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ABSTRACT 

 

 The Los Frailes Ignimbrite Complex sits in the backarc of the Andean Central 

Volcanic Zone (CVZ) and is the most easterly of the large Altiplano volcanic centers.  

Despite its large size (2000 km
3
) and substantial mineralization in its satellite units, 

the majority of the Los Frailes Complex remains poorly described with conflicting age 

assessments of the main Los Frailes ignimbrite.  Processes related to its emplacement 

include: variable crustal thickening and uplift over a steepening subducted slab, 

episodes of delamination of the mantle-lithosphere and lower crust and deep crustal 

flow. 

Based on 25 new analyses and the works of previous sub-regional studies, a 

three tier crustal magma evolution is proposed for the Los Frailes Complex, similar to 

models suggested for Puna ignimbrites.  The crust-to-mantle mixing ratio of the 

erupted mass is put near 50:50 based on new fractionation corrected δ
18

OQuartz analyses 

(+9.43-10.79‰).  AFC models incorporating new 
87

Sr/
86

Sr (0.710-0.713) and 

143
Nd/

144
Nd (0.5121-0.5123) ƐNd (-9 to -6) ratios and the strongly peraluminous 

character of the complex support a metapelitic crustal end-member and silicic crustal 

base.  Melting and mixing near the Moho is established based on steep HREE patterns 

(Sm/Yb=4-12) and very high Sr content (400-650 ppm Sr) while middle crustal 

plagioclase removal creates negative Eu anomalies (Eu/Eu*=0.6-0.9).  High crystal 

content and reported cordierite are the results of low pressure crystallization in upper 

crustal magma chambers prior to eruption. 

Coherent temporal trends of REE and HFSE ratios display the effects of crustal 

thickening and delamination on Moho-depth AFC processes.  Two distinct ratio 

changes at 10-12 Ma and 2-4 Ma are proposed to correlate with two discreet 

delamination events below the Los Frailes Complex.  The 10-12 Ma event is 
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supported by corresponding shifts in regional brittle deformation and isotopic 

character as well as proposed rapid uplift at that time.  Major eruptions of the 

Livicucho and Condor Nasa ignimbrites and emplacement of the large main Los 

Frailes ignimbrite mark the volcanic expression.  The age of the main Los Frailes 

ignimbrite is established at 1.5-3.5 Ma, in agreement with Barke et al. (2007), based 

on two new 
40

Ar/
39

Ar sanidine ages ~1.521 Ma.  In addition, seismic tomographic 

studies show missing lithosphere directly below the complex which corresponds with 

a 
3
He/

4
He emissions study suggesting recent mantle melting.  These findings 

demonstrate that delamination in the southern Altiplano is episodic with the results of 

the 2-4 Ma event still observable today. 
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CHAPTER 1 

INTRODUCTION AND GEOLOGIC SETTING 

 

Introduction to the Los Frailes Ignimbrite Complex  

The Los Frailes Ignimbrite Complex of Bolivia is situated in the backarc of the 

Andean Central Volcanic Zone (CVZ) near the center of the South American 

convergent margin (see Figure 1.1).  Bounded to the west by the active arc (Western 

Cordillera) and to the east by the west-verging thin-skinned fold-and-thrust belt 

(Eastern Cordillera), the ~200-450 km wide Altiplano-Puna plateau stretches 1800 km 

along the length of the CVZ (Isacks, 1988; Allmendinger et al., 1997) (see Figure 1.2).  

The Los Frailes Complex straddles the boundary of the eastern margin of the Bolivian 

Altiplano plateau and the Eastern Cordillera of the Central Andes between 19ºS and 

20ºS longitude, and is the most easterly of the large Altiplano volcanic structures.  

With more than 2000 km
3 

of total erupted volume, a ~100 km diameter, and covering 

an area of ~7500-8500 km
2 

(Schneider, 1985), it is one of the largest ignimbrite 

complexes on the Altiplano-Puna plateau (see review of Kay and Coira, 2009).  At an 

average elevation of nearly 4,000 meters and a maximum of 4,800 meters, the 

complex sits atop 60-65 km thick crust (Beck et al., 1996; Yuan et al., 2000; 

McGlashan et al., 2008).   

The Los Frailes Complex ignimbrites are composed of andesitic to rhyodacitic 

welded ash units of late Oligocene to recent age (25 to <1 Ma) which have been 

produced by eruptions every 2-5 My over that period.  The southern Altiplano on 

which it sits is an internally drained, sediment-filled basin of Ordovician shales, 

Cretaceous syn-rift sandstones and Tertiary redbeds and volcanics (e.g., Schneider, 

1985; Kennen et al., 1995), with a basement composed largely of Paleozoic  
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Figure 1.1 

Map of South America showing major tectonic features from Ramos and Folguera (2009).  

The location of the Los Frailes Complex (red circle) is in the backarc of the Andean Central 

Volcanic Zone (CVZ) near the center of the South American convergent margin.  The CVZ is 

bracketed by two non-volcanic gaps associated with the subduction of aseismic bathymetric 

oceanic ridges.  The Nazca Ridge is subducted to the north (Peruvian flatslab) and the Juan 

Fernandez Ridge is subducted to the south (Chilean-Pampean flatslab) (e.g., Barazangi and 

Isacks, 1976; Pilger, 1981; Nur and Ben-Avraham, 1981). 
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Figure 1.2 

 
Map of Central Andean Altiplano-Puna backarc ignimbrites (blue, yellow & beige) and 

mafic flows (black) from Kay et al. (2010).  Depicts the location of the Los Frailes 

Ignimbrite Complex (blue) relative to the southern Puna Cerro Galán, the central Altiplano-

Puna Volcanic Complexes (APVC) and the central Altiplano Morococala ignimbrites 

(yellow).  Central Volcanic Zone (CVZ) active arc volcanoes are shown as red triangles. 
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sedimentary rocks over Proterozoic and Archean crust (see reviews in Lucassen et al., 

2001; Ramos, 2008).  The Los Frailes Complex contains significant mineralization, 

though this is concentrated in volumetrically minor pre-12 Ma units.  Mineral deposits 

of silver, tin and zinc are economically important, and include the world’s largest 

silver mine in the late-middle Miocene Cerro Rico de Potosi.  Despite its large size 

and its economically important ore deposits, the majority of the Los Frailes Complex 

has not been extensively studied, primarily due to the lack of economic mineralization. 

 

 

Table 1.1 

Los Frailes Complex pertinent units, mineralogy, volumes and references 
Unit Mineral 

Assemblage 

Volume 

(km3 in DRE) 

Age  

(Ma) 

SiO2  

(wt. %) 

Major Reference Sources 

Kumurana Plag-San-Qtz-

Bio- Hbl 

Very Small 

 

~25 58-69 Schneider and Halls, 1985; Keller, 2010 

Kari Kari Plag-Bio-San-

Qtz-Gar-Cor 

~550 a 20-22 58-65 Evernden et al., 1977; Grant et al., 1979; 

Francis et al., 1981; McBride et al., 1983; 

Schneider and Halls, 1985; Schneider, 

1985, 1987; Keller, 2010 

Porco Plag-San-Qtz-

Bio-Ilm 

Small 12-14 66-72 Schneider and Halls, 1985; Schneider, 

1985, 1987; Cunningham et al. 1996; 

Kennan et al., 1995; Luedke et al., 1997; 

Keller, 2010 

Sevaruyo Qtz-Plag-San-

Bio 

Small 9-10? b 65-72 Schneider, 1985; Barke et al., 2007; Keller, 

2010 

Livicucho Plag-San-Qtz-

Bio-Orth-Cor 

~500-1000 a 7-8 59-65 Evernden et al, 1977; Grant et al. 1979; 

Schneider and Halls, 1985; Schneider, 

1985, 1987; Kennan et al. 1995; Jiménez et. 

al. 1997; Barke et al., 2007; Keller, 2010 

Condor 

Nasa 

Plag-San-Qtz-

Bio-Orth-Cor 

~500 a 7-8 59-65 Evernden et al, 1977; Grant et al. 1979; 

McBride, et. al. 1983; Schneider and Halls, 

1985; Schneider, 1985, 1987; Kennan et al. 

1995; Jiménez et. al. 1997; Keller, 2010 

Los 

Frailes 

Plag-San-Qtz-

Bio-Cor-Ilm 

~1200-2000 a 1.5-3.5 64-69 Barker and Francis, 1978; Schneider and 

Halls, 1985; Schneider, 1985, 1987; Luedke 

et al., 1997; Rice et. al., 2005; Barke et. al., 

2007; Keller, 2010 

Nuevo 

Mundo 

Bio-San-Plag-

Qtz-Cor-Apt-

Ilm 

Small <1.0 66-67 de Silva and Francis, 1991; Luedke et al., 

1997; Jiménez et al., 2005 

Plag=Plagioclase, San=Sanidine, Qtz=Quartz, Bio=Biotite, Hbl=Hornblende, Cor=Cordierite, 

Orth=Orthopyroxene, Gar=Garnet, Ilm=Ilmenite, Apt = Apatite 
a
 From Schneider (1985). 

b
 See Chapter 4 for a discussion of Sevaruyo region age uncertainty. 
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Table 1.1 and Figure 1.3 show the major and minor Los Frailes Volcanic 

Complex units.  For the purpose of this paper, the term Los Frailes Complex is used to  

refer to the entire 8500 km
2
 area and 25 My history, while the term Los Frailes 

ignimbrite refers only to the central 1.5-3.5 Ma massif without the associated satellite 

mesetas or smaller units.  It should be noted that this is a departure from the 

terminology in Schneider (1985), who placed the Livicucho and Condor Nasa mesetas 

coeval with the Los Frailes ignimbrite and treated them largely as part of the same 

Figure 1.3 

 
Modified composite map of the Los Frailes Complex compiled by Beatriz Coira from Bolivian 

maps showing the 25 (PT and PO series) sample localities (white dots).  The study regions of 

Jimenez et al. (1997) (red dashed box) and Luedke et al. (1997) (red solid box) are also shown. 
40

K/
39

Ar biotite ages are from Bolivian survey, Schneider (1985), Evernden et al. (1977), 

Grant et al. (1979), and Kennen et al. (1995) as well as 
40

Ar/
39

Ar biotite ages from Barke et al. 

(2007) are in black.  The Los Frailes ignimbrite ages and units have been modified here. 
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volcanic episode.  This study will look at the entire 25 My geochemical history of the 

Los Frailes Complex in order to determine what the geochemical data can contribute 

to the current understanding of the evolution of the Altiplano plateau during that 

period.  Tectonic shortening, crustal thickening, delamination, plateau uplift and a 

steepening slab subduction angle are all thought to have occurred in the southern 

Altiplano during the Los Frailes Complex history, (see review in Kay and Coira, 2009) 

and are expected to have imparted geochemical signals in the regular backarc 

eruptions, which now serve as the record of these changes.   

Previous investigations of the Los Frailes Complex have been sporadic and 

directed dominantly towards the mineralized units (Kumurana, Kari Kari and Porco), 

part of its pre-12 Ma history.  Only four geochemical studies exist of the 

volumetrically dominant, but economically unimportant post-12 Ma ignimbrites; 

Jiménez et al. (1997), Luedke et al. (1997) and the theses of Schneider (1985) and 

Keller (2010).  This study will add the results of 25 new samples from reconnaissance 

trips in 2009 and 2010.  Those trips, by Beatriz Coira, Suzanne Kay, Nestor Jiménez, 

Brenhin Keller, Pablo Caffe, Luis Galvan and Chelsea Allison, were directed at 

describing the geochemistry of the main post-12 Ma ignimbrites.  The data includes 25 

whole rock major and trace element analyses, 16 whole rock
 87

Sr/
86

Sr measurements, 

13 whole rock
 143

Nd/
144

Nd (ƐNd) measurements, 10 quartz phenocryst 
18

O/
16

O (δ
18

O‰) 

measurements and electron microprobe and optical microscopy results.  The 

143
Nd/

144
Nd (ƐNd) and δ

18
OQuartz are the first reported from the Los Frailes Complex.  

In order to determine the age of the main Los Frailes ignimbrite, two new 
40

Ar/
39

Ar 

sanidine ages and two zircon age analyses are presented.   

Geochemical information is used to investigate the crust-to-mantle mixing 

ratio in the erupted magmas, the location of crustal assimilation fractionation and 

crystallization (AFC), as well as the nature of hybrid magma storage sites and their 
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locations.  Finally, this paper will compare the Los Frailes Complex to other 

researchers’ findings of selected similar and contrasting Altiplano-Puna backarc 

ignimbrites.  To accomplish this, new Sr, Nd and O isotopic and concentration data 

will be used to estimate the crust-to-mantle mixing ratio which will be then applied to 

the AFC model equations of Aitcheson and Forrest (1994) to assess the crustal end-

member composition.  New and reported geochemical data are compiled and 

compared to existing geophysical studies to decipher volcanic plumbing and temporal 

changes in the southern Altiplano.  From the integrated data, a working model of the 

current Los Frailes Complex magmatic system will be presented. 

Geological Setting of the Los Frailes Ignimbrite Complex  

Since the Jurassic Period, the western margin of, what is now, South America 

has hosted a convergent margin with Pacific oceanic plate subduction (see review of 

Allmendinger et al., 1997).  Currently, the Nazca plate converges with the South 

American plate at a near perpendicular direction to the Peru-Chile trench at a rate of 

~63 mm a year for the central Andes (DeMets et al., 1990).  This convergence is 

accommodated by the subduction of the Nazca plate beneath South America and has 

resulted in four main volcanic zones along the western Andean margin (see Figure 

1.1).  These include the CVZ, which is bracketed by non-volcanic gaps associated 

with the subduction of aseismic bathymetric oceanic ridges including the Nazca ridge 

to the north (Peruvian flatslab 5º to 15ºS latitude) and the Juan Fernandez ridge to the 

south (Chilean-Pampean flatslab 27º to 33ºS latitude) (e.g., Barazangi and Isacks, 

1976; Pilger, 1981; Nur and Ben-Avraham, 1981).  These non-volcanic gaps are 

thought to be caused by a flattening in slab subduction angle which results in a flatslab 

geometry as seen in the seismic contours (Cahill and Isacks 1992; Barazangi and 

Isacks, 1976).  Contouring of the Wadati-Benioff zone of the subducting Nazca plate 

has revealed the seismic outline of the subducted Juan Fernandez ridge in Chile (e.g., 
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Pardo et al., 2002; Gans et al., 2011) supporting the role of the ridge buoyancy in the 

resulting flatslab geometry.  A decrease in the already relatively shallow (≤30°) Nazca 

plate subduction angle leaves insufficient space between the slab and the South 

American lithosphere for normal asthenospheric circulation and results in a cessation 

of volcanic activity in that segment of the arc (e.g., Barazangi and Isacks, 1976). 

 As the Juan Fernandez ridge is not aligned parallel to the subduction direction 

(see Figure 1.1), the intersection of the ridge with the trench and subduction zone has 

progressed south and moved the resultant flatslab and non-volcanic gap with it (e.g., 

Yáñez et al., 2001; Kay and Coira, 2009).  The re-initiation of CVZ volcanism at 19ºS 

to 20ºS latitude corresponds to the southward passage of the subducted Juan 

Fernandez ridge and the gradual steepening of a previous flatslab configuration at the 

end of the Oligocene (Paleogene) which marks the beginning of ~25-28 Ma of current 

volcanism at the Los Frailes Complex (James and Sacks, 1999).  Figure 1.4 depicts the 

stages of slab steepening at 20ºS latitude and the lithospheric changes proposed by this 

paper since 25 Ma. 

Coeval with regional changes in the subducted slab geometry, the western 

margin of South America has undergone substantial crustal shortening with an 

estimate of >300 km since 40 Ma (e.g., McQuarrie, 2002; McQuarrie et al., 2005) at 

20°S latitude.  This shortening has been accommodated in the upper crust of the 

Altiplano and northern Puna by the east-vergent fold-and-thrust belt of the Eastern 

Cordillera (Cordillera Oriental) which is bounded to the east by the thin-skinned 

Subandean fold-and-thrust belt.  Deeper crustal accommodation is facilitated by 

extensive associated crustal thickening (e.g., Isacks, 1988).  Elger et al. (2005) argue 

that the west-central Altiplano and the Eastern Cordillera thrust systems are 

independent and only merge in the ductile lower crust (see Figure 1.5).  A combined  
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Figure 1.4 

 

Lithospheric cross-section modified from Kay and Coira (2009) for evolution of the southern 

Altiplano.  It reconciles the magmatic history of the Los Frailes Complex and slab geometries 

based on models for the current southern Puna region.  This model shows eruption of large 

ignimbrites in response to lithospheric delamination and in association with steepening of the 

subduction zone (e.g., Kay et al., 1994; Kay and Coira, 2009). The importance of changing 

slab geometry models for the Altiplano was pointed out by James and Sacks (1999) and in the 

Puna by Kay et al. (1999).  The white numbers on the slab profile are the latitudes at which the 

current Nazca slab corresponds to the geometry depicted in the cartoon.  The red dashed 

circles show the proposed location of the AFC zone during each period. 
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total shortening of 65 km has been suggested in the Altiplano from 27-33 Ma and 8-19 

Ma, with deformation occurring in the Eastern Cordillera during the middle interval.  

Three primary thrust systems; east-verging western, doubly-verging central and west-

verging eastern, are thought to have accommodated the shortening in the Altiplano.  

All three systems moved at a maximum combined rate of 4.7 mm/yr between 8 and 11 

Ma at the time a delamination event proposed here is thought to have occurred and 

when the large Livicucho, Condor Nasa and Morococala ignimbrites were emplaced.  

There is general agreement that deformation in the Altiplano and Eastern Cordillera 

shifted to the east after 10 Ma at the time the Subandean fold-and-thrust belt became 

active (e.g., Gubbels et al., 1993; Elger et al., 2005; McQuarrie et al., 2005).  

McQuarrie et al. (2005) suggests that Cenozoic deformation within the mantle 

lithosphere was focused at the Eastern Cordillera- Altiplano boundary, beneath the 

Los Frailes Complex, which is the site of continued piecemeal delamination.   

Altiplano crustal thickening is accompanied by proposed deep crustal flow 

(e.g., Isacks, 1988; Husson and Sempere, 2003; Gerbault et al., 2005) and the 

underthrusting of the Archean Brazilian Shield craton from the east (e.g., Isacks, 1988; 

Polet et al., 2000; Beck and Zandt, 2002).  Oncken et al. (2006) place the regional 

Figure 1.5 

 
Lithospheric scale cross-section from Elger et al. (2005) and modified by Kay and Coira 

(2009) near 21°S latitude along the ANCORP Working Group (2003) and Re-Fu-Ca 

geophysical profiles (Heit et al., 2008) showing major structures merging into the ductile 

lower crust (discussed in text).  Region labeled “low velocity zone” has the lowest velocity P-

wave tomographic image of Heit et al. (2008) and was added by Kay and Coira (2009). 
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deformation rate at 8 mm/yr by the end of the Oligocene (~23 Ma) then maintained 

that average until 7-8 Ma when thrusting shifted into the Subandean belt and the rate 

increased to ~8-16 mm/yr.  Current rates are put at 9.0±1.5 mm/yr by Bevis et al. 

(2001) which is based on global positioning system (GPS) data. 

Proposed models of Altiplano uplift are varied and include: crustal shortening 

(e.g., Isacks, 1988) and periodic upper-plate lithosphere loss (e.g., Hoke and Lamb, 

2007), deep crustal flow (Husson and Sempere, 2003; Gerbault et al., 2005) and 

wholesale removal of a dense eclogitic lower crust and lithospheric-mantle by 

delamination with resulting isostatic rebound (Molnar and Garzione, 2007).  Estimates 

of plateau uplift rates range from a rapid 2000-3000 m rise between 6.8 and 10.3 Ma 

based on δ
 18

O of carbonate as well as paleobotany data (Ghosh et al., 2006; Garzione 

et al., 2006), which necessitates a massive delamination (Molnar and Garzione, 2007), 

to a more gradual increase driven by crustal shortening (Barnes and Ehlers, 2009).   

The role of delamination has been proposed to play a role in both the uplift and 

magmatic histories of the Altiplano and Puna (see review of Kay and Coira, 2009).  

Magmatism in response to discrete delamination events at times of large ignimbrite 

eruptions is supported by Kay and Kay (1993), Kay et al. (1994, 1999) and Kay and 

Coira (2009) while McQuarrie et al. (2005), de Silva and Gosnold (2007) and Hoke 

and Lamb (2007) argue for a gradual, more piecemeal, loss of mantle through 

delamination.  Following delamination, rebound of the remaining light silicic crust and 

thermally driven uplift from an influx of asthenospheric heat are argued to cause uplift 

(e.g., Molnar and Garzione, 2007). 

Figure 1.6 is a regional lithospheric cross-section interpretation from Beck and 

Zandt (2002) which shows a seismic low velocity (Vp and Vs) region interpreted as a 

gap in the lithosphere (shown in red) below the Los Frailes Complex with direct 
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contact between a felsic crust and the intruded high temperature asthenosphere (Myers 

et al., 1998; Polet et al., 2000; Beck and Zandt, 2002).  Hoke and Lamb (2007) used a  

regional isotopic study of 
3
He/

4
He emissions to suggest recent mantle melting in a 

wide zone behind the arc at 20°S latitude, which is substantiated by seismic 

tomographic images of the same location.  The central and western Altiplano has an 

intact lithosphere with a base at 125-150 km (Myers et al., 1998) with another low 

velocity region to the west below the Western Cordillera (Cordillera Occidental) and 

active arc (Myers et al., 1998; Polet et al., 2000; Beck and Zandt, 2002).  A 

widespread low velocity anomaly has also been identified within the middle crust of 

the Altiplano and Eastern Cordillera by Yuan et al., (2000) who established the term 

Altiplano low velocity zone (ALVZ) to describe the broad area interpreted to contain 

Figure 1.6 

 
Schematic cross-section cartoon modified from Beck and Zandt (2002) by Kay and Coira 

(2009) showing the position of the Los Frailes Complex over seismic low velocity zones in 

the mantle (red) (Myers et al., 1998; Polet et al., 2000).   Within the crust, the Altiplano low 

velocity zone (ALVZ) (Yuan et al., 2000) (white wavy lines) and middle-upper crust regions 

(red and pink) are interpreted as zones of partial melt (e.g., Zandt et al., 2003).  Stars are 

locations of seismic stations (see Beck and Zandt, 2002).  See text for full discussion. 
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partial melt (white wavy lines in Figure 1.6).  The receiver function study of Beck and 

Zandt (2002) found an additional low velocity Lg-wave (high frequency love waves) 

high attenuation anomaly directly beneath the Los Frailes Complex as well as to the 

west beneath the CVZ at depths of 14 to 20 km, which are also interpreted as partial 

melt zones (pink area in Figure 1.6).  Under the Eastern Cordillera, just to the east of 

the Los Frailes Complex, a low velocity zone is shown at ~30 km by Beck and Zandt 

(2002).  Convincing tomographic evidence for delamination as an ongoing mechanism 

in the Altiplano-Puna is provided by Schurr et al. (2006) and Asch et al. (2006) 

beneath the Altiplano-Puna Volcanic Complex (APVC) at the latitude of 23°-24°S and 

beneath the southern Puna at 25°-28°S by Bianchi et al. (2013).  The southern Puna is 

a region of ongoing research in this area with the completion of a two-year-long 

deployment of a 74-station passive seismic array in October 2009.  Figure 1.7 from 

Schurr et al. (2006), Asch et al. (2006) and Heit et al. (2008) shows what is interpreted 

as a block of detached cold continental lithosphere resting atop the subducted Nazca 

plate.  This evidence of the descent of large blocks of delaminated lithosphere leads to 

the possibility that a comparable recent event generated the similar lithospheric hole 

beneath the Los Frailes Complex.   

Composition of the Altiplano crust is distinctly siliceous, based on P-wave 

velocities of 5.8-6.25 km/s through the 59-64 km thick crust (Beck and Zandt, 2002).  

There could be no associated mafic base, suggesting it was also lost, though this is 

disputed by Yuan et al. (2002) who interpret a thin mafic layer at the crustal base.  

Thicker Altiplano crust of 73-75 km is reported to the south near 21°S latitude by 

McGlashan et al. (2008) and a variable thickness of ~60-80 km with eastward-thinning 

below the Eastern Cordillera (Yuan et al., 2002; McGlashan et al., 2008).  Farther to 

the east, the Subandean zone is given a thickness of ~40 km and the Chaco foreland 

basin ~32 km by Beck and Zandt (2002). 
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Figure 1.7 

 
A compilation of seismic P-wave tomographic images and figures by Kay and Coira (2009) 

depicting ongoing delamination of the northern Puna lithosphere.  A similar process is 

proposed to be ongoing in the central Altiplano with delamination occurring directly beneath 

the Los Frailes Complex.  Images are arranged north to south at equal scale along with 

selected Qp (attenuation generally correlates with temperature; low values are highest 

temperatures) and interpreted images.  Dots are earthquake hypocenter locations.  (a) P-wave 

tomographic images of Heit et al. (2008).  The solid black line is the Moho on the Elger et al. 

(2005) section in Figure 1.5.  The dashed lines are the receiver function Moho of Heit et al. 

(2008).  (b, c and d) Qp and Vp tomographic sections at 22.1°S, 23.1°S and 23.9°S latitudes 

from Schurr et al. (2006) with the position of some of the major ignimbrites from Figure 1.2.  

The white lines outline regions where the images are most robust.  (e, f and g) Interpreted 

east-west and north-south sections of the northern Puna region modified from Asch et al. 

(2006).  QBBs- Quebrada Blanca Bright spot. 
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Andean-type subduction zones have been argued to be sites of considerable 

continental crustal growth through magmatic addition.  While magmatic addition has 

largely been excluded as the primary mechanism for plateau uplift (Francis and 

Hawkesworth, 1994; Allmendinger et al., 1997; Kay et al., 2011), determining the 

input sources and ratios is essential to understanding the relative volumes of new 

mantle-derived material versus recycled and assimilated continental material.  This is 

done in order to quantify the true crustal volumetric growth by magmatism.  

Arguments have been made for a near total crustal source for the CVZ  ignimbrites by 

Francis et al. (1989) and Babeyko et al. (2002) as well as much lower estimates of 

near 50% by Ort et al. (1996), Caffe et al. (2002) and Kay et al. (2010, 2011).   

Volcanic History of the Los Frailes Ignimbrite Complex 

The Schneider (1985) thesis, which was published in part as Schneider and 

Halls (1985) and Schneider (1987) was the first comprehensive description of the Los 

Frailes Complex with a concentration of the study on the mineralized Kari Kari and 

Porco units.  That study set the framework for further geochemical work.  The 

Jiménez et al. (1997) study was centered on the Livicucho satellite meseta and caldera 

to the northeast of the main Los Frailes ignimbrite while the Luedke et al. (1997) 

study was to the south along the southern rim of the plateau from the Nuevo Mundo to 

Porco units (see Figure 1.3).  The Keller (2010) thesis, using the same PT and PO 

series samples in this study, concentrated on the Condor Nasa meseta region and the 

northern Los Frailes unit.  

Schneider (1985) divided the late-Oligocene to Quaternary volcanic history of 

the Los Frailes Complex into five main episodes, which are useful given some 

adjustment in the post-12 Ma time frame.  The first episode near ~25 Ma includes the 

small volume metaluminous Kumurana granodiorite pluton intrusion in the extreme 

southeast of the Los Frailes Complex, which marks the beginning of magmatism in 
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south-central Bolivia following the postulated flatslab stage and its volcanic gap 

(James and Sacks, 1999) (see Figure 1.3).  The Kumurana intrusion occupies ~10 km
2
 

on the southern edge of the much larger Kari Kari unit and contains high temperature 

Sn-W ores associated with its dike system.  The Azanaques ignimbrite deposits on the 

northwest edge of the Los Frailes Complex with Pb, Ag and Sn sulfide mineralization 

and the mineralization in the Santa Barbara Mining District 8 km to the southeast were 

also emplaced near this time.  No unaltered samples of the Azanaques unit have been 

described geochemically.   

The second episode lasted from ~20-23 Ma and consists of the Agua Dulce 

volcanics and later peraluminous Kari Kari trapdoor caldera deposits (Francis et al., 

1981).  While field differences exist, the Agua Dulce and Kari Kari samples are 

geochemically indistinguishable and are combined as the Kari Kari group in this 

study.  The 30x30 km Kari Kari unit is assessed to have had an original volume of 550 

km
3
 of ejected ashflow material (Schneider, 1985).   

The third stage is named the Cebadillas episode which occurred at 9-17 Ma.  

The primary activity during this time was the emplacement of the Porco volcanic 

group in the area between the cities of Potosi and Porco (see Figure 1.3).  Important 

vein mineralization of Sn, Ag, Zn, Bi and U ores as well as the world’s largest Ag 

deposit at Cerro Rico de Potosi dome (Zartman and Cunningham, 1995; Cunningham 

et al., 1996; Rice et al., 2005) occurred during this time.  In addition to the main Porco 

unit, smaller volume Cebadillas episode volcanic units are also exposed beneath the 

Livicucho and western Los Frailes ignimbrites and given the labels pre-Livicucho and 

pre-Los Frailes in this study.  Associated with these widespread eruptions are younger 

deposits, as recent as ~9 Ma, which make up the western edge of the Los Frailes 

meseta.  A Sevaruyo region sample in this study from southwest of Livicucho is 

thought to be within this temporal group. 
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The fourth episode was originally termed the Los Frailes Cover by Schneider 

(1985) when the Los Frailes unit was thought to be late Miocene in age.  This was 

based on a 
40

K/
39

Ar age of 7.8 Ma for an ash-flow tuff within the main Los Frailes unit 

formation about 5 km southeast of Estacion Yura (Baker and Francis, 1978).  That age 

is within the 5-9 Ma age window given the tuffs in the northwestern part of the Los 

Frailes ignimbrite field (Evernden et al., 1977; Baker and Francis, 1978; Grant et al., 

1979; Schneider and Halls, 1985; Kennan et al., 1995).  In this study, it is called the 

Livicucho-Condor Nasa episode and given an age range of 5 to 8 Ma and includes the 

large Livicucho and Condor Nasa volcanic units.  The Livicucho center is 40 km in 

diameter and erupted up to 1000 km
3
 of material (Schneider, 1985; Jiménez et al., 

1997).  The Condor Nasa unit to the southeast of Livicucho is slightly smaller with an 

estimated erupted volume of greater than 500 km
3 

(Schneider, 1985).  Additionally, 

this episode includes the previously mentioned volcanic rocks on the northwestern 

portion of the Los Frailes meseta nearest Livicucho where ages are ~5-6 Ma.   

The fifth and final episode is appropriately termed here the Los Frailes Cover 

as it includes the main 1.5-3.5 Ma Los Frailes ignimbrite and spans the period from 

3.5 Ma to the present (see Chapter 4 for discussion of ages).  These units consist of 

moderately welded ash flow tuff sheets with typical thicknesses of 250-300 m and a 

total volume as great as 2000 km
3
, which likely covers earlier, potentially mineralized 

units under its nearly 8500 km
2
 span (Schneider, 1985).  Multiple eruptive centers are 

thought to have participated in the episode and were preceded by the development of 

large domes in the central portion of the meseta, some of which were sampled and 

dated by Schneider (1985).  The Nuevo Mundo volcanic center to the south is the 

youngest unit within the Los Frailes Complex with flows as recent as <1.0 Ma 

consisting of block and ash and dacitic coulees (Luedke et al, 1997; Jiménez et al., 

2005).  Lava flows are seen over <11000 year old glacial moraines and are similar in 
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composition and mineralogy to the dacitic tuffs of the Los Frailes unit (Luedke et al., 

1997).  Cordierite is reported in the capping flows by these authors.  This center may 

also be the source of a white air fall ash, with a sanidine 
40

Ar/
39

Ar age of 0.374±0.22 

Ma (Rice et al., 2005), which is seen along much of the southern margin of the main 

Los Frailes ignimbrite.  The Nuevo Mundo center is located directly over the seismic 

low velocity anomalies in the crust indicating an intimate and recent association (see 

Figure 1.6). 

Comparison to Cerro Galán, selected APVC and Morococala Ignimbrites 

 The Cerro Galán ignimbrite center is one of the most studied and well 

understood in the Altiplano-Puna backarc.  It has a nearly equivalent erupted volume 

to the Los Frailes Complex and is situated south of the APVC in the southern Puna 

(see Figure 1.2 and Table 1.2).  The Galán (2.0-2.8 Ma) and multiple Toconquis (3.8-

6.4 Ma) ignimbrites are the major units which are underlain by late Precambrian and 

Paleozoic crystalline and sedimentary rocks.  Studies by Sparks et al. (1985), Francis 

et al. (1989) and Kay et al. (2011) include dates as well as whole rock major and trace 

element data, microprobe analyses on mineral phases and Sr, Nd, Pb and O isotopic 

analyses.  A well-defined three tier model of magma evolution is described by Kay et 

al. (2010) and is the basis for a similar system proposed for the Los Frailes Complex 

in this paper.  Based on Sr AFC modeling and δ
18

O values from quartz phenocrysts, 

Kay et al. (2010, 2011) concluded that the Cerro Galán ignimbrites consist of a near 

50:50 mixture of enriched mantle and crustal melts.  The same methodology will be 

used in this paper with the Nd system added to the AFC calculations.   
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Table 1.2 

Sr, Nd and O isotopic and concentrations values of selected Altiplano-Puna ignimbrites 
 

Sample 

SiO2 

(wt. %) 

Age 

(Ma) 

87Sr/ 
86Sr* 

Sr 

ppm 

143Nd/ 
144Nd 

 

ƐNd 

Nd 

ppm 

δ18OQuartz‰ 

Measured 

δ18OMagma‰ 

Calculated 

APVC Large Volume 

Coranzulia 65-69 6.4-8.4 0.71221 340 - - 35 +9.8-9.9 +9.5-9.6 

Panizosa 61-66 6.7-10 0.71478 300 0.512129 -9.9 42 +10.0-10.2 +9.7-9.9 

Vilamaa 63-68 8.4-8.5 0.71505 280 0.512158 -9.4 33 +9.2-9.5 +8.9-9.2 

APVC Small Volume 

Grandaa 63-68 9.5-10.5 0.71595 300 0.512148 -9.6 38 +9.0-10.0 +8.7-9.7 

Puna Large Volume 

Cerro Galánb 67-70 2.1-6.4 0.71150 270 0.512240 -7.8 39 +8.3-9.2 +8.0-8.9 

Altiplano Large Volume 

Morococalac 69-76    6.4-8.4           - 300 - - 33 - - 

Greater than 500 km
3
 of DRE erupted material is considered large volume.  Following Chang 

(2007), the fractionation correction for quartz is about 0.3‰ for ∆qtz-melt and therefore 0.3‰ 

was subtracted from δ
18

Oquartz to produce δ
18

Omagma. 
a
 Kay et al. (2010). 

b
 Kay et al. (2011). 

c
 Morgan et al. (1998). 

* Initial ratios. 
 

 The Kay et al. (2011) three tier crustal evolution model at Cerro Galán calls for 

processes at lower crustal, middle crustal and upper crustal levels.  In the lower crust, 

amphibolite partial melts mix with mantle basalts and produce hybrid melts.  These 

melts evolve under high pressure conditions imparting steep heavy rare earth element 

(HREE) patterns and very low Nb/Ta ratios in the melt.  As the melts rise, they leave a 

gravitationally unstable garnet-bearing residue (restite) which sets the stage for 

delamination of the upper mantle and lower crust as originally argued by Kay et al. 

(1994).  Middle crustal level processes involve storage in zones of crystalline mush at 

temperature near 800°-850°C.  Here, plagioclase stability and fractionation increases, 

which creates negative Eu anomalies and variable trace element enrichment.  Repeated 

magma recharge and evacuation into the upper crust is thought to occur during times 

of regional contraction.  Once in the upper crust, temperatures drop to as low as 680°C 

and crystallization increases.  Ignimbrite chemical variably is attributed to differences 

in near-eutectic crystallization prior to eruption.  Kay et al. (2011) also argues that 
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episodic delamination of gravitationally unstable lithosphere and lower crust is 

directly related to crustal heating and thereby to the eruption history of Cerro Galán. 

The APVC is one of the largest ignimbrite provinces on Earth and is the 

dominate feature on the central part of the Altiplano-Puna plateau (e.g., de Silva, 

1989; Coira et al. 1993). The APVC is located on the northern Puna at the margin of 

the Puna and Altiplano and straddles the change from a more sedimentary basement in 

the north to a more igneous basement to the south (see Figure 1.2).  It has been the 

center of much of the work on the structure and chemistry of the Altiplano-Puna 

ignimbrites and both major and trace element geochemistry and Sr, Nd, Pb and O 

isotopic data are available (e.g., Kay et al., 1999, 2010; Trumbull et al., 2006). The 

four APVC centers most geochemically similar to the Los Frailes Complex, and used 

for comparison here, are the large volume Coranzuli (>650 km
3
), Panizos (>650 km

3
) 

and Vilama (~1400 km
3
) ignimbrites as well as the small volume Granda ignimbrite 

(Table 1.2).  The best studied are the Panizos (e.g., Ort et al., 1996) and Vilama 

ignimbrites (e.g., Soler, 2005; Soler et al., 2007).  All four centers are moderately to 

strongly peraluminous and are the northernmost units in the APVC (see Figure 1.2).  

Kay et al. (2010) used a methodology like that applied to Cerro Galán ignimbrites in 

using fractionation corrected δ
18

O values from quartz and Sr AFC solutions to model 

the APVC ignimbrites as a near 50:50 hybrid mixture of mantle and crustal melt.  

The last comparative volcanic unit is the 6.4 to 8.4 Ma Morococala ignimbrite 

located about 75 km to the northwest of the Los Frailes Complex (see Figure 1.2 and 

Table 1.2) and best described by Morgan et al. (1998).  The Morococala center 

consists of three primary ash-flow units erupted at three localities from 6.4 to 8.4 Ma.  

The oldest unit is made of andalusite-bearing two-mica rhyolitic tuffs, the middle unit 

is a cordierite-biotite bearing rhyolitic tuff while the youngest capping unit consists of 

biotite-quartz latitic tuffs and domes (Koeppen et al., 1987).  While the Morococala 
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center is more silicic (69-76% SiO2) and volumetrically smaller, it is the closest major 

ignimbrite to the Los Frailes Complex and shares its sedimentary basement, highly 

peraluminous character and association with the Bolivian tin belt.  Whole-rock major 

and trace element data as well as mineral analyses are included in Morgan et al. 

(1998), however, no isotopic data has been reported for Morococala. 
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CHAPTER 2 

ANALYTICAL METHODS 

 

Major Element Analyses 

Whole-rock major element and Rb, Nb, Y, and Zr concentrations were 

determined by X-ray fluorescence (XRF) at the University of Jujuy in Argentina, 

following analytical methodology delineated in Caffe et al. (2002).  Samples were 

selected and trimmed in the field to minimize the effect of weathering.  In order to 

avoid contamination and minimize systematic error between techniques in the 

chemical analyses, all whole rock analyses were conducted on the same bulk-rock 

powders mechanically pulverized in an alumina shatter-box.   

Trace Element Analyses 

 Whole-rock trace element analyses by instrumental neutron activation analysis 

(INAA) were conducted at Cornell University after sample irradiation at the North 

Carolina State University PULSTAR research reactor.  Prior to neutron irradiation, 

samples and standards were prepared by sealing bulk rock powder of known mass 

(~0.5 g) in high-purity silica glass ampules. Following irradiation, ampoules were 

individually placed in front of a Pb brick shielded ORTEC GEM-20170-S solid-state 

gamma-ray spectrometer and counted for 3-10 hours each to determine each sample’s 

gamma-energy spectrum, which was then interpreted by comparison to three in-house 

standards, correcting for decay and interferences (standard analyses shown in 

Appendix B). In order to obtain a more complete set of analyses of elements with both 

short and long half-life radioisotopes, samples were counted twice: first for ~3 hours 

each, beginning seven days after irradiation; and second for ~10 hours each, starting at 

least 30 days after irradiation. 
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Mineral Analyses 

  In situ mineral analyses were completed at the Cornell University Center for 

Materials Research Electron Microprobe Laboratory.  Nine specimens (PT-1, PT-3, 

PT-8, PT-9, PT-10, PT-11p, PT-12, PT-14 and PT-16) were cut and polished to 30 µm 

and examined by petrographic microscope in order to describe mineral assemblages 

and to identify individual crystal phenocrysts for electron microprobe analysis.  Seven 

samples (PT-1, PT-3, PT-8, PT-11p, PT-12, PT-14 and PT-16) were coated with 

sputtered graphite carbon for microprobe analysis to determine the elemental 

compositions of major minerals, as well as to identify minerals too small to be 

detected or identified petrographically.  Individual mineral grains were analyzed by a 

JEOL 8900 in wavelength dispersive (WDS) mode with a beam diameter of 10 µm, 

accelerating voltage of 15 kV and an incident current of 2.00x10
-8

 amps.  The oxides 

analyzed were SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O.  Three or 

more measurements were regularly made at each analysis point and an average of 

valid measurements used.  When possible, measurements were made at both the core 

and rim of a grain to determine if zoning was present that was not identified 

petrographically.  Smithsonian volcanic glass standards A-99, Juan de Fuca (JDF) and 

rhyolite glass (RG) along with natural mineral standards Lake City plagioclase (LCP), 

PX-1 clinopyroxene and Kakanui hornblende (KH) were measured three times each at 

the beginning and end of each daily session.  The deviation from known values was 

then used to produce a daily correction value for each oxide.  Analyses with low total 

weight were removed.  Standards and data are presented in Appendix F.  

Strontium and Neodymium Isotopic Analyses 

Isotopes of Sr and Nd were analyzed in the W.M. Keck Foundation Isotope 

Laboratory at Cornell University using a Fisons Instruments VG Sector 54 Thermal 

Ionization Mass Spectrometer (TIMS).  Samples were prepared and analyzed 
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following the method described by White and Duncan (1996).  Procedures were 

carried out in a clean environment using Teflon containers and chemicals purified 

through sub-boiling distillation.  Rock specimens were powdered and 0.05 gram 

sample portions dissolved in 1.0 ml 6.0N QD HCl and then dried.  2.0 ml of HF and 

0.1 ml of HClO4 were added to the samples which were dried and then heated to 

evolve SiOF4 and HClO4 gasses.  The samples were dissolved in 3.0 ml of 6.0N QD 

HCl then dried before again being dissolved in 1.2 ml of 2.5N QD HCl.  The solutions 

were loaded in a centrifuge for 15 minutes at 5000 rpm after which the top 1.0 ml of 

each sample was pipetted off and loaded in a cation exchange column with Dowex 

50WX8 (400 mesh) resin (columns were prepared and calibrated by Ashley Tibbetts at 

Cornell University).  Sr and rare earth elements (REE) fractions were then extracted 

and collected by elution with 2.5N and 6.0N QD HCl.  A second extraction of Nd 

from the REE fraction was done using Eichrom LN Resin 100-150 micron columns 

with 0.23N QD HCL.  See Appendix A for detailed Nd column calibration and 

separation procedures. 

Sr and Nd fractions were then loaded on tungsten and rhenium filaments 

respectively and analyzed by TIMS using a dynamic multicollection technique.  

86
Sr/

88
Sr ratio is normalized to 0.11940 to correct for mass fractionation and the 

measured 
87

Sr/
86

Sr ratio mean for the NBS 987 Sr standard is 0.71023 (n=27, from 

10/2011 to 8/2012).  The 
87

Sr/
86

Sr ratio analytical uncertainty is estimated at ±0.00003 

(2σ error).  The 
87

Sr/
86

Sr measured ratios are corrected to 
87

Sr/
86

Sr initial ratios using 

the assigned ages and the 
87

Rb→
87

Sr β- decay constant of λ=1.396x10
-11

y
-1

 

(Rotenberg et al., 2012).  In the cases of PT-14 and PT-16 which have Sr 

concentrations but no associated Rb concentrations, a value of 230 ppm Rb was used.  

All 
87

Sr/
86

Sr ratio values reported and used in this study are calculated initial ratios.  

The 
146

Nd/
144

Nd ratio is normalized to 0.72190 to correct for mass fractionation and 
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the measured 
143

Nd/
144

Nd ratio mean for the Ames Nd standard is 0.512167 (-9.19 

ƐNd) (n=13, from 2/2012 to 5/2012).  The 
143

Nd/
144

Nd ratio analytical uncertainty is 

estimated at ±0.000040 (2σ error).  Reported 
143

Nd/
144

Nd ratio values are normalized 

to 
143

Nd/
144

NdAmes = 0.512131 (ƐNd Ames = -9.89) which resulted in a correction factor 

of -0.000036 (ƐNd = -0.70) that is applied to the reported values.  Where reported in 

ƐNd, a value of 
143

Nd/
144

NdCHUR = 0.512638 is used.  Data, standards and errors are 

presented in Appendix C.   

Oxygen Isotopic Analyses 

Oxygen isotopes were analyzed by laser fluorination on select quartz mineral 

grains following the procedure of Harris and Vogeli (2010).  Ten samples were 

disaggregated and 1-4 mg quartz grains selected using a binocular microscope and 

tweezers at Cornell University and then sent to the University of Cape Town 

Department of Geological Sciences.  Analyses were conducted on individually hand-

selected quartz phenocrysts.  Quartz is thought to be the least altered major mineral, 

and was used in order to avoid matrix alteration of tuff which was seen to be a 

problem with some whole rock oxygen values in the APVC (e.g., Kay et al. 2010).    

The individual mineral grains were then analyzed using a 20 W New Wave CO2 laser 

mounted on a moveable stage.  Measured values for unknowns were corrected to the 

average measured value for the internal standard of Monastery Garnet (MONGT, 

δ
18

O= 5.38‰ assuming a value of 5.80‰ for UWG-2).  SMOW (
18

O/
16

O=3.990x10
-4

) 

was used to calculate δ
18

O values.   In run error (2σ) is estimated at ±0.10‰ (n=6, 

from 1/11/2013 to 1/18/2013).  A quartz-melt fractionation correction value is 

calculated following Chang (2007).  The fractionation correction for quartz is about 

0.3‰ for ∆qtz-melt and therefore 0.3‰ is subtracted from δ
18

Oquartz to produce 

δ
18

Omagma.  Data, standards and errors are presented in Appendix D. 
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Fractionation-corrected δ
18

OMagma values are used to calculate the δ
18

O of the 

crustal end-member with various crust-to-mantle source ratios and assuming  

the mantle, crust and cumulates all have the same oxygen concentrations.  The δ
18

O of 

the mantle is set at +5.8‰ (e.g., Bindeman, 2008; Kay et al., 2010, 2011) and crust-to-

mantle mixing ratios of 40:60, 50:50 and 60:40 are used.  The Kari Kari and 

Kumurana centers were not measured as quartz is not present in the available samples. 

Zircon Isotopic Analyses 

Zircons were analyzed for U and Pb isotopes by Brenhin Keller at Princeton 

University using an Isotopx Phoenix62 thermal ionization mass spectrometer (Pb by 

peak-hopping on a Daly detector; U on Faraday cups).  All the steps after taking the 

zircons out of epoxy were conducted in class 10 (<10 particles >5microns in size per 

cubic foot of air) laminar flow clean hoods in a class 1000 clean room, and all reagents 

were sub-boiling distilled with <.15 picograms/gram Pb.  NBS 981 and SynZirc 

100Ma standards were used for U and Pb.  The procedures follow Parrish and Noble 

(2003) which also contains a thorough review of isotope dilution – thermal ionization 

mass spectrometry (ID-TIMS).  

Each sample was ground to a ~300 micron powder with a disc mill, zircons 

were then isolated by magnetic susceptibility with a Frantz isodynamic magnetic 

separator and density with methylene iodide.  The isolated zircons were then annealed 

for 48 hours at 900°C and relatively inclusion-free grains were picked by hand and 

mounted in epoxy.  They were then ground and polished halfway through before being 

carbon coated with ~20 nanometers sputtered graphite.   Imaging was conducted by 

cathodoluminescence (CL) with a Gatan Mini CL detector in a Quanta XL30 SEM.  

The zircons were then removed from epoxy and cleaned in acetone for 24 hours, 

chemically abraded in concentrated HF for 12 hours at 185 C in Teflon microcapsules 

and finally rinsed with 6N HCL, H2O and concentrated HF.  They were then spiked 
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with ~0.006 g EarthTime 535 spike, dissolved in concentrated HF for 24 hours at 210 

C before being evaporated to dryness on hot plate.  The samples were then redissolved 

in 6N HCl at 185 C for 12 hours before using Eichrom anion exchange resin (chloride 

form) to isolate U and Pb.  Isolated U and Pb were dried down together with one 

microdrop 0.0015 M H3PO4 and then loaded on degassed rhenium filaments with 

silica gel.  Data standards and errors are presented in Appendix E. 

40
Ar-

39
Ar Age Analyses 

Sanidine crystals from samples PT-8 and PT-11 along with the 28.201 Ma Fish 

Canyon tuff sanidine (FCs) standards (Kuiper et al., 2008) were irradiated for 5 hours 

at the Oregon State University TRIGA-type reactor in the Cadmium‐Lined In‐Core 

Irradiation Tube.  Analyses at University of Wisconsin-Madison Rare Gas 

Geochronology Laboratory were done by Brian Jicha.  Single sanidine grains were 

fused using a 25 Watt CO2 laser followed by an additional 5 minutes for gas cleanup. 

The gas was cleaned during and after the heating period with two SAES C50 getters, 

one of which was operated at ~450°C and the other at room temperature.  Blanks were 

analyzed after every second laser fusion, and were less than 4×10
−17

, 3×10
−19

, 6×10
−20

, 

and 2×10
−19

 moles for 
40

Ar, 
39

Ar, 
37

Ar, 
36

Ar, respectively.  Ten to twenty mass 

discrimination measurements via automated analysis of air pipettes were made prior 

to, and following each incremental heating experiment and encompass the range of 

40
Ar observed for the samples.  Measured 

40
Ar/

36
Ar ratios of atmospheric argon were 

normalized to 
40

Ar/
36

Ar = 295.5 (Steiger and Jäger, 1977) and the discrimination was 

calculated using a linear law relationship. 

Argon isotope analyses were done using a MAP 215–50, and the isotope data 

was reduced using ArArCalc software version 2.5 <http://earthref.org/ArArCALC/>.  

Ages were calculated from the blank-, discrimination- and decay-corrected Ar isotope 

data after correction for interfering isotopes produced from K and Ca during neutron 
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irradiation in the nuclear reactor.  The age uncertainties reported in Appendix G reflect 

analytical contributions only at the 2σ level; the decay constants used are those of Min 

et al. (2000).  Data, standards and errors are detailed in Appendix G. 

Geothermometry and Geobarometry Analyses 

Zircon saturation thermometry is applied to all samples with appropriate Zr 

concentration data using the major and trace element data reported here and the 

equations of Watson and Harrison (1983).  The six samples of the PO series were 

calculated previously by Keller (2010) and only reconfirmed here.  Two-feldspar 

thermometry of plagioclase-sanidine pairs is done by using the mineral data collected 

by microprobe analysis and calculations using the SOLVCALC program (Wen and 

Nekvasil, 1994), which uses the thermodynamic models of Nekvasil and Burnham 

(1987).  Separate calculations were performed for plagioclase cores and rims for each 

sample at pressures between 200 and 1200 MPa and reported at 400 and 1000 MPa.  

Optical microscopy and microprobe analysis were used to look for the presence of 

cordierite.  The presence of cordierite indicates low pressure equilibrium at ≤450 MPa 

which is equivalent to a crustal depth of ~15 km or less.   
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CHAPTER 3 

ANALYTICAL RESULTS 

 

 While most of the 25 analyzed samples had major and trace element data and 

isotopic values that fell within a restricted analytical range for a respective unit, there 

were three samples that did not.  The first is Kumurana sample PT-4, which is 

significantly different than the four Kumurana samples with reported major and trace 

element data in Schneider (1985).  In all cases, PT-4 shares chemical values with the 

Schneider (1985) Kari Kari samples and only plots in the Kumurana field where it 

overlaps the Kari Kari field.  Based on its chemical distinctness from Schneider (1985) 

Kumurana values, PT-4 will be labeled as a Kumurana sample, but will not be used to 

expand the Kumurana field.  This has implications when discussing 
143

Nd/
144

Nd (ƐNd) 

data as PT-4 is the only Kumurana sample which has been analyzed. 

The other two samples are PO-5 and PO-6 from the Sevaruyo region.  As these 

two samples are the only Sevaruyo region samples yet studied, no comparison can be 

made to existing data.  PO-6, with an intermediate 66% SiO2, has extensive similarities 

to the main Los Frailes ignimbrite chemistry.  PO-5 has a unique chemistry with the 

highest SiO2 seen in the Los Frailes Complex (72% SiO2) and concentration and 

isotopic values that do not resemble any other unit.  PO-6 was collected from a stone 

fence next to a quebrada and may be transported fill material from a main Los Frailes 

meseta type source to the east.  Both samples will be displayed with Sevaruyo 

symbology on plots, but should not be relied upon for extensive interpretation.  PO-5 

is assumed to be the most representative of the chemistry of the Sevaruyo region unit 

and will be denoted on plots. 

PT-14 from Livicucho is the only sample that does not have a complete major 

elemental data set.  PT-14, PT-10, PT-16 and PT-16p from Livicucho and the Los 
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Frailes unit are missing some trace element concentration data as well.  Full analytical 

results for major and minor elements are found in Appendix B. 

Major Elements 

 All samples from this study exhibit a clear peraluminous nature with 

Al/(K+Na+Ca) values between 1.04-1.28 (Figure 3.1a ).  All units have 

Al/(K+Na+Ca) ratios close to 1.2 with the exception of the Los Frailes ignimbrite 

which has a lower average of near 1.1.  In Figure 3.2, all but one silica-rich (>64% 

SiO2) samples plot in the S-type (sedimentary) granitoid field of the sedimentary-

igneous-anorogenic-mantle (S-I-A-M) classification (Chappell and White, 1974; 

Loiselle and Wones, 1979; White, 1979).  Silica-poor (<64% SiO2) Livicucho and 

Condor Nasa have lower, more S-type, values.  Figure 3.3 depicts wt. % K2O set 

against wt. % SiO2 and shows the high K2O content of the Los Frailes Complex with 

all samples plotting in or near the shoshonitic field.  Only three samples, which are all 

>68% SiO2, from Porco, the Sevaruyo region and the Los Frailes ignimbrite are in the 

upper high-K field. 

Trace Elements  

Figure 3.4a is a primitive mantle normalized plot of trace element 

concentrations, using the normalization values of Sun and McDonough (1989), 

depicted on a logarithmic scale of representative samples from the various Los Frailes 

Complex units.  The negative slope of the REE portion reflects light rare earth element 

(LREE) enrichment and variable HREE depletion and will be discussed further using 

La/Sm, Sm/Yb and La/Yb ratios.  HFSE element depletion is also clearly seen with 

Nb, Ta and Ti exhibiting marked variation between units.  Low Ba/La and Ta/Nb 

ratios are also present. 
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Figure 3.1 

 

Plot of Al/(K+Na+Ca) versus weight percent SiO2 depicting the highly peraluminous 

nature of Los Frailes Complex. (a) There may be a slight temporal decreasing 

peraluminous trend in <10 Ma samples, as the Livicucho-Condor Nasa values average 

is ~1.2, the Los Frailes ignimbrite values are between 1.1-1.2 and the youngest <1 Ma 

Nuevo Mundo values are ~1.1. (b) The large APVC centers; Coranzuli, Panizos and 

Vilama as well as the smaller Granada, are the most peraluminous ignimbrites found 

on the Puna plateau with other volcanic centers showing generally intermediate to 

metaluminous values as represented by Cerro Galán.  The central Altiplano ignimbrite 

Morococala has similar peraluminousity to the Los Frailes Complex of 1.1-1.3. 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998). 
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Figure 3.2 

 

Plot of weight percent Na2O versus weight percent K2O displaying the aluminousity 

variability of the ignimbrites reflected in their Na2O and K2O concentrations.  Silica-

rich (>64% SiO2) Los Frailes Complex samples have low values of Na2O and high 

K2O with silica-poor samples (<64% SiO2) containing less K2O.  The silica-rich 

(>64% SiO2) samples have similar Na2O concentration to >64% SiO2 filtered 

Coranzuli values. Na2O values at Vilama, Granada and Panizos are slightly lower, 

more S-type (sedimentary).  Surprisingly, Morococala has higher Na2O values of 3.0-

3.5 which place it in the A-type (anorogenic) granitoid field with Cerro Galán.  The 

single Los Frailes Complex strongly A-type outlier is PT-16p (67% SiO2), a main Los 

Frailes ignimbrite pumice which is Ca-poor and Na-rich. 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985); Cerro 

Galán and APVC fields as compiled in Kay et al. (2010, 2011); Morococala field as 

compiled by Morgan et al. (1998). 
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Figure 3.3 

 

Plot of weight percent K2O versus weight percent SiO2 displaying the high K2O 

content of the <20 Ma units in the shoshonitic field while the older ~25 Ma Kumurana 

unit has distinctly lower K2O values in the high-K field.  The Los Frailes Complex 

(except Kumurana) K2O values are higher than those seen in the four APVC 

ignimbrites (blue box) or at Morococala and Cerro Galán (black box). 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985); Cerro 

Galán and APVC fields as compiled in Kay et al. (2010, 2011); Morococala field as 

compiled by Morgan et al. (1998). 
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Figure 3.4 

 

Primitive mantle normalized plots of trace element concentrations on a logarithmic 

scale from (a) the various Los Frailes Complex units and (b) representative samples 

from the peraluminous APVC ignimbrites, Cerro Galán and Morococala centers with 

Kari Kari, Porco and the main Los Frailes units of the Los Frailes Complex for 

comparison.  (a) The negative slope of the REE portion reflects LREE enrichment 

(high La/Sm ratios) and variable HREE depletion (Sm/Yb ratios).  HFSE element 

depletion is also clearly seen with Nb, Ta and Ti exhibiting marked variation between 

units. (b) All share similarly negative REE trends reflecting LREE enrichment and 

HREE depletion but with reduced slopes compared to those seen at the Los Frailes 

Complex.  Depletion of HFSE elements Nb, Ta and Ti is also seen but with lower 

Nb/Ta and extreme Ti depletion in Morococala. 

Los Frailes Complex concentrations: This study and Keller (2010); Cerro Galán and 

APVC concentrations: as reported by Kay et al. (2010, 2011); Morococala 

concentrations: as reported by Morgan et al. (1998). 
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Figure 3.5 
      

Plot of La/Sm ppm ratio versus Sm/Yb ppm ratio which illustrates variable REE 

depletion.  HREE depletion is quantified by an increased Sm/Yb ratio while LREE 

enrichment is characterized by an increased La/Sm ratio.  In general, Sm/Yb <2 

indicates magma that equilibrated with pyroxenes, Sm/Yb of 2-5 indicates 

amphiboles, and Sm/Yb >5 is a garnet-induced signature which requires exceptionally 

thick crust of >45-55 km with a pressure of ~15 kbar (1.5 GPa). (a) The pattern of the 

Los Frailes Complex samples indicates that the Altiplano crust underwent two 

thickening episodes with a dramatic thinning event between them (see text for detailed 

discussion).  The rapid decrease in La/Sm and Sm/Yb at 10-12 Ma, following the high 

values seen in the Porco data, is interpreted as the detachment of the lithosphere and 

lower crust in response to the crustal thickening and high-pressure driven lower crustal 

phase changes.  A second, less dramatic, decrease occurs at 2-4 Ma prior to the main 

1.5-3.5 Ma Los Frailes ignimbrite eruption.  Arrows pointing to the upper-right (black) 

represent crustal thickening trends while the arrow pointing to the lower-left (red) 

depicts rapid thinning.  The second, 2-4 Ma, delamination event is not depicted in 

order to avoid excessive clutter of the plot. (b) No temporal pattern is seen in the 

comparative ignimbrites.  The Cerro Galán field and the APVC have low Sm/Yb and 

low to moderate La/Sm, while Morococala has moderate Sm/Yb and mostly moderate 

La/Sm with a few high samples, but without correspondingly high Sm/Yb ratios.   

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998). 
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Figure 3.6 

 

Plot of La/Yb ppm ratio versus La ppm which shows no discernible effect of La 

concentration on the La/Yb ppm ratio.  The lack of La concentration influence 

indicates that the ratio is being controlled by variations in HREE (Yb) which are 

preferentially incorporated in garnet under high pressure conditions which raises the 

La/Yb ratio of the remaining melt. This is interpreted to occur during periods of 

thickened continental crust below the Los Frailes Complex. 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985). 
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Figure 3.7 

 

Plot of La/Yb ppm ratio versus weight percent SiO2 which shows REE ratio changes 

are not SiO2 driven.  (a) Moderate silica (64-68% SiO2) Kumurana, Kari Kari, 

Livicucho and Condor Nasa samples (red box) have similarly low Sm/Yb ratios as 

lower silica (<64% SiO2) samples from the same units.  In addition, several of the 

highest silica Los Frailes and Sevaruyo samples (>69% SiO2) have low La/Yb.  When 

samples of similar silica content are considered (64-68% SiO2), the La/Yb ratio ranges 

are nearly unchanged which indicates that REE ratios changes are not SiO2 driven. (b) 

Patterns of near horizontal La/Yb ratios with variable SiO2 are also seen in the APVC, 

Cerro Galán and Morococala fields.  La/Yb ratios seen in the Porco, Los Frailes and 

Nuevo Mundo ignimbrites are far above those reported in the APVC, Cerro Galán or 

at Morococala. 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998). 
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Figure 3.8 

 

Plot of La ppm versus weight percent SiO2 showing a slight decreasing trend of La 

concentration with increased SiO2 in the Los Frailes Complex data.  This indicates that 

silica sensitive phases only minimally affect the La concentration of the magma. 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.9 

 

Plot of Ba/Ta ppm ratio versus La/Ta ppm ratio as well as Ba/La ppm ratio showing 

systematic variation in the HFSE (La and Ta) and LILE (Ba) ratios with time.  (a) The 

Los Frailes Complex Ba/Ta and La/Ta ratio pattern of increases and decreases mirrors 

the temporal pattern seen in La/Sm versus Sm/Yb plot (Figure 3.5a) which indicates a 

pressure-driven mechanism.  Increasing ratios (black arrows) coincide with times 

believed to represent thickening crust and decreases (red arrow) occur following 

proposed delamination events at 10-12 Ma and 2-4 Ma when lithospheric-mantle and 

basal crustal materials are proposed to have been lost.  The increase in Ba/La ratio 

seen at ~10-12 Ma is interpreted as enrichment of the mafic end-member melts or an 

increase in crustal fertility following the initiation of delamination at that time. See the 

text for a detailed discussion.  The second delamination event is not depicted by the 

arrows to avoid cluttering the plot. (b) Illustrates that the APVC has a similar Ba/La 

but with much reduced La/Ta compared to the Los Frailes Complex which places 

them in the field of ratios occupied by Livicucho and Condor Nasa.  The Cerro Galán 

field has even lower ratios putting it in the Kumurana and lower Kari Kari fields.  

Morococala has a wide range of moderate to extremely low Ba/Ta and La/Ta ratios 

caused by both low La and Ba and elevated Ta concentrations as compared to the Los 

Frailes Complex.  In contrast, Ba/La ratios are steadily 15-20 which is in the same 

range as post-12 Ma units of the Los Frailes Complex. 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998).  The Ta concentrations used 

for the Schneider (1985) and Jiménez et al. (1997) are calculated values (Nb ppm/14). 
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Figure 3.10 

 

Plot of Nb ppm versus Ta ppm depicting the unit variability of HFSE elements Nb and 

Ta concentrations.  High concentrations, and near chondritic (19.9±0.6) Nb/Ta ratios, 

are found at Kumurana and Kari Kari while Livicucho and Condor Nasa also have 

high concentrations, but intermediate Nb/Ta ratios.  The lowest concentrations of both 

Nb and Ta as well as the lowest Nb/Ta ratios occur in the Porco, Sevaruyo, Los Frailes 

and Nuevo Mundo ignimbrites which are also the most silicic units.  The high-silica 

(72% SiO2) Sevaruyo sample (red box and circle) plots with the other high-silica units 

and not with the low-silica, but temporally coeval, Livicucho and Condor Nasa as it 

does with La/Sm versus Sm/Yb plot and La/Ta versus Ba/Ta plot (Figures 3.5a and 

3.9a).  This indicates that Nb and, to a lesser extent, Ta concentrations are controlled 

by accessory phases in siliceous melts and not pressure driven accessory phases as Ba 

and La concentrations indicate.  See text for full discussion. 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Luedke et al. (1997). The Ta concentrations used for the Schneider (1985) and 

Jiménez et al. (1997) are calculated values (Nb ppm/14) and so are omitted here.  

Kumurana, Kari Kari and Livicucho centers are represented by a single sample each 

(PT-4, PT-5, and PT-13 respectively). 
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Rare Earth Elements  

Figure 3.5a demonstrates that the lowest Sm/Yb values are found in the 

samples from the ~20-25 Ma Kumurana and Kari Kari centers, which have Sm/Yb = 

4.4 and 4.8 and relatively high La/Sm values of 6.8 and 7.1.  These are followed 

chronologically by the 12-14 Ma Porco group samples with a range of high to 

extremely high values of Sm/Yb = 8.8-11.1, accompanied by high La/Sm = 8.7-9.1.  

The ratios then retreat with marked decreases in both Sm/Yb and La/Sm in the 7-10 

Ma Sevaruyo, Condor Nasa and Livicucho samples that have a collective range of 

Sm/Yb = 4.5-7.7 and La/Sm = 5.1-6.7.  The 1.5-3.5 Ma main Los Frailes ignimbrite 

samples have a generally intermediate range of ratios with Sm/Yb = 6-10 and La/Sm = 

6-7.5.   

Figure 3.6 shows that La concentration variations are not controlling the 

resulting La/Yb ratio.  This can also be seen in Figure 3.4a which shows that although 

LREE enrichment has occurred, the La concentrations are relatively constant 

compared to the Yb concentrations which have undergone variable HREE depletion.  

Figure 3.7a plots La/Yb ppm ratio versus wt. % SiO2 which shows that although the 

upper range of the La/Yb ratio increases at >65% SiO2, the lower range remains the 

same which indicates that silica content is not the driving factor in La/Yb ratio 

creation.  Figure 3.8 plots La ppm versus wt. % SiO2 and shows only a slight possible 

decreasing trend in the La concentration range (60-90 ppm) with variable SiO2.   

High Field Strength and Large-Ion Lithophile Elements 

As seen in Figure 3.9a, the samples from the Los Frailes Complex plot in the 

Ba/La ratio range of 10-20 with a pre-12 Ma mean of 12 and a shift to a post-12 Ma 

mean of 17-18.  The ~25 Ma PT-4 Kumurana sample exhibits low Ba/Ta = 435 and 

La/Ta = 37 while the ~20 Ma PT-5 Kari Kari sample has slightly higher values of 

Ba/Ta = 520 and La/Ta = 39.  The 12-14 Ma Porco samples exhibit a range of very 
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high values of Ba/Ta = 605-727 and La/Ta = 48-59.  The La/Ta values then decrease 

back to low-moderate values for the 7-8 Ma Livicucho and Condor Nasa samples (26-

41) with higher Ba/Ta = 470-605 which also effectively increases the corresponding 

Ba/La ratio to 17-18.  The 9-10 Ma Sevaruyo region PO-5 sample has the highest 

Ba/La which is near 20 with Ba/Ta = 460 and La/Ta = 23. The 1.5-3.5 Ma Los Frailes 

ignimbrite samples show a large scatter but generally occupy a high, nearly Porco-

like, field of Ba/Ta = 466-777 and La/Ta = 37-47.       

Figure 3.10 depicts the variability of HFSE elements Nb and Ta concentrations 

between individual units.  Kumurana and Kari Kari have the highest Nb 

concentrations of 38-39 ppm and high Ta values of 2.2-2.3 ppm.  The Livicucho 

sample plots with the closely related Condor Nasa field (Nb = 28-34 ppm, Ta = 2.1-

2.35 ppm), as it does with most other major and trace elements.  The high silica (66% 

SiO2) Condor Nasa sample PT-12 is an extreme outlier with much lower Nb 

concentration.  The higher silica (66-72% SiO2) Porco, Sevaruyo, Los Frailes and 

Nuevo Mundo ignimbrite samples all have significantly lower concentrations of both 

Nb and Ta  ( Nb = 20-25 ppm, Ta = 1.6-2.8 ppm).   

Europium Anomaly 

  The plot of Eu/Eu* ratio versus SiO2 in Figure 3.11a shows that the Los 

Frailes Complex units have variable Eu/Eu* ratio values which range from 0.7-0.9 in 

the low silica samples (<64% SiO2) to a maximum negativity of 0.6-0.75 in the more 

silicic samples (>64% SiO2).  Both the Kumurana PT-4 and Kari Kari PT-5 have 

relatively low Eu/Eu* values (greater negative Eu anomaly) of 0.61 and 0.68.  The low 

silica Livicucho and Condor Nasa samples plot together and overlay each other with a 

range of Eu/Eu* = 0.68-0.91.  The Porco samples values have an intermediate range of 

Eu/Eu* = 0.66-0.74 and the Los Frailes ignimbrite samples have Eu/Eu* = 0.61-0.68.  

The Sevaruyo region samples follows the expected pattern of increasing Eu/Eu* 
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negativity with increased silica, however, PO-6 at 66% SiO2 and a high Eu/Eu* = 0.86 

is the only time in which its chemistry plots distinctly outside of the main Los Frailes 

ignimbrite field.  Figure 3.12a depicts the Eu/Eu* ratios plotted against Sm/Yb ppm 

ratios.  The individual unit fields show no distinct trend of Eu/Eu* ratio change with 

highly variable Sm/Yb ratios. 

Strontium, Rubidium and Neodymium 

 Figures 3.13, 3.14 and 3.15 confirm that Sr ppm has remained in the range of 

400-650 ppm over the 25 My history of the Los Frailes Complex despite extremely 

variable Sm/Yb and Eu/Eu* ratios as well as SiO2 content.  The Kumurana PT-4 and 

Kari Kari PT-5 samples have a relatively low Sr concentration of ~465 ppm with 

moderate silica of ~63%, a negative Eu/Eu* anomaly of ~0.65 and low Sm/Yb of 0.45.  

The Porco samples have an average Sr ppm of 550 but with high SiO2 of ~70% and 

high Sm/Yb of 10.6-11.1. The SiO2-poor Livicucho and Condor Nasa samples have a 

large combined range of 410-670 ppm Sr with Condor Nasa exhibiting higher upper-

end values.  The high silica (72% SiO2) PO-5 Sevaruyo sample exhibits the overall 

lowest value of 270 ppm Sr for the Los Frailes Complex.  The main Los Frailes 

ignimbrite samples contain 405-625 ppm Sr which represents the Complex’s average. 

 Figure 3.16 depicts the Nd concentration against wt. % SiO2 and remains 

relatively steady over time with all but two values between 55 and 70 ppm Nd.  Again, 

Kumurana and Kari Kari samples have similar concentrations of ~68 ppm Nd.  The 

three Porco samples have a tight range of 68-70 ppm Nd, while the high-silica (72% 

SiO2) Sevaruyo sample PO-5 exhibits a lower value of 33 ppm Nd.  Livicucho and 

Condor Nasa samples share a field of 58-69 ppm Nd with the main Los Frailes 

ignimbrite having the widest, but intermediate range of 50-71 ppm Nd.  Figure 3.17 

indicates that most Los Frailes Complex samples maintain an average Sr/Nd ratio of 

near 8-9 with a total range of 6-12.   
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Figure 3.11 
 

Plot of Eu/Eu* ratios versus weight percent SiO2.  (a) Shows the Los Frailes Complex 

has variable Eu/Eu* with the highest values in low silica units and lowest values in 

high silica units.  This indicates magma evolution and plagioclase removal are driving 

the Eu/Eu* value. (b) Shows the trend of decreasing Eu/Eu* with increased silica 

content is present in other Altiplano-Puna ignimbrites at higher silica contents than the 

Los Frailes Complex.  This suggests that the volume of plagioclase removal is greater 

at APVC and Morococala centers and helps to explain the higher Sr concentration in 

Los Frailes Complex units.  The outlier near Eu/Eu* = 0.45 is Luedke et al. (1997) 

sample P60, which has SiO2 near 70% and also contains low FeO and MgO which 

indicates a more evolved character.   

Symbols: Los Frailes Complex - squares: This study with Keller (2010); diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997); triangles – Schneider (1985); Cerro 

Galán and APVC fields as compiled in Kay et al. (2010 and 2011); Morococala field 

as compiled by Morgan et al. (1998). 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998). 
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Figure 3.12 

 

Plot of Eu/Eu* ratio versus Sm/Yb ppm ratio which (a) shows that Los Frailes 

Complex Eu/Eu* values are slightly more negative at higher Sm/Yb ratios; indicating 

greater plagioclase fractionation.  This indicates that Eu/Eu* character is not being set 

in the assimilation region, but is being generated at lower pressure during magmatic 

assent to the surface.  A thinner crust leads to decreased plagioclase loss during 

magma transit while a thicker crust has greater plagioclase loss.  (b) No correlation 

between Sm/Yb ratios and Eu/Eu* exists which indicates that the Eu/Eu* values are 

not being set at the time of assimilation and mixing. 

Symbols: (a and b) Los Frailes Complex: squares- This study and Keller (2010), 

diamonds - Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider 

(1985); (b) Cerro Galán and APVC fields as compiled in Kay et al. (2010, 2011); 

Morococala field as compiled by Morgan et al. (1998). 
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Figure 3.13 

 

Plot of Sr ppm versus weight percent SiO2 showing the Sr ppm range has remained 

nearly constant over the 25 My history of the Los Frailes Complex and through 

variable SiO2 content.  The 65% SiO2 Kari Kari outlier with 290 ppm Sr also has low 

FeO and low MgO compared to other Kari Kari samples indicating more evolved 

character.   

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.14 

 

Plot of Sr ppm versus Eu/Eu* ratio showing the Sr ppm range has remained nearly 

constant over the 25 My history of the Los Frailes Complex through variable Eu/Eu*.  

Variable Eu/Eu* indicates variable plagioclase removal has had minimal impact on the 

Sr ppm of the resulting ignimbrites.  The Kari Kari outlier at 290 ppm Sr also has low 

FeO and low MgO compared to other Kari Kari samples indicating more evolved 

character.   

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.15 

 

Plot of Sr ppm versus Sm/Yb ppm ratio showing the Sr ppm range has remained 

nearly constant over the 25 My history of the Los Frailes Complex through variable 

Sm/Yb.  Variable Sm/Yb indicates variable AFC zone depth has had minimal impact 

on the Sr ppm of the resulting ignimbrites.  The Kari Kari outlier with 290 ppm Sr also 

has low FeO and low MgO compared to other Kari Kari samples indicating more 

evolved character 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.16 

 

Plot of Nd ppm versus weight percent SiO2 showing the Nd ppm range has remained 

generally constant over the 25 My history of the Los Frailes Complex and through 

variable SiO2 content.  

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.17 

 

Plot of Nd ppm versus Sr ppm and resulting Sr/Nd ratio.  Most Los Frailes Complex 

samples maintain a Sr/Nd ratio of 6-11.  The higher Sr/Nd ratios seen in the Kumurana 

samples are due to their higher Sr content.  The other Altiplano-Puna backarc 

ignimbrite fields show they are lower in Sr and Nd concentrations, but have roughly 

the same average Sr/Nd ratio range as the Los Frailes Complex.  The Sevaruyo region 

sample PO-5, which is outlined in red, is the only Los Frailes Complex sample with 

concentrations like that of the other Altiplano-Puna backarc ignimbrites. 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985); Cerro 

Galán and APVC fields as compiled in Kay et al. (2010, 2011); Morococala field as 

compiled by Morgan et al. (1998). 
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Figure 3.18 

 

Plot of Rb ppm versus weight percent SiO2 showing the Rb ppm range has remained 

generally constant over the 25 My history of the Los Frailes Complex and through 

variable SiO2 content.  

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985). 
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Figure 3.19 

 

Plot of Rb ppm versus Sr ppm and resulting Rb/Sr ratios.  Most Los Frailes Complex 

samples maintain an Rb/Sr ratio of 0.33-0.5 with some scatter and an average near 0.4.  

The lower Rb/Sr ratios seen in Kumurana samples are due to higher Sr content.  The 

normal ranges of other Altiplano-Puna backarc ignimbrites are lower in Sr 

concentration, but have slightly higher Rb content than the Los Frailes Complex with 

an Rb/Sr average of >0.5.  The Sevaruyo region sample (outlined in red) is the only 

Los Frailes Complex sample with concentrations like that of the other Altiplano-Puna 

backarc ignimbrites. 

Symbols: Los Frailes Complex: squares- This study and Keller (2010), diamonds - 

Jiménez et al. (1997) and Luedke et al. (1997), triangles – Schneider (1985); Cerro 

Galán and APVC fields as compiled in Kay et al. (2010, 2011); Morococala field as 

compiled by Morgan et al. (1998). 
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 Figure 3.18 exhibits overlapping Rb concentrations between 170-250 ppm for 

most Los Frailes Complex units.  Only Condor Nasa seems to have a lower end-range 

with concentrations between 130-250 ppm Rb.  The main Los Frailes ignimbrite has 

most values between 200-270 ppm Rb, but with some scatter.  Sevaruyo sample PO-5, 

which has the lowest Sr concentration, also has the highest Rb concentration of 272 

ppm and is the only new sample with Rb/Sr ≥ 1.0 (see Figure 3.19). 

Mineral Compositions 

All Los Frailes Complex samples are crystal-rich welded ash tuffs with 30-

50% phenocryst by volume.   Like other CVZ backarc ignimbrites, plagioclase, quartz 

and biotite are the dominate minerals in all samples (e.g., Coira and Kay, 1993; de 

Silva and Gosnold, 2007; Morgan et al., 2008; Keller, 2010) with sanidine accounting 

for the remainder of the major minerals.  Opaque and high birefringence accessory 

minerals are seen petrographically as both inclusions and free grains and are identified 

as ilmenite and zircon.  Apatite and a REE phosphate (monazite) are also identified as 

accessory phases by electron microprobe.  No cordierite or magnetite was seen in any 

of the samples examined.   

Plagioclase 

Plagioclase accounts for 40-60% of phenocrysts by area and exhibits a 

temporal trend of increasing anorthite values in the Porco (PT-1 and PT-3), Livicucho 

(PT-14) and Los Frailes ignimbrite (PT-11p and PT-16) samples as seen in Figure 

3.20.  See Table 3.1 for a representative analysis from each sample.  Zoning is seen 

optically in most samples.  The plagioclase from the higher silica Porco samples     

(69-71% SiO2) is generally homogeneous with an average composition of (An29-34, 

Ab61-65, Or4-5) with the highest anorthite values found on the crystal rims.  Plagioclase 

from Livicucho (60% SiO2) exhibits higher anorthite values (An36-47, Ab49-60, Or2-4), 
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but with the reverse pattern of higher anorthite cores.  Los Frailes samples (66-67% 

SiO2) have the highest average anorthite values (An39-44, Ab53-57, Or2-4) and, like the 

Livicucho sample, exhibits the highest anorthite values in the cores.  Texturally, 

plagioclase appears to be the first silicate phase to crystallize in Livicucho samples 

PT-13 and PT-14 with no inclusions of other silicate phases observed in the cores.  In 

other samples, plagioclase crystals have some inclusions of biotite as well as ilmenite 

and zircon in the cores.   

Quartz 

 All samples analyzed exhibited quartz phenocrysts composed of nearly pure 

SiO2 with generally large euhedral grains (some >3mm) and occasional undulatory 

extinction.  Inclusions are common with plagioclase, biotite, sanidine, oxides and 

zircon found throughout indicating that quartz was a late-stage crystallizing phase as 

expected. 

Sanidine 

Sanidine accounts for around 10% of the phenocryst population by volume in all 

samples and shows little or no chemical variability between samples or between cores 

and rims.  See Table 3.2 for a representative analysis for each sample.  There is a 

slight temporal trend towards lower anorthite values decreasing from the Porco 

average of (An0-1, Ab21-23, Or74-78) to the Livicucho average (An1, Ab17-21, Or77-81) to 

the Los Frailes average (An0-1, Ab16-19, Or79-83).  Regular inclusions of plagioclase, 

biotite and zircon are present. 
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Table 3.1      

Representative plagioclase electron microprobe analyses (cores and rims) 
Sample 

Unit 

Core/Rim 

PT-1 

Porco 

core 

PT-1 

Porco 

rim 

PT-3 

Porco 

core 

PT-3 

Porco 

Rim 

PT-14 

Livch 

core 

PT-14 

Livch 

rim 

PT-11p 

Los Fr 

core 

PT-11p 

Los Fr 

rim 

PT-16 

Los Fr 

core 

PT-16 

Los Fr 

rim 

SiO2 59.70 59.02 60.72 59.82 57.03 58.64 57.99 58.93 57.82 58.95 

TiO2 0.03 0.00 0.04 0.00 0.07 0.00 0.00 0.00 0.00 0.00 

Al2O3 25.18 25.88 24.78 25.64 27.79 26.18 26.70 26.41 27.14 26.21 

FeO 0.01 0.05 0.08 0.05 0.01 0.01 0.09 0.10 0.02 0.04 

MnO 0.01 0.01 0.03 0.03 0.00 0.02 0.00 0.00 0.05 0.00 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 5.97 7.08 5.52 6.65 9.40 7.19 8.50 7.60 8.74 7.67 

Na2O 7.23 6.43 7.09 6.83 5.87 6.79 5.80 5.99 6.00 6.34 

K2O 0.81 0.72 0.93 0.85 0.34 0.52 0.06 0.68 0.49 0.64 

Total 98.94 99.20 99.19 99.87 100.51 99.36 99.68 99.71 100.25 99.86 

An (Ca) 29.9 36.2 27.9 33.3 45.9 36.1 43.6 39.1 43.3 38.5 

Ab (Na) 64.9 59.6 66.7 61.5 52.1 60.8 53.2 56.5 53.6 57.3 

Or (K) 5.2 4.2 5.4 5.2 2.0 3.1 3.2 4.4 3.1 4.2 

In situ mineral analysis was completed at the Cornell University Center for Materials 

Research Electron Microprobe Laboratory by a JEOL 8900 in wavelength dispersive (WDS) 

mode with a beam diameter of 10 µm, accelerating voltage of 15 kV and an incident current 

of 2.00x10
-8

 amps.  Smithsonian volcanic glass standards A-99, Juan de Fuca and Rhyolite 

glass along with natural mineral standards Lake City plagioclase, PX-1 clinopyroxene, and 

Kakanui hornblende were measured three times each at the beginning and end of each daily 

session.  The deviation from known values was then used to produce a daily correction value 

for each oxide.  Standards are presented in Appendix F. 

 

 

 

An Ab 

Or Los Frailes 1.5 Ma 

Porco 12-14 Ma 

Livicucho 7-8 Ma 

Figure 3.20 

 
Feldspar ternary diagram (Graham and Midgley, 2000) with plotted Los Frailes Complex 

plagioclase data.  See text for discussion. 

Symbols: red squares- main Los Frailes ignimbrite, green circles- Porco ignimbrite, blue 

triangles- Livicucho ignimbrite. 

 



63 

Biotite 

Biotite occurs as euhedral phenocrysts up to 3mm in length and is the principal 

ferromagnesian mineral in all samples.  No zoning is evident and broken or bent  

crystals are common.  Biotite compositions are generally homogeneous and have 

little or no change between cores and rims, but exhibit some variation to higher Al and 

lower Fe, Mg and K.  Inclusions of plagioclase, ilmenite, apatite and zircon are 

regularly seen.  Plagioclase inclusions near several cores indicate biotite crystallization 

was later than or coeval with plagioclase.  See Table 3.3 for a representative analysis 

for each sample. 

 

Table 3.2 

Representative sanidine electron microprobe analyses 
Sample 

Unit 

PT-1 

Porco 

PT-3 

Porco 

PT-14 

Livicucho 

PT-11p 

Los Frailes 

PT-16 

Los Frailes 

SiO2 63.78 65.68 65.24 65.08 65.30 

TiO2 0.00 0.03 0.00 0.00 0.00 

Al2O3 18.86 19.30 19.12 19.20 18.98 

FeO 0.00 0.03 0.05 0.06 0.01 

MnO 0.03 0.02 0.00 0.00 0.01 

MgO 0.00 0.00 0.00 0.00 0.00 

CaO 0.11 0.22 0.16 0.14 0.10 

Na2O 2.42 2.24 2.23 1.93 2.03 

K2O 12.56 12.53 12.64 13.62 13.18 

Total 97.76 100.06 99.44 100.03 99.61 

An (Ca) 1.0 1.1 1.1 1.0 1.0 

Ab (Na) 22.5 21.3 21.0 17.5 18.8 

Or (K) 76.5 77.6 77.9 81.5 80.2 

In situ mineral analysis was completed at the Cornell University Center for Materials 

Research Electron Microprobe Laboratory by a JEOL 8900 in wavelength dispersive (WDS) 

mode with a beam diameter of 10 µm, accelerating voltage of 15 kV and an incident current 

of 2.00x10
-8

 A.  Specimens were cut and polished to 30 µm and coated with sputtered 

graphite carbon for microprobe analysis.  Smithsonian volcanic glass standards A-99, Juan 

de Fuca and Rhyolite glass along with natural mineral standards Lake City plagioclase, PX-

1 clinopyroxene, and Kakanui hornblende were measured three times each at the beginning 

and end of each daily session.  The deviation from known values was then used to produce a 

daily correction value for each oxide.  Standards are presented in Appendix F. 

Accessory Minerals 

 An opaque mineral is seen optically in all samples and was identified as 

ilmenite by electron microprobe analysis.  Ilmenite is the most common accessory 
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mineral and may be >1% of the phenocryst volume in the Porco PT-1 and all the Los 

Frailes ignimbrite samples.  It is often texturally accompanied by other accessory 

minerals and has regular inclusions of apatite, monazite and some zircon.  PT-1 and 

PT-14 from Porco Livicucho have Ti-rich ilmenite of 53-57 wt. % TiO2 and 34-44 wt. 

% FeO.  The Los Frailes unit samples (PT-11p and PT-16) have Fe-rich values with 

34-36 wt. % TiO2 and 62-64 wt. % FeO.  Apatite and monazite are often observed 

associated with ilmenite, as well as seen as free grains and as inclusions in biotite 

cores.  The high birefringence accessory mineral seen optically is zircon which is 

often associated or included within ilmenite.  Zircon is also regularly observed as free 

grains in the groundmass as well as inclusions in all silicate phases indicating early 

crystallization.  Although specifically sought, no magnetite or cordierite is evident in 

the samples examined (PT-1, PT-3, PT-11p, PT-12 and PT-16).   

 

Table 3.3 

Representative biotite electron microprobe analyses 
Sample 

Unit 

PT-1 

Porco 

PT-3 

Porco 

PT-14 

Livicucho 

PT-8 

Los Frailes 

PT-11p 

Los Frailes 

PT-16 

Los Frailes 

SiO2 35.70 35.83 36.17 36.81 35.79 35.51 

TiO2 4.53 4.18 3.95 3.96 4.33 4.13 

Al2O3 16.91 17.51 18.10 18.59 17.64 16.75 

FeO 20.50 21.83 19.07 18.47 19.43 18.57 

MnO 0.09 0.12 0.14 0.13 0.13 0.11 

MgO 9.99 9.59 10.14 8,91 10.71 9.70 

CaO 0.00 0.02 0.03 0.09 0.01 0.01 

Na2O 0.59 0.47 0.26 0.32 0.34 0.29 

K2O 8.86 8.94 8.99 9.15 9.63 7.99 

Total 97.17 98.51 96.86 96.43 98.02 93.08 

In situ mineral analysis was completed at the Cornell University Center for Materials 

Research Electron Microprobe Laboratory by a JEOL 8900 in wavelength dispersive (WDS) 

mode with a beam diameter of 10 µm, accelerating voltage of 15 kV and an incident current 

of 2.00x10
-8

 A.  Specimens were cut and polished to 30 µm and coated with sputtered 

graphite carbon for microprobe analysis.  Smithsonian volcanic glass standards A-99, Juan 

de Fuca and Rhyolite glass along with natural mineral standards Lake City plagioclase, PX-

1 clinopyroxene, and Kakanui hornblende were measured three times each at the beginning 

and end of each daily session.  The deviation from known values was then used to produce a 

daily correction value for each oxide.  Standards are presented in Appendix F. 
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Isotopic Results 

Oxygen Isotopes 

 The calculated δ
18

OMagma values give an overall range of +9.43 to +10.79‰ for 

the Los Frailes Complex, as seen in Table 3.4 and Appendix D.  The individual Los 

Frailes Complex units give the following δ
18

OMagma averages: Porco, +10.27‰; 

Sevaruyo, +10.53‰; Livicucho, +10.27‰; Condor Nasa, +9.52‰ and Los Frailes, 

+9.70‰.  The resulting data exhibits a slight time dependent δ
18

OMagma decrease with 

the lowest values occurring in the younger Condor Nasa and Los Frailes samples.  No 

clear correlation of δ
18

OMagma with other parameters is noted.   

Strontium and Neodymium Isotopes 

The 
87

Sr/
86

Sr and 
143

Nd/
144

Nd (ƐNd) ratios depict a general progression of 

increasing isotopically evolved signature with time (Figure 3.21a).  Samples from this 

study fall into two distinct fields with the four pre-12 Ma samples of Kumurana, Kari 

Kari and Porco showing less evolved isotopic character with 
143

Nd/
144

Nd = 0.512200-

0.512300 (ƐNd = -6.59 to -8.54) and 
87

Sr/
86

Sr = 0.71003-0.71043.  Post-12 Ma samples 

of Sevaruyo, Livicucho, Condor Nasa and Los Frailes have a more evolved isotopic 

character of 
143

Nd/
144

Nd = 0.512140 to 0.512200 (ƐNd = -8.54 to -9.71) and 
87

Sr/
86

Sr = 

0.71140 to 0.71267.  As in the elemental data, the Sevaruyo samples also have a large 

spread in isotopic values with PO-6 plotting near the Los Frailes ignimbrite field and 

PO-5 with more radiogenic values near the two Livicucho samples at 
87

Sr/
86

Sr ≈ 

0.71267.  See Appendix C for full analytical and standards results. 

 Figure 3.22 shows large variations in 
87

Sr/
86

Sr ratios between varying units at 

near equal wt. % SiO2 and near equal Sr concentrations.  Individual units have small 

87
Sr/

86
Sr ratio ranges with much larger comparative SiO2 and Sr ppm ranges indicating 

that the isotopic character is being set prior to the processes which cause SiO2 and Sr 

ppm variation.  
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Table 3.4 

Sr, Nd and O isotopic analyses of Los Frailes Complex samples 
Sample Unit 87Sr/86Sr 

  Initial 

% S.E. 143Nd/144Nd % S.E. ƐNd δ18OQuartz‰ 

Measured 

δ18OMagma‰ 

Calculated 

PT-1 Porco 0.70982 0.0005 0.512202 0.0017 -8.50 +10.45 a +10.15 

PT-3 Porco 0.70995 a 0.0006 0.512218 0.0022 -8.19 +10.68 a +10.38 

PT-4 Kumurana 0.70971 a 0.0009 0.512295 0.0013 -6.70 - - 

PT-5 Kari Kari 0.71004 0.0006 0.512260 0.0015 -7.38 - - 

PT-7 Condor Nasa 0.71148 0.0006 - - - - - 

PT-8 Los Frailes 0.71147 a 0.0006 0.512146 0.0015 -9.60 +9.78 +9.48 

PT-9 Los Frailes 0.71158 0.0008 0.512172 0.0015 -9.10 +9.73 +9.43 

PT-10 Los Frailes 0.71132 0.0005 - - - - - 

PT-11p Los Frailes 0.71138 0.0006 0.512172 0.0016 -9.10 +10.45 a +10.15 

PT-12 Condor Nasa 0.71134 0.0009 0.512182 0.0023 -8.90 +9.82 +9.52 

PT-13 Livicucho 0.71254 0.0008 - - - - - 

PT-14 Livicucho 0.71238 0.0005 0.512163 0.0013 -9.27 +10.57 a +10.27 

PT-16 Los Frailes 0.71152 0.0006   0.512187 a 0.0019 -8.79 +10.04 +9.74 

PO-2 Condor Nasa 0.71133 0.0005 0.512168 0.0011 -9.17 - - 

PO-5 Sevaruyo 0.71229 0.0009 0.512161 0.0020 -9.30 +11.09 +10.79 

PO-6 Sevaruyo* 0.71154 0.0008 0.512200 0.0019 -8.54 +10.57 +10.27 

Sr and Nd isotopic ratios were obtained on the TIMS at Cornell University and reflect 

measured values.  Sr isotopic ratios were normalized to an 
86

Sr/
88

Sr value of 0.11940 and 

calculated to an initial ratio using λ = 1.42x10
-11

y
-1

 and the assigned ages.  The 
87

Sr/
86

Sr NBS 

987 standard mean was measured at 0.71023 (n=27, from 10/2011 to 8/2012); and the 
143

Nd/
144

Nd Ames standard mean ratio was measured at 0.512167 (n=13, from 2/2012 to 

5/2012).  Reported 
87

Sr/
86

Sr are measured values while reported 
143

Nd/
144

Nd values are 

normalized to 
143

Nd/
144

Nd Ames = 0.512131 (-0.000036) which is also applied to the reported 

εNd values (-0.70).  εNd is reported using a value of 
143

Nd/
144

NdCHUR = 0.512638.  Error for 
87

Sr/
86

Sr and 
143

Nd/
144

Nd are reported in percent standard error.  See Appendix C for full 

analytical results.  Oxygen isotopic ratios were obtained by laser fluorination on quartz grains 

at the University of Cape Town, South Africa.  Measured values for unknowns were corrected 

to the average measured value for the internal standard of Monastery Garnet (MONGT, δ
18

O = 

5.38‰ assuming a value of 5.80‰ for UWG-2).  In run error (2σ) is estimated at ±0.10‰ 

(n=6, from 1/11/2013 to 1/18/2013).  Following Chang (2007), the fractionation correction for 

quartz is about 0.3‰ for ∆qtz-melt and therefore 0.3‰ was subtracted from δ
18

Oquartz to 

produce δ
18

Omagma.  See Appendix D for full analytical results. 
a  

Reported value is the average of two or more measurements. 

* Sample may be from Los Frailes ignimbrite (see discussion at beginning of Chapter 3). 
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Figure 3.21 

 

(a) Plot of 
143

Nd/
144

Nd (ƐNd) versus 
87

Sr/
86

Sr for Los Frailes Complex data. Two 

distinct fields are seen with pre-12 Ma samples from Kumurana, Kari Kari and Porco 

having less enriched character, and the post-12 Ma samples of Sevaruyo, Livicucho, 

Condor Nasa and the Los Frailes ignimbrite with more enriched character.  The 

increase in enriched character at 10-12 Ma is proposed to have been caused by a 

delamination event at that time which exposed enriched crust to melting and 

assimilation.  (b) Plot of 
143

Nd/
144

Nd (ƐNd) versus 
87

Sr/
86

Sr for comparative Puna 

backarc ignimbrites as well as plotted assumed mantle and calculated crustal end-

members (see Chapter 5).  Altiplano primitive lavas (purple diamonds) of <7 Ma are 

depicted with their associated SiO2 values for reference.  The Los Frailes Complex 

occupies a field of distinctly lower 
143

Nd/
144

Nd (ƐNd) at a given 
87

Sr/
86

Sr when 

compared to APVC and Puna ignimbrites. 

Symbols: Los Frailes Complex: squares- This study, diamonds – Davidson and de 

Silva (1995) and Hoke and Lamb (2007).  APVC/Puna and individuel ignimbrite 

fields as compiled in Kay et al. (2010, 2011). 
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Figure 3.22 

 

(a) Plot of 
87

Sr/
86

Sr versus weight percent SiO2. (b) Plot of 
87

Sr/
86

Sr versus Sr ppm.  

Both plots show large variation in 
87

Sr/
86

Sr between varying units at near equal SiO2 

and Sr ppm, but little change in 
87

Sr/
86

Sr within individual units with variable SiO2 and 

Sr ppm (flat fields).  This indicates that the isotopic character of magmas is being set 

prior to variation in SiO2 and Sr ppm which occur due to fractionation in the middle 

crust.  This is interpreted as crustal assimilation taking place only in the lower crust 

with fractionation, but no additional assimilation, occurring as the magmas transit to 

the surface.   

Symbols: Los Frailes Complex: squares- This study, triangles – Schneider (1985). 
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Zircon Age Analysis 

 Little usable zircon age information was obtained due to the combination of 

low U content and the small average size of the zircons.  While over 40 zircons from 

the Los Frailes ignimbrite samples PT-8, PT-10 and PT-15 where isolated, only a few 

survived chemical abrasion owing to their small size.  Those that did were physically 

small and had very low U ppm which resulted in insufficient radiogenic Pb being 

collected relative to the lead blank (Pbc) to perform a good analysis.  Additionally, the 

zircons are covered in a layer of volcanic glass that is difficult to remove and contain a 

large amount of common lead.  As a result, radiogenic/common Pb ratios are 

extremely low and the precision is extremely poor by TIMS standards, even in the best 

cases.  See Appendix E for detailed analytical results.   

Although the results were disappointing, a few beneficial conclusions can be 

drawn from the zircon data.  Los Frailes ignimbrite samples PT-10 and PT-15 contain 

an unusually high number of both antecrystic and xenocrystic zircons while PT-8 is 

zircon-poor.  The discordant ages on zircons in PT-10 and PT-15 are likely due to 

mixing of autocrystic and xenocrystic domains where new zircon has overgrown an 

older inherited core.  The xenocrysts have dates that ranged from 420 Ma for PT-15 z2 

to 600 Ma for PT-15 z5 which indicates a Late Precambrian-Early Paleozoic age for 

their source consist with what is known about the basement (e.g., Lucassen et al., 

2001; Ramos, 2008).  As zircon crystallization predates eruption, and in the absence of 

enough data to establish comprehensive zircon populations, all that can confidently be 

concluded about eruption dates is an upper limit of ≤1.9 Ma for PT-10 and ≤7.2 Ma 

for PT-15 which agrees with 
40

Ar/
39

Ar sanidine ages.   
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40
Ar/

39
Ar Age Analysis 

The two new 
40

Ar/
39

Ar sanidine dates obtained on chemically similar Los 

Frailes ignimbrite samples produced virtually identical ages with a weighted mean age 

of 1.520±0.014 Ma for PT-8 and 1.522±0.021 Ma for PT-11.  See Appendix G for 

detailed analytical results. 

Geothermometry and Geobarometry 

The calculated zircon saturation temperatures for the PT series of samples all 

fall in the 800°-900°C range established by Keller (2010) for the Condor Nasa and 

Sevaruyo region samples.  Table 3.6 lists zircon saturation temperatures ranging from 

813°C in a Sevaruyo sample PO-5 to 895°C for the Kari Kari sample PT-5.  The Porco 

and Los Frailes units have narrow ranges of 861°-875°C and 849°-858°C respectively 

while Condor Nasa samples have a wide range from 837° to 874°C.  Two-feldspar 

thermometry temperatures calculated at 400 MPa and 1000 MPa (1 GPa) are also 

shown in Table 3.6.  Two-feldspar temperatures for Sevaruyo samples PO-5 and PO-6 

from Keller (2010) are included in Table 3.6.  The calculated temperature variation 

with change in pressure is relatively small (~7°C per 100 MPa) and is nearly linear 

over the pressure range from 200 MPa to 1200 MPa (1.2 GPa).  The plagioclase cores 

and rims give nearly identical values indicating little temperature change during 

plagioclase crystallization.  The total overall temperature range is 675-755°C at 400 

MPa.  Two-feldspar temperatures are about 110-135°C below their paired zircon 

saturation temperature following the same general trend.  Sevaruyo sample PO-5 

shows the lowest two-feldspar temperature of 675°C while Porco samples PT-1 and 

PT-3 show the highest at 741°-747°C (no Condor Nasa samples were analyzed).  The 

Los Frailes ignimbrite samples PT-11p and PT-16 have a small range of 720°-725°C 

which includes the Los Frailes-like Sevaruyo sample PO-6 (720°C). 
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Table 3.5 
40

Ar/
39

Ar sanidine age analyses 

Sample Total Fusion 

Age (Ma) 

 

2σ 

Plateau Age 

(Ma) 

 

2σ 

 

n a 

 

MSWD b 

 

J c 

Los Frailes ignimbrite 

PT-8 1.53 ±0.02 1.520 ±0.014 11/12 0.32 0.0012492 

PT-11 1.52 ±0.02 1.522 ±0.021 10/10 0.32 0.0011160 
40

Ar/
39

Ar sanidine ages were obtained by irradiating samples and standards at the Oregon 

State University TRIGA-type reactor and fusing at the University of Wisconsin-Madison 

Rare Gas Geochronology Laboratory using a 25 Watt CO2 laser. The gas was cleaned during 

and after the heating period with two SAES C50 getters operated at ~450°C and room 

temperature.  Blanks were analyzed after every second laser fusion, and were less than 

4×10
−17

, 3×10
−19

, 6×10
−20

, and 2×10
−19

 moles for 
40

Ar, 
39

Ar, 
37

Ar, 
36

Ar, respectively.  Ten to 

twenty mass discrimination measurements via automated analysis of air pipette tests were 

made prior to and following each incremental heating experiment and encompass the range 

of 
40

Ar observed for the samples.  Measured 
40

Ar/
36

Ar ratios of atmospheric argon were 

normalized to 
40

Ar/
36

Ar = 295.5 ± 0.5 and the discrimination was calculated using a linear 

law relationship.  The 28.201 Ma Fish Canyon tuff sanidine (FCs) standard was used.  Argon 

isotope analyses were done using a MAP 215–50 with ArArCalc software.  Ages were 

calculated from the blank-, discrimination- and decay-corrected Ar isotope data after 

correction for interfering isotopes produced from potassium and calcium in the nuclear 

reactor.  See Appendix G for a full analysis details. 
a
 The number of measurements used to calculate the weighted mean ages.  

b
 Mean square of weighted deviates; an F statistic that compares the variance within step ages 

with the variance about the age.  
c
 Combines the neutron fluence with the monitor age. 
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Table 3.6 

Zircon saturation and two-feldspar geothermometry temperatures 

Sample Unit 

Zr 

Saturation  

(°C) 

Two-spar 

(°C) at 400 

MPa core 

Two-spar 

(°C) at 1 GPa 

core 

Two-spar 

(°C) at 400 

MPa rim 

Two-spar 

(°C) at 1 GPa 

rim 

PT-1 Porco 871 741 784 738 781 

PT-2 Porco 875 - - - - 

PT-3 Porco 861 747 789 755 797 

PT-4 Kumurana 863 - - - - 

PT-5 Kari Kari 895 - - - - 

PT-6 Condor Nasa 856 - - - - 

PT-7 Condor Nasa 864 - - - - 

PT-8 Los Frailes 855 - - - - 

PT-9 Los Frailes 850 - - - - 

PT-9p Los Frailes 858 - - - - 

PT-10 Los Frailes 850 - - - - 

PT-11 Los Frailes 849 - - - - 

PT-11p Los Frailes 858 725 764 742 782 

PT-12 Condor Nasa 857 - - - - 

PT-13 Livicucho 853 - - - - 

PT-14 Livicucho - 707 749 715 756 

PT-15 Condor Nasa 851 - - - - 

PT-16 Los Frailes - 724 765 739 779 

PT-16p Los Frailes - - - - - 

PO-1 Condor Nasa 874 a - - - - 

PO-2 Condor Nasa 871 a - - - - 

PO-3 Condor Nasa 837 a - - - - 

PO-4 Condor Nasa 848 a - - - - 

PO-5 Sevaruyo 813 a 675 b - - - 

PO-6 Sevaruyo* 832 a 720 b - - - 

Zircon saturation thermometry uses the reported major and trace element data and 

equations of Watson and Harrison (1983).  Two-feldspar thermometry is done by using the 

mineral data collected by microprobe analysis and calculated using the SOLVCALC 

program (Wen and Nekvasil, 1994) which uses the thermodynamic models of Nekvasil and 

Burnham (1987).  Zircon saturation temperatures for PT-14, PT-16 and PT-16p are omitted 

due to lack of Zr concentration data for those samples.   
a
 Values are the same as those reported by Keller (2010). 

b 
Values reported by Keller (2010) using SOLVCALC program at 400 MPa. 

* Sample may be from Los Frailes ignimbrite (see discussion at beginning of Chapter 3). 
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CHAPTER 4 

DISCUSSION OF ANALYTICAL RESULTS 

 

 Samples collected by Schneider (1985) targeted, and were often from, 

alteration zones and minor units erupted prior to the large-volume ashflows of the 

Livicucho, Condor Nasa, and Los Frailes ignimbrites.  Alteration and small volumes 

are thought to be responsible for several of these samples having significant 

geochemical differences from the main ignimbrites listed and the samples of other 

studies.  Schneider (1985) samples considered in this study include 5 from Kumurana, 

15 from Kari Kari, 7 from Porco, and 6 from the main Los Frailes ignimbrite with 

varying completeness of major element, trace element and isotopic data.  Eight 

samples have been excluded due to their reported alteration or association with older 

low volume units not considered here.   

Of the six Los Frailes ignimbrite samples from Schneider (1985), four (Fr-5, 

Fr-6, Fr-7 and Fr-9) are from domes and lava fields that are thought to be low volume 

pre-Los Frailes ignimbrite occurrences (2.0-3.9 Ma) while samples Fr-21 and Fr-22 

are from the older (5-9 Ma) northwestern portion of the Los Frailes ignimbrite.  These 

are included in most plots and labeled as “Los Frailes”, however, they are not direct 

samples from the main ~1.5 Ma Los Frailes ignimbrite and at times show significant 

variation from the samples of this study and those of Luedke et al. (1997).   All 27 (20 

Los Frailes, 5 Porco and 2 Nuevo Mundo) samples reported by Luedke et al. (1997) 

are included as well as all 8 Livicucho samples reported by Jiménez et al. (1997).   

Major Elements 

 Major element data clearly reflect a large sedimentary component in the Los 

Frailes Complex, which is revealed in its high Al and low Na contents.  The most 

striking feature is the highly peraluminous (Al/(K+Na+Ca) > 1.0) nature of the 
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complex.  The Al/(K+Na+Ca) versus weight percent SiO2 (Figure 3.1a) shows the 

majority of samples fall in the Al/(K+Na+Ca) = 1.1-1.3 range.  There may be a slight 

decreasing Al/(K+Na+Ca) trend with time as ~20 Ma Kari Kari and 7-8 Ma 

Livicucho-Condor Nasa units have average values near ~1.2, the 1.5-3.5 Ma Los 

Frailes ignimbrite has an average between 1.1-1.2 and the youngest <1 Ma Nuevo 

Mundo values are ~1.1. 

Peraluminousity is likely a product of assimilated sedimentary basement with 

high Al/(K+Na+Ca) developed during deposition by the relative loss of K, Na, and Ca.  

Coranzuli, Panizos Vilama and Granada are the four northernmost APVC ignimbrites 

and sit to the north of a peraluminous-metaluminous border which splits the APVC 

and marks the change from an igneous-dominated lower crust in the south to a 

sedimentary-dominated lower crust in the north (Kay et al., 2010, 2011).  This places 

the Los Frailes Complex firmly on the northern peraluminous side of the divide with 

the four peraluminous APVC centers to its south and the peraluminous Morococala 

ignimbrite to its north.  The four APVC centers listed above are the most 

peraluminous ignimbrites found on the Puna plateau with other volcanic centers 

exhibiting generally intermediate to metaluminous values (Kay et al., 2010, 2011).  

Figure 3.1b depicts the selected Altiplano-Puna ignimbrite fields overlain on the Los 

Frailes Complex sample data.  The four APVC centers have a range of Al/(K+Na+Ca) 

= 1.0-1.3 with a slightly lower average than the Los Frailes Complex.  To the north, 

the central Altiplano ignimbrite Morococala has similar peraluminousity to the Los 

Frailes Complex with Al/(K+Na+Ca) = 1.1-1.3 (Morgan et al., 1998).  On the southern 

Puna, the Cerro Galán center has an intermediate Al/(K+Na+Ca) between 0.95-1.05 

which is representative of the more igneous-dominated basement. 

As noted by Kay et al. (2010), the aluminousity variability of the ignimbrites is 

also reflected in their Na2O versus K2O concentrations (Figure 3.2).  The Los Frailes 
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Complex shows a clear Na-poor character, similar to the peraluminous APVC centers.  

Silica-rich (>64% SiO2) Los Frailes Complex samples (red box in Figure 3.2) have the 

same low values of Na2O = 2.3-3.1 as many of the more silica-poor samples indicating 

the Na2O values are set early in magma evolution.  These are similar Na2O values to 

>64% SiO2 filtered Coranzuli and slightly lower than more S-type (sedimentary) 

values at Vilama, Granada and Panizos (Kay et al., 2010).  Morococala has higher 

Na2O values of 3.0-3.5 which place it in the A-type (anorogenic) granitoid field.  This 

is surprising, given the coherence of peraluminousity and low Na2O seen in the Puna 

ignimbrites and mimicked in the Los Frailes Complex data.  Cerro Galán also has an 

A-type signature with Na2O = 3.0-4.0, which fits with its intermediate Al/(K+Na+Ca) 

character (Kay et al., 2011).   

The Los Frailes Complex K2O values (3.8-5.5) are higher than those seen in 

the four APVC ignimbrites (K2O = 2.7-4.9) or at Morococala and Cerro Galán (K2O = 

4.0-5.0) (Morgan et al., 1998).  When K2O is set against SiO2 in Figure 3.3, the high 

K2O content of all but the Kumurana samples place them in the shoshonitic field with 

only a few high SiO2 samples from Porco, Sevaruyo and the Los Frailes ignimbrite 

just below the shoshonitic/high-K boundary.  The older Kumurana unit has distinctly 

lower K2O values which plot in the high-K field. 

While it shares many major elemental characteristics with both large and small 

ignimbrites on the Altiplano-Puna, the Los Frailes Complex is unique with its 

combination of high peraluminousity, high K2O (shoshonitic), and moderate S-type 

signature.  Based on these characteristics, the Los Frailes Complex displays a clear 

sedimentary component in all of its ignimbrites with slightly less sedimentary 

character in the older Kumurana unit. 
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Trace Elements 

 The depth at which assimilation of the crust and hybridization of the magmas 

occurs is reflected in the Los Frailes Complex trace element data by extremely steep 

negative REE patterns, high Sr concentration and variable HREE and HFSE depletion.  

Steep negative REE patterns combined with high Sr concentration point to crustal 

AFC processes in a high pressure environment with stable garnet and unstable 

plagioclase.  Variable HREE and HFSE depletion indicate that rapid decreases in AFC 

zone depth have occurred periodically and are used here to identify large delamination 

events in the Los Frailes Complex history.  Eu/Eu* values indicate a middle crustal 

storage stage in which plagioclase fractionation imprints a negative Eu anomaly on the 

magma during its accent.  

Figure 3.4b is a plot of trace element concentrations from Kari Kari, Porco and 

the main Los Frailes units of the Los Frailes Complex with representative samples 

from the peraluminous APVC ignimbrites, Cerro Galán and Morococala.  All 

comparative ignimbrites share the same negative REE slope reflecting LREE 

enrichment and HREE depletion but with reduced La/Sm, Sm/Yb and La/Yb ratios.  

Depletion of HFSE elements Nb, Ta and Ti is also clearly seen but with lower Nb/Ta 

and extreme Ti depletion at Morococala.  Also of note are equally low (non-arc) Ba/La 

ratios but with reduced concentrations when compared to the Los Frailes Complex. 

Rare Earth Elements 

The Los Frailes Complex magmas occupy a field of LREE enrichment and 

extreme HREE depletion with a varying temporally dependent pattern (Figures 3.5).   

HREE depletion is quantified by an increasing Sm/Yb ratio while LREE enrichment is 

characterized by an increasing La/Sm ratio.  When La/Sm versus Sm/Yb is plotted, 

these ratios form a pattern of REE slope change with shallow slopes plotting in the 

lower left and steep slopes in the upper right.  In general, Sm/Yb <2 indicates magma 
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that equilibrated with pyroxenes, Sm/Yb of 2-5 indicates amphiboles, and Sm/Yb >5 

is likely a garnet-induced signature.  Generally, Sm/Yb >5 requires an exceptionally 

thick crust of greater than 45-55 km with a pressure of ~15 kbar (1.5 GPa) in order to 

generate enough modal garnet in the crustal restite to produce the resulting steep 

HREE pattern in the magma (Indares et al., 2008).  An increase in the La/Sm ratio 

represents an increase in amphibole presence which preferentially incorporates middle 

rare earth elements (MREE), represented by Sm.  As amphibole is a lower pressure 

mineral compared to garnet, lower La/Sm is an indicator of equilibration of the 

magma at shallower levels of the middle or upper crust.  La/Sm ratios are also 

sensitive to LREE enrichment of the magma, represented by La, which can occur 

during low percentage partial melting.  Figure 3.8 shows no noteworthy trend of La 

concentration change with SiO2 increase indicating that changes in the La/Sm and 

La/Yb ratios are not driven by SiO2 sensitive accessory phases with high La affinities.  

Figure 3.6 shows no discernible effect of La concentration on the La/Yb ratio showing 

that the ratio is a reflection of changes in Yb rather than La concentration.  Together, 

these elemental affinities dictate that movement from the lower-left to the upper-right 

in the La/Sm versus Sm/Yb field represents equilibration under higher pressure 

conditions which is interpreted as thickening of the continental crust below the Los 

Frailes Complex leading to garnet involvement in the AFC zone.  Additionally, lower 

ratios for La/Sm, Sm/Yb or La/Yb can also be a signal of greater percentage melting 

which tends to flatten the REE pattern.  Due to the relatively low 60-70% silica 

content of the samples, it is assessed that accessory phases, particularly zircon and 

monazite, have not played a significant role in altering the REE patterns or the La/Sm 

and Sm/Yb ratios.  Figure 3.7a plots La/Yb ratios versus SiO2 content and displays the 

more silicic Porco and Los Frailes units with the highest Sm/Yb ratios (>60).  

However, the moderate silica (64-68% SiO2) Kumurana, Kari Kari, Livicucho and 
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Condor Nasa samples (red box in Figure 3.7a) have the same low Sm/Yb ratios as the 

lower silica (<64% SiO2) samples from the same units.  In addition, several of the 

highest silica Los Frailes and Sevaruyo samples have low La/Sm, Sm/Yb and La/Yb 

ratios.  When only samples of intermediate silica content are considered (64-68% 

SiO2), the La/Sm, Sm/Yb and La/Yb ratio patterns do not change appreciably, which 

indicates that variations in REE ratios are not SiO2 driven.  Similar patterns of near 

constant La/Yb ratios with variable SiO2 are also seen in the APVC, Cerro Galán and 

Morococala fields shown in Figure 3.7b.  

As Figure 3.5b and 3.7b illustrate, the high La/Yb and Sm/Yb ratios seen in the 

Porco, Los Frailes and Nuevo Mundo ignimbrites are far higher than those reported in 

the APVC, Puna or Morococala (Kay et al., 2010, 2011; Morgan et al., 1998).  Most 

large volume APVC centers have Sm/Yb values of 2-4 with Coranzuli and Vilama 

showing the highest pressure signatures with ratios of 4-6 (Figure 3.5b).  The small 

volume Granada center has slightly higher values with Sm/Yb of 5-7 and La/Sm of 

4.5-6.5.   The Cerro Galán field has similar values to Coranzuli and Vilama, which are 

high for APVC and Puna ignimbrites, but low compared to the Sm/Yb values of the 

Los Frailes Complex.  Morococala has Sm/Yb = 5-8 and La/Sm = 4.5-6.5 with one 

sample as high as La/Sm = 10, which is nearly as high as in Porco samples, but 

without the correspondingly elevated Sm/Yb ratio. 

As was first noted by Kay et al. (2010) and Keller (2010), the pattern of the 

Los Frailes Complex La/Sm versus Sm/Yb ratio data indicates that the southern 

Altiplano crust underwent two general thickening episodes with a dramatic thinning 

event between them at ~10 Ma (Figure 3.5a and 3.9a).  The first thickening event 

begins with Kumurana at ~25 Ma and culminates in Porco samples at ~12 Ma with 

high La/Sm and extremely high Sm/Yb ratios.  These are then followed by a dramatic 

decrease in Sm/Yb and La/Sm ratios with 9-10 Ma Sevaruyo and 7-8 Ma Livicucho 
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and Condor Nasa exhibiting the lowest La/Sm seen at the Los Frailes Complex.  The 

second thickening event is seen as both the La/Sm and Sm/Yb values again increase 

from their lows at 7-8 Ma to higher values in the Los Frailes and Nuevo Mundo 

ignimbrite samples.  The rapid decrease in La/Sm and especially Sm/Yb at 10-12 Ma, 

following the high ratios seen in the Porco field, is interpreted as delamination of the 

lithosphere and perhaps lower crust in response to the crustal thickening and density 

instability.  After the loss of the lithospheric-mantle and possibly the lower mafic 

crust, there is again a steady increase in both Sm/Yb and La/Sm ratios.  This is thought 

to show continuing crustal thickening in response to sustained crustal shortening and 

crustal flow after the dramatic loss of the lower lithosphere.  The 1.5-6 Ma Los Frailes 

ignimbrite samples display the largest spread of values which may represent the 

competing processes of crustal thickening and periodic loss through delamination 

which continues to the present.  

Figure 4.1, which distinguishes the ~1.5 and 4-6 Ma ages of the Los Frailes 

ignimbrite, depicts a possible second distinct delamination episode within the Los 

Frailes ignimbrite data at 2-4 Ma.  The graph shows the individual unit average 

La/Sm, (Sm/Yb)/2, (La/Ta)/10 and (Ba/Ta)/100 ratios against age (Ma) and has been 

filtered to include only intermediate silica samples (~64-68% SiO2) in order to avoid 

fractionation effects.  Schneider (1985) samples Fr-21 and Fr-22, which are dated at 

4.44-5.67 Ma, from the extreme northwestern portion of the Los Frailes meseta have 

high ratios and are followed by decreased ratios in the ~1.5 Ma Los Frailes samples.  

If a distinct delamination event occurred at 2-4 Ma, then the current absence of 

mantle-lithosphere (e.g., Beck and Zandt, 2002), as depicted in Figure 1.6, may be the 

direct result of that event which preceded the main volumetrically-dominate main Los 

Frailes ignimbrite emplacement at 1.5-3.5 Ma and the current (<1 Ma) volcanism at 

Nuevo Mundo. 
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High Field Strength and Large-Ion Lithophile Elements 

Large-ion lithophile elements (LILE) Ba, Cs, K, Rb and Sr can be used as 

indicators of hydrous fluid additions in the mantle, and as tracers of subduction 

products.  In contrast, high field strength elements (HFSE) Nb, Hf, Ta and Zr have low 

aqueous solubilities and are relatively immobile during weathering and 

metamorphism.  La is also an immobile element, but to a lesser degree than HFSEs.  

HFSE depletion is signaled by an increasing La/Ta ratio while LILE enrichment is 

shown by increasing Ba/Ta and Ba/La ratios.  High LILE/HFSE (Ba/La) ratios are 

Figure 4.1 

 

Graph of individual unit average La/Sm ppm ratios (purple circles and line), (Sm/Yb)/2 

ppm ratios (blue diamonds and line), (La/Ta)/10 ppm ratios (red squares and line) and 

(Ba/Ta)/100 ppm ratios (green triangles and line) versus ignimbrite age (Ma). The 

individual unit samples have been filtered to include only intermediate SiO2 samples  

(~64-68%) in order to avoid possible fractionation affects.  The SiO2 range of the samples 

included is listed in parentheses with the vertical unit label.  The two proposed 

delamination events at 10-12 Ma and 2-4 Ma are highlighted in blue and labeled. 
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observed in many subduction zone magmas and presumably reflect additional LILE-

rich hydrous inputs to the mantle wedge source of those magmas.  This makes the 

Ba/Ta versus La/Ta plot a potentially useful tool in determining the slab influence on 

mantle derived magmas.  Ba/La and Ba/Ta ratios increase with greater involvement of 

Ba-rich pelagic sediment with values of Ba/La >20 and Ba/Ta >600 generally taken to 

indicate a subducted sediment-related arc signature.  However, the Ba/La ratio is also 

sensitive to alkali-feldspar fractionation which makes the use of this system 

problematic when the magma must penetrate and may fractionate in thick crust such as 

in the Altiplano-Puna (Mamani et al., 2010).  The Ba/Ta and La/Ta ratios are used 

here to track changes in crustal thickness while Ba/La shows changes in lower crust 

chemistry.   

Figure 3.9a depicts Ba/Ta versus La/Ta as well as Ba/La ratios for the Los 

Frailes Complex and shows a bimodal distribution and systematic variation with time 

in the HFSE and LILE ratios.  Ba/Ta and La/Ta ratios are generally driven by 

variations in Ta content with less variable Ba and La concentrations, which makes the 

Ba/La ratio a more sensitive tool to investigate LILE/HFSE chemistry in this case.  

The samples from the Los Frailes Complex, while generally plotting in the APVC 

range of Ba/La = 10-20, have a pre-12 Ma mean of about 12 and a distinct shift to a 

post-12 Ma mean of 17-18. Concurrently, there is a separate change in Ba/Ta versus 

La/Ta as both ratios increase steadily between 25 Ma and 12 Ma, rapidly decrease 

after 12 Ma, and then increase again from 10 Ma to the present.  The young Nuevo 

Mundo center has the highest overall unit values of Ba/Ta = 829-870 and La/Ta ≈ 55 

with a Ba/Ta of ~16 (Luedke et al., 1997).  Like the La/Sm and Sm/Yb patterns 

discussed above, high silica samples seem to display the highest Ba/Ta and La/Ta 

ratios as well.  This pattern is again interrupted by the Sevaruyo sample PO-5 with 

72% SiO2 which has Ba/Ta, La/Ta and Ba/La ratios which plot with the low silica 
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Livicucho and Condor Nasa units (59-65% SiO2).  The Ba/Ta and La/Ta pattern of 

increasing and decreasing ratios mirror the temporal pattern seen in the La/Sm versus 

Sm/Yb plot (Figure 3.7a and 4.1) and therefore also point to a pressure-driven 

mechanism.  High Ba/Ta and La/Ta ratios coincide with times believed to represent a 

thickened crust and low ratios occur prior to the initiation of major crustal thickening 

or following the proposed delamination events at 10-12 Ma and 2-4 Ma.  The increase 

in Ba/La ratio seen at ~12 Ma at the Los Frailes Complex is interpreted as Ba/La 

enrichment of the mafic end-member or an increase in crustal fertility following the 

initiation of delamination when lithospheric-mantle and basal crustal materials are 

argued to have been lost.  Taylor and McLennan (1995) report Archean crust Ba/La 

ratios range from 13-15 and a generalized lower crust Ba/La value of 13.6 which may 

represent values expected in the original Altiplano lower crust prior to 12 Ma.   

Metapelitic crustal material is expected to have a Ba/La ratios near 19 (Miller, 1985) 

and could represent current lower crustal values in areas of missing lithosphere.  

Delamination driven exposure of fertile Archean metapelitic crust following the loss 

of the depleted and refractory lithospheric-mantle and lower crust may explain the 

Ba/La ratio increase seen at that time.  

Figure 3.9b illustrates that the APVC has a similar Ba/La of 10-20 but with 

much reduced La/Ta = 25-40 and Ba/Ta = 300-700 as compared to the Los Frailes 

Complex (Kay et al., 2010).  This places them in the field of ratios occupied by 

Livicucho and Condor Nasa which have a slightly elevated Ba/La of about 17 but with 

intermediate Ba/Ta and La/Ta ratios.  The Cerro Galán field has lower values with an 

average Ba/La ratio of 12-13, Ba/Ta of 100-400 and La/Ta of 15-30 which is 

described by Kay et al. (2011) as intraplate-like and is in the Kumurana and lower 

Kari Kari fields.  Morococala has a wide range of moderate to extremely low Ba/Ta 

and La/Ta ratios caused by both low La and Ba and elevated Ta concentrations as 
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compared to the Los Frailes Complex.  In contrast, Ba/La ratios are consistently 15-20 

which is in the same range as post-12 Ma units of the Los Frailes Complex (Morgan et 

al., 1998). 

The case for HFSE ratio changes being driven by accessory phase changes is 

supported by variable Nb, Ta and Ti depletion noted in Figure 3.4a and best depicted 

in Figure 3.10.  The pattern of variable Nb and Ta concentrations is also present at 

Morococala, but not in the APVC or Puna ignimbrites, which have low and less 

variable Nb and Ta concentrations, and with the exception of Panizos, slightly lower 

Nb/Ta ratios as depicted in Figure 3.4b.  Morococala has much higher Ta 

concentrations of 2-4 ppm which results in very low Nb/Ta ratios of 4-7.  Previous to 

this study, only Luedke et al. (1997) has reported Ta concentration data on the Los 

Frailes Complex, and so PT-4 and PT-5 are the only data points for the Kumurana and 

Kari Kari centers.  They show higher concentrations and near chondritic (19.9±0.6) 

Nb/Ta ratios of 16.3 and 18.0 at Kumurana and Kari Kari while Livicucho and Condor 

Nasa also have high concentrations, but intermediate Nb/Ta ratios of 11-16.  The 

lowest concentrations of both Nb and Ta as well as the lowest Nb/Ta ratios of 8-14 

occur in the Porco, Sevaruyo, Los Frailes and Nuevo Mundo ignimbrites which are the 

most silicic units.  The high-silica Sevaruyo sample PO-5 plots with other high-silica 

units and not with the low-silica, but temporally adjacent, Livicucho and Condor Nasa 

as it does with La/Sm versus Sm/Yb and Ba/Ta versus La/Ta (Figures 3.5a and 3.9a).  

This indicates that that Nb and Ta concentrations are more affected by silica-sensitive 

accessory phases than more pressure controlled Ba and La concentrations seem to 

indicate.  Near chondritic ratios (19.9±0.6) are uncommon in arc lavas and are 

attributed to contamination of the mantle by forearc subduction erosion (Goss and 

Kay, 2009).  Rutile and low-Mg amphibole are the likely high pressure residual phases 

which fractionate Nb and Ta in mafic to intermediate lavas and are capable of 
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lowering both HFSE concentrations and the Nb/Ta ratio (Goss and Kay, 2009) (see 

discussion for Cerro Galán ignimbrites in Kat et al., 2011).   

Europium Anomaly 

Figure 3.11a shows the Los Frailes Complex has variable Eu/Eu* which ranges 

from near 1.0 in the Kumurana unit to 0.6 in Los Frailes ignimbrite samples showing 

the clear presence of plagioclase as a fractionating phase.  Silica poor Kumurana has 

the overall highest Eu/Eu* ratios (smallest negative Eu anomaly) of 0.8-1.0 and 

overlays the upper half of the Kari Kari field which has values mostly from 0.7-0.9.  

Livicucho and Condor Nasa plot together and largely overlay the Kari Kari field with 

a range of 0.65-0.9.  Porco ratios range from 0.65-0.75 with the Los Frailes ignimbrite 

exhibits the lowest Eu/Eu* ratios of 0.6-0.75 which also encompasses Nuevo Mundo.  

High silica Sevaruyo PO-5 (72% SiO2) has Eu/Eu* = 0.64. 

  While lower Eu/Eu* values with increased silica are not unusual, the high 

silica units of the Los Frailes Complex, with the exception of the Sevaruyo region, all 

coincide with periods of proposed thickened crust and higher pressure assimilation.  

However, a plot of Eu/Eu* against Sm/Yb, Figure 3.12a shows no correlation of low 

Eu/Eu* values at times of thickened crust (high Sm/Yb ratios).  This indicates that 

Eu/Eu* character is not being set in the assimilation region, and is instead generated 

later in the magma evolution at lower pressure.  Greater plagioclase fractionation at 

lower pressures in the middle and upper crust is generally expected, and seems to be 

the source of Eu/Eu* ratio character in the Los Frailes Complex.  An alternative 

explanation is that plagioclase loss is roughly equal at all times, and that the Eu 

anomaly is being controlled by variable fO2 which would have to be greater during 

low-silica periods and lower during high-silica conditions.  However, no mechanism 

for this has been described and so the volume of plagioclase removal, through a 
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variably thick middle to upper crust is the most likely cause of the range of Eu/Eu* 

values seen in the Los Frailes Complex magmas. 

The Eu/Eu* values at the Los Frailes Complex are similar to those found in the 

APVC ignimbrites examined (Figures 3.11b and 3.12b).  However, they are higher 

than the Eu/Eu* ratios of 0.45-0.65 found at Cerro Galán, which is on a 60 km thick 

crust, and is described by Kay et al. (2011) as indicating conditions that are not 

sufficiently oxidizing to reduce a substantial portion of Eu
3+

 to Eu
2+

.  Los Frailes 

Complex Eu/Eu* ratios are also higher than the Eu/Eu* values of 0.35-0.55 reported 

by Morgan et al. (1998) at Morococala.  This is expected, given that both Cerro Galán 

and Morococala have higher silica content as well as higher sanidine content, which 

also reduces Eu/Eu* ratios.  Figure 3.11b show a clear Altiplano-Puna wide trend of 

decreasing Eu/Eu* with increased SiO2 while Figure 3.12b shows a lack of correlation 

between Sm/Yb ratios and Eu/Eu* values.  If the higher Eu/Eu* ratios of the Los 

Frailes Complex are due to a decrease in plagioclase fractionation as compared to 

Cerro Galán and Morococala, then the greater Sr concentrations at the Los Frailes 

Complex (400-650 ppm) compared to the Sr concentrations seen at Cerro Galán and 

Morococala (generally 250-350 ppm) may also be the result of decreased plagioclase 

removal.  However, Sr enrichment is not seen in the four peraluminous APVC 

ignimbrites which have Sr concentrations comparable to Cerro Galán and Morococala 

but with higher Eu/Eu* ratios similar to the Los Frailes Complex.  The mineralization 

of the pre-12 Ma Los Frailes Complex units and the lack of magnetite seen in thin 

section are consistent with a reduced crustal fractionating environment.  Factors such 

as fO2 and water pressure may play a significant role in determining the valence state 

of Eu
 
(e.g., see parallel discussion in Kay et al., 2010).  Therefore, the similar Eu/Eu* 

values found in the Los Frailes Complex and the peraluminous APVC ignimbrites 
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values cannot be exclusively used to imply an equal role for plagioclase in the middle 

crust of both regions. 

Strontium, Rubidium and Neodymium 

 High Sr concentration is a temporally enduring hallmark of Los Frailes 

Complex volcanism which is unique among large Altiplano-Puna backarc ignimbrites.  

Figures 3.13, 3.14 and 3.15 show that variable Sm/Yb and Eu/Eu* ratios as well as 

SiO2 content impart little change to the resulting Sr concentrations.  With the 

exception of Kumurana, Sr content has remained consistent in the Los Frailes 

Complex at 400-650 ppm Sr since 20 Ma.  The older ~25 Ma Kumurana unit alone 

deviates from the average range with Sr enrichment of 750-1050 ppm at 59-64% SiO2, 

and also displays a pattern of Sr ppm decrease with decreasing Eu/Eu* ratios (see 

Figure 3.14).  A lack of Sr concentration depletion in more evolved units is surprising 

given that Sr
2+

 is a mobile LILE element which plagioclase has a high affinity for in 

its Ca
2+

 divalent cation site.  This indicates that plagioclase removal has not had a 

large effect on the resulting ignimbrite Sr concentrations, which may have resulted in 

the higher relative Sr ppm values.  Only Sevaruyo PO-5 seems to show expected Sr 

depletion with 272 ppm at 72% SiO2. 

Figure 3.16 plots Nd ppm against SiO2 and depicts Nd remaining relatively 

steady over time with most values between 50 and 70 ppm Nd.  Kumurana has the 

highest unit average with a range of 60-85 ppm Nd.  Similar to its Sr concentration, 

Sevaruyo PO-5 has a much lower concentration of 33 ppm Nd which is near the 

lowest values seen in the Los Frailes Complex.  Like Sr concentrations, the Los 

Frailes Complex concentrations of 50-70 ppm Nd are also high compared to other 

Altiplano-Puna backarc ignimbrites, which have generally 30-50 ppm Nd.  Figure 3.16 

shows that Nd has not varied with SiO2 which signals that accessory phases have not 

played a major role in REE depletion which can occur with higher SiO2 content.  
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Figure 3.17 demonstrates that Sr and Nd concentrations in the Los Frailes Complex 

are proportionally enriched over other Altiplano-Puna backarc ignimbrites but 

maintain Sr/Nd ≈ 10 (excluding Kumurana).  The Kumurana Sr/Nd ratios of 13-15 are 

an exception, due mostly to their much higher Sr content. 

The Rb concentrations of 160-280 ppm in the Los Frailes Complex (Figure 

3.18) are nearly the same as other Altiplano-Puna backarc ignimbrites, which 

generally have 150-300 ppm Rb.  As seen in Figure 3.19, this results in lower Rb/Sr 

ratios in the Los Frailes Complex as compared to other Altiplano-Puna backarc 

ignimbrites which may contribute to the lower 
87

Sr/
86

Sr ratios seen there.  Rb 

concentrations and Rb/Sr ratios will be discussed further below. 

Isotopic Compositions 

 Isotopic evidence indicates a crust-to-mantle mixing ratio of near 50:50 with 

assimilation of the crust occurring in a single region.  New δ
18

O data modeled with a 

metapelitic crustal end-member produces a crustal input range of 40-50%.  AFC 

modeling using new 
87

Sr/
86

Sr and 
143

Nd/
144

Nd (ƐNd) values also result in ~50% crustal 

input.  In addition, constant 
87

Sr/
86

Sr values with changing SiO2 and Sr concentrations 

support a single zone of assimilation followed by fractionation at middle and upper 

crustal levels.  Temporal patterns in 
87

Sr/
86

Sr and 
143

Nd/
144

Nd (ƐNd) ratio changes show 

a distinct increase in evolved character at 10-12 Ma, coeval with the delamination 

event as indicated by trace element ratios.  Lead isotopic data is used to define the Los 

Frailes Complex basement compared to known central Andean crustal domains.  
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Table 4.1 

Whole rock Sr and Pb isotopic data from Schneider (1985) 
Sample Unit Age (Ma) 87Sr/86Sr 

Initial 

Sr ppm 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

As-4 Kari Kari 22 0.71124 482 18.725 15.669 39.008 

As-52 Kari Kari 21 0.71049 510 18.866 15.697 39.216 

As-57 Kari Kari 21 0.71011 605 18.926 15.686 39.252 

As-69 Kari Kari 21 0.70971 445 18.711 15.664 39.028 

As-70 Kari Kari 21 0.71160 440 18.652 15.684 38.970 

As-71 Kari Kari 21 0.71170 441 - - - 

As-144 a Kari Kari 21 - - 18.764 15.688 39.096 

Fr-3 Pre-Frailes 12.42±0.79 0.71203 409 18.661 15.629 38.793 

Fr-5 Frailes Dome 3.89±0.38 0.71189 404 - - - 

Fr-13 a Porco 10.56±0.30 - 937 18.263 15.624 38.320 

Fr-14 a Porco 11.52±0.42 0.70713 990 18.658 15.671 38.920 

Fr-18 Pre-Livicucho 19.53±1.23 0.71255 480 19.051 15.849 39.386 

Fr-19 Pre-Livicucho 14.09±0.55 0.71176 529 - - - 

Fr-21 West Frailes 4.44-5.67 0.71227 456 18.580 15.660 38.850 

KK-5-79 Kari Kari 21.95±0.92 0.71050 423 - - - 

KK-10-81 Kari Kari 21 - - 18.888 15.691 39.176 

KK-11-79 Kumurana 25.25±0.90 0.70726 768 - - - 

KK-12-79 Kumurana 26.13±1.22 0.70715 509 18.761 15.663 38.872 

Those with (±) are K/Ar ages from Schneider (1985), those without are assigned ages based 

on location and composition. 
a 
Described by Schneider (1985) as “altered”, but included in this study. 

 

Table 4.2 

δ
18

O isotopic analyses of Los Frailes Complex samples 
 

Sample 

 

Unit 

δ18OQuartz‰ 

Measured 

δ18OMagma‰ 

Calculated 

δ18OCrust‰ 

 40:60 b 

δ18OCrust‰ 

 50:50 b 

δ18OCrust‰ 

 60:40 b 

PT-1 Porco  +10.45 a +10.15 +16.67 +14.49 +13.04 

PT-3 Porco  +10.68 a +10.38 +17.26 +14.96 +13.44 

PT-8 Los Frailes  +9.78   +9.48 +15.01 +13.16 +11.94 

PT-9 Los Frailes  +9.73   +9.43 +14.89 +13.07 +11.86 

PT-11p Los Frailes   +10.45 a +10.15 +16.68 +14.50 +13.05 

PT-12 Condor Nasa        +9.82   +9.52 +15.10 +13.24 +12.00 

PT-14 Livicucho    +10.57  a +10.27 +16.96 +14.73 +13.24 

PT-16 Los Frailes +10.04   +9.74 +15.65 +13.68 +12.37 

PO-5 Sevaruyo +11.09 +10.79 +18.28 +15.78 +14.12 

PO-6 Sevaruyo* +10.57 +10.27 +16.97 +14.73 +13.24 

Oxygen isotopic ratios were obtained by laser fluorination on quartz grains at the University 

of Cape Town, South Africa.  Measured values for unknowns were corrected to the average 

measured value for the internal standard of Monastery Garnet (MONGT, δ
18

O = 5.38‰ 

assuming a value of 5.80‰ for UWG-2).  In run error (2σ) is estimated at ±0.10‰ (n=6, from 

1/11/2013 to 1/18/2013). Following Chang (2007), the fractionation correction for quartz is 

about 0.3‰ for ∆qtz-melt and therefore 0.3‰ was subtracted from δ
18

Oquartz to produce 

δ
18

Omagma.  Calculations assumed that the mantle, crust and cumulates all have the same 

oxygen content. 
a
 Reported values are averages of two analyses. 

b
 δ

18
O values of crustal end-member given a mantle value of +5.80‰ (Bindeman, 2008) and 

the crust:mantle mixing ratio listed for each column. 

* Sample may be from Los Frailes ignimbrite (see discussion at beginning of Chapter 3). 
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Previous isotopic work in the Los Frailes Complex includes 18 whole rock 

87
Sr/

86
Sr ratios and 19 whole rock

 206
Pb/

204
Pb, 

207
Pb/

204
Pb and 

208
Pb/

204
Pb ratios 

reported by Schneider (1985).  The samples considered here are shown in Table 4.1.  

Even when combined with new data (see Table 3.4), the resulting isotopic data set is 

not comprehensive and is incapable of capturing the full range of variations either 

geographically (7500-8500 km
2
) or temporally (~25 My).   

Oxygen Isotopes 

Crustal portions of 40-50% result in crustal δ
18

O values that remain largely 

within the range of +14 to +20‰ expected in pelites (Miller, 1985) (Table 4.2).  A 

40% crustal input results in δ
18

Ocrust values of +14.89 to +18.28‰, 50% crust gives 

+13.07 to +15.78‰ and 60% crust shows sub-pelitic values of +11.86 to +14.12‰.  

The calculated crust-to-mantle mixing ratio of near 50:50, with a peraluminous pelitic 

crustal end-member, is comparable to the values reported for Vilama and Panizos 

using similar calculations by Kay et al. (2010).   

Strontium and Neodymium Isotopes 

 Figure 3.20a shows two distinct isotopic fields in the Los Frailes Complex 

data, with the pre-12 Ma samples having less radiogenically evolved character 

(
143

Nd/
144

Nd = 0.512200 to 0.512300, ƐNd = -6.59 to -8.54, 
87

Sr/
86

Sr = 0.70715 to 

0.71170), and the post-12 Ma samples having greater radiogenically evolved character 

(
143

Nd/
144

Nd = 0.512140 to 0.512200, ƐNd = -8.54 to -9.71, 
87

Sr/
86

Sr = 0.71140 to 

0.71270).  Additionally, the pre-12 Ma samples show a clear temporal progression of 

increasingly radiogenically evolved values internal to that data set.  Kumurana 

samples KK-11-79 and KK-12-79 exhibit extremely low 
87

Sr/
86

Sr ≈ 0.70720 

(Schneider, 1985) while Kumurana PT-4 has a 
143

Nd/
144

Nd = 0.512295 (ƐNd = -6.69), 

but with a much higher 
87

Sr/
86

Sr ratio of 0.71018 which is near the middle of the Kari 

87
Sr/

86
Sr range of 0.70970 to 0.71170.  Kari Kari sample PT-5 has a similar 

87
Sr/

86
Sr = 
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0.71043 to PT-4, but with a lower 
143

Nd/
144

Nd = 0.512260 (ƐNd = -7.37).  12-14 Ma 

Porco samples PT-1 and PT-3 indicate even more evolved 
143

Nd/
144

Nd ≈ 0.512210 

(ƐNd ≈ -8.35) with 
87

Sr/
86

Sr at ~0.71010.  Porco sample Fr-14 has a much lower 

87
Sr/

86
Sr = 0.70713 (Schneider, 1985), and is discussed in detail below. 

 While the post-12 Ma field is internally irregular, its fits the overall trend 

towards greater isotopically evolved character with time.  Sevaruyo sample PO-5, with 

a uniquely high Rb/Sr = 1.0, has values similar to those of Livicucho samples PT-13 

and PT-1.  Collectively, these have the highest 
87

Sr/
86

Sr = 0.71267 and lowest 

143
Nd/

144
Nd = 0.512161 (ƐNd = -9.30) values in the Los Frailes Complex.  The 7-8 Ma 

Condor Nasa, ~1.5 Ma Los Frailes ignimbrite and Sevaruyo PO-6 samples occupy a 

field centered at 
87

Sr/
86

Sr = 0.71150 and 
143

Nd/
144

Nd = 0.512180 (ƐNd = -8.93).   

The above described temporal trend of increasing isotopically evolved values 

can also be interpreted as a spatial pattern.  From Kumurana, Kari Kari and Porco in 

the southeast to Livicucho and Sevaruyo in the northwest, there is a trend of increasing 

isotopically evolved character across the Los Frailes Complex.  Schneider (1985) 

samples Fr-3, Fr-18 and Fr-19 were reported with 
40

K-
40

Ar biotite ages of 12.4±0.8, 

19.5±1.2 Ma and 14.1±0.6 Ma respectively and have relatively high 
87

Sr/
86

Sr values of 

0.71203, 0.71255 and 0.71176.  While the domes and units from which these samples 

were collected are not well described and thought to be minor, their 
87

Sr/
86

Sr ratios do 

not fit with the previously described temporal pattern of isotopic evolution.  This may 

be due to alteration or greater crustal contamination of small volume melts or may be 

caused by heterogeneity of the underlying crust.  The three samples are described by 

Schneider (1985) as “Pre-Frailes eruptives”, but Fr-18 and Fr-19 are referred to in this 

study as “Pre-Livicucho” based on location.  Although both Fr-18 and Fr-19 are 

described as altered, they are considered here as their 
87

Sr/
86

Sr ratios are close to 7-8 

Ma Livicucho sample values.  Fr-3 is from the extreme western side of the main Los 
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Frailes ignimbrite in older pyroclastic rocks and is labeled “pre-Los Frailes”.  Fr-18 

has 
87

Sr/
86

Sr ratio and Sr concentration values in the field of 7-8 Ma Livicucho 

samples PT-13 and PT-14 while Fr-3 and Fr-19 are closer to Condor Nasa and Los 

Frailes ignimbrite values (see Figure 3.21).  With over 130 km separating the 

Kumurana and Sevaruyo centers, the potential for crustal isotopic heterogeneities is a 

possibility and may become recognizable with increased sample density.  However, 

due to the condition of the samples and the size of the units from which they were 

collected, the temporal trend is considered more likely. 

Porco sample Fr-14 exhibits the lowest whole rock 
87

Sr/
86

Sr reported in the 

Los Frailes Complex.  This sample, with its low 
87

Sr/
86

Sr ratio, Sr ppm = 990, Rb/Sr = 

0.27, SiO2 = 61.4% and Eu/Eu* = 0.81 (Schneider, 1985),  infers that the mantle 

isotopic character had not changed appreciably since similar values were seen in 

Kumurana samples KK-12-79 and particularly KK-11-79 (
87

Sr/
86

Sr  = 0.70726, Sr 

ppm = 768, Rb/Sr = 0.27, SiO2 = 61.7%, Eu/Eu* = 0.79; Schneider, 1985).  These 

primitive values are surprising given its 
40

K-
40

Ar biotite age of 11.52±042 Ma, which 

is ~14 My after Oligocene-Miocene magmatism had restarted and much crustal 

thickening had occurred in the southern Altiplano (e.g., Gubbels et al., 1993; Husson 

and Sempere, 2003).  Like other Porco samples, Fr-14 has high La/Sm = 10.40 and 

Sm/Yb = 8.41 (Schneider, 1985) which indicates equilibration beneath an extremely 

thick crust.  The low SiO2 and Eu/Eu* values combined with high Sr concentration 

indicates that plagioclase fractionation was suppressed or played a relatively minor 

role and could indicate that middle crustal storage and evolution was brief or bypassed 

by some magma batches during this period.   

 One of the most consistent patterns of the isotopic data is near constant 

87
Sr/

86
Sr ratios with variable SiO2 and Sr concentration within individual units (Figure 

3.22).  Large variation in 
87

Sr/
86

Sr ratios between units at equal SiO2 or equal Sr 
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concentration is also common.  This pattern is also seen in APVC and Puna volcanic 

rocks (e.g., Aitcheson and Forrest, 1994; Davidson and de Silva, 1992; Kay et al., 

2010).  This indicates that once the 
87

Sr/
86

Sr ratio of the magma is achieved in the 

lower crust through assimilation, there is little or no further assimilation during accent.  

Magma SiO2 and Sr concentration evolution is driven by fractionation, particularly of 

plagioclase.  The largest SiO2 and Sr ppm variations occur at Condor Nasa which 

shows 60-66% SiO2 and 440-640  ppm Sr at 
87

Sr/
86

Sr ≈ 0.71150 and in Kumurana 

samples from Schneider (1985) with 61-69% SiO2, 510-770 ppm Sr at 
87

Sr/
86

Sr ≈ 

0.71260.  Kari Kari is the only significant Los Frailes Complex unit which has a minor 

deviation in 
87

Sr/
86

Sr ratios (0.70971 to 0.71170).  Although some 
87

Sr/
86

Sr ratio 

variation exists, there is no pattern of increasing ratios with increasing SiO2 or 

decreasing Sr concentration which would be expected if continued crustal assimilation 

had caused the 
87

Sr/
86

Sr ratio variation.  Instead the Kari Kari field shows variable 

87
Sr/

86
Sr values at dispersed SiO2 and Sr ppm values.  This can be explained either by 

the Kari Kari unit being made up of several individual batches of magma with 

independent 
87

Sr/
86

Sr values, or a single batch of poorly mixed magma with several 

separate assimilation histories.  The concentration of study and thorough sampling 

conducted by Schneider (1985) likely captured these differences if they are present.  

87
Sr/

86
Sr ratio variation may also exist within sub-units of the main Los Frailes 

ignimbrite, however, the four samples presented here are from a relatively small 

geographic area of the northeastern Los Frailes meseta with similar age, chemistry and 

magmatic batch history (see Figure 1.3).  

  On a regional scale, Figure 3.21b shows that the Los Frailes Complex occupies 

a field of distinctly lower 
143

Nd/
144

Nd (ƐNd) ratios at a given 
87

Sr/
86

Sr ratio compared 

to APVC and Puna ignimbrites.  While the Los Frailes Complex 
87

Sr/
86

Sr ratios cover 

the lower half of the APVC and Puna 
87

Sr/
86

Sr  ratio range, it is well below the 
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87
Sr/

86
Sr values of the three northern APVC volcanoes; Granada, Panizos and Vilama, 

but has similar Nd isotopic values.  The pattern of lower 
143

Nd/
144

Nd (ƐNd) values at a 

given 
87

Sr/
86

Sr ratio was noted in Altiplano mafic lavas when compared to Puna mafic 

lavas by Kay et al. (2010) and may be reflected in the isotopic signature of the 

adjacent ignimbrites.  These lower 
143

Nd/
144

Nd (ƐNd) values can be explained by either 

the mafic lavas directly representing the mantle-derived end-member and imparting 

their isotopic signature on the resulting ignimbrites, or by the mafic lavas being 

contaminated in a similar manner to the ignimbrites by low-percentage crustal 

assimilation.  Unlike Puna ignimbrites, the Los Frailes Complex has a significant 

range of 
143

Nd/
144

Nd ratios from 0.512140 to 0.512300 (ƐNd = -6.59 to -9.71) and 

breaks from the pattern of normally flat 
143

Nd/
144

Nd (ƐNd) ratio fields at 
87

Sr/
86

Sr 

>0.70800 (Kay et al., 2010).  Compared to the 2-6 Ma Cerro Galán ignimbrite in the 

southern Puna, the 0-25 Ma Los Frailes Complex field overlays it but with greater 

range in both 
87

Sr/
86

Sr and 
143

Nd/
144

Nd (ƐNd) ratios which may display greater 

temporal changes in the mantle and crust.  No systematic isotopic variation is seen in 

the limited Los Frailes Complex data between the large and small volume ignimbrite 

units as is noted in the southern Puna by Schurr et al. (2007) and in the northern Puna 

by Kay et al. (2010). 

Lead Isotopes 

Lead isotopic data is used by several researchers to define the crustal domains 

of the central Andean basement (e.g., Lucassen et al., 2001, 2002; Wörner et al., 1992; 

Aitcheson et al., 1995; Mamani et al., 2008, 2010).  The 13 Schneider (1985) samples 

considered here are listed in Table 4.1 and plotted in Figures 4.2a and 4.2b.  Only one 

sample (4.44-5.67 Ma aged Fr-21 from West Los Frailes) is post-10 to12 Ma, which is 

argued by Husson and Sempere (2003) to be the onset of optimal deep crustal flow 

conditions in the Altiplano.  Crustal flow from the east to the west would cause the 
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westward movement of basement derived Pb isotopic signatures as well as cause 

diffusion of the boundaries (Mamani et al., 2008). 

Figure 4.2 depicts the fields for the northern Chile Puna basement, northern 

Puna Ordovician rocks, Bolivian Eastern Cordillera and southern Puna basement 

based on Lucassen et al. (2001, 2002).  Overlaid are the fields for southern Puna 

volcanic centers and northern Puna volcanic centers as well as the Cerro Galán and 

Panizos ignimbrite fields (Kay et al., 2010; Ort et al., 1996).  The Los Frailes Complex 

samples predominately plot with the northern Puna volcanic centers which reflect 

similar basement compositions compared to the more mafic southern Puna basement.  

This generally agrees with the trend of similar peraluminousity values in the Los 

Frailes Complex and northern APVC centers (see Figure 3.1b).  While the Kari Kari 

samples plot with the northern Puna centers in the northern Puna Ordovician field in 

206
Pb/

204
Pb versus 

207
Pb/

204
Pb space, they have higher 

208
Pb/

204
Pb ratios than the 

northern Puna centers which places them on the border with the Bolivian Eastern 

Cordillera field.  This indicates that although the Los Frailes Complex basement is 

similar to that found in the northern Puna, it has differences which are expressed in the 

higher 
208

Pb/
204

Pb ratios. 
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Figure 4.2 

 

(a) Plot of 
207

Pb/
204

Pb versus 
206

Pb/
204

Pb ratios. (b) Plot of 
208

Pb/
204

Pb versus 
206

Pb/
204

Pb ratios.  These depict the Los Frailes Complex basement similarities to the 

northern Puna centers (light blue) as compared with the southern Puna centers (light 

red). The Cerro Galán (dark red) and Panizos (dark blue) ignimbrite fields are also 

included for reference.  The fields for the northern Chile Puna basement, northern 

Puna Ordovician rocks, Bolivian Eastern Cordillera and southern Puna basement are 

based on Lucassen et al. (2001, 2002) and outlined in heavy solid blue and dashed 

blue lines with boxed labels. 

Symbols: Los Frailes Complex: triangles – Schneider (1985);  Northern Puna centers, 

southern Puna centers, Galán and Panizos fields as compiled in Kay et al. (2010, 2011) 

and Ort et al. (1996). 
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Mineralogy 

Plagioclase is the most abundant mineral phase in all Los Frailes Complex 

ignimbrites accounting for 40-60% of the volume of the phenocryst population.  

However, the observed ignimbrite Eu/Eu* ratios seem higher than would be expected 

for rampant plagioclase fractionation.  This situation is not unique and is also seen in 

the APVC (Kay et al., 2010) as discussed above (Figure 3.11b).  At Panizos, in the 

APVC, high Eu/Eu* ratios and unzoned plagioclase are attributed by Ort et al. (1996) 

to high crystal content and incomplete mixing prior to magma reaching pre-eruptive 

crustal levels.  While limited plagioclase zoning is seen in Los Frailes Complex 

samples examined in this study, only 5-10% of plagioclase phenocrysts display optical 

indications of zoning.   

Like the Morococala cordierite–biotite bearing rhyolite tuffs unit, ilmenite is 

the only oxide phase found in the examined Los Frailes Complex samples.  Morgan et 

al. (1998) attributes this lack of magnetite in the rhyolite tuffs unit and ilmenite 

presence in all three Morococala units to reducing conditions imposed by a graphite-

bearing sedimentary source.  Compositional changes in ilmenite and magnetite (when 

present) in the quartz-latite tuff unit indicate progressive increases in its pre-eruptive 

fO2 conditions (Morgan et al., 1998).  These findings at Morococala generally parallel 

those proposed here for reducing conditions in the Los Frailes Complex crust. 

Geochronology 

As has been noted by several researchers (Charlier et al., 2007; Hora et al., 

2010) using 
40

Ar/
39

Ar sanidine and 
40

Ar/
39

Ar biotite ages, biotite consistently shows 

0.2-0.6 older ages than sanidine from the same unit.  Kay et al. (2011) specifically 

investigated the variation in ages at Cerro Galán in the southern Puna and found 

biotite ages that were 0.4-0.56 Ma older than paired sanidine ages.  As biotite is 

thought to preserve inherited argon in structural traps (Hora et at., 2010) and has a 
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complex behavior in silicic melts, its precise behavior during crystallization is hard to 

predict.  Thus, with sanidine crystallization occurring after biotite near the end of the 

magma cooling history, the 
40

Ar/
39

Ar sanidine ages are considered a more accurate 

eruption dating tool.   

 

Table 4.3 

25 Samples collected on 2009 and 2010 reconnaissance trips and assigned ages 
Sample Unit Type Age (Ma) Latitude Longitude Elevation 

PT-1 Porco Ashflow Tuff 12-14d S 19.71020 W 65.87138 3916 m 

PT-2 Porco Ashflow Tuff 12-14d S 19.71020 W 65.87138 3916 m 

PT-3 Porco Inter-Caldera Tuff 12-14d S 19.80210 W 65.97706 4080 m 

PT-4 Kumurana Intrusive ~25d S 19.77537 W 65.67075 4586 m 

PT-5 Kari Kari Ashflow Tuff 20-22d S 19.36375 W 65.70851 4361 m 

PT-6 Condor Nasa Ashflow Tuff 7-8e S 19.36858 W 66.00847 4042 m 

PT-7 Condor Nasa Ashflow Tuff 7-8e S 19.35165 W 66.04090 3890 m 

PT-8 Los Frailes Ashflow Tuff 1.52 ±0.01a S 19.44460 W 66.11150 3943 m 

PT-9 Los Frailes Ashflow Tuff ~1.5a S 19.38651 W 66.07663 3889 m 

PT-9p Los Frailes Pumice ~1.5a S 19.38651 W 66.07663 3889 m 

PT-10 Los Frailes Pumice ~1.5a S 19.38712 W 66.07063 3824 m 

PT-11 Los Frailes Ashflow Tuff 1.52 ±0.02a S 19.38523 W 66.06510 3720 m 

PT-11p Los Frailes Pumice 1.52 ±0.02a S 19.38523 W 66.06510 3720 m 

PT-12 Condor Nasa Ashflow Tuff 7-8e S 19.35593 W 66.04590 3762 m 

PT-13 Livicucho Ashflow Tuff 7-8f S 19.02840 W 66.16620 4077 m 

PT-14 Livicucho Ashflow Tuff 7-8f S 19.13400 W 66.37816 4107 m 

PT-15 Condor Nasa Ashflow Tuff ~7b S 19.34906 W 65.91299 3757 m 

PT-16 Los Frailes Ashflow Tuff 1.5a S 19.60108 W 65.89838 3589 m 

PT-16p Los Frailes Silicic Lava 1.5a S 19.60108 W 65.89838 3589 m 

PO-1 Condor Nasa Ashflow Tuff 7-8e S 19.3637 W 65.9355 3600 m 

PO-2 Condor Nasa Ashflow Tuff 7-8e S 19.3637 W 65.9355 3600 m 

PO-3 Condor Nasa Ashflow Tuff 7-8e S 19.3687 W 65.9637 3819 m 

PO-4 Condor Nasa Ashflow Tuff 7-8e S 19.3687 W 65.9637 3819 m 

PO-5 Sevaruyo Ashflow Tuff 9-10c S 19.1733 W 66.7811 3721 m 

PO-6 Sevaruyo* Ashflow Tuff 9-10c S 19.1733 W 66.7811 3721 m 

Sample locations and type as reported in Keller (2010). 
a
 Based on new 

40
Ar/

39
Ar sanidine ages reported in this study. 

b
 Based on new zircon ages reported in this study. 

c
 Based on 

40
Ar/

39
Ar biotite ages from Barke et al. (2007). 

d
 Based on 

40
K/

40
Ar biotite ages from Schneider (1985). 

e
 Based on 

40
K/

40
Ar biotite ages from Kennan et al. (1995). 

f
 Based on 

40
K/

40
Ar biotite ages from Jiménez et al. (1997). 

* Sample may be from Los Frailes ignimbrite (see discussion at beginning of Chapter 3). 

 

Table 4.3 lists the age assignments for the 25 samples from this study.  Los 

Frailes pumice sample PT-11p is assigned the 1.522±0.021 Ma age based on its 

collection from the same location and unit as the 
40

Ar/
39

Ar sanidine dated PT-11 

sample.  Similarly, PT-9, PT-9p and PT-10 were collected from the main Los Frailes 
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unit close to PT-11 and PT-11p and are nearly chemically identical including 
87

Sr/
86

Sr 

ratios of ~0.7114 from PT-10 and PT-11p.  PT-16 and PT-16p are also chemically 

matched to the other Los Frailes ignimbrite samples with PT-16 sharing an 
87

Sr/
86

Sr 

value of ~0.7115 with PT-9 and assigned an age of 1.5 Ma.  These are younger ages 

than the previously used 2.24±0.09 based on the Barke et al. (2007) reported 
40

Ar/
39

Ar 

biotite age of sample G1 (19.377°S 66.056°W) as well as the associated sample PM15 

(19.578°S 65.942°W) from the same study.  Due to the discussed difference in 

sanidine versus biotite ages, the lower 
40

Ar/
39

Ar sanidine ages are not unexpected, but 

the ~0.75 My difference is probably too large to attribute purely to the dating 

techniques.  

The zircon eruption dates for Los Frailes sample PT-10 of ≤1.9 Ma and for 

Condor Nasa sample PT-15 of ≤7.2 Ma are both in line with expectations.  These dates 

support the 1.5 Ma age assigned to PT-10 and restricts the PT-15 age to ~7 Ma instead 

of the more general 7-8 Ma used for Condor Nasa samples based on 
40

K/
40

Ar biotite 

ages reported by Kennan et al. (1995).  The remaining 15 samples from this study 

have been assigned ages based on their chemical signatures and physical proximities 

to the reported dated samples of studies listed in Table 4.3.   

The two new 
40

Ar/
39

Ar sanidine dates obtained from Los Frailes ignimbrite 

samples PT-8 and PT-11 support the Barke et al. (2007) assertion that the main Los 

Frailes ignimbrite has a lower end age of ~1.5 Ma.  The previous age of the 

northeastern portion of the main Los Frailes ignimbrite was placed at 2.24±0.09 Ma 

based on sample G1 of Barke et al. (2007) as described above.  The ~1.5 Ma ages of 

this study are now the youngest obtained on the main Los Frailes ignimbrite and 

exceed the previous lower end limit of 1.86±0.09 Ma which was based on the 

40
Ar/

39
Ar biotite age of Los Frailes ignimbrite sample YURb (S19.741 W66.381) 

(Barke et al., 2007).  The chemical similarities between the 8 Los Frailes ignimbrite 
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samples of this study collected on the northeast side of the meseta and the 20 reported 

by Luedke et at. (1997) collected about 50 km away on the southern side are 

interpreted to indicate it is a single unit.  This places the age of the central and eastern 

portion of the main Los Frailes meseta at 1.5-3.5 Ma.  The 3.5 Ma upper limit is set by 

the Schneider (1985) sample Fr-5 from an exposed dome, partially covered by the 

main Los Frailes ignimbrite, which has a 
40

K/
39

Ar biotite age of 3.86±0.38 Ma and 

adjusted to 3.5 Ma accounting for the biotite versus sanidine age discussion above.  

This moves the main eruptive volume of the Los Frailes Complex firmly into the 

Pliocene-Pleistocene from its previous Miocene assignment.  As no new data are 

available in the western and northwestern portions of the main Los Frailes meseta, 

they are assessed to be 9-16 Ma and 5-9 Ma respectively; in agreement with the ages 

proposed by Barke et al. (2007). 

Geothermometry and Geobarometry  

The 110°-135°C higher zircon temperatures as compared to two-feldspar 

temperatures are consistent with zircon crystallization prior to plagioclase.  This is 

supported by observed zircon inclusions in all silica minerals including plagioclase 

cores.  This same arrangement is seen in the PO series of samples as described by 

Keller (2010).  These temperature ranges are proposed to have existed in pre-eruption 

magma chambers in the middle or upper crust.  The high crystal percentage and large 

phenocryst size indicate that slow cooling occurred in the magma storage chambers 

prior to eruption.   

Although no cordierite is observed in this study, it is reported in the older and 

lower SiO2 Condor Nasa sample PO-2 by Keller (2010).  Luedke et al. (1997) also 

reported wide-spread but scarce cordierite in southern Los Frailes Meseta samples and 

Morgan et al. (1998) reported it to be common at Morococala to the north.  While 

cordierite is expected in highly peraluminous rocks, it has not been definitively 
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established if the crystals found are magmatic or inherited xenoliths from a meta-

sedimentary basement (Luedke et al., 1997).  If the cordierite is magmatic, as is 

consistent with the pseudosection for PO-2 (Keller, 2010), it would indicate 

equilibrium at low pressures of <450 MPa which corresponds to very shallow upper 

crustal depths of <14 km given the equilibrium assemblages reported.  These pressures 

and depths generally agree with the geophysical evidence of a 14-20 km deep partial 

melt zone beneath the Los Frailes Complex detected by the receiver function study of 

Beck and Zandt (2002) discussed in Chapter 1 and depicted in Figure 1.6. 
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CHAPTER 5 

MODELING 

 

AFC Models 

The creation of erupted silicic magmas on the Altiplano-Puna involves 

contributions from both a mantle-derived mafic source and a crustal-derived felsic 

source.  Opinions have differed on the ratio of the contributing sources with arguments 

made for crustal proportions ranging from 0 to 100%.  One line of thought uses a 

mafic end-member as a means to move mantle heat into contact with the crust which 

drives melting and delivery of a pure crustal magma to the surface.  The other view 

holds that mafic magmas undergo fractional crystallization in the crust which 

transforms them into silicic magmas which continue their upward movement to the 

surface.  Intermediary models have large volumes of mafic mantle material entering 

the crust where it heats, melts, and assimilates silicic rocks while simultaneously 

undergoing fractional crystallization before transport to the surface.  While each of 

these models works to the first order, geochemical evidence in the form of δ
18

OQuartz 

paired with Sr isotopic and concentration data can be used to point to a mixture of 

mantle and crustal sources contributing to the resulting hybrid chemical and isotopic 

values seen in Altiplano-Puna ignimbrites.  Nd isotopic and concentration data are also 

used as an additional constraint on possible models, but do not help appreciably in the 

initial identification of end-member magma sources. 

 Dacitic Altiplano ignimbrites have consistently high values of δ
18

OQuartz of 

+9.7‰ to +11.1‰ (see Table 4.2) which indicate a large (40-60%) crustal component 

in their genesis when considering a mantle value of +5.8‰ (following Kay et al., 

1999, 2010, 2011; Kay, 2006; Bindeman, 2008).  However, the uppermost crust is too 

radiogenic and highly concentrated in Sr (Lucassen et al., 2001) to reconcile with the 
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associated low 
87

Sr/
86

Sr ratio values measured in the Los Frailes Complex ignimbrites 

when given the 40-60% crustal component required by the δ
18

O data.  Therefore, the 

crustal assimilates must be from the middle or lower crust with either less radiogenic 

87
Sr/

86
Sr ratios, lower Sr concentrations or a composite thereof.  Similar combinations 

of δ
18

O, 
87

Sr/
86

Sr ratio values and elemental concentrations are seen to the south in 

studies on APVC and Puna ignimbrites (e.g., Francis et al., 1989; Caffe et al., 2002, 

Kay et al. 2010, 2011) which have concluded similarly that the crustal end-member is 

located in the lower crust.  As 
143

Nd/
144

Nd (εNd) ratio zoning within the crust is 

expected to be much smaller than 
87

Sr/
86

Sr ratios, 
143

Nd/
144

Nd (εNd) ratio values are 

not considered a limiting factor when selecting the depth for the crustal end-member 

(Davidson and de Silva, 1995).    

 The primary problem with determining the crust-to-mantle ratio of the 

resulting dacitic ignimbrites is the lack of direct samples from either the lower crust or 

the underlying mantle.  This lack of knowledge of end-member chemistry is partially 

alleviated by the existence of low volume Miocene mafic flows along the western and 

central Altiplano.  These near primitive lavas can be used to predict the character of 

the mantle-derived mafic partial melts and serve as a mafic end-member proxy for 

AFC models.  The most isotopically primitive samples reported by Davidson and de 

Silva (1995) and Hoke and Lamb (2007) were used to represent the mafic end-member 

in this study.  In addition to their 
87

Sr/
86

Sr and 
143

Nd/
144

Nd (εNd) ratios, their wt. % 

SiO2 and wt. % MgO as well as Cr and Ni concentrations are considered when 

determining an appropriate mafic end-member to represent mantle-derived mafic end-

member melts. 

 As the Los Frailes ignimbrites show an isotopic shift in 
87

Sr/
86

Sr and 

143
Nd/

144
Nd (ƐNd) ratios between pre- and post-12 Ma samples, two sets of AFC 

models were considered.  The pre-12 Ma values represent the Kari Kari ignimbrite 
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while the post-12 Ma represents the more voluminous main Los Frailes ignimbrite.  

With ~20 My separating the two eruptions, during which the subducting Nazca Plate 

steepened and subduction-related contamination of the underlying asthenospheric 

wedge may have occurred, each model is assigned separate mafic end-member values.  

These values are determined by examination of available mafic lava samples of 

corresponding ages.  The pre-12 Ma mafic end-member is assigned values of δ
18

O = 

+5.8‰, 
87

Sr/
86

Sr = 0.7040, 500-900 ppm Sr, 
143

Nd/
144

Nd = 0.51280 (ƐNd = +3.16) and 

30 ppm Nd which is based on samples Gu-3, Luk-1 (Hoke and Lamb, 2007) and 

BC9016a (Davidson and de Silva, 1995) (see Table 5.1).  Luk-1 and BC9016a are 

from the primitive alkali basalt Chiar Kkollu sill located to the west of the Los Frailes 

Complex (see Figure 1.2) which is dated at 22-26 Ma, near the time of the 20-22 Ma 

Kari Kari emplacement.  It is the most Neogene mafic volcanic flow (SiO2 = 44-45 wt. 

%, MgO = 9.26-14.87%, 387-825 ppm Cr) collected on the Altiplano-Puna.  The 

Chiar Kkollu sample is free from petrographic evidence of contamination and is taken 

to represent an unmodified basaltic mantle melt composition prior to Miocene crustal 

shortening (Davidson and de Silva, 1992, 1995).  The Sr concentration of the mafic 

end-member was lowered from the Chiar Kkollu values as Sr is an incompatible 

element and expected to concentrate in small percentage melts such as the small 

volume Chiar Kkollu sill.  In higher percentage melts, such as those expected in large 

volume events like the Kari Kari and Los Frailes ignimbrite eruptions, the Sr 

concentration would be diluted as additional depleted rock is melted and incorporated.  

The δ
18

O value of the mafic end-member was set at +5.8‰ following Bindeman 

(2008) and Kay et al. (2010).  The 
143

Nd/
144

Nd ratio value is set to 0.51280 (ƐNd = 

+3.16) which is that of sample BC9016.  The Nd concentration is set at 30 ppm Nd, 

which is slightly below that in the basalt samples (40-46 ppm Nd).  The reduction in 
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concentration is again due to REEs being fairly incompatible elements which, like Sr, 

are enriched in small percentage melts.  

Post-12 Ma mafic end-member values used are based on samples CCO-1, 

7/91-19 and Maar-1 (Hoke and Lamb, 2007) which are placed at 5.0-7.0 Ma as well as 

sample BC9012 (Davidson and de Silva, 1995).  These samples are taken as 

representing the state of the mantle during the 1.5-3.5 Ma Los Frailes ignimbrite 

emplacement (see Table 5.1).  Unlike the Chiar Kkollu values used for the pre-12 Ma 

mafic end-member, no uncontaminated lavas have been reported in the post-12 Ma 

mafic record as is evidenced by the more evolved character of the samples used (SiO2 

= 51-54 wt. %, MgO = 5.69-9.06%, 175-727 ppm Cr).  With more uncertainty and 

fewer constraints, the post-12 Ma mafic end-member is assigned values of δ
18

O = 

+5.8‰, 
87

Sr/
86

Sr = 0.7055, 500-950 ppm Sr, 
143

Nd/
144

Nd = 0.51260 (ƐNd = -0.74) and 

25-30 ppm Nd considering the samples listed above.  Sr concentration was not 

reduced as in the pre-12 Ma values as it was judged that the more evolved nature of 

the mafic samples on which the mafic end-member is based incurred some Sr removal 

during plagioclase fractionation.  That Sr loss could approximately cancel the 

concentrating effects of small percentage melts and makes a major mafic end-member 

Sr concentration correction unnecessary.  The 
143

Nd/
144

Nd = 0.51260 (ƐNd = -0.74) 

value is set based on sample BC9012 (
143

Nd/
144

Nd = 0.512405, ƐNd = -4.55) taking 

into account noted crustal contamination.  A Nd concentration of 25-30 ppm is based 

on the range seen in basaltic samples (24-42 ppm Nd), and is set near the lower end of 

the range owing to the effects of incompatible elemental enrichment. 
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Table 5.1 

Selected Altiplano volcanic samples for mafic end-members 

Center 

 

Sample 

Chiar 

Kkollu 

Luk-1
 a

 

Chiar  

Kkollu 

BC9016b 

Guallatire 

 

Gu-3
 a

 

Ollague 

Region 

BC9012
 b

 

Salar de 

Empexa 

7/91-19
 a

 

Chullunquiani 

Nekhe Kkata 

Maar-1
 a

 

Age (Ma) 25.2 ± 0.9 22.51 ± 0.45 25.9 ± 0.8 <7  3.31 ± 0.25 <0.128 

SiO2 44.66 44.85 44.36 53.59 53.68 52.85 

TiO2 2.38 2.26 0.92 0.96 1.69 1.44 

Al2O3 13.72 14.09 11.52 15.58 16.49 15.88 

Fe2O3 3.76 11.38 9.76 9.29 3.06 8.60 

FeO 6.99 - - - 4.89 - 

MnO 0.18 0.18 0.18 0.16 0.11 0.15 

MgO 9.39 9.26 14.87 8.37 5.69 7.02 

CaO 12.16 12.17 10.13 6.86 7.45 8.23 

Na2O 3.06 3.05 4.53 3.10 4.15 3.54 

K2O 1.32 1.31 1.78 1.79 1.95 2.32 

P2O5 0.73 0.77 0.58 0.27 0.56 0.42 

LOI 1.85 0.70 1.70 0.03 0.61 0.07 

Total 100.20 100.02 100.33 100.00 100.33 100.52 

La 49.70 47.50 47.50 22.9 37.10 34.30 

Ce 96.00 91.2 99.00 48.5 81.00 70.00 

Pr 11.50 - 12.20 - 10.10 8.40 

Nd 46.40 40.1 46.40 23.9 42.20 32.90 

Sm 8.76 8.5 7.91 5.25 8.38 6.13 

Eu 2.87 2.72 2.02 1.38 2.33 96.00 

Gd 8.37 6.24 6.24 - 6.47 5.99 

Tb 1.03 1.01 0.76 0.83 0.78 0.87 

Dy 5.72 - 4.19 - 4.02 4.63 

Ho 0.98 - 0.74 - 0.63 0.87 

Er 2.32 - 1.95 - 1.48 2.16 

Tm 0.31 - 0.27 - 0.24 0.29 

Yb 2.06 2 1.81 2.67 1.29 2.06 

Lu 0.27 0.28 0.27 0.39 0.18 0.27 

Y 25 28 19 18 - 23 

Rb 20 23 46 49 - 55 

Sr 876 936 1516 716 977 776 

Ba 624 226 835 343 907 887 

Cs - - - - - - 

Pb - 9 7 8 - 9 

U 1.65 1.3 0.78 1.9 0.67 1.71 

Th 5.77 4.8 3.82 4 3.18 7.60 

Nb 60 55 15 139 24 32 

Ta 3.47 2.97 1.16 0.55 1.28 3.05 

Zr 186 202 163 139 - 206 

Hf 5.49 4.7 3.92 0.55 - 6.19 

Sc - 29.9 26.0 28 - 22.00 

Cr 387 433 825 354 175 257 

Ni 119 129 423 82 69 92 
87Sr/86Sr 0.703960 0.704052 - 0.705781 0.705550 0.705961 
143Nd/144Nd - 0.512801 - 0.512405 - - 

ƐNd
 - +3.18 - -4.55 - - 

206Pb/204Pb - 18.52 - - - - 
207Pb/204Pb - 15.63 - - - - 
208Pb/204Pb - 38.67 - - - - 

a
 Data from Hoke and Lamb (2007). 

b
 Data from Davidson and de Silva (1995). 
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Based on the δ
18

O values discussed above, the crust-to-mantle magma mixing 

ratio of the Los Frailes Complex ignimbrites is constrained to 40-50% crustal input. 

(see Table 3.4).  With near equal inputs from crustal and mafic end-member sources, 

the combination of ignimbrite 
87

Sr/
86

Sr ratio values, peraluminous composition and 

interpreted silicic nature of the southern Altiplano lower crust as determined 

geophysically (Beck et al., 1996; Myers et al., 1998; Swenson et al., 2000; Beck and 

Zandt, 2002; Yuan et al., 2002; McGlashan et al., 2008), an appropriate crustal end-

member source is Paleozoic metapelites.  At the base of the modern southern 

Altiplano crust, at depth of near 65 km, a pressure of ~20 kbar (2.0 GPa) is expected.  

Under these conditions, pelitic sedimentary rocks would experience some H2O loss 

during high pressure and temperature metamorphism resulting in metapelitic basement 

rocks in the eclogite facies.   

Using P-T pseudosections, constructed using THERMOCALC 3.26 (Powell 

and Holland, 1988), by Indares et al. (2008) for aluminous bulk compositions similar 

to possible Altiplano metapelitic lower crust (H2O: 2.15-2.20, SiO2: 64.59-67.24, 

Al2O3: 10.78-13.31, CaO: 1.19-1.87, MgO:4.69-5.58, FeO 7.58-8.36, K2O: 2.52-2.77, 

Na2O: 1.79-1.83, TiO2: 0.69-0.71, O: 0.01, XFe: 0.58-0.64 in mol. %), a mineral 

assemblage can be calculated.  At P-T parameters near ~20 kbar (2.0 GPa) and 

~940°C (maximums for the pseudosections), the resulting Na2O, CaO, K2O, FeO, 

MgO, Al2O3, SiO2, H2O, TiO2 and O (NCKFMASHTO) system assemblage consists 

primarily of garnet + quartz + K-feldspar + melt with minor amounts of kyanite + 

rutile (Indares et al., 2008).  At lower pressures near 16-17 kbar (1.6-1.7 GPa), 

plagioclase becomes stable whereas lower temperatures of ~850°-880°C allow 

plagioclase, biotite and ilmenite to be added to the assemblage.  At ~20 kbar (2.0 GPa) 

and ~940°C, the melt accounts for 8-10 mol. % of the assemblage.  This melt is 

produced mostly through the loss of muscovite and biotite (Indares et al., 2008) and 
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represents the crustal end-member melt in the AFC models below.  In equilibrium 

with the melt, the remaining Fe and Mg is incorporated in an almandine-rich garnet 

phase, which makes up ~35 mol. % of the assemblage.  A grossular content of ~6-10% 

of the garnet incorporates the remaining Ca while the spessartine content of the 

observed rocks is <3% of the garnet and so the pseudosection assemblage is assumed 

to be Mn-free (Indares et al., 2008).  The K-feldspar phase houses the remaining K 

and Na and, together with quartz, accounts for ~55 mol. % of the assemblage.  Kyanite 

and rutile are minor mol. % phases in the assemblage with rutile incorporating Ti. 

Pelites, such as shales or argillites, have a distinct composition which is 

established through the process of chemical weathering during deposition.  Ca and 

particularly Na are removed, whereas Al is slightly enriched in the near-surface 

environment resulting in a strongly peraluminous composition with ≤3 wt. % CaO and 

≤2 wt. % Na2O (e.g., Miller 1985).  In a similar process, the concentration of highly 

soluble Sr drops to the range of 50-300 ppm which is greatly dependent on the 

incorporation of associated carbonates.  While Sr is removed, the Rb is retained by the 

sheet silicates and remains high; about 100-200 ppm (Miller 1985).  This results in 

high Rb/Sr ratios, usually ≥0.5, which are much higher than in average crust.  Nd 

evolution in the crust will have a continental signature, but no specific pelitic signature 

(Miller 1985), and is given a 
143

Nd/
144

Nd ratio value of 0.51190 to 0.5121 (ƐNd = -

10.49 to -14.40) (Caffe et al., 2002; Lucassen et al., 2007).  REEs, including Nd, show 

little change in their abundance even during fine grained weathering of crystalline 

rock and should have concentrations near that of the constituent sediments.  Crustal 

end-member Nd concentrations are assigned a range of 20-40 ppm Nd for models in 

this study given average continental concentrations of 10-25 ppm Nd (Rudnick and 

Gao, 2004), Archean crust concentrations of 15-20 ppm Nd (Rudnick and Fountain, 

1995; Taylor and McLennan, 1995, 2009) and Proterozoic-Phanerozoic shale 
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concentrations as high as 40 ppm Nd (Condie, 1993).  Due to the low temperature 

formation of clay minerals in equilibrium with meteoric water, pelitic rocks have high 

δ
18

O values of +14 to +20‰ (Miller, 1985).  See Table 5.3 for a full description of the 

crustal end-member parameters used.  Using a metapelitic rock as a crustal end-

member is a similar conclusion to that reached by Kay et al. (2010) for the Panizos 

and Vilama centers in the APVC, which are also peraluminous and have similar δ
18

O 

with slightly higher 
87

Sr/
86

Sr ratios compared to the Los Frailes Complex (see Table 

1.2).  The basement of the northern Puna, which is described in equivalent terms and 

with comparable Sr and Nd isotopic and concentration values by Caffe et al. (2002), is 

considered to be comparable to that in the southern and central Altiplano.  While δ
18

O 

and 
87

Sr/
86

Sr ratio values in the Los Frailes Complex are similar to the APVC, the 

450-550 ppm Sr is much higher in Los Frailes ignimbrites compared to 200-350 ppm 

Sr in the APVC and 260-350 ppm Sr at Cerro Galán.  This Sr concentration difference 

may be caused by fractionating plagioclase playing a smaller role in the middle crust 

below the Los Frailes Complex or a higher initial mafic end-member Sr concentration 

which results in AFC models distinct from those of the APVC and Puna (Ort et al., 

1996; Caffe et al., 2002; Kay et al., 2010). 

 The AFC calculations used in this study are described in Aitcheson and Forrest 

(1994) and are derived from the differential equations of DePaolo (1981).  See Table 

5.2 for equations and definitions of variables.  The three equations (5, 6 and 7) 

describe simultaneous assimilation of country rock and removal of mass through 

fractional crystallization of an evolving magma with complete mixing as it undergoes 

transport in the crust.  This model was chosen based on the uncertainty of the end-

member compositions and the need to constrain those values.   As discussed in Kay et 

al. (2010) regarding APVC calculations, the mass balance AFC model of Aitcheson 

and Forrest (1994) with a constant value of r is also preferred in the case of the Los 
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Frailes Complex over the Energy Constrained (EC)-AFC model of Spera and Bohrson 

(2001).   

 

 

Table 5.2  

Aitcheson and Forrest (1994) AFC equations derived from DePaolo (1981) equations 

 

 

 

ρ = Ma/Mm°                     Crust/magma ratio in non-recharge situations 

Mm  Mass of magma remaining (including neutrally buoyant crystals) 

Mm°  Mass of original magma  

Ma   Mass of crust assimilated 

F = Mm / Mm°   Fraction of magma remaining in non-recharge situations 

r   (rate of assimilation of crust) / (rate of fractional crystallization) 

D (Kdxx)   Bulk distribution coefficient of the element 

Cm   Element concentration in the contaminated magma 

Ɛm   Isotopic ratio in the contaminated magma 

Ca   Element concentration in wall-rock melt 

Ɛa   Isotopic ratio in the wall-rock melt 

Cm°   Element concentration in the original magma 

Ɛm°   Isotopic ratio in the original magma 

λ = (Ɛm°- Ɛm) / (Ɛm- Ɛa) 

γ = Ca / Cm°    
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An AFC without magma recharge model is used to solve for the crust/magma 

ratio (ρ), which is the mass of the crustal end-member over the mass of the mafic end-  

member.  This can be expressed in terms of the fraction of magma remaining (F), and 

the rate of assimilation of the crust over the rate of fractional crystallization (r) (see 

Table 5.2).  The resulting three equations (5, 6 and 7) by Aitcheson and Forrest (1994) 

are used to evaluate the two end-member compositions, crust-to-mantle mixing ratio, 

and percent fractionation for both pre- and post-12 Ma Los Frailes ignimbrite 

compositions (see Table 5.3).  The equations are calculated in parallel for both the Sr 

and Nd isotopic systems while holding ρ and r equal in both sets of equations and F 

within a range of 0.2-0.6.  This method produces only models which are valid for both 

element systems.  δ
18

O values are used to constrain the value of ρ which is held near 

0.5 (50:50 crust to mafic inputs) in keeping with the end-member controls discussed 

above.  As plagioclase incorporates Sr
2+

, its presence or absence is the largest control 

on bulk KdSr values, which are set using the anticipated stability of plagioclase at 

varying depths.  KdNd values are harder to constrain as in addition to the relatively 

predictable pyroxene and amphibole phases, Nd
3+

 can be preferentially incorporated 

into several accessory minerals with extreme KdNd values and variable stability such as 

apatite, zircon, rutile and titanite (sphene) (Luhr and Carmichael, 1980; Fujimaki, 

1986). 

 In the method of Kay et al. (2010), the procedure used to solve the equations is 

to first use equation 5 to calculate a minimum value for r without a constraint on F, 

which along with the contaminated magma concentration (Cm) is not used in the 

equation.  Based on the extremely steep REE patterns and very high Sr content of the 

Los Frailes Complex, a KdSr near 0.10 and KdNd near 0.25 are used to represent 

conditions in the lower crust, where garnet is stable but plagioclase is not and where 

most melting and assimilation of crust occurs (e.g., Bea et al., 1994; Dunn and Sen, 
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1994; Hauri et al., 1994; Ort et al., 1996).  As the Sr and Nd isotopically evolved 

signature is attributed to crustal end-member contamination of a depleted mafic end-

member from the mantle, the enrichment must take place prior to or during the 

differentiation, which elevates Sr and Nd concentrations.  The elevation of Sr 

concentration is doubtful at shallower crustal levels where Sr incorporating 

plagioclase is a fractionating phase and so the majority of crustal assimilation and the 

resulting isotopic enrichment of the mixture is limited to the lower crust (Aitcheson 

and Forrest, 1994).  Crustal assimilation prior to the onset of plagioclase fractionation 

is supported by flat 
87

Sr/
86

Sr ratios versus SiO2 and Sr ppm trends (Figures 3.22a and 

3.22b), as they show that 
87

Sr/
86

Sr ratios are not altered during plagioclase driven 

fractionation.  This type of pattern is also seen and interpreted similarly in the APVC 

(e.g., Kay et al., 2010) and elsewhere (e.g., Aitcheson and Forest, 1994).  However, it 

should be noted that the higher Sr concentrations in the Los Frailes ignimbrites would 

make the effects of continued crustal assimilation on the 
87

Sr/
86

Sr ratio values harder 

to detect. 

Using the r value (0.50-0.63) determined by equation 5, equation 6 is then used 

to find the value of F.  The values of KdSr and KdNd are adjusted, and the equation now 

includes elemental concentration in the contaminated magma (Cm) and is dominated 

by the elemental concentration values and excludes the isotopic ratios (Ɛa, Ɛm and Ɛm°).  

Here, KdSr = 0.50-0.70 and KdNd = 0.70-0.80 are used to represent conditions in the 

middle crust where plagioclase is stable and fractionation is occurring (Dunn and Sen, 

1994; Hauri et al. 1994; Shimizu, 1980). This is appropriate considering the 

moderately negative Eu anomalies (Eu/Eu*= 0.60-0.90) in the Los Frailes ignimbrites.  

Here the benefit of having multiple isotopic systems to constrain the model becomes 

obvious.  Using only one system, such as Sr in Kay et al. (2010), a wide range of F 
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values can be produced (0.20-0.80) by simply raising or lowering the KdSr value 

within a relatively narrow window of reasonable values (~0.5-1.0).   

With the additional constraint of the Nd system to consider, the permissible 

range of F values that satisfy both systems is reduced, even with the less certain KdNd 

values.  As equation 6 is largely controlled by the elemental concentration values (Ca, 

Cm, and Cm°), the high Sr concentrations in the Los Frailes Complex ignimbrites cause 

the KdSr in equation 6 and 7 to decrease and the F to increase relative to solutions 

found by Kay et al. (2010) using the same AFC equations for the APVC volcanoes 

which have slightly higher 
87

Sr/
86

Sr ratios (see Table 1.2).  The reduced KdSr values 

represent a lower affinity of the fractionating phases for Sr, and therefore could signal 

a lessor role for plagioclase in the fractionating region as compared to the APVC and 

Puna systems.  In addition, lower KdSr values in equation 6 are complemented by 

increased F values, which imply a smaller fraction of absolute mass removal from the 

magma at the middle crustal level.  A reduction in plagioclase removal does not 

appear to be supported, however, by the Los Frailes Complex Eu/Eu* ratios compared 

to the peraluminous APVC centers (Figure 3.11).   

An alternate explanation for the KdSr discrepancy is that the calculated KdSr 

values for equation 6 are too low due to the accompanying mafic end-member Sr 

concentration having been set too low.  Solution 4 (see Table 5.3) for each system has 

higher Sr concentration for the mafic end-member, which raises the corresponding 

KdSr to 0.7.  This KdSr value is commensurate with the APVC ignimbrite models, but 

requires an accompanying increase in crustal end-member Sr concentration or 

87
Sr/

86
Sr ratios to maintain the isotopic balance.  Assuming metapelitic crustal 

assimilates, an increased crustal 
87

Sr/
86

Sr ratio is favored over an increased crustal Sr 

concentration if evidence for a mafic end-member enriched in Sr concentration 

becomes persuasive and balancing becomes necessary.  Both of these modifications 
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Table 5.3 

AFC models using 
87

Sr/
86

Sr, Sr ppm, 
143

Nd/
144

Nd, Nd ppm and δ
18

O 
 Whole 

rock 

Whole 

rock 

Whole 

rock 

Whole 

rock 

 

Calculated 

 Aitcheson and Forrest  

(1994) equations 

Ignimbrite 87Sr/ 
86Sr 

Sr 

ppm 

143Nd/ 
144Nd 

Nd 

ppm 

Magma 

δ18O‰ 

Calculated 

values 

 

Eqn 5 

 

Eqn 6 

 

Eqn 7 

Kari Kari 0.7105 450 0.51226 57 +10.4-10.7     

Mafic 1 0.7040 500 0.51280 30 +5.8     

Crust 1 0.7350 130 0.51190 35 +14.8-15.3 Sr bulk D 0.10 0.66 0.575 

      Nd bulk D 0.25 0.75 0.56 

      % crust = 47 47 47 

      r = 0.5 0.5 0.5 

      F = - 0.36-0.41 0.30-0.39 

Mafic 2 0.7040 550 0.51280 30 +5.8     

Crust 2 0.7400 100 0.51190 35 +14.5-15.0 Sr bulk D 0.10 0.60 0.54 

      Nd bulk D 0.20 0.65 0.50 

      % crust = 50 50 50 

      r = 0.60 0.60 0.60 

      F = - 0.50-0.51 0.46-0.48 

Mafic 3 0.7040 800 0.51280 30 +5.8     

Crust 3 0.7500 128 0.51190 40 +14.7-15.2 Sr bulk D 0.10 0.77 0.70 

      Nd bulk D 0.20 0.69 0.52 

      % crust 48 48 48 

      r = 0.60 0.60 0.60 

      F = - 0.54-0.57 0.50-0.57 

Mafic 4 0.7040 900 0.51280 30 +5.8     

Crust 4 0.7400 160 0.51190 30 +14.5-15.0 Sr bulk D 0.10 0.70 0.59 

      Nd bulk D 0.20 0.75 0.53 

      % crust 50 50 50 

      r = 0.50 0.50 0.50 

      F = - 0.32-0.37 0.23-0.33 

Frailes 0.7115 550 0.512175 45 +9.4-10.2     

Mafic 1 0.7055 500 0.51260 25 +5.8     

Crust 1 0.7300 130 0.51190 25 +13.0-14.6 Sr bulk D 0.10 0.564 0.492 

      Nd bulk D 0.23 0.59 0.46 

      % crust 51 51 51   

      r = 0.55 0.55 0.55 

      F = - 0.34-0.40 0.29-0.38 

Mafic 2 0.7055 500 0.51260 25 +5.8     

Crust 2 0.7400 115 0.51190 35 +14.0-16.0 Sr bulk D 0.10 0.485 0.446 

      Nd bulk D 0.29 0.53 0.445 

      % crust 46 46 46 

      r = 0.60 0.60 0.60 

      F = - 0.52-0.56 0.49-0.55 

Mafic 3 0.7055 650 0.51260 25 +5.8     

Crust 3 0.7500 95 0.51190 30 +13.1-14.7 Sr bulk D 0.07 0.45  0.50 

      Nd bulk D 0.24 0.49 0.41 

      % crust 50 50 50 

      r = 0.63 0.63 0.63 

      F = - 0.51-0.57 0.48-0.57 

Mafic 4 0.7055 950 0.51260 30 +5.8     

Crust 4 0.7400 160 0.51190 32 +13.1-14.7 Sr bulk D 0.11 0.70  0.60 

      Nd bulk D 0.22 0.74 0.53 

      % crust 50 50 50 

      r = 0.51 0.51 0.51 

      F = - 0.35-0.38 0.27-0.35 
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come with problematic ramifications for the Rb concentration and Sr/Rb ratio 

discussed below.  As such, an explanation of a slightly lower KdSr reflecting decreased 

plagioclase fractionation remains viable as well as preferable based on the AFC 

models.  However, no clear cause for reduced plagioclase fractionation is known and 

Eu/Eu* inconsistencies may still be explained by differences in fO2 and water 

pressure. 

With the value of F now established (0.23-0.57) by equation 6 and using the r 

value set by equation 5, equation 7 is used to determine another set of KdSr, KdNd and 

F values.  These KdSr and KdNd values are intermediate between those used in 

equations 5 and 6 and represent an average if assimilation and fractionation had  

occurred continuously throughout the crust rather than the more bimodal system of 

assimilation dominating in the lower crust followed by fractionation dominating in the 

mid-crust represented by equations 5 and 6.  Based upon the flat 
87

Sr/
86

Sr ratios versus 

Sr ppm and 
87

Sr/
86

Sr ratios versus SiO2, continuous assimilation is not an appreciable 

factor in the character of the Los Frailes Complex ignimbrites, and therefore the 

solutions from equation 7 are not considered representative here.  

Table 5.3 contains a selection of the best fitting AFC model results for both the 

Kari Kari and Los Frailes ignimbrites.  These selections show non-unique solutions to 

equations 5, 6 and 7 for the given mafic and crustal end-members and list the values 

used for each variable.  The Kari Kari and Los Frailes ignimbrite models show very 

similar crustal end-member results which indicate that melting and assimilation of the 

lower crust occurred in a region with parameters of 
87

Sr/
86

Sr = 0.7030-0.7500, 95-160 

ppm Sr, 
143

Nd/
144

Nd = 0.51190 (ƐNd = -14.40), 25-40 ppm Nd and δ
18

O = +13.0 to 

+16.0‰.  These values are consistent with the published metapelitic values stated 

above and can be produced though radiogenic isotope calculations.  As the southern 

Altiplano plateau basement considered to have a thick Lower Paleozoic (Ordovician to 
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Devonian) sequence of Archean derived sediments deposited on the western margin of 

the Brazilian Shield (Schneider, 1985; Caffe et al., 2002; Lucassen et al., 2007), a 500 

Ma age is used for the metapelite and 2700 Ma is used as the mean age for the 

Brazilian Shield cratonic crust from which it was likely derived (Cordani et al., 1988; 

Cordani and Sato, 1999; Sail et al., 1999).  The Rb concentration at deposition is set at 

50-100 ppm Rb given a bulk Archean crustal composition of 30-50 ppm Rb and 200-

300 ppm Sr (Rudnick and Fountain 1995; Taylor and McLennan, 1995, 2009) and 

allowing for minor Rb concentration enrichment due to incorporation of non-Archean 

sediments during deposition with an expected pelitic Rb/Sr ratio of 0.5-1.0 (Miller, 

1985).  This range of Rb concentrations combined with a 100 ppm Sr, as calculated by 

the AFC models, produces a present day 
87

Sr/
86

Sr ratio of 0.7300 to 0.7400 which is 

consistent with the isotopic character of the AFC calculated crustal end-member using 

87
Rb→

87
Sr λ=1.396x10

-11
y

-1
 (Rotenberg et al., 2012) and bulk earth/solar system 

initial 
87

Sr/
86

Sr of 0.699 at 4.55 Ga (Papanastassiou et al., 1970).  Allowing for a 

greater absolute Rb concentration of 100-200 ppm Rb as documented in pelites 

(Miller, 1985) and the North American Shale Composite (NASC) (Condie, 1993), 

which may occur during alteration, the Rb/Sr ratio can reach as high as 2.0 and 

produce 
87

Sr/
86

Sr ratio values in excess of 0.7650.   

 The AFC model values calculated for the Los Frailes Complex broadly match 

the values found by Kay et al. (2010) using only the Sr system for the Coranzuli, 

Panizos and Vilama APVC volcanoes with the deviations in KdSr and F discussed 

above.  The lower KdSr (0.45-0.564) and higher F values (0.33-0.57) in the main Los 

Frailes ignimbrite are explained by its high 550 ppm Sr as compared to Kari Kari at 

450 ppm Sr and the APVC values of 280-340 ppm Sr (Kay et al., 2010).  Caffe et al. 

(2002) reported a calculated KdSr as low as 0.57 for a northern Puna peraluminous  
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Figure 5.1 

 

Plots of (a) Sr ppm versus 
87

Sr/
86

Sr ratios and (b) δ
18

Omagma in ‰ versus 
87

Sr/
86

Sr 

ratios for representative measured values of the Kari Kari (brown circle) and Los 

Frailes (red circle) ignimbrites.  The modeled values from Table 5.3 (brown and red 

diamonds) with proposed metapelite crustal contaminant field (solid black line) are 

also depicted.  Comparative Puna ignimbrites (colored-coded circles) and possible 

crustal end-member fields (dashed color-coded fields): Vilama and Panizos (blue); 

Coranzuli (purple) and Cerro Galán (green) as proposed by Kay et al. (2010, 2011).  

Labels with letters and numbers by the diamonds indicate the modeled ignimbrite 

(KK- Kari Kari, LF– Los Frailes) and the crustal percentage from Table 5.3, which 

were determined using the AFC equations of Aitcheson and Forrest (1994) following 

the procedure discussed in the text at the Sr concentrations and 
87

Sr/
86

Sr ratios plotted 

in (a).  Where there is more than one label next to a diamond the single diamond 

represents multiple solutions for independent AFC models for both KK and LF.  The 

mantle-derived end-member magma used for the modeling is given an 
87

Sr/
86

Sr ratio = 

0.7040-0.7055, Sr ppm = 500-950 and δ
18

O = 5.8‰.  Modeled δ
18

Omagma values 

plotted in (b) were calculated from the fractionation corrected δ
18

Oquartz values (Table 

3.4) at the percentage of crustal contaminant (number in label) listed in Table 5.3. 
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Figure 5.2 

 

Plots of (a) Sr ppm versus 
87

Sr/
86

Sr ratios and (b) δ
18

Omagma in ‰ versus 
87

Sr/
86

Sr 

ratios with AFC curves for various Los Frailes ignimbrite crustal end-member 

compositions using the equations of Aitcheson and Forrest (1994).  (a) Curves 

represent equal percent of crustal end-member contribution to the resulting Los Frailes 

ignimbrite with the tick marks showing variable Sr ppm in the crustal end-member. (b) 

Curves represent equal Sr ppm with the tick marks showing varied % of crustal end-

member contribution to the ignimbrite.  The modeled values use a mantle-derived end-

member containing δ
18

O = +5.8‰, 
87

Sr/
86

Sr ratio = 0.7055 and Sr ppm = 500 (red 

curves) or Sr ppm = 950 (blue curves).  The Los Frailes ignimbrite values used are 

δ
18

O = +9.8‰, 
87

Sr/
86

Sr ratio = 0.7115 and Sr ppm = 550.  All models use r = 0.6, 

KdSr = 0.1 (Eqn 5), KdSr = 0.42 to 0.8 (Eqn 6), KdSr =  0.4 to 0.8 (Eqn 7) and F = 0.3 to 

0.7. 
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dacite with 543-686 ppm Sr, r = 0.6 and F = 0.5.  These are comparable to the Los 

Frailes ignimbrite values and indicate a similar need to lower the KdSr in order to 

produce the high Sr concentrations in the product magma.  The Kari Kari ignimbrite 

Sr concentrations are intermediate between those of the Los Frailes ignimbrite and 

APVC ignimbrites.  This results in intermediate values for KdSr which overlap the 

lower end of the APVC KdSr range.  The AFC model values reported for Cerro Galán 

by Kay et al. (2010, 2011) have even higher equation 6 middle crustal KdSr values of 

0.77 to 1.07, which accompany the lowest ignimbrite and highest crustal end-member 

Sr concentration as well as the lowest δ
18

O values discussed here. 

The Los Frailes Complex crustal end-member values stated above overlap the 

δ
18

O and Sr ppm versus 
87

Sr/
86

Sr ratio (see Figures 5.1 and 5.2) fields of crustal end-

members values for the Panizos and Vilama ignimbrites proposed by Kay et al. 

(2010).  Kay et al. (2010) used 48-52% crustal input and a peraluminous shale crustal 

end-member with 125-150 ppm Sr, 
87

Sr/
86

Sr = 0.745 to 0.7500 and δ
18

O = +12.5 to 

+14.8‰ to model those crustal end-members.  Given the similar isotopic and 

concentration values (except Sr concentration) of these ignimbrites with the Los 

Frailes Complex, the similarity in crustal end-member conclusion is not unexpected.  

The Los Frailes Complex crustal end-member values, like those of the Panizos and 

Vilama ignimbrites with 50-54% crustal input at 
87

Sr/
86

Sr = 0.730, can be solved using 

values which extend into the field of biotite gneiss (Kay et al., 2010) and which the 

Coranzuli crustal end-member solutions occupy.  Taking into account only Sr values, 

this appears to be a viable option for the Los Frailes Complex, but becomes less likely 

when considered with the reported low 
143

Nd/
144

Nd = 0.5115 (ƐNd = -22.20) and low 

δ
18

O = +7.5 to +12.6‰ for the 1.9 Ga aged northern Chilean Charcani gneiss 

basement rock (James, 1982; Martignole and Martelat, 2003).   
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Figure 5.3 shows AFC curves produced following the calculations of Taylor 

(1980) using the δ
18

O and 
87

Sr/
86

Sr ratio systems and overlaid on the four Los Frailes 

ignimbrite data points.  The best fit mantle-derived and crustal end-members generally 

agree with the expected ranges of δ
18

O, 
87

Sr/
86

Sr ratio and Sr ppm found using the 

equations of Aitcheson and Forrest (1994).  The KdSr (D) values here are similar to 

KdSr values found using equation 7 above and represent a system average if 

assimilation and fractionation had occurred continuously. 
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Figure 5.3 

 

Plot of δ
18

Omagma versus 
87

Sr/
86

Sr ratios with AFC curves for Los Frailes ignimbrites 

following Taylor (1980).  (a) Black solid curves show variation with changing 

solid/liquid partition coefficient (D), blue dashed lines are percent crustal end-member 

contribution to the resulting Los Frailes ignimbrite, red solid curves show equal Sr 

ppm concentrations in the resulting ignimbrite, and solid maroon dots are Los Frailes 

ignimbrite data points.  (b) Is a plot of the enlarged Los Frailes ignimbrite data field 

with labels showing the measured Sr ppm for each data point.  The D values here 

represent an average value for the system, which are roughly equal to those found 

using Aitcheson and Forrest (1994) equation 7 above.  The best fit model is shown 

with a mantle-derived end-member containing δ
18

O = +5.8‰, 
87

Sr/
86

Sr ratio = 0.7055 

and Sr ppm = 800.  The crustal end-member uses δ
18

O = +14.0‰, 
87

Sr/
86

Sr ratio = 

0.7650 and Sr ppm = 120.  Due to the high temperature thought to exist at the base of 

the thickened crust, R = 0.7 (mass ratio of material assimilated to material 

crystallized) is used. 

 

 

 

 

 

 

 

 

 

 



 

126 

 

 

 

 



 

127 

Magma Evolution and Ignimbrite Genesis Model 

As seen in Figure 5.4, a three tier magma evolution is proposed to explain the 

Los Frailes Complex geochemical data presented here in the context of existing 

geophysical and structural data and models of the Altiplano-Puna backarc region.  

Similar three tier models of magma evolution in the crust have been proposed by Kay 

et al. (2010) for the Cerro Galán ignimbrites, by Kay et al. (2011) for a general APVC 

ignimbrite model and by Keller (2010) for the Los Frailes Complex.  Figure 5.4 shows 

a current cross-section of the southern Altiplano crust and mantle over the steepening 

subducted Nazca plate at 19° to 20°S.  The thicknesses and locations of the crust, 

mantle-lithosphere and partial melt zones are based on the work of Myers et al. 

(1998), Polet et al. (2000), Yuan et al. (2000, 2002) and Beck and Zandt (2002).  The 

model for magma evolution at various crustal levels is based on the geochemical 

evidence. 

Reinitiation of magmatism at 19° to 20°S latitude may have been triggered at 

~25 Ma by the opening of the mantle wedge and inflow of hot asthenosphere.  These 

conditions occurred as the subducted Nazca plate steepened following the southward 

passage of the flat slab geometry (see Figure 1.4; James and Sacks, 1988).  At that 

time, the southern Altiplano crustal thickness is estimated to have been ~30-35 km 

(James and Sacks, 1988) with continuous contractional crustal thickening occurring 

throughout the Neogene (e.g., Gubbels et al., 1993; Husson and Sempere, 2003).  

Associated with this resumption of magmatism may have been the detachment of 

hydrated and weakened mantle lithosphere and possibly mafic lower crust (Hoke and 

Lamb, 2007).   
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The model proposes that basaltic magmas are produced by wet adiabatic 

decompression melting which takes place in the upwelling part of the mantle wedge.  

Based on the chemistry of the mafic lavas discussed above, these basaltic melts can 

include some contamination from a source or sources such as delaminated lithospheric 

material, subduction-erosion products, or subcontinental lithospheric mantle (SCLM) 

associated with the intrusion of the Brazilian Shield from the east (e.g., Isacks, 1988; 

Figure 5.4 

 
Model of the Los Frailes Complex magmatic system at 19° to 20°S with evolution at three 

crustal levels based on geochemical and geophysical evidence and the proposed models of 

Kay et al. (2010, 2011) and by Keller (2010).  Geophysical framework is from Myers et al. 

(1998), Polet et al. (2000), Yuan et al. (2000; 2002) and Beck and Zandt (2002).  The model 

depicts decompression mantle melting producing basaltic composition magmas that infiltrate 

the base of the crust.  An AFC zone is established with crustal melting which mixes with the 

basaltic magma.  The hybridized melts then rise and accumulate in a middle crustal mush zone 

near 15-20 km.   Fractionation continues in the partial melt zone before the melts are 

transferred to a transient upper crustal magma chamber near 4-8 km. Release from middle 

crustal partial melt zones could be associated with compressional deformation or in response 

to additional delamination produced melts from below.  See text for full description. 
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Polet et al., 2000; Beck and Zandt, 2002).  These enriched basaltic melts rise and 

collect near the Moho and intrude the crustal base where they establish an AFC zone.   

The AFC zone in the lower crust is the first tier and is the region in which 

mantle-derived mafic end-member magmas intrude, melt and assimilates the crust. 

The crustal thickness influences the depth of the AFC zone and the melted crust 

imparts a geochemical signature on the resulting hybrid magma.  This crustal signature 

is influenced by the minerals stable at the pressure where the hybridization occurs.  

The process of crustal thickening with potential deep crustal flow (Isacks, 1988; 

Husson and Sempere, 2003; Gerbault et al., 2005) transports and replenishes upper 

crustal pelitic material to the AFC zone depth.  A thick pelitic crust subjected to high 

pressure conditions in the AFC zone results in a metapelitic crustal end-member with a 

major assemblage of garnet + quartz + K-feldspar + melt along with minor kyanite + 

rutile ± plagioclase ± biotite ± ilmenite (Indares et al., 2008).  The large HREE affinity 

in garnet imparts the distinctive high Sm/Yb ratio in the rising hybridized melt which 

is best seen in Figures 3.5a and 4.1.   

The high pressure phases of rutile, and possibly low-Mg amphibole and/or 

ilmenite are also present in the AFC zone restite which fractionates Nb and Ta in the 

mafic to intermediate lavas (Goss and Kay, 2009).  This generates the Ba/Ta and 

La/Ta ratios in the magma which generally increase and decrease with the La/Sm and 

Sm/Yb ratios (see Figures 3.9a and 4.1).  The peraluminous nature of the Los Frailes 

Complex ignimbrites, seen in elevated Al/(K+Na+Ca) ratios, is imparted by the 

metapelitic crust which itself has raised Al/(K+Na+Ca) ratios (see Figure 3.1).  

Shoshonitic and S-type values are also transferred with the metapelitic melts which 

have elevated K2O and depressed Na2O values (see Figures 3.2 and 3.3).  Assimilation 

of crustal material is confined primarily to the AFC zone where the temperatures are 

high.  The majority of crustal assimilation takes place in these high temperature 
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regions at the base of the crust and results in magma batches with small 
87

Sr/
86

Sr ratio 

ranges which are depicted in Figures 3.22a and 3.22b.  The high pressure at the base of 

thickened crust suppresses plagioclase stability and reduces its role in determining 

differentiation trends.  This combined with low percentage melting of replenishing 

crust allows elevated Sr concentrations to develop in the melts.  The rising hybridized 

melts leave a garnet bearing restite assemblage in the lower crust which is 

gravitationally unstable and sets the stage for further delamination which can occur 

piecemeal or in irregular larger events. 

As the melts are removed from the AFC zone and rise, they cool and continue 

to fractionate, but no longer have the heat available for large volume assimilation of 

the country rock.  As pressure decreases in response to reduced depth, plagioclase 

stability and fractionation increases.  This causes the geochemical signatures of 

plagioclase fractionation in the melt to be superimposed on those of deeper AFC zone 

fractionation.  Plagioclase removal decreases the magma Sr concentration while 

increasing silica content leading to the SiO2 and Sr concentration variability seen in 

Figures 3.22a and 3.22b.  With adequately reducing conditions (low fO2), negative Eu 

anomalies develop as Eu
2+

 is incorporated and removed with the plagioclase (see 

Figure 3.11a).   

As the rising hybrid melts reach neutral buoyancy in the middle crust, they 

pool near 15-20 km forming a mush zone, which is inferred from seismic studies by 

Yuan et al. (2000) and Beck and Zandt (2002).  These partial melts continue to cool 

and fractionate with minimal assimilation of the middle or upper crust with 

temperatures near ~800°C.  Triggers such as regional contraction, structural changes 

or increased melt production from below, perhaps in response to larger delamination 

events, forces the low density melt from the mush zone which then moves upward into 

temporary upper crustal magma chambers near 4-8 km (Kay et al., 2010, 2011).  The 
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upper crustal magma chambers are the location of rapid heat loss and crystallization, 

which can include cordierite (Luedke et al., 1997; Keller, 2010), but little 

fractionation, resulting in high crystal content at eruption.  Following the partial 

evacuation of the upper crustal magma chambers, the remaining melt quickly cools 

and solidifies making the exhausted magma chamber hard or impossible to detect 

post-eruption.  
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CHAPTER 6 

CONCLUSIONS 

 

The age of the main Los Frailes ignimbrite is confidently established at 1.5-3.5 

Ma based on the two new 
40

Ar/
39

Ar sanidine ages and zircon age analysis.  These ages 

are similar to 
40

Ar/
39

Ar biotite ages in Barke et al. (2007) and represent a major 

readjustment of the previous age estimate of 5-8 Ma (Schneider, 1985).  The young 

age of the volumetrically dominant Los Frailes ignimbrite allows correlation of this 

large emplacement event with existing seismic anomalies at the same location.  The 

current low velocity (Vp and Vs) region in the mantle, interpreted as a gap in the 

mantle-lithosphere, below the Los Frailes Complex (Myers et al., 1998; Polet et al., 

2000; Beck and Zandt, 2002), is potentially related to the 1.5-3.5 Ma event, the effects 

of which are still ongoing.  This agrees with the 
3
He/

4
He emissions study of Hoke and 

Lamb (2007) which suggests recent mantle melting and crustal intrusion throughout 

the Altiplano region. 

Using new δ
18

OQuartz data and the AFC model equations of Aitcheson and 

Forrest (1994) which incorporate 
87

Sr/
86

Sr ratios, 
143

Nd/
144

Nd (ƐNd) ratios and 

concentration data, the crustal contribution to the magmas is assessed to be near 50% 

of the erupted ignimbrite volume.  This crustal input value is consistent with the 

values found by Kay et al. (2010, 2011) in the APVC ignimbrites and at Cerro Galán 

in the southern Puna and likely involves intrusion of mantle derived basaltic melts into 

the crust.  With an enriched mantle-end member having δ
18

O = +5.8‰, 
87

Sr/
86

Sr = 

0.7055, 500-950 ppm Sr, 
143

Nd/
144

Nd = 0.51260 (ƐNd = -0.74) and 25-30 ppm Nd 

based on mafic lava samples, the crustal end-member is calculated to contain δ
18

O = 

+13.0 to +16.0‰, 
87

Sr/
86

Sr = 0.7030 to 0.7500, 95-160 ppm Sr, 
143

Nd/
144

Nd = 0.51190 

(ƐNd = -14.4) and 25-40 ppm Nd.  The peraluminous character of the ignimbrites with 
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the associated isotopic values and trace element concentrations strongly suggest a 

metapelitic crustal source.   

Coherent temporal trends in La/Sm, Sm/Yb, La/Ta and Ba/Ta ratios track the 

effects of crustal thickening and episodic delamination at the depth of the Moho and 

resulting AFC zone location.  A general pattern of crustal thickening is inferred from 

steepening HREE ratios since 25 Ma which corresponds with the current models of 

Altiplano crustal thickening primarily in response to crustal shortening (e.g., Elger et 

al., 2005).  Breaking the trend of otherwise steady HREE ratio increase are two 

distinct ratio decreases which are proposed to correlate with two discrete delamination 

events.  With the loss of the lithosphere and basal crust, the AFC zone is argued to 

have decreased in depth to the bottom of the newly exposed lower crust.  These 

decreases occur at 10-12 Ma and 2-4 Ma prior to major eruptions of the Livicucho and 

Condor Nasa ignimbrites at 7-8 Ma and the main Los Frailes ignimbrite at 1.5-3.5 Ma.  

A 10-12 Ma delamination event is supported by a corresponding shift to the east of 

Altiplano brittle deformation after 10 Ma (e.g., Gubbels et al., 1993) and the isotopic 

enrichment in Los Frailes Complex volcanic rocks at 10-12 Ma demonstrated here.  

The enriched isotopic signature is thought to be a response to an increased radiogenic 

composition of the crust being exposed and assimilated.  A 2-4 Ma delamination is 

supported by temporal correlation with the emplacement of the large Los Frailes 

ignimbrite with the now established age of 1.5-3.5 Ma.    

A three tier magma evolution, in the style proposed by Kay et al. (2010, 2011) 

and Keller (2010), for the Los Frailes Complex is well supported by the geochemical 

and geophysical evidence.  Mantle melting produces basaltic magmas which may 

include some contamination by delaminated lithospheric material, subduction-erosion 

products, or SCLM which collect near the Moho and intrude the base of the crust.  

Crustal thickness variations influence the depth of the resulting AFC zone which 
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imparts geochemical signatures on the resulting hybrid magma through pressure-

dependent mineral phase stability and low percentage melting.  A metapelitic 

assemblage and garnet restite impart the distinctive HREE patterns and peraluminous 

character on the rising hybridized melt.  Assimilation of the crust is largely confined to 

the AFC zone in the hot lower crust where high pressure suppresses plagioclase 

stability and allows elevated Sr concentrations to develop.  The rising hybridized melts 

leave a gravitationally unstable restite which encourages further delamination.  As the 

melts rise, plagioclase stability and fractionation increases with reduced pressure 

leading to increased SiO2, decreased Sr concentration and negative Eu anomalies.  

Melts pool near 15-20 km and form a mush zone where cooling and fractionation 

continues at temperatures near ~800°C.  Regional contractions and structural changes 

or delamination driven melt production from below push the mush zone melts into 

temporary upper crustal magma chambers near 4-8 km.  Rapid heat loss and 

crystallization ensue resulting in high crystal content, including cordierite.  

Emplacement of the ignimbrites occurs from these shallow storage chambers which 

cool quickly and solidify after depletion. 
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APPENDIX A 

NEODYMIUM SEPARATION PROCEDURE 

 

The following procedures were developed to separate Nd cuts from previously 

collected REE fractions using Eichrom LN Resin 100-150 micron columns (ion 

exchange chromatography).  The procedures were adapted from the method reported 

by Pin et al. (1996) and outlined on the Eichrom website at 

(http://www.eichrom.com/products/info/LN_resin.cfm).  Column calibration 

procedures and times are as follows: 

1) If the column is new, drain by breaking off the bottom plastic plug and 

removing cap.  Collect to waste. (10 minutes) 

2) Condition Column:  Fill the reservoir (~3.5 ml) with 0.23N QD HCL and allow 

it to drain.  Collect to waste. (10 minutes) 

3) Repeat step one again. 

4) Load Sample:  Dissolve REE sample in 0.2 ml of 0.23N QD HCL using low 

heat on a hot plate for five minutes to aid dissolution.  Using pipette, place 0.2 

ml of dissolved sample in the top of the column.  Wait one minute. 

5) Collect Samples:  Add 1.0 ml of 0.23N QD HCL to the column reservoir.  

Collect in a labeled 45 ml beaker. (3 minutes) 

6) Repeat step four 14-23 more times. (45-75 minutes) 

7) Flush the column and store in a beaker following the directions below. 

8) Add 24 ml of 2% HNO3 to each 1.0 ml collected sample. 

9) Load samples and analyze in ICP-MS looking for counts of Ce140, Pr141, 

Nd144, Nd146, Sm147, and Sm149. 

10) Analysis:  The samples should show that Ce140 peaks at 8-9 ml (± 1) and 

Pr141 peaks at 11 ml (±1).  The Nd144 and Nd146 peaks should be at 13 ml (± 
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1).  The Sm147 and Sm149 may not show peaks, but should show increasing 

trends to the right or a peak at greater than 20 ml. 

Based on two calibration data sets, optimum collection of Nd was determined 

to be from 10 to 18 ml.  This was based on the desire to maximize Nd144 and Nd146 

collection while minimizing Ce140, Sm147 and Sm149.  Nd fraction separation 

procedures and times are as follows: 

1) Condition Column:  Fill the reservoir (~3.5 ml) with 0.23N QD HCL and allow 

it to drain.  Collect to waste. (10 minutes) 

2) Repeat step one again. 

3) Load Sample:  Dissolve REE sample in 0.2 ml of 0.23N QD HCL using low 

heat on a hot plate for five minutes to aid dissolution.  Using pipette, place 0.2 

ml of dissolved sample in the top of the column.  Wait one minute. 

4) Add 1.0 ml of 0.23N QD HCL to the column reservoir.  Collect in waste HCL 

beaker. (3 minutes) 

5) Add 9.0 ml of 0.23N QD HCL to the column reservoir (this will have to be 

done in three steps as the reservoir only holds about 3.5 ml).  Collect in waste 

HCL beaker. (30 minutes) 

6) Collect Sample:  Add 8.0 ml of 0.23N QD HCL to the column reservoir.  

Collect in a labeled beaker. (25 minutes) 

7) Flush Column:  Fill the reservoir (~3.5 ml) with 6.0N QD HCL.  Collect in 

waste HCL beaker. (10 minutes) 

8) Repeat step seven twice more. 

9) Fill the reservoir (~3.5 ml) with 0.23N QD HCL.  Collect in waste HCL 

beaker. (10 minutes) 
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10) Column Storage:  Fill the reservoir (~3.5 ml) with 0.23N QD HCL then replace 

the column cap.  The goal is to ensure that the white LN resin remains 

immersed in acid and does not dry out. 

11) Place the capped column in storage container (45 ml beaker) and fill with 

0.23N QD HCL to a level that submerges the white LN resin (about 25 ml). 

12) Documentation:  Document in order to track the number of uses of a particular 

column and to determine how many samples the column can be used before 

recalibration or disposal is required. 

13) The 8.0 ml sample should then be placed on a hot plate at low heat and allowed 

to dry. 
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APPENDIX B 

MAJOR AND TRACE ELEMENT DATA 

 

 

Major and trace element data for PT and PO series samples 

Center 

Sample 

Porco 

PT-1 

Porco 

PT-2 

Porco 

PT-3 

Kumurana 

PT-4 

Kari Kari 

PT-5 

SiO2 69.05 67.40 71.37 63.79 63.20 

TiO2 0.74 0.76 0.71 0.57 0.56 

Al2O3 16.43 16.21 16.08 18.50 18.85 

Fe2O3 3.39 3.07 3.19 4.33 4.05 

FeO 3.05 2.77 2.87 3.90 3.64 

MnO 0.02 0.02 0.02 0.06 0.05 

MgO 1.12 1.06 1.06 1.06 1.03 

CaO 1.94 1.64 2.43 3.45 3.67 

Na2O 2.64 2.72 2.97 2.72 2.89 

K2O 5.09 5.29 4.80 5.00 4.81 

P2O5 0.23 0.12 0.32 0.30 0.29 

LOI 1.36 1.28 1.14 1.15 0.77 

Total 101.67 99.28 103.76 100.48 99.77 

La 83.8 84.5 93.2 87.3 85.6 

Ce 164.4 158.6 165.7 170.6 173.1 

Pr - - - - - 

Nd 57.8 60.4 59.0 66.7 68.5 

Sm 9.6 9.3 10.2 12.3 12.6 

Eu 1.63 1.50 1.66 2.07 2.24 

Gd - - - - - 

Tb 0.79 0.45 0.68 1.28 1.08 

Dy - - - - - 

Ho - - - - - 

Er - - - - - 

Tm - - - - - 

Yb 1.09 0.84 0.96 2.76 2.63 

Lu 0.150 0.115 0.131 0.358 0.337 

Y 12 6 10 27 31 

Rb 232 248 236 223 222 

Sr 564 535 554 470 458 

Ba 1047 1154 1153 1015 1133 

Cs 11.6 13.1 21.2 18.5 12.3 

Pb - - - - - 

U 7.4 5.5 7.6 4.2 6.7 

Th 25.1 24.1 23.8 26.4 26.1 

Nb 24 25 23 38 39 

Ta 1.73 1.74 1.59 2.33 2.18 

Zr 258 266 253 293 410 

Hf 6.1 6.2 6.0 8.2 8.3 

Sc 5.2 5.3 4.9 7.3 7.6 

Cr 13 13 12 21 21 

Ni 3.0 4.3 - 4.8 8.2 

Co 5 5 5 6 24 
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Major and trace element data for PT and PO series samples 

Center 

Sample 

Condor Nasa 

PT-6 

Condor Nasa 

PT-7 

Los Frailes 

PT-8 

Los Frailes 

PT-9 

Los Frailes 

PT-9p 

SiO2 60.73 62.53 69.05 66.82 66.47 

TiO2 1.27 1.12 0.64 0.65 0.72 

Al2O3 17.69 16.75 16.35 15.85 16.17 

Fe2O3 5.60 5.25 3.03 2.98 3.26 

FeO 5.04 4.73 2.72 2.68 2.93 

MnO 0.05 0.02 0.04 0.04 0.08 

MgO 2.05 2.33 1.19 1.20 1.28 

CaO 4.32 2.98 2.70 2.60 2.55 

Na2O 2.43 2.94 2.81 2.71 2.66 

K2O 4.47 4.88 4.81 4.93 4.97 

P2O5 0.49 0.43 0.30 0.30 0.31 

LOI 0.88 1.47 0.49 0.90 1.22 

Total 99.43 100.17 101.11 98.66 99.36 

La 74.0 54.9 74.6 66.3 73.5 

Ce 150.5 108.6 152.7 136.3 154.8 

Pr - - - - - 

Nd 69.0 57.6 65.2 49.9 57.7 

Sm 12.6 10.7 11.5 9.7 10.7 

Eu 2.37 1.95 1.84 1.67 1.72 

Gd - - - - - 

Tb 1.08 0.96 0.83 0.78 0.78 

Dy - - - - - 

Ho - - - - - 

Er - - - - - 

Tm - - - - - 

Yb 2.08 1.84 1.42 1.41 1.53 

Lu 0.270 0.242 0.173 0.178 0.198 

Y 27 24 16 15 16 

Rb 174 184 170 215 225 

Sr 648 442 538 514 457 

Ba 1252 1067 1223 1118 1120 

Cs 9.0 6.6 2.7 7.6 8.5 

Pb - - - - - 

U 4.3 5.1 5.9 6.4 8.0 

Th 17.8 15.8 25.0 22.6 25.6 

Nb 32 29 20 21 22 

Ta 2.14 2.11 1.57 1.77 1.76 

Zr 332 312 248 247 261 

Hf 7.3 6.7 6.4 6.2 6.8 

Sc 22.3 11.7 6.5 6.3 7.1 

Cr 22 10 9 9 10 

Ni 14.8 7.6 6.7 5.2 4.9 

Co 8 8 3 3 4 
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Major and trace element data for PT and PO series samples 

Center 

Sample 

Los Frailes 

PT-10 

Los Frailes 

PT-11 

Los Frailes 

PT-11p 

Condor Nasa 

PT-12 

Livicucho 

PT-13 

SiO2 67.36 67.12 65.84 65.94 59.96 

TiO2 0.68 0.69 0.67 0.72 1.38 

Al2O3 15.36 15.94 15.83 16.54 18.04 

Fe2O3 3.34 3.31 3.10 3.2940 5.87 

FeO 3.01 2.98 2.79 2.96 5.28 

MnO 0.05 0.03 0.04 0.04 0.07 

MgO 1.28 1.28 1.48 1.38 2.42 

CaO 2.49 2.63 2.51 2.75 4.26 

Na2O 2.59 2.97 2.54 2.71 2.44 

K2O 4.91 5.04 4.82 4.83 4.32 

P2O5 0.33 0.34 0.30 0.34 0.43 

LOI 1.15 0.38 1.71 1.04 1.03 

Total 99.20 99.39 98.53 99.26 99.63 

La 67.8 65.0 73.1 75.3 65.9 

Ce 144.5 137.9 158.3 167.4 142.2 

Pr - - - - - 

Nd 62.0 55.5 62.2 65.0 62.4 

Sm 11.0 10.2 11.2 11.5 11.9 

Eu 1.52 1.83 1.83 1.99 2.55 

Gd - - - - - 

Tb - 0.93 0.92 0.89 1.22 

Dy - - - - - 

Ho - - - - - 

Er - - - - - 

Tm - - - - - 

Yb 1.50 1.38 1.40 1.44 2.01 

Lu 0.189 0.178 0.193 0.181 0.268 

Y 14 14 14 15 29 

Rb 236 226 238 211 206 

Sr 405 556 521 552 559 

Ba 842 1223 1035 1159 1318 

Cs 9.5 5.8 9.8 10.7 5.9 

Pb - - - - - 

U 9.4 8.3 10.3 8.1 7.2 

Th 23.6 22.3 25.5 26.7 17.8 

Nb 21 21 21 20 28 

Ta 1.81 1.61 1.71 1.83 2.18 

Zr 243 250 262 262 314 

Hf 6.4 6.7 6.7 6.9 7.5 

Sc 7.3 7.0 7.0 7.2 14.68 

Cr 10 10 10 10 21.1 

Ni 1.2 7.8 3.1 6.0 15.3 

Co 4 4 3 3 5 
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Major and trace element data for PT and PO series samples 

Center 

Sample 

Livicucho 

PT-14 

Condor Nasa 

PT-15 

Los Frailes 

PT-16 

Los Frailes 

PT-16p 

Condor Nasa 

PO-1 

SiO2 - 59.59 66.82 68.02 58.98 

TiO2  - 1.37 0.69 0.63 1.27 

Al2O3  - 18.14 16.07 15.23 18.39 

Fe2O3  - 5.74 3.25 3.05 - 

FeO 3.79 5.17 2.93 2.74 5.90 

MnO  - 0.05 0.04 0.03 0.08 

MgO  - 2.47 1.32 1.24 2.46 

CaO  - 4.42 2.63 1.95 4.00 

Na2O 3.91 2.17 2.82 3.84 1.69 

K2O  - 3.84 5.02 4.40 4.04 

P2O5  - 0.44 0.32 0.37 0.50 

LOI  - - - - 2.91 

Total 7.70 97.65 98.66 98.44 100.21 

La 90.2 70.9 66.6 94.9 80.1 

Ce 112.1 154.4 146.3 190.7 173 

Pr  - - - - - 

Nd 68.8 62.7 58.0 70.9 72.3 

Sm 13.4 11.6 10.5 12.8 13.2 

Eu 1.88 2.62 1.67 1.87 2.74 

Gd  - - - - - 

Tb 0.94 1.15 0.70 0.87 1.053 

Dy  - - - - - 

Ho  - - - - - 

Er  - - - - - 

Tm  - - - - - 

Yb 1.75 1.98 1.27 1.27 2.47 

Lu 0.217 0.255 0.16 0.158 0.308 

Y -  27 - - 28 

Rb  - 135 - - 233 

Sr 410 672 501 625 614 

Ba 1114 1269 1098 993 1140 

Cs 5.6 3.8 8.7 7.7 23.2 

Pb  - - - - - 

U 11.0 4.0 7.9 13.6 5.7 

Th 13.8 17.5 23.7 30.6 19.8 

Nb  - 34 - - 33 

Ta 1.56 2.10 1.66 3.06 2.34 

Zr  - 336 - - 342 

Hf 5.3 7.6 6.1 6.3 8.2 

Sc 11.2 13.8 6.7 5.5 13.9 

Cr 16 25 10 9 23 

Ni 8.2 13.0 - 2.7 8.0 

Co 5 10 3 2 8 
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Major and trace element data for PT and PO series samples 

Center 

Sample 

Condor Nasa 

PO-2 

Condor Nasa 

PO-3 

Condor Nasa 

PO-4 

Sevaruyo 

PO-5 

Sevaruyo* 

PO-6 

SiO2 60.29 61.11 62.82 71.97 65.76 

TiO2 1.30 1.30 1.01 0.34 0.78 

Al2O3 18.19 18.24 17.82 14.84 16.82 

Fe2O3 - - - - - 

FeO 5.30 5.40 3.19 1.92 3.41 

MnO 0.06 0.06 0.03 0.02 0.04 

MgO 2.43 2.36 1.26 0.64 1.12 

CaO 4.23 4.18 2.49 1.69 3.22 

Na2O 2.02 2.36 2.31 2.66 2.94 

K2O 4.37 4.50 5.75 4.82 4.93 

P2O5 0.51 0.51 0.45 0.21 0.39 

LOI 1.50 0.68 3.13 1.31 0.86 

Total 100.20 100.69 100.25 100.42 100.26 

La 74.9 75.0 65.2 38.7 67.9 

Ce 163 159 138 85 147 

Pr - - - - - 

Nd 65.4 67.6 59.9 32.8 59.9 

Sm 11.7 12.4 10.9 6.8 10.8 

Eu 2.77 2.67 2.22 1.04 2.07 

Gd - - - - - 

Tb 0.975 0.969 0.838 0.450 0.582 

Dy - - - - - 

Ho - - - - - 

Er - - - - - 

Tm - - - - - 

Yb 1.99 2.14 1.74 1.34 1.54 

Lu 0.259 0.273 0.221 0.174 0.187 

Y 27 23 17 10 15 

Rb 169 147 247 272 212 

Sr 644 649 438 272 475 

Ba 1160 1258 1102 761 1259 

Cs 7.8 5.5 11.1 9.5 12.4 

Pb - - - - - 

U 3.8 4.4 5.4 7.0 7.6 

Th 18.1 18.0 16.7 15.4 20.0 

Nb 33 30 29 14 20 

Ta 2.08 2.23 2.35 1.65 1.93 

Zr 358 254 227 140 221 

Hf 7.4 8.0 7.0 3.8 6.2 

Sc 13.8 14.1 9.5 4.8 7.2 

Cr 24 23 14 10 8 

Ni 18.0 18.9 11.2 4.4 6.2 

Co 8 9 3 3 5 

* Sample may be from Los Frailes ignimbrite (discussion at beginning of Chapter 3). 
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APPENDIX C 

STROTIUM AND NEODYNIUM ISOTOPIC DATA AND ERROR ANALYSES 

 

 

 

 

 

 

 

 

Grand Mean (After Rejection)

Sample Date 87/86n % Sd Err Total Accepted Total Run Notes

PT-1 1-Feb-12 0.71003 0.0005 142 150

PT-3 5-May-11 0.71017 0.0019 143 150

PT-3 23-Jan-12 0.71017 0.0006 210 225 1300 ppm Rb

PT-3 24-Jan-12 0.71017 0.0006 144 150

PT-4 23-Jan-12 0.71018 0.0007 143 150 7700 ppm Rb

PT-4 23-Jan-12 0.71018 0.0011 136 150 1100 ppm Rb

PT-4 23-Jan-12 0.71020 0.0010 138 150 500 ppm Rb

PT-4 24-Jan-12 0.71015 0.0011 172 180 Fractionated, some blocks with high Rb

PT-5 20-Jan-12 0.71043 0.0006 141 150

PT-7 5-May-11 0.71160 0.0006 146 150

PT-8 5-May-11 0.71149 0.0005 143 150

PT-8 26-Jan-12 0.71149 0.0006 143 150

PT-9 27-Jan-12 0.71156 0.0010 143 150 Fractionated, early blocks have high Rb

PT-9 8-Feb-12 0.71153 0.0032 149 150 8700 ppm Rb, high error

PT-9 19-Feb-12 0.71160 0.0008 137 150 1200 ppm Rb

PT-10 5-May-11 0.71136 0.0005 143 150

PT-11p 31-Jan-12 0.71141 0.0006 135 150

PT-12 31-Jan-12 0.71146 0.0014 136 150 High error

PT-12 7-Feb-12 0.71145 0.0009 158 165

PT-13 5-May-11 0.71267 0.0008 142 150

PT-14 23-Jan-12 0.71257 0.0005 144 150

PT-16 24-Jan-12 0.71155 0.0006 228 240 Early blocks are fractionated, but no effect on 87/86

PO-2 27-Jan-12 0.71140 0.0005 145 150

PO-5 2-Feb-12 0.71269 0.0004 362 375 2400 ppm Rb

PO-5 3-Feb-12 0.71267 0.0009 143 150 200 ppm Rb

N-987 5-May-11 0.71025 0.0012 144 150

N-987 5-May-11 0.71023 0.0014 144 150 High error

N-987 26-Jan-12 0.71025 0.0007 142 150

N-987 18-Feb-12 0.71025 0.0005 140 150 1000 ppm Rb

N-987 19-Feb-12 0.71024 0.0007 141 150

N-987 20-Feb-12 0.71025 0.0009 138 150
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Grand Mean (After Rejection)

Sample Date 143/144 Exp %SdErr Total Accepted Total Run

PT-1 6-Mar-12 0.512238 0.0017 142 150

PT-3 5-Mar-12 0.512254 0.0022 141 150

PT-4 2-Apr-12 0.512331 0.0013 214 225

PT-5 4-Apr-12 0.512296 0.0015 143 150

PT-8 30-Apr-12 0.512182 0.0015 216 225

PT-9 10-Apr-12 0.512208 0.0015 259 270

PT-11p 25-Feb-12 0.512208 0.0016 145 150

PT-12 28-Feb-12 0.512218 0.0023 130 135

PT-14 2-Apr-12 0.512199 0.0013 215 225

PT-16 5-Apr-12 0.512235 0.0019 145 150

PT-16 11-Apr-12 0.512214 0.0020 141 150

PT-16 12-Apr-12 0.512221 0.0017 145 150

PO-2 28-Feb-12 0.512204 0.0011 145 150

PO-5 29-Feb-12 0.512197 0.0020 115 120

PO-6 28-Feb-12 0.512236 0.0019 144 150

Ames STD 1 24-Feb-12 0.512187 0.0018 143 150

Ames STD 2 24-Feb-12 0.512157 0.0014 145 150

Ames STD 3 25-Feb-12 0.512194 0.0016 144 150

Ames STD 4 4-Mar-12 0.512165 0.0021 144 150

Ames STD 5 4-Mar-12 0.512171 0.0011 145 150

Ames STD 6 6-Mar-12 0.512153 0.0011 145 150

Ames STD 7 7-Mar-12 0.512183 0.0015 144 150

Ames STD 7 7-Mar-12 0.512147 0.0013 145 150

Ames STD 8 26-Mar-12 0.512170 0.0013 144 150

Ames STD 9 9-Apr-12 0.512203 0.0014 145 150

Ames STD 10 27-Apr-12 0.512162 0.0018 144 150

Ames STD 11 1-May-12 0.512141 0.0009 158 165

Ames STD 12 1-May-12 0.512137 0.0010 145 150
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APPENDIX D 

OXYGEN ISOTOPIC DATA AND ERROR ANALYSIS 

 

 

New laser line run #1 (2013) 

Jan 11th 2013 

sample wt. (g) P inlet mb/mg d33 d34 δ
17

O 
δ

17
O 

norm δ
18

O 
δ

18
O 

norm 

Mon gt 2.45 10.8 4.41 -2.91 -6.382 3.64 3.64 6.18 6.18 

Mon gt 2.03 8.3 4.09 -3.06 -6.410 3.49 3.49 6.15 6.15 

PO5 qz 3.03 17.5 5.78 0.03 -0.755 6.60 6.60 11.88 11.88 

PO6 qz 2.06 12.0 5.83 -0.32 -1.274 6.25 6.25 11.35 11.35 

PT16 qz 2.85 Grain jumped out 
     PT1 qz* 3.33 19.9 5.98 -0.35 -1.306 6.22 6.22 11.32 11.32 

PT12 qz 2.64 Grain jumped out 
     PT11P 

qz 2.83 16.7 5.90 -0.45 -1.545 6.12 6.12 11.08 11.08 

PT8 qz 2.86 Grain jumped out 
     PT9 qz 2.77 9.2 3.32 -1.37 -2.096 5.19 5.19 10.52 10.52 

Mon gt ave 6.16 
 Mon gt diff 0.78 
 Error (2 sigma) 0.02835 
  

 
 

         New laser line run #3 (2013) 

Jan 18th 2013 

sample wt. (g) P inlet mb/mg d33 d34 δ
17

O 
δ

17
O 

norm δ
18

O 
δ

18
O 

norm 

Mon gt 2.31 10.9 4.72 -3.12 -6.524 3.43 1.12 6.03 3.72 

Mon gt 2.35 11.0 4.68 -3.15 -6.446 3.40 1.09 6.11 3.80 

PT3 qz 2.39 5.9 2.47 -0.17 -1.230 6.40 4.09 11.39 9.08 

PT3 qz 3.19 19.5 6.11 -0.42 -1.268 6.15 3.84 11.36 9.05 

PT14 qz 3.58 20.6 5.75 -0.54 -1.498 6.03 3.72 11.12 8.81 

PT14 qz 3.19 18.9 5.92 -0.47 -1.230 6.10 3.79 11.39 9.08 

Mon gt ave 6.07 
 Mon gt diff 0.69 
 Error (2 sigma) 0.0790 
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APPENDIX E 

ZIRCON ISOTOPIC DATA AND ERROR ANALYSIS 

 

 

 

  

PT-8 
Fraction 

206Pb/238U 
a
 

±2σ 

abs 

207Pb/235U 
a
 

±2σ 

abs 

207Pb/ 

206Pb 
a
 

±2σ 

abs 

Corr. 

Coef. 

% 

disc 
b
 

Th/U 
c
 

Zircon (no CL)                 

z2 11.9 2.2 18.9 6.2 1037 510 0.655 98.85 0.8 

                    

PT-10 
Fraction 

206Pb/238U 
a
 

±2σ 

abs 

207Pb/235U 
a
 

±2σ 

abs 

207Pb/ 

206Pb 
a
 

±2σ 

abs 

Corr. 

Coef. 

% 

disc 
b
 

Th/U 
c
 

Zircon (no CL)                 

z3 12.054 0.013 12.28 0.14 57 26 0.596 78.85 0.15 

L 

zircon 

                  

L z2 2.220 0.11 3.6 1.7 1043 880 0.781 99.79 0.41 

L z4 1.868 0.035 2.15 0.55 330 540 0.783 99.43 0.21 

L z6 5.423 0.031 5.97 0.48 231 180 0.782 97.66 0.36 

                    

PT-15 
Fraction 

206Pb/238U 
a
 

±2σ 

abs 

207Pb/235U 
a
 

±2σ 

abs 

207Pb/ 

206Pb 
a
 

±2σ 

abs 

Corr. 

Coef. 

% 

disc 
b
 

Th/U 
c
 

Zircon (no CL)                 

z1 57.5 2.5 102 35 1337 630 0.78 95.7 0.34 

z2 419.82 0.67 423.9 6.6 446 40 0.725 5.84 0.77 

z3 8.52 0.13 10.1 2 410 420 0.781 97.92 0.13 

z4 7.89 0.59 14.9 9.1 1368 1100 0.78 99.42 0.58 

L 

zircon 

                  

L z2 7.095 0.097 7.7 1.5 214 430 0.78 96.69 0.28 

L z3 7.139 0.012 7.26 0.17 49 53 0.722 85.41 0.53 

L z5 598.91 0.44 681.8 2.9 966 11 0.631 37.99 0.46 

L z6 7.200 0.11 8.5 1.7 402 410 0.78 98.21 0.43 



 

147 

 
 

 

 

 

 

 

 

 

 

Pb* 

(pg) 
d

Pbc 

(pg) 
e

Pb*/

Pbc 
f

206Pb/

204Pb 
g

206Pb/

238U 
h

±2σ %

207Pb/

235U 
h

±2σ %

207Pb/

206Pb 
h

±2σ %

3.54 12.81 0 33 0.00184 19 0.188 33 0.074 25

Pb* 

(pg) 
d

Pbc 

(pg) 
e

Pb*/

Pbc 
f

206Pb/

204Pb 
g

206Pb/

238U 
h

±2σ %

207Pb/

235U 
h

±2σ %

207Pb/

206Pb 
h

±2σ %

40 4.71 8 579 0.001872 0.11 0.01217 1.2 0.04715 1.1

0.571 3.95 0 27 0.000344 4.9 0.0035 47 0.074 43

0.333 0.95 0 41 0.00029 1.9 0.00212 25 0.053 24

0.822 0.67 1 94 0.000842 0.57 0.00598 8.1 0.0508 7.6

Pb* 

(pg) 
d

Pbc 

(pg) 
e

Pb*/

Pbc 
f

206Pb/

204Pb 
g

206Pb/

238U 
h

±2σ %

207Pb/

235U 
h

±2σ %

207Pb/

206Pb 
h

±2σ %

6.37 39.32 0 28 0.00895 4.3 0.106 36 0.086 32

160 31.29 5 302 0.06729 0.17 0.5181 1.9 0.0558 1.8

5.39 12.9 0 46 0.001323 1.5 0.1 20 0.055 19

1.74 17.68 0 24 0.001225 7.5 0.0147 62 0.087 56

0.951 1.95 0 49 0.001101 1.4 0.0077 20 0.0504 18

3.79 0.8 5 299 0.001108 0.17 0.00718 2.3 0.047 2.2

46.6 3.79 12 750 0.097358 0.077 0.9571 0.58 0.0713 0.54

0.839 1.81 0 46 0.001118 1.5 0.0084 20 0.055 18

        A238 = 1.55125E-10 and A235 = 9.8485E-10 (Jaffey et al.1971).

b % discordance = 100 - (100 * (206Pb/238U date) / (207Pb/206Pb date)).

c Th contents calculated from radiogenic 208Pb and the 207Pb/206Pb date of the 

        sample, assuming concordance between  U-Th and  Pb systems. 

d  Total mass of radiogenic Pb.

e Total mass of common  Pb.

f  Ratio of radiogenic Pb (including 208Pb) to common  Pb.

g  Measured ratio corrected for fractionation and spike contribution only. 

h  Measured ratios corrected for fractionation, tracer and blank.

a  Isotopic dates calculated  using the decay constants 
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APPENDIX F 

MICROPROBE DATA AND ERROR ANALYSIS 

      

Standards used to produce daily correction values for each oxide 
Standard     A99     PX-1     LCP     JDF     KH     RG    

SiO2 50.94 53.94 51.25 50.81 40.38 76.72    

TiO2 4.06 0.26 0.05 1.86 4.72 0.13    

Al2O3 12.49 0.66 30.91 14.07 14.90 12.07    

FeO 13.32 2.93 0.46 11.83 10.93 1.24    

MnO 0.15 0.07 0.01 0.22 0.09 0.04    

MgO 5.08 16.93 0.14 6.72 12.81 0.00    

CaO 9.30 24.55 13.64 11.13 10.31 0.50    

Na2O 2.66 0.24 3.45 2.63 2.61 3.76    

K2O 0.82 0.00 0.18 0.19 2.05 4.89    

Total 98.82 99.58 100.09 99.46 98.80 99.35    

Smithsonian standards A-99 and Juan de Fuca glass (JDF) along with natural mineral standards Lake 

City plagioclase (LCP), PX-1 clinopyroxene, Kakanui hornblende (KH) and rhyolite glass (RG) were 

measured three times each at the beginning and end of each daily session.  The deviation from known 

values was then used to produce a daily correction value for each oxide.   

Plagioclase electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-4 

Porco 

1 core 

PT1-4 

Porco 

2 core 

PT1-4 

Porco 

3 core 

PT1-4 

Porco 

4 rim 

PT1-4 

Porco 

5 rim 

PT1-4 

Porco 

6 rim 

PT1-5 

Porco 

1 core 

PT1-5 

Porco 

2 core 

PT1-5 

Porco 

3 core 

SiO2 59.85 59.68 59.53 59.02 58.89 58.91 59.70 59.72 59.41 

TiO2 0.01 0.04 0.05 0.00 0.00 0.00 0.03 0.08 0.03 

Al2O3 24.89 24.79 25.21 25.88 25.31 25.27 25.18 25.52 25.22 

FeO 0.06 0.00 0.10 0.05 0.06 0.17 0.01 0.10 0.12 

MnO 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 

MgO 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

CaO 6.38 6.44 6.62 7.08 6.45 6.19 5.97 6.32 6.35 

Na2O 6.90 6.83 6.67 6.43 7.06 7.03 7.23 7.10 6.85 

K2O 0.83 0.81 0.77 0.72 0.85 0.82 0.81 0.77 0.77 

Total 98.95 98.60 98.96 99.20 98.61 98.40 98.94 99.62 98.78 

An (Ca) 32.29 32.29 34.04 36.17 31.63 30.93 29.90 31.25 32.63 

Ab (Na) 62.50 62.50 61.70 59.57 63.27 63.92 64.95 64.58 63.16 

Or (K) 5.21 5.21 4.26 4.26 5.10 5.15 5.15 4.17 4.21 

 
Sample 

Unit 

Core/Rim 

PT1-5 

Porco 

4 rim 

PT1-5 

Porco 

5 rim 

PT1-5 

Porco 

6 rim 

PT3-5 

Porco 

1 core 

PT3-5 

Porco 

2 core 

PT3-5 

Porco 

3 core 

PT3-5 

Porco 

4 rim 

PT3-5 

Porco 

5 rim 

PT3-5 

Porco 

6 rim 

SiO2 59.71 59.03 58.75 60.72 60.81 60.00 59.27 59.82 57.82 

TiO2 0.00 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.05 

Al2O3 24.62 25.82 25.18 24.78 25.39 27.47 24.29 25.64 27.54 

FeO 0.09 0.00 0.03 0.08 0.03 0.03 0.07 0.05 0.21 

MnO 0.02 0.02 0.00 0.03 0.05 0.00 0.00 0.03 0.00 

MgO 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 

CaO 5.91 6.90 6.73 5.52 6.49 6.38 6.25 6.65 8.74 

Na2O 7.22 6.75 6.92 7.09 6.76 6.68 7.04 6.83 5.84 

K2O 0.88 0.76 0.79 0.93 0.72 0.64 0.89 0.85 0.51 

Total 98.44 99.29 98.40 99.19 100.28 101.21 97.81 99.87 100.72 

An (Ca) 29.90 34.38 33.33 27.96 33.33 32.97 31.63 33.33 44.21 

Ab (Na) 64.95 61.46 61.62 66.67 62.37 62.64 63.27 61.46 52.63 

Or (K) 5.15 4.17 5.05 5.38 4.30 4.40 5.10 5.21 3.16 
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Plagioclase electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT3-5 

Porco 

7 core 

PT3-5 

Porco 

8 core 

PT3-5 

Porco 

9 core 

PT3-5 

Porco 

10 rim 

PT3-5 

Porco 

11 rim 

PT3-5 

Porco 

12 rim 

PT3-5 

Porco 

13 rim 

PT3-6 

Porco 

1 core 

PT3-6 

Porco 

2 core 

SiO2 61.66 61.49 61.17 61.22 61.44 61.33 61.19 61.09 60.61 

TiO2 0.01 0.00 0.01 0.02 0.00 0.00 0.03 0.00 0.07 

Al2O3 24.58 23.15 25.68 25.22 25.15 25.22 25.10 25.02 24.91 

FeO 0.00 0.14 0.06 0.00 0.13 0.03 0.10 0.02 0.03 

MnO 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 

MgO 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 5.93 4.35 6.60 6.54 6.38 6.41 6.42 6.45 6.51 

Na2O 7.38 7.97 7.07 7.23 7.27 7.31 7.05 7.34 7.18 

K2O 0.83 0.65 0.68 0.76 0.81 0.78 0.71 0.75 0.72 

Total 100.37 97.79 101.27 101.00 101.19 101.07 100.60 100.66 100.03 

An (Ca) 29.2 22.1 32.6 32.0 30.9 31.3 31.9 31.6 32.0 

Ab (Na) 65.6 73.7 63.2 63.9 63.9 64.6 63.8 64.3 63.9 

Or (K) 5.2 4.2 4.2 4.1 5.2 4.2 4.3 4.1 4.1 

 
Sample 

Unit 

Core/Rim 

PT3-6 

Porco 

3 rim 

PT3-6 

Porco 

4 rim 

PT3-6 

Porco 

5 rim 

PT11p-7 

Frailes 

1 core 

PT11p-7 

Frailes 

2 rim 

PT11p-7 

Frailes 

3 rim 

PT11p-6 

Frailes 

1 core 

PT11p-6 

Frailes 

2 rim 

SiO2 60.85 60.89 60.83 57.99 58.46 58.58 58.62 58.49 

TiO2 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 

Al2O3 25.04 25.07 25.12 26.70 27.52 27.28 27.30 26.47 

FeO 0.09 0.05 0.02 0.09 0.05 0.12 0.02 0.02 

MnO 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 

MgO 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

CaO 6.55 6.55 6.21 8.50 8.76 8.64 8.56 8.20 

Na2O 7.22 7.04 7.44 5.80 5.80 5.81 5.81 6.00 

K2O 0.74 0.77 0.76 0.60 0.53 0.52 0.57 0.62 

Total 100.54 100.39 100.39 99.68 101.13 100.96 100.89 99.86 

An (Ca) 32.0 32.3 30.6 43.62 43.62 43.62 43.62 41.05 

Ab (Na) 63.9 63.5 65.3 53.19 53.19 53.19 53.19 54.74 

Or (K) 4.1 4.2 4.1 3.19 3.19 3.19 3.19 4.21 

 
Sample 

Unit 

Core/Rim 

PT11p-6 

Frailes 

3 rim 

PT11p-6 

Frailes 

4 rim 

PT11p-6 

Frailes 

5 core 

PT11p-6 

Frailes 

6 core 

PT11p-6 

Frailes 

7 core 

PT11p-6 

Frailes 

8 core 

PT11p-6 

Frailes 

9 rim 

SiO2 57.85 58.93 58.36 58.38 58.77 58.06 58.52 

TiO2 0.02 0.00 0.00 0.02 0.01 0.03 0.00 

Al2O3 27.45 26.41 26.95 26.69 26.53 27.05 27.00 

FeO 0.09 0.10 0.08 0.12 0.14 0.13 0.09 

MnO 0.00 0.00 0.03 0.02 0.01 0.01 0.02 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

CaO 8.89 7.60 8.59 8.57 8.30 8.79 8.75 

Na2O 5.66 5.99 6.12 6.26 6.23 5.99 6.31 

K2O 0.55 0.68 0.54 0.56 0.58 0.55 0.53 

Total 100.49 99.71 100.68 100.62 100.57 100.60 101.21 

An (Ca) 44.68 39.13 42.3 41.8 41.2 43.3 42.4 

Ab (Na) 52.13 56.52 54.6 55.1 55.7 53.6 54.5 

Or (K) 3.19 4.35 3.1 3.1 3.1 3.1 3.0 
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Plagioclase electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT11p-6 

Frailes 

10 rim 

PT11p-6 

Frailes 

11 rim 

PT11p-6 

Frailes 

12 rim 

PT11p-6 

Frailes 

13 rim 

PT14-2 

Livic 

1 core 

PT14-2 

Livic 

2 core 

PT14-2 

Livic 

3 core 

PT14-2 

Livic 

4 rim 

SiO2 59.00 59.05 58.42 58.99 59.16 57.03 58.36 57.06 

TiO2 0.03 0.00 0.00 0.03 0.00 0.07 0.00 0.00 

Al2O3 26.81 26.52 26.63 25.95 26.15 27.79 26.32 27.61 

FeO 0.07 0.05 0.11 0.10 0.08 0.01 0.04 0.03 

MnO 0.00 0.02 0.03 0.00 0.03 0.00 0.00 0.03 

MgO 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 

CaO 8.11 8.05 8.23 7.50 7.63 9.40 7.50 8.80 

Na2O 6.46 6.41 6.41 6.92 6.72 5.87 6.68 6.05 

K2O 0.57 0.60 0.57 0.62 0.49 0.34 0.48 0.39 

Total 101.07 100.70 100.39 100.11 100.25 100.51 99.38 99.98 

An (Ca) 39.6 39.6 40.2 36.0 37.11 45.92 37.11 43.30 

Ab (Na) 57.3 57.3 56.7 60.0 59.79 52.04 59.79 54.64 

Or (K) 3.1 3.1 3.1 4.0 3.09 2.04 3.09 2.06 

 
Sample 

Unit 

Core/Rim 

PT14-2 

Livic 

5 rim 

PT14-2 

Livic 

6 core 

PT14-2 

Livic 

7 rim 

PT14-2 

Livic 

8 rim 

PT16-2 

Frailes 

1 core 

PT16-2 

Frailes 

2 rim 

PT16-2 

Frailes 

3 rim 

PT16-3 

Frailes 

1 core 

SiO2 58.64 56.79 57.15 58.17 57.82 58.95 59.02 55.43 

TiO2 0.00 0.00 0.04 0.03 0.00 0.00 0.01 0.00 

Al2O3 26.18 27.88 27.35 26.19 27.14 26.21 25.64 26.67 

FeO 0.01 0.14 0.03 0.07 0.02 0.04 0.13 0.09 

MnO 0.02 0.00 0.00 0.00 0.05 0.00 0.02 0.00 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 7.19 9.61 9.01 7.87 8.74 7.67 7.53 8.44 

Na2O 6.79 5.59 5.69 6.20 6.00 6.34 6.41 5.72 

K2O 0.52 0.45 0.50 0.65 0.49 0.64 0.62 0.47 

Total 99.36 100.45 99.77 99.18 100.25 99.86 99.38 96.82 

An (Ca) 36.08 47.42 45.26 39.58 43.30 38.54 37.50 43.75 

Ab (Na) 60.82 49.48 51.58 56.25 53.61 57.29 58.33 53.13 

Or (K) 3.09 3.09 3.16 4.17 3.09 4.17 4.17 3.13 

 

Sample 

Unit 

Core/Rim 

PT16-3 

Frailes 

2 rim 

PT16-3 

Frailes 

3 rim 

PT16-3 

Frailes 

4 rim 

PT16-3 

Frailes 

5 core 

PT16-3 

Frailes 

6 rim 

PT16-3 

Frailes 

7 core 

PT16-3 

Frailes 

8 core 

SiO2 56.95 55.79 54.76 52.01 54.16 58.01 57.60 

TiO2 0.02 0.00 0.00 0.01 0.02 0.02 0.00 

Al2O3 25.54 25.95 26.77 31.09 28.86 26.97 27.67 

FeO 0.03 0.03 0.05 0.09 0.12 0.00 0.05 

MnO 0.00 0.00 0.02 0.00 0.00 0.01 0.01 

MgO 0.00 0.00 0.00 0.02 0.04 0.00 0.00 

CaO 7.60 7.89 8.67 12.85 10.36 8.62 9.40 

Na2O 6.18 5.90 5.47 3.51 4.33 6.09 5.78 

K2O 0.56 0.51 0.43 0.20 0.30 0.51 0.44 

Total 96.88 96.07 96.16 99.79 98.19 100.22 100.95 

An (Ca) 39.58 41.05 45.26 65.96 56.04 42.3 45.9 

Ab (Na) 57.29 55.79 51.58 32.98 41.76 54.6 51.0 

Or (K) 3.13 3.16 3.16 1.06 2.20 3.1 3.1 
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Plagioclase electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT16-3 

Frailes 

9 core 

PT16-3 

Frailes 

10 core 

PT16-3 

Frailes 

11 core 

PT16-3 

Frailes 

12 core 

PT16-3 

Frailes 

13 core 

PT16-3 

Frailes 

14 core 

PT16-3.2 

Frailes 

1 core 

PT16-3.2 

Frailes 

2 rim 

SiO2 58.20 57.08 58.67 58.69 57.89 60.80 57.18 56.78 

TiO2 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 

Al2O3 27.07 27.94 27.20 26.79 27.18 25.49 26.61 26.89 

FeO 0.05 0.04 0.09 0.07 0.12 0.08 0.03 0.01 

MnO 0.02 0.01 0.00 0.01 0.00 0.00 0.01 0.03 

MgO 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 

CaO 8.73 9.65 8.60 8.54 8.96 6.72 8.13 8.69 

Na2O 6.06 5.58 6.04 5.92 5.92 6.88 6.15 5.79 

K2O 0.53 0.41 0.51 0.56 0.49 0.79 0.45 0.41 

Total 100.67 100.71 101.15 100.58 100.56 100.75 98.56 98.59 

An (Ca) 43.3 47.9 42.7 43.2 44.3 33.7 41.24 44.21 

Ab (Na) 53.6 50.0 54.2 53.7 52.6 62.1 55.67 53.68 

Or (K) 3.1 2.1 3.1 3.2 3.1 4.2 3.09 2.11 

 

Sample 

Unit 

Core/Rim 

PT16-3.2 

Frailes 

3 core 

PT16-3.2 

Frailes 

4 rim 

    

 

 

SiO2 54.38 54.94       

TiO2 0.06 0.00       

Al2O3 28.55 27.77       

FeO 0.05 0.08       

MnO 0.01 0.01       

MgO 0.00 0.00       

CaO 10.25 9.56       

Na2O 5.03 5.38       

K2O 0.31 0.34       

Total 98.64 98.08       

An (Ca) 51.55 48.45       

Ab (Na) 46.39 49.48       

Or (K) 2.06 2.06       

 

Biotite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-3 

Porco 

1 core 

PT1-3 

Porco 

2 core 

PT1-3 

Porco 

3 core 

PT1-3 

Porco 

4 rim 

PT1-3 

Porco 

5 rim 

PT1-3 

Porco 

6 rim 

PT1-6 

Porco 

1 core 

PT1-6 

Porco 

2 core 

PT1-6 

Porco 

3 core 

SiO2 35.58 35.70 35.67 36.46 36.07 36.20 35.93 35.76 35.88 

TiO2 4.37 4.53 4.42 4.42 4.64 4.47 4.14 4.49 4.41 

Al2O3 17.12 16.91 17.39 17.21 17.35 17.13 17.51 17.31 17.77 

FeO 20.88 20.50 20.87 20.75 21.05 20.44 19.98 20.78 21.32 

MnO 0.14 0.09 0.10 0.09 0.10 0.11 0.09 0.14 0.09 

MgO 9.83 9.99 9.76 9.44 9.67 9.40 9.33 9.39 9.75 

CaO 0.00 0.00 0.00 0.01 0.00 0.05 0.03 0.04 0.04 

Na2O 0.53 0.59 0.50 0.63 0.65 0.60 0.43 0.41 0.43 

K2O 8.81 8.86 8.62 8.62 8.64 8.55 8.45 8.62 8.85 

Total 97.25 97.17 97.33 97.62 98.18 96.94 95.88 96.94 98.54 
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Biotite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-6 

Porco 

4 rim 

PT1-6 

Porco 

5 rim 

PT3-4 

Porco 

1 core 

PT3-4 

Porco 

2 core 

PT3-4 

Porco 

3 core 

PT3-4 

Porco 

4 rim 

PT3-4 

Porco 

5 rim 

PT3-4 

Porco 

6 rim 

PT3-4 

Porco 

7 rim 

SiO2 36.40 36.17 35.83 35.51 36.05 36.06 35.61 36.43 36.31 

TiO2 4.39 4.41 4.18 4.06 4.38 4.13 4.83 4.24 4.58 

Al2O3 17.66 17.56 17.51 17.54 17.50 17.37 17.55 17.52 17.23 

FeO 19.70 19.79 21.83 21.63 21.78 20.66 21.75 20.22 18.53 

MnO 0.10 0.10 0.12 0.12 0.08 0.12 0.12 0.13 0.08 

MgO 9.21 9.05 9.59 9.71 9.80 11.03 9.74 10.73 11.42 

CaO 0.07 0.10 0.02 0.03 0.03 0.07 0.04 0.02 0.04 

Na2O 0.44 0.47 0.47 0.44 0.51 0.45 0.45 0.45 0.47 

K2O 8.38 8.35 8.94 8.47 8.89 8.57 8.53 8.92 8.93 

Total 96.34 96.00 98.51 97.52 99.00 98.47 98.63 98.66 97.60 

 
Sample 

Unit 

Core/Rim 

PT3-4.2 

Porco 

1 core 

PT3-4.2 

Porco 

2 core 

PT3-4.2 

Porco 

3 core 

PT3-4.2 

Porco  

4 rim 

PT3-4.2 

Porco  

5 rim 

PT3-4.2 

Porco  

6 rim 

PT3-5 

Porco 

1 core 

PT3-5 

Porco 

2 core 

PT3-5 

Porco 

3 core 

SiO2 36.25 35.84 35.85 36.19 34.86 35.41 35.79 36.41 36.13 

TiO2 4.26 4.14 4.28 4.10 4.14 4.14 4.35 4.44 4.30 

Al2O3 17.87 17.79 17.79 17.56 17.36 17.39 17.25 17.57 17.44 

FeO 21.67 22.47 22.24 21.55 23.12 24.51 22.13 21.49 22.31 

MnO 0.11 0.11 0.10 0.09 0.11 0.14 0.09 0.13 0.14 

MgO 9.80 9.74 9.85 9.64 10.13 9.18 9.70 9.83 9.82 

CaO 0.02 0.03 0.02 0.01 0.03 0.01 0.01 0.05 0.03 

Na2O 0.46 0.48 0.46 0.44 0.44 0.46 0.46 0.48 0.45 

K2O 9.01 8.72 8.73 8.78 8.59 8.56 8.94 8.99 8.66 

Total 99.45 99.31 99.33 98.37 98.78 99.80 98.71 99.38 99.27 

 
Sample 

Unit 

Core/Rim 

PT3-5 

Porco 

4 rim 

PT3-5 

Porco 

5 rim 

PT3-5 

Porco 

6 rim 

PT8-2 

Frailes 

1 rim 

PT8-2 

Frailes 

2 rim 

PT11p-1  

Frailes 

1 core 

PT11p-1 

Frailes 

2 rim 

PT11p-1 

Frailes 

3 rim 

SiO2 35.91 36.41 36.05 35.66 36.81 35.79 36.05 36.99 

TiO2 4.32 4.36 4.53 3.80 3.96 4.33 4.46 4.26 

Al2O3 17.54 17.68 17.61 18.02 18.59 17.64 17.62 17.85 

FeO 21.67 21.72 20.32 19.12 18.47 19.43 19.48 18.80 

MnO 0.11 0.11 0.12 0.09 0.13 0.13 0.14 0.12 

MgO 10.14 9.51 10.47 9.49 8.91 10.71 10.69 10.34 

CaO 0.09 0.00 0.04 0.08 0.09 0.01 0.03 0.00 

Na2O 0.44 0.44 0.44 0.25 0.32 0.34 0.31 0.30 

K2O 8.48 8.79 8.79 9.23 9.15 9.63 9.60 9.70 

Total 98.69 99.02 98.36 95.74 96.43 98.02 98.38 98.35 
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Biotite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT11p-5 

Frailes 

1 core 

PT11p-5 

Frailes 

2 rim 

PT11p-5 

Frailes 

3 rim 

PT11p-5.2  

Frailes 

1 core 

PT11p-5.2  

Frailes 

2 rim 

PT11p-5.2  

Frailes 

3 rim 

PT11p-7  

Frailes 

1 core 

PT11p-7 

Frailes 

2 rim 

SiO2 34.91 35.72 35.72 35.52 36.52 35.92 35.41 35.48 

TiO2 3.91 4.23 4.22 4.00 3.76 4.04 4.09 4.09 

Al2O3 17.14 17.20 17.46 17.31 17.92 17.23 17.29 17.49 

FeO 19.35 19.20 19.63 19.32 18.99 19.91 20.03 19.89 

MnO 0.14 0.17 0.16 0.18 0.14 0.18 0.15 0.18 

MgO 9.90 9.95 10.18 10.23 9.94 10.43 10.28 10.04 

CaO 0.06 0.06 0.06 0.03 0.12 0.05 0.01 0.05 

Na2O 0.32 0.26 0.27 0.31 0.30 0.33 0.33 0.31 

K2O 9.10 9.29 9.41 8.77 8.65 8.72 9.43 9.30 

Total 94.83 96.08 97.10 95.68 96.34 96.80 97.02 96.83 

 
Sample 

Unit 

Core/Rim 

PT11p-7 

Frailes 

3 rim 

PT11p-7 

Frailes 

4 core 

PT11p-7 

Frailes 

5 rim 

PT11p-7 

Frailes 

6 rim 

PT14-1 

Livicuc 

1 core 

PT14-1 

Livicuc 

2 core 

PT14-1 

Livicuc 

3 core 

PT14-1 

Livicuc 4 

core 

SiO2 35.77 35.41 35.48 35.77 33.74 33.40 21.30 30.01 

TiO2 4.04 4.09 4.09 4.04 4.61 4.63 2.97 3.96 

Al2O3 17.67 17.29 17.49 17.67 27.69 23.27 52.43 29.58 

FeO 20.12 20.03 19.89 20.12 15.73 17.65 9.95 16.46 

MnO 0.13 0.15 0.18 0.13 0.10 0.12 0.08 0.11 

MgO 10.06 10.28 10.04 10.06 9.25 9.80 5.98 8.09 

CaO 0.02 0.01 0.05 0.02 0.25 0.14 0.33 0.17 

Na2O 0.26 0.33 0.31 0.26 0.47 0.37 0.32 0.29 

K2O 9.37 9.43 9.30 9.37 7.40 7.73 4.47 7.57 

Total 97.46 97.02 96.83 97.46 99.24 97.12 97.82 96.24 

 
Sample 

Unit 

Core/Rim 

PT14-3 

Livicuc 

1 core 

PT14-3 

Livicuc 

2 rim 

PT14-4 

Livicuc 

3 rim 

PT14-4 

Livicuc 

1 core 

PT14-4 

Livicuc 

2 rim 

PT14-3 

Livicuc 

3 rim 

PT16-4 

Frailes 

1 core 

PT16-4 

Frailes 

2 rim 

PT16-4 

Frailes 

3 rim 

SiO2 35.85 36.21 35.15 35.79 36.17 35.83 35.36 35.47 35.14 

TiO2 4.06 4.05 4.17 4.21 3.95 4.17 3.46 3.53 3.61 

Al2O3 17.61 18.01 17.08 17.47 18.10 17.63 17.30 17.53 17.02 

FeO 18.53 18.15 18.71 19.34 19.07 20.35 17.72 16.79 17.07 

MnO 0.14 0.17 0.13 0.16 0.14 0.17 0.16 0.12 0.15 

MgO 10.05 9.78 9.81 10.16 10.14 10.58 10.05 9.50 9.78 

CaO 0.03 0.07 0.08 0.01 0.03 0.02 0.00 0.09 0.05 

Na2O 0.25 0.28 0.20 0.30 0.26 0.26 0.32 0.32 0.31 

K2O 8.69 8.90 8.76 8.88 8.99 9.00 8.64 8.29 8.64 

Total 95.21 95.63 94.09 96.31 96.86 98.02 93.01 91.64 91.77 
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Biotite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT16-5 

Frailes  

1 core 

PT16-5 

Frailes  

2 rim 

PT16-5 

Frailes  

3 rim 

PT16-5.2  

Frailes  

4 core 

PT16-5.2  

Frailes  

5 rim 

PT16-5.2  

Frailes  

6 rim 

 

 

SiO2 34.83 34.59 34.82 35.96 35.62 35.51   

TiO2 3.67 3.56 3.82 3.79 3.87 4.13   

Al2O3 17.59 17.56 17.79 17.05 16.89 16.75   

FeO 17.46 17.31 17.48 17.94 18.38 18.57   

MnO 0.17 0.12 0.16 0.13 0.15 0.11   

MgO 9.88 9.59 9.55 9.34 9.90 9.70   

CaO 0.04 0.05 0.09 0.05 0.03 0.01   

Na2O 0.25 0.31 0.32 0.30 0.36 0.29   

K2O 8.70 8.53 8.44 8.03 8.22 7.99   

Total 92.59 91.63 92.46 92.60 93.43 93.08   

 

Sanidine electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-1 

Porco 

1 core 

PT1-1 

Porco 

2 core 

PT1-1 

Porco 

3 rim 

PT1-1 

Porco 

4 core 

PT1-1 

Porco 

5 rim 

PT1-1 

Porco 

6 rim 

PT1-1 

Porco 

7 rim 

PT1-1 

Porco 

8 core 

PT1-1 

Porco 

9 core 

SiO2 63.78 62.73 62.64 63.78 62.32 62.59 62.97 66.13 66.14 

TiO2 0.00 0.03 0.05 0.00 0.03 0.05 0.04 0.00 0.00 

Al2O3 18.86 18.95 18.93 18.86 18.76 19.21 18.84 18.88 19.03 

FeO 0.00 0.09 0.11 0.00 0.10 0.00 0.08 0.04 0.07 

MnO 0.03 0.00 0.01 0.03 0.00 0.05 0.08 0.01 0.01 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.11 0.18 0.10 0.11 0.17 0.10 0.14 0.15 0.13 

Na2O 2.42 2.45 2.47 2.42 2.70 2.43 2.39 2.47 2.50 

K2O 12.56 12.67 12.58 12.56 12.25 12.75 12.71 12.31 12.25 

Total 97.76 97.10 96.89 97.76 96.33 97.19 97.24 100.00 100.12 

An (Ca) 1.02 1.01 0.00 1.02 1.00 1.00 1.01 1.06 1.06 

Ab (Na) 22.45 22.22 23.23 22.45 25.00 22.00 22.22 23.40 23.40 

Or (K) 76.53 76.77 76.77 76.53 74.00 77.00 76.77 75.53 75.53 

 
Sample 

Unit 

Core/Rim 

PT1-1 

Porco 

10 rim 

PT1-2 

Porco 

1 core 

PT1-2 

Porco 

2 core 

PT1-2 

Porco 

3 core 

PT1-2 

Porco 

4 rim 

PT1-2 

Porco 

5 rim 

PT1-2 

Porco 

6 rim 

PT1-4 

Porco 

1 core 

PT1-4 

Porco 

2 core 

SiO2 65.68 63.88 63.80 64.19 63.68 63.98 64.98 63.88 63.80 

TiO2 0.00 0.02 0.05 0.01 0.00 0.00 0.00 0.02 0.05 

Al2O3 19.14 19.26 19.10 18.80 18.77 18.74 19.45 19.26 19.10 

FeO 0.04 0.00 0.10 0.00 0.21 0.05 0.11 0.00 0.10 

MnO 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.11 0.18 0.19 0.12 0.06 0.19 0.10 0.18 0.19 

Na2O 2.48 2.35 2.41 2.31 2.56 2.41 2.50 2.35 2.41 

K2O 12.32 12.96 12.92 12.98 12.71 12.81 12.57 12.96 12.92 

Total 99.77 98.66 98.57 98.42 97.99 98.18 99.71 98.66 98.57 

An (Ca) 1.05 1.01 1.00 1.01 0.00 1.01 0.00 1.01 1.00 

Ab (Na) 23.16 21.21 22.00 21.21 23.23 22.22 23.16 21.21 22.00 

Or (K) 75.79 77.78 77.00 77.78 76.77 76.77 76.84 77.78 77.00 
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Sanidine electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-4 

Porco 

3 core 

PT1-4 

Porco 

4 rim 

PT1-4 

Porco 

5 rim 

PT1-4 

Porco 

6 core 

PT3-7 

Porco 

1 core 

PT3-7 

Porco 

2 core 

PT3-7 

Porco 

3 core 

PT3-7 

Porco 

4 rim 

PT3-7 

Porco 

5 rim 

SiO2 64.19 63.68 63.98 64.98 65.79 65.62 65.86 65.68 65.54 

TiO2 0.01 0.00 0.00 0.00 0.05 0.00 0.02 0.03 0.00 

Al2O3 18.80 18.77 18.74 19.45 19.22 19.06 19.43 19.30 19.39 

FeO 0.00 0.21 0.05 0.11 0.04 0.08 0.00 0.03 0.00 

MnO 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.12 0.06 0.19 0.10 0.17 0.17 0.21 0.22 0.21 

Na2O 2.31 2.56 2.41 2.50 2.32 2.28 2.34 2.24 2.22 

K2O 12.98 12.71 12.81 12.57 12.56 12.55 12.47 12.53 12.71 

Total 98.42 97.99 98.18 99.71 100.15 99.77 100.33 100.06 100.08 

An (Ca) 1.01 0.00 1.01 0.00 1.1 1.1 1.1 1.1 1.1 

Ab (Na) 21.21 23.23 22.22 23.16 21.3 21.3 22.3 21.3 21.1 

Or (K) 77.78 76.77 76.77 76.84 77.7 77.7 76.6 77.7 77.9 

 
Sample 

Unit 

Core/Rim 

PT3-7 

Porco 

6 rim 

PT11p-3 

Frailes 

1 core 

PT11p-3 

Frailes 

2 rim 

PT11p-3 

Frailes 

3 rim 

PT11p-5 

Frailes 

1 core 

PT11p-5 

Frailes 

2 rim 

PT11p-5 

Frailes 

3 rim 

PT14-2 

Livicu 

1 core 

SiO2 65.69 65.77 65.75 65.08 65.69 65.51 65.30 65.24 

TiO2 0.00 0.04 0.00 0.00 0.00 0.02 0.05 0.03 

Al2O3 19.25 19.39 19.10 19.20 19.26 18.96 19.01 18.82 

FeO 0.07 0.04 0.05 0.06 0.10 0.02 0.01 0.00 

MnO 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.00 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.22 0.14 0.09 0.14 0.15 0.14 0.15 0.12 

Na2O 2.21 1.83 1.85 1.93 1.80 2.04 1.88 2.00 

K2O 12.61 13.72 13.79 13.62 13.67 13.50 13.74 13.06 

Total 100.07 100.94 100.65 100.03 100.69 100.19 100.14 99.26 

An (Ca) 1.1 1.04 0.00 1.03 1.04 1.02 1.02 1.05 

Ab (Na) 20.4 16.67 16.67 17.53 16.67 18.37 17.35 18.95 

Or (K) 78.5 82.29 83.33 81.44 82.29 80.61 81.63 80.00 

 
Sample 

Unit 

Core/Rim 

PT14-2 

Livicu 

2 rim 

PT14-2 

Livicu 

3 rim 

PT14-3 

Livicu 

1 core 

PT14-3 

Livicu 

2 rim 

PT14-3 

Livicu 

3 rim 

PT16-1 

Frailes 

1 core 

PT16-1 

Frailes 

2 rim 

PT16-1 

Frailes 

3 core 

PT16-2 

Frailes 

1 core 

SiO2 65.07 65.24 64.16 64.57 65.09 65.30 64.85 63.71 63.13 

TiO2 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.03 

Al2O3 19.01 19.12 19.03 18.66 18.99 18.98 19.23 19.16 18.79 

FeO 0.07 0.05 0.03 0.00 0.02 0.01 0.04 0.10 0.04 

MnO 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.15 0.16 0.10 0.11 0.10 0.10 0.12 0.13 0.17 

Na2O 2.01 2.23 2.11 1.89 1.93 2.03 2.18 2.04 1.96 

K2O 12.82 12.64 12.98 13.13 13.20 13.18 13.07 12.78 12.28 

Total 99.13 99.44 98.41 98.38 99.35 99.61 99.49 97.96 96.41 

An (Ca) 1.06 1.05 1.03 1.04 1.05 1.04 1.03 1.05 1.08 

Ab (Na) 19.15 21.05 19.59 17.71 17.89 18.75 19.59 18.95 19.35 

Or (K) 79.79 77.89 79.38 81.25 81.05 80.21 79.38 80.00 79.57 
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Sanidine electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT16-2 

Frailes 

2 rim 

PT16-6 

Frailes 

1 core 

PT16-6 

Frailes 

2 rim 

  

 

 

 

 

SiO2 63.13 63.60 63.55       

TiO2 0.06 0.05 0.00       

Al2O3 18.58 18.91 18.91       

FeO 0.09 0.02 0.07       

MnO 0.00 0.04 0.00       

MgO 0.00 0.00 0.00       

CaO 0.19 0.12 0.14       

Na2O 2.01 1.95 2.02       

K2O 12.04 12.79 12.52       

Total 96.11 97.48 97.22       

An (Ca) 1.09 1.05 1.1       

Ab (Na) 19.57 18.95 19.1       

Or (K) 79.35 80.00 79.8       

 

Ilmenite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT1-1 

Porco 

1 core 

PT1-1 

Porco 

2 rim 

PT1-1 

Porco 

3 rim 

PT11p-1 

Frailes 

1 core 

PT11p-1 

Frailes 

2 rim 

PT11p-1 

Frailes 

3 core 

PT11p-1 

Frailes 

4 core 

PT11p-1 

Frailes 

5 core 

SiO2 0.14 0.19 0.20 0.01 0.06 0.05 0.04 0.01 

TiO2 56.37 57.27 56.24 36.08 35.70 36.05 35.87 35.73 

Al2O3 0.12 0.12 0.13 0.39 0.41 0.44 0.42 0.40 

FeO 37.26 34.58 35.03 62.78 61.86 61.87 62.23 63.32 

MnO 0.64 0.68 0.69 0.46 0.42 0.40 0.46 0.42 

MgO 0.41 0.63 0.38 0.76 0.78 0.70 0.73 0.71 

CaO 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 

Na2O 0.06 0.02 0.01 0.00 0.00 0.00 0.01 0.00 

K2O 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 

Total 95.00 93.52 92.71 100.48 99.24 99.51 99.75 100.60 

 
Sample 

Unit 

Core/Rim 

PT11p-1 

Frailes 

6 rim 

PT14-1 

Livcuc 

1 core 

PT14-1 

Livcuc 

2 core 

PT14-1 

Livcuc 

3 core 

PT16-1 

Frailes 

1 core 

PT16-1 

Frailes 

2 rim 

PT16-2 

Frailes 

1 core 

PT16-2 

Frailes 

2 rim 

SiO2 0.10 0.02 0.11 0.07 0.00 0.00 0.05 0.07 

TiO2 35.97 53.10 54.52 53.95 36.16 36.35 34.54 34.85 

Al2O3 0.42 0.44 0.69 0.41 0.41 0.45 0.47 0.40 

FeO 62.06 44.85 43.03 40.68 62.17 61.58 63.30 63.62 

MnO 0.39 0.61 0.55 1.23 0.61 0.63 0.47 0.52 

MgO 0.72 2.18 1.96 2.20 0.86 0.88 0.73 0.75 

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na2O 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 

K2O 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.01 

Total 99.69 101.20 100.87 98.53 100.21 99.93 99.55 100.23 
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Ilmenite electron microprobe analyses  
Sample 

Unit 

Core/Rim 

PT16-3 

Frailes 

1 core 

PT16-3 

Frailes 

2 core 

PT16-3 

Frailes 

3 rim 

PT16-3 

Frailes 

4 rim 

    

SiO2 0.02 0.03 0.00 0.00     

TiO2 35.64 35.58 35.74 35.72     

Al2O3 0.41 0.38 0.42 0.43     

FeO 62.72 62.51 63.11 62.31     

MnO 0.50 0.51 0.52 0.51     

MgO 0.75 0.71 0.77 0.77     

CaO 0.00 0.00 0.00 0.00     

Na2O 0.03 0.01 0.05 0.00     

K2O 0.00 0.00 0.00 0.00     

Total 100.06 99.72 100.61 99.74     
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APPENDIX G 

40
Ar-

39
Ar DATA AND ERROR ANALYSIS 

 

 

 

 

Sample: PT8

File Laser 
40

Ar
40

Ar ± 1σ40

39
Ar ±1σ39

38
Ar ± 1σ38

power (%) (moles) (Volts) (Volts) (Volts) (Volts) (Volts) (Volts)

BI7586 40 8.657E-16 0.146686 0.000198 0.204244 0.000254 0.002404 0.000066

BI7587 40 1.208E-15 0.204601 0.000245 0.216373 0.000275 0.002591 0.000030

BI7589 40 1.168E-15 0.197969 0.000229 0.251807 0.000324 0.002895 0.000057

BI7590 40 9.963E-16 0.168807 0.000347 0.187690 0.000203 0.002146 0.000045

BI7592 40 6.679E-16 0.113172 0.000181 0.149779 0.000242 0.001653 0.000061

BI7593 40 1.077E-15 0.182541 0.000163 0.221981 0.000242 0.002705 0.000050

BI7617 40 7.790E-16 0.131989 0.000482 0.175042 0.000349 0.002136 0.000076

BI7618 40 4.698E-16 0.079595 0.000457 0.093069 0.000255 0.001142 0.000034

BI7620 40 5.336E-16 0.090407 0.000536 0.125157 0.000315 0.001502 0.000066

BI7621 40 1.278E-15 0.216495 0.000481 0.258838 0.000331 0.002980 0.000045

BI7623 40 2.030E-15 0.343893 0.000523 0.484830 0.000500 0.005856 0.000068

BI7624 40 1.950E-15 0.330453 0.000540 0.429908 0.000484 0.005183 0.000115

Sample: PT11

BI7595 40 6.694E-16 0.113416 0.000285 0.134720 0.000429 0.001648 0.000049

BI7596 40 5.560E-16 0.094198 0.000295 0.114631 0.000260 0.001323 0.000060

BI7598 40 5.183E-16 0.087823 0.000299 0.103315 0.000229 0.001227 0.000036

BI7599 40 8.158E-16 0.138230 0.000344 0.140377 0.000262 0.000029

BI7601 40 6.591E-16 0.111681 0.000333 0.115571 0.000280 0.001224 0.000037

BI7602 40 6.559E-16 0.111128 0.000307 0.137439 0.000213 0.001634 0.000066

BI7626 40 9.627E-16 0.163109 0.000600 0.186625 0.000546 0.002271 0.000032

BI7627 40 7.208E-16 0.122133 0.000556 0.113543 0.000312 0.001354 0.000049

BI7629 40 8.453E-16 0.143228 0.000509 0.153628 0.000205 0.001886 0.000052

BI7630 40 8.192E-16 0.138799 0.000523 0.170087 0.000225 0.002072 0.000044

The values in this table represent blank, discrimination, and decay (
37

Ar and 
39

Ar) corrected values.

40
Ar/

36
Ar 295.5 ± 0.5 Steiger & Jäger (1977)

38
Ar/

36
Ar 0.1880 ± 0.0003 Nier (1950)

(
40

Ar/
39

Ar)K
(5.4 ± 1.4) x 10

-4
Jicha & Brown (2013)

(
38

Ar/
39

Ar)K
(1.210 ± 0.002) x 10

-2
Jicha & Brown (2013)

(
39

Ar/
37

Ar)Ca
(6.95 ± 0.09) x 10

-4
Renne et al. (2013)

(
38

Ar/
37

Ar)Ca
(1.96 ± 0.08) x 10

-5
Renne et al. (2013)

(
36

Ar/
37

Ar)Ca
(2.65 ± 0.022) x 10

-4
Renne et al. (2013)

Atmospheric argon ratios 

Interfering isotope production ratios
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37
Ar ± 1σ37

36
Ar ± 1σ36

%
40

Ar* 40
Ar*/

39
ArK ± 2σ Age ± 2σ K/Ca Comment

(Volts) (Volts) (Volts) (Volts) (ka) (ka)

0.011182 0.000349 0.000038 0.000010 92.93 0.667421 0.02926 1526 ± 67 7.85

0.003022 0.000225 0.000149 0.000010 78.60 0.743278 0.02710 1699 ± 62 30.79 xenocryst

0.003119 0.000175 0.000104 0.000010 84.47 0.664120 0.02284 1518 ± 52 34.71

0.002273 0.000192 0.000150 0.000010 73.77 0.663485 0.03066 1517 ± 70 35.51

0.001013 0.000155 0.000040 0.000010 89.51 0.676334 0.03891 1546 ± 89 63.58

0.003718 0.000210 0.000114 0.000010 81.69 0.671800 0.02650 1536 ± 61 25.67

0.002068 0.000162 0.000061 0.000008 86.29 0.650650 0.02917 1487 ± 67 36.40

0.000760 0.000160 0.000062 0.000009 76.90 0.657658 0.05581 1503 ± 128 52.69

0.001984 0.000162 0.000022 0.000008 92.94 0.671375 0.04036 1535 ± 92 27.12

0.001397 0.000171 0.000160 0.000009 78.14 0.653556 0.02090 1494 ± 48 79.66

0.003785 0.000216 0.000071 0.000009 93.88 0.665928 0.01107 1522 ± 25 55.07

0.004169 0.000164 0.000147 0.000009 86.85 0.667604 0.01224 1526 ± 28 44.34

MSWD = 0.32 weighted mean (11 of 12): 1520 ± 14

0.001224 0.000129 0.000038 0.000007 90.00 0.757714 0.03252 1547 ± 66 47.32

0.001186 0.000147 0.000022 0.000007 93.23 0.766089 0.03664 1564 ± 75 41.54

0.000820 0.000128 0.000036 0.000007 87.74 0.745813 0.04095 1523 ± 84 54.15

0.000838 0.000147 0.000113 0.000008 75.75 0.745936 0.03325 1523 ± 68 72.07

0.000653 0.000148 0.000092 0.000008 75.64 0.730979 0.03942 1493 ± 80 76.16

0.001712 0.000165 0.000032 0.000007 91.50 0.739869 0.03056 1511 ± 62 34.51

0.001265 0.000180 0.000083 0.000008 84.91 0.742117 0.02587 1515 ± 53 63.43

0.001042 0.000170 0.000125 0.000007 69.77 0.750511 0.03907 1533 ± 80 46.85

0.001496 0.000170 0.000102 0.000008 79.08 0.737300 0.03241 1506 ± 66 44.15

0.005160 0.000211 0.000042 0.000008 91.19 0.744205 0.02743 1520 ± 56 14.17

MSWD = 0.32 weighted mean (10 of 10): 1522 ± 21

l40Ar (0.580 ± 0.014) x 10
-10

 a
-1

Min et al. (2000)

lB- (4.884 ± 0.099) x 10
-10

 a
-1 Min et al. (2000)

39
Ar (2.58 ± 0.03) x 10

-3
 a

-1
Stoenner et al. (1965)

37
Ar (5.4300 ± 0.0063) x 10

-2
 a

-1
Renne & Norman (2001)

36
Cl lB (2.35 ± 0.02) x 10

-6
 a

-1
Endt (1998)

PT8 J-value: 0.0012492 ± 0.000001 (1σ) D/amu: 1.00720 (1σ)

PT11 J-value: 0.0011160 ± 0.000001 (1σ) D/amu: 1.00720 (1σ)

Decay constants 

± 0.00050

± 0.00050
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