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Flexible endoscopes for confocal and multiphoton imaging have the potential 

to revolutionize the medical field by obviating the need for invasive biopsies; 

however, these high expectations can be achieved only by reducing endoscope size 

and by improving image resolution.  In this dissertation, methods for enhancing the 

performance of current endoscopes are explored by studying the properties of multi-

core fibers using numerical modeling and experimental analysis.  Numerical 

simulation tools are based on the normal mode expansion of the fields, coupled mode 

theory, and the multipole method.   

Image fibers (multi-core step-index fibers commonly used in fiber endoscopes) 

have small, closely spaced cores that are predicted through basic theoretical analysis to 

be strongly coupled.  These image fibers are explained to successfully transmit images 

because of nonuniformities in their cross-section that reduce inter-core coupling.  The 

wavelength, average core size, and degree of variation in core size determine the 

strength of coupling between adjacent cores, such that fibers with smaller cores at 

longer wavelengths require more nonuniformity in order for reliable image 

transmission.  Guidelines are given for assessing the performance of image fibers in a 

particular system.  In addition, due to the random nature of this effect, strong core 



 

coupling can be observed experimentally, demonstrating that the quality of images 

from current endoscopes is still compromised by crosstalk. 

Multi-core photonic crystal fibers (PCFs) are a potential alternative for use in 

flexible endoscopes.  PCFs achieve tighter mode confinement than image fibers and 

are therefore predicted to allow higher core densities with less crosstalk and, 

ultimately, improved image contrast and resolution.  The fabrication of these fibers, 

however, typically introduces nonuniformities into the photonic crystal cladding.  

Random nonuniformities in the air hole size and location are shown to reduce the 

coupling length and the coupling efficiency.  When the air holes are large, variations 

in the lattice of less than 1% are sufficient to cause essentially independent core 

propagation.  Nonuniformities are also shown to increase the core birefringence 

although the dispersion and loss of PCFs are rather robust to variations. 

Understanding the characteristics of core coupling is a first step towards 

improving the design of current endoscopes. 
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Chapter 1  

INTRODUCTION 

Two revolutions in optical microscopy have occurred in the last century.  The 

first was the invention of the confocal microscope in 1955, which uses an aperture to 

block out-of-focus light from hitting the detector [1].  This advance in microscopy was 

made possible by the advent of laser scanning—a system where the laser focus is 

scanned over a sample and the image is collected pixel by pixel.  The signal to 

background ratio is drastically improved over standard wide-field imaging, increasing 

resolution and allowing for optical sectioning—when images are taken at different 

depths in the sample.  Image quality and penetration depth were also improved with 

the discovery of multiphoton imaging using pulsed lasers in 1990 [2].  Background 

signal is reduced and excitation is more localized because of the nonlinear nature of 

this process.  Both confocal and multiphoton microscopy have had an enormous 

impact on the medical research community by making it possible to image living cells 

and intact tissues. 

Flexible endoscopes utilize optical fibers to extend the sample stage of a 

standard microscope to an alternative location.  Confocal and multiphoton imaging 

through flexible endoscopes has the potential to transform the medical field by 
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obviating the need for invasive biopsies and by assisting in early diagnosis.  These 

types of endoscopes would allow for in vivo observation and measurement of internal 

tissue and organs through relatively noninvasive procedures.  Current fiber endoscopes 

typically contain either coherent fiber bundles or single-core fibers and are used to 

access areas of the body such as the gastrointestinal tract, the respiratory tract, and the 

female reproductive system.  The improvement of current endoscope systems may 

some day allow smaller more inaccessible regions such as veins or delicate brain 

tissue to be probed noninvasively. 

In endoscope systems with image fibers or coherent fiber bundles, the laser 

focus is scanned over the proximal end of the image fiber.  The output at the distal 

end, however, is no longer focused.  In order to focus the light to a spot smaller than 

the individual image fiber core and to control the depth of focus for performing optical 

sectioning, optics must be fused to the distal end of the fiber.  These components 

typically contain miniaturized lenses and focusing mechanisms that are bulky, rigid, 

and expensive.  In addition, the images taken using fiber bundles have an inherent 

pixilation due to the individual cores that transmit the information.  The resolution of 

the transmitted image is limited by the size and separation of these cores as well as by 

the degree of coupling between the cores.  

Single-core fiber endoscopes typically utilize a smaller diameter fiber; 

however, the functionality of the endoscope is still limited by the size of additional 

optics.  In order to perform laser scanning, the distal end of the fiber itself must be 

physically moved to image over a region of the sample.  In addition, distal focusing 

optics are again necessary for improving resolution and controlling the depth of focus.   

While current endoscopes have already lessened the need for certain invasive 

procedures, reducing the size, improving the image resolution, and increasing the 
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functionality would amplify their impact.  The research presented in this dissertation 

was motivated by these goals.  A completely new type of fiber, a multi-core photonic 

crystal fiber, was investigated for its potential to improve the laser scanning 

technology necessary for endoscopic confocal or multiphoton imaging.  Air-silica 

PCFs achieve tighter mode confinement than image fibers and are therefore predicted 

to allow higher core densities with less crosstalk and, as a result, improved image 

contrast and resolution.  The propagation and coupling properties of multi-core PCFs 

were explored with the intention of designing a high core density fiber with minimal 

core coupling.  A fiber of this type would facilite the removal of all optics from the 

distal end of the fiber while simultaneously maintaining image quality and laser 

scanning capabilities.  The size of the end probe would be greatly reduced, resulting in 

endoscopes no larger than the fiber diameter.  The fabrication of PCFs, however, 

typically introduces nonuniformities into the photonic crystal cladding.  The viability 

of endoscope designs utlizing photonic crystal fibers depends on a thorough 

understanding of these fibers, their unique properties, the factors that control inter-core 

coupling, and the implication of fabrication induced nonunformities these 

characteristics.   

In addition, the resolution of current fiber endoscopes containing image fibers 

can be improved through the production of fibers with smaller, closer pixels (ie. high 

core density).  High core density, however, increases crosstalk between pixels, thus 

resulting in blurred images, decreased contrast, and a lower signal to background ratio.  

Balancing the need for improved image quality with the degrading effects of crosstalk 

requires a detailed understanding of how light propagates in these multi-core fibers, 

how changing the pixel density can alter these properties, and what the impact of the 

nonuniformity observed in actual image fibers has on the fiber performance.   
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This dissertation is a study of light propagation in fiber bundles and multi-core 

PCFs through use of numerical modeling tools and experimental observation.  The 

coupling of light between cores in a multi-core fiber, or crosstalk, can be understood 

using well-developed models of light propagation in coupled waveguides.  Coupled 

mode theory and normal mode expansion method are used to model light propagation 

in multi-core fibers.  The fiber modes are calculated using the multipole method with 

both a Matlab program developed by the author in addition to a Fortran program 

available from the University of Australia at Sydney 

(www.physics.usyd.edu.au/cudos/software/) [3].  In general, nonuniformities in the 

cross-section of both fiber bundles and two-core photonic crystal fibers can facilitate 

the reduced coupling required for applications in endoscopic imaging.   

Chapter 2 introduces the reader to the basic concepts of light propagation in 

cylindrical optical fibers.  This chapter reviews total internal reflection and the concept 

of modes in a standard step-index fiber.  An intuitive understanding is given through 

descriptions based on the ray picture of light and the importance of diffraction is also 

addressed.  Solutions to the scalar wave equation are derived and several important 

properties of step-index fibers are described. 

Chapter 3 covers the concept of coupling between a pair of waveguides.  A 

basic explanation of light coupling between cores in a fiber is presented initially 

followed by an in depth discussion of two methods for quantifying the coupling 

behavior in a system of waveguides.  First, by expressing the field solution in a 

waveguide as an expansion of its modes, the power exchange between two cores, and 

therefore the nature of the coupling, can be determined.  In addition, coupled mode 

theory, an analytical model for predicting coupling, is summarized.  The implications 
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of non-identical cores on the coupling properties of a two-core system are discussed 

briefly. 

Chapter 4 provides an introduction to the field of photonic crystal fibers.  The 

different types of photonic crystal fibers are presented and the properties of high-index 

core fibers are discussed.  The effective index model is used to provide insights into 

the unique characteristics of these fibers.   

Chapter 5 explains the multipole method for use as a mode solver for photonic 

crystal fibers and mulit-core step-index fibers.  The implementation of this method 

using Matlab is also discussed, including insights into the accurate application of this 

program and method.  The use of this Matlab program in conjunction with the 

CUDOS MOF Utilities software is also addressed. 

In Chapter 6, the theories of coupling presented in Chapter 3 are applied to 

photonic crystal fibers for predicting the coupling length.  The scalar effective index 

model is used for applying coupled mode theory to these fibers and the results are 

compared to the vector normal mode expansion method.  The relationship between 

photonic crystal fiber dimensions and the coupling lengths of different types of two-

core fibers are presented and based on these results a proposal for a multi-core 

photonic crystal fiber endoscope is presented in Appendix A.  

Chapter 7 presents the published work of the author on the impact of random 

nonuniformities in the photonic crystal cladding on the birefringence, loss, dispersion, 

and coupling length of a photonic crystal fiber.  Fibers with large air holes are shown 

to exhibit the most sensitivity to variations in the air hole location and size. 

Chapter 8 specifically addresses the implications of nonuniformities on 

coupling in two-core photonic crystal fibers, also published work.  The coupling 

efficiency in large air hole fibers is shown to be greatly reduced when the photonic 
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crystal cladding is nonuniform.  Additional information on the effects of 

nonuniformities on coupling in these types of fibers is given in Appendix B. 

Chapter 9 is work that has been submitted for publication concerning the 

coupling properties and performance of multi-core step-index fibers such as coherent 

fiber bundles, or image fibers.  It is explained that current image fibers used in flexible 

endoscopes are able to transport images due to nonunformity in the fiber cross-section.  

Analytical expressions based on coupled mode theory are developed in order to 

predict the performance of available image fibers. 

Chapter 10 presents results from the experimental observation of coupling in 

image fibers, also submitted for publication.  The physical set-up is described and the 

wavelength and polarization dependence of coupling are experimentally demonstrated 

for fibers manufactured by Fujikura and Sumitomo.  The results are supported by 

numerical simulations based on the theory presented in Chapter 9.  

Finally, Chapter 11 provides a short summary of the research presented.  In 

addition, possible future projects in this area and concepts for continued research are 

mentioned. 
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Chapter 2  

PROPAGATION OF LIGHT IN FIBERS 

Introduction to step-index fibers 
 

Optical fibers are cylindrical waveguides that confine or guide electromagnetic 

radiation in the optical frequencies.  The most basic optical fiber design is the step-

index fiber which is illustrated in Figure 2-1.  These fibers are referred to as “step-

index” because the index distribution of the materials that compose the fiber resembles 

a step function.  While a fiber can have many possible index distributions, this 

example remains the simplest and most common.  The core and the cladding are 

 Core     Cladding          Jacket 

Figure 2-1.  A standard step-index fiber; an end profile appears to the left and 

a side view to the right.  Light propagates in the core region. 
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composed of dielectric or insulating materials such that the core has a higher index of 

refraction than the cladding.  The materials are usually silica (SiO2), which has an 

index of about 1.5, or else silica that has been doped to slightly increase or decrease 

the index.  The fiber dimensions remain constant along the length which can be 

hundreds of kilometers.  Depending on the application and the wavelength, the core 

diameter commonly falls within a range of ~2 µm to ~50 µm and the cladding 

diameter is on the order of a few hundred microns.  The presence of a jacket 

strengthens the fiber and protects it from breaking.   

Optical fibers have several advantages over traditional copper wires because 

they are lighter and smaller, have increased bandwidth, and eliminate electromagnetic 

interference.  In addition, because of advances in the production of low loss glass, 

optical fibers are a viable solution for long distance communications.  The major 

application for optical fibers is in telecommunications, though use in local networks 

and short distance deployments are also common. 

 

Ray-picture for light propagation 

 

When the size of the core is much larger than the wavelength, diffraction 

effects due to the wave nature of light are negligible and a ray picture can be used to 

describe how light propagates in a step-index optical fiber.  A ray describes light of a 

well-known spatial direction (k-vector) or momentum and therefore exploits the 

particle nature of light.  In Figure 2-2, a ray of light is shown entering a fiber core at 

an arbitrary angle θi.  The law of refraction or Snell’s law, derived by matching 

boundary conditions at a dielectric interface, can be used to describe the path of the 
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ray as it enters the fiber core and encounters the core-cladding boundary.  From this 

relationship, the maximum value for θi can be determined such that θr will always be 

greater than the critical angle for total internal reflection, θc.  At the critical angle of 

incidence, light is refracted at a boundary with a lower index material such that no 

light is transmitted and all light remains in the higher index material.  These two 

angles are defined in Eq. (2.1). 

 1 2 2sin ,  and   max sincl
c i co cl

co

n n n
n

θ θ −= = −  (2.1) 

where ncl indicates the refractive index of the cladding and nco is that of the core.  For 

angles θi less than the max θi defined in Eq. (2.1), total internal reflection will occur at 

the core-cladding boundary.  The numerical aperture (NA) of the fiber can then be 

defined as sin(max θi) and the acceptance angle of the fiber is 2θi.  Only rays entering 

the fiber within the cone of its acceptance angle will experience total internal 

reflection at the core-cladding interface and be guided. 

θi 
θc 

θr 

Cladding
Core 

Figure 2-2.  Light entering the core at an angle of θi is refracted due to the 

change in refractive index.  When incident on the boundary between the core 

and the cladding, light is completely reflected if θr > θc. 
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        Ray          Phase front   Cladding          Mode structure or  
interference pattern

Fundamental mode 

Higher order modes

Figure 2-3.  Three different modes are illustrated.  Two plane waves enter the 

fiber core at the same angle, within the acceptance angle of the fiber.  The 

direction of propagation is indicated by the ray, and phase fronts from the two 

rays interfere constructively only because travel from one surface and back 

again results in a multiple of 2π phase shift, or an integer number of 

wavelengths.  (For simplicity, the diagrams above ignore the Goos-Hänchen 

shift) 
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  The cone subtended by the acceptance angle contains a continuum of guided or 

bound rays; however, due to interference, not all of these rays will propagate without 

loss along the length of the fiber.  A resonance condition occurs in the waveguide, 

limiting propagation to discrete mode solutions.  In order to understand how this 

condition arises, the ray picture must be amended to include the phase of the 

propagating light wave.  A ray describes light with a well-known k-vector; in other 

words, the ray depicts the direction of propagation of a plane wave of infinite extent.  

Therefore, lines perpendicular to the path of the ray represent points of constant phase 

or a wave front as shown in Figure 2-3.  

For lines spaced equidistant along the ray, their separation corresponds to the 

wavelength of the light, which can also be thought of as a change in phase of 2π (see 

Figure 2-3).  Each wave or phase front of a bound ray must accumulate a multiple of 

2π total phase shift when propagating from one core-cladding interface and back again 

in order to constructively interfere with other rays traveling in the fiber at the same 

angle [4].  Equivalently, the distance the ray travels between reflections must be an 

integer multiple of the wavelength.  This 2π condition selects rays from the incident 

cone of light with a discrete set of angles that will interfere to produce a stable field 

distribution called a mode.  All rays entering the fiber at the same angle, if they satisfy 

the mode condition, will avoid energy decay resulting from deconstructive 

interference and will propagate without loss (assuming no absorption or scattering) 

along the length of the fiber.  See Figure 2-3 for an illustration of the 2π condition 

satisfied by three different ray angles.   

This description is most accurate for multi-moded waveguides, that is, fibers 

that have more than one mode solution.  The fundamental mode exists in all step-index 

waveguides and the existence of higher order modes depends on the size of the fiber 
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core relative to the wavelength.  The fundamental mode is shown in more detail in 

Figure 2-4 and is nearly Gaussian with a completely symmetric shape.  This mode is 

typically the most desired for applications of light propagation.  The concept of modes 

and discrete solutions reappears during the rigorous mathematical solution for a 

cylindrical fiber, and thus is an inherent condition of a steady state solution to a 

waveguide. 

 

Including diffraction effects 

 

When total internal reflection occurs, the plane wave incident on the core-

cladding interface experiences an additional phase shift that can’t be predicted using a 

ray picture.  Because light propagating in the core reflects off of a lower index 

material (the cladding) a phase shift is experienced at each reflection that is dependent 

Figure 2-4.  The a) transverse profile and b) 3D rendering of the energy 

distribution of the fundamental mode.  The core diameter is indicated by dotted 

lines in a).  The distribution is approximately Gaussian and has azimuthal 

symmetry. 

A B 
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on the wavelength of the light.  This phenomenon is due to the effects of diffraction 

and is most pronounced when the radius of the fiber approaches the wavelength of 

light.  A phase shift is analogous to travel over a distance; thus, in the ray picture, as 

illustrated in Figure 2-5, this phase shift due to reflection is represented as a lateral 

shift in distance, zs (called the Goos-Hänchen shift), caused when the ray travels for a 

short time in the cladding [4].  This modified description of the ray’s path is true to the 

flow of energy in the fiber.  During the short time spent in the cladding, some of the 

wave’s energy is transferred momentarily from the propagating wave to an evanescent 

or exponentially decaying wave in the cladding before returning completely to the 

reflected wave in the core.  Any perturbation that the evanescent field experiences will 

result in energy being lost to another structure or coupled out of the core. 

The ray picture provides an intuitive explanation for light propagation in 

fibers; however, the treatment of light as rays is appropriate only in certain regimes 

and is an approximate portrayal.  Light propagation is more accurately described by a 

beam containing a distribution of plane waves or rays of slightly different propagation 

Cladding  
Core  

zs 

Figure 2-5.  A ray picture depiction of the Goos-Hänchen shift, zs, caused by 

the reflection of light off of the surface of a material with a lower index of 

refraction. 
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directions [5].  The rays used previous actually represent the average location of a 

beam of light.  This description of light is a result of Heisenberg’s uncertainty 

principle which states that the position and the wavelength of light can never be 

known exactly.  In addition, the more precise one of these properties can be 

determined, the more imprecise the other must be.   

Diffraction, or the apparent spreading of light, occurs because each plane wave 

component in the beam experiences a different phase shift as it propagates over the 

same distance.  When light propagates in air, for example, the plane waves eventually 

interfere deconstructively and the beam disperses.  Uncertainty in the position of the 

light manifests itself as the finite width of light, previously described as a beam.  

When the wavelength of light is much smaller than the dimensions of the fiber, the 

light can be approximated as a ray with an exact position.  If the size of the beam is 

determined more closely—such as through confinement to smaller regions or a smaller 

core—the distribution of plane waves that compose the beam widens in order to 

uphold the uncertainty relation, and diffraction effects become stronger.  Thus, when 

the fiber core is small relative to the wavelength, diffraction effects and behavior 

dependent on the wave-like nature of light instead of the position dominate and the ray 

picture must be dismissed. 

When the dimensions of the fiber core approach the size of the wavelength, 

fewer modes have lossless propagation down the fiber.  For core sizes less than a 

particular radius, only a single mode solution exists called the fundamental mode.  

Waveguides that allow only one mode to carry energy/information down the fiber are 

extremely useful for communications purposes.  In order to determine this cutoff 

radius for a particular fiber, the effects of diffraction must be taken into account.  

Consider a Gaussian beam of circular cross-section propagating in the high index core 
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of a fiber waveguide.  The beam will experience an angular spread from the axis of 

propagation of θd ≈ λ/(ncoπa), where a is the minimum spot size [5].  In order for the 

maximum amount of light to be guided in the fiber core, θd should be equal to or less 

than the complement of the critical angle, with θc as previously defined in Eq. (2.1).  

Using a trigonometric identity and rearranging this expression, the following 

relationship is derived [5]: 

 2 222 co cla n nπ
λ

= −  (2.2) 

The right side of Eq. (2.2) is called the V-parameter, or the normalized frequency of 

the waveguide, when a equals the core radius.  This simplified argument gives an 

estimate for the cutoff radius of a fiber for single mode propagation when the 

wavelength and index values are known.  This example also demonstrates how 

propagation in a waveguide is a balance between spreading due to diffraction and 

confinement from reflection at the index boundary [5]. 

 

Mathematical description of light propagation 

 

Exact expressions for the electric and magnetic field solutions in a fiber can be 

found using Maxwell’s equations.  By solving the wave equation in the core region 

and in the cladding region, and applying the appropriate boundary conditions, 

expressions for the fiber modes are determined.  Because a fiber is a two-dimensional 

waveguide with an index profile that is a function of only r andφ , the z-component of 

the field will couple only to itself as it propagates along the fiber and is therefore a 

solution to the scalar wave equation shown in Eq. (2.3). 
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 2 2 ( , , )
( ) 0

( , , )
z

z

E r z
k

H r z
φ
φ

⎧ ⎫
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⎩ ⎭
 (2.3) 

where 2 2 2 2 2 2
0k k n n cω= = and 2∇ is the Laplacian operator in cylindrical coordinates 

[4, 6].  The remaining components of the field can be derived using Maxwell’s 

equations and the solutions for the z-component.  Equation (2.3) can be solved using 

separation of variables or by assuming a solution of the following form: 

 
( , , ) ( ) exp( )exp( )
( , , ) ( ) exp( )exp( )

z z

z z

E r z E r i i z
H r z H r i i z

φ νφ β
φ νφ β

= ± −
= ± −

 (2.4) 

where ν  is an integer andβ is the propagation speed of the field solution.  Substituting 

Eq. (2.4) into Eq. (2.3) results in Bessel’s equation, which has well-known solutions.  

The z-component of the fields can then be written as: 

 
in core:  ( , , ) ( ) exp( )exp( )

in cladding:  ( , , ) ( ) exp( )exp( )
z

z

E r z AJ r i i z
E r z CK r i i z

ν

ν

ϕ κ νϕ β
ϕ γ νϕ β

= −
= −

 (2.5) 

where κ2 is the square of the transverse wavevector 2 2 2
0 cok n β− , γ2 is the square of the 

attenuation coefficient 2 2 2
0 clk nβ − .  The z-component of the magnetic field can be 

written in a similar manner.  β can also be understood as the longitudinal wavevector 

and Figure 2-6 shows the relationship between these wavevectors.  Notice that the 

direction of k can be compared to a bound mode in the ray picture.  There exists a 

β

k=k0n 
κ k2=κ2 + β2 

z

r

Figure 2-6.  The geometric relationship between the different components of 

the wavevector. 
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discrete set of values for β in each waveguide and the length of β uniquely determines 

the mode and indicates the speed of propagation of each mode along the fiber axis.  

From this diagram, it is obvious that β < kon [4]; therefore, when the magnitude of the 

longitudinal wavevector is larger than the wavevector in the cladding, but less than 

that of the core, it will be bound to the core, or koncl < β < konco, for bound solutions.  

When the magnitude of the longitudinal wavevector falls outside of these limits, the 

light will not be bound. 

By applying the boundary conditions that the tangential components be 

continuous at the core-cladding interface, a system of four equations is generated.  

These equations can be solved simultaneously by first writing the equations in matrix 

form and then setting the determinant equal to zero.  The result is a transcendental 

equation with solutions only for certain values of the propagation constants, β, which 

represent the set of mode solutions of the waveguide.  The relationship between A and 

C in Eq. (2.5) can be calculated from the system of boundary condition equations for a 

particular β.  A complete derivation is not presented here but can be found in one of 

the following sources [4-6].   

Cylindrical fibers always guide a fundamental mode because there will be at 

least one solution to the transcendental equation.  The appearance of a second mode 

can be predicted from the V-parameter, previously defined in Eq. (2.2).  The V-

parameter can also be understood as the maximum magnitude for the normalized 

transverse wavevector, or maxaκ , and the exact expression for this parameter is given 

in Eq. (2.6) 

 2 2 2 2
max 0

2
core clad core clad

aV a ak n n n nπκ
λ

= = − = −  (2.6) 
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where a is the core radius.  The fundamental mode cutoff occurs when the value for V 

is greater than the 1st root of the zeroth order Bessel function, 2.405, approximately the 

value estimated in Eq. (2.2).  This is referred to as the cutoff for single-mode operation 

and the value for V can be used to estimate the number of bound modes that a 

particular waveguide will support.  As the size of the wavelength decreases relative to 

the core radius, V will increase and a fiber will become more multi-moded.  

The shape of the modes solutions can be predicted from fields in Eq. (2.5).  For 

each value of ν, a different set of m modes exist such that each mode is labeled by two 

indices.  The value for ν indicates the number of angular nodes in the mode 

distribution and m dictates the number of radial nodes.  The modes illustrated in 

Figure 2-3 demonstrate how the number of nodes increases for higher order modes; 

however, this depiction is only in two dimensions so that these modes would be 

sufficiently described by only one mode index, m.  Note that the fundamental mode is 

characterized by no nodes and therefore has azimuthal symmetry.  This mode will 

therefore have the highest concentration of power in the fiber core and its 

approximately Gaussian shape facilitates additional calculations making it the 

preferred mode for propagation in fibers. 

Applications for optical fibers require certain knowledge about the fiber 

properties.  In addition to the number of modes a fiber will support, the dispersion of a 

waveguide is also an important parameter.  Dispersion occurs because different 

wavelength of light travel at different speeds in the fiber.  There are three types of 

dispersion: material, modal, and waveguide [4].  Material dispersion is a result of the 

frequency dependence of the permittivity of any material.  Rewritten as the 

wavelength dependence of the index of refraction of a material, this effect is described 
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by the Sellmeier equation [4, 7] and the second derivative is proportional to the group 

velocity dispersion, or GVD. 

 
2

2

nGVD
c
λ

λ
∂

= −
∂

 (2.7) 

Modal dispersion can be ignored in single-mode fibers and is caused by the different 

propagation speeds of the mode solutions.  Waveguide dispersion is a result of the 

structure of the fiber and the fact that changing the wavelength will change the mode 

solution β.  The simultaneous effect of waveguide and material dispersion is often 

referred to as chromatic dispersion.  Dispersion is extremely important for telecom 

applications and other applications where pulses of light are used to transmit 

information.  Because a pulse is composed of several frequencies, dispersion will 

cause pulse spreading and signal distortion.  
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Chapter 3  

CORE COUPLING 

Introduction to two-core coupling 
 

As alluded to in Chapter 2, energy can be lost from a fiber core when the 

evanescent part of the mode that is traveling in the cladding experiences a 

perturbation.  For example, a perturbation could be a mechanical bending of the fiber, 

a notch in the cladding-core interface, or another region of high index material.  This 

last case is a situation where multiple cores exist in a single cladding.  Due to the 

coupling of energy between the cores, light initially incident on only one core will 

eventually propagate in the other cores.  This behavior is essential for the development 

of devices such as splitters and couplers. 

Consider a simplified situation with just two high index cores, CL and CR, in a 

background of a slightly lower index cladding material with a core separation of 3.2 

µm and core diameter of 2 µm, as shown in Figure 3-1(a).  These cores are equivalent 

to two adjacent step index fibers as described in Chapter 2.  Figure 3-1(b) shows the 

energy distribution for the fundamental mode of the two-core fiber.  Note that the 

majority of the energy is contained within the core, demarcated by the dotted lines, but 

a small portion exists in the cladding.  In addition, because the light is well confined to 
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the cores, the mode shown in Figure 3-1(b) looks very similar to the sum of the mode 

of the left core and the mode of the right core.   

When light is incident on CL, the fundamental mode of that core is excited; 

however, an evanescent or exponentially decaying portion of that field will be present 

in the cladding and inevitably enter into the high index region of CR.  This energy is 

trapped in CR because of its waveguiding properties and becomes a source for a 

propagating mode in CR.  If the two cores are identical, all the energy from CL will 

transfer into CR. Then the reverse process will occur with energy passing back and 

forth between the cores along the length of the fiber.  The oscillation of power 

between the cores as a function of the propagation distance, z, is illustrated in Figure 

3-2.  The percentage of power transferred between cores is referred to as the coupling 

efficiency, also referred to as crosstalk, and the rate of power transfer is described by 

the coupling length or beat length defined in Figure 3-2.  The coupling length and the 

nco = 1.45 

ncl = 1.446

a=1.0 
CL CR 

A B
y 

Figure 3-1.  Image A is of a two-core step index fiber with core radii of 

a=1.0µm.  Plot B shows the energy distribution for the fundamental mode of 

the two-core fiber.  The core separation is 3.2µm.   

x 
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Figure 3-2.  Light incident initially on the left core will couple into the right 

core and back again as it propagates along the fiber.  In b), the power in each 

core is plotted versus the propagation distance and the energy distribution is 

shown at different points along the fiber length. 

Coupling 
Length, Lc 

Power 

Propagation 
distance 

Fiber cross-section

y 

x 

b 

a 
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coupling efficiency are used to quantify the strength of coupling and represent the 

beating of the modes of the fiber. 

The strength of coupling depends on the separation between the two cores and 

the size of the core diameters relative to the wavelength.  For example, if the 

separation between two cores is increased, the exponential tail of the excited CL mode 

will be weaker when it experiences the high index region of the second core.  This will 

slow down the power transfer or, in other words, increase the coupling length.  Figure 

3-3 demonstrates for two different two-core fibers how the coupling length increases 

with core separation.  This trend is consistent across changes in the wavelength and for 

fibers with different core sizes.  In addition, if the core size is increased relative to the 

wavelength—equivalent to reducing the wavelength for a particular fiber—the mode 

becomes more tightly confined, which also decreases the value of the exponentially 

decaying field that enters CR.  This relationship is shown in Figure 3-4, where, for a 

constant core size and separation, the coupling length is shown to decrease with the 

wavelength for two types of fibers.  Thus, to ensure weak coupling at a particular 

wavelength, two cores should be large and far apart in order to have a long coupling 

length. 

The coupling behavior between two cores in a fiber, as observed in Figure 3-3 

and Figure 3-4, can also be predicted through an analogy with a particle in a pair of 

quantum wells.  Increasing the core separation has a similar effect to increasing the 

well separation which makes it more difficult for a particle to tunnel from one well 

into the other.  Also, decreasing the core size has a comparable outcome to deepening 

each well, which effectively increases the height of the barrier making tunneling, 

again, more difficult.  In order to increase the probability that a particle will be found  
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Figure 3-3.  The coupling length is plotted versus the core separation for two 

different two-core fibers with different core diameters and for three wavelengths. 

In plot a), the diameter of the two cores is 2 µm, while in b) the diameters are 2.9 

µm. 

a 

b 
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in its initial state in a single well, the well separation and the barrier height are 

increased. 

 

Theories of coupling 

 

The ability to calculate the power in each core at different points along the 

fiber length reveals the nature of the coupling in the fiber.  There are two common 

approaches for determining this coupling behavior.  The first method, using normal 

Figure 3-4.  The coupling length is plotted over wavelength for two fibers. 

Fiber 1 has a core separation of 3.2 µm and core diameters of 2 µm while fiber 

2 has a core separation of 4.5 µm and core diameters of 2.9 µm.   
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mode expansion, requires the mode solutions for the complete multi-core system.  

Because the mode solutions for systems involving multiple waveguides are sometimes 

difficult or time-consuming to obtain, a second method, called couple mode theory 

(CMT), is based on the solutions for the individual waveguides and provides an 

analytical approximation for the complete system.  Additional methods exist for 

calculating the coupling behavior, such as beam propagation method [8], which is a 

split-step method where the field is expanded in a superposition of plane waves [4], 

although they will not be discussed in detail here. 

 

Normal mode expansion 
 

A field solution in a waveguide can always be written as an expansion of the 

set of normal modes of the waveguide [5, 9].  The field is written as: 

 
( , , ) ( , )

( , , ) ( , )

j

j

in kz
j j

j

in kz
j j

j

E x y z a e x y e

H x y z a h x y e

=

=

∑

∑
 (3.1) 

where ),( yxe j and ),( yxh j are the modal fields of the fiber (the radiation modes have 

been ignored for the sake of simplicity), nj is the corresponding effective index for the 

jth mode, and the z-direction is parallel to the axis of the fiber.  The modal amplitudes, 

aj, represent the amount of overlap between the input field and the jth mode and are 

determined from Eq. (3.2) [5, 9]. 

 1 ˆ( , ,0) ( , )
2j j

j A

a E x y h x y zdxdy
N

∗

∞

= × ⋅∫∫  (3.2)   

where )0,,( yxE is the input field, a Gaussian x-polarized field incident on a single core.  

Nj determines the normalization of the jth mode as defined in Eq. (3.3): 



27 

 1 1
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∞ ∞
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The power in each core as a function of z is calculated from the z-component 

of the Poynting vector according to Eq. (3.4). 

 1
2 ˆ( ) Re ( , , ) ( , , )core

core
area

P z E x y z H x y z zdxdy∗= × ⋅∫∫  (3.4) 

where the fields are defined by the expansion in Eq. (3.1).  The power in each core as 

a function of the propagation distance is plotted in Figure 3-2(b). 

When solving for the modes of multi-core fibers, the mode group with the 

largest propagation constants contains 2N modes, where N is the number of cores in 

the system and the factor of two is consistent with two polarization states.  The modes 

in this group will be referred to as the fundamental modes because the distribution of 

energy within the individual cores for each of the modes is approximately Gaussian 

with azimuthal symmetry, as characteristic of a fundamental mode.  The normal mode 

expansion is typically truncated after these 2N lowest order modes since they 

represent the most significant contribution to the sum due to their large overlap with 

the Gaussian input field.  Our modeling showed that ignoring the higher order modes 

results in negligible error because the modal amplitudes, aj, become extremely small.   

A two-core fiber has nondegenerate mode solutions of even and odd nature for 

each polarization, analogous behavior to a coupled oscillator system.  The z-

component of the Poynting vector as well as the three components of the electric field 

are shown in Figure 3-5 for the four modes of a two-core fiber.  Notice the two-fold 

degeneracy of the single core solution is broken when the two cores are brought 

together in a two-core fiber.  The symmetric modes are the two modes with the largest  
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Figure 3-5.  The four fundamental modes of a two-core fiber with core 

diameter of 2 µm and separation of 3.2 µm, λ = 600 nm.  The mode index of 

1 refers to the mode with the highest effective index.  The colorbar is 

relevant for similar modal plots appearing in this dissertation. 
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effective indices, and two modes are predominantly x-polarized while two modes are 

predominantly y-polarized. 

A more intuitive understanding of the normal mode expansion can be gained 

by considering a one-dimensional, single polarization or scalar example.  In this case, 

the two fundamental modes of the two-core system are shown in Figure 3-6 (compare 

with modes 1 and 4 or modes 2 and 3 of Figure 3-5).  The normal mode expansion of 

the scalar field solution in this 1D waveguide is shown in Eq. (3.5) for the electric and 

magnetic field. 

 
( , ) ( ) ( )

( , ) ( ) ( )

in kz in kz
sym

in kz in kz
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E x z a e x e a e x e

H x z a h x e a h x e

+ −

+ −

+ + − −

+ + − −

= +

= +
 (3.5) 

where the ‘+’ indicates a symmetric or even mode and the ‘–‘ corresponds to an 

antisymmetric or odd mode.  Examining the field distributions in Figure 3-6, it is 

apparent that a single core input will have significant overlap with both the even and 

the odd mode, represented by the coefficients ja .  The energy coupled into each of 

Figure 3-6.  Odd a) and even b) modes, labeled ψ- and ψ+ respectively, of a two-

core fiber for a single polarization.  Dotted lines indicate the core boundaries. 

ψ+ ψ- 

A B
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these modes at the fiber endface will propagate at slightly different speeds along the 

fiber due to the splitting in the mode effective indices.  The field solution at any point 

z is a linear combination of the even mode and the odd mode at that location in the 

fiber, as shown in Eq. (3.5).  The resulting effect on the power in each core is the 

“beating” seen in Figure 3-2, where the input field is an x-polarized Gaussian, Ey = 0, 

that is centered on the left core with a spot diameter (1/e2 intensity) equal to the radius 

of the core.  For the case when the two cores are identical and the coupling efficiency 

is 100%, the period of the beat pattern is determined by the difference in the spatial 

frequencies of the modes, ( )k n n+ −−  or ( )β β+ −− , and can be written as a length: 

   
2( )c

eff eff

L
n n

π λ
β β + −
+ −

= =
− −

 (3.6) 

where λ is the wavelength of light in vacuum.  This distance is referred to as the beat 

length or coupling length and indicates the spatial separation between points where the 

modes of the fiber add in phase. 

When the two cores of the fiber of Figure 3-5 are made to be non-identical, the 

coupling behavior can change drastically.  For example, when the core diameters are 

different, the modal fields resemble the independent individual or decoupled cores, as 

shown in Figure 3-7.  In Figure 3-7 the left core diameter has been increased by 1%.  

By examining the modal fields in Figure 3-7 it is obvious that an x-polarized input in 

the left core is most similar to a single mode, mode 2.  The field expansion of Eq. (3.1) 

will contain essentially one mode and the energy distribution is no longer a strong 

function of z.  In other words, light incident on a single core of the fiber in Figure 3-7 

will couple almost completely into just one mode of the system and therefore not mix 

with other cores or modes along the length of the fiber.   
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Figure 3-7.  The four fundamental modes of a two-core fiber with right core 

diameter of 2 µm, left core diameter of 2.02 µm, and separation of 3.2 µm, λ 

= 600 nm.  
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Figure 3-8.  Plot a) shows the distribution of the field between the cores for 

mode 1 of the fiber in Figure 3-7.  The power as a function of the 

propagation distance is plotted in b).  The coupling length is 1.6545e+003 

microns and the coupling efficiency is 1.47%. 

a 

b 
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  As can be seen in Figure 3-8(a), the cores are not completely decoupled; 

therefore, a small amount of the power oscillates as a function of the propagation 

distance, as shown in Figure 3-8(b).  The coupling length is also reduced and in this 

case, and the amount of power that is transferred between the cores is only 1.47%.  

The cores behave essentially independently because the difference between adjacent 

core diameters has created a mode mismatch that will inhibit coupling.  Light incident 

initially on a single core will remain mostly in that core as it propagates down the 

fiber.   

 

Coupled mode theory 
 

The coupling behavior in two-core fibers can also be determined by using 

coupled mode theory (CMT).  CMT is commonly used for obtaining approximate 

analytical solutions to systems of coupled waveguides, such as multi-core fibers.  In 

CMT, each core is solved for independently and interactions with neighboring cores 

are treated as a perturbation [10-12].  In the case of weak coupling, CMT 

approximates the total field in the fiber as a linear superposition of the mode solutions 

of the individual cores, call them a and b, as shown in Eq. (3.7).   
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a b
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= +

= +
 (3.7) 

This concept is represented pictorially at the top of Figure 3-9.  The strength of the 

coupling between the cores is quantified by the coupling coefficient, Kab, which 

depends on the area of overlap of the individual core modes in one of the cores.  An 

exaggerated illustration of this overlap appears at the bottom of Figure 3-9.  If light is 
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incident initially on core a, the coupling coefficient can be determined by Eq. (3.8) 

[11]:  
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where the fields represent the fundamental mode of each core, centered on the 

respective core, and have been normalized such that 

 1 ˆ1  
2 t tE H z rdrdθ= × ⋅∫∫  (3.9) 

+ 

Overlap 

Figure 3-9.  The coupled mode theory representation of a two-core fiber as 

a linear combination of the individual core modes.  At bottom, an 

exaggerated view of the overlap between these modes in one core is 

shown.  This overlap determines the strength of the coupling. 
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The power as a function of z is calculated from the fields in Eq. (3.7) as shown 

in Eq. (3.10). 
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 (3.10) 

In the weak coupling regime, or conventional CMT, the cross field power (the 

terms in Eq. (3.10) containing the cross field integrals, Cab and Cba) is ignored and the 

power is determined by a(z) and b(z).  Although this is strictly only true when Kab = 

Kba
* and the cores are identical, this approximation is valid when Cab and Cba are very 

small and Kab ≈ Kba
*.  The amplitude coefficients of the modes of the two cores obey 

the coupled amplitude equations of Eq. (3.11) as derived from the general reciprocity 

relation or through the variational method [11, 13]. 

 
( ) ( ) ( )

( ) ( ) ( )

a ab

ba b

d a z i a z iK b z
dz
d b z iK a z i b z
dz

β

β

= +

= +
 (3.11) 

In conventional CMT, βa and βb are the propagation constants for the 

individual, independent waveguides and the coupling coefficients, Kba and Kab, are 

proportional to the overlap integral of the mode fields of the individual waveguides in 

each core [11, 14].  Improved CMT considers the situation where Kab and Kba are very 

different, therefore second order terms are added to the constants in Eq. (3.11) and the 

cross field power is included in order to conserve power [11, 14].  

Solving the system of equations in Eq. (3.11) and applying the initial condition 

that light is incident on waveguide a at z = 0, or a(0) = 1 and b(0) = 0, produces the 

expressions for the power given in Eq. (3.12) when the cross power is neglected [14].   
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The maximum power transferred out of waveguide a, or the coupling 

efficiency, is F2 and βd is related to the beat frequency or the rate of power transfer.  

The coupling length is the distance, Lc, at which the power in waveguide b has 

oscillated to its first maximum, ie. / 2d cLβ π= .  When the two cores are identical, F = 

1 and the coupling length is found directly from Kab according to Eq. (3.13).   

 
2C

ab

L
K
π

=  (3.13) 

This coupling length is equivalent to the beat length of Eq. (3.6).  A small amount of 

mode overlap will lead to a relatively small value for Kab and therefore a long coupling 

length, indicating weaker coupling.  For non-identical cores, as the mismatch between 

the modes of the individual cores, βa-βb or ∆β, increases, Eq. (3.12) also dictates that 

the coupling efficiency and the coupling length will decrease, as observed previously 

using the normal mode expansion. 

There has been much discussion over the last two decades concerning the 

limitations of conventional CMT and the regimes for which ICMT is necessary [14-

16].  In addition, polarization correction terms and a vector CMT have been proposed 

for strongly coupled waveguides [15, 17, 18].  Because the simplicity of conventional 
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CMT has its advantages, the cross field power is typically ignored and the 

consequences of this assumption are assessed. 

 

Conclusion 
 

The two methods presented in this chapter for determining the coupling 

behavior in a multi-core fiber or a multiple waveguide system each have their 

advantages.  Because CMT relies on the solutions of the independent waveguides, it 

can provide a quick and simple estimate without substantial computational 

requirements.  However, the validity of conventional CMT is often uncertain and is 

limited to specific regimes.  The normal mode expansion method provides a more 

exact, though numerically intensive, description regardless of the strength of the 

coupling.  The work presented in this dissertation examines the effects of core 

mismatch on the coupling properties of multi-core fibers.  By approaching this 

situation using the normal mode expansion technique, and by later applying CMT to 

these results, the validity of CMT is assessed in different regimes of coupling strength.  

In this manner, the simple expressions of CMT are proven to provide a reliable tool 

for predicting the coupling behavior of the types of fibers studied. 
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Chapter 4  

PHOTONIC CRYSTALS AND PHOTONIC 
CRYSTAL FIBERS 

Introduction 
 

In the late 1990s, a new class of fibers called photonic crystal fibers was 

developed out of research in the field of photonic crystals [19-21].  The conception of 

photonic crystals is founded on an analogy with crystalline solids which are composed 

Figure 4-1.  Illustrations of one, two, and three dimensional photonic 

crystals.  Different colors represent materials with different dielectric 

constants. 

1D  
Periodic in one direction

2D  
Periodic in two 

directions 

3D  
Periodic in three 

directions 
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of a periodic array of atoms or molecules that can be modeled as a periodic potential 

[22, 23].  Photonic crystals are formed by arranging dielectric materials in a periodic 

array or lattice with lattice spacing on the order of the wavelength of light.  See Figure 

4-1 for example illustrations of multidimensional photonic crystals [24]. 

Just as crystalline solids have electronic band gaps, photonic crystals have 

photonic band gaps, representing bands of wavelengths that are forbidden or unable to 

propagate in the crystal.  1D photonic crystals, such as Bragg stacks and optical 

gratings, have been used extensively for over a hundred years because of their 

interesting reflection properties that result from constructive and deconstructive 

interference of light as it reflects off different dielectric layers.  2D photonic crystals 

have found two main applications in planar and fiber waveguides.  Planar photonic 

crystal waveguides are fabricated with a high index defect or channel in the same 

geometric plane as the photonic crystal as shown in Figure 4-2(a); that is, the dielectric 

periodicity occurs in the same plane as the fabricated waveguide.  These waveguides 

have been studied for use in integrated photonics and for their ability to manipulate 

light around sharp bends in addition to other applications [25].  Photonic crystal fibers 

are produced in much the same manner as a standard fiber except the cladding is 

replaced by a photonic crystal.  The guiding structure is a high or low index defect in 

the photonic crystal that is created perpendicular to the dimensions of dielectric 

periodicity.  3D photonic crystals have potential applications as resonant cavities, for 

localization of light, and for the suppression of spontaneous emission [22-24]   
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Figure 4-3.  Three images of photonic crystal fibers where light propagates in 

a high index core region due to modified total internal reflection. [imfc.univ-

fcomte.fr/lopmd/onl/frameonl2.htm, www.bath.ac.uk/physics/groups/opto-

/pcf.html, www.crystal-fibre.com/products/nonlinear.shtm]. 

Figure 4-2.  Picture of planar photonic crystal waveguide a) 

[www.imperial.ac.uk/research/exss/research/semiconductor/photonic/-

index.htm] and a photonic bandgap fiber b) [www.photonics.com/content/-

spectra/2004/April/research/77495.aspx]. 

a b 
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Two types of photonic crystal fibers, sometimes referred to as microstructured 

optical fibers (MOFs) or holey fibers, are distinguished by the method of light 

propagation [26-29].  In photonic band gap fibers, light propagates in a low index core 

region that is surrounded by a photonic crystal cladding (see Figure 4-2(b)).  Light 

entering the fiber will be confined to propagate in the core if it is of a wavelength that 

falls within the band gap of the surrounding photonic crystal because it will be 

forbidden to leak out through the cladding [21, 30-32].  These fibers are being used 

primarily as sensors [33], for dispersion management [34], and for high peak power 

laser delivery [35].   

The second class of fibers, commonly referred to as just photonic crystal fibers 

(PCFs), are the topic of this chapter.  Images of this type of fiber appear in Figure 4-3.  

PCFs are typically composed of a single material such as silica and the most common 

arrangement of air holes is in a triangular lattice as shown in the fibers of Figure 4-2 

and Figure 4-3.  Propagation is along the axis of the fiber and is achieved through 

creation of a high index defect in the periodic lattice, typically silica.  PCFs guide light 

by a process referred to as modified total internal reflection, which can be understood 

through an analogy with step index fibers [36].  PCFs are sometimes used in 

applications to replace step-index fibers but have additional applications due to the 

unique features of these fibers, such as adjustable dispersion [37], high nonlinearity 

[38], and endlessly single-mode propagation [29]. 

 

Photonic crystal fibers 
 

Figure 4-4 compares propagation in a conventional fiber, as described in 

Chapter 2, with that in a PCF.  Because the PCF core is of higher index than the 
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Figure 4-4.  Propagation by means of total internal reflection in a conventional 

step index fiber is compared with propagation in a photonic crystal fiber.

[www.bath.ac.uk/physics/groups/opto/pcf.html] 

PCF

n Total internal 
reflection by average 
refractive index of the 
cladding region

Side viewEnd view Jacket

Cladding

Core
defect

PCF

nnn Total internal 
reflection by average 
refractive index of the 
cladding region

Side viewEnd view Jacket

Cladding

Core
defect



43 

average index of the cladding, these types of PCFs can be compared to a step index 

fiber with a wavelength dependent cladding index [36, 39].  This average cladding 

index is defined as the effective index of the highest index mode of the infinite 

photonic crystal cladding, which changes depending on the wavelength of light.  The 

wavelength dependence can be understood intuitively by considering two cases for an 

infinite photonic crystal with no defects.  For a wavelength of light much shorter than 

the dimensions of the lattice (i.e. the air hole diameter and separation), the small 

spaces between the air holes will be able to be resolved by the light and it will 

propagate confined mostly to the silica, resulting in a mode index very near the index 

of the silica core.  When the size of the wavelength is near to the scale of the lattice, 

the light will diffract across the boundary of the air holes and propagate in both index 

regions, thus reducing the effective index experienced by the propagating mode.  The 

largest wavevector that will propagate in the infinite lattice, konfsm, thus depends on 

the size of the wavelength relative to that lattice and is defined as the fundamental 

space filling mode (FSM).  This wavevector replaces the left side of the inequality 

previously mentioned in Chapter 2 for total internal reflection that shows the limiting 

values of β for bound modes, or konfsm < β < konco.  

The modeling of a PCF as a step index fiber (SIF) is referred to as the scalar 

effective-index method.  This model is useful for approximating the properties of a 

PCF without the complicated vector mode solvers required in order to take into 

account the complex array of dielectric boundaries in the cross-section of these fibers 

[36, 39].  Mode solutions can thus be determined by solving the scalar wave equation 

from in Chapter 2.  This model is most accurate for shorter wavelengths on the order 

of the air hole separation or pitch, Λ, because the mode is well-confined.  As shown in 

Figure 4-5, a PCF is modeled as a SIF with a core radius of ρc, and the cladding index 
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is nfsm, which has been previously defined.  The index of the FSM can be determined 

accurately only through fully vectoral numerical simulations of the photonic crystal 

lattice [40]; however, a scalar approximation is recommended by Birks et al. [39] for 

small air hole fibers and an empirical model has been developed by Saitoh and 

Koshiba [41].  The definition of ρc is not standardized and has been defined in several 

ways, as a fraction of the pitch 0.64Λ [42] or as Λ/√3 [41, 43], and as a function of the 

relative air hole size, d/Λ [44], where d is the air hole diameter.   

The main advantage of the analogy between a PCF and a SIF is that 

established knowledge of the simple SIF can be utilized for predicting the behavior of 

this new type of fiber [36, 39, 41, 43, 45-47].  For instance, several properties such as 

the mode field radius, bend loss, the numerical aperture, splice loss, and beam 

divergence can be calculated from the V-parameter of a step-index fiber and these 

formulas can be applied to a PCF using the effective index model [41, 43, 45, 46, 48].  

A V-parameter for a PCF, VPCF, has been defined by Mortensen et al. [45, 49] as: 

≈

nco  

ncl ≈ nfsm(λ) 

Air 
n=1 

Silica 
n≈1.45 

ρc 
Pitch, Λ 

Figure 4-5.  A scanning electron microscope image of a PCF with a high 

index central defect and the equivalent step index fiber, according to the 

effective index approach.
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 2 22( ) ( ) ( )PCF co clV n nπλ λ λ
λ

= Λ −  (4.1) 

where nco is the effective index of the fundamental mode and ncl is nfsm, both a 

function of the wavelength.  Unlike a standard step-index fiber, the fundamental mode 

cutoff occurs when PCFV π=   [45, 47, 49].  An alternative definition of VPCF, which 

has a fundamental mode cutoff at the same value as a standard SIF, has been used by 

Saitoh and Koshiba for predicting several properties of PCFs such as the mode field 

radius, the nonlinear coefficient, and dispersion [41, 43].  In Figure 4-6, VPCF as 

defined in Eq. (4.1) is plotted versus the normalized wavelength and as a function of 

the relative air hole size, d/Λ.   

Figure 4-6.  VPCF is plotted versus the normalized pitch for d/Λ = [0.3 0.35 

0.4 0.45 0.5 0.55 0.6 0.65 0.7]; VPCF increases as d/Λ increases. 

d/Λ 
increasing 
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Figure 4-6 illustrates the endlessly single mode behavior that occurs in certain PCFs.  

Below approximately d/Λ = 0.41, VPCF will never cross the mode boundary at 

PCFV π= .  The phase boundary between the fundamental and second mode is shown 

in Figure 4-7 [45, 47, 49].   

This endlessly single mode property of small air hole PCFs can be understood 

intuitively by returning again to the wavelength dependence of the cladding index of a 

PCF equivalent SIF.  In a conventional SIF, decreasing the wavelength will reduce the 

mode field area and as the mode becomes better confined in the core the number of 

modes will increase.  For a PCF, decreasing the wavelength will bring the index of the 

cladding closer to the index of the core—a smaller wavelength will sample more of 

the silica in the cladding resulting in a higher index for the FSM—and the light will 

experience a lower index contrast.  In other words, as Λ/λ increases the ∆n between 

the core and the cladding indices will decrease, resulting in weaker mode confinement.  

Thus, the mode field area will not decrease in the same manner as a SIF and two 

Figure 4-7.  The phase boundary between the fundamental and second mode 

is plotted for the air hole size and the normalized wavelength. 
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competing effects will essentially balance out for certain fibers.  Endlessly singe mode 

behavior has also been verified through fully vectoral simulations.   

An important distinction exists between the modes of a SIF and those of a 

PCF.  Because confinement in a SIF is caused by perfect total internal reflection, a 

finite set of real propagation constants exists as bound solutions to the scalar wave 

equation.  Due to the finite extent of the photonic crystal cladding that surrounds the 

core of a PCF, the modes are actually “leaky” modes as evidenced by their complex 

propagation constants.  The modes of a PCF are only perfectly confined if the 

photonic crystal lattice cladding is infinite.  Otherwise, light experiences loss as it 

propagates down a PCF.  As the number of rings of air holes surrounding a core 

increases, the loss decreases.  The loss is also reduced if the relative air hole size is 

larger because the mode becomes more confined and will extend less into the cladding 

[50-53].  

Due to their unique properties, PCFs and other similar microstructured fibers 

have found applications in several areas of optics.  There is specific interest in the 

endlessly single mode capabilities of these fibers since single mode propagation is 

preferred for telecom as well as many other applications.  In addition, because a higher 

core-cladding index contrast can be achieved in fibers composed only of air and silica, 

tight mode confinement can result in a nonlinear index that is much higher than 

conventional fibers or the structure can be modified to confine light to much larger 

areas resulting in high numerical aperture fibers.  Other applications take advantage of 

the large number of adjustable parameters in a PCF cross-section to create high 

birefringence fibers, dispersion compensating fibers, and dispersion shifted fibers [28, 

29].  The development of PCFs with unique dispersion profiles and high nonlinearity 
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have allowed for major advances in nonlinear fiber optics such as super continuum 

generation [54].  

Several vector methods exist for predicting the properties of PCFs.  Localized 

basis function method, biothornormal-basis method, Fourier-decomposition method, 

full-vectoral plane-wave expansion method, and the multipole method [28, 55] are just 

a few of the methods developed in response to the advancement of PCFs.  The plane-

wave expansion method is highly accurate and the most widely used of these methods 

[28].  It is best for infinite structures due to the use of periodic boundary conditions; 

however, the loss of the mode cannot be determined, nor can the guiding properties 

when the photonic crystal lattice cladding is not very extensive as compared to the 

wavelength.  Finite-element method [42], finite-difference, and beam propagation 

method [56, 57], which are commonly used for general electromagnetic problems, 

have also been applied to PCFs [55].  The finite element method is especially useful 

for modeling PCFs with non-circular air holes or otherwise non-symmetric structure 

[58]; however, it is a computational intensive method.  The multipole method is 

advantageous because it is able to farely quickly determine the solutions for a finite 

structure and the loss of a fiber can be predicted.  The next chapter will explain the 

multipole method in more detail; this method was used for the research presented in 

this dissertation.  
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Chapter 5  

THE MULTIPOLE METHOD 

Introduction 
 

In order to accurately model the photonic crystal fiber structure, a fully 

vectoral method for solving the wave equation is required due to the complicated 

arrangement of index boundaries that make up a PCF.  Several numerical simulation 

methods have been developed and tested to meet this challenge [28, 55].  One 

advantage of the multipole method over other methods is the ability to take into 

account the finite nature of the fiber cladding.  The multipole method is not limited by 

periodic boundary conditions, and can therefore predict the complex propagation 

constants that describe the modes in these types of fibers [29].  Unlike the finite-

element method, the multipole method has been demonstrated to be extremely 

accurate without unreasonable computation times.  Although the multipole method 

was developed to solve for the modes of photonic crystal fibers, any waveguide with 

more than one circular index boundaries lends itself well to this method, such as 

waveguides with high or low index cores.  The multipole method has been used by the 

author to simulate high-index defect photonic crystal fibers (PCFs) and multi-core 

fiber bundles.  The method and implementation will be described in this chapter. 
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Multipole method  
 

In the multipole method (MM), each core is considered as a scatterer of 

electromagnectic fields [59-61].  Because the boundaries for these cores scatter 

electromagnetic waves, they can also be viewed as sources.  An illustration of several 

cores as scattering sources in a fiber is shown in Figure 5-1.  The multipole method is 

founded on the description of the field at any point in the fiber as the superposition of 

the fields sourced or radiated from each of these cores and the reflection of this field 

off of the cladding boundary, as represented pictorially in Figure 5-2.  Figure 5-3 

defines the coordinate systems to be used in the more detailed derivation that follows.  

The multipole method as presented here is limited to circular index boundaries, 

Figure 5-1.  Illustration of each core in a fiber as a scattering or radiating 

source of electromagnetic field. 

 

cladding 

core
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Figure 5-3.  End view of a fiber with multiple cores.  Local (with subscript l

and the core center as the origin) and global (with point O as the origin) 

coordinate systems have been defined. 

Core l 

Core j 

r

O arg( )rθ =

jc

lr

lθ

Figure 5-2.  Pictoral representation of the Wijnaard or global expansion, used 

in the multipole method as an expression of the field solution.  
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although this restriction is not inherent to the method [62].  The complication of 

allowing elliptically shaped cores has not been added to the programs used.  Several 

sources have been consulted in order to present the multipole method theory in this 

chapter [29, 59, 63] 

Solving the wave equation using the multipole method begins in a similar 

manner to the method described in Chapter 2 for a step-index fiber.  Again, cylindrical 

coordinates are used and solutions to the scalar wave equation for the z-component of 

the field can be used to obtain the vector field; however, amendments to the method 

presented in Chapter 2 must be made in order to allow complex modal solutions and 

the interaction of multiple cores.  First, β is defined as the speed of propagation of the 

mode in the z-direction, and the wave equation becomes the Helmholtz equation, 

written as 

 ( )2 0k F⊥∆ + =  (5.1) 

where 2 2 2k k n β⊥ = − , n is the index of the core or cladding, and F is either the 

electric or the magnetic field.  The field is then expanded as a Fourier-Bessel series: 

 (1)( , ) ( ( ) ( )) exp( )n n n nF r A J k r B H k r inθ θ⊥ ⊥= +∑  (5.2) 

where ( , )nJ r θ  is Bessel’s function of the first kind and (1) ( , )nH r θ is Hankel’s function 

of the first kind, a complex combination of Bessel’s functions of the first and second 

kind.   

A more intuitive understanding of the MM can be gained by interpreting the 

behavior of the fields represented by Bessel and Hankel functions.  Bessel’s functions 

of the first and second kind are plotted in Figure 5-4.  Hankel functions are a complex 

combination of these two functions and have a singularity at x = 0.  Consider, for 

example, the field in a circular donut-shaped region in the waveguide of Figure 5-3 
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surrounding the origin that does not include any cores.  The Hankel functions 

represent outgoing waves or fields radiated from sources near the origin or inside the 

donut center; the sources are not contained in the region but are surrounded by the 

region.  These fields can only be expanded in Hankel functions and are represented by 

a set of coefficients Bn in Eq. (5.2).  Bessel’s function of the first kind is plotted in 

Figure 5-4(a) and is regular everywhere; therefore, these functions describe radiated 

fields with coefficients An where the source is located beyond or outside the region.  

Whether or not a field is considered regular or outgoing is thus determined by the local 

coordinate system, or the system centered at each core.  For example, a field that is 

considered outgoing from one perspective will be interpreted as regular in a region 

whose system is displaced from the original system.  Graf’s theorem is used to 

generate a matrix to transform between coordinate systems and, consequently, types of 

fields as A=HB.  See the following reference [29] for an explanation of Graf’s addition 

theorem and additional resources. 

Figure 5-4.  Plots of Bessel functions of the first (a) and second (b) kind. 

a b 
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Considering each circular index boundary, or core, in a fiber as a source or 

identically as a scatterer, the region outside a core will contain both types of fields.  A 

regular field from an external source entering the region around a core will be 

scattered at the index boundary, thus radiating away as an outgoing field.  A reflection 

matrix will generate the outgoing field from the incident regular field, RA=B.  When 

multiple cores are contained in a system, the regular field near a core will be the sum 

of fields from any external source and the reflected regular fields outgoing from other 

cores which act like sources.  The outgoing field from that same core will be the 

reflected regular field.  Using the MM, a multi-core waveguide becomes a complex 

system of interfering, scattered fields.  In the absence of an external source, the 

solutions or steady states are the modes of the system.  With this intuitive 

understanding of the MM, it can now be developed more rigorously into a useful 

numerical tool. 

The mathematical foundation of the MM is based on the forced consistency of 

two expressions for the field—one from a local perspective and the other from a 

global perspective.  First, near the jth core, the fields are described by a local expansion 

that is written in the local coordinates of the core:  

 (1)( ) ( ) exp( )Ej Ej
z m m j m m j l

m
E A J k r B H k r imθ⊥ ⊥⎡ ⎤= +⎣ ⎦∑  (5.3) 

The local coordinates are defined by polar axes centered on each core, or j jr r c= − , 

where jc is the location of core j in the global coordinate system of r  (see Figure 5-3).  

The magnetic field can be written in the same manner as in Eq. (5.3) but with different 

coefficients.  In order for expressions of the electric and magnetic field to have 

identical form, a scaled magnetic field 0 0,  / ,K ZH Z µ ε= =  replaces the actual 

magnetic field in all calculations and the coefficients for the magnetic field are 
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Kj
mA and Kj

mB .  Equation (5.3) states that the field around a core is due to sources within 

the region (outgoing or scattered field that appears to be sourced at the local core) and 

outside the region (regular field that contains the radiated field from all other cores). 

A global expansion of the fields that is valid everywhere is based on the work 

of Wijngaard [29, 59].   

 

(1)

1

0

( ) exp( arg( ))

( )exp( )

N
Ej

z m m j j
j m

E
m m

E B H k r im r c

A J k r imθ

⊥
=

⊥

= −

+

∑∑

∑
 (5.4) 

In Eq. (5.4) , the field is described as a superposition of the outgoing waves sourced at 

all N cores (and propagating away from each of the cores) and the field reflected from 

a jacket surrounding the cores, of index 0, which appears to be sourced outside the 

region and is therefore regular.  This expansion was represented pictorially in Figure 

5-2.  For additional discussion of the Wijngaard expansion see reference [29]. 

Setting Eq. (5.3) equal to Eq. (5.4) yields the following expression, where the 

outgoing field from core l has been cancelled from both sides: 
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θ
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=
≠

⊥
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+

∑ ∑∑

∑
 (5.5) 

Because each term in these sums refers to a different origin or local coordinate system, 

the H matrix generated through Graf’s addition theorem, as referred to previously, 

must be employed for these basis transformations.  Therefore, the outgoing field from 

core j contributes to the local regular field near core l through the following 

transformation: 



56 

 

(1)

(1)

( ) exp( arg( )) ( ) exp( arg( ))

( ) exp( ( )arg( ))

Elj Ej
n n l l m m j j

n m

Elj lj Ej
n nm m

m

lj
nm n m lj lj

A J k r in r B H k r im r

A B

H k c i n m c

⊥ ⊥

− ⊥

=

=

= − −

∑ ∑

∑H

H

 (5.6) 

and lj j lc c c= − .  For the derivation of the elements lj
nmH , see references [29, 59].   

In order to simplify the notation and to facilitate the implementation of these 

equations into a numerical program, coefficients and operators will now be 

reformulated as vectors and matrices.  Ej
nA still represents a numerical value but now it 

is just the nth element in the vector EljA  with length of M.  Similarly, lj
nmH is an 

element in the M x M matrix ljH which performs basis transformations between the 

local systems of cores l and j.  The integer M is the number of terms in the multipole 

expansion from –m to m, including zero; therefore, M = 2 x multipole order +1.  The 

sum over m no longer needs to be written as it is implicit to the matrix multiplication.  

The transformation of Eq. (5.6) can then be rewritten as: 

 Elj lj Ej=A BH  (5.7) 

In a similar manner, the field due to the jacket, as referred to in Eq. (5.5), can also be 

written in the local coordinate system of core l . 

 0 0( ) exp( ) ( ) exp( )El E
n n l l m m

n m
A J k r in A J k r imθ θ⊥ ⊥=∑ ∑  (5.8) 

Using matrix notation for the basis transformation: 

 
0 0 0

( )( 1) ( )exp( ( )arg( ))

El l E

n m
n m l lJ k c i n m c−
− ⊥

=

= − −

A AJ
l0
nmJ

 (5.9) 

When Eq. (5.6) and Eq. (5.8) are substituted into Eq. (5.5), all fields are now 

expressed in the local coordinates of core l and ( )exp( arg( ))n l lJ k r in r⊥  is common to 
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all sums in the expression.  Eq. (5.5) can be simplified to the following matrix 

expression for the coefficients: 

 0 0 0

1 1

N N
El Elj El lj Ej l E

j j
j l j l
= =
≠ ≠

= + = +∑ ∑A A A B AH J  (5.10) 

Eq. (5.10) represents the regular incident field at core l in terms of the outgoing waves 

from other cores and the reflected field off the jacket.   

Eq. (5.10) is valid for both the Ez and the Kz fields.  In anticipation of the 

complication that would be added to a modeling program if the electric and the 

magnetic fields needed to be computed separately, they are combined at this time into 

a single expression.  The new vector lA  has a length of 2M and the first M elements 

describe the electric field while the next M elements correspond to the Kz field, or 

[ ; ]l El Kl=A A A  and likewise for the lB  coefficients.  The matrix ljH is rewritten as 

the block diagonal matrix ljH with dimensions 2M x 2M, containing the two 

matrices ljH , for each type of field in a manner that does not mix the coefficients.  

 0 0

1

N
l lj j l

j
j l
=
≠

= +∑A B AH J  (5.11) 

In addition, the sum over N can be eliminated as well.  For a system with N 

cores, 1[ ;.. ;.. ]j NA A AA = , likewise for B  and Eq. (5.10) is rewritten as: 

 0 0B+A = HB J A  (5.12) 

This matrix representation allows all cores and both fields to be manipulated at the 

same time. 

During the introduction to the MM as detailed at the beginning of this section, 

a scattering or reflection operator R was described in addition to the basis 

transformation matrix H.  Coupling between the coefficients A and B occurs at the 
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boundaries of the cores, where a regular field becomes either an outgoing field when it 

is reflected or a regular field inside a core when it is transmitted.  The matrix R, as 

derived from the boundary conditions, contains the details of this interaction.  In 

matrix notation, this relationship is written as: 

 

l l l

EEl EKl
l

KEl KKl

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B R A

R R
R

R R

 (5.13) 

where each matrix in lR  is a diagonal M x M matrix of corresponding reflection 

coefficients VVl
nR .  The derivation of these coefficients for circular boundaries is not 

included here but can be found in the following sources [29, 59].  When all cores are 

included, the matrix is rewritten asR which is a block diagonal matrix of matrices lR  

for each core.  The field reflected at the jacket, which is a regular field inside the 

cladding, can be expressed similarly as reflected outgoing field incident on the jacket. 

 0 0 0=A R B  (5.14) 

In an analogous manner to Eq. (5.9), the outgoing field at the jacket is a combination 

of all the fields from each core. 

 
0 0 0 0

1

( ) exp( ( ) arg( ))

N
j B

j

n m l lJ k c i n m c
=

− ⊥

= =

= − −

∑ J J BB B

0l
nmJ

 (5.15) 

The 0BJ  and 0BJ  matrices are 2MN x 2M column and 2M x 2MN row matrices, 

respectively, that describe the conversion of the individual field in the local core 

coordinate systems to the field near the jacket in the global coordinate system. 

It is now possible to reexamine the expression in Eq. (5.12) by eliminating the 

A coefficients using Eq. (5.14), Eq. (5.15), and Eq. (5.13).  A simple homogenous 

system of equations results: 



59 

 0 0 0[ ( )] 0B B− − ≡ =R H J R J B MBΙ  (5.16) 

This is also called the field identity or Rayleigh identity, shown here without external 

sources (ie. the right hand side is zero).  Non-trivial solutions to Eq. (5.16) represent 

mode solutions to this multi-core system. 

 

Implementation in Matlab 

 

The implementation of this method as a Matlab program is rather 

straightforward since the Matlab language utilizes matrices and vectors and is well-

suited for numerical rather than symbolic calculations.  The Matlab MM program was 

organized into different Matlab function files for each matrix, 0 0, B BR  H, J , J and 0R , 

in Eq. (5.16).  These files require the index distribution, the expansion order, the size 

of the computation window, and the wavelength as inputs.  An additional Matlab m-

file was created to access the matrix function files and to perform calculations on the 

M -matrix, which is necessary in order to determine the modes or to plot the modal 

fields.  

The effective indices of the mode solutions are located at the minimum points 

of the complex determinant of theM -matrix.  These minimums can be found when log 

base 10 of the modulus of the determinant is plotted over a complex plane of values 

for the effective index.  Alternatively, a scan for minimums can be made first on the 

real axis and then consequently on the imaginary axis; although more computationally 

efficient, this method is not as accurate.  Additional information about appropriate 

minimum finders appears in the following citations [29, 63].  The field coefficients for 

a particular mode are found through a singular value decomposition or by determining 
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the eigenvectors for the smallest eigenvalues when theM -matrix is evaluated with the 

corresponding mode index.  At least one eigenvalue will be approximately equal to 

zero if the mode is valid and multiple eigenvalues that equal zero will exist if the 

mode is degenerate.  The modal fields are then calculated using these coefficients and 

the global expansion of Eq. (5.4). 

The implementation of the multipole method as a Matlab program was 

successful, arriving at accurate effective index solutions and mode fields as compared 

to those examples given in reference [59].  Examples of the field output for the Matlab 

program are given in Figure 5-5 and Figure 5-6 for two modes of a photonic crystal 

fiber with a single ring of air holes, wavelength of 1.45 µm, air hole separation or 

pitch of Λ = 6.75 µm, and air hole diameter d = 5 µm.  The index of refraction of the 

fiber is n = 1.45 and the index of the air holes is 1.  The number of terms in the 

multipole expansion was 11, therefore m = 5.   

In this fiber, the air holes are arranged in a triangular or hexagonal lattice 

structure, also referred to as having C6ν symmetry in group theory, and the 

fundamental mode is therefore two-fold degenerate [64-67].  In Figure 5-5, the field 

components of one of the degenerate fundamental modes are shown.  Notice that the 

nodal plane of the mode does not happen to fall along the obvious x- or y-axis.  While 

the exact orientation of this nodal plane is not significant, the reason the field is 

equally distributed in the x- and y- components, rather than appearing x- or y- 

polarized, is a result of the mismatch between the orientation of the nodal plane and 

the components of the field.  Figure 5-6 shows the components of the field for the first 

higher order mode.  These plots are typical of PCFs of this type and are very similar in 

shape to the modes of a step-index fiber. 
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Figure 5-5.  One of the degenerate fundamental modes of the PCF 

described in the text. 
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Figure 5-6.  Modal fields for the first higher order mode of the PCF described 

in the text. 
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When using numerical simulations for research, it is extremely important to 

understand how the precision of the program output as well as the time duration of the 

calculation can be manipulated.  Typically, these two factors exist in a trade-off; that 

is, given unlimited time, an extremely precise result can be obtained.  For the 

multipole method calculations, the number of air holes or cores and the multipole 

expansion order determine the size of the M -matrix and thus the computation time; 

however, these two parameters are also intimately tied to the reliability of the output.  

If the number of terms used in the multipole expansion is insufficient, the results and 

predicted behavior for the fiber are inaccurate and can appear non-physical.  In 

addition, certain properties of PCFs do not change significantly with additional rings 

of air holes, while other properties, such as the loss, are extremely sensitive. 

To reduce computation time, the simulated structure should include only the 

minimum number of air holes necessary.  For example, if the actual PCF contains five 

rings of air holes around a single core, there will be 90 air holes included in the 

simulation.  This number can be reduced by incorporating symmetries into the 

program [29, 63].  For a structure with six-fold symmetry, only one-sixth of these air 

holes would need to be included in the simulation, thus reducing the size of the M -

matrix.  Furthermore, depending on the parameter being calculating, one or two rings 

of air holes may be sufficient.  In general, the calculated loss is extremely sensitive to 

the number of air holes while parameters based on the value for the real part of the 

effective index (such as the dispersion or coupling length) tend to require only a single 

ring of air holes unless d/Λ is on the order of 0.5 [50, 51].  The number of rings of air 

holes needed can be easily verified by performing calculations first with a single ring 

and then adding more rings to verify convergence.  A point will be reached where the 
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extra computation required will not justify such a small change in the output value.  In 

a practical situation, a minimum degree of precision can be estimated based on the use 

for the results of the calculation.   

The optimum number of multipole terms to include in the expansion can also 

be determined through tests of convergence [63].  For example, the first calculation 

performed should include a smaller number of terms.  As the number of terms is 

increased, the values for the real and imaginary part of the effective index should 

converge to a single value.  The amount of change the index incurs with increasing 

orders will decrease and a point will be reached where increasing precision is not 

worth the increased computation time.  The convergence of the real and imaginary 

part of the mode effective index is shown in Figure 5-7 for an example PCF.  

An additional parameter for monitoring the accuracy of the MM program has 

been defined by Kuhlmey et al. [63].  This parameter is referred to as the W-parameter 

and is a measure of how closely the local and global (or Wijngaard) expressions for 

the field agree.  The W-parameter is defined in Eq. (5.17) as 

 1

1

1 1 1

1 1

( ) ( )

( )

local Wijngaard
z z

C
Wijngaard
z

C

E E d
W

E d

θ θ θ

θ θ

−

=
∫

∫
 (5.17) 

where C1 represents the boundary of core 1; therefore θ1 is in the local coordinate 

system of core 1.  The MM method is based on the forced consistency of these two 

expressions which will only be identical on a core boundary when all multipole orders 

are included.  As the number of included multipole terms increases, W will decrease 

and the value for the effective index will stabilize [63].  The convergence of W is 

shown in Figure 5-8(a) for the same fiber as Figure 5-7.  Additional insight can be 

gained by comparing the values for the z-component of the field on a core boundary as 
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a function of that local coordinate system angle and as calculated by both the local and 

global expansions.  This comparison is shown in Figure 5-9 (theta is in units of 

radians).  The real part of the z-component of the electric field is plotted in Figure 

5-9(a) when m = 2.  The number of multipole terms is increased in Figure 5-9(b) to m 

= 7.  Likewise, the imaginary part of the field is plotted in Figure 5-9(c) and Figure 

5-9(d) for the same orders, respectively.  Notice that the global and local expansions 

are nearly indiscernible when more terms are included.  By plotting the differences 

Re( )wijn local
z zE E−  and Im( )wijn local

z zE E− , the agreement between these expressions 

can be assessed more closely.  These values are plotted in Figure 5-8(b) for m = 2 and 

in Figure 5-8(c) for m = 7 and it is evident that the magnitude of the difference 

decreases for larger values of m.  An analysis of this kind provides a detailed 

understanding of the precision of the program.  Additional information about assessing 

the accuracy and precision of the numerically implemented MM are given in [29, 63].  

In general, as the size of the air core increases and as the pitch increases, more terms 

must be included in the expansion.  

Other sources of inaccuracy or error are inevitable when performing numerical 

calculations.  Comparisons with already established values may assist in determining 

if these problems exist.  When implementation of the MM Matlab program was 

complete, several comparisons with published results were made in order to establish 

the accuracy of the program.  In addition, the size of the computation space chosen or 

the step size can also be sources of error.  Convergence tests can again be used to 

establish a minimize number of points for an accurate computation.  Above all, results 

from numerical simulations should be constantly scrutinized for physical plausibility. 
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Figure 5-7.  The convergence of the real a) and imaginary b) part of the mode 

effective index for a PCF with d/Λ = 0.90, Λ = 0.75 µm, and λ = 0.60 µm. 
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Figure 5-8.  The convergence of the W-parameter is shown in a).  In b) and 

c) the difference between the z-component of the electric field as calculated 

by global and local expansions is shown for two different orders.  m = 2 in b) 

and m = 7 in c) 

b 

c 
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Figure 5-9.  The real a) and b) and imaginary c) and d) parts of the z-

component of the electric field are plotted versus the local angle as calculated 

using the global and local expansions.  m = 2 in a) and c) and m = 7 in b) and 

d). 
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Utlizing the CUDOS and Matlab MM programs 

 

A Fortran based program using the multipole method has also been distributed 

by the Centre for Ultra-high bandwidth Devices for Optical Systems (CUDOS) at the 

University of Sydney [3].  The CUDOS MOF Utilities Software is freely available on 

the internet and was also used by the author.  The CUDOS software uses text files as 

inputs, which are executed through a command window.  The outputs are text files of 

the mode indices as well as files specific to Winfield, the CUDOS field plotting 

program.  The program itself and more information on the use of the CUDOS MOF 

Utilities Software can be found at the following reference [3].   

The CUDOS program is a more user friendly and a faster implementation of 

the MM than the author’s Matlab version.  The speed advantage of the CUDOS 

program is most likely due to the use of the Fortran programming language and a 

faster minimum finding algorithm.  The MM Matlab program was rather slow for 

computing the mode indices because the method for finding the minimums in the M -

matrix was not optimized.  Moreover, the CUDOS program takes advantage of the 

symmetry in some fibers through the application of group theory.  In these cases, a 

matrix of only a fraction of the original size is computed.  This tool was not yet 

incorporated into the MM Matlab program since most calculations were performed on 

structures without symmetry.  Besides increased speed and the use of symmetry to 

further reduce computation time, the theory and understanding of these two programs 

are identical.   

The CUDOS program has a few additional advantages when certain 

parameters are being calculated.  The CUDOS Software includes an additional 
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algorithm for quickly calculating the dispersion across a large range of wavelengths; 

many points can be calculated in a fraction of the time it would take to search for the 

modes individually.  Due to the use of a two-dimensional minimizing algorithm, the 

CUDOS program is also more accurate for high loss fibers.   

Because the CUDOS MOF Utilities Software cannot automatically output the 

data for the calculated modal fields, the two programs are used in unison to take 

advantage of the strengths of each implementation.  Matlab was used to generate the 

structure files and the parameter files (both are text files) that are the required input for 

the CUDOS program in such a manner that a large number of structures could be 

solved for sequentially.  The CUDOS prompt window was used to execute the files 

and then Matlab opened and interpreted the output files.  Specifically, when solving 

for the modes of a particular fiber, the CUDOS output that is accessed by Matlab is a 

text file containing the complex indices for the modes along with the computational 

precision.  Matlab can then calculate the fields directly from the mode indices or it can 

read another CUDOS text file that includes the B and A coefficients for the electric 

and magnetic fields.  The modal fields are then calculated using the global expansion 

and these coefficients.  

A few noteworthy problems have arisen through use the CUDOS program 

itself and through the combined use of the two programs.  First of all, it was 

discovered that the CUDOS program produces false minimums when solving multi-

core step-index fibers when symmetries are considered.  Calculations without 

symmetries, however, produced accurate results for these types of fibers.  When using 

the CUDOS program, it is also difficult to accurately detect closely spaced modes for 

non-symmetric structures.  Several test runs of increasingly small windows must be 

performed in order to estimate the index value before an accurate result can be found.  
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In addition, the dispersion calculations can be compromised when modes are non-

degenerate because the program will arbitrarily follow one or the other mode as the 

wavelength is changed.  One limitation of the multipole method in general is that it 

does not converge for single core step-index fibers.  Due to the foundation of the 

method on a system of interacting scatterers, one core is not a viable situation.   

A general problem of mode non-orthogonality has also manifested itself in the 

MM programs.  It appears that at shorter wavelengths, when modes are well-confined, 

the degree of non-orthogonality is extremely small.  The use of both programs in 

sequence can exacerbate the non-orthogonality of the modes due a “mismatch” 

between the mode indices determined from the CUDOS program and the minimums 

of the MM Matlab M -matrix.  Due to slight differences in the program languages and 

the implementation, the mode indices calculated by the CUDOS program are not the 

exact same minimums for the MM Matlab program.  This problem can be avoided by 

using directly the CUDOS output for the B and A coefficients of the field.  The mode 

non-orthogonality is especially compromising to results when these modes are used in 

a normal mode expansion as described in Chapter 3.  An additional error is then 

present in calculations of parameters such as the power which use the mode expansion 

as an expression for the field; however, if the magnitude of this error is guaranteed to 

be much smaller than the values being calculated, it is not seen as a problem.  

Additional research must be done in order to understand the exact source of this error 

and to understand the regimes when it can be ignored.  The integrity of the results 

presented in this dissertation is not compromised by this inaccuracy. 
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Chapter 6  

COUPLING IN PHOTONIC CRYSTAL FIBERS 

Introduction 
 

In this chapter, the theories for predicting coupling behavior as discussed in 

Chapter 3 will be applied to multi-core PCFs.  First, a scalar approximate model and a 

vector model based on these theories will be compared.  A scalar method that takes 

advantage of the effective index model for PCFs as described in Chapter 4 and 

coupled mode theory (CMT) appears to be a simple way for approximating the 

behavior of a two-core PCF.  A more accurate method uses the normal mode 

expansion and requires the calculation of the two-core PCF modes using the Multipole 

Method explained in Chapter 5.  In this chapter, these two methods are compared and 

then the basic coupling properties of various types of two-core PCFs are described as a 

function of the fiber parameters.  . 
 

Comparison of vector and scalar models 
 

As an assessment of the accuracy of the scalar effective index model for 

predicting the coupling in two-core PCFs, the coupling lengths for a range of fiber 
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structures are calculated using a vectoral model and then compared to the results of a 

scalar model.  For the scalar method calculations, CMT is applied to a two-core PCF 

using the effective index model.  Recalling from Chapter 3 that CMT is based on the 

mode solutions for the individual independent waveguides, the mode solutions for a 

two-core PCF could then be expressed as the linear superposition of the modes of a 

single core PCF.  This concept is illustrated in Figure 6-1 for a two-core PCF.  The 

mode fields for even a single core photonic crystal fiber, however, are fairly 

complicated and the calculation of the mode overlap from these fields would require 

incorporation of the vector nature of the fields.  In order to create a completely scalar 

model, each core in the two-core PCF is replaced by an equivalent step index fiber 

using the effective index model as shown in Figure 6-2.  CMT is then applied to this 

two-core step index fiber in the same manner as described in Chapter 3. 

Figure 6-1.  CMT interpretation of a two-core PCF as the sum of two single 

core PCFs 



74 

For a step-index fiber, the mode effective indices and the modal fields are 

fairly quick to compute by solving the scalar wave equation as described in Chapter 2.  

Only the circularly symmetric fundamental mode is considered in this case which 

further simplifies the calculations.  The coupling constant, Kab, is computed from these 

fields according to Eq. (3.8), as an integral over the area of core b (the right core) and 

the coupling length is determined from Eq. (3.13).  As mentioned in Chapter 3, a 

scalar and an empirical model have been proposed for calculating the index of the 

fundamental space filling mode, nfsm, or the cladding index in the effective index 

model.  Both methods are used here in computations of the single core modes, and 

then Kab.  Results for the coupling length using each method for determining nfsm are 

compared to the vectoral results from the multipole method simulations.  The coupling 

length calculated from the mode overlap of the TM fundamental mode of an 

Figure 6-2.  Application of the effective index model to a PCF with two cores.

Image A is of a two core photonic crystal fiber, while B is the equivalent two-

core SIF.   

nco = nfund(λ) 

ncl = nfsm(λ) 

ρc 

B A 
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equivalent SIF is compared with the x-polarization coupling length.  Likewise, the 

coupling length calculated from the TE mode is compared to the y-polarization 

coupling length. 

The fully vectoral model uses the numerical simulation program based on the 

multipole method described in Chapter 5 to calculate the modes of the complete two-

core system.  The modes of a two-core PCF closely resemble those of a two-core step-

index fiber and the real part of the x- and y- components of the electric field are shown 

in Figure 6-3.  The two-fold degenerate fundamental mode of a single core PCF is also 

shown and can be viewed as an x-polarized and a y-polarized mode.  A mode is 

considered to be y-polarized when the y-component of the electric field is much larger 

than the x-component, and vice versa for an x-polarized mode.  These modes can be 

categorized according to polarization and symmetry as is typical of a two-core fiber.  

A more clear comparison of the symmetric and antisymmetric modes for a single 

polarization is given in Figure 6-4.  After the modes are solved, the coupling length 

can be determined from the power using the normal mode expansion as explained in 

Chapter 3 using Eq. (3.6). 

Figure 6-5 compares the beat length as calculated from scalar and vector 

models as a function of pitch for photonic crystal fibers of five different relative air 

hole sizes.  In plots A and B, the scalar approximation for nfsm is used [39], while in 

plots C and D, the empirical method of Saitoh and Koshiba is utilized [41]; the solid 

lines are the results from the multipole method.  Figure 6-5 shows an overall tendency 

of the effective index model to underestimate the coupling length, based on the 

assumption that the vector model should produce more accurate results.  It is 

interesting to note that in plots A and B, the general relationship between the coupling 

length and the pitch is the same regardless of the model; however, the values for the 
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Figure 6-3.  The modes of a single core PCF and a two-core PCF.  For the 

two-core fiber, the amplitudes of the field components are shown. 
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Figure 6-4.  A closer examination of the even and odd modes of a single 

polarization for a two-core PCF. 
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A 

D C 

B 

Figure 6-5.  Comparison of different methods for obtaining the x- and y-

polarization coupling lengths of two core PCF fibers.  The dashed lines represent 

results using the effective index model while the solid lines are values calculated 

from a vector method.  In plots A and B, a scalar method is used for determining 

nfsm, while in plots C and D nfsm is found using an empirical method.  Each color 

indicates a different ratio of d/Λ.  Λ = 0.80.  Data missing from plots A and B 

indicate regions where the method is no longer valid. 
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coupling length appear to be low by approximately two orders of magnitude.  In plots 

C and D, the overall magnitudes of the predicted coupling lengths tend to agree 

between the two models for low pitch values, but the relationship between the 

coupling length and the pitch as derived from each model is distinctly different.   

A misrepresentative definition of ρc may have led to some discrepancy 

between the scalar and vector models.  Performing the simulations again with an 

alternative definition of the core radius, ρc = 0.64Λ (see Chapter 3), produced very 

little change in the plots.  The relationships were identical but the beat length values 

shifted only slightly higher.  An additional definition of ρc that is dependent on the air 

hole size may be more accurate.  The plots were again reproduced for ρc = FΛ, where 

F is the filling fraction for a triangular lattice: 

 
2

2 3
dF π ⎛ ⎞= ⎜ ⎟Λ⎝ ⎠

 (6.1) 

and d is the diameter of the air holes [39].  This value for ρc changed the relationships 

and values in Figure 6-5 in a slight but noticeable manner, yet did not improve the 

comparison between the scalar and vector models.  

Comparing plots A and B with C and D demonstrates a lack of agreement 

between the scalar and empirical models used for the calculation of nfsm.  The 

empirical model is assumed to be more accurate than the scalar model because it 

requires fewer approximations and has been shown to produce very accurate results 

when compared to a vector method for calculating nfsm; however, the relationship 

between the coupling length and the pitch predicted by the scalar model for nfsm 

appears to match more closely with the relationship found using the multipole method.   

A recent paper performs the same type of comparison, however, using an 

improved effective index model as the scalar model and the finite element method as 
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the vector model [68].  The development of the improved effective index model 

(IEIM) [44] was motivated by the problems noticed here such as the lack of a standard 

definition for the core radius in the PCF equivalent SIF.  In IEIM the radius is defined 

as a function of the pitch and the relative air hole size and is empirically obtained.  Yu, 

Liu et al. demonstrate success in predicting the coupling length of two-core PCFs 

using this model, as verified using the finite element method [68]. 
 

Coupling properties of two-core PCFs 
 

The coupling properties of a two waveguide system are determined by the 

overlap of the modes of the two individual cores and are therefore extremely sensitive 

to changes in the mode field area and the core separation.  In a two-core SIF, the 

coupling length is dependent on the core size and separation relative to the wavelength 

(see Chapter 3), given that the core and cladding materials do not change.  For a two-

core PCF, the air hole arrangement that makes up the cladding plays a critical role in 

determining the coupling properties of the fiber.  The vector model discussed in the 

previous section will now be used to describe how the coupling length of a two-core 

triangular lattice PCF depends on the air hole size and the pitch. 

As explained in Chapter 4, for a particular wavelength, increasing the size of 

the air holes in a PCF will result in a larger index contrast between the core and the 

cladding and therefore a well-confined mode.  Figure 6-6 demonstrates this trend; for 

a particular value for the pitch, increasing the air hole size decreases the mode 

effective area.  When the mode field area is smaller, the perturbation experienced by 

the second core will be reduced and the coupling length will increase.  Although 

increasing the pitch increases the mode area, it also increases the separation between 
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the cores.  The overall effect of increasing the air hole separation, for the same relative 

air hole size, is to increase the coupling length.  Figure 6-7 demonstrates the 

relationship between the x- and y- polarization coupling length and both the air hole 

separation and the air hole size for a particular wavelength.  The coupling length for a 

y-polarized input is always longer in the case that the orientation of the two cores is 

along the x-axis.  In summary, two cores in a PCF will be weakly coupled if d/Λ and 

Λ are both large.  

 

Figure 6-6.  The mode effective area is plotted versus the pitch for several 

different relative air hole sizes.  λ = 1.55 µm. 
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It is sometimes more convenient to view the relationship in Figure 6-7 as a 

function of the normalized wavelength.  Figure 6-8 displays the coupling length for an 

x-polarized input as a function of the wavelength divided by the pitch; material 

dispersion is ignored.  From this plot it is evident again that the coupling length 

increases as the size of the air holes increases.  In addition, the coupling length will 

decrease as the wavelength increases for a particular core separation.  As the 

wavelength increases, the mode will become larger and leak into the neighboring core, 

increasing the strength of the coupling. 
 

Figure 6-7.  The coupling length as a function of the pitch for four values of 

the relative air hole size.  The solid lines indicate the coupling length for a y-

polarized input while the dashed represent the x-polarization.  The 

wavelength is 0.80 µm  
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In the two-core PCFs examined thus far, the air holes in the cladding are 

arranged such that an air hole is placed between the two cores, see Figure 6-2.  An 

alternative arrangement appears in Figure 6-9, and has been labeled by some groups as 

a Type 1 two-core PCF [69].  The coupling lengths for these two types are compared 

for a particular air hole size in Figure 6-10(a).  The coupling length in Type 2 fibers is 

longer because the placement of the air hole directly between the two cores reduces 

the rate at which power leaks from one core to the other.  In Type 1 fibers, the lack of 

an air hole between the cores causes an increase in the coupling strength.  In Figure 

6-10(b), the coupling length for Type 1 fibers is plotted versus the pitch for four 

different air hole sizes.  The same trends are observed in both types of fibers.  The  

Figure 6-8.  Coupling length for an x-polarized input as a function of the 

normalized wavelength for several different values of the relative air hole 

size, d/Λ. 
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a 

b 

Figure 6-9.  Type 1 (a) and Type 2 (b) two-core PCFs. 
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Figure 6-10.  The coupling length for Type 1 and Type 2 two-core PCFs are 

compared for d/Λ = 0.5 (a) and the coupling length as a function of the pitch is 

shown for Type 1 fibers in (b) for four different values of the relative air hole 

size.  

b 

a 
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plots in Figure 6-10 can be compared to Figure 4 and Figure 5 of Reference [69].  The 

results of this group were duplicated as an additional check for the accuracy of the 

Matlab multipole program and the normal mode expansion method implemented to 

compute the coupling length.  The finite element method was used to generate the data 

in this reference. 

In summary, when short coupling lengths are desired, the best design would be 

a Type 1 arrangement of a two-core PCF with small, closely spaced air holes.  

Because of the motivation to produce smaller couplers and splitters, short coupling 

lengths are necessary for these types of applications.  For applications such as 

endoscopes, optical interconnects, and sensors, long coupling lengths are necessary in 

order to prevent the exchange of information between the cores which would degrade 

the performance of these types of devices.  In this latter case, Type 2 fibers with large 

air holes and large air hole spacing would be preferred.  

Calculations of the coupling length use the real part of the effective index of 

the four modes of the fiber and are fairly sensitive to the precision of these values.  If 

the index is not precise enough, non-physical behavior is predicted.  Both the 

expansion order and the number of rings of air holes included in the multipole method 

simulation can affect the results.  The optimum situation for each two-core PCF 

depends on both the air hole size and separation.  See Chapter 5 for the details of the 

convergence analysis.  In general, PCFs with large air holes require a larger number of 

terms in the multipole expansion; in addition, increasing the pitch for a particular air 

hole size also requires the inclusion of more terms in order to obtain accurate results.  

In Figure 6-11, the coupling length is plotted versus the pitch for a Type 2 two-core 

PCF with d/Λ = 0.95 for simulations of order m = 6, 7, 8, 9, and 12.  Notice that as the 

order increases, the coupling length converges to a line and the asymptotic behavior 
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begins at larger and larger values for the pitch.  It is evident from the trends in Figure 

6-11 that the calculated values for the coupling length cannot be trusted when the pitch 

is greater than 5 µm, even when m = 12.  However, if the pitch is only 2 µm, only 6 

orders need to be included for accurate results.  These calculations were also 

performed on a PCF with a single ring of air holes.  Additional air holes do not 

significantly change the results in Figure 6-11 or the predicted behavior of other large 

air hole PCFs; however, a second ring was necessary when the air hole of sizes were 

equal to or smaller than d/Λ = 0.50.  

A third type of core arrangement to be considered for a multi-core PCF is 

shown in Figure 6-12.  The advantage of studying these types of cores is that they are 

Figure 6-11.  The coupling length is plotted versus the pitch for simulations 

including an increasing number of terms in the multipole expansion. 

Order = 7 
Order = 8 
Order = 9 

Order = 6 

Order = 12 
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readily fabricated and would require no new technology—the image in Figure 6-12 is 

merely a section of the cladding of a typical photonic crystal fiber [70].  Solutions for 

the modes of these cores are shown in Figure 6-13 through Figure 6-16 for a PCF with 

d/Λ~0.98, Λ = 2.33 µm, and λ = 632 nm.  The dimensions for this example were 

chosen based on an essentially single-moded core with the minimum possible bridge 

width between the air holes, 50nm, which is the estimated manufacturing limit.  

Because the modes are not well-confined, the coupling lengths are very short, 

predicted to be 860 µm for one polarization and 3900 µm for a second polarization.  

The bridge between the cores appears to strengthen the coupling in a similar manner to 

the Type 1 two-core PCF.  The coupling length can be made longer by increasing the 

pitch and the air hole size.  In Figure 6-17, the coupling length is shown to increase  

Figure 6-12.  Illustrations of the triangular cores in PCFs. 
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Figure 6-13.  Modes of triangular core PCFs.  Real(Sz) 

Mode 1 Mode 2 

Mode 3 Mode 4 
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Figure 6-14.  Modes of triangular core PCFs.  Abs(Ex) 

Mode 1 Mode 2 

Mode 3 Mode 4 
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Figure 6-15.  Modes of triangular core PCFs.  Abs(Ey) 

Mode 1 Mode 2 

Mode 3 Mode 4 
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Figure 6-16.  Modes of a triangular core PCFs.  Abs(Ez) 

Mode 1 Mode 2 

Mode 3 Mode 4 
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with the pitch when the air hole size is also increased in a manner to maintain the 50 

nm size bridge. 

These triangular cores were difficult and time consuming to calculate because 

a large number of orders in the multipole expansion are necessary for accurate results 

(twenty multipole orders are included in the mode calculations in Figure 6-13, Figure 

6-14, Figure 6-15, and Figure 6-16), most likely because the area where the mode is 

propagating is much smaller than for the other PCFs studied.  Overall, the coupling 

lengths of triangular core multi-core fibers appear to be impractically short for 

applications requiring weak coupling, such as endoscopes.  In order to reduce 

coupling, the air hole size would need to be increased to a point where Type 2 two-

core PCFs would provide tighter core packing and a longer coupling length.  However, 

these types of cores tend to have a large splitting between the coupling lengths of the 

Figure 6-17.  The coupling length is plotted versus the triangular cores 

separation 
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different polarizations due to the triangular shape of the core.  It is possible this type of 

multi-core fiber could be beneficial for applications where phase matching or a highly 

polarization dependent dispersion are needed.   

 

Conclusion 

 

The potential application of multi-core PCFs in flexible endoscopes requires a 

thorough study of the coupling behavior of different types of multi-core PCFs.  The 

coupling properties of two-core PCFs depend on the air hole size, the air hole 

separation, and the wavelength.  The arrangement of air holes around the two cores 

also influences the coupling length.  From the results presented in this chapter, it is 

possible to develop a proposal for a PCF endoscope using a multi-core PCF with a 

long coupling length.  A detailed description of a potential design appears in Appendix 

A. 
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Chapter 7  

THE EFFECTS OF RANDOMLY OCCURRING 
NONUNIFORMITIES ON PROPAGATION IN 

PHOTONIC CRYSTAL FIBERS 

Introduction 
 

Photonic crystal fibers (PCFs) have received significant attention from the 

scientific community due to their unique propagation characteristics [26, 39].  The use 

of PCFs for both system and device level applications sometimes requires novel air 

hole arrangements.  Because of the cost and effort necessary for the fabrication of 

PCFs, precise numerical simulations are essential to guide the design process.  A 

variety of numerical modeling methods are currently available that accurately 

calculate PCF properties; however, it is fastest and easiest to simulate perfect 

structures that have precisely located, exactly circular, air holes.  Random variations in 

the photonic crystal lattice are inherent to the fabrication of PCFs and complicate the 

validity of predictions based on perfect fibers since fiber parameters can only be 

guaranteed with limited precision.  Figure 7-1 illustrates how different the simulated, 

ideal fiber can be from the actual, fabricated fiber.  The degree to which these 

structural non-uniformities affect the propagation of the fundamental mode has not 
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been completely understood.  Awareness of the sensitivity different fiber properties 

have to lattice imperfections and the degree of structural variations that can be 

tolerated will be helpful tools for future PCF designs.   

Previous studies that have been performed in this area focus predominantly on 

calculating the birefringence induced from reduced symmetry in the lattice of a PCF  

[71-75].  The structural variations analyzed are typically not random in nature [72, 73] 

and therefore do not accurately represent those that result from fabrication.  Practical 

laboratory or industrial use of PCFs for single-mode transmission, dispersion 

compensation, or white light generation necessitates an understanding of the 

birefringence as well as the loss and dispersion properties of the fabricated fibers.  

Multi-core PCF devices such as filters, couplers, and polarization splitters [69, 76] 

depend on the predictability of coupling behavior between cores.  Therefore, in this 

Figure 7-1.  The simulated, ideal PCF is compared to an actual fabricated 

PCF on the right. [Université de Franche-Comté -- Laboratoire d'Optique 

http://imfc.univ-fcomte.fr/lopmd/onl/frameonl2.htm] 

? = 
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chapter, we study the effect of stochastic variations in a PCF cross-section on the 

birefringence, the confinement loss, and the dispersion of a single core PCF and on the 

coupling length of a two-core PCF. 
 

Method 
 

Numerical simulations based on the multipole method are used to determine 

the mode effective indices of the PCF structures studied.  The presented results are a 

combination of data from a program written by the author and from the CUDOS MOF 

UTILITIES Software created and distributed by the University of Sydney [3].  The 

precision of the calculated mode indices is at least 1e-11 for the real part [3] and the 

precision for the imaginary part of the index is 1e-15 [63].  Because the smallest index 

differences examined in this paper are on the order of 1e-6, we are confident about the 

numerical precision of our modeling tool. 

The fibers simulated are composed of air holes arranged in a triangular lattice 

and centered around a silica defect where the light is guided.  The structure of a PCF is 

completely described by two parameters:  the air hole diameter, d, and the air hole 

separation or pitch, Λ.  The effects of variations in the air hole size (d) and in the 

location of the air holes (Λ) are analyzed separately by generating a Gaussian 

distribution of random values for d or Λ with standard deviations δd or δΛ and mean 

values do or Λo.  Each air hole in the fiber cross-section is independently assigned a 

value for the given parameter from the distribution in order to create one test fiber.  An 

illustration of these terms and variations appears in Figure 7-2 as well as an example 

distribution for the pitch.  As shown in Figure 7-2(a), variations in Λ are two 

dimensional, therefore random in both magnitude and direction.  Fiber non-
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uniformities are quantified through the definition of a percentage of variation as the 

ratio of the standard deviation to the mean of the distribution (ie. δd/do or δΛ/Λo) 

times 100.  The range of percentages was chosen to practically represent the degree of 

irregularity in current PCFs.  Example cross-sections are shown in Figure 7-3 for a 

single core PCF with the two types of variations for a 1% and a 4% degree of 

variation. 

The wavelength of light is 1.55 µm unless otherwise stated and the index of 

refraction of silica is determined according to the Sellmeier equation [7].  A minimum 

number of air holes are simulated without sacrificing accuracy in order to maintain 

manageable computation times. 

δd Λo

δΛ

do

Air Hole

Silica

δd Λo

δΛ

do

Air Hole

Silica

a 
b 

Figure 7-2.  An example of the geometry analyzed including definitions of 

important parameters and variations, a), and an example distribution for the 

value of the pitch with the average value and standard deviation indicated, b).
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Figure 7-3.  Illustrations of the two types of variation and two different 

degrees of variation for of a single core PCF with Λ0= 2.5 µm and do/Λ0 = 

0.70. 

Variation in air hole size, d 

1% variation 

4% variation 

Variation in air hole separation, Λ 

1% variation 

4% variation 
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Birefringence 
 

Theoretical calculations based on group theory have shown that fibers with six-

fold rotational symmetry, like the standard triangular lattice PCF, will never show 

splitting in the fundamental mode [64].  Small imperfections in the photonic crystal 

lattice that are produced during the fabrication process, however, create asymmetries 

that break the degeneracy and lead to birefringence.  The birefringence, defined as the 

difference in the index of the x and the y polarized modes, was calculated for the 

fundamental mode of fibers with randomly generated structural variations and the 

results appear in Figure 7-4.  The average value for the pitch was chosen to be Λo = 

2.5 µm for two different air hole sizes: do = 2.25 µm and do = 1.75 µm.   

An image of the energy distribution of the fundamental mode of each fiber is 

inset in Figure 7-4.  The marker indicates the average value for the birefringence of 

thirty random structures with each type of variation at each percentage variation, while 

the bars represent the spread or standard deviation of the data set. The dotted lines 

demonstrate a linear relationship between the induced birefringence and the 

percentage variation, therefore supporting earlier results obtained in numerical 

simulations using the plane wave expansion method [75].  With the data presented 

here, these conclusions are extended to fibers with much larger air holes.  For the two 

air hole sizes studied, we found that fibers with larger air holes experience a greater 

induced birefringence than fibers with smaller air holes (Figure 7-4).  In fact, the 

values for the birefringence appearing in Figure 7-4 are more than an order of 

magnitude larger than the values calculated by Reference [75] for fibers with even 

smaller air holes (d/Λ = 0.46 and λ/Λ = 0.48) and the same degree of lattice 

nonuniformity [75].  As shown in Figure 7-4(a), birefringence comparable to standard  
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Figure 7-4.  The calculated birefringence for two different fibers with Λo =

2.5 µm and λ = 1.55 µm: (a) do = 2.25 µm therefore do/Λo = 0.90 and (b) do = 

1.75 µm therefore do/Λo = 0.70.  Markers indicate the average birefringence 

for a data set of 30 random structures for each percentage variation and each 

type of variation, while the bars represent the spread or standard deviation. 

The fit is linear.  Insets display the fundamental mode for the fibers 

calculated. 

a 

b 
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Figure 7-5.  The birefringence is shown as a function of the variation in the 

air hole size (a) and the air hole location (b) for several values for the 

wavelength.  The fiber is a single core PCF with do/Λo = 0.90 and Λo = 2.5 

µm. 

b 

a 
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polarization maintaining fibers can be induced from a relatively low degree of random 

structural nonuniformity in PCFs with air holes that are large relative to the pitch.  In 

Figure 7-5, the birefringence as a function of the percentage variation is plotted for the 

two types of variation and over several wavelengths for the PCF with larger air holes, 

do/Λo = 0.90.  As the wavelength increases, the mode field area increases and more of 

the cladding is sampled by the mode; therefore, smaller variations in the photonic 

crystal cladding result in a higher induced birefringence. 

 

Confinement loss 
 

Due to the finite nature of the photonic crystal lattice in PCFs, all modes are 

leaky and the resulting confinement loss can be calculated from the imaginary part of 

the mode index using Eq. (7.1): 

 920 2( / ) ( ) 10
ln(10) effLoss dB km nπ

λ
= ℑ ×  (7.1) 

where λ is the wavelength in units of µm and neff is the effective mode index.  Loss 

calculations were performed on a PCF with average parameter values of Λo = 2.5 µm 

and do = 2.25 µm, therefore do/Λo = 0.90.  In Figure 7-6, the markers represent the 

calculated loss for thirty randomly generated structures with each type of variation for 

each percentage variation.  Although the average loss as well as the spread in the loss 

values increase with the degree of random imperfections in the fiber structure, the loss 

remains much below the actual loss of current PCFs, which is dominated by Rayleigh 

scattering and IR absorption for index guiding PCFs.  Similar results were also found 

for a different fiber with smaller air holes. Thus, the impact of the imposed structural  
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irregularities on the actual propagation loss is inconsequential for PCFs with low 

confinement loss.   
 

Dispersion 
 

The design of PCFs demonstrating novel dispersion properties, such as ultra-

flattened dispersion and anomalous dispersion at shorter wavelengths than 1.3 µm, 

relies on the accuracy of numerical simulations for predicting these behaviors and for 

Figure 7-6.  Loss plotted versus the percentage variation; the solid line is the predicted 

loss for the structure with a perfect lattice.  The markers represent the values for the loss 

calculated from 30 random structures for each percentage variation and type of 

variation.  The X indicates the average loss for the data set.  Inset is an image of the 

fundamental mode of the fiber with Λo = 2.5 µm and do = 2.25 µm, λ=1.55 µm. 
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easily testing new ideas.  PCFs characterized by dispersion properties that cannot be 

exhibited by conventional fibers, such as ultra-flattened or oscillating dispersion, tend 

to fall within a cutoff region [29, 77].  This region is defined by the transition the 

mode-field area (MFA) experiences as the wavelength increases and the mode changes 

from being well confined with low loss to a high loss, space filling mode [29, 77].  

PCFs whose dimensions fall within this region are also predicted to be extremely 

sensitive to lattice imperfections [29, 77].  We calculated the dispersion for a standard 

single core PCF with the average parameters Λo = 0.8 µm and do = 0.56 µm, therefore 

do/Λo = 0.70, over a wavelength range of 0.4 µm to 1.7 µm.  The dimensions of this 

PCF and the span of wavelengths cross the cutoff region.  The dispersion is calculated 

from the second derivative of the mode index with respect to wavelength using Eq. 

(7.2):  

 
2

2
effn

D
c
λ

λ
∂−

=
∂

 (7.2) 

The results appear in Figure 7-7, where the markers represent the calculated 

zero dispersion wavelengths (ZDWs) for thirty randomly generated structures with 

each type of variation for each percentage variation.  At the shorter ZDW, a 

percentage variation in the fiber parameters of about 4% or less will lead to a 

calculated ZDW within approximately ±20 nm of the predicted value from a perfect 

lattice.  Near the second ZDW, the MFA has increased as the mode becomes less well 

confined and variations less than 2% are required in order to attain the same amount of 

certainty in the ZDW.  Over the entire wavelength range examined, the MFA increases 

by a factor of three and the spread in calculated values for the dispersion as a function 

of wavelength increases dramatically but then begins to decrease again when leaving  
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Figure 7-7.  The two zero dispersion wavelengths for a fiber with do/Λo = 

0.70 and Λo = 0.8 µm are plotted versus percentage variation.  The markers 

indicate the values calculated for 30 randomly generated structures for each 

percentage variation and for two types of variations.  The X represents the 

mean of the data and the solid line indicates the value for the perfect 

structure.  The insets display the fundamental mode for the fiber at the 

respective wavelength. 

a 

b 
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the cutoff region.  These results support the existence of a cutoff region where 

structural variations have a significant impact on the dispersion. 

PCFs with large air holes can be designed specifically for use in 

supercontinuum (SC) generation where high effective nonlinearities are required.   For 

a wavelength range of 0.5 µm to 1.6 µm, we calculated the dispersion of a typical 

highly nonlinear fiber (HNLF) with Λo = 2.5 µm and do = 2.25 µm, therefore do/Λo = 

0.90 (not falling in the cutoff region).  A percentage variation of 2% or less resulted in 

an uncertainty in this structure’s ZDW of about ±4 nm.  Since SC generation using 

direct degenerate four-wave mixing has been demonstrated through numerical 

simulations to be robust to variations in the ZDW of less than ±3 nm [78], variations 

of less than 2% are necessary for the HNLF studied here.  The MFA increases by a 

small amount (~25%) over the wavelength range examined and the uncertainty in the 

dispersion as a function of wavelength remains relatively constant, increasing only 

slightly.  These calculations suggest that the dispersion properties of PCFs not falling 

in the cutoff region are relatively robust to small imperfections in the crystal lattice.  
 

Two-core coupling 
 

PCFs with two defects, or two-core PCFs, have been designed with unique air 

hole sizes and arrangements in order to customize the coupling properties between 

cores.  Practical application of these concepts requires accurate predictions of the 

coupling, which may be altered by unintentional imperfections in the fabricated fiber 

[79].  A key parameter for describing the coupling in a two-core structure is the beat 

length or coupling length.  The fundamental mode of these fibers is split into four 

modes with slightly different indices and the coupling length is defined here as π  
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a 

x 

y 

Figure 7-8.  The markers represent the calculated beat lengths for the x and y 

polarizations in (a) and (b), respectively; the X indicates the average for the 

data set.  The solid lines are the predicted values for the structure with a 

perfect lattice.  30 random structures were simulated for each percentage 

variation for each type of variation.  The inset in (a) displays the fundamental 

mode for the fiber calculated with Λo = 2.5 µm and do = 2.25 µm, therefore 

do/Λo = 0.90, and λ = 1.55 µm. 

b 
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a 

b 

Figure 7-9.  The markers represent the calculated beat lengths for the x and y 

polarizations in (a) and (b), respectively; the X indicates the average for the 

data set.  The solid lines are the predicted values for the structure with a 

perfect lattice.  30 random structures were simulated for each percentage 

variation for each type of variation.  The inset in (a) displays the fundamental 

mode for the fiber calculated with Λo = 2.5 µm, do = 1.75 µm, do/Λo = 0.70, 

and λ = 1.55 µm. 
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a 

Figure 7-10.  The beat lengths for the x and y polarizations are plotted versus 

percentage variation for two fibers when λ =1.55 µm for do = 1.45 µm and 

do/Λo = 0.58.  The solid lines are the predicted values for the structure with a 

perfect lattice.  The markers represent the calculated values for the coupling 

length while the X indicates the average for the data set; 30 random 

structures were simulated for each percentage variation for each type of 

variation.  Insets display the fundamental mode for the fiber calculated. 

b 
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divided by the difference in the propagation constants of modes with the same 

polarization.  Figure 7-8(a) and Figure 7-8(b) show the calculated values for the beat 

lengths of the x and y polarizations, respectively, for thirty randomly generated two-

core fibers with variations in Λ and in d.  The PCF parameters are Λo = 2.5 µm and do 

= 2.25 µm, therefore do/Λo = 0.90, and a reproduction of the fundamental mode of this 

fiber is inset in Figure 7-8(a).  The calculated beat lengths for the imperfect two-core 

PCFs differ from the predicted value (solid line) by up to two orders of magnitude 

even for very small degrees of variation and the spread in these values is quite large; 

consequently, even a slightly irregular crystalline structure significantly alters the 

mode propagation in this two-core structure and leads to a lack of certainty in the 

actual coupling properties of the fiber. 

 

Table 7-1.  Summary of the fiber structures used in the two-core simulations. 

 

 Λo do do/Λo λ MFAa λ/Λo 

       
 2.5 µm 2.25 

µm 
0.90 1.55 

µm 
0.80 0.62 

 2.5 µm 1.75 
µm 

0.70 1.55 
µm 

1.13 0.62 

 2.5 µm 1.45 
µm 

0.58 1.55 
µm 

1.38 0.62 

   a The mode-field area is normalized to the pitch of the 
structure squared and calculated from the z-component 

of the Poynting vector. 
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In order to isolate the characteristics of this fiber that make it so sensitive to 

lattice imperfections, we also calculated the beat lengths for two-core PCFs with 

smaller air holes but with the same average pitch.  The results for these fibers appear 

in Figure 7-9 and Figure 7-10.  In Figure 7-9 the two-core PCFs have do = 1.75 µm, 

and therefore do/Λo = 0.70.  In Figure 7-10, do = 1.45 µm and do/Λo = 0.58.  See Table 

7-1 for a summary of the parameters of the two-core fibers simulated.  For both of 

these fibers, the properties of the fundamental mode, such as the MFA, the coupling, 

and the real part of the mode index, change insignificantly with the addition of a third 

ring of air holes, hence only two are used here in order to reduce computation time 

while maintaining accuracy.  The smaller air holes found in these fibers reduce the 

index contrast between the air hole cladding and the core, resulting in a less confined 

mode with a larger area and therefore stronger coupling between the cores.  The 

calculated values for the beat lengths in Figure 7-10 are close to those of a perfect 

structure for percentage variations less than 2%.  This fiber has the smallest air holes 

and is the least sensitive to lattice irregularities of the fibers studied, with the fiber in 

Figure 7-8 experiencing the most effect.  This behavior demonstrates that the air hole 

size and the coupling strength determine a two-core fiber’s vulnerability to fabrication 

induced nonuniformities. 
 

Conclusion 
 

The susceptibility of a PCF to being fabricated with unintentionally high 

birefringence is strongly influenced by the air hole size of the fiber relative to the 

pitch, and birefringence comparable to polarization maintaining fibers can be induced 

from a relatively low percentage variation in the photonic crystal lattice when the air 
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holes are large.  For practical PCFs with very low confinement loss, the effect of 

lattice imperfections will not be discernable, although their impact on other types of 

loss, such as scattering, is unknown.  The dispersion properties of PCFs are most 

susceptible to nonuniformities if the fiber falls within the cutoff region; however, 

outside of this region the fibers are more robust.  For a typical HNLF, SC generation is 

predicted to tolerate variations in the fiber parameters of less than about 2% when the 

fiber is not within the cutoff region.  Lastly, the coupling length has been shown to be 

very sensitive to perturbations in the lattice surrounding the defects when the air holes 

are large.  Two-core fibers with smaller air holes and shorter coupling lengths are 

remarkably more robust.  These results have strong implications for applications such 

as filters, couplers, and polarization splitters whose performance directly depends on 

the coupling properties of two or more cores.   

The work presented in this chapter has been published in a the Optics Express 

journal and in a conference proceedings [80, 81]. 
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Chapter 8  

INDEPENDENT CORE PROPAGATION IN TWO-
CORE PHOTONIC CRYSTAL FIBERS 

RESULTING FROM STRUCTURAL 
NONUNIFORMITIES 

Introduction 
 

The design flexibility and unique propagation characteristics of photonic 

crystal fibers (PCFs) offer many new possibilities for fiber based devices.  Multi-core 

PCFs with novel air hole arrangements take advantage of these properties for 

applications such as filters, couplers, switches, and polarization splitters [69, 76, 82].  

The realization and performance of these designs depend on the predictability of the 

coupling behavior between cores.  Accurate numerical methods exist for simulating 

multi-core PCFs and their properties; however, fabrication processes generate random 

nonuniformities in the photonic crystal lattice that can potentially alter the actual 

performance of the fiber from that which is predicted by simulation.  By imposing 

random variations in the air hole size and in the air hole location of two-core PCFs and 

then using numerical simulation tools to calculate certain properties of these fibers, a 

better understanding of the impact of fabrication induced irregularities can be gained. 
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The rate and the efficiency of power transfer between cores are important 

parameters to examine when designing a fiber coupler or any other device that utilizes 

the properties of a multi-core fiber.  Previous work has shown that the rate of power 

transfer between the cores of two-core photonic crystal fibers, described by the 

coupling length, can be extremely sensitive to irregularities in the “cladding” of the 

PCF, or in the lattice surrounding the cores [80].  For large air hole fibers, 

nonuniformities in the photonic crystal lattice of less than 1% were shown to produce, 

on average, a deviation in the coupling length of at least an order of magnitude from 

the predicted value which is calculated from a fiber with a perfect lattice [80].  In this 

paper, we demonstrate numerically that in addition to decreasing the coupling length, 

imperfections in the photonic crystal lattice drastically reduce the coupling efficiency, 

or the fraction of the power that is transferred between cores, depending on the relative 

size of the air holes.  Two-core fibers with relatively small air holes and shorter 

coupling lengths are markedly more robust to nonuniformities than two-core PCFs 

with large air holes and long coupling lengths.  The coupling efficiency is shown to be 

minimal for fibers with large air holes when only small nonuniformities are present, 

resulting in essentially independent core propagation.  The effects of imperfections in 

the lattice on the coupling properties of two-core PCFs, as well as the dependence of 

this response on the size of the air holes, are explained through a comparison with 

coupled mode theory. 

An obvious approach to achieving independent core propagation in a multi-

core fiber is to engineer a long coupling length by increasing the core separation and 

the mode confinement.  This method, however, places restrictions on the fiber design 

as well as how densely the cores can be packed in a fiber.  An alternative solution is to 

decrease the efficiency of the coupling such that an insignificant amount of power is 
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transferred between the cores regardless of the coupling length or the rate of the 

coupling.  Our results show that structural nonuniformities in two-core PCFs that 

could be a consequence of normal fabrication processes have the potential to 

drastically reduce the efficiency of the coupling allowing coupling to be practically 

ignored.  The imperfections in the cladding cause the two cores to become decoupled 

and, as a result, light propagates essentially independently in each core.   
 

Method 
 

In order to understand how the introduction of nonuniformities affects the core 

coupling in a two-core PCF, we use a vector normal mode expansion to compare how 

power in each core fluctuates as a function of the propagation distance for many 

randomly generated fibers with imperfect lattice structures and for fibers without 

imperfections.  See Chapter 3 for a complete description of the normal mode 

expansion. 

Figure 8-1.  Illustration of the endface of a two-core PCF. 

x

y 
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The PCFs simulated are composed, in cross-section, of air holes arranged in a 

triangular lattice around two silica defects separated by a single air hole, as shown in 

Figure 8-1.  The x and y axes are also defined in Figure 8-1.  The core area is assigned 

as the area on either side of a line that bisects the central air hole along x = 0.  The 

input field is x-polarized, Ey = 0, and has a Gaussian profile that is centered on the left 

core with a spot diameter (1/e2 intensity) equal to the pitch.  Reflections at the input 

interface are ignored.   

The photonic crystal lattice that makes up the cladding of a PCF is described 

by two parameters:  the air hole diameter, d, and the air hole separation or pitch, Λ.  

Nonuniformities are introduced into the fiber by independently imposing stochastic 

variations on the air hole size and on the location of the air holes in the same manner 

as in Chapter 7 or Reference [80].  Each imperfect two-core PCF is generated by 

randomly assigning every air hole in the fiber a value from a Gaussian distribution of 

values for d or Λ.  The degree of irregularity in the lattice is defined as the ratio of the 

standard deviation to the mean of this distribution (ie. δd/do or δΛ/Λo) times 100, or as 

a percentage of variation.  The average value used for the pitch is always 2.5 µm, 

unless otherwise stated, therefore a variation of 1% indicates that the standard 

deviation of the imposed structural perturbations is 25 nm.  The modal fields and the 

mode propagation constants of two-core PCF structures with and without 

imperfections are calculated for the wavelength of light of 1.55 µm using numerical 

simulations based on the multipole method as described in Chapter 5.  The highest 

index mode group contains four modes with slightly different indices whose energy 

distributions within the individual cores are all approximately Gaussian with 

azimuthal symmetry, as characteristic of a fundamental mode.  The normal mode 

expansion is truncated after these four lowest order modes since they represent the 
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most significant contribution to the sum due to their large overlap with the input field.  

Our modeling showed that ignoring the higher order modes results in negligible error 

because the modal amplitudes, aj, are extremely small. 
 

Results 
 

The power in the left and right cores as a function of z is shown in Figure 8-2 

for a two-core PCF with d/Λ=0.58.  Figure 8-2(a) shows the power transfer when the 

lattice of the fiber is perfectly uniform.  Because the two cores are identical, energy is 

distributed equally between the cores for each of the four modes in the fundamental 

mode group.  The two highest index modes in this group exhibit symmetric behavior 

when the amplitude of the field is considered, while the lowest two are antisymmetric.   

Figure 8-2.  The normalized power in each core is plotted versus the 

propagation distance.  The coupling efficiency changes from (a) 1 to (b) 0.20 

when a random variation of 2.2% in the air hole size is introduced, Λ = 2.5 µm 

and d/Λ = 0.58. 

(a) (b) 

Coupling 
Efficiency 
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Figure 8-3.  The average coupling efficiency (a) and the average coupling 

length, normalized to the value for a perfectly uniform structure, (b) are 

plotted vs. d/Λ for a percentage variation of 1% (solid line) and 4% 

(dashed line), Λ = 2.5 µm.  The lines have been added to facilitate the eye. 

(b) 

(a) 
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Polarized light incident on one of the cores is represented by a linear 

superposition of a symmetric and an antisymmetric eigenmode of the two-core system, 

each of which propagate according to a slightly different effective propagation 

constant.  The beating of the eigenmodes causes power to oscillate between cores as a 

function of the propagation distance along the fiber.  Figure 8-2(a) shows that, as 

expected, after a propagation distance equal to the coupling length, ~2000µm, one 

hundred percent of the power transfers from one core to the other because the energy 

is equally distributed between the cores for the eigenmodes of the structure.  

Introducing a random variation of 2.2% in the air hole size caused, in this particular 

structure, the coupling length to be reduced by half and the efficiency of the coupling 

to decrease to 20% as shown in Figure 8-2(b).  The definition of the coupling 

efficiency as it is referred to elsewhere in this chapter is illustrated in Figure 8-2(b).  

In Figure 8-3(a), the coupling efficiency is plotted versus the relative air hole 

size, d/Λ, for two different values of the percentage variation for each type of 

variation.  Each marker represents the average efficiency of a data set containing thirty 

randomly generated two-core PCFs.  As the relative size of the air holes increases, and 

as the nonuniformity in the fiber increases, the coupling efficiency decreases.  Large 

air hole two-core fibers exhibit extremely low coupling efficiency; for example, a PCF 

with d/Λ=0.90 and structural imperfections of only 1% will have a coupling 

efficiency, on average, of less than 1%. 

The coupling length exhibits a similar response to lattice variations, as shown 

in Figure 8-3(b), where the average normalized coupling length is plotted versus d/Λ.  

In order to examine the relationship between these two properties of two-core PCFs, 

the coupling efficiency is plotted versus the coupling length in Figure 8-4 and Figure 

8-5 for different values of d/Λ.  Each marker represents the coupling efficiency and  
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Figure 8-4.  The coupling efficiency vs. the x polarization coupling length for 

Λ = 2.5 µm and d/Λ = 0.58, 0.70, and 0.75, from top to bottom.  Note that the 

axis scaling differs for each plot.
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Figure 8-5.  The coupling efficiency vs. the x polarization coupling length for 

Λ = 2.5 µm and d/Λ = 0.80, 0.85 and 0.90 from top to bottom.  Note that the 

axis scaling differs for each plot.
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the coupling length of a randomly generated two-core fiber with variations of 0.67% 

to ~4% in either the air hole size or the air hole separation.  Fibers with large air holes, 

see the bottom of Figure 8-5, typically exhibit a coupling efficiency of less than 1%.  

All the structures examined in Figure 8-4 and Figure 8-5 are multi-moded.  By 

increasing the wavelength to pitch ratio (i.e. the normalized wavelength) for the 

relative air hole sizes studied here, or by decreasing the value of d/Λ into the endlessly 

single mode regime, a single mode will be guided.  Changing the structure by 

increasing the normalized wavelength results in a larger mode size as does decreasing 

the air hole size; therefore, altering the normalized wavelength in this manner should 

follow the same trend shown in Figure 8-4 and Figure 8-5 for changes in d/Λ.  This is 

indeed the case.  Data in Figure 8-4 and Figure 8-5 moves up and to the left as the 

structure becomes less multi-moded because of changes in the air hole size or in the 

normalized wavelength.  This behavior demonstrates that two-core fibers become less 

sensitive to variations as the coupling length decreases and the mode field area 

becomes larger. 

Upon inspection of the plots in Figure 8-4 and Figure 8-5, the efficiency is 

noticed to decrease at a quicker rate than the coupling length in a clear power 

relationship, inferred from the linear distribution of data points in the log-log plots.  

The fact that the data exhibits similar slopes across all plots indicates that the nature of 

the relationship between these parameters does not appear to depend on the relative air 

hole size.  A linear fit of the log-log data is demonstrated in Figure 8-6 for three 

different relative air hole sizes.  The slope values are given in Table 8-1 for fits to each 

of the plots in Figure 8-4 and Figure 8-5 and reveal an approximately quadratic 

relationship between the two parameters.  In order to develop an understanding of this  
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Figure 8-6.  Data for three different relative air hole sizes from Figure 8-4and 

Figure 8-5 is re-plotted in a) and then shown with the linear fits to the log-log 

data, b), as described in Table 8-1. 

a 

b 
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relationship, we applied coupled mode theory to two-core PCFs with imperfect lattice 

structures. 
 
 
 
Table 8-1.  The slopes of linear fits to the log-log data of Figure 8-4 and Figure 8-5. 

 
d/Λ Slope 
0.58 1.93 
0.70 1.94 
0.75 1.93 
0.80 1.88 
0.85 1.92 
0.90 1.91 

  
 
 
 

Couple Mode Theory 
 

In coupled mode theory (CMT), each core is treated as an independent 

waveguide that is perturbed by the presence of fields propagating in the other core.  

When the field from one core enters the high index core region of the second 

waveguide, it becomes a source for a new field.  See Chapter 3 for a complete 

derivation and discussion of the conventional CMT used here.  Because a different 

notation is used for the arguments presented in this chapter, the expressions for the 

power found in Eq. (3.12) are repeated [11]. 
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The coupling properties of the two-core PCF are again defined from the power 

transfer, Pb(z).  The coupling length is the distance, Lc, at which the power in 

waveguide b has oscillated to its first maximum, ie. ψLc = π/2.  The coupling 

efficiency can be defined from Eq. (8.1) as the maximum possible value for the power 

in waveguide b, or |Kab/ψ|2.  As the mismatch between the modes, βb-βa, increases, it 

can be seen from these relationships that the coupling efficiency and the coupling 

length will decrease.  When the variable ψ is solved for in the expression for the 

coupling length and substituted into the expression for the coupling efficiency, the 

efficiency is shown to be proportional to the square of the coupling length: 
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Improved coupled mode theory, where the coupling is no longer assumed to be weak, 

results in the same relationship between the efficiency and the coupling length as in 

Eq. (8.2), but with a different proportionality constant still dependent on the mode 

overlap that is modified by an amount determined by the cross power [10, 11].  For 

simplicity, we will continue without including the effects of the cross power.  The 

quadratic relationship of Eq. (8.2) substantiates the relationship predicted from the 

power law fits of the plots in Figure 8-4 and Figure 8-5 and from the values in Table 

8-1. 
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The applicability of CMT can be further assessed by comparing the coupling 

length, Lc, as calculated from CMT using Eq. (8.2) to the value derived directly 

through the multipole method for a perfect structure.  Beginning with Eq. (8.2), if Kab 

is assumed to be constant, a quadratic polynomial fit, where the linear and zeroth order 

terms in the polynomial are forced to be zero, can be applied to the data of Figure 8-4 

and Figure 8-5 and the fit parameter can be used to estimate Kab.  The assumption that  

 

 

Table 8-2.  The fit parameter, or the coefficient of a quadratic fit to the data in Figure 8-4 and 

Figure 8-5, is listed according to the relative air hole size.  Kab is calculated from the fit 

parameter according to Eq. (8.2).  The final columns compare the coupling length as 

calculated from the fit using CMT with the value determined directly from the perfect 

structure. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

d/Λ Fit parameter 
(µm-2) 

|Kab| 
(µm-1) 

CMT  Lc 
(µm) Lc (µm) 

0.58 1.88E-07 6.82E-04 2.30E+03 2.32E+03 
0.70 1.23E-08 1.74E-04 9.01E+03 8.89E+03 
0.75 2.74E-09 8.22E-05 1.91E+04 1.83E+04 
0.80 4.25E-10 3.24E-05 4.85E+04 4.16E+04 
0.85 7.41E-11 1.35E-05 1.16E+05 1.03E+05 
0.90 8.66E-12 4.62E-06 3.40E+05 2.49E+05 
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Kab is constant claims that the induced structural perturbations do not significantly 

change the amount of overlap between the mode fields of the two cores from that of a 

uniform two-core PCF.  Table 8-2 lists the fit parameters from the quadratic fit for 

each ratio of d/Λ studied and the coupling coefficient, Kab, as solved for from these 

values.  An estimate of the coupling length for a perfect fiber can be calculated from 

Kab using CMT and Eq. (8.1) with a mismatch set to zero.  These values are compared 

in the final two columns of Table 8-2 with the coupling length as determined directly 

from two-core fibers with a perfectly uniform photonic crystal lattice.  This 

comparison implies that CMT in the weak coupling regime adequately describes the 

behavior of these two-core PCFs when nonuniformities are present.  The discrepancy 

between the values for Lc from the two methods most likely results from neglecting 

the cross power and from the parameter Kab not remaining constant for all imperfect 

structures.  In fact, for a few cases, generated imperfect two-core PCFs exhibited 

longer coupling lengths than a fiber with a perfectly uniform lattice; in order to satisfy 

Eq. (8.2) without predicting an efficiency greater than one, Kab would have to be much 

different than that of the perfect fiber.  The data from these structures was left out of 

the fit on the basis that it did not satisfy the condition that Kab be approximately 

constant.  Revisiting the power law fit results shown in Table 8-1 with these data 

points removed leads to fits that are closer to quadratic; for example, for d/Λ=0.58 and 

d/Λ=0.70, the slopes increase to 1.98 and 1.99 respectively. 
 

Discussion 
 

Nonuniformities in the lattice structure of two-core PCFs cause the cores to be 

no longer identical, thus creating a mismatch in the indices of the fundamental modes 
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of the two individual cores.  A nonzero mismatch results in a decreased coupling 

length and coupling efficiency as compared with the values that would be predicted 

from a perfect structure with no mismatch.  The coupling properties of a two-core 

fiber structure with imperfections are determined by the parameter ψ, as defined in Eq. 

(8.1), which depends on both the mismatch and Kab.  Thus, knowledge of Kab alone, 

which can be gained from simulations based on a perfect two-core fiber, is not 

sufficient to accurately predict the coupling behavior of a particular PCF that is not 

completely uniform.  It is the magnitude of the mismatch relative to Kab that 

determines how different the core coupling will be from that of a perfect structure.  If 

Kab is small relative to the induced mismatch, the fiber is more sensitive and the 

coupling properties will change significantly when nonuniformities—and therefore 

core mismatch—are introduced.  For example, Kab, which is proportional to the mode 

overlap, will be smaller when the modes are well confined, which is generally true of 

PCFs with large air holes (see Table 8-2).  The magnitude of the mismatch, or βb-βa, 

can be estimated from the birefringence induced in a single core PCF when 

nonuniformities are introduced into the cladding structure.  From Figure 7-4, the 

average induced birefringence of PCFs with d/Λ = 0.70 and d/Λ = 0.90 for Λ=2.5µm 

are shown to be of approximately the same order of magnitude, ∆n ~ 1e-4, across 

percentage variations of 0.67% to 4%.  It can be seen in Table 8-2 that this ∆n is two 

orders of magnitude larger than the coupling coefficient, Kab, for d/Λ = 0.90, while it 

is actually slightly smaller than Kab for d/Λ = 0.70.  Therefore, the same mode 

mismatch between two cores will result in a much greater change in the coupling 

properties when the modes are tightly confined (d/Λ = 0.90).  Clearly, small 

perturbations have a greater impact on fibers with larger air holes because they are 

characterized by a relatively large mismatch and a small overlap.   
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The mismatch and the coupling coefficient do, however, depend on the 

normalized wavelength.  The impact of changing the normalized wavelength on the 

relative magnitude of these two parameters can be assessed from Figure 8-7.  The 

coupling coefficient is calculated from a perfect two-core structure and ∆β is defined 

as the mismatch divided by 2 so that the two parameters plotted represent the two 

contributions to ψ.  The mismatch is calculated in the same manner as in Chapter 7 

and Reference [80] from the average induced birefringence of a single core PCF with 

Figure 8-7.  Kab, as computed from a perfect structure, (dashed lines) and ∆β, 

calculated from the birefringence induced from variations in the lattice of a 

single core PCF, (solid lines) are plotted versus the normalized wavelength. 

∆β is the average value for 20 structures with variations of 1% in the air hole 

separation.  The solid vertical line indicates the value for the normalized 

wavelength used in this paper, λ=1.55, Λ=2.5 
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variations in the air hole separation of 1%.  Regions of high and low sensitivity to 

lattice imperfections can be predicted from this plot.  When ∆β >> Kab, a two-core 

PCF will generally exhibit high sensitivity to variations; this region corresponds to 

small λ/Λ.  On the other hand, when λ/Λ is larger, Kab >> ∆β, indicating a low 

sensitivity to structural nonuniformities.  In this region, the PCFs tend to have fewer 

guided modes.  Large air hole fibers will, in general, be sensitive to variations over a 

larger range of wavelengths and it appears that fibers in the single-moded regime, or 

Figure 8-8.  A cross-sectional view of the z-component of the real part of the 

Poynting vector for two of the modes from the highest index mode group of a 

two-core PCF with Λ = 2.5 µm and d/Λ = 0.90 and nonuniformities of 0.67% 

appears in (a) and (b), while (c) and (d) show the profile along the line where 

y = 0.  Similar behavior is observed for the two other modes in the group. 

(c) (d) 

(a) (b) 
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large λ/Λ, are more robust to variations. 

Consequences of the non-identical nature of the cores are also manifested 

through a modification of the mode structure.  Exploring the change in the mode shape 

provides a more intuitive understanding of the impact of nonuniformities on the 

coupling behavior of two-core PCFs.  As stated previously, the eigenmodes of the 

unperturbed two-core system are perfectly symmetric or antisymmetric in amplitude 

and distribute energy evenly between the two cores.  However, imperfections in the 

lattice cause the eigenmodes to evolve towards those of the decoupled cores as 

evidenced by the z-component of the Poynting vector shown in Figure 8-8 for a fiber 

with d/Λ = 0.90 and variations of 0.67%.  The energy of each mode is almost 

completely concentrated in one core.   

Figure 8-9 shows the extinction ratio between the two cores, or the ratio of 

energy in one core to that in the other, for fibers with different relative air hole sizes 

and for two degrees of variation in the fiber structure.  Each marker is an average over 

thirty structures.  As the percentage of variation in the lattice structure increases, and 

as the ratio of d/Λ increases, the mode energy becomes more concentrated in one core 

or the other.  When d/Λ is greater than 0.80, the amount of energy localized in one 

core is, on average, at least three orders of magnitude greater than the energy in the 

other core for all the fundamental modes of the fiber, even when variations are as 

small as 1%.  The two modes in the fundamental mode group with the highest indices 

will be almost entirely right (or left) modes while the remaining two modes will be left 

(or right) modes.   

From a scalar point of view, this change in the eigenmode structure explains 

the observed decrease in the coupling efficiency since the single-core input field 

closely resembles one of the eigenmodes of the perturbed structure.  Light that is 
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incident on one of the cores will now couple predominantly into an eigenmode of the 

system and travel along the fiber according to the propagation constant of this mode 

with an almost constant transverse energy profile.  Large air hole structures are more 

sensitive to decoupling because the modes are already well confined in the individual 

cores. 

For applications where independent core propagation is a requirement, two 

opposing approaches exist.  A long coupling length achieved by increasing the core 

separation is the obvious method for obtaining this effect.  The results presented in this 

Figure 8-9.  The ratio of  power in the left core to that in the right core for a 

mode that is predominantly left is shown as a function of the normalized air 

hole size, d/Λ, for a percentage variation of 1% (solid line) and 4% (dashed 

line), Λ = 2.5 µm.  The lines have been added to facilitate the eye.  The value 

for a perfect two-core fiber is 1. 
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paper, however, illuminate a more simple solution which is to reduce the coupling 

efficiency.  The cores can be packed very closely but in a photonic crystal lattice that 

is very sensitive to perturbations, such as a PCF with a high ratio of d/Λ or well 

confined modes.  When even slight nonuniformities are present, the two cores in these 

PCFs can be assumed to be decoupled and light will propagate independently in each 

core.  Typical variations in the structure due to fabrication can actually drastically 

reduce the coupling length; however, since the efficiency of the coupling is 

approximately zero, all coupling can be essentially ignored. 

We also note that due to the random nature in which the variations were 

imposed on the structures simulated in this paper, the results should remain robust to 

additional perturbations not accounted for, such as bending.   
 

Conclusion 
 

Through numerically simulating two-core fibers with different air hole sizes 

and introducing random variations into their cladding structure, we have shown that 

the coupling length and the coupling efficiency can be altered by imperfections in the 

photonic crystal lattice and that the sensitivity of these parameters to imperfections 

depends on the relative air hole size.  Two-core PCFs with relatively small air holes or 

a large normalized wavelength are more robust to nonunformities where large air hole 

fibers or fibers with a small normalized wavelength can be extremely sensitive.  In 

fact, for a fiber with d/Λ = 0.90, Λ = 2.5µm, and structural variations of only 1%, the 

average coupling length can be expected to be reduced by two orders of magnitude 

and the amount of power transferred between the cores will be less than 0.1%.  The 

observed quadratic relationship between the coupling length and the efficiency was 
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confirmed through a comparison with coupled mode theory and the reduced coupling 

efficiency was explained intuitively by examining the change in the eigenmode 

shapes.  Our results clearly indicate that practically independent core propagation can 

be easily obtained in a large air hole PCF when structural imperfections are present.  

The work presented in this chapter has been published in the Optics Express 

journal and a conference proceedings [83, 84].  Additional simulation results for two-

core PCFs with variations appear in Appendix B. 
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Chapter 9  

NUMERICAL ANALYSIS OF LIGHT 
PROPAGATION IN IMAGE FIBERS 

Introduction 
 

A fiber bundle contains thousands of high index cores in a common lower 

index cladding.  The core sizes and separations are on the order of a few microns, thus 

differing from a simple bundle of step-index fibers.  The index contrast is increased 

from that of standard single mode fiber in order to more tightly confine the light and 

reduce crosstalk between cores.  Fiber bundles are used primarily for confocal and 

multiphoton endoscopic imaging [85-98] but have also been employed in areas such as 

optical interconnects [99-101], sensing [102], and optical coherence tomography 

[103].  In coherent fiber bundles, or image fibers, the input and the output are spatially 

correlated such that an image transmitted through the fiber can be reconstructed from 

either endface in an identical manner.  A distal image is transported to the proximal 

end of a flexible endoscope allowing in vivo observation and measurement of internal 

tissue or organs.  The images, however, have an inherent pixilation due to the 

individual cores or pixels that transmit the information, and the quality of the image is 
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limited by the size and separation of these cores as well as by the degree of coupling 

between cores. 

Applications for image fibers motivate the production of higher resolution or 

higher information density fibers with smaller cores that are more closely packed.  In 

general, image fibers with smaller, closer pixels (ie. high core density) are desired in 

order to reduce endoscope size while retaining a large number of resolvable pixels.  

Decreasing the fiber dimensions, however, will increase the strength of coupling or 

crosstalk between cores, resulting in blurred images and a lower signal to background 

ratio. 

Available image fibers manufactured by Fujikura and Sumitomo, for example, 

already have dimensions well below the acceptable theoretical limit for crosstalk.  

Numerical simulations of these fibers reveal short coupling lengths relative to the 

typical length of fiber utilized.  That is, the strength of the coupling between adjacent 

cores is predicted to be such that power will begin to disperse amongst the cores after 

a propagation distance of much less than a meter, placing impossible limits on the 

practical use of these fibers.  In addition, these image degrading effects are not 

dramatic in practice.  A closer look at these fibers reveals a significant degree of 

nonuniformity in the size and shape of individual pixels or cores.  In this chapter, we 

will describe how the introduction of nonuniformities disrupts coupling by creating a 

mode mismatch between adjacent cores.  In certain fiber structures, despite high core 

density, even a small mismatch is sufficient to cause the cores to de-couple.  We 

further verified this behavior using coupled mode theory, suggesting methods for 

assessing the performance of a particular image fiber and giving guidelines for 

choosing an image fiber for a particular wavelength.  
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The authors anticipate that a greater understanding of coupling in multi-core 

fibers and the effects of nonuniformities on crosstalk will not only motivate the 

production of more reliable image fibers but also facilitate the more effective use of 

existing fibers.   
 

Theoretical analysis  
 

The numerical simulations in this chapter are based on two image fibers 

manufactured by Fujikura, distributed by Myriad Fiber Imaging Technology, Inc.  The 

fiber specifications are given in Table 9-1 and, unless otherwise noted, the values are 

those given by the distributor.  The samples are approximately one foot in length.  

These two fiber types were chosen because their dimensions are typical of imaging 

applications and of current research [87, 88, 94].  SEM imaging was performed on 

each fiber in order to verify their dimensions and the pixel size for the 350S fiber was 

corrected.  The final column in Table 9-1 provides an estimate for the variation in 

pixel diameter taken from the standard deviation of elliptical fits to the cores in the 

Figure 9-1.  SEM images of an image fiber showing the irregularity of pixel 

size and shape.   

Core (pixel) 
Common cladding 
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SEM images using an image processing program.  The nonuniformity in the pixel 

cores is evidenced by the SEM image of Figure 9-1.  The degree of nonuniformity in 

the core shape and size observed in these fibers appears to be typical of other 

commercially available fiber bundles, such as those manufactured by Sumitomo, and 

has been noted previously [93, 104-109]. 

Because the coupling behavior between the thousands of cores of an image 

fiber would be extremely complicated to model, smaller systems of two, three, and 

seven cores are examined in detail in order to make informed assumptions about the 

larger system.  The nature of the coupling between cores can be understood by 

calculating the power or energy distribution in each core at different points along the 

fiber length.  In a multi-core system, the power oscillates between cores as a function  
 
 
Table 9-1.  Image fiber specifications. 

Fiber 
type 

# of 
Pixels 

Fiber 
diameter

Pixel 
spacing

Pixel 
diameter 

(d) 

Index 
contrast 

% 
Variation in 
pixel size 

FIGH-
10-500N 10K 600 µm 4.5 µm 2.9 µm 1.5 to 

1.446 10 – 15% a 

FIGH-
10-350S 10K 450 µm 3.2 µm 2 µm a 1.5 to 

1.446 7 – 10% a 
        a Value estimated from SEM images of fiber endface 
 
 
 
 

of the propagation distance, z.  The percentage of power transferred between cores is 

referred to as the coupling efficiency, related to crosstalk, and the rate of power 

transfer is described by the coupling or beat length.  The coupling length and the 

coupling efficiency are used to quantify the strength of coupling and depend on the 
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interactions between cores or on the beating of the modes of the fiber.  The power can 

be determined from a normal mode expansion of the field solution in the fiber given a 

Gaussian single core input field.  The method used here follows Chapter 3 and 

Reference [83]. 

In Figure 9-2, the power in each core is plotted over z for two-core fibers with 

dimensions taken from the two image fiber samples of Table 9-1.  The energy 

distribution in the cores at different points along the z-axis is included below Figure 

9-2(a).  The input field is an x-polarized Gaussian, Ey = 0, that is centered on the left 

core with a spot diameter (1/e2 intensity) equal to the radius of the core.  As shown in 

Figure 9-2, the coupling efficiency is 100% when the two cores have identical 

diameters, indicating that all the power coupled into the fiber oscillates back and forth 

between the two cores.  The coupling length is defined in Figure 9-2(b) as the distance 

after which all power, when incident initially on one of the cores, will be coupled into 

the second core.  For the case when the cores are identical, the coupling length for 

each polarization can be calculated directly from the beat frequency of the modes in 

the following manner: 

 
2( )c e o e o

eff eff
L

n n
π λ

β β
= =

− −
 (9.1) 

where e and o indicate the even and odd modes.  This distance is 0.25 m for fiber 

500N and 1.4 cm for fiber 350S.  Because practical applications with fiber bundles use 

lengths much longer than these distances, coupling between two cores should be 

readily observed in endoscopic systems. 

A three-core system can be generated by adding another core to a two-core 

system in two possible formations as illustrated in Figure 9-3 and Figure 9-4 for fiber 

type 350S.  In Figure 9-3, the two unique energy distributions of the six modes of a  
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linear three-core system are shown.  One of the six modes is degenerate while the 

remaining four modes are non-degenerate.  When light is incident on the central core, 

50% of the power is coupled into each of the outer cores, returning eventually to the 

central core, and the process repeats.  The triangular three-core system, as shown in 

Figure 9-4, has two two-fold degenerate modes and two non-degenerate modes.  

Although the oscillating behavior of this core arrangement is similar to the linear 

three-core system, complete extinction no longer occurs.  Note also that the coupling 

length in these three-core fibers is shorter than the two-core fiber of Figure 9-2(b). 

In an image fiber, a single core has not just one but six nearest neighbor cores 

and the impact of these additional cores is to increase the rate at which power is 

transferred between the cores.  In Figure 9-5, the power in each core of a seven-core 

fiber is plotted versus the propagation distance when light is incident on the central  
 

Figure 9-2.  The normalized power in each core of a two-core fiber is plotted 

as a function of the propagation distance.  The two cores have identical 

diameters.  a) FIGH-10-500N, Lc = 0.25 m; b) FIGH-10-350S, Lc = 1.39 cm. 

λ = 600 nm. 

a b 
Coupling 
Length, Lc 

y 

x 
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Figure 9-3.  The two unique energy distributions for the modes of a linear 

three-core 350S fiber are shown at top.  The plot is of the power in each core 

as a function of the propagation distance when light is incident initially on 

the central core.  The power in the left and right core show identical behavior 

and therefore can’t be distinguished on the plot. 



143 

 
 

Figure 9-4.  The energy distribution for the modes of a triangular three-core 

350S fiber are shown at top.  The plot is of the power in each core as a 

function of the propagation distance when light is incident initially on a 

central core.  This plot is identical regardless of the incident core.  The power 

in the left and right core show slightly different behavior because of the 

polarization of the incident light. 
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Figure 9-5.  The power in each core of a seven-core FIGH-10-350S fiber 

when the input is in the central core, λ = 600 nm.  The three unique energy 

distributions of the fourteen fundamental modes of the seven-core fiber are 

shown on the top, along with an illustration of the fiber endface. 

Central 
core 

Outer 
cores 

y 

x 
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core.  The core dimensions correspond to the FIGH-10-350S fiber and the wavelength 

is 600 nm.  Along the length of the fiber, the system oscillates between a state where 

all the power is in the central core (the initial state) and a state where one-seventh of 

the power is in each of the outer cores and the central core.  The slightly differing 

behavior between cores in the outer ring, visible in Figure 9-5 at the point where the 

power in the outer cores is labeled, is a result of the linear polarization of the input 

field and the six-fold symmetry of the seven-core system.  Note that the coupling 

length, or the distance to the first minimum of the power in the input core, is reduced 

from that of a two-core system (compare with Figure 9-2(b)), providing further 

evidence that severe crosstalk is predicted to greatly reduce the practical use of these 

fibers. 

Numerical simulations obviously demonstrate a discrepancy between 

theoretical predictions of strong crosstalk and the experimentally demonstrated 

successful image transmission of the image fibers in Table 9-1.  Considering the case 

of only two cores, in order for at least 90% of the propagating power to remain in the 

initial core, simulations predict that the fiber FIGH-10-500N could be no longer than 

10 cm while a length less than 0.5 cm would be necessary for fiber FIGH-10-350S.  In 

addition, the trend demonstrated by Figure 9-5 indicates that this length will decrease 

when more neighboring cores are considered.  Typical flexible endoscopes utilize 

fibers on the order of a meter long; thus, core coupling or crosstalk should produce 

detrimental effects on the transmitted images.  Yet, experimental results with similar 

sized fibers [92-94] do not show the significant blurring predicted here.  This obvious 

contradiction between demonstrated fact and numerical results indicates that the 

simulated system does not accurately represent the fiber used in the lab.  As is evident 

in the images of Figure 9-1, available image fibers are not composed of identical 
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cores.  Numerical simulations lead to drastically different conclusions when 

nonuniformity is introduced into the cross-sections of the simulated multi-core fibers 

[80, 83].  
 

Numerical analysis 
 

Although both the shape and size of the image fiber cores are quite irregular, 

only variations in the diameters of adjacent circular cores will be examined here.  The 

effects of other types of nonuniformity, such as core ellipticity and irregular core 

separation will be briefly discussed later in the chapter.  In order to numerically study 

random variations in the core diameter, each core in a multi-core fiber is randomly 

assigned a diameter from a Gaussian distribution with an average value of do (taken 

from Table 9-1) and a standard deviation of δd.  The degree of nonuniformity in the 

fiber is quantified by the ratio of the standard deviation to the mean of this distribution 

(δd/do) times 100, referred to as a percentage of variation.  If the average value used 

for the diameter is 2.0 µm, a variation of 1% indicates a standard deviation of 20 nm.  

The core separation is the average value from Table 9-1. 

Returning first to the simple system of only two cores, asymmetry resulting 

from random variations in the core diameters will alter the coupling properties of a 

fiber differently depending on the average size of the cores, the wavelength, and the 

degree of nonuniformity.  In general, both the coupling efficiency and the coupling 

length decrease in magnitude from their value when the cores are identical.  Figure 9-6 

shows an example of how the power in each core is altered from that of Figure 9-2(b) 

when the core diameters of a FIGH-10-350S two-core fiber are no longer equal.  Both 
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types of fibers were analyzed at three different wavelengths, 600 nm, 980 nm and 

1300 nm (material dispersion was neglected), for several degrees of variation.  

Because 100% power transfer may not occur, the coupling length is defined as the 

distance to the first power minimum of the incident core and the efficiency is the 

maximum power transferred out of the incident core.   

For each randomly generated two-core fiber, the efficiency is plotted versus 

the coupling length in Figure 9-7.  Comparing these plots with those in Figure 8-4 and 

Figure 8-5, similar trends appear.  Notice, however, that the spread in the data is less 

significant in Figure 9-7, which is most likely a result of the reduced complexity of the 

variations examined for the step-index fibers.  In Figure 9-8, the average coupling 

efficiency is shown to decrease as the degree of variation increases and as the 

wavelength decreases for both types of fibers at three different wavelengths.  Each 

marker represents the average efficiency for a set of 99 two-core fibers whose core 

diameters were randomly assigned from a Gaussian distribution of values.  Notice the  

Figure 9-6.  The normalized power is plotted versus propagation distance for 

a FIGH-10-350S two-core fiber with a percentage variation of 1%.  λ = 600 

nm.  The difference in the diameters of the two cores is 16 nm.

Coupling 
Efficiency 
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Figure 9-7.  Plots of the efficiency versus the coupling length for fiber type 

500N (a) and fiber type 350S (b) for λ = 0.60 µm, 0.98 µm and 1.30 µm, with 

the longest wavelength data in the upper left on each plot.  The color of the 

marker indicates the percentage variation. 

b 

a 

C
ou

pl
in

g 
Ef

fic
ie

nc
y 

C
ou

pl
in

g 
Ef

fic
ie

nc
y 



149 

 
FIGH-10-500N image fiber is more sensitive to nonuniformity; smaller variations 

produce a more drastic reduction in the coupling efficiency for the FIGH-10-500N 

fiber as compared to the FIGH-10-350S type.  When the wavelength is 600 nm, a 

variation of 1% in a FIGH-10-500N fiber results in an average efficiency of 

approximately 2e-3, indicating essentially independent core propagation or greatly 

reduced crosstalk.  A variation of at least 10% would be needed in the FIGH-10-350S 

type fiber in order to obtain this same condition.  If the coupling efficiency is small, 

Figure 9-8.  The average efficiency for data sets of 99 two-core fibers is 

plotted versus the percentage variation for a) FIGH-10-350S and b) FIGH-

10-500N at three different wavelengths.  The lines have been added to more 

clearly show the trends in the data.  Note that the horizontal scales differ. 

a

b
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very little power oscillates between the cores of a fiber and the coupling length ceases 

to be a relevant estimate for crosstalk or the strength of coupling.  The introduction of 

nonuniformities in core size can therefore reduce the crosstalk in cores that would 

otherwise be strongly coupled.  

The conclusions made from studying two-core fibers are applicable to multi-

core fibers because they correctly predict the response of larger seven-core systems 

when the core diameters are no longer equal.  For a situation where the diameters of  

 
 

Figure 9-9.  Power in a seven-core system when a) one of the outer cores has 

a similar radius to the central core and when b) and c) two outer cores have a 

similar diameter to the central core.  The insets illustrate which cores are 

active in the coupling. 

a 

b c 
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seven cores have been randomly selected with a percentage variation of 2% and one 

outer core happens to have a diameter nearly identical to that of the central core, the 

power evolution in all seven cores is shown in Figure 9-9(a).  The potentially 

complicated behavior of a seven-core system is essentially reduced to that of a two-

core system.  The two cores with almost identical diameters—the difference is less 

than a tenth of a nanometer—transfer power in a manner similar to the two-core 

system of Figure 9-2, while the remaining cores exhibit behavior similar to Figure 9-6, 

participating very little in the power exchange.  Additional simulations reveal that 

when the diameter of a second core in the outer ring is forced to match that of the 

already participating outer core, the system behaves like the respective three-core 

system, depending on the orientation of the three similar cores, either in a line, Figure 

9-9(b), or a triangle, Figure 9-9(c) (compare with Figure 9-3 and Figure 9-4). 
 

 

Figure 9-10.  The average coupling efficiency of the central core is plotted 

versus the percentage variation for λ = 600nm.  Each marker represents an 

average over thirty structures and the fiber dimensions are those of FIGH-10-

350S. 
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The average coupling behavior of a seven-core system with randomly varying 

core diameters is similar to that of the two-core fibers in Figure 9-8.  When the 

diameters of the cores are no longer identical, the maximum amount of power 

remaining in the central core is, in general, increased.  In Figure 9-10, the average 

coupling efficiency of the central core is plotted versus the percentage variation for 

type FIGH-10-350S seven-core fibers at λ = 600 nm.  Notice that the average 

efficiency in Figure 9-10, for each degree of variation shown, is approximately six 

times the corresponding value in Figure 9-8(a) for the same wavelength.  Figure 

9-8(a), therefore, provides, in the weak coupling regime, an average efficiency for 

each two-core interaction in a many core system.  When a single core is surrounded by 

six cores, and on average the interactions with each of these cores have a coupling 

efficiency of 10%, then approximately 60% of the power will oscillate back and forth 

between the center core and the outer cores while the remaining 40% will be retained 

in the central core.  Obviously, this argument is no longer relevant when the coupling 

is strong; for fibers with strongly coupled cores, the coupling behavior is similar to 

that of the symmetric structure in Figure 9-5.  Thus, as in the two-core system, a large 

percentage of variation will increase the power that remains in the input core; 

however, this amount will be decreased by the interactions with each neighboring 

core.  

A more practical way to view the data in Figure 9-8 and Figure 9-10 is as a 

function of the diameter difference between the input core and the other cores in the 

fiber.  In this way, the coupling properties of two cores can be related directly to their 

size mismatch.  These relationships are plotted in Figure 9-11 for the same fibers used 

for the data in Figure 9-8.  Each marker represents a different randomly generated 
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Figure 9-11.  The coupling efficiency a),c) and the coupling length b),d) are 

plotted versus the difference in diameters of the two cores for two fiber types 

FIGH-10-350S a),b) and FIGH-10-500N c),d).  For a percentage variation of 

2%, the ∆d for a two-core fiber at the standard deviation of the distribution 

would be 0.04 µm for FIGH-10-350S and 0.058 µm for FIGH-10-500N. 

a b 

c d 
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 fiber, including all the degrees of variation.  As the difference between the diameter 

of the input core and that of the other core, or ∆d, increases, both the coupling length 

and the efficiency decrease.  This decrease occurs more or less quickly depending on 

the wavelength and the average core size.  For example, the efficiency decreases more 

dramatically at shorter wavelengths and for fiber type FIGH-10-500N, indicating that 

sensitivity to nonuniformity increases as the wavelength decreases and as the average 

core size increases.  In addition, the coupling length is nearly wavelength independent 

when the mismatch is large.  The spread in the data is due to the fact that the diameters 

of both cores are varied randomly about an average value; therefore, each ∆d does not 

refer to a unique structure and can be associated with a different coupling length and 

coupling efficiency.  

Figure 9-12.  The coupling efficiency, a), and the coupling length, b), for the 

outer cores of a seven-core system plotted versus the difference between the 

diameter of an outer core and that of the central core.  λ = 600 nm and fiber 

dimensions match those of FIGH-10-350S.  Only fibers with a percentage 

variation up to 4% are included. 

a b 
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Similar trends appear when the efficiency and the coupling length of each of 

the outer cores of a seven-core fiber are plotted versus their difference in diameter 

from the central core, as shown in Figure 9-12 for the 350S fiber at a wavelength of 

600 nm.  For these fibers, the central core is kept at d0, the average value, and the 

diameters of the outer cores are randomly assigned according to a percentage variation 

of up to 4%, thus reducing the spread in the data points from the two-core data.  The 

close resemblance of Figure 9-11(a) and Figure 9-11(b) to Figure 9-12(a) and Figure 

9-12(b) indicate that the behavior of a seven-core fiber can be predicted by studying 

two-core fibers.  Provided an estimate can be made for ∆d in a particular fiber, 

understanding these relationships could lead to a method for predicting the coupling 

behavior of image fibers with variations.   
 

Coupled mode theory 
 

Coupled mode theory (CMT) is commonly used for obtaining approximate 

analytical solutions to systems of coupled waveguides, such as multi-core fibers.  In 

CMT, each core is solved for independently and interactions with neighboring cores 

are treated as a perturbation.  For a description of conventional CMT, as used in this 

chapter, please refer to Chapter 3.   

Recall from Eq. (3.12) that the maximum power transferred out of waveguide 

a, or the coupling efficiency, is F2 and βd is related to the beat frequency or the rate of 

power transfer.  The coupling length is the distance, Lc, at which the power in 

waveguide b has oscillated to its first maximum, ie. / 2d cLβ π= .  As the mismatch 

between the modes of the individual cores, βa-βb or ∆β, increases, these relationships 
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also dictate that the coupling efficiency and the coupling length will decrease, as 

observed previously. 

These expressions for the coupling efficiency and the coupling length can now 

be applied to the data presented in Figure 9-11.  Specifically, the trend in the coupling 

efficiency in Figure 9-11(a) and Figure 9-11(c) should be described by F2, or 

 2
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The mismatch, or ∆β, is then considered to be a function of ∆d and the product 

KabKba is treated as a constant, which is typically a valid assumption [110].  Because 

∆β is determined from the propagation constants of the modes of the individual 

waveguides, this value can be approximated by calculating β over a range of core 

diameters for a standard step index fiber [5, 6].  For the degree of variation considered 

here, β is an approximately linear function of diameter, and ∆β can be written as the 

slope times ∆d.  Equations (9.2) and (9.3) are then rewritten as the following: 
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where the constant a is equal to slope2/(4KabKba) and b is the coupling length for the 

system when the two cores are identical.  The fitting of Eq. (9.4) to the data in Figure 

9-11 is shown for fiber FIGH-10-500N in Figure 9-13.   

Table 9-2 displays the product KabKba as solved for from the fit parameter a for 

the four plots in Figure 9-11.  The values for KabKba derived from the two fit 

parameters in the coupling length plots are approximately equal; therefore, only 

KabKba as derived from the a parameter are shown in Table 9-2 for Figure 9-11(b) and 

Figure 9-11(d).  The final column of Table 9-2 gives the value for KabKba that is 

calculated from a two-core system with identical cores by setting Eq. (9.1) equal to 

Eq. (9.3) for ∆β = 0 and solving for KabKba. 

 

 

 

Figure 9-13.  Data from Figure 9-11(c) and Figure 9-11(d) replotted and 

fitted from Eq. (9.4) for fiber FIGH-10-500N.  The coupling efficiency is 

plotted in a) while the coupling length is plotted in b).

a b 
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Table 9-2.  Values for KabKba based on the fits of data in Figure 9-11, solved for from the 

parameter a. 

 

 

 

 

 

 

 

 

 

The values for KabKba in Table 9-2 are very similar demonstrating that simple 

conventional CMT is adequate for predicting the coupling behavior for image fibers 

with core diameter mismatch and that the product KabKba is essentially constant for the 

degree of nonuniformity studied here.  The efficiency of the left core and the 

efficiency of the right core were also found to be equal to within the error of the 

program—which is more than two orders of magnitude smaller than the values 

calculated—further evidence that Kab~Kba.  Referreng to Eq. (3.12), the power in core 

a and the power in core b have the same amplitude when (Kab/Kba)~1, which defines 

the regime where conventional CMT is valid.  In addition, these fits are consistent for 

the long wavelength data as well, indicating that the expressions in Eqs. (9.2) and  

(9.3), derived using conventional CMT, retain accuracy even in a stronger coupling 

regime.  Therefore, these equations can be used for predicting the coupling behavior of 

nonuniform two-core fibers, which we have shown are a good model for multi-core 

fibers such as fiber bundles.  

FIGH-10-350S    
Wavelength (µm) Figure 9-11(a) Figure 9-11(b) KabKba 

0.6 1.39E-08 1.24E-08 1.29E-08 
0.98 4.15E-06 4.22E-06 4.21E-06 
1.3 3.72E-05 3.91E-05 3.91E-05 

FIGH-10-500N  
Wavelength (µm) Figure 9-11(c) Figure 9-11(d) KabKba 

0.6 3.63E-11 3.34E-11 3.66E-11 
0.98 6.03E-08 5.95E-08 5.97E-08 
1.3 1.31E-06 1.34E-06 1.32E-06 
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The quality of images transmitted by an image fiber depends on the amount of 

crosstalk between cores, or the coupling efficiency; however, because crosstalk can be 

reduced through the introduction of mismatch between adjacent cores, the 

performance of a particular fiber depends on the amount of nonuniformity, the 

wavelength, and the average core size.  In order to better understand the interplay of 

these different parameters and the sensitivity of a particular fiber to core diameter 

mismatch we compare the two parameters that determine the efficiency, KabKba and 

∆β2/4, see Eq. (9.2).  The relative magnitude of these values determines how sensitive 

a system is to asymmetry, and also the average amount of crosstalk in a fiber.  

Because KabKba is essentially constant over variations of approximately 10%, it is 

therefore a property of the symmetric system and can be calculated reliably from Eq. 

(9.1) for any two-core fiber.  The parameter ∆β can be estimated from the degree of 

nonuniformity in a particular image fiber.  If a particular two-core fiber is weakly 

coupled with a small value for KabKba, a small ∆β caused from nonuniformities can 

significantly decrease the coupling efficiency; this fiber would be considered as very 

sensitive.  In Figure 9-14, these two parameters are plotted versus wavelength for the 

fiber type FIGH-10-350S in (a), and type FIGH-10-500N in Figure 9-14(b).  The solid 

lines indicate KabKba, as calculated from Eq. (9.1).  The non-solid lines are ∆β2/4 for 

different degrees of asymmetry, where ( ) ( )b aβ β λ β λ∆ = − .  For simplicity, the core 

labeled, a, maintained a diameter of d0, the average core diameter given in Table 9-1, 

while the diameter of core b was increased by 1%, 4% and 10%.  The propagation 

constant, β, was calculated over wavelength for each core separately and subtracted in 

order to obtain ∆β.  
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Figure 9-14.  KabKba is plotted with a solid line and ∆β2/4, as defined in the 

text, is represented by non-solid lines for different ∆d.  The dotted lines are 

for a diameter difference of 1%, the dashed 4%, and dot-dashed 10%. 

Fiber FIGH-10-350S is shown in (a) while FIGH-10-500N is in (b).  When 

the wavelength and value for ∆β fall in the gray shaded region, the two 

cores will have less than 1.67% coupling efficiency. 

b

a
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  The utility of these plots can be understood by examining, for example, the 

point where a solid line crosses a non-sold line.  At the wavelength of this crossing 

point, the predicted efficiency, from Eq. (9.2), will be 50%.  Above this wavelength, 

the efficiency will increase and at lower wavelengths it will decrease.  As the 

wavelength and KabKba decrease, a fiber becomes more sensitive to nonuniformities, 

approaching a region of independent core propagation.  For example, when the 

wavelength and value for ∆β fall in the gray shaded region, the two cores will have 

less than 1.67% coupling efficiency.  For the opposite trend in wavelength and KabKba, 

a fiber enters a strongly coupled regime where reducing crosstalk becomes more and 

more difficult.  Notice also that fiber type FIGH-10-500N has a larger wavelength 

range with low efficiency coupling demonstrating again that this fiber is more 

sensitive to nonuniformity.  Due to the scale invariance of Maxwell’s equations, the 

results in Figure 9-14 can be applied to situations not within the range shown and to 

fibers of different core sizes, if the wavelength and fiber dimensions are scaled 

appropriately.  These plots can also be generated for any two-core fiber given a step-

index fiber mode solver and the average coupling length when the cores are identical. 
 

Discussion 
 

The dramatic impact of nonuniformity on the coupling properties of multi-core 

fibers can be understood more intuitively by examining the changes that occur in the 

modal fields when variation in core size is present.  When the core diameters of a 

seven-core fiber differ significantly, the modes of the multi-core system decouple into 

those of the individual cores.  The existence of localized modes in a disordered 

waveguide system such as a fiber bundle has also been observed by others [111].   



162 

 
 

Figure 9-15 shows the seven unique energy distributions of the fourteen 

nondegenerate modes of a decoupled seven-core system, which can be compared to 

the modes of the identical core fiber shown in Figure 9-5.  Light incident on a single 

core of the fiber in Figure 9-15 will couple almost completely into just one mode of 

the system and therefore not mix with other cores or modes along the length of the 

fiber.  The field expansion will contain essentially one mode and the energy 

distribution is no longer a strong function of z.  The cores of this image fiber behave 

independently of their neighbors because differing adjacent core diameters have 

created a mode mismatch that will inhibit coupling.   

In addition to variations in size, the cores of image fibers also vary in shape 

and separation.  The impact of these nonuniformities can be estimated to be less than 

that of variation in core size.  The increase in ∆β caused by core ellipticity can be 

Figure 9-15.  The decoupled modes of a seven-core system with a percentage 

variation in core diameters of 4% and dimensions of FIGH-10-350S, λ = 600 

nm.  
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estimated from studies on the geometric birefringence of elliptical core fibers [112-

114].  For example, if the variation in core diameter is 10%, a maximum birefringence 

can be estimated by defining the major and minor axes of an elliptical core as 10% 

more and 10% less than the average core diameter, resulting in an ellipticity of 

approximately 0.182.  This shape distortion would cause a ∆β on the order of 10-4 

[112-114].  Comparing the square of this value to the non-solid lines in Figure 9-14, it 

is evident that ignoring the effect of nonuniformity in core shape is appropriate due to 

the relatively small size of this parameter compared to the ∆β caused by variation in 

the core diameters.  Ellipticity results in a minimal amount of mode mismatch because 

the overall core area is not altered as dramatically as when the core radius is changed; 

the propagation constant is affected more by a change in the modal area than by a 

change in the modal shape.  Irregularity in the core spacing will affect the coupling 

length rather than the coupling efficiency when the core diameters are the same.  For 

non-identical cores, changing the separation will make the two-core system more or 

less sensitive to core diameter mismatch, depending on whether the cores become 

closer or farther apart.  Because an increase in the core separation has the opposite 

consequence from decreasing the core separation, the net effect on a fiber with 

thousands of cores is expected to be small.  Core diameter mismatch is, therefore, the 

dominant effect in these multi-core fibers. 

Our numerical and analytical assessments of multi-core fibers provide a 

method for analyzing the crosstalk in a particular fiber bundle.  The plots of Figure 

9-14, based on the parameters in Eq. (9.2), can be used to estimate the coupling 

efficiency of two core interactions given a certain degree of nonuniformity.  Based on 

arguments present in this paper, this two-core analysis can be applied to cores with six 

neighboring cores.  In this manner, the reliability of a pixel in an image fiber can be 
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estimated give a certain acceptable amount of crosstalk and an average degree of 

nonuniformity.  For example, if the pixel size of the FIGH-10-350S fiber type is 

preferred for an experiment, yet a coupling efficiency of no more than 0.1 can be 

tolerated at λ = 780 nm—in other words, 90% of the signal power is expected to be 

retained in each core—the average coupling efficiency for each core pair should then 

be approximately 0.0167, when six near neighbor interactions are considered.  The 

value for ∆β that would produce this efficiency would need to be at least sixty times 

larger than KabKba (using Eq. (9.2) ); the shaded region in Figure 9-14 indicates the 

values for ∆β that satisfy this condition.  Referring to Figure 9-14, a diameter 

difference of at least 4% would result in a difference of this order of magnitude.  Since 

this type of image fiber has approximately a 10% variation in core diameter, as 

measured by SEM (Table 9-1), and given a Gaussian distribution, there is a 70% 

chance that two cores will have a diameter difference of exactly 4% or higher.  

Therefore, approximately 30% of the pixels will be limited by crosstalk given this 

situation and tolerance.  Due to the higher sensitively of the FIGH-10-500N fiber, 

better performance would be anticipated given the same efficiency restrictions.   

This example illustrates the fact that the coupling will typically not be reduced 

below a desired limit in one hundred percent of the cores in an image fiber; some 

degree of error is inevitable.  Table 9-3 provides an estimate of the pixel accuracy of 

the two fibers studied given two different values for the total percentage of power 

coupled out of the input core that can be tolerated in an experiment.  The estimates 

also assume the fiber exhibits 10% variation in the core size and that the wavelength is 

780 nm.  A percentage of 95% indicates that around 500 of the total ten thousand 

cores will exhibit stronger coupling than desired.  In fact, strong core coupling in these 

image fibers has been demonstrated experimentally and is described in Chapter 10.  



165 

These effects will be manifested as an overall reduction in the image resolution and 

the reliability of each pixel value. 
 
 
 

Table 9-3.  Pixel accuracy based on 10% variation in pixel diameter. 

 

Total coupling 
efficiency 
tolerance 

FIGH-10-
350S 

FIGH-10-
500N 

10% 70% 95% 
50% 85% 99% 

 
 
 
 

Conclusion 
 

Theory and simulation indicate that due to the small core size and separation of 

current image fibers, crosstalk between pixels should make the transmission of images 

through flexible endoscopes severely blurred.  However, nonuniformity in the core 

size is shown to reduce the efficiency of the coupling between adjacent cores, 

substantially suppressing this crosstalk.  The manufacture of functional image fibers 

with closer and smaller pixels requires the pixels to be nonuniform in order to enhance 

mismatch between neighboring cores.  The degree to which two cores will interact or 

couple depends on the wavelength, the degree of variation, and the average core size.  

Coupled mode theory was used to generate expressions that can predict the amount of 

nonuniformity that will reduce crosstalk to acceptable levels in addition to assessing 

the pixel reliability of available image fibers.    
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The work presented in this chapter has been submitted for publication in the 

Optics Express journal and appears in the abstracts of the Biophysical Society’s 50th 

Annual Meeting [115]. 
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Chapter 10  

ANALYSIS AND MEASUREMENT OF LIGHT 
PROPAGATION IN COHERENT FIBER BUNDLES 

Introduction 
 

In Chapter 9, it was stated that image fibers, or coherent fiber bundles, are able 

to transmit images as a result of nonuniformity in the cross-section that reduces core 

coupling.  Due to the random nature of this effect, however, strong core coupling can 

still be observed.  In this chapter, we experimentally demonstrate strong coupling in 

fiber bundles typically used for endoscopic imaging.  This coupling depends on the 

wavelength as well as on the polarization of the input light.  These results indicate that 

the performance of currently available image fibers, and therefore the quality of 

images transmitted, is still compromised by crosstalk. 

 

Theory 

 

A summary of the numerical results presented in Chapter 9 is given in Figure 

10-1 for a two-core 350S fiber at a wavelength of 780 nm, which is near the 

wavelengths used in the experiments of this chapter.  Figure 10-1 compares a two-core 
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350S fiber with identical cores to a 350S fiber with the diameter of one core increased 

by 2% (40 nm).  The modes of the symmetric fiber are the familiar even and odd 

modes of a coupled oscillator with equal energy distribution between each core, see 

Figure 10-1(a) and Figure 10-1(b).  When the two cores are identical, an input into one 

core will be completely transferred to the second core after propagating a distance 

referred to as the coupling length, Figure 10-1(c).  When the wavelength is 780 nm, 

the coupling length for fiber type 500N is 3 cm, and for type 350S this distance is only 
 

 

Figure 10-1.  Fiber type 350S for a symmetric two-core fiber (a-c) and a two-core 

fiber with one core diameter increased by 2% (d-f), wavelength = 780nm.  Plots 

a,b,d,e display the z-component of the Poynting vector for the two x-polarized 

modes.  The insets of a) and b) show the characteristic odd/even behavior of the 

modal fields.  The power is plotted versus the propagation distance in c) and f) for 

an x-polarized input into the left core.  The inset of d) shows a two-core fiber cross-

section. 
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2.5 mm.  The asymmetric fiber is characterized by modes that resemble the 

independent individual cores, Figure 1(d) and 1(e).  Because the cores become 

decoupled, a single core input very closely overlaps with a mode of the system such 

that only a small amount of the power oscillates as a function of the propagation 

distance, Figure 1(f).  For the asymmetric fiber, light incident initially on a single core 

will remain mostly in that core as it propagates down the fiber.  As a result of this 

effect, image fibers with closely packed cores can transmit an image without severe 

blurring.   

All numerical simulations in this chapter are based on methods presented in 

previous chapters. 

 

Experimental methods 

 

Because variations in the image fiber cross-section are random in nature, 

strong coupling between adjacent cores is still possible and can be readily observed in 

the image fibers we experimentally tested.  The experimental set-up is illustrated in 

Figure 10-2 and pictures of the actual set-up appear in Figure 10-3.  A tunable diode 

laser (EOSI 2010, linewidth of approximately 1e-5 nm) was made into a fiber source 

by coupling the light into a single mode fiber patch cord.  In this manner, drift in the 

laser beam caused by tuning of the wavelength or change in temperature altered only 

the power output and not the final beam position or spatial profile.  The single mode 

fiber output was then collimated and focused onto the fiber bundle using an objective 

that matched the NA of the image fiber (NA = 0.30), such that the spot size was 

approximately the size of an individual core or pixel.  This objective was replaced 
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with a low NA objective (NA = 0.10) for some data collection to try to reduce the 

multi-moded nature of the fiber cores.  Because these results tended to have a larger 

number of participating cores, due to the larger spot size, the observations of coupling 

were not as clean; therefore, the 0.30 NA objective that matched the NA of the fiber 

core was preferred.   

A nonpolarizing beam cube was added to the set-up between the patch cord 

collimator and objective two in order to monitor the wavelength and power of the 

incident light.  The power readings were not used in the final processing of the images 

although the data was helpful for assessing the stability of the laser.  The value for the 

wavelength was recorded using an optical spectrum analyzer with a resolution of 0.01 

nm.  The light transmitted through the fiber bundle was imaged onto a CCD camera 

through an old microscope tube using a 100x objective.  A white light source for 

reflected light imaging was also present in the set-up at this end of the image fiber in 

Laser 
Image 
fiber 

Obj2 Obj3 
Obj1 

Single mode 
patch cord 

 

Reflected light 
imaging source 

Figure 10-2.  Experimental set-up: Obj1 is an objective with NA = 0.10, Obj2

serves as a collimator and an objective with NA = 0.30, Obj3 is a 100x 

objective.  The image inset is an SEM micrograph of a fiber bundle endface. 
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order to facilitate alignment of the set-up and to observe the fiber endface.  Images 

were collected using a PixelSmart framegrabber and captured using an ImageJ 

program. 
 

 

The input coupling conditions were then held constant as the image fiber 

output was analyzed over changes in laser wavelength and polarization.  When a 

single core of the image fiber is illuminated, the fiber output shows a distribution of 

power among multiple cores, evidence that coupling is occurring.  To examine the 

wavelength dependence of coupling, a new image was captured for each change in the 

input wavelength and images were taken over a range of wavelengths.  Several image 

Figure 10-3.  Photographs of the experimental set-up in the lab. 

Fiber bundle 

Patch cord 

old 
microscope
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fibers where examined and results were typically collected from multiple areas on the 

fiber endface.  

We observed strong core coupling in both the 350S and 500N Fujikura image 

fibers in addition to Sumitomo image fibers IGN-02-03 and IGN-035-06.  The details 

of the Fujikura fibers have been stated previously in Chapter 9.  Sumitomo fiber IGN-

02-03 is similar to the 350S Fujikura fiber although with slightly smaller dimensions; 

the core separation is estimated to be approximately 3 µm and the core diameters 

between 1.5 µm and 2 µm.  The length of the fiber sample used in the experiment was 

0.9 m.  The Sumitomo fiber IGN-035-06 is similar to the Fujikura 500N fiber with 

core separation of 4 µm and core size of approximately 2.5 µm; a length of 0.5 m was 

used.  The Sumitomo fibers show a similar degree of variation in core size and shape 

to the Fujikura fibers, as observed from SEM images.  An image taken of the IGN-02-

03 fiber endface is shown in Figure 10-4.  A Schott leached fiber bundle was also 

analyzed experimentally.  The cores of this fiber are highly uniform and very large 

with diameters of 7 to 8 µm.  Due to the tight mode confinement, coupling between 

neighboring cores is not expected and was not observed unless the power in the input 

core extremely saturated the camera.  It is estimated that the percentage of power 

coupled between cores is reliably insignificant throughout the cross-section of these 

fibers.  The exact indices of refraction of the Sumitomo and Schott fibers were not 

provided by the suppliers although the NA of the Sumitomo fibers is about the same as 

that of the Fujikura fibers. 

An example of typical experimental results is shown in Figure 10-5 for the 

Fujikura 350S fiber.  Three images taken at different wavelengths are shown in Figure 

10-5(1-3).  These images demonstrate that the power distribution in different cores 

changes with the wavelength.  The fourth image is taken with a femtosecond 
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Ti:Sapphire laser (Spectra-Physics), with a spectral bandwidth covering the entire 

tuning range indicated in Figure 10-5(4).  We found that, in general, the images taken 

with the pulsed source are comparable to the sum of individual images taken using the 

narrow band diode laser at each wavelength within the pulse spectral bandwidth.   

 
 
 

 
 

Figure 10-5.  Images 1-4 are of the transmitted light through the image fiber 

350S at different wavelengths; the images are approximately 7 µm square. 

The source for images 1-3 is CW while in image 4 the source is broad band

and containing the wavelengths indicated. 

783.05 nm 783.25 nm 783.45 nm 777.5 to 786 nm 

1. 2. 3. 4. 

Figure 10-4.  SEM micrograph of the Sumitomo IGN-02-03 fiber. 
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Two examples of experimentally obtained plots of the power versus the 

wavelength are shown in Figure 10-6(b) and Figure 10-7(b) for each type of fiber.  

The power in a particular core was determined from each images by summing over the 

pixel values in a particular core area and dividing by the sum for the entire image.  

This processing was performed in Matlab.  The wavelength dependence of the power  

 
 

in each core demonstrates the wavelength dependence of the coupling length.  The 

period of power oscillations is indicative of the coupling length, which is shorter for 

the 350S fiber (see the direct comparison in Figure 10-8); thus, a smaller change in 

wavelength results in a more drastic change in the power distribution.  Oscillations are 

observed because changing the wavelength has a similar effect to changing the length 

of the fiber for a single wavelength.   

Because these power plots show the total power in each core oscillating, 

approximately, between zero and one, it is apparent that the coupling observed is 

occurring predominantly between two participating cores.  In addition, because nearly 

Figure 10-6.  Numerical, a) and experimental, b) results for the power in two 

cores as a function of wavelength for fiber type 350S.  The numerical results 

are calculated at a propagation distance of z = 0.3 m.   

BA
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one hundred percent power transfer is occurring between the cores, these plots suggest 

that the two cores shown are of nearly identical size while their neighboring cores 

have enough size mismatch to be decoupled from the two participating cores.  

In order to demonstrate that the previously described theoretical analysis of 

multi-core fibers is applicable to actual image fibers, the experimental results in  
 

 
 

Figure 10-7.  Numerical, a), and experimental, b), results for the power in 

two cores as a function of wavelength for fiber type 500N.  The numerical 

results are calculated at a propagation distance of z = 0.3 m.  The images are 

of the transmitted light through the image fiber 500N at different 

wavelengths.  The source for images 1-3 is CW while in image 4 the source 

is broad band and containing the wavelengths indicated. 

A B

779 nm 781 nm 783 nm 778 to 789 nm 

1 2 3 4 
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Figure 10-6(b) and Figure 10-7(b) were duplicated through simulations.  The modes of 

two-core fibers with identical cores were calculated over a range of wavelengths and a 

normal mode expansion was used to calculate the power at a distance approximately 

equal to the sample length of the actual fibers, 0.3 m.  The power in each core at this 

propagation distance was then plotted against the wavelength.  The simulated plots 

approximately match the periodicity of the experimental data and are shown in Figure 

10-6(a) and Figure 10-7(a).  The core size and separation for these plots are 2.8 µm 

and 2.1 µm for Figure 10-6(a), and 4.2 µm and 2.84 µm for Figure 10-7(a).  The fact 

that these parameters do not match the average values for each type of fiber is not 

surprising given the amount of variation present in the fiber cross-section. 
 

 
In Figure 10-7(1-4), the actual images from different wavelengths are 

presented for the Fujikura 500N fiber from the data in Figure 10-7(b).  The shape of 

Figure 10-8.  Comparison of the numerical simulations matching the 

experimental data in Figure 10-6 and Figure 10-7 over approximately the same 

wavelength range, demonstrating the different coupling behavior in these two 

fibers.  The numerical results are calculated at a propagation distance of z = 0.3 

m.   

A B
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the transmitted light in image 4 indicates that a higher order mode has been excited in 

this fiber.  This double-lobed shape is similar to a linear polarized (LP) mode of a 

standard single mode fiber.  Coupling between higher order modes was observed in 

other experimental results shown later in the chapter and is not surprising considering 

the large core size of the 500N fiber. 

In order to experimentally assess the polarization dependence of the coupling, 

the polarization of the input light is rotated by inserting a half-wave plate in the beam 

path.  The patch cord was also securely taped to the table in order to reduce movement 

of the fiber which could alter the polarization of the output light.  Figure 10-9(a) and 

Figure 10-9(b) show the simulation and experimental data, respectively for fiber type 

350S.  The experimental data is processed in the same manner as previously stated and 

the simulation plot is produced by calculating the power at the end of the fiber using a 

normal mode expansion while rotating the input polarization for a single wavelength.  

The oscillating power in each of the two cores indicates that the coupling depends on 

Figure 10-9.  The numerical (a) and experimental (b) results for the power in 

two cores of fiber 350S when a half-wave plate is rotated 360 degrees.   

A B
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the input polarization state.  The experimental data in Figure 10-9 has been fit to a 

sine-squared function with a period of 90 degrees.  The frequency of oscillations in the 

observed power matches the expected cycle necessary for a complete rotation of the 

polarization.  

Additional experimental results, such as raw images and power plots, are 

presented in Figure 10-10 through Figure 10-16, including observations of coupling in 

the Sumitomo fibers.  Although the coupling between cores of an image fiber is 

demonstrated very clearly in the data of Figure 10-6 and Figure 10-7, these additional 

plots and images lend further insight into the behavior of the coupling in fiber bundles 

and the proper way to observe it.   

The data in Figure 10-10 and Figure 10-11 were taken with a low NA objective 

for coupling light into the fiber bundle, as previously alluded to in the description of  

Figure 10-10.  A small NA objective (0.10) was used to couple light into the 

fiber bundle; therefore, more cores a participating in the coupling.  The fiber 

is FIGH-10-350S.  (Run3, 7-24) 

λ =  786.68 nm, λ = 787.12 nm,  λ = 787.56 nm

Ti:Sapphire  λ =  775 nm to 789 nm 
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λ = 781.4 nm λ = 781.85 nm λ = 782.5 nm 

λ = 782.95 nm λ = 784.0 nm λ = 784.35 nm 

λ = 780 nm 
to 787 nm 

a b 

Figure 10-11.  A 0.10 NA objective was used to couple light into the fiber. 

Notice the large number of cores participating in rather complicated coupling 

behavior, a), most likely due to the large spot size.  Plot b) shows two of the 

cores in a) for a shorter range of wavelengths in order to better observe the 

symmetric behavior of these two cores.  Notice that this coupling behavior is 

occurring between the two cores to the left of the central bright core which is 

providing a background illumination.  The fiber is FIGH-10-350S. (Run 1, 7-

26)   
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the laser set-up.  These observations typically show complicated coupling behavior 

between several cores due to the fact that multiple cores were illuminated by the input 

light and these cores coupled differently into various neighboring cores.  In Figure 

10-10, several cores participated in the coupling although two cores appear more 

strongly coupled to one another.  Likewise, several cores are participating in the 

coupling in Figure 10-11.  Although the power transfer appears complicated, two of 

the cores, in Figure 10-11(b), demonstrate complimentary behavior and these two  
 

 
are peripheral cores to the brightest central core, as shown in the images of Figure 10-

11.  The bright, central core provides a background illumination such that the total 

power on the plot is not equal to one.  A finer step size might have reduced the 

Figure 10-12.  The fiber is FIGH-10-350S and the NA of the coupling 

objective is 0.30. (Run 3, 7-26).   

λ = 781nm       λ = 782.9 nm    λ = 784 nm   
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complexity of the oscillations but the large number of interacting cores can be 

attributed to the large spot size, a result of using a smaller NA objective.  It is also 

interesting to compare the images shown at individual wavelength steps to the 

Ti:Sapphire image including a range of wavelengths, which closely resembles the sum 

of the images. 

Figure 10-12 and Figure 10-13 demonstrate incomplete coupling, when the 

coupling efficiency is less than one hundred percent.  This occurs when two cores are 

non-identical but have only a slight mismatch to each other when compared to 

mismatch with neighboring cores.  Figure 10-12 provides an example of significant 

power transfer occurring between next-nearest neighbor cores.  Figure 10-13 shows 

very strong agreement between the Ti:Sapphire image and the single wavelength  

 
 

 
 

λ = 784.88 nm, 785.25 nm, 785.64 nm 

Ti:Sapphire 
λ = 780 nm to 

790 nm 

Figure 10-13.  The fiber is FIGH-10-500N.  (Run1, 7-31)  
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images.  In addition, the coupling is again between higher order modes in this 500N 

fiber. 

In Figure 10-14 through Figure 10-16, the fibers used are manufactured by 

Sumitomo and the model number is indicated in the figure caption.  In general, both of 

these fibers tended to exhibit complicated coupling behavior among several different 

cores and strong coupling between only a pair of cores was difficult to observe.  In 

Figure 10-14 and Figure 10-15, the polarization dependence of the coupling is also 

shown.  These plots clearly show the 90 degree period oscillations in several 

participating cores.  Although the coupling behavior in Figure 10-13 and Figure 10-14 

is complicated, two of the cores mirror each other.  In Figure 10-16, coupling between 

next-near neighbors is again shown to be significant.  These results show that the 

Sumitomo fibers also exhibit coupling that is a function of the wavelength and the  
 

Figure 10-14.  The polarization is rotated in b) and the wavelength varied in 

a).  The input conditions are identical for both plots.  The fiber is IGN-02-03 

and the NA of the coupling objective is 0.30. (Run2 and Run3, 7-31) 

a b 
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Figure 10-15.  The polarization is rotated in a) and the wavelength varied in 

b) and c). The input conditions are identical for all plots.  Plot c) shows only 

two of the cores in b) in order to better observe the symmetric behavior of 

these two cores.  The fiber is IGN-02-03 and the coupling objective NA is 

0.30.  (Run4 and Run5, 7-31)  

a 

b c 
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Figure 10-16.  Above are power plots showing the three cores participating 

the most in the coupling over different wavelength ranges.  The fiber is IGN-

035-36 and the coupling objective NA is 0.30.  (Run2, 8-2)  

λ = 782.6 nm λ = 787.0 nm λ = 790.8 nm 
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polarization and that this coupling tends to involve more cores than the coupling in the 

Fujikura fibers. 

 

Conclusion 

 

We have shown that core coupling that is a function of the wavelength and the 

polarization can be experimentally observed in Fujikura and Sumitomo image fibers.  

In general, the coupling behavior involved more cores in the Sumitomo fibers, 

whereas strong coupling between only a pair of cores was more easily observed in the 

Fujikura fibers.  This may be evidence that the nonuniformity in the Fujikura fibers is 

more effectively reducing the coupling than in the Sumitomo fibers.  From these 

observations, we would predict that Fujikura fibers will produce higher quality images 

than Sumitomo fibers of similar dimensions.  In some plots of the power versus the 

wavelength, fairly complicated energy transfer was observed; the inclusion of more 

data points could possibly have improved this data.  The coupling length in these 

examples appears to be very short, such that small wavelength steps would result in 

significant change.  In this case, the behavior is not accurately represented by such 

coarse wavelength scanning. 

Furthermore, our experimental results and numerical simulations of the 

wavelength and polarization dependence of crosstalk indicate that the coupling 

between cores in an image fiber can be predicted by modeling light propagation in 

coupled waveguides.  In addition, this coupling or power transfer between cores will 

obviously compromise the quality of images produced by endoscopic imaging 

systems.  For example, the resolution estimated from the fiber core size and separation 
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is reduced by the non-negligible crosstalk observed here, resulting in blurred images.  

With the use of a stable wavelength source for confocal imaging, core coupling will 

introduce a constant percentage error in pixel values.  The adaptation of these image 

fibers to two-photon microscopy is compromised by the wavelength dependence of the 

coupling as pulse spectrum and power splitting will occur.  Also, because fiber 

bundles are flexible, the polarization of the input light typically cannot be maintained, 

resulting in dynamic coupling behavior along the fiber and a changing output pattern 

that will affect the images produced by these image fibers. 

In conclusion, the mechanism that allows current high resolution image fibers 

to function in an endoscopic system is variation in pixel size and shape.  Situations of 

strong core coupling were shown to exist for image fibers typically used in endoscopes 

despite the presence of nonuniformity.  The wavelength and polarization dependence 

of this coupling was demonstrated experimentally and correctly predicted by 

numerical modeling based on light propagation in coupled waveguides.  With an 

improved understanding of these fibers and how core mismatch is necessary for 

independent core propagation, image fibers can be more effectively utilized in current 

research and applications and their design improved to meet the demand for smaller, 

denser pixel arrays.   

The work presented in this chapter has been submitted for publication in the 

Optics Letters Journal and the CLEO/QELS 2007 conference proceedings. 
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Chapter 11  

CONCLUSION 

Although basic modeling using coupled mode theory and the normal mode 

expansion method can predict the dimensions for multi-core photonic crystal fibers 

that would result in minimal core coupling, it has been shown that nonuniformities in 

the fiber cross-section influence the properties of the actual fabricated fibers.  In 

Chapter 7 it was revealed that nonuniformities will cause the actual coupling length to 

be shorter than the coupling length estimated from simulations.  This conclusion 

would seem to indicate that a multi-core PCF with weakly coupled cores would be 

impossible to fabricate; however, the numerical results in Chapter 8 demonstrate that 

the coupling efficiency is more important than the coupling length when considering 

the strength of core interactions.  The effects of imperfections in the fiber cross-

section, as well as the dependence of this response on the size of the air holes, were 

explained through a comparison with coupled mode theory.  Our results show that 

structural nonuniformities in two-core PCFs that could be a consequence of normal 

fabrication processes have the potential to drastically reduce the efficiency of coupling 

allowing coupling to be practically ignored.  The coupling efficiency of two-core 

PCFs is shown to be minimal when the air holes are large even when only small 
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nonuniformities are present.  Imperfections in the cladding cause the two cores to 

become decoupled and, as a result, light propagates essentially independently in each 

core.  These results relax the restrictions for obtaining weak coupling between cores in 

a multi-core PCF.  While PCFs with large air holes are still the preferred structure, a 

slightly non-uniform photonic crystal cladding is also necessary. 

In addition, for large air hole fibers, lattice irregularities are shown to induce 

significant birefringence such that the fabricated fiber can be almost guaranteed to 

have a rather large birefringence due to the unavoidable fact that the fiber cross-

section will be slightly nonuniform.  Large birefringence will allow the polarization to 

be maintained along the length of the fiber.  Nonuniformities cause a negligible 

change in the confinement loss for low loss fibers and dispersion is shown to be robust 

if the percentage of variation in the fiber parameters is less than 2% and the structure 

does not fall within a cutoff region.   

Basic analysis of multi-core step-index fibers with the dimensions of typical 

image fibers reveals that the cores should be strongly coupled.  We have shown that 

coupling in actual image fibers is reduced through random variations in the fiber 

cross-section.  Nonuniformity in core size and shape increases the likelihood of modal 

mismatch between adjacent cores, which results in weakened coupling.  In addition, 

we experimentally demonstrated that despite this reduction in core-to-core 

interactions, strong coupling can be observed in fiber bundles typically used for 

endoscopic imaging.  This coupling depends on the wavelength as well as on the 

polarization of the input light.  These results indicate that the performance of currently 

available image fibers, and therefore the quality of images transmitted by endoscopes, 

is still compromised by crosstalk. 
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Future directions 
 

The performance of current image fibers can be further quantified by 

experimentally examining the reliability of each pixel.  A narrow band source could be 

scanned across one fiber endface while the output at the opposite end is imaged.  The 

percentage of power coupled into adjacent cores could then be assessed in order to 

provide an overall estimate of the performance of the fiber.  In addition, an endoscope 

system could be replicated by placing optics at the distal end of the fiber.  A sample 

would be imaged while the wavelength of the illumination source is changed and the 

quality of these images compared.  This type of experiment would provide a more 

tangible demonstration of the effects of changing the wavelength on the quality of the 

images transmitted through an endoscope.  Additional experiments could also be 

performed in longer wavelength regimes. 

Endoscopes for multiphoton microscopy require the delivery of high peak 

power pulsed lasers.  Mismatch between adjacent cores should result in pulse 

spectrum and power splitting, yet the effect of propagation in an image fiber on the 

pulse shape and spectrum has yet to be thoroughly studied.  Pulsed laser delivery with 

fiber bundles could be characterized by experimentally measuring the spectrum output 

by each core and by observing the overall change in the output spectrum and shape.  

Pulsed light propagation in image fibers can also be simulated through use of the 

numerical methods presented in this dissertation.  Because a pulse is mathematically a 

sum of frequencies, each frequency can be propagated down the fiber according to the 

numerical methods explained in Chapter 3, then all frequencies can be recombined at 

the end of the fiber to observe the modulated pulse shape.  
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In proposing a design for a new fiber endoscope, there are three major areas 

where current fibers can be improved.  A multi-core fiber with any of the following 

qualities would expand the potential of current endoscopes:  higher core density, 

reduced crosstalk, or single-moded propagation.  The feasibility of a single-moded 

fiber for endoscopes, especially, should be given additional attention.  A multi-core 

PCF may be able to provide one of these improvements.   
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Appendix A 
 
 
 

DISCUSSION OF A PROPOSAL FOR A PCF 
ENDOSCOPE 

A proposal for a multi-core photonic crystal fiber for possible use in a flexible 

endoscope will be presented based on the numerical calculations presented in Chapter 

6 on two-core PCFs.  An example illustration of a multi-core PCF is shown in Figure 

A-1 and is similar in cross-section to a honeycomb lattice PCF [116].  A multi-core 

PCF is advantageous over a multi-core step-index fiber because a PCF has higher 

index contrast between the core and the cladding and can be fabricated from a single 

material.  Higher index contrast will result in more well-confined modes, weaker 

coupling between the cores, and a higher potential information or core density.  These 

characterisitics will improve the image quality of current endoscopes and also reduce 

their size if independent core propagation can be achieved.  When light propagates 

independently in each core, phase information is retained from one end of the fiber to 

the other and laser scanning can be performed at the distal end of the fiber by 

controlling the wavefront at the proximal end.  A diagram of this type of fiber 

endoscope is shown in Figure A-2.   
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Figure A-2.  Photonic crystal fiber endoscope. 

Figure A-1.  Multi-core photonic crystal fiber for use in an endoscope. 
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The design of the multi-core PCF is guided by the need to reduce coupling 

between cores by increasing the coupling length.  Based on the numerical modeling of 

two-core PCFs presented in Chapter 6, it is evident that a Type 2 fiber with large air 

holes and a large pitch will have a long coupling length.  However, the modes of 

photonic crystal fibers also experience loss as they propagate due to their leaky nature; 

increasing the pitch will increase the imaginary part of the propagation constant 

resulting in increased loss.  In addition, the multi-moded behavior of the cores 

becomes more apparent when the pitch is large.  The plot in Figure A-3 illustrates the 

Figure A-3.  The trade off between loss and coupling length is shown for a 

two-core PCF with d/Λ = 0.95 and a wavelength of 0.775 µm.  The shaded 

regions indicate the acceptable limits for the two parameters.
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trade-off between the loss and the coupling length for a fiber with large air holes, d/Λ 

= 0.95, λ = 775 nm, in an essentially single-moded regime.  The shaded regions 

indicate the estimated limits for the loss, no larger than 10 dB/m, and for the coupling, 

a coupling length no shorter than 10 m.  The PCF design is also limited by fabrication, 

in that the structures cannot be too small or they will collapse when drawn.  By 

compromising the density of cores, the coupling length could be extended and the loss 

further reduced by adding another ring of air holes around the cores.  Fiber designs 

that surround each core with two rings of air holes are included in Figure A-4.  Thus, 

in addition to the coupling length, the mode loss, the number of modes, the core 

density, and the practicality of the design must be considered when designing a 

functional fiber. 
 

 

Figure A-4.  The coupling between cores can be further weakened by adding 

a second ring of air holes around each core.  Here are two examples of this 

type of multi-core PCF, each with a different packing fraction.  
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Two multi-core PCFs were obtained through collaborations with OFS Optics.  

Images of these fibers appear in Figure A-5.  The two-core fiber in Figure A-5(a) has 

such a large core separation that no coupling was observed between the two cores and 

therefore the fiber had minimal value in our studies of inter-core coupling.  Figure A-

5(b) is an image of the preform for a requested design and Figure A-5(c) is the 
 

 

Figure A-5.  Images of fibers obtained from OFS Optics.  For the two-core 

PCF in a), the core diameters are approximately 2.4 µm and the core 

separation is 9.5 µm.  In b) is an image of the preform for the fabricated fiber 

in c).  This fiber was made using a new sol-gel process and the preform was 

etched before drawing.  The fabricated fiber turned out extremely non-

uniform, c). 

a 

b c 
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Figure A-6.  The analogy between a multi-core PCF and a multiple slit 

systems is demonstrated (a-b).  The scan zone indicated in b) is shifted in c) 

as a result of the angle of the incident beam.  

a b 

c 
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fabricated fiber.  The pitch of this PCF is approximately 2 µm and the core diameters 

are about 1.6 µm.  Unfortunately, the fiber cross-section was extremely non-uniform 

in such a manner that coupling properties between the cores could not be accurately 

assessed.  The coupling appeared to be strong between the cores in experimental 

testing, most likely due to the fact that the bridges between cores were not uniform 

and sometimes very large.  Additionally, the cores were very small; therefore, strong 

coupling could also have been a result of the large effective area of the modes of these 

cores.  OFS has agreed to continue to collaborate with our group and will provide 

additional multi-core PCFs for future research.   

If independent core propagation can be guaranteed, remote laser scanning can 

then be performed at the distal end of the fiber.  An appropriate wavefront is generated 

using lenses and scan mirrors at the proximal end of the multi-core PCF.  The 

wavefront is coherently transported to the distal end of the fiber and then forms the 

desired intensity distribution at the tissue under test.  The multi-core fiber can be 

compared to an optical phased array or analogously to a multiple slit system as shown 

in Figure A-6(a) and Figure A-6(b) in one dimension.  The output of the fiber will 

resemble the far-field pattern of a diffraction grating or an N-slit interference pattern 

described by Eq. (A.1).     
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where the familiar α and β parameters, usually defined in terms of the slit size and 

separation, are defined here in terms of the pitch and the relative air hole size.  This 

intensity pattern is plotted in Figure A-6(b).  The zeroth order peak is used as the 
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focused excitation spot at the sample plane; therefore, the distance between the first 

order peaks represents the scan zone.  This zone can be shifted by changing the spatial 

frequency of the plane wave incident on the proximal end of the fiber, as shown in 

Figure A-6(c).  In this manner, laser scanning can be performed at the distal end of the 

fiber using lenses and scan mirrors at the proximal end of the multi-core PCF. 

The pitch, wavelength, air hole size, and the number of cores determine the 

quality of images that can be obtained from this type of scanning system.  By 

decreasing the parameter λ/(NΛ), the peaks of the interference pattern are sharpened 

and the spot size reduced.  Thus, the resolution is improved at shorter wavelengths and 

for fibers with a larger number of cores and a larger core separation.  The intensity of 

the central peak can be increased by decreasing the relative air hole size, d/Λ, which 

will improve the signal to background ratio.  The scan zone can be extended by 

increasing the ratio of λ/Λ, thus enlarging the field of view of the endoscope.  A trade-

off exists between the obtainable resolution and the scan range due to the opposite 

influence of the wavelength on each of these qualities. 

In conclusion, numerical modeling based on two-core PCFs provided the 

understanding necessary to submit a design to collaborators at OFS Optics.  The 

fabricated fibers were, unfortunately, difficult to characterize and test.  Future fibers 

will need to be tested for the ability to transport a wavefront coherently by 

experimentally examining the coupling between cores.  In addition, the effects of 

external perturbations, such as temperature and bending, will need to be assessed as 

well as the efficiency of light collection from the distal end.  Once the necessary 

characteristics of the fiber have been demonstrated, it will be implemented in a 

complete laser scanning imaging system.  At that time, dynamic wavefront correction 

through use of a spatial light modulator will also be necessary. 
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Additional insight for designing a multi-core PCF endoscope was obtained in 

Chapter 7 and Chapter 8 through studying the effects of nonuniformities on the 

properties of PCFs.  It was discovered in Chapter 7 that for large air hole fibers, the 

fabricated fiber can be almost guaranteed to have a rather large birefringence due to 

the unavoidable fact that the fiber cross-section will be slightly nonuniform.  In 

Chapter 7 it was also revealed that nonuniformities will cause the actual coupling 

length to be shorter than the coupling length estimated from simulations; however, the 

numerical results in Chapter 8 demonstrate that the coupling efficiency is far more 

important when considering core interactions than the coupling length.  Because 

nonuniformities in the photonic crystal cladding also reduce the coupling efficiency, 

essentially independent core propagation should be fairly common in fabricated multi-

core fibers with large air holes.   

These results relax the restrictions previously expressed in this Appendix in 

order to obtain weak coupling between cores in a multi-core PCF.  While PCFs with 

large air holes are still the preferred structure, a slightly non-uniform photonic crystal 

cladding is also necessary.  It should be noted that a trade-off does exist between 

nonuniformity and the number of propagating modes.  Single-moded fibers tend to be 

more robust to variations and therefore exhibit stronger coupling; however, both 

single-moded propagation and uniformity are important for pulse propagation.  

Understanding the discrepancies between the properties of simulated and fabricated 

fibers is an important step in leveraging the unique properties of PCFs for use in 

endoscopes.   
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Appendix B 
 
 
 

ADDITIONAL ANALYSIS OF COUPLING IN 
TWO-CORE PCFS WITH NONUNIFORMITIES 

For some two-core PCFs, the introduction of irregularity in the air hole size 

and location resulted in complex effects on the modes and the power transfer between 

cores.  Because such a large number of parameters are being varied (ie. the two-

dimensional location and the size of each air hole in the PCF cladding), it is not 

surprising that some unpredictable characteristics developed. 

Certain types of behavior were attributed to changes in the polarization of the 

modes.  For example, the oscillation of power between the two cores occasionally 

exhibited additional beating behavior.  The typical beating behavior described in 

Chapter 3 occurs between modes of the same polarization.  However, when the 

cladding of a two-core PCF is varied in a random manner, the preferred axis for the 

modes is no longer necessarily the conventional x- and y-axes and beating occurs 

between modes of similar symmetry and of different polarizations.  Figure B-1 shows 

a few examples of how the power in each core exhibited a beating behavior in addition 

to the typical power transfer.  The frequency of the beats was often, though not  
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Figure B-1.  Examples of the extra beat pattern appearing in the power 

oscillations of some two-core PCFs with nonuniformities. 
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conclusively, described by the beat frequency of the even or odd modes, thus 

demonstrating a mixing between the two polarizations.   

A more intuitive understanding of this phenomenon can be gained by 

examining the modes of structures that exhibited beating and comparing them to 

structures that did not.  In Figure B-2, four components of the modal field for one of 

the modes of two different two-core PCFs are shown.  The images on the left are taken 

from a fiber that showed only the typical power transfer between the left and right 

cores while the images on the right are from a fiber that exhibited the beating in Figure 

B-1.  It is evident by the orientation of the z-components of the field that the preferred 

axes are no longer the conventional x- and y- axes.  The modes appear to be polarized 

along the x = y line rather than along x = 0 or y = 0.  The change in polarization is also 

manifested by the fact that the electric field no longer distributes itself predominantly 

in the x- or y- component for a mode.   

In addition, some structures developed coupling lengths much longer than the 

value for a perfect two-core PCF while for other structures it became difficult to 

define the coupling length because the beat patterns tended to be rather complex or 

bizarre.  A few examples of these patterns are shown in Figure B-3.  Sometimes, an 

extra long coupling length was the result of a large central air hole between the two 

cores.  For other structures, the bizarre power oscillations appeared to be the result of a 

combination of beat patterns with similar frequencies.  In general, PCFs with these 

characteristics were not able to be completely understood.  When the coupling length 

taken from the power plots was longer than that of the perfect PCF, these structures 

were considered outliers and removed from the data analysis. 
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Figure B-2.  Several components of the modal fields are shown for 

two different two-core PCFs with variations.  The fiber on the left 

exhibited no extra beating in the power oscillations between the two 

cores while the power as a function of z for the fiber on the right 

appears in Figure B-1. 

No beats Beats 

Abs(Ez) 

Abs(Hz) 

Abs(Ex) 

Abs(Ey) 
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Figure B-3.  Examples of the odd beating patterns in the power 

transfer that some two-core PCFs exhibited when nonuniformities 

were introduced into the cladding. 
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In order to further study trends in the degree of polarization of a mode, the 

ratio of the x-component of the field to the y-component was calculated over different 

degrees of variation.  Specifically, the ratio in Eq. (B-1) 

 
j

x

j
y

E

E
∫∫
∫∫

 (B-1) 

has a value greater than one for a preferentially x-polarized mode while a number less 

than one indicated a y-polarized mode.  Although this ratio was not as large for the 

two-core PCFs studied as it generally is for two-core step-index fibers, the value 

nonetheless decreased as variation increased.  However, because the orientation of the 

two modes does noticeably change with variations, this ratio is not necessarily a sign 

that the modes are becoming less linearly polarized, but instead, this trend suggests the 

modes become less loyal to the conventional x- and y-axes.   

The even or oddness of the modes can be assessed in a similar manner by 

looking at the ratio of the field in one core to the field in the second core in Eq. (B-2). 
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If this value is positive, the mode is even, whereas if this value is negative the mode is 

odd.  In general, the modes tended to retain the arrangement of the two highest index 

modes as the two modes with even symmetry.  The left or rightness of a mode was 

also assessed using Eq. (B-3) 
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and can be used to determine the extinction ratio as presented in Chapter 8.  The left or 

rightness of the modes of a two-core PCF increases with the degree of nonuniformity.  

Of course the modes of the perfectly uniform PCF have a left or rightness of 0.5, while 

in nonuniform PCFs, two modes are predominantly right and the other two modes are 

predominantly left. 

When the input field used in the normal mode expansion to calculate the power 

as a function of the z-direction is changed from x-polarized to y-polarized, the 

resulting coupling lengths changed slightly.  The average behavior and the relationship 

between the coupling length and the coupling efficiency as plotted in Chapter 8, 

however, remained the same.  For two-core step-index fibers, changing the input 

polarization in the normal mode expansion resulted in the calculation of the y-

polarized beat length from the plots of the power, which is slightly different from the 

beat length for the x-polarization. 

Additional simulations are required in order to fully understand the impact of 

lattice nonuniformity on the polarization and the symmetry of the PCF modes.  In 

general, simulations on two-core step-index fibers exhibited much less perturbation to 

the polarization of the modes even when variations where included.  This result is not 

surprising considering the simulations performed on step-index fibers did not include 

variations in the core separation or orientation.  The preferred axes, or the axes along 

which the cores were aligned, never changed; therefore, the modes remained x- and y-

polarized as shown in Chapter 3. 
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