6)

For some applications, it is useful to describe this differentiation process using

the so-called differentiation matrix framework [168, 60]. If we define the matrix

(ΦDk)i,: = Dkϕ(xi)
T then the relationship

Dk


s(x1)

...

s(xN)

 = ΦDkΦ+


y1
...

yN


must hold, and ΦDkΦ+ would be the differentiation matrix in the kth dimension.

Because M < N , Φ−1 does not exist, and (6.4) must be solved with the pseudoin-

verse [84], denoted Φ+.
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The term differentiation matrix is appropriate because s is built to approximate

y, so the matrix ΦDkΦ+ is accepting function values and returning values of the

derivative of the function evaluated at those points. Note that ΦDkΦ+ is an outer

product, and thus has rankM . Combining (6.4) and (6.5) gives a similar structure

for the derivative at any point x given y,

Dks(x) = Dkϕ(x)
TΦ+y.

More generally, the derivative evaluated at N̂ points (x̂n)
N̂
n=1 can be written as

Dk


s(x̂1)

...

s(x̂N̂)

 =


Dkϕ(x̂1)

...

Dkϕ(x̂N̂)

Φ+y

= Φ̂DkΦ+y (6.7)

where Φ̂DkΦ+ is the differentiation matrix which accepts function values at χIN =

(xn)
N
n=1 and returns derivatives at χOUT = (x̂n)

N̂
n=1.

When M ≥ N we use the GaussQR formulation derived in Chapter 4: the

Gaussian basis

k(x)T = (K(x,x1) · · · K(x,xN))

= (φm1(x) · · · φmM
(x))

 IN

Λ2Φ
T
2Φ

−T
1 Λ−1

1

Λ1Φ
T
1

is converted to the stable basis

ψ(x)T = (ψ1(x) · · · ψN(x))

= (φm1(x) · · · φmM
(x))

 IN

Λ2Φ
T
2Φ

−T
1 Λ−1

1

 ,
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where Φ = (Φ1 Φ2) is defined, as before, by (Φ)i,j = φmj
(xi). The submatrices

composing Φ have size Φ1 ∈ RN×N and Φ2 ∈ RN×M−N , and (Λ)i,i = λmi
has

diagonal blocks Λ1 ∈ RN×N and Λ2 ∈ RM−N×M−N . In terms of this new basis, the

linear system

Ψb̂ = y

replaces (4.14) in defining the interpolation, where (Ψ)i,: = ψ(xi)
T , and now

ŝ(x) = ψ(x)T b̂. We can now differentiate directly to see that derivatives of the

stable basis are expressed in terms of derivatives of the eigenfunctions:

Dkψ(x)
T = Dkϕ(x)

T

 IN

Λ2Φ
T
2Φ

−T
1 Λ−1

1

 . (6.8)

The derivative of the eigenfunctions was discussed separately for the case M < N

above. Derivatives of the approximation at any point can be computed with

Dks(x) = Dkψ(x)
TΨ−1y

= Dkϕ(x)
T

 IN

Λ2Φ
T
2Φ

−T
1 Λ−1

1

Ψ−1y,

allowing for the same differentiation matrix structure to form as before.

6.2.3 Numerical results

We consider now some different results involving approximating derivatives using

the eigenfunction expansion. In the first instance, we study first and second order

derivatives computed using (6.5) and (6.8), displayed in Figure 6.1.

These tests show that the eigenfunction expansion provides the same potential

for accurate derivative approximation as it did for function recovery in Chapter
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(a) The full series derivative with GaussQR
using (6.8). An optimal RBF interpolant is
more accurate than the polynomial.
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(b) The low-rank series (M = .7N) second
derivative with GaussQRr using (6.5). RBF
approximation provides better accuracy than
the polynomial.

Figure 6.1: Sample points come from the Chebyshev nodes, and error is tested on
those nodes. For these tests, GaussQR uses α = 3.

4. In Figure 6.1a we can see that the first derivative is approximated successfully

with a standard ε → 0 curve. It seems that the RBF interpolant reaches its

asymptotic bound near ε ≈ .1; the asymptotic limit is the polynomial interpolant

[21], generated with code from [168].

For Figure 6.1b we consider a problem where the number of points is much

greater, N = 150, encouraging the use of low rank approximation. Even in this

case, there is still greater accuracy for the GaussQRr method when ε is small. The

size of N here is too great for RBF-Direct to converge reliably for the ε range

considered, and the low-rank eigenfunction expansion is inaccurate for larger ε, so

none of these RBF methods are appropriate for large ε.

Figure 6.2 displays the accuracy for multiple derivatives as a function of the

number of input points. As in the last example, the input points were placed

on the Chebyshev nodes. The series approximation is able to recover the correct

derivatives accurately up until machine precision dominates the accuracy. See [176]

or [60] for further information regarding order of convergence for the derivatives of
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(a) The full series derivative with GaussQR
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(b) The low-rank series (M = .4N) with
GaussQRr using (6.5). Roundoff limits ac-
curacy beyond N ≈ 50.

Figure 6.2: Sample points come from the Chebyshev nodes, and error is tested on
200 evenly spaced points. For these tests, GaussQR uses ε = .1 and α = 2.

RBF interpolants. Analysis of series approximation accuracy for a class of kernels

near Gaussians can be found in [185].

6.3 Meshfree coupling

In Section 1.3, the interface conditions (1.5) were introduced in a continuous set-

ting; actually performing the simulation requires discretizing the interface condi-

tions. As mentioned earlier, there are two choices when enforcing the interface

conditions: a specific discretization can be chosen, the required nodes of which

form the resulting coupling region; or a coupling region can be fixed, and the dis-

cretization is designed to best accommodate that choice. Because the interior is

the dominant portion of the simulation, the discretization is generally chosen in

deference to the needs of the PDE, not the interface conditions.

Typically, the discretization scheme on the interface is the same as the dis-

cretization on the interior and coupling regions. This is a logical choice because

the placement of the nodes in the coupling region is designed around the interior
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discretization, and using the same discretization on the interface should take ad-

vantage of the placement of the coupling nodes. In spite of the common sense

nature of this approach, there is nothing to guarantee that the best approximation

to the interface conditions is achieved by using the interior discretization. This

section presents an example using finite differences (FD) on the interior and cou-

pling regions, and compare the results of a finite difference interface discretization

to an RBF interface discretization.

The use of a meshfree (MF) approximation scheme in the interface region of

PDEs discretized by other means was discussed in [3], [177] and [178]. The im-

proved approximation and stability results using GaussQR Chapter 4 provides an

opportunity to build on the already existing meshfree coupling framework from

Wendland.

6.3.1 Example - coupled 2D heat equation

As an example of the usefulness of this meshfree coupling method, we consider in

this section a linear parabolic boundary value problem

ut − (uxx + uyy) = e−t

(
1 +

1

2
(x2 + y2)

)
, (x, y) ∈ Ω, (6.9a)

u = e−t

(
1− 1

2
(x2 + y2)

)
, (x, y) ∈ ∂Ω, (6.9b)

u = 1− 1

2
(x2 + y2), t = 0. (6.9c)

This is a 2D version of the linear critical gradient model, introduced in Section

3.4; for simplicity, the diffusivity κ from (3.6) is set identically to 1. Ω is the full

domain of the coupled problem, such that Ω = Ω1 ∪ Ω2. For Model 1,

Ω1 = {(x, y) : −1 ≤ x ≤ 0, 0 ≤ y ≤ 1},
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and for Model 2,

Ω2 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Fourth-order finite differences are used to discretize in space, and the backward

Euler method is used to discretize in time; the vector u(k) represents the computed

solution at time tk = k∆t. After discretizing, we are left with the “nonlinear”

system

F (u(k)) =
1

∆t
(u(k) − u(k−1))− LFD,BC(u

(k))− f = 0,

where LFD,BC is the Laplacian operator or identity depending on whether (6.9a) or

(6.9b), respectively, is applicable. The vector f is the right hand side associated

with either (6.9a) or (6.9b), and u(0) is generated by (6.9c). Although the discus-

sion earlier focused on solving nonlinear systems, the discussion is still applicable

here because this linear system is just a special case of a nonlinear system.

Because the boundary condition (6.9b) is only defined on ∂Ω, there must be a

second order interface condition on the shared boundary between for the problem

to be well-posed. Fundamentally, this is because each model needs a simulated

boundary condition to allow it to be well-posed as an independent problem; once

it has a “boundary condition” on the interface, it inherits the well-posedness prop-

erties associated with any single domain boundary value problem. As mentioned

earlier, guaranteeing accuracy, either a priori or a posteriori, for the coupled prob-

lem is still an open problem and beyond the scope of this work.

The choice of second order condition we make here is to require values and

normal derivatives of u to be equal at the shared interface of the two models. By

defining u1 and u2 as the solutions for models 1 and 2 respectively, and ΩI =
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Ω1 ∩ Ω2, we can write the interface conditions as

u1 = u2

∂
∂x
u1 =

∂
∂x
u2

 , (x, y) ∈ ΩI .

It is noteworthy that these are not the only acceptable choice of interface condi-

tions. Any choice which produces one unique manufactured “boundary condition”

per model would be acceptable. Choosing Dirichlet and Robin interface conditions

would be acceptable, but it would not be acceptable to use Dirichlet to match so-

lution values, and then have a second conditions which matched twice the values.

Doing so would produce a Jacobian of the form (1.6) with fourth and sixth block

rows equivalent except for a factor of two, and such a system is underdetermined.

We choose to use the Dirichlet coupling condition as F I
1 and the Neumann

coupling condition as F I
2 , although this choice is arbitrary and could just as easily

have been the opposite. Discretizing these interface conditions using the low rank

series approximation (6.4) converts the general Jacobian matrix (1.6) to the matrix

J1(F1) JC1 (F1)

J2(F2) JC2 (F2)

J1(F
C
1 ) JC1 (F

C
1 ) JI1(F

C
1 )

I [ Φ2→1Φ
+
2 ]

J2(F
C
2 ) JC2 (F

C
2 ) JI2(F

C
2 )

[ ΦDx
1→2Φ

+
1 ] [ ΦDx

2 Φ+
2 ]


, u =



u1

u2

uC
1

uI
1

uC
2

uI
2


.

Note the inclusion of the solution vector to the right, for reference. This matrix

has mostly the same structure and content, because most of the entries are not

determined by the interface conditions. Two block rows have been converted in

this matrix in order to satisfy the interface conditions:

Fourth block row This row defines F I
1 as the Dirichlet condition, thus requiring
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that solution values from model 2 be mapped to the mesh of model 1.

• ( JC1 (F
I
1 ) JI1(F

I
1 ) ) −→ ( 0 I ). Because the residual F I

1 is being

evaluated on the interface nodes of model 1, xI
1, we need to produce the

solution uI
1. Doing so requires only the identity I located as seen above.

• ( JC2 (F
I
1 ) JI2(F

I
1 ) ) −→ [ Φ2→1Φ

+
2 ]. Here we are given values on

xC
2 and xI

2 and asked to produce values on xI
1. The matrix Φ2→1Φ

+
2

is like the differentiation matrix defined in (6.7), where the differential

operator is replaced by the identity. Using that design, χIN = {xC
2 , x

I
2},

χOUT = xI
1 and y =

uC
2

uI
2

.

Sixth block row This row defines F I
2 as the Neumann condition, thus requiring

that derivative values from model 1 be mapped to the mesh of model 2.

• ( JC1 (F
I
2 ) JI1(F

I
2 ) ) −→ [ ΦDx

1→2Φ
+
1 ]. This follows directly from the

differentiation matrix formula (6.7) using χIN = {xC
1 , x

I
1}, χOUT =

xI
2, y =

uC
1

uI
1

 and Dx is the derivative in the x direction (normal to

the interface).

• ( JC2 (F
I
2 ) JI2(F

I
2 ) ) −→ [ ΦDx

2 Φ+
2 ]. Following again from the dif-

ferentiation matrix formula with χIN = {xC
2 , x

I
2}, χOUT = xI

1 and

y =

uC
2

uI
2

 and Dx is the derivative in the x direction (normal to the

interface).

We now consider an example where the simulation is run for a single time step

of size ∆t = .01 and N = 256 uniformly distributed points in each domain. The

solution technique for each time step involves using Jacobian-free Newton-Krylov,
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with split finite differencing as described in Chapter 3. Two finite differencing

parameters were chosen, with the largest half of the vector differenced using 10−7

and the smallest half differenced using 10−5.

The preconditioner is FieldSplit style (recall Chapter 2), with an approximate

Jacobian partially computed through coloring. Interior regions are treated with

algebraic multigrid, and the remaining fields use ILU(0). The only exception is

the interface regions computed with GaussQRr, since those regions are fully dense

and would not benefit from ILU(0). Instead, they are preconditioned with the

ILU(0) decomposition of the FD interface blocks, for reasons described below and

in Section 6.3.2. Figure 6.3 compares the error present in the fully coupled system

when the interface conditions are discretized using finite differences and low rank

Gaussians.
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Figure 6.3: There is a range of ε values for which the meshfree approximation
produces accuracy that can not be attained by finite differences. In the plot to the
left, there is a pronounced benefit to using RBFs, whereas the plot to the right
sees little gain because the coupling error is now on level with the interior error.
For these tests, GaussQRr uses the parameters α = 1, M = 24.

In Figure 6.3a, the coupling region has width 1, which is to say that one ver-

tical strip of points adjacent to the interface region is used to approximate the

derivatives. Another description of this set is the set of points with distance ∆x
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Model 1 Model 2Interface

Couple Width 2

Couple Width 1

Figure 6.4: The order of the finite difference stencil determines the thickness of the
coupling region. To fairly compare the FD approach to the GaussQRr approach,
the same coupling width is considered for both methods.

to the interface. Figure 6.3b shows results with coupling width 2. To understand

the difference between coupling width 1 and coupling width 2, see Figure 6.4. The

standard one-sided finite difference approximations

Couple width 1:
∂

∂x
u(x) =

u(x+∆x)− u(x)
∆x

Couple width 2:
∂

∂x
u(x) =

u(x+ 2∆x)− 4u(x+∆x) + 3u(x)

2∆x

derived from the Taylor series are used here because the interface nodes of both

models are aligned. For mismatched grids we would need a more complicated finite

difference approximation.

Because of the relationship between finite difference approximation and Taylor

series, the FD expanded at each point in uI is bounded by the accuracy which

can be obtained by a polynomial in the x direction. The RBF interpolant has the

free parameter ε, which in the limit ε → 0 reproduces a polynomial, leaving the

potential to see better accuracy than the FD coupling. As a reference, for larger ε,

the Gaussians become unacceptably localized and produce inaccurate interpolants.

Decreasing ε produces wider Gaussians which allows more interaction to produce

more accurate interpolants, until the Runge phenomenom error emerges. This
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source of error for very large and very small ε may result in some intermediate

value where accuracy is optimal [75]. Such is the case in Figure 6.3a, where, when

using the same coupling region, the meshfree interpolant produced 4 times more

accurate results for ε ≈ 1.

This improvement in accuracy is also related to the idea that using values in

all directions around a point better approximates the derivative at that point, as

discussed in [76]. Furthermore, we see that the Gaussian interpolant is approaching

the finite difference interpolant as ε→ 0; this is expected because the FD method

is a polynomial expansion, and Gaussians reproduce polynomials for ε→ 0. This

behavior motivated the choice of the FD interface Jacobian components as the

preconditioner for the dense, low-rank block of the GaussQRr interface Jacobian

components.

For the finite difference coupling to catch up in accuracy to the meshfree cou-

pling, more points must be included in the derivative computation. By increasing

the coupling width to 2∆x (i.e., the two strips of points nearest to the interface)

we see in Figure 6.3b that the optimal coupling strategy and the finite difference

approach are very close.

Figure 6.5a shows the convergence of the coupling scheme as the number of

points in the fully coupled simulation is increased. Here we can see that the

accuracy of the meshfree (MF) approach is consistently better than the finite

difference (FD) approach for the thinner coupling region. AtN = 32768 we see that

the accuracy of the meshfree coupling for ∆x thickness is actually comparable to

the 2∆x thickness case. This means that for discretizations of that size or greater,

the GaussQRr coupling allows for the same accuracy while involving fewer points

in the coupling.
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a large role in the accuracy. When fewer
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(b) For the thin coupling region, ε stays rel-
atively constant, meaning that more points
are considered in computing the interpolant.
With a thick coupling region, more informa-
tion is provided in the x direction, and the
RBF interpolant chooses a larger ε to empha-
size those points over points further away in
the y direction.

Figure 6.5: We consider the effect of the coupling strategy given varying values of
N , the number of points in the simulation. For these tests, GaussQRr uses the
parameters α = 1, M = .5N .

Earlier in Figure 6.3 we showed that there was a strong dependence on the value

of ε in producing an optimal approximation for the meshfree coupling approach.

In Figure 6.5b we can see that the optimal value of ε changes very little for the

thin coupling case. Quite the opposite is true when the coupling width is set to

2∆x, as the optimal ε increases with increases in M .

This growing ε limits the effect of points further away, which tells us that when

given more data in the x direction, data in the y direction becomes less valuable.

When that data is unavailable, as is the case for the thin coupling strip, the optimal

interpolant continues to consider all the points available to it.
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6.3.2 Computational considerations

There are some practical concerns about the viability of GaussQRr as a multi-

physics coupling methods. One such concern regards the use of Newton’s method,

uk = uk−1 − J(F )(uk−1)−1F (uk−1), u0 given,

to solve the system F (u) = 0, where uk is the kth Newton iteration; note that

this notation is now overriding the previous notation where u(k) was the kth time

step. Newton’s method suffers from several logistical barriers including evaluating

the Jacobian.

As described, we use Jacobian-free Newton-Krylov to solve F (u) = 0. This

allows for matrix-vector products J(F )(u)b to be approximated using the finite

difference formula

J(F )(u)b ≈ 1

h
(F (u+ hb)− F (u)), (6.10)

as explained in Section 1.2. Using (6.10) is appropriate when computing the matrix

vector components involving the PDE and boundary conditions because they may

be nonlinear (although not in the example above), but the discretization of the

interface through GaussQRr is linear. The rows associated with F I
1 and F I

2 can

be computed using only matrix vector products involving eigenfunctions, and that

should be exploited.

Beyond simply using the available matrices to compute J(F I
1 )(u)b and

J(F I
2 )(u)b rather than (6.10), it is also useful to note the structure of the differen-

tiation matrices. In Section 6.2.2 it was mentioned that differentiation matrices of

the form Φ̂DkΦ+ have an outer product structure. Because of this it is much more

efficient to evaluate Φ̂Dk(Φ+b) rather than form the differentiation matrix and then
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conduct the matrix-vector product (Φ̂DkΦ+)b. Although the results in Figure 6.5a

were produced using the fixed proportion M = .5N , it may be possible to reduce

M and still maintain a high order of accuracy. Doing so would save on computa-

tional cost for Jacobian-vector products, but finding the minimum acceptable M

value to approximate derivatives would depend on many factors; this problem is

addressed briefly in Chapter 8.

One option which allows us to use a smaller M is by choosing eigenfunctions

which take advantage of the location of the available coupling points. All the

previous computations used eigenfunctions of limited order in the x direction; the

first 12 eigenfunction indices are listed in Table 6.1.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

x order 1 2 1 2 1 2 1 2 1 2 1 2
y order 1 1 2 2 3 3 4 4 5 5 6 6

(a) Couple width 1

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

x order 1 2 1 3 2 1 3 2 1 3 2 1
y order 1 1 2 1 2 3 2 3 4 3 4 5

(b) Couple width 2

Table 6.1: The lower coupling width simulations choose the lower order eigenfunc-
tions in the x direction.

See Section 4.4.2 for an introduction to the arrangement of these eigenfunctions.

These eigenfunctions are chosen so that the maximum order in the x dimension is

one more than the couple width: this was a logical choice because in the polynomial

limit ε → 0 the highest unique polynomial that could be fit to those points is of

degree couple width plus 1. Adding more complexity in the x direction may end

up overfitting the data, and adding more unnecessary computation. This is less

the case on an unstructured grid, but in circumstances where the coupling region

is strongly anisotropic (one dimension has much greater width than the others)

195



this technique helps balance contributions in all dimensions.

Now that we have considered matrix-vector products, we must also consider

preconditioning, a fundamental part of any iterative linear solver and necessary

to find acceptable search directions for Jacobian-free Newton-Krylov. Fortunately,

the work here has already been done. Whatever technique would be normally used

to precondition the FD linear system could also be used to precondition the MF

system. This should be an effective preconditioning technique because the two

matrices have the same effect when applied to the solution vector. For the results

in Section 6.3.1, the incomplete LU factorization of the FD system was used as the

preconditioner of the GMRES iterations of both the FD and MF coupling.

Another significant advantage to using RBF methods to perform the coupling

is that these methods work equally well in arbitrary dimensions and on arbitrary

node distributions. The RBF differentiation matrix computation (6.7) is carried

out similarly regardless of the point distribution, whereas new finite difference

relations would need to be computed at each point on scattered data. Furthermore,

using the technique of producing multi-dimensional, higher order finite difference

schemes by annihilating certain polynomials fails on many point sets in a scattered

data setting. The advantages of RBF methods are described in [71, 181, 67].

6.4 Summary

We have reviewed the structure of Gaussian eigenfunction series as derived in

Chapter 4, and found the derivatives of those eigenfunctions. Using the underlying

three-term recurrence, we found a method to define higher derivatives of φm(x) in

terms of only φm(x) and φm−1(x). These derivative formulae allow us to compute
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the derivative of interpolants s generated using the eigenfunction basis. Numerical

results were presented confirming the quality of the derivative approximation when

computed using ε values typically associated with ill-conditioning.

After considering stable derivative approximation with Gaussians, we discussed

multiphysics coupling via interpolation as an application which may benefit from

this technique of derivative approximation. Because RBF interpolants can be

more accurate than polynomial interpolants, we attempted to use a Gaussian in-

terpolant to discretized the interface conditions, introduced in Section 1.3, while

the remaining portion of the PDE domain was discretized by other means. The

results in Section 6.3.1 showed that this RBF method is capable of producing a

more accurate simulation.

Most of the Jacobian was able to retain its structure because the interface

conditions govern only a small portion of the domain. By leveraging the FieldSplit

structure, developed in Section 2, we were able to precondition the interior regions

and interface regions separately, permitting us to exploit the low-rank nature of

the differentiation matrices used to enforce the interface conditions. This allows

meshfree coupling to maintain computational viability despite the otherwise dense

matrix produced during Gaussian interpolation.

Looking forward, several issues still need to be addressed. The required min-

imum length of the eigenfunction series to optimally recover the function is un-

known, and using a larger M incurs cost which is not providing any additional

performance. This is an open problem for any scattered data approximation prob-

lem using GaussQRr. In Chapter 4 numerical results were presented that for some

functions, regardless of the number of input points N , there is only a fixed M nec-

essary to recover the function to some desired accuracy. One possible technique
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for these coupled simulations would be to experiment on small grids, with small

computational cost, and try to find that M . Once the M is known on that small

grid, it may still be appropriate even for much larger systems.

Along with the issue of the free parameterM is the free parameter ε which must

be chosen appropriately for the MF coupling scheme to outperform the FD coupling

scheme. This has frustrated the approximation theory and statistics communities

for some time and is not any simpler in the multiphysics coupling application.

Figure 6.5b seems to indicate that knowledge of a good ε on small grids can be

used to find a good ε on large grids, although that may only be true for this specific

simulation. The most well-founded approach to determining ε probably involves

statistics (e.g., cross-validation, maximum likelihood estimation, inference), and is

addressed for the scattered data approximation problem in Chapter 8.

In Section 6.3.2 we discussed the choice of eigenfunctions included in the simu-

lation; specifically, the degree of the eigenfunctions in the x direction was bounded

by the width of the coupling region. Because there is a natural preference between

dimensions, it is also natural to consider anisotropic kernels – Gaussians with dif-

ferent shape parameters εx and εy in the x and y dimensions respectively. Such a

situation can be handled naturally given the tensor product structure of the Gaus-

sian, as described in Chapter 4. This approach has the unpleasant effect of adding

another free parameter to the kernel, thus exacerbating the problems associated

with determining ε in the isotropic case. The benefit would be increased poten-

tial accuracy, because the anisotropic parameters could always be fixed εx = εy

yielding the isotropic case as the upper bound on possible error.

Even though we have addressed the computational cost of performing matrix

vector products involving the differentiation matrices ΦDkΦ+, we have not yet
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addressed the cost of computing Φ+. The dominant cost of many least squares

solvers is the QR factorization, which here costs O(NM2). As already mentioned,

we are interested in keeping M small, which help alleviates some of the cost of

this solve. Another possible approach to improving the speed of the least squares

solve is the O(NM) QR factorization method derived in Chapter 5, though that

method only for 1D GaussQRr problems, so far.
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CHAPTER 7

SOLVING BOUNDARY VALUE PROBLEMS WITH

EIGENFUNCTIONS

7.1 Introduction

In Chapter 4, we developed a stable method for solving the scattered data ap-

proximation problem in Rd using increasingly flat Gaussians, for which traditional

methods were susceptible to severe ill-conditioning. This concept was extended to

approximating derivatives of scattered data in Chapter 6, and we demonstrated

how multiphysics simulations could be coupled together stably and accurately us-

ing this approach. One of the benefits of this meshfree coupling was that the

individual discretizations of each component were immaterial to the interpolation

strategy.

Another way to solve this problem would be to instead discretize the com-

ponent simulations in such a way that the relevant information could be easily

extracted/computed on the coupling interface. One possible method for doing this

would be to use our stable Gaussian expansion as a basis for the boundary value

problem (BVP)solution. This chapter introduces and develops that idea, present-

ing GaussQR as a standalone method for solving BVP, as well as an approximation

component within a larger BVP solver. Adding this tool to our multiphysics in-

frastructure provides the ability to spatially discretize simulations with a method

that simplifies the multiphysics coupling.

Section 7.2 discusses the current state of kernel methods for solving BVPs. In

Section 7.3 we consider the solution of boundary value problems by collocation
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with traditional Gaussian kernels, and demonstrate the benefit of instead using

the eigenfunction expansion. We also consider the use of differentiation matrices

[168] to solve problems. In Section 7.4 the eigenfunction expansion is applied to

approximate particular solutions and solve BVPs with the method of particular

solutions. We extend this particular solution approach in Section 7.4.3 to incor-

porate boundary data and produce a more accurate solution at less cost. This

chapter is based significantly on

M. McCourt, Stable Gaussians for boundary value problems, Advanced in Applied

Mathematics and Mechanics, accepted

which is cited as [123].

7.2 Existing kernel methods for boundary value problems

Kernel-based meshfree approximation methods have gained popularity in several

fields, including scattered data interpolation [176], finance [93], statistics [163], ma-

chine learning [137] and others. One of the great benefits of using these methods

is that no discretization of the relevant domain is required; basis functions are cen-

tered at various points throughout the domain, allowing for kernel-based methods

to circumvent some of the barriers associated with higher dimensional problems.

Additionally, a variety of kernels exist, providing users in each application the abil-

ity to tailor the solution basis to fit that application’s specific opportunities and

constraints.
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Techniques for solving BVPs with radial basis functions (RBFs) have advanced

significantly in the past two decades. The original method for solving elliptic

partial differential equations (PDEs) with RBFs came in 1990 [103] and involved

an unsymmetric collocation of basis functions at points chosen throughout the

domain. Since that initial work, further analysis has been done on the convergence

of this collocation method [152], which has encouraged its use despite its theoretic

potential for failure [94]. A symmetric collocation technique was also developed

[59] which ensured invertibility of the collocation system by using a modified set

of basis functions.

Another popular method for solving BVP with radial basis functions is the

method of fundamental solutions [55]. Essentially, this method replaces the BVP

with an interpolation problem on the boundary using functions which satisfy the

PDE. The mathematical formulation of this method is well-developed, but it is only

applicable for homogeneous problems where the fundamental solution is known.

The method of particular solutions [40] is an adaptation for inhomogeneous prob-

lems involving two approximation systems: one to satisfy the inhomogeneity in

the interior, and another to satisfy the boundary conditions, assuming a now ho-

mogeneous problem. The use of radial basis functions to approximate particular

solutions was discussed in [82, 96].

One of the great shortcomings of radial basis functions is that, for some pa-

rameterizations, the resulting linear system may be irrevocably ill-conditioned [60].

Even more troublesome is the fact that the most accurate parameterizations may

lie in the ill-conditioned regime [74]. This ill-conditioning is especially significant

for kernels with a great deal of smoothness, which often tempers the optimism of

researchers hoping to exploit their spectral accuracy. In Chapter 4, this obstacle

202



was addressed for scattered data interpolation problems using Gaussians in Rd by

exploiting a truncated eigenfunction expansion of the Gaussian. Here, we extend

the approximation via eigenfunctions to the solution of boundary value problems.

There are many methods for solving boundary value problems with kernels that

are not discussed in this thesis. Multilevel methods [117, 100] have been presented,

including for higher order problems [2], to attempt to mitigate the cost associated

with solving dense systems generated by globally supported RBFs. Finite differ-

ence schemes based on RBFs [67, 68] have proven to be an effective meshfree solver

for geological and climate based problems. Partition of unity methods [114] are

being developed now to incorporate RBF collocation with other solution schemes

for applications including crack propagation. Petrov-Galerkin techniques [6] have

been developed to allow the weak form solution of PDEs, while recent work [154]

has provided analytic support for this approach. Some work has been done in-

corporating RBFs into discontinuous Galerkin schemes [141]. Kernel based PDE

solvers on manifolds [77] are beginning to mature as well. To narrow our focus

from all possible BVP solvers using kernels, we only discuss collocation and the

method of particular solutions.

7.3 Collocation using Gaussian eigenfunctions

The original RBF collocation technique in [103] involved multiquadrics supple-

mented by linear polynomials. These basis functions are subject to severe ill-

conditioning depending on the flatness of the multiquadrics. This ill-conditioning

is the result of extremely flat basis functions looking too much alike, causing the

representative columns in the collocation matrix to become indistinguishable and
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making the system appear to be low rank.

This problem is not unique to multiquadrics or to collocation techniques; indeed

any application requiring the inversion of matrices generated by very smooth RBFs

will fall victim to this as the RBFs approach their flat limit. It has been discussed

for interpolation problems that, despite this perceived impasse, the problem itself

is not necessarily ill-conditioned [115, 52, 134]. Rather, it is the solution approach

(i.e., forming a linear system using the RBF basis) which deals the damage [113],

and if an alternate method could handle the ill-conditioning the true solution could

be found [74].

One such approach to solving this problem is to find a series expansion for the

kernel which allows for the removal of the ill-conditioned terms analytically. This

solution technique is called RBF-QR [72], and it has been used successfully on

the circle/sphere for both interpolation [70] and PDEs [73]. In these papers, the

authors discussed the possibility that the most accurate kernel parameterizations

were also too ill-conditioned to treat directly, necessitating the series expansion

approach.

In Chapter 4, a series expansion was developed to allow for stable approxi-

mation with Gaussians in Rd; this expansion was based on the eigenfunctions of

the associated Hilbert-Schmidt operator. Because the Gaussian kernel in higher

dimensions is formed through tensor products, the higher dimensional series ex-

pansion is also formed with a tensor product, trivially allowing the move to Rd.

The approximation of derivatives using this series expansion was discussed in the

previous chapter. Here we would like to use these derivatives to solve boundary

value problems with collocation.
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7.3.1 Ill-conditioning in Gaussian basis collocation

Linear BVPs, without dependence on time, can generally be phrased in the form

Lu = f, on the interior Ω,

Bu = g, on the boundary ∂Ω,

where L is the linear PDE operator, and B is the linear boundary condition op-

erator. Ω ∈ Rd is a bounded domain with Lipschitz boundary. In unsymmetric

kernel collocation, we assume that the solution takes the form

u(x) =
N∑
k=1

akK(x,xk) +

q∑
ℓ=1

aN+ℓpℓ(x) (7.1)

where x ∈ ∂Ω ∪ Ω is a d-dimensional vector for a problem in Rd, {xk}Nk=1 are

the kernel centers, N is the number of kernels used, K is the kernel, {pℓ}qℓ=1 are

polynomial terms, and q is the number of polynomial terms. For this thesis, we

assume that no polynomial terms are necessary, though later we briefly discuss the

effect this may have on the accuracy of the solution and optimal choice of K.

Choosing q = 0 removes the polynomial terms and leave the pure kernel series

u(x) =
N∑
k=1

akK(x,xk). (7.2)

This matches the form of the solution to the scattered data interpolation problem

as defined in (1.8). Assuming that we have chosen NL collocation points on the

interior and NB collocation points on the boundary, we can now apply the BVP

operators to (7.2); note that the PDE operators act on the first kernel argument,

as the second kernel argument defines the center of the kernel, not where the kernel
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is being evaluated. This leaves us with the continuous collocation equations

N∑
k=1

akLK(x,xk) = f(x), x ∈ Ω,

N∑
k=1

akBK(x,xk) = g(x), x ∈ ∂Ω.

We must now choose a finite number of points, NL on the interior and NB on the

boundary, at which to enforce these equations. If the {xk}NL
k=1 interior points are

ordered before the {xk}NB+NL
k=1+NL

boundary points, this system of linear equations

has the matrix form

LK(x1,x1) · · · LK(x1,xN)

...

LK(xNL ,x1) · · · LK(xNL ,xN)

BK(xNL+1,x1) · · · BK(xNL+1,xN)

...

BK(xNL+NB ,x1) · · · BK(xNL+NB ,xN)





a1

...

...

aN


=



f(x1)

...

f(xNL)

g(xNL+1)

...

g(xNL+NB)


(7.3)

By choosing NL+NB = N , the system (7.3) is square, and if it is nonsingular [152]

it has a unique solution.

Theoretically, there is nothing requiring the kernel centers to be the same as

the collocation points. We consider no such instances here, although such material

is presented for interpolation in [69] and PDEs [66, 159] suggesting that this may

improve the error near the boundary. By choosing the kernel centers to match the

collocation points, we trivially satisfy NL+NB = N and must solve a square linear

system to find a1, . . . , aN .

To demonstrate their notoriously ill-conditioned behavior, and in following with

the results presented in Chapter 4, we consider Gaussian kernels

K(x,z) = exp(−ε2∥x− z∥2)
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for the collocation solution. The value ε is the shape parameter, so-called because

for large ε the Gaussians become very peaked, and for small ε the Gaussians

become very flat. A well-chosen ε can allow for very accurate solutions (even more

accurate than polynomials in some cases) whereas a poorly chosen ε may provide

little or no accuracy. See Figure 7.1 for a demonstration of the effect ε can have

on accuracy.
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Figure 7.1: Solving (7.3) produces a good solution until ill-conditioning overwhelms
the accuracy, preventing the solution from reaching its polynomial limit. If we
could stably solve the system, we should find the “True Gauss Solution” curve.
Error is computed at 200 evenly spaced points in the domain.

Figure 7.1 was generated by solving the boundary value problem

uxx(x) =
− sinh(x)

(1 + cosh(x))2
, x ∈ (−1, 1), (7.4a)

u(x) =
sinh(x)

1 + cosh(x)
, x ∈ {−1, 1}, (7.4b)

with N = 16 collocation points located at the Chebyshev nodes

xk = cos

(
π
(k − 1)

N − 1

)
, 1 ≤ k ≤ N.

Phrased in terms of the general BVP language from earlier, this problem has
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components

L =
d2

dx2
, f(x) =

− sinh(x)

(1 + cosh(x))2
,

B = I, g(x) =
sinh(x)

1 + cosh(x)
,

where I is the identity operator, Iu = u. The solution named “Direct Gauss

Collocation” was computed by solving the system (7.3) using the standard Gaus-

sian basis. The poor behavior as ε → 0 is a result of the ill-conditioning in the

collocation matrix: for ε = 1 the condition number is O(1013), even though the

matrix is only size N = 16.

It has been proven [70] that this ill-conditioning is a symptom only of the choice

of basis, and not fundamental to the approximation problem. For interpolation

problems we have seen that the limit of Gaussian as ε→ 0 is well-defined, and is in

fact equal to the polynomial interpolant Chapter 4. We therefore expect that, in

the absence of ill-conditioning, the Gaussian collocation solution would approach

the “Polynomial Collocation” result; this polynomial solution was computed us-

ing the differentiation matrix approach from [168]. The “True Gauss Solution”

displayed above shows this desired behavior; we now explain how this solution is

computed without the ill-conditioning inherent in solving (7.3).

7.3.2 Collocation using the stable basis

We need to replace the kernel K(x, z) = e−ε2|x−z|2 with its truncated eigenfunction

expansion

e−ε2|x−z|2 =
M∑
k=1

λkφk(x)φk(z),

208



where λk and φk are

λk =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)k−1

, (4.4b)

φk(x) = γke
−δ2x2

Hk−1(βαx), (4.4a)

with Hk−1 the degree k − 1 Hermite polynomial. The value α is the global scale

parameter as defined in Section 4.3, and the auxiliary parameters

β =

(
1 +

(
2ε

α

)2
) 1

4

, γk =

√
β

2k−1Γ(k)
, δ2 =

α2

2

(
β2 − 1

)
,

are defined in terms of ε and α. The truncation value is assumed to satisfyM > N ,

although this assumption is reconsidered later. The valueM is chosen large enough

to satisfy a bound on the ratio λM/λN ; this choice is described in Section 4.4.2,

and is be discussed here. Regardless of the value of M , the eigenfunction series is

the optimal M -term approximation to the Gaussian in the L2(R, ρ) sense, where

ρ(x) =
α√
π
e−α2x2

is a weight function which localizes the L2 inner product [137].

In matrix form, this M -term series expansion can be written as

e−ε2|x−z|2 =

(
φ1(x) . . . φM(x)

)
λ1

. . .

λM



φ1(z)

...

φM(z)

 .

Substituting this into the matrix from (7.3), and noting that the operators L and
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B apply to the first kernel argument, converts that matrix to

Lφ1(x1) · · · LφM(x1)

...

Lφ1(xNL) · · · LφM(xNL)

Bφ1(xNL+1) · · · BφM(xNL+1)

...

Bφ1(xNL+NB) · · · BφM(xNL+NB)




λ1

. . .

λM



φ1(x1) · · · φ1(xN)

...

φM(x1) · · · φM(xN)

 .

(7.5)

This allows (7.3) to be written in block form asLΦL,1 LΦL,2

BΦB,1 BΦB,2


Λ1

Λ2


ΦT

L,1 ΦT
B,1

ΦT
L,2 ΦT

B,2

a =

fL

gB

 , (7.6)

where

(ΦL,1)j,k = φk(xj) for 1 ≤k ≤ N, xj ∈ Ω,

(ΦL,2)j,k = φk(xj) for N + 1 ≤k ≤M, xj ∈ Ω,

(ΦB,1)j,k = φk(xj) for 1 ≤k ≤ N, xj ∈ ∂Ω,

(ΦB,2)j,k = φk(xj) for N + 1 ≤k ≤M, xj ∈ ∂Ω,

(Λ1)k,k = λk for 1 ≤k ≤ N,

(Λ2)k,k = λk+N for 1 ≤k ≤M −N,

(fL)j = f(xj) for xj ∈Ω,

(gB)j = g(xj) for xj ∈∂Ω.

For terms such as LΦL,1 which appear in (7.6), the operator passes through natu-

rally using the matrix definitions above: (LΦL,1)j,k = Lφk(xj).

As discussed in [72], the ill-conditioning in this system exists primarily in the

diagonal matrix containing Λ1 and Λ2. The RBF-QR approach to alleviating this

210



ill-conditioning is described in Section 4.4 and converts the symmetric positive

definite system (7.6) to the unsymmetric (but still nonsingular) systemLΦL,1 LΦL,2

BΦB,1 BΦB,2


 IN

Λ2(Φ
T
L,2 ΦT

B,2)(Φ
T
L,1 ΦT

B,1)
−1Λ−1

1

 â =

fL

gB

 . (7.7)

The Λ2 and Λ−1
1 terms can be applied simultaneously, preventing overflow or un-

derflow issues. Because the Λ2 terms are exponentially smaller than the Λ1 terms

(refer to (4.4b)) there are no fears about this new formulation undergoing danger-

ous growth. The term (ΦT
L,2 ΦT

B,2)(Φ
T
L,1 ΦT

B,1)
−1 is generally computed using the

QR factorization (thus the name RBF-QR) to avoid mixing different orders of the

eigenfunctions during the decomposition. We refer to this eigenfunction approach,

joint with RBF-QR, as GaussQR, as we did for the interpolation problem in

Chapter 6.

The new coefficients â can be related to the standard Gaussian basis coefficients

a by

Λ1(Φ
T
L,1 ΦT

B,1)a = â,

but computing a is not recommended; the Λ1 matrix is severely ill-conditioned

because of the exponentially decreasing eigenvalues. Because of this, we solve for

and evaluate the interpolant only in terms of the stable basis {ψk}Nk=1:

u(x) = ψ(x)T â

= (ψ1(x) · · · ψN(x))â

= (φ1(x) · · · φM(x))

 IN

Λ2(Φ
T
L,2 ΦT

B,2)(Φ
T
L,1 ΦT

B,1)
−1Λ−1

1

 â. (7.8)

By applying the specific BVP operators and functions described above, solving the

system (7.7), and evaluating the solution with (7.8), we can generate the “True
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Gauss Solution” curve presented in Figure 7.1. That solution matches the standard

basis solution for larger values of ε, and achieves the expected polynomial limit as

ε→ 0. The global scale parameter α was set to 1 for these experiments.

7.3.3 Low-rank series approximate collocation

In order to produce the stable collocation solution in Section 7.3.2, the eigenfunc-

tion series must be chosen with M > N . As discussed in Chapter 4, it may be

possible to choose M < N when N is large or for ε ≪ 1. This is especially im-

portant in higher dimensions, where satisfying λM/λN < ϵmach for ϵmach ≈ 10−16

requires more eigenfunctions depending on the dimension of the problem.

This shift to an early truncation point M < N has a significant change on the

collocation problem, because it converts the full-rank system (7.6) into a rank M

system. Properties of this low rank system were discussed in Section 4.6 and Chap-

ter 5, although only for the scattered data approximation problem. The transition

follows the same pattern as before, except using a low-rank approximation to the

Gaussian. Starting from (7.5), and imposing the restriction M < N produces the

rank-M collocation systemLΦL

BΦB

Λ

(
ΦT

L ΦT
B

)
a =

fL

gB

 .
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We use similar block definitions as before, with

(ΦL)j,k = φk(xj) for 1 ≤k ≤M, xj ∈ Ω,

(ΦB)j,k = φk(xj) for 1 ≤k ≤M, xj ∈ ∂Ω,

(Λ)k,k = λk for 1 ≤k ≤M,

(fL)j = f(xj) for xj ∈Ω,

(gB)j = g(xj) for xj ∈∂Ω.

This system is still as ill-conditioned as the Λ matrix, so we redefine the system asLΦL

BΦB

 ã =

fL

gB

 , (7.9)

with

Λ

(
ΦT

L ΦT
B

)
a = ã.

This allows us to avoid inverting Λ, as long as we work in the new basis {φk}Mk=1,

which is just the first M eigenfunctions.

Because (7.9) is a system of N equations in M < N unknowns, there is likely

no consistent solution. Instead, ã must be determined in a least squares sense. We

have named this low-rank solution methodGaussQRr (recall Section 6.1) because

a regression system is solved instead of a square system. This method is tested on

the BVP

uxx(x) = −9π2 sin(3πx)− π2 cos(πx), x ∈ (−1, 1), (7.10a)

u(x) = sin(3πx) + cos(πx) + 1, x ∈ {−1, 1}, (7.10b)

usingN = 80 collocation points at the Chebyshev nodes. See Figure 7.2 to compare

this method to the other methods “Polynomial Collocation” and “Direct Gauss

Collocation” which we have previously used.
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(a) Using GaussQRr, for some ε values, we
can achieve many orders of magnitude more
accuracy than with polynomial collocation (of
degree N).
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(b) As is often the case, the polynomial so-
lution error is concentrated at the boundaries.
This contrasts with the evenly spread error for
GaussQRr.

Figure 7.2: The GaussQRr method is an effective approach to solving the BVP
(7.10a) for small ε. Parameter values α = 1 and M = .5N = 40 were used for
these experiments. Error is computed at 200 evenly spaced points in the domain.

In Figure 7.2a, we can see again that the Gaussian collocation solution com-

puted in the Gaussian basis becomes ill-conditioned very quickly, preventing it

from reaching its optimal accuracy. The GaussQRr method, performed here with

M = 40, can find solutions with many orders of magnitude more accuracy than any

directly computed solution. The “Polynomial Collocation” solution is displayed

only for reference; becauseM < N , we no longer expect the limit of the GaussQRr

solution to match the degree N polynomial result. Additionally, we cannot trust

solutions of GaussQRr for large values of ε because the eigenvalues (4.4a) decay

less quickly and our truncation assumption becomes less valid.

One of the positive outcomes of the GaussQRr solution is that the error is

more evenly distributed throughout the domain. Figure 7.2 shows that the ε = 1

GaussQRr pointwise error at all x ∈ [−1, 1] is roughly O(10−14), in contrast to the

“Polynomial collocation” pointwise error which is significantly greater near the

boundaries. The effect of point distribution is not discussed here as that is a much
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too complicated topic; studies on this include [69] for interpolation and [119, 149]

for PDEs. We note only that the points chosen here tend to be clustered near the

boundary, as suggested in [168] for the polynomial collocation technique.

7.3.4 A nonlinear time stepping example

Thus far we have presented only linear examples, but the Gaussian eigenfunction

expansion can also be exploited for nonlinear problems. When choosing M > N ,

this yields a nonlinear system of N equations, and when M < N , this yields a

nonlinear least squares problem in M unknowns. We consider an example using

GaussQRr in this section.

For this section we choose to solve the linear critical gradient equation intro-

duced in Section 3.4. As a reminder, it can be written in 1D as

ut − (κ(ux)ux)x = f, x ∈ (−1, 1), t > 0 (7.11a)

u = g, x ∈ {−1, 1} (7.11b)

u = u0, t = 0 (7.11c)

where the diffusivity κ is a function of the derivative ux

κ(ux) =
µ

2τ
log(cosh(2τux) + cosh(2τC))− µC +

µ− 2

2τ
log(2) + κ0 −B.

All experiments here use the parameter values

µ = 10, τ = 1, C = .5, κ0 = 1.

and B is just an integration constant so that κ(0) = κ0.

In a plasma physics setting, the source term f(x) = e−x would be used to cause

a pedestal to form at the magnetic separatrix. While this problem is useful for
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modeling magnetic confinement fusion, it is less useful for studying the accuracy of

the numerical scheme because there is no analytic solution for that source. Instead,

we choose a solution which has a pedestal-like shape,

u(x, t) = erf(4(1− e−t)x) + 1,

which also defines the functions

g(x, t) = erf(4(1− e−t)x) + 1,

u0(x) = 1.

For the GaussQRr approximation, we require our solution to take the form

û(x, t) =
M∑
k=1

ak(t)φk(x) = (φ1(x) · · · φM(x))


a1(t)

...

aM(t)

 = ϕ(x)Ta(t).

We choose N − 2 collocation points on the interior, and require xN−1 = −1 and

xN = 1 to satisfy the boundary conditions. This can now be substituted back into

(7.11a) to yield the system of nonlinear ODEs

ϕ(xj)
Tat(t)− ϕxx(xj)

Ta(t)
[
κ′
(
ϕx(xj)

Ta(t)
)
ϕx(xj)

Ta(t) +

κ
(
ϕx(xj)

Ta(t)
) ]

= f(xj, t),

for 1 ≤ j ≤ N − 2. At this point, we are no longer writing the problem in its

conservative form; this is hardly a problem though, since by using Gaussians we

have already assumed that the solution is in the Gaussian native space, and thus

has enough smoothness to justify the second derivative. Adding in the 2 equations

from the boundary conditions (7.11c),

ϕ(xj)
Ta(t)− g(xj, t) = 0,
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for j = N − 1, N gives a system of N differential algebraic equations.

We choose here to discretize in time using the backwards Euler formula, al-

though this choice is made more for simplicity than for any computational benefit.

This leaves us with the nonlinear system of equations

ϕ(xj)
T

[
an − an−1

∆t

]
− ϕxx(xj)

Tan
[
κ′
(
ϕx(xj)

Tan
)
ϕx(xj)

Tan +

κ
(
ϕx(xj)

Tan
) ]
− f(xj, tn) = 0 (7.12)

ϕ(xj)
Tan − g(xj, t) = 0

where, at each time step tn, the solution is an. The initial condition a0 is computed

by solving the GaussQRr approximation problem
ϕ(x1)

T

...

ϕ(xN)
T

a0 =


u0(x1, 0)

...

u0(xN , 0)

 .

At each time step tk we need to solve a nonlinear least squares problem with N

equations and M unknowns, the a(tk). For the initial guess at each time step, we

solve the system (7.12) with κ ≡ 1, which reduces the problem to a linear least

squares system. Error results are displayed in Figure 7.3.

These experiments confirm that, at least for this example, the separation of

spatial and temporal discretizations is appropriate. This so-called method of lines

approach has not affected the accuracy of the backward Euler method, which con-

verges with its standard order O(∆t). The convergence terminates when the error

introduced by the spatial discretization dominates, which occurs for increasingly

accurate solutions as N is increased. Moreover, the GaussQRr solver appears to

maintain its spectral convergence, subject to the accuracy bound imposed by the

time stepping. Obviously, we have only tested it here for relatively small N , so
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N=30, M=15
N=25, M=12
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Figure 7.3: The error in the time stepping is bounded either by the O(∆t) error
of the Euler discretization, or the GaussQRr accuracy. When the solution levels
off the collocation error has become the dominant term. For all experiments,
GaussQRr used the parameters M = .5N , ε = 10−2, α = 1. Collocation points are
evenly spaced in the domain, and the error is computed at the collocation points
at t = .5.

further study will be needed for more complicated time dependent problems. It

will also be useful to consider problems involving M > N , where the GaussQR

collocation technique results in square nonlinear systems at each time step.

7.3.5 Solving problems with a differentiation matrix

The examples up until now have only solved problems in one spatial dimension,

but with only minor notational corrections these techniques are valid in arbitrary

dimensions. Various technical considerations for moving to higher dimensions are

discussed in Chapter 4. In this chapter, the only significant change is the change

in the definition of eigenfunctions from their 1D form to their tensor product form.

This means that the kernel in Rd would now take the form

e−ε2∥x−z∥2 =
M∑
k=1

λmk
φmk

(x)φmk
(z)
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where x,z are d dimensional vectors andmk is a d-term multiindex stating the or-

der of the eigenfunctions in each dimension. The Rd eigenfunctions and eigenvalues

are defined as

φmk
(x) =

d∏
j=1

φ(mk)j((x)j).

This was introduced in Section 4.3.2.

Given this small change in notation, all the previous definitions carry over

naturally to higher dimensions; examples using this solution approach are discussed

in Section 7.4. This flexibility in higher dimensions is one of the great benefits of

working with meshfree kernel-based methods, but it does not necessarily mean

that this is the optimal way of solving BVP in multiple spatial dimensions using

Gaussian eigenfunctions. When presented with a suitably simple domain, it may

be computationally efficient to choose points on a structured grid. This allows

for 1D differentiation matrices to be combined to approximate higher dimensional

differentiation matrices.

This idea was discussed in [168] for polynomial collocation, where it is especially

useful because polynomial interpolation in 1D is better defined than in higher

dimensions. In [60] this approach was extended to RBF-based collocation methods.

The use of differentiation matrices for GaussQR approximation was developed in

Chapter 6.

Two representative structured grids in 2D are displayed in Figure 7.4, although

for this problem we consider only the Chebyshev tensor product grid in (x, y).

These grids use N2 points, with each “strip” of points containing N points. We

can take advantage of the structure of these grids by noting that each vertical strip

of points contains the same ordering of y values with the x value constant; this
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Figure 7.4: These 2D grids are actually structured copies of 1D grids. For any
fixed x (or y) the distribution of y (or x) points is identical.

allows the same differentiation matrix to apply on each vertical strip. A similar

statement can be made for each horizontal strip of points.

Assume that we have a differentiation matrix D which applies the differential

operator D to a vector of values evaluated at x1, . . . , xN . By placing the function

values u(x, y) in the vector uT in the order

( u(x1, y1) · · · u(x1, yN) u(x2, y1) · · · u(x2, yN) · · · · · · u(xN , y1) · · · u(xN , yN) ),

the differentiation matrix D can be applied in the x direction on the 2D grid with

the matrix vector product

(IN ⊗ D)u.

Here ⊗ represents the Kronecker tensor product [171]. We can obtain a similar

result in the y direction with the product

(D⊗ IN)u.

If we were to construct a second derivative operator D on N 1D Chebyshev nodes,

the Laplacian on the N2 2D Chebyshev tensor grid would take the form

IN ⊗ D+ D⊗ IN .
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By replacing rows associated with boundary values of (x, y) with the associated

boundary operator, we may solve boundary value problems with this differentiation

matrix approach. As an example, we solve the Helmholtz problem

∇2u(x, y) + ν2u(x, y) = f(x, y), − 1 < x < 1,−1 < y < 1 (7.13a)

u(x, y) = g(x, y), |x| = 1 ∪ |y| = 1 (7.13b)

using ν = 7. The true solution is chosen to be u(x, y) = J0(6
√
x2 + y2), which

necessitates that f(x, y) = 13J0(6
√
x2 + y2). Results are compared with N = 20

between tensor grid differentiation matrix solutions computed using polynomials

(labeled “Trefethen”), the standard Gaussian basis (labeled “Fasshauer”) and the

stable basis (labeled “GaussQR”). The error is plotted as a function of the shape

parameter in Figure 7.5.
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Figure 7.5: Polynomial (Trefethen), direct Gaussian (Fasshauer) and GaussQR
differentiation matrices are tested for solving (7.13a). As was true for the 1D
problems, the standard Gaussian collocation method fails in 2D for small ε, while
the GaussQR method allows the solution to reach its ε → 0 polynomial limit.
N2 = 400 collocation points are placed in the domain. For GaussQR, α = 1 was
used. The error is computed at the collocation points.

We can see here that, by using the Kronecker product on tensor style grids in

multiple space dimensions, we can effectively implement the GaussQR method for

BVP without being required to use GaussQRr, as was necessary for the interpo-

221



lation examples in Chapter 4. The ill-conditioning which would otherwise prevent

this solution technique from its optimal accuracy is no longer a problem, and the

computational cost is comparable to the polynomial collocation method. Because

the differentiation matrix is only of size N , but the BVP linear system is of size

N2, there is significantly less cost in using RBF-QR to compute the differentiation

matrix than in solving the full system.

7.4 The method of particular solutions using Gaussian

eigenfunctions

When solving boundary value problems, it is often advantageous to transfer the

problem to the boundary; the boundary is of lower dimension and requires less work

to discretize, and irregularly shaped domains are less of a problem. The actual

mechanism by which this is done can take multiple forms. Boundary element

methods [87] (also called boundary integral methods [118, 10]) involve solving a

related integral equation on the boundary, rather than a PDE on the domain.

Another approach, called the method of particular solutions (MPS), finds a

function which satisfies the interior condition and then solves a simpler approxi-

mation problem only on the boundary. The solution on the interior is often called

a particular solution, and it can be used in conjunction with the boundary element

method to form the dual reciprocity method [132]. This section considers the ap-

plicability of the Gaussian eigenfunction expansion, and their associated stability

for small ε, in finding particular solutions to boundary value problems.
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7.4.1 The method of fundamental solutions

The method of fundamental solutions (MFS) is a powerful technique for solving

homogeneous problems (i.e., with f(x) = 0) with a linear operator L whose fun-

damental solution G(x, z) is known. Its development is detailed in [55, 83]. We

briefly cover some of that material here.

Essentially, MFS converts a boundary value problem to an interpolation prob-

lem. We assume that the problem of interest fits the form

Lu(x) = 0, x ∈ Ω, (7.14a)

Bu(x) = g, x ∈ ∂Ω. (7.14b)

The fundamental solution is a kernel which satisfies

LG(x, z) = δ(x, z),

where δ(x, z) is the Dirac delta function. We know that LG(x, z) = 0 for x ∈ Ω if

z ̸∈ Ω, because δ(x, z) = 0 for x ̸= z. The assumption is therefore made that the

solution u is of the form

u(x) =
N∑
k=1

akG(x, zk) (7.15)

where the N kernel centers {zk}Nk=1 are placed outside Ω ∪ ∂Ω.

Automatically, the condition (7.14a) is satisfied, meaning the coefficients

{ak}Nk=1 must be determined by satisfying (7.14b). This is often accomplished

by choosing N collocation points {xk}Nk=1 on the boundary, and then solving the

linear system
BG(x1, z1) · · · BG(x1, zN)

...

BG(xN , z1) · · · BG(xN , zN)



a1
...

aN

 =


g(x1)

...

g(xN)

 .
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It should be noted that the choice of N source terms is not required; often it is

preferable to choose many fewer source terms than collocation points and solve

an overdetermined system. Furthermore, the actual choice of source locations is

sometimes also considered a variable in the problem. For simplicity, we only study

problems with a fixed set of N sources.

In the simplest case, when B = I (the Dirichlet boundary condition case),

this is a kernel-based interpolation problem, using the basis {G(·, zk)}Nk=1. More

complicated boundary conditions are handled just as easily, and greater accuracy

is expected than with a collocation method because of the absence of L. Since

L is a differential operator of higher degree than B, more accuracy is lost when

approximating it [176], making any solution involving both operators lower order

than a solution involving only B.

To demonstrate the impressive potential of the MFS, we apply it to the BVP

∇2u(x, y) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ π/2,

u(x, y) = ex cos(y), x = 0 ∪ x = 1 ∪ y = 0 ∪ y = π/2.

For comparison, we also solve this problem with the GaussQRr technique derived

in Section 7.3.3, and a fourth order finite difference (FD) scheme [97]. The N

MFS collocation points were chosen equally spaced on the boundary, and the

source centers were equally spaced on the circle with radius 2 and center x = .5,

y = π/4. The GaussQRr solution used parameters M = .8N , ε = 10−8 and

α = 1, and placed half its collocation points on the 2D tensor product Chebyshev

nodes and half on the Halton points [88]. This choice of points allows scattered

data throughout the interior of the domain, and well-structured points on the

boundary. The results are displayed in Figure 7.6.
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Figure 7.6: For the Laplace BVP, with Dirichlet boundary conditions, the MFS is
vastly superior to finite differences, and even outperforms GaussQRr significantly.

It is clear that both the MFS and GaussQRr solutions are converging exponen-

tially quickly, in contrast to the FD solution which is converging at its expected

algebraic order. The MFS solution is much more accurate than the GaussQRr

solution for fewer points. Part of this is the fact that GaussQRr places points

on the interior and the boundary, and MFS only places points on the boundary

because (7.14a) is satisfied analytically. Another factor contributing to the slightly

worse behavior of GaussQRr is the presence of L in the system, requiring higher

order derivatives which are approximated with less accuracy (recall Section 6.2.3).

These factors combined suggest that for sufficiently simple problems, the method

of fundamental solutions is still the king.

7.4.2 Finding particular solutions with GaussQRr

It is unsurprising that the method of fundamental solutions is more efficient than

GaussQRr collocation, because it has the advantage of considering a solution only

on the boundary. Unfortunately, the method of fundamental solutions is only ap-
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plicable on homogeneous problems. To counteract this shortcoming, the method

of particular solutions (MPS) was developed to allow for an inhomogeneous dif-

ferential equation [128]. Recently, the method of particular solutions has been

reconsidered and improved for solving eigenvalue problems on polygonal domains

[16]; here we only consider MPS for boundary value problems.

In the MPS setting, the general BVP takes the form

Lu(x) = f(x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,

as was the case in Section 7.3; we assume, as we did in Section 7.4.1, that the

operator L has the Green’s function G(x, z). For the MFS setting, f ≡ 0, meaning

that the solution could be built with the basis {G(x, zk)}NF
k=1, but now that f ̸= 0,

we assume the solution takes the form

u(x) = uF (x) + uP (x).

The two components now solve different problems:

• uP (x) solves the ill-posed BVP LuP (x) = f(x). If collocation with the basis

{K(x, zk)}NP
k=1 is used to solve this problem, this can be thought of as an

approximation problem on the interior, using the basis {LK(x, zk)}NP
k=1.

• uF (x) requires the particular solution, and solves the BVP

LuF (x) = 0 x ∈ Ω

BuF (x) = g(x)− BuP (x) x ∈ ∂Ω

using MFS. This too is an approximation problem, only on the boundary,

using the basis {G(x, zk)}NF
k=1.
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Because of the generally exceptional performance of the method of fundamental

solutions, the main source of error for MPS is the approximation of the particular

solution. This is a problem which may be remedied somewhat by the use of

GaussQRr to find a particular solution, because one major source of error (the ill-

conditioning for many values of ε) can be countered effectively. If we approximate

the particular solution with Gaussian eigenfunctions,

uP (x) =
M∑
k=1

bkφmk
(x)

we can find the coefficients {bk}Mk=1 by choosing NP points {xk}NP
k=1 ∈ Ω and solving

the approximation problem
Lφm1(x1) · · · LφmM

(x1)

...

Lφm1(xNP
) · · · LφmM

(xNP
)



b1
...

bM

 =


f(x1)

...

f(xNP
)

 . (7.16)

We can then determine the fundamental solution (of the form (7.15)) by choosing

NF collocation points {x̂k}NF
k=1 ∈ ∂Ω, NF source points {zk}NF

k=1 ̸∈ Ω ∪ ∂Ω, and

solving the linear system
BG(x̂1, z1) · · · BG(x̂1,zNF

)

...

BG(x̂NF
,z1) · · · BG(x̂NF

,zNF
)



a1
...

aNF

=


g(x̂1)

...

g(x̂NF
)

−

φm1(x̂1) · · · φmM

(x̂1)

...

φm1(x̂NF
) · · · φmM

(x̂NF
)



b1
...

bM

 (7.17)

given the previously determined {bk}Mk=1.

To demonstrate the viability of this method, we apply it to the modified
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Helmholtz problem

∇2u(x, y)− ν2u(x, y) = f(x, y), −1 < x < 1, −1 < y < 1 (7.18a)

u(x, y) = g(x, y), |x| = 1 ∪ |y| = 1 (7.18b)

using ν = 3 and true solution u(x, y) = ex+y. The fundamental solution for the

operator L = ∇2 − ν2I in R2 is

G(x,z) =
1

2π
K0(ν∥x− z∥),

where K0 is the modified Bessel function of the second kind of order 0. For this

example, we use ν = 3, and compare the solution using GaussQRr approximate

collocation to MPS using a GaussQRr generated particular solution.

The MPS solution uses NF uniformly distributed points on the boundary for

the MFS component, and NP ≈ NF Halton points on the interior for the GaussQRr

particular solution. Source points are placed quasi-uniformly at a distance ∼ 1/ν2

orthogonally away from the boundary. The GaussQRr collocation solution uses

the same NP points on the interior, and NB ≈ .25NF points uniformly on the

boundary. GaussQRr, for both the particular solution approximation and the

collocation, uses the parameters M = .5NP , ε = 10−5 and α = 1. For both

methods, the error is computed at 352 points uniformly distributed throughout

the domain. The results are displayed in Figure 7.7.

As we can see here, for NB < 140 MPS is at least 10 times more accurate than

GaussQRr, although the collocation technique does catch up soon after. Because

NB ≈ .25NF , NP ≈ NF , and M = .5NP , both methods have about the same cost:

• MPS has two costs: O(4/3NP (.5NP )
2) for the least squares solve of the

particular solution, and O(1/3N3
F ). This total cost is roughly O(1/3(N3

P +

N3
F )), or O(2/3N3

P ).
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Figure 7.7: For the problem (7.18a), MPS using GaussQRr particular solution can
be more effective than GaussQRr collocation. The x-axis is meant to represent
the cost of the solve, because the cost in both settings is dominated by the interior
solution.

• GaussQRr collocation requires a least squares solve of a system with NP+NB

rows and M columns. The cost of this is O(4/3(NP + .25NF )(.5NP )
2) which

is roughly O(5/12N3
P ).

This suggests that Gaussian eigenfunctions can be used to effectively approximate

particular solutions, at least for problem as relatively simple as the one we have

considered.

7.4.3 Incorporating collocation into the method of partic-

ular solutions

It was discussed in [176] that the accuracy of derivatives computed with an RBF

interpolant are of a lower order than the interpolant itself; roughly one order of

accuracy is lost per derivative taken. This was observed for GaussQRr approx-
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imations in Section 6.2.3, and suggests that approximations generated with the

basis {Lφmk
}Mk=1 are less accurate that those generated with the eigenfunction

basis. Because of this, more complicated problems which require more accurate

particular solutions may find MPS ineffective.

Collocation remains a viable option here, but it would be shameful to ignore

the existence of the Green’s functions given the excellent behavior of the method of

fundamental solutions on homogeneous problems. Fortunately, it is not necessary

to discard the MPS framework, because we can compute particular solutions using

collocation. By incorporating boundary conditions into our particular solution,

terms involving Bφmk
are included in the linear system, which benefits the accuracy

because B is of lower order than L.

This method differs slightly from the MPS described in Section 7.4.2.

• uP (x) solves the BVP

LuP (x) = f(x), x ∈ Ω,

BuP (x) = g(x), x ∈ ∂Ω,

using {xk}NP
k=1 ∈ Ω to handle the PDE and {x̂k}NB

k=1 ∈ ∂Ω to handle the BC.

• uF (x) requires the particular solution, and solves the BVP

LuF (x) = 0, x ∈ Ω,

BuF (x) = g(x)− BuP (x), x ∈ ∂Ω,

using MFS. This is still an approximation problem on the boundary using

the basis {G(x, zk)}NF
k=1 and the collocation points {x̃k

NF
k=1} ∈ ∂Ω.

The difference with the earlier MPS is that the points x̃k must be chosen differently

than the points x̂k, i.e., x̃k ̸= x̂j for 1 ≤ k ≤ NF and 1 ≤ j ≤ NB. If the boundary
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points were chosen the same for both the collocation and MFS, then the MFS would

be tricked into believing g(x) − BuP (x) = 0 everywhere because the collocation

would have already satisfied g(x̂) = uP (x̂).

To test this method, we’ll consider a more difficult problem than our previous

MPS test. The BVP now has mixed boundary conditions

∇2u(x, y)− ν2u(x, y) = f(x, y), (x, y) ∈ Ω, (7.19a)

u(x, y) = gD(x, y), (x, y) ∈ ΓD, (7.19b)

∂

∂n
u(x, y) = gN(x, y), (x, y) ∈ ΓN , (7.19c)

on the L-shaped geometry

Ω = {x ∈ (−1, 1), y ∈ (−1, 1) | x < 0 ∪ y < 0},

ΓD = {x ∈ [−1, 1], y ∈ [−1, 1] | x = −1 ∪ (x = 0 ∩ y > 0) ∪ (x > 0 ∩ y = 0)},

ΓN = {x ∈ [−1, 1], y ∈ [−1, 1] | y = −1}.

The setup of the problem, and the solution results are found in Figure 7.8.

Figure 7.8a explains the distribution of collocation and source points chosen for

the various solution methods. Three solution techniques are compared in Figure

7.8b: “MPS” uses GaussQRr interpolation on the interior to generate particular so-

lutions and MFS to enforce the boundary; “GaussQRr” uses GaussQRr collocation

from Section 7.3.3 to solve the full boundary value problem; “MPS+GaussQRr”

uses the GaussQRr collocation solution as the particular solution and the MFS to

enforce for the boundary terms. The “MPS+GaussQRr” solution is the most effec-

tive, and perhaps most noteworthy is that the quality of the particular solution is

so much more accurate after incorporating only a small number of boundary terms.

It can safely be assumed that the improvement comes in the particular solution
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(b) The MPS using the interpolation par-
ticular solution falters almost immediately,
whereas the GaussQRr solution converges
similarly to the earlier example. The in-
troduction of a small number of boundary
terms to the particular solution allows for the
“MPS+GaussQRr” solution to converge much
better than the “MPS”, and even better than
“GaussQRr”.

Figure 7.8: We have chosen the true solution u(x, y) = sin(x2 + y), and modified
Helmholtz parameter ν = 3. For this example, the refinement step of performing
MFS on the GaussQRr collocation solution provides as much as an extra order of
accuracy. GaussQRr techniques used the parameters M = .5NP , ε = 10−6 and
α = 1.

because that is the only difference between the “MPS” and “MPS+GaussQRr”

curves.

In some sense, by computing the particular solutions with collocation, we have

now shifted the burden of the solution from primarily on the boundary to primarily

on the interior. For the traditional MPS, the particular solution is not unique, and

the actual solution itself is governed by the MFS component. In this slightly

different setting, the solution is first computed with collocation, and then MFS

is used as a refinement technique to more effectively incorporate the boundary.

Research is needed to determine if the MFS refinement could have a detrimental

effect on the final solution, but in this one example, it only helps.
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The choice of boundary points seems especially relevant for this setup. Because

the GaussQRr method is performing approximate collocation (because M < NP +

NB), it is unlikely that g(x̂k) = uP (x̂k) and therefore even more unlikely that

g(x̃k) = uP (x̃k). Even so, if the MFS is tricked into thinking that the particular

solution is doing a very good job, when in fact it is only doing a good job on a select

set of points, then the MFS will not be improving the solution as much as it could.

No specific actions were taken here to ensure that the GaussQRr collocation and

MFS shared no boundary points, although Figure 7.8a suggests that at least some

of the points did not overlap. In the future, it may be possible to fix the source

points {zk}NS
k=1 and adaptively choose the MFS points {x̃k}NF

k=1 to account for the

locations which collocation least accurately solved by solving an overdetermined

system.

7.5 Summary

We have presented methods, based on the GaussQR interpolation scheme, for solv-

ing boundary value problems. Collocation techniques, drawn from standard kernel-

based collocation, proved useful for overcoming the traditional ill-conditioning as-

sociated with the flat RBF limit. The GaussQRr interpolation technique was also

considered as a method for generating particular solutions within the Method of

Particular Solutions. GaussQRr collocation proved even more useful for generating

particular solutions, allowing for an accurate solution with a reasonable amount of

work. Adding these tools to the multiphysics infrastructure provides BVP solvers

which can solve appropriate systems with high levels of accuracy, and couple ef-

fortlessly to other simulations.
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Looking ahead, we are interested in determining, for the collocation setting,

the effect of adding a polynomial basis on the optimal ε value for the solution.

In Section 7.3.1 we introduced the idea, but dropped it to focus on the GaussQR

replacement of direct Gaussian collocation. Given that the ε → 0 limit produces

polynomials, it is not necessary to include a polynomial term in the approximation

to reproduce a truly polynomial solution. Even so, if a polynomial term were

present, it might change the optimal ε curve, and potentially also the optimal

error that can be achieved. This research would be relatively straightforward to

conduct, and would benefit many applications which already include polynomial

terms in their solutions.

The same uncertainties which stymie the GaussQR technique in the interpola-

tion setting are present in the solution of boundary value problems. Specifically,

the free parameters ε, α and M need to be chosen correctly to take advantage

of the potentially optimal accuracy available to kernel methods. Thus far, this

work serves only as a proof of concept, and significant research needs to be done

to provide good parameter values for general applications. Possible avenues for

making informed parameter choices include extending existing statistical methods

for determining ε (such as cross-validation and maximum likelihood estimation)

to include α and M ; this topic is addressed to some degree in Chapter 8. It may

also be possible to study the parameter choices as N increases, and to run many

experiments for smaller N to make a smarter decision for larger N . This lack of

analytic support regarding parameter choices is one of the fundamental stumbling

blocks for advances in kernel-based methods.

Computational cost is also of great significance to any practical application,

and much work needs to be done to make these methods useful in a high per-
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formance environment. The presence of dense matrices, as is often the case in

kernel-based methods, is magnified by the need to perform a QR factorization for

both GaussQR and GaussQRr. This is mitigated somewhat in the tensor grid set-

ting discussed in Section 7.3.5, but for those sparse systems, appropriate iterative

solvers [44] and preconditioning schemes need to be developed. Work has been

done for general RBFs to incorporate tree-code [110] and FMM methods to allow

for faster kernel evaluations (mentioned in Section 5.6), and it is likely that ap-

plying these methods to the GaussQR framework will improve the computational

prospects. The preconditioning approach used in Section 6.3.2 may be a useful

tool in this setting as well.
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CHAPTER 8

STATISTICAL INFERENCE FOR CHOOSING EIGENFUNCTION

PARAMETERS

8.1 Introduction

The work involving kernel-based methods in this thesis has been presented to

solve, at least in some circumstances, the ill-conditioning issue associated with

certain parameterizations of Gaussian kernels. Many of the solution curves we

have produced (see e.g., Figure 4.1, Figure 6.3, Figure 7.1) indicate the existence

of an optimal ε parameterization. Unfortunately, we have not suggested how these

optimal ε values can be determined prior to computing the actual error in the

interpolation.

The problem of optimal parameterization is one that plagues users of kernel

methods. Some kernels, such as polyharmonic splines, circumvent the problem

by choosing kernels without a shape parameter. For a few circumstances, we

know the optimal value of ε; for instance, when trying to reproduce a polynomial

using Gaussians, the optimal ε = 0. Most problems are not as simple, and to

truly achieve the excellent performance expected of kernel-based approximation

theory, we need to develop a method for determining ε which works well for general

problems.

Some research has been done for determining shape parameters for specific

applications (see [73, 158, 111, 166, 173]). Other research has tried to isolate a

single kernel or type of kernel and consider the effect for general problems (see

[74, 145, 65, 150]). Our goal here is not to solve this problem, but rather to discuss
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the validity of existing methods in the context of the new stable basis.

The primary methods we consider here involve statistics, and as such we use

Section 8.2 to introduce the scattered data interpolation problem from a Gaussian

processes perspective. Section 8.3.1 covers the current statistical methods used

to parameterize kernels, and studies how these methods function once the stable

Gaussian basis is implemented. These methods involve a determinant evaluation,

which can be difficult to compute in some circumstances, so a new technique for

approximating determinants is developed and tested in Section 8.4. Section 8.5

combines some of the results from Section 8.3.1 and Section 8.4 to stably perform

a stochastic simulation to approximate a distribution describing the likelihood of

a given ε producing the data of the problem.

8.2 Kernel-based approximation through Gaussian pro-

cesses

Thus far we have thought of kernel-based approximation as a deterministic tech-

nique. If we want to introduce stochastic error into our data, or assume that our

given data has stochastic noise in it, we would benefit from rephrasing our prob-

lem in terms of Gaussian processes. For a thorough discussion about radial basis

functions and Gaussian processes, see [163] or [137].

Suppose we want to fit the model

Y (x) = Z(x) +

Nf∑
k=1

βkfk(x) (8.1)

to data (xk, yk), 1 ≤ k ≤ n; we assume here that the output values yk are scalar,

although more complicated settings are possible. The fk terms are deterministic
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functions - eg. they may be polynomials if our model expects polynomial repro-

duction. Z is a Gaussian Process with zero mean and covariance

Cov(Z(u), Z(v)) = σ2K(u,v), (8.2)

where K : Rd×Rd → R is the covariance kernel. Compare the structure of this Y

process to the collocation solution (7.1): both have kernel components added to

other terms which are specific to the problem at hand.

We restrict K(u,v) = ϕ(ε∥u − v∥) to be a radial basis function, with ε the

shape parameter. σ2 is the process variance. Note that at times we refer to

the points xk as the design of the process or experiment, in keeping with the

nomenclature from statistics literature. For simplicity, we ignore the regression

terms by setting βj ≡ 0 – this means we presume the data (xi, yi) is a realization

of Z. This same choice was made in Section 7.3.1 so that we could focus only on

the kernel component. Choosing to include the deterministic functions is useful in

some applications, or when ϕ is chosen to be conditionally positive definite.

Given a shape parameter ε, the best linear unbiased predictor for a new x̂ is

ŷ(ε) = k(x̂)TK−1y (8.3)

where (K)i,j = K(xi,xj) is the covariance matrix, y is a vector of the design values,

and

k(x)T = (K(x,x1), · · · , K(x,xN))

is the vector of covariances between x and the design points.

As discussed in Chapter 4, the choice of shape parameter ε greatly affects the

accuracy of the resulting RBF interpolant. As an example, consider input data

generated by evaluating (1 + x2)−1 at 6 evenly space points between 0 and 1. We
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compare the unique polynomial interpolant of these points to the Gaussian RBF

interpolant for various values of ε in Figure 8.1. Note here that the RBF-Direct

method was used, rather than GaussQR, because the optimal value could be found

for this very small problem without the eigenfunction expansion.
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Figure 8.1: Near ε = 1, the Gaussian interpolant reaches its optimal accuracy,
although we would not know that if we did not have the true solution. For this
problem, N = 6 evenly spaced points on [0, 1] are used as input, the function of
interest is f(x) = 1/(1 + x2), and the error is tested at 100 evenly spaced points
in the domain.

It is apparent in that graph that for some values of ε, the RBF interpolant

outperforms the simple polynomial interpolation. Of course, finding the best ε

is not a straightforward problem; even defining what best means is a subjective

decision, and several methods for defining and finding a good ε value are discussed

in Section 8.3.1. One definition which is not practical is the actual error associated

with the interpolant, because many applications do not have a true solution with

which to compare. Thus, despite the fact that we now “know” the optimal shape

parameter for this example, this metric is not useful in general.

One way forward is to take advantage of our assumption that the data is gen-

erated by a Gaussian process. For all Gaussian processes, the likelihood of the
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parameters given the data is

L(ε, σ2) = p(ε, σ2|y) ∝
exp

(
− 1

2σ2y
TK−1y

)
(σ2)N/2

√
det(K)

.

See [130] for a derivation. Because of the special structure of this function, σ2 can

be analytically integrated out to find

M(ε) =

∫ ∞

0

L(ε, σ2)dσ2 = (yTK−1y)−N/2 det(K)−1/2, (8.4)

which is the function that we want to maximize. Note thatM can be interpreted as

p(ε|y), the profile likelihood over all σ2. The process of maximizing that particular

function is threatened by over/underflow, so instead we try to minimize a scaled

version of its negative logarithm, which is

M̃(ε) = log(yTK−1y) +
1

N
log det(K). (8.5)

Each evaluation of M̃ requires a linear solve and a determinant evaluation. In

Section 8.2.1, some of the properties of the determinant of a symmetric positive

definite matrix are be discussed. In Section 8.2.2 we briefly discuss some iterative

techniques used to solve ill-conditioned linear systems arising in RBF interpolation.

8.2.1 Determinant review

A standard definition of the determinant of a matrix A is

det(A) =
n∏

i=1

λi, (8.6)

where λi is the i
th eigenvalue of A. This is not the only definition, but it suits our

purposes. The standard technique for computing the determinant is by a decom-

position of the matrix. For instance if you already have the Cholesky factorization
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of A = LLT then the determinant can be computed as

det(A) = det(L) det(LT ) = det(L)2.

Because L is a triangular matrix its eigenvalues are all on its diagonal, so once you

have the decomposition of A, computing its determinant is trivial. Error does exist

in the Cholesky factorization process, so this does not suggest that the determinant

can be found without any error. Rather we are expressing that if the matrix A has

already be factored, that the determinant of the factors can be used to find the

determinant of A. If however there is no stable way to factor the matrix, finding

the determinant may be more troublesome.

Few modern numerical algorithms require the computation of the determinant

because doing so is often more computationally expensive than other methods. As

mentioned in Section 8.2, the most common appearance of determinants today are

in the density function for the multivariate Normal distribution

L(x;µ,K) =
exp(−1/2(x− µ)TK−1(x− µ))√

(2π)N det(K)
.

Evaluating these likelihood functions, or the Kullback-Leibler divergence [46, 17]

associated with Normal distributions, requires a determinant evaluation. Many

statistical settings accompany the evaluation of det(A) by a linear solve A−1b -

thus if a factorization is used to find A−1b, det(A) is found at no additional cost.

Conversely, if the linear solve is conducted in an iterative fashion there may be

no determinant-revealing decomposition; in this case computing the determinant

must be done separately. Ideally, finding the determinant in this case should have

the same complexity as the linear solve.
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8.2.2 Iterative methods for RBF problems

Any iterative linear solver for symmetric positive definite systems would theoret-

ically be appropriate for the systems associated with positive definite RBF inter-

polants. The ill-conditioning problems discussed in Chapter 4 make many iterative

methods impractical for solving RBF linear systems, both because of the lack of

reliable preconditioning, and because the matrices may not be positive definite at

machine precision.

More than 50 years ago, a regularization technique for solving ill-conditioned

symmetric positive definite linear systems was developed in [139]. It resurfaced in

[131] and while it does not have an official name, we call this Riley’s Algorithm. We

mention this algorithm to suggest that, while methods for solving ill-conditioned

systems exist, they rarely involve the decomposition of the matrix.

Assuming the goal is to solve the system Ax = b where A is SPD and ill-

conditioned, Riley’s algorithm solves a regularized system involving the matrix

C = A+ µIN µ > 0 (8.7)

which can be factored safely with the Cholesky decomposition. If all we concerned

ourselves with was solving Cy = b this would be ridge regression or Tikhonov

regularization. But we can take another step by noting the identity

A−1 =
1

µ

∞∑
k=1

(µC−1)k,

which gives us a simple iteration method for approximating the solution to Ax = b

xi+1 = y + µC−1xi (8.8)

where y = C−1b. This technique allows us to find x by only performing a stable

Cholesky decomposition on C.
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Choosing the regularization parameter µ to maximize stability but minimize

the summation length is not a straightforward procedure, but we won’t concern

ourselves with it here. What we do need to be concerned with is that evaluating

(8.5) requires both K−1y and det(K). Unfortunately, using Riley’s algorithm for

the linear solve does not provide us with a determinant revealing factorization,

meaning that the determinant must be computed separately.

A more recent iterative solver for ill-conditioned and symmetric positive semi-

definite linear systems is MINRES-QLP [44]. This technique allows for more stable

solution to the system which previously was subject to unexpected results when

using CG and MINRES. Given the existence now of a bestM -term approximation

to the Gaussian using (4.8), it is possible to perform fast matrix-vector products

involving K, which makes MINRES-QLP a viable option. Work on this with Sou-

Cheng Choi is in progress, but it is mentioned here to indicate that iterative solvers

for RBF systems are more practical than they previously were.

8.3 Kernel parameterization

As described in Section 8.2, there is a significant difference between knowing that

an “optimal” ε value exists, and being able to find it. In Figure 8.1, as well as

figures from Chapter 4 and Chapter 7, it is apparent that a good choice provides

significant advantages, and a poor choice adversely affects the solution accuracy.

We briefly introduced the use of maximum likelihood estimation, and this section

explains that method, along with other methods which have been developed for

finding an optimal ε. After describing these methods, we study the impact of the

eigenfunction expansion in allowing for their stable evaluation.

243



8.3.1 Existing methods for kernel parameterization

Members of the RBF and kernel-based approximation community have struggled

for years to sufficiently define and determine optimal shape parameters for their

approximation and collocation problems. At times, the shape parameter has been

chosen to balance the error saturation phenomenon discussed in [23]. The kriging

variance, or power function [60], can be used to guide the choice of ε because of

its presence in the native space error estimates; the power function evaluated at a

point x is

PK,χ(x) =
√
K(x,x)− k(x)TK−1k(x),

where K comes from the interpolation system Kc = y, k(x) was defined in (4.13),

and PK,χ denotes the fact that the function depends on the design χ = {x1, ...,xN}

and the kernel K. Because solutions using the standard basis incur severe ill-

conditioning for ε → 0, sometimes the ε is chosen as part of a trade-off principle

[151]: pick ε as small as possible such that the system can still be solved with some

accuracy. In [113], the authors studied the optimal ε values as a function of N ,

suggesting that tests run with small N can produce better ε guesses for large N ,

where such tests are impractical. This approach also proved useful in Section 6.3.1,

where optimal ε ranges for small multiphysics simulations suggested the optimal

ranges for larger problems.

There is another branch of techniques based on the statistical interpretation

of the problem through Gaussian processes rather than the approximation the-

oretic approach we have considered before this chapter. These techniques make

assumptions about the underlying nature of the problem (essentially that the data

we see is a realization of the Gaussian process defined in (8.1)) and proceed to

optimize some statistic involving ε based on that assumption. Cross-validation
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[4] is one such technique, where a learning set is chosen to create an interpolant,

whose error on the validation set is used to calibrate the choice of ε. This approach

gained popularity after leave-one-out cross validation (LOOCV) was proven to be

of manageable cost when implemented as described in [140].

Another technique involving statistics was suggested earlier in Section 8.2

while we were introducing the concept of Gaussian processes. The likelihood

of the covariance kernel with shape parameter ε having generated the data

{(x1, y1), ..., (xN , yN)} can be computed using (8.4). Therefore, by maximizing

that likelihood function, we choose the ε which is most likely to have generated

that data, assuming all our other assumptions were true. This likelihood function

is incorporated into the posterior distribution in Section 8.5, to allow us to perform

more elaborate studies of the effect of ε.

8.3.2 Using eigenfunctions within parameterization schemes

In Chapter 4 we showed that the ill-conditioning present in Gaussian interpolation

can be circumvented by rephrasing the problem in a stable basis derived from the

eigenfunction expansion described in Section 4.3. The ε parameterization strategies

of the previous section need to be reevaluated within the context of the stable basis

to determine which methods are feasible.

For instance, the power function requires the quadratic term k(x)TK−1k(x),
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which we could rewrite using the stable basis as

k(x)TK−1k(x) = k(x)T (ΨΛ1Φ
T
1 )

−1k(x)

= k(x)TΦ−T
1 Λ−1

1 Ψ−1k(x),

where we have assumed the truncation point M > N . Here, K = ΨΛ1Φ1 can be

thought of as a sort of ”Hilbert-Schmidt SVD”, where Φ1 and Ψ are populated by

the functions related to the Hilbert-Schmidt eigenfunctions, and Λ1 is a diagonal

matrix populated by the first N Hilbert-Schmidt eigenvalues. Recall that these

matrices were defined in Section 4.4.

We can assume, after properly choosing α and scaling the data, that computing

k(x)TΦ−T
1 and Ψ−1k(x) can be done stably; were this not the case, then the ψ

basis would not produce the stable results seen earlier. We cannot, however, assume

that Λ1 can be inverted stably, despite the fact that it is a diagonal matrix with

entries which can be inverted analytically.

The problem is not in computing the inverse, but rather in applying it to a

vector such as Ψ−1k(x). Because that vector is computed through a linear solve,

it has terms bounded from below on the order of ϵmach. The matrix Λ1 has no such

restrictions, which causes Λ−1
1

[
Ψ−1k(x)

]
to have entries which are arbitrarily large

as ε→ 0. In exact arithmetic, the terms in Ψ−1k(x) would continue to shrink with

those of Λ1, but because of roundoff error, this is impossible. This is problematic

because, in exact arithmetic, 0 ≤ k(x)TK−1k(x) ≤ 1, but this computed result

may be greater than 1, producing a complex (and therefore meaningless) kriging

variance. A similar issue arose in Section 5.4.3 where ill-conditioning prevented

the stable solution using the fast QR solver.

This result demonstrates that the stable basis may not provide a stable method
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for evaluating the kriging variance as ε→ 0. On the opposite side of the spectrum,

the so-called tradeoff principle is no longer relevant in the context of the stable

basis, because we no longer need to worry about reaching the conditioning limit

for the interpolation. There may still be some application for the conditioning

tradeoff to determine α, but no longer for ε.

For the cross-validation option, the existence of the stable basis both opens and

closes doors. On the one hand, the interpolant can now be computed stably for

all values of ε, meaning that cross-validation is now applicable in regions where it

was previously unreliable. Conversely, because we are no longer inverting the sym-

metric positive definite matrix K to compute the interpolant, we can no longer use

Rippa’s trick [140] to conduct the LOOCV in O(N3) operations. Without a simi-

lar, and as yet unknown, trick in the stable basis, LOOCV would be prohibitively

expensive.

One alternative would be to consider some other form of cross-validation which

requires fewer linear solves. If 50%, or 67%, of the data were used as the training

set then only a handful of systems would need to be solved to test each ε. While

perhaps not as systematic as LOOCV, this technique would still provide some

statistical support for choosing one ε value over another.

Figure 8.2 demonstrates the viability of cross-validation for the stable basis; the

function f(x) = sin(2πx) is considered on x ∈ [−1, 1] using N = 24 evenly spaced

points. GaussQR uses α = 2 and the training sets are chosen to be as uniformly

distributed as possible, rather than the standard random approach. While none of

the cross-validation methods is perfect at predicting the optimal ε, the two methods

using the stable basis are more closely centered around it. LOOCV suffers from

ill-conditioning too early and makes unreliable predictions in the optimal ε region.
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Figure 8.2: Leave half out and leave 1/3 out cross-validation methods using
GaussQR are compared to LOOCV. The LOOCV suffers from the standard ill-
conditioning, whereas the cross-validation methods using the stable basis predict
with some accuracy where the optimal ε region is.

The final topic to consider here is the application of the eigenfunction expansion

to maximum likelihood estimation. First, recall the negative log-likelihood function

M̃(ε) = log(yTK−1y) +
1

N
log det(K) (8.5)

which we want to maximize. The determinant term is tricky, because it generally

requires a decomposition of K, which is dangerous in the stable basis. We could

choose to use the Hilbert-Schmidt SVD described earlier to instead compute

log det(K) = log det(ΨΛ1Φ
T
1 )

= log
[
det(Ψ) det(Λ1) det(Φ1)

]
.

This is safer to compute because it involves two stable matrices, and we already

have the factorization Φ1 = QR1 which was computed while forming Ψ. The

determinant of Λ1 can be determined analytically, so only det(Ψ) requires a new

factorization.

While this seems like an ideal result, it does force us to use the GaussQR formu-

lation to compute log det(K). If we were instead interested in using the GaussQRr
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(low rank M < N series) formulation, we would be left without the Hilbert-

Schmidt SVD. Because of this, we develop a statistical method for approximating

log det(K) in Section 8.4 when the low rank series is preferred.

Computing log(yTK−1y) incurs similar problems as the power function did,

because applying the Hilbert-Schmidt SVD,

log(yTK−1y) = log((Φ−1
1 y)

TΛ−1
1 (Ψ−1y)).

yields the same ill-conditioning in the Λ−1
1 term. Because there are no purely

mathematical restrictions on this value, unlike the power function, we may be able

to at least approximate this value to some accuracy.

In the same way that the truncated SVD of a matrix can be used to regularize

the linear system, we could also consider the truncated Hilbert-Schmidt SVD to

approximate K−1. We would replace Λ−1
1 with Λ+

1 , where

(Λ+
1 )k,k =


(Λ−1

1 )k,k if (Λ1)k,k > τ

0 else,

for some tolerance τ . In doing this, the product Φ−T
1 Λ+

1 Ψ
−1 would no longer be

symmetric positive definite, as is guaranteed in exact arithmetic. By truncating

early though, we gain a more stable method to compute K−1 to at least some

accuracy.

When computing M̃ using this truncated Hilbert-Schmidt SVD, it may be

necessary to likewise truncate the determinant computation. If log(yTK−1y) were

truncated and − 1
N
log det(K) were allowed to grow ever larger, the balance between

the terms may be compromised. See Figure 8.3 for the likelihood as computed

using both the Hilbert-Schmidt SVD and the truncated version. The problem

is the same as was considered for cross-validation, and the figure shows that the
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truncated MLE more closely follows the limiting behavior of the interpolant as

ε→ 0. This likelihood function evaluation arises again in Section 8.5.
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Figure 8.3: While not a perfect predictor, the log-likelihood function is a useful
tool for helping choose a good ε. Note that the MLE GaussQR, without trunca-
tion, continues to increase as ε → 0, whereas the truncated version (and the true
solution) reach a limit. The tolerance τ = 10−14.

8.4 Approximating the determinant

As mentioned in Section 8.2.1, the determinant of the covariance matrix K needs

to be computed in order to evaluate the log likelihood function (8.5). When a

Cholesky decomposition is used to compute K−1y, the determinant can be com-

puted using the factors. If the solution is found iteratively using a technique from

Section 8.2.2 (or some other method), no such factors exist, and the determinant

must be computed separately. This section introduces an algorithm which approx-

imates the derivative of symmetric positive definite systems.

This algorithm is first described in [11] for a matrix A = In − αD. D is a

matrix whose eigenvalues are within (−1, 1) and α ∈ (−1, 1) is a parameter in the

model they were studying. For this case, the algorithm as follows approximates

the log-determinant of A.

250



Algorithm 6 Barry/Pace log-determinant algorithm

Given D ∈ Rn×n, α
Choose m, p > 0
for k from 1 to p do
x← N(0, In)

vk ← −n
∑m

k=1 x
TDkx/xTxαk

k

end for
return mean(v)

At the end of this algorithm, we have a p-vector v and we can generate a 95%

confidence interval for the true determinant [v̄ − F, v̄ + F ] where v̄ = 1/p
∑

k vk

and

F =
nαm−1

(m+ 1)(1− α)
+ 1.96

√
s2(v)

p
. (8.9)

s2(v) is the sample variance.

This algorithm is a direct extension from the power series representation

log(1− x) = −
∞∑
j=1

xj

j
x ∈ [−1, 1)

where we use the Rayleigh quotient to extract the eigenvalues. A proof of conver-

gence is provided in [11] but for a basic understanding of why this works, we can

think about the Schur decomposition of D

D = QΛQT =

q1 · · · qn



1− λ1

. . .

1− λn




qT1
...

qTn

 ,

where Q is orthonormal, and Λ is diagonal with ith value 1−λi. When we compute

xTDx we are indirectly computing y = QTx which has the same distribution

because Q is an orthogonal matrix. Because y ∼ N(0, In), then

yTΛy =
n∑

i=1

y2
i (1− λi), (8.10)
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so each inner product yields a weighted sum of the eigenvalues. Taking the quotient

xTDx/xTx turns the coefficients in that summation into random variables with

properties that allow us to derive (8.9). QTx can be thought of as the vector

whose ith value is the amount of x which points in the direction of λi. If we choose

enough x vectors which point randomly in all the directions then we should hit all

the eigenvalues equally.

8.4.1 Extending the determinant algorithm for RBF ma-

trices

Now that we have a technique which works on special matrices (for spectral radius

ρ(D) < 1 we need the eigenvalues of A between 0 and 2), what can we do to extend

its usefulness to more general matrices?

• How can we use this algorithm on A whose eigenvalues are not in the accept-

able range?

• Can we test for convergence before terminating the algorithm?

• Are there changes for this to be implemented efficiently in a vectorized setting

(such as Matlab)?

While we are going through these adaptations, keep in mind the following thought:

The closer the eigenvalues are to ±1, the slower the convergence. This is a direct

analog to the fact that the log series converges very slowly when the argument is

far from the center, in that case 0.
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Scaling the matrix

Suppose we know the largest eigenvalue of A is λ1: that means that the largest

eigenvalue of A/λ1 is 1. If we call D = In − A/λ1,

log det(A) = log det(λ1(A/λ1))

= n log λ1 + log det(A/λ1)

= n log λ1 + log det(In − D)

So now we are able to use the algorithm on D and add n log λ1 to the result. This is

the most obvious way to adapt A to an acceptable matrix. It has the disadvantage

of scaling all the eigenvalues of the matrix by λ1. If all the eigenvalues are near λ1

then this is desirable.

Unfortunately if there is only one eigenvalue of A outside the region, then the

other eigenvalues are scaled unnecessarily. This is unacceptable if the other eigen-

values of the matrix are close to zero, because scaling those brings the associated

eigenvalues of D closer to the edge of convergence. If those eigenvalues were already

slowing up the series convergence, they are even more troublesome now.

Consider the following RBF example: we want to use Gaussians to interpolate

with ε = .1 and centers x = 0 : .2 : 1. The resulting matrix looks like

A =



1.0000 0.9996 0.9984 0.9964 0.9936 0.9900

0.9996 1.0000 0.9996 0.9984 0.9964 0.9936

0.9984 0.9996 1.0000 0.9996 0.9984 0.9964

0.9964 0.9984 0.9996 1.0000 0.9996 0.9984

0.9936 0.9964 0.9984 0.9996 1.0000 0.9996

0.9900 0.9936 0.9964 0.9984 0.9996 1.0000


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and its eigenvalues are

6.0× 100

1.4× 10−2

1.2× 10−5

5.5× 10−9

1.4× 10−12

2.6× 10−16

which is just dismal. The confidence interval for this matrix is still [v̄−F, v̄+F ],

but F is now

F =
n(1− γ)m−1

(m+ 1)γ
+ 1.96

√
s2(v)

p
. (8.11)

where γ = λn/λ1. Even for this 6× 6 problem, it takes a huge m to counteract the

incredibly small γ. After m = 1000000 there still is not convergence - there would

be no convergence even if the scaling were unnecessary, but the division by λ1 ≈ 6

still hurts.

While scaling allows the problem to be handled by the algorithm, it is only

appropriate for a matrix whose eigenvalues are on the same order. Of course if a

matrix has eigenvalues which are near each other but are not near zero, there is

no ill-conditioning so the determinant can be found by a factorization. This seems

to make scaling the matrix an ineffective technique; we will revisit it later in an

acceleration framework.

Orthogonal draws

The problem with the tactic of scaling the spectrum to (−1, 1) is that the entire

system is punished for the delinquency of a small subset. If possible, it would seem
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more logical to handle the offending eigenvalues separately so as to not slow down

the convergence of the series by scaling. One way to do this is by a technique

called orthogonal draws.

Suppose we know that there are only nℓ ≪ n eigenvalues of D = In−A which are

less than -1. If we had the orthogonal invariant subspace W of those nℓ eigenvalues

(in Λℓ), we could ensure that the draws x are from W⊥. This can be seen quickly

by referring to (8.10) and noting that if x ∈ span(W ⊥) the y2
i associated with

the problematic eigenvalues will be 0. To visualize this, let’s return to the Schur

decomposition of D

D = QΛQT =

W W⊥



Λℓ

Λ−




WT

(
W⊥)T

 .

Now we define a symmetric projection matrix

P = In −WWT

and consider

PDP = (In −WWT )VΛVT (In −WWT )

=

0 W⊥



Λℓ

Λ−




0

(
W⊥)T

 .

From this it is obvious that the only nonzero eigenvalues of matrix PDP are

in Λ− which are within the acceptable range to be used in the algorithm. This

means that we do not have to worry about drawing x from W⊥ because we can

form PDP and use it in the algorithm with standard x ∼ N(0, In). The output
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will be log det(Λ−), to which we will have to add log det(Λℓ), determined when W

was found.

Finding W can be done with a simple subspace iteration or with the Lanczos

procedure. Of course, we will not know beforehand how many eigenvalues of D are

less than -1. As a result, we will need to make a guess of nℓ and if the smallest

eigenvalue associated withW is less than -1, a larger subspace will need to be found

until W satisfies the requirements. Once an appropriate W is found, Computing

PDP can be done as a preprocessing step of O(nℓn
2) and then each multiplication

requires only O(n2), or each time PDPx needs to be computed it can be done in 3

matrix-vector products with total complexity O(n2) +O(nℓn).

Another aspect to consider is how we can combine scaling with orthogonal

draws to speed up convergence. Let’s look at the RBF generated matrix with

ε = .01 for

K(xi, xj) = (1− ε(∥xi − xj∥))+ (8.12)

in 1D with 30 evenly spaced points between 0 and 1. See [60] for a proof that this

matrix is SPD. The spectrum that Matlab finds for this matrix is displayed as a

histogram in Figure 8.4.

Because only one eigenvalue of K is greater than 1 (and thus only 1 eigenvalue

of D less than -1) we only need to find the subspace of that one eigenvalue. If,

however, we found the invariant subspace of the 5 largest eigenvalues, the only

eigenvalues remaining are within (.01, .00005). Using the algorithm on this matrix

will converge in a reasonable time, but using the algorithm on a matrix K whose

eigenvalues are within (1, .005) will converge even more quickly.

Luckily, we have a technique for scaling the eigenvalues of a matrix; although

256



−5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

40

log
10

(eigenvalues)

fr
eq

ue
nc

y

Distribution of the Eigenvalues of the Matrix

Figure 8.4: Only 1 eigenvalue of K is greater than 1

previously we used it to reduce the size of the spectrum. Consider the following

idea to find det(K):

1. Use subspace iteration to find the ℓ largest eigenvectors/eigenvalues W/Λℓ.

Because K is SPD, WTKW = Λℓ.

2. Define (but don’t form) P = In −WWT , and call λ = min(Λℓ).

3. Apply the algorithm to the matrix P(In − K/λ)P to get ψ1.

4. Compute our approximation log det(K) ≈ ψ1 + n log λ+ sum log diag(Λℓ).

This combination of orthogonal draws and scaling will allow us to approximate

the determinant of K with a smaller log series summation m. This faster conver-

gence is at the cost of performing the subspace iterations and the additional P

multiplications. Because there is likely no way to know how many eigenvalues of K

beyond the range of convergence, there needs to be flexibility built into the steps

taken; however, with certain RBF we can expect that the number of offending

eigenvalues is small.
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See [176] and [60] for some discussion of the spectra for RBF interpolation

matrices. Also, [22] discusses how the choice of design points xi affects the deter-

minant of the resulting matrix.

8.4.2 A Matlab version of log-determinant estimation

Before we look at all the changes discussed, let’s look at the Matlab code used in

[11].

function mclogdet = DetAppx(D, p ,m)

n = length (D) ; v = zeros (p , 1 ) ;

for i = 1 : p

x = randn(n , 1 ) ;

c = x ;

for k = 1 :m

c = D∗c ;

v ( i ) = (x ’∗ c )/k+v( i ) ;

end

v ( i ) = −n∗v ( i )/ ( x ’∗ x ) ;

end

mclogdet = mean( v ) ;

This code can easily be accelerated (more than 100 times faster depending on n, m

and p) by taking advantage of Matlab’s vectorized capabilities. Also note that this

function is sparse/structured D friendly because the only operation D is involved

in is a matrix-vector product.

function mclogdet = DetAppxVectorized (D, p ,m)

n = length (D) ; v = zeros (1 , p ) ; x = randn(n , p ) ;
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xTx = sum( x .∗ x ) ;

c = x ;

for j = 1 :m

c = D∗c ;

v = v−n/ j ∗sum( x .∗ c ) . / xTx ;

end

mclogdet = mean( v ) ;

And for a general SPD matrix generated by RBF interpolation with (8.12) (or

another RBF) we can use all the adaptations we have talked about to come up with

the final function. This Monte Carlo log determinant is used in the computation

of the likelihood function in Section 8.5.3.

8.5 Inference based RBF parameterization involving eigen-

functions

The statistical methods discussed in Section 8.3.1 involved optimizing some func-

tion to determine an appropriate shape parameter: the kriging variance, the cross-

validation error, or the likelihood function. Here the situation is the same, although

we are concerned with the posterior distribution p(ε, σ2,y). Assuming the exis-

tence of some prior beliefs p(ε, σ2), even if they are completely uninformed, we can

use Bayes’ rule to write

p(ε, σ2|y)p(y) = p(y|ε, σ2)p(ε, σ2)

p(ε, σ2|y) ∝ p(y|ε, σ2)p(ε, σ2)

p(ε, σ2|y) ∝ L(ε, σ2)p(ε, σ2).
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We define L(ε, σ2) as the likelihood of the parameters given the data, and since

we are assuming that the design points are not in our control, L is only a function

of the parameters. Notice the presence of proportional to statements rather than

equalities: because we are only interested in the shape of the posterior distribution

we needn’t carry around scaling or shifting terms.

We take advantage of our assumption that the data is generated by a Gaussian

process. From earlier, we know the likelihood of the parameters given the data is

L(ε, σ2) ∝
exp

(
− 1

2σ2y
TK−1y

)
(σ2)n/2

√
det(K)

.

We may also make the assumption that σ2 and ε are independent, which means

that

p(σ2, ε) = p(σ2)p(ε).

If we make no prior assumptions about σ2, that would yield the improper distri-

bution

p(σ2) =

 1, σ2 ≥ 0

0, else

which can be put in the posterior distribution

p(ε, σ2|y) ∝
exp

(
− 1

2σ2y
TK−1y

)
(σ2)n/2

√
det(K)

p(ε), σ2 ≥ 0.

Because of the special structure of this distribution, σ2 can be analytically

integrated out (recall Section 8.2) to yield

P (ε) =

∫ ∞

0

p(ε, σ2|y)p(ε)dσ2

= (yTK−1y)−n/2 det(K)−1/2p(ε),
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which is the distribution for the shape parameter given the assumptions we have

made. Note that P can be interpreted as p(ε|y), the profile posterior over all σ2.

The process of handling P is threatened by over/underflow, so instead we will

evaluate its logarithm which is

P̃ (ε) = −n
2
log(yTK−1y)− 1

2
log det(K) + log p(ε). (8.13)

Note the appearance of (8.5) in this equation, indicating that, as expected, the

likelihood function plays a significant role in the posterior distribution. It, along

with the K−1 term, will be handled using the stable basis where appropriate.

8.5.1 Prior knowledge

There is still a term p(ε) in P̃ which in Bayesian inference is referred to as the prior

distribution [80]. This can be used to incorporate any assumptions we make about

ε based on physical characteristics of the underlying problem. For our purposes

here, we are going to consider the use of 3 categories of priors and then choose an

appropriate distribution. Possible options include

• Uninformative prior - p(ε) = 1

• Parametric prior - p(ε) = Γ(ε; k, θ)

• Black Box prior - p(ε) = Ψ(ε)

If we have no knowledge of which shape parameter values are more appropriate,

then the uninformative prior is the logical choice. As always, we need to be worried

about the use of an improper prior distribution possibly yielding an improper

posterior distribution (refer to [14]); here the form of the likelihood guarantees
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a proper posterior. Even so, to assume that we know nothing about ε is to sell

ourselves short: in [60] there are numerous examples with varying test functions,

design points and kernels and the optimal shape parameter is rarely outside of

(0, 40). That is not to say it will always be that way, but rather that we should be

able to make some judgments.

Given that we believe in some common range for ε, the question becomes: how

do we incorporate the belief? Suppose our assumption is that the shape parameters

will generally be in the range (0, 40). One choice is to use a Gamma distribution,

which allows for values outside that domain but has most of its mass centered

around more likely values. See Figure 8.5 for an example. The distribution can be

adjusted if we feel that the design points are on a smaller or larger scale such that

different parameters would be appropriate.
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Figure 8.5: A sample Gamma prior distribution with mean 3.75 and mode 1.25,
which helps enforce our belief that the optimal shape parameter will not be nega-
tive, nor greater than 40.

The third option listed earlier is the black box prior which loosely speaking

involves using a complicated function to compute a p(ε) value based on information

which cannot be described using a parametric distribution. One example of this
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might be to evaluate the power function (kriging variance) at various points in

the domain and then use a weighted average as the p(ε) value. The output of the

function need not yield a proper prior, only values whose ratio indicates which

choice of ε is preferred.

Because there are many possible choices for the black box prior (and they likely

require extensive computation) we will focus our work on using

p(ε) = Γ(ε; k, θ) =
1

θkΓ(k)
εk−1e−ε/θ

where k = 1.5 and θ = 2.5 as depicted in Figure 8.5. This is appropriate for the

demonstration in this work, but, in general, more application specific choices will

need to be made for inference to be a valid method of parameter specification.

8.5.2 Using MCMC to simulate p(ε|y)

Our solution is to use Metropolis-Hastings (See [91],[120]) to generate a sequence

of random variables {εi} which follow the distribution p(ε|y). The proposal dis-

tribution will be a normal distribution with mean at the current εi. The choice of

variance ω2 is vital because if our variance is too great then the random walk will

take too few steps and if it is too small then the steps will be too short to fully

explore the domain. This dilemma means that ω2 will need to be problem depen-

dent. Eventually, we hope to have some insight for a good value of ω, but for this

thesis we will only choose a value of ω which, in retrospect, produces acceptable

results.

Because random walk Metropolis-Hastings has a symmetric proposition, the
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acceptance ratio for a step from εi to ε
∗ reduces to

ρi =
P (ε∗)N(εi; ε

∗, ω2)

P (εi)N(ε∗; εi, ω2)

=
P (ε∗)

P (εi)
.

This means that at each step of the Markov chain we will need to evaluate P̃

once and draw one normal random variable. Then a random variable from the

distribution vi ∼ Unif(0, 1) will be drawn, and if vi < ρi, we take the step suggested

and set εi+1 = ε∗. Otherwise we set εi+1 = εi.

8.5.3 A numerical example of inference based parameteri-

zation

At this point, we have defined all the necessary components to find the posterior

distribution. Let’s look at a specific 1D example of shape parameter selection by

MCMC.

Suppose our design points/values are generated by the test function

f(x) = 1 + x

evaluated at 30 evenly spaced points xk between [0, 1]. If we choose to use truncated

power functions as our kernel

K(x, z) = (1− ε|x− z|)+,

the spectrum of the resulting matrix is likely to have only a few eigenvalues greater

than 1. Note that (K)i,j = K(xi, xj) is positive definite for x in one dimension [60],

and sample spectra for ε = 1 and ε = .01 are shown in Figure 8.6. The condition

numbers of those matrices are roughly 10−3 and 10−5 respectively.
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(a) For ε = 1, three eigenvalues are
greater than 1.
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(b) For ε = .01, only one eigenvalue is
greater than 1.

Figure 8.6: Only a few eigenvalues of K need to be handled with orthogonal draws
for many ε values.

Using the techniques described earlier, we can evaluate P̃ from (8.13) for vari-

ous ε (even though K may not be terribly ill-conditioned) and conduct an MCMC

simulation to find p(ε|y). The linear systems were solved with CG, and the deter-

minant was computed statistically using the algorithm from Section 8.4.2. 1000

MCMC steps were conducted with 100 burn-in and the ω2 variance in the random

walk is chosen to be .1 to help the random walk sufficiently sample the domain.

The resulting distribution can be found in Figure 8.7.

Using this distribution, we can make predictions of new y given an x ̸∈

x1, ..., x30. Using the standard Bayesian practice for making predictions and (8.3),

our prediction of y is

ŷ =
1

N

N∑
i=1

ŷ(εi),

where ŷ(εi) is the best linear unbiased predictor for the ith random variable drawn

from p(ε|y). The mean square error of our sample problem for ŷ evaluated at 100

evenly spaced points is 6.6947× 10−15.

There is one obvious difficulty with this technique of predicting new (x, y)
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Figure 8.7: 900 random variables drawn from p(ε|y) by the MCMC random walk.

values: each ε requires inverting the associated K. For the sample problem that

means inverting 900 more (potentially ill-conditioned) matrices to accompany the

1000 inversions which took place in assembling p(ε|y).

Rather than actually finding the best linear unbiased predictor, it is simpler

to just approximate the mean of p(ε|y) and use that value to make predictions.

This is also closer to more standard techniques such as LOOCV and maximum

likelihood estimation which produce a unique ε. When we compute the sample

mean from our random walk, ε̄ = .0267 and the MS error of ŷ(ε̄) for 100 points

is 1.2789× 10−14. While this is not quite as good as the true estimator, the large

reduction in work seems more valuable.
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8.5.4 An inference example using the stable basis

We consider one additional example using the Hilbert-Schmidt SVD to approx-

imate an associated posterior distribution. For this example, we will consider a

simple scattered data interpolation problem involving N = 30 points at the Cheby-

shev nodes between x ∈ [−3, 3]. Our underlying function is simply f(x) = tanh(x),

and we will compute the error at 100 evenly spaced points. Using GaussQR with

α = 1, we can produce Figure 8.8 which shows the error profile for various ε values.
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Figure 8.8: The function f(x) = tanh(x) can most accurately be approximated for
ε ≈ 1, when using GaussQR.

For this problem, the condition number of K is too large to compute (8.13)

safely in the region of interest: even when ε = 2, κ(K) ≈ 1014 which is too ill-

conditioned to trust. We will instead use the stable basis to take draws from

the posterior distribution p(ε|y), specifically to compute the likelihood function

as described in Section 8.3.2. The same prior distribution will be used as before,

because we will assume no extra knowledge of the optimal ε.

We run a similar MCMC walk as before, with initial ε0 = 1, random walk

variance ω2 = .002, and 4000 total steps, 100 of which are discarded as burn-in.

This resulted in an acceptance ratio of about 29%, which means that the simulation
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was allowed to walk around without running rampant over low probability ε values.

The simulated posterior distribution is found in Figure 8.9.
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Figure 8.9: This posterior distribution suggests a good value for ε when compared
to the error graph earlier. It does not find the optimal ε unfortunately, although
it is close.

This posterior distribution is useful because it does suggest a region where the

optimal ε may lie. This region is close to the true optimal ε, but referring back to

Figure 8.8 reminds us that the optimal ε > 1, whereas the posterior distribution

is firmly centered around ε < 1. These results are similar to the MLE results in

Figure 8.3, where the optimal ε was near the maximum likelihood, but not actually

there.

8.6 Summary

In this chapter we have rephrased the scattered data interpolation problem in the

context of Gaussian processes. This allows us to consider statistical methods for
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parameterizing our kernel-based approximation methods. We studied the effects

of introducing the stable basis from Chapter 4 into this framework, and found

that some statistical methods benefited, including cross-validation and maximum

likelihood estimation. We have also described a technique for approximating the

determinant of a positive definite matrix using statistics, which is useful in some

circumstances when computing the likelihood function. Combining all these re-

sults, we have run stochastic simulations to approximate the posterior distribution

p(ε|y), which can be interpreted as the probability that a given ε produced the data

y. The results of these simulations are promising, but more work needs to be done

to understand their usefulness. This work justifies inclusion in the multiphysics

infrastructure by helping to improve our existing tools developed in Chapter 4,

Chapter 6 and Chapter 7.

The experiments in this chapter only involved interpolation, but it seems rea-

sonable to think that they could be extended for use on the BVP methods of

Chapter 7. Although more difficult, because only part of the problem exists natu-

rally within the Gaussian processes framework, it would also be possible to apply

these ε predictions to the coupling methods of Chapter 6. A more significant step

forward would be to incorporate the other free parameters α and M associated

with the eigenfunction approach into a multivariate posterior distribution; this

would help replace our current ad hoc strategy with a more formulaic approach.

If optimal α, M and ε (or perhaps multiple εi if an anisotropic kernel is used) can

be predicted using statistics, kernel- based methods will gain more acceptance in

applications communities.

269



BIBLIOGRAPHY

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions:
With Formulas, Graphs, and Mathematical Tables. Applied mathematics
series. Dover Publications, 1964.

[2] H. Adibi and J. Es’haghi. Numerical solution for biharmonic equation us-
ing multilevel radial basis functions and domain decomposition methods.
Applied Mathematics and Computation, 186(1):246 – 255, 2007.

[3] R. Ahrem, A. Beckert, and H. Wendland. A new multivariate interpolation
method for large-scale spatial coupling problems in aeroelasticity. In The
Proceedings to Int. Forum on Aeroelasticity and Structural Dynamics, 2005.

[4] E. Alpaydin. Introduction to machine learning. Adaptive computation and
machine learning. MIT Press, 2004.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[6] S. N. Atluri and T. Zhu. A new meshless local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics, 22(2):117–
127, August 1998.

[7] F. P. T. Baaijens. A fictitious domain/mortar element method for fluid-
structure interaction. International Journal for Numerical Methods in Fluids,
35(7):743–761, 2001.

[8] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users
manual. Technical Report ANL-95/11 - Revision 3.2, Argonne National Lab-
oratory, September 2011.

[9] M. T. Balhoff, S. G. Thomas, and M. F. Wheeler. Mortar coupling and
upscaling of pore-scale models. Computers & Geosciences, 12:15–27, 2008.

[10] J. P. Bardhan, R. S. Eisenberg, and D. Gillespie. Discretization of the
induced-charge boundary integral equation. Phys. Rev. E, 80:011906, Jul
2009.

270



[11] R. P. Barry and R. K. Pace. Monte Carlo estimates of the log determinant
of large sparse matrices. Linear Algebra and its Applications, 289(13):41 –
54, 1999.

[12] R. K. Beatson, W. A. Light, and S. Billings. Fast solution of the radial basis
function interpolation equations: Domain decomposition methods. SIAM J.
Sci. Comput., 22:1717–1740, May 2000.

[13] T. Belytschko and S. P. Xiao. Coupling methods for continuum model
with molecular model. International Journal for Multiscale Computational
Engineering, 1(1), 2003.

[14] J. O. Berger, V. De Oliveira, and B. Sansó. Objective bayesian analysis of
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