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The Proof of Quadratic Convergence of Differential Dynamic Programming

Li-zhi Liao and Christine A. Shoemaker

Abstract. In this report, we will provide another proof for the quadratic convergence
of Differential Dynamic Programming. This proof is based on the dynamic programming

and Bellman Optimality Principle, and is derived directly from the DDP algorithm steps.

Introduction

The unconstrained discrete-time optimal control problem studied in this report has

the following format:

N

min Z (T, us, t) (Po)

(uly"')uN t=1

where 141 = f(z¢,us,t) t=1,---, N,
1 = Z; given and fixed
where z; € R® and u; € R™ are called state and control variables; the function g :

Rr+m+1 _, Rl is called the objective function (or performance index); and the function

f: Rvtmtl ; R™ s called the transition function.

The first algorithm that solves general problem (P,) and captures its special structures
was proposed by Mayne [4] in 1966. His algorithm, which is called Differential Dynamic
Programming (DDP), combined the Dynamic Programming (DP) scheme and Newton’s
method. His original DDP algorithm was further developed later by J acobson and Mayne
[1]. Yakowitz [7] gave a good survey on the development of the DDP algorithm.

This technical report is a companion to a paper by Liao and Shoemaker [3] to be
published in IEEE Trans. on Automatic Control. An abbreviated version of the proof
from this technical report appears in [3]. It is the purpose of this document to provide a

more detailed description of the proof of quadratic convergence of DDP than is available
in [3].
Quadratic Convergence Proof of the DDP Algorithm

Since DDP method was proposed by Mayne in 1966, there was no rigorous convergence

proof until the early 1980’s. The global convergence proof for the DDP algorithm was given
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by Yakowitz and Rutherford [8]. Proofs of quadratic convergence of the DDP algorithm
were given independently by Pantoja [6] in 1983, and Murray and Yakowitz [5] in 1984.
Both proofs were based on the comparison between DDP method and Newton’s method.
Neither of the two proofs used dynamic programming and Bellman’s Optimality Principle,
which are the basis of the DDP method. Here, we will give a proof of the quadratic
convergence of the DDP algorithm. This proof follows the same track as the development
of the DDP algorithm and is more straightforward. The result of the quadratic convergence
of the DDP algorithm is summarized in the following Theorem. But, first we need the

following notation. Define

—

Ui(u{7...’u%)TeRNm; Xﬁ(zT’...7x%)T€RNn

and call U the policy and X the trajectory associated with policy U.
Theorem: Assumptions:

1) g(2zs,us,t) t =1,..., N and f(z¢,us,t) T = 1,---,N — 1 have continuous third partial

derivatives with respect to z; and u¢ over a closed bounded convex set D C R*t™,
2) {ﬁ(’)} is the policy sequence obtained by the lth iteration of the DDP algorithm.

3) The matrices Ct(ﬁ(’)), t=1,---,N, I >0 computed in the /th iteration of the DDP
algorithm are all positive definite in D.

4) (mgl),ugl)) € Dforalll>0andfort=1,---,N where :cgl) and ugl) are components of
X and UM computed in the Ith iteration of DDP.

5) {TMO} converges to [/* which is a solution to problem (Py), where X* is the trajectory
associated with U* and (¢*,u?) € int(D) for t =1,---,N.

Let U(® be the initial policy, X (0 be the trajectory associated with U and (m&o),ugo)) €
Dfort=1,---,N.

Conclusion: There exists a constant ¢ > 0 such that
[T — F*|| < c-|[UD - T*|2  forall1>0 (1)

provided ||[T(®©) — U*| is sufficiently small.
Hence the DDP method converges quadratically in D.

For convenience, we will give the proof of this theorem in the case of m =n =1

The multi-dimensional proof follows the same steps as the scalar proof described here. A
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similar theorem is given earlier by Murray and Yakowitz in [5], but the proof given here is
different and is derived directly from the DDP algorithm steps in the Appendix, whereas

the earlier proof in [5] is done by comparison to the Newton’s solution to problem (Py).

Proof: For any [ > 0, let vectors U(k) O, T (k) = UU+D be the solutions resulting
from the Ith and (I + 1)th iterations of the DDP procedure, respectively, for solving (2.1)
with N = k. Also, let U*(k) denote the optimal solution to problem (2.1) with N =k,
and define

gt(z,u) = g(z,u,t) t=1,---,N

(2)
ft(z,u) = f(z,u,t) t=1,---,N-1

and the power index will be put as the superscript outside parentheses. We will use
induction on the number of time steps N to prove this theorem. Our induction hypothesis

is that given 1) to 5) above, then (1) is true for a given value of N.
a) First, for N = 2, consider

min J(z1,u1,22,u2) = [g'(z1,u1) + g°(22,u2)] (3)

U1,Uu2

where z3 = f!(z1,u1),
T =T, (17,1,'&2) initial policy.

The application of the DDP algorithm to problem (3) results in

1 1
Ap = 59?;:“ By=gt, Ci=3gk, D:=gi Ex=g, (4)

(From assumption 3) and equation (4), we know C2 >0 or g2, >0.)

1 1(g2,)* g2 - gz
P S 2~ \dzu — 2l U 2 5
2 zgx 2 giu s Q2 g%u +gx7 ()
2 2
=L gy =T (6)
guu guu
Lot 20 e — 3 b (2T gl gL, (1)
1(g2,)? g2 - g2,
Bl"gzu +2fu fx [ xz“—g—(gmzu) ]+[~ ug2x +g:c] falczn (8>
uu un



¢ = gt r 2 ot~ 2R 4 - Gifeu gy g1y ()

292 T 27 g2, z.
Dy =gl 4.2 “’x“+gm1 (10)
guu
By =gl o[-0 g“+gx1 (11)

(From assumption 3) and equation (9), we know  C1 > 0. )

1
—D = ———B 12
2C, b b 2C1 1 (12)

Xy == —

Since (Z1,u%,23,u}) is a solution to problem (3), then

J(flauf,"?;,u;): min J(«’El,ul,rz,uz)- (13)

U,uU2
So, Ju,(Z1,ui, :1:§,u§) = g’lztl(l';,u;) =0, (14)
Ju,(Z1,uf, 23, u3) = (g9u + 95 - f&)‘(h,z’;,u{,u;) = 0. (15)

From Taylor expansion, we have

gi!(iz,ﬁg) - gil(z;,u;)
= g2, (@2 — u3) + g2, - (B2 — 23) + O([(72 — 23) + (@2 — u})]*) (16)
where To = fl(fl,’ill).

Since Ty — 2y = fa (@ —ul)+ O((ﬁl - “){)2)’ (17)
then  g2|(zg.a5) — 92l(osuz) = 95 - (B2 — u3) + g2 - fu - (T —ui)

O([(ay — u}) + (@2 — u3)]?). (18)

Similarly, we have

(9 + 02 F)l(as,pa,an,m) — (90 + 92 - f)l@a,03,u1,u3)
= g;lm ’ (ﬁl - u’;) +g§z ’ (fi)z ’ (ﬁl - uI) +g?:u ’ f; ’ (’L-Lg - u;)
+92 - fiu - (@1 —ui) + O([(@1 — u) + (@2 — w3)[). (19)
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By equations (14) and (18), we have

92 (zasan) = 92u - (B2 —u3) + oy - fu - (@1 —ui) + O([(@1 — ui) + (42 — uz)l*).  (20)
By equations (15) and (19), we have
(95 + 02 - F)lan,znanan) = (Guu + 922 - (fu)? + 02+ fu) - (@1 — 1)

+g2, - fi - (u2 — uf) + O([(@1 — uf) + (@2 — w3)])- (21)

By equations (6) and (20), we have

2
ap = —(@z2 —u3) — gz“fi @y —u}) + O([(@1 — wf) + (@2 — ud)]), (22)
_ Jiu _ Gou p1(x Va o
Pa(z2 — T2) = — ) (z2 — F2) = — 5 [ (Z1,u)— f (331,?!1)]
g2

Since ug = Gig+as+ Pz (z2—F2) (from equation (A.1.11) in the Appendix), then

93 9z
ug = g — (@2 — u3) — ;uf;‘(ﬁlfuf)“ ;ufi'(ul—fh)
uu uu

+O([(@1 — u}) + (G2 — up)) + (w1 — @)?)

=uy — &zﬁfi (uy — u}) + O([(@r — u}) + (G2 — w3 + (w1 — @)*). (24)

uu

Thus, we have

2
wp —uj = -—j;"f; (uy —ul) + O([(@1 — uf) + (@2 — ud)]* + (w1 — @1)°) (25)

or

2
uy —uj = —Z;“‘fi (uy —u) + O([(a1 — uf) + (@2 — ud)]® + (w1 — ui)?

+(ug — uf)(@ —uy))- (26)



Substituting equation (20) into equations (9) and (10), we have

_11 12_2_(92u)2 2 7l Sk o«

uu

1 2 rl 2 1 (s * (qu'ﬁy_ *
-Dl=gu+gz'fu—gzu‘fu'(u2—u2)‘"—‘.'g-2"'—'(ul"u1)
wu

+0([(@1 — i) + (@2 — up)*). (28)
Substituting equation (21) into equation (28), we have

gt (= uf) @——g-l—l« )+ O — ) + (@ —uP).  (29)

Simplifying this, we obtain

Dy = {gi, +(f2)* 193 — %Z%"X] g2 fLY (= ud) + O([(8 — ui) + (@2 —u3)]").

uu

(30)
Since a1 = —5%1;, replacing C; by equation (27) and D; by equation (30), we have

ay = —(; — ui) + O([(@1 — ui) + (72 — u3)l?). (31)
Thus, by u; = @1 + @1 (equation (A.1.11) in the Appendix), we have
wr = u} + O([(@ — u}) + (82 — u3)]?)
or
ur —uf = O(((@1 —u) + (@2 — u3)"). (32)
From equations (26) and (32), it follows that
uy —uj = O([(@ — uf) + (@2 — u3)]*), (33)

uy — uy = O([(@1 — uf) + (@2 — u)[*)- (34)
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So, we have
17(2) - T*@)]| < «(X(2),T(2)) - I1T(2) — T*@)I* (35)

where c(i (2), 6(2)) is a positive function of g*, ¢t = 1,2, f' and their derivatives.
From assumptions 1), 4) and 5) and from the continuity of c(j:f (2), 5(2)), we know

that c(i (2),5"(2)) is bounded on D; hence there exists a constant ¢ > 0 such that
C(E(Q), 6(2)) < cfor all (Z¢,%;) € D, t=1,2. By equation (35), we have

1T(2) = T*@)|| < - |1T(2) - T*@)I*- (36)

This implies that the induction hypothesis is true for the case N = 2.

b) Suppose that the induction hypothesis is true for N = k—1, then there exists a constant
¢; > 0 such that

|Gk —1) = Tk = D] < 2 - [T(k = 1) = T* ()] (37)

where U*(k — 1) is the optimal solution for the following (k — 1) time-step problem

k—1

min Z g'(ze, ur) (38)

Uy, Uk—1
t=1

where £i41 = fi(ze,ue) t=1,---,k =2,
z1 = Z; given and fixed.

Below we will show that for the case N = k, our induction hypothesis is still true. In

the case of N = k, our problem is the following

k
i t 39
ulmlfhk ; g (zft, ut) ( )

where z441 = fi(ze,ue) t=1,---,k—1,
21 = Z; given and fixed.

The application of the DDP algorithm to problem (39) results in

1

Ak = —2.gmx7 Bk = g:lccua Ck = _Z—guu? Dk = 957 Ek = gi’ (40)



(From assumption 3) and equation (40), we know Cp,>0 or gk, >0)

1 1(g5.)° _g5-9%
P == k- \dzu/ o Ju  Jzu , 41
k=590 T 5 gt Qr o Zu_Zzu 4 gk (41)
k k
Gu Jzu
A = —=—) /Bk e A (42)
Ihu 9hu
1 1 (g )? 1 9% gRu -g
Ar 4 = -1 k—1\2 k . TU k-1 u Tu 43
Bk-l :g:u1+2(ff 1)(f5 1)[5951;__2__(_‘?_];_)__]_{_ ful(_'-——i—'*_g:c)a (44)
_1 _ 1(gzn)® g g
Cr_ 4 = = k 132 | k U k-1 Ju ~Jzu , 45
Dioy =gk + £ (= g“g Iov | ghy, (46)
k k gs - g% k
Ek-l ng—l +fa:_1 (_J"'q";c_x_“lf'+gx> (47)
wu

Our approach here is to combine the last two stages (stage k—1 and stage k) in problem
(39) together so that we can convert problem (39) into a (k — 1) time-step problem which
is in the form of problem (38). Now, define

G(zp_1,ur—1) = ¢" H(@p-1,u8-1) + g*(ek, ax + ok + Br(zr — Tk)) (48)

where zp = f* 1 (zk-1,%k=1),
ag = —g'(li/gz’iu)
Br = "g:’ccu/g:iw
where all derivatives are evaluated at 7y and @;. Therefore, it is easy to see that G(z,u)
is in C2(R™t™).

By introducing function G, we can convert problem (39) into the following problem

k—2
min = {[> g'(ze,we)] + G(wr—1,uk-1)} (49)
Uiy tk-1 4=



where #4411 = fi(z,uy) t=1,---,k—2,
z1 = Z; given and fixed.

After applying the DDP algorithm to problem (49), we get Ag_1, Br_1, Cr-1, Dy_y and

Ej_, as follows:

B = Lot o e - JES Ly S g, (50)
B = b + 2t ()bt - 2B (BB g, o)
Cry = _guu g (f1) [_ £ ;(Qxl:) ]+ 3k k-1 gug,iw +g5), (52)
R ) (59
Beoa = g7 4 £ (- g“guj“ +9) (54

Then, from equations (43) — (47) and equations (50) — (54), it can be seen that
Agoy = Ax_y, Bi_y = Bio1, Cioy = G, Dioy = Dies, Eroy=Ei1. (55)

Assumption 3) indicates that Ci_y is positive definite. Equation (55) implies that Cr-1

is also positive definite.

Since the DDP algorithm is a backward recursive method, from equation (55), and the
fact that the objective functions and transition equations are identical for t =1,---,k — 2,
in problems (38) and (49), it follows that

A=A, B,=B;, C;=Cy, Dy=Dy, E,=E; fort=1,---,k—1. (56)

Therefore, equation (56) and the definition of the function G indicates that problem
(39) and problem (49) generate the same sequence of U(k), where up = @ + ag + Bk -

(fk"l(xk_l,uk_l) - fk‘l(a’ck_l,ﬁk_l)> for problem (49). Since the application of the
DDP algorithm to problem (39) at last stage is just Newton’s method, then
lup —ul| < ez |ag —uil? for some c; > 0. (57)
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Combining equations (37) and (57) together, we have
1G() = T ()] < (X k), T(k) - 1Tk = TR (58)

where c(f(k), ﬁ(k)) is a positive function of g¢, t =1,---,k, f, t =1,---, k-1 and their
derivatives.

Following the same reason as in the case N = 2 (equation (36)), there exists a constant
¢ > 0 such that ¢(X(k),U(k)) < ¢ for all (z¢,u;) € D, t = 1,---,k. 'This proves the

induction hypothesis for the case N = k. Therefore, the conclusion of this theorem is true

for all values of N. |}
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Appendix The Unconstrained Differential Dynamic Programming Algorithm

In this appendix, we summarize the unconstrained DDP algorithm described by

Yakowitz and Rutherford [8] for solving problem (F).
Algorithm
Step 1: (Initialize parameters and compute loss and trajectory associated with the given
policy)
i) Set Pn4+1 = Onxn, @N+1 =0n, On41 =0.
i) Fp41 = f(&e,0,1), t=1,...,N—-1, %1 =21
i) J(0) = v, 9(ZFe, 1),

Step 2: (Perform the backward sweep: Perform steps i) to iv) below, recursively, for
t=N,...,1)

i) compute A, By, Ci, Dy and E; according to

A= oo+ 2y Paa3h + Z(Qm) (fi)esl, (A.1.1)
B;F = Jzu + 2( )TPt-H( ) + Z(QH—I) (fz)zuv (A.1.2)
€= Hlow+ A D) P (Gl + }j(czm) (fi)ual, (A.1.3)
D¢ =gu + (%)TQHI, (A.1.4)
E, =g, + (%)TQM. (A.1.5)

ii) compute Py and @Q; according to
P = At—‘};‘Bépclet, (A.1.6)
Q¢ = —3D]C;' By + Ey, (A.1.7)

store P; and Qq in memory, replacing Pyy1 and Q1.
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iii) Compute o and B¢ according to
oy =—1C7' Dy, (A.1.8)

B =—31C;'B; (A.1.9)

and store in memory.

iv) Compute
et = —'%D?Ct—lDt + 6t+1 (AllO)

store §; in place of 641 in memory.

Step 3: (Compute the successor policy)

i) Set e = 1.

ii) Compute u¢(¢) recursively fort =1,..., N according to
ut(e) = cay + ,Bt(:tt — fift) + Uy, (Alll)
i1 = f(xe,us(e), 1) (A.1.12)

iii) Compute J(U(¢)) = Ef;l g(ze,u(e), ).
iv) If J(U(e)) — J(ﬁ) < s%—, set U = U(e) and go to step 1;

otherwise set ¢ = £/2, go to step 3 ii).
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