TESTING FLOW GRAPH REDUCIBILITY
Robert Tarjan

TR 73 - 159

January 1973

Department of Computer Science
Cornell University
Ithaca, New York 14850

TESTING FLOW GRAPH REDUCIBILITY
- Robert Tarjan
Department of Computer Science:

Cornell University
Ithaca, New York-

Abstract
Many problems in program optimization have been solved by

applying a technique called interval analysis to the flow graph

of the program. A flow graph which is susceptible to this type
of analysis is called reducible. This paper describes an
algorithm for testing whether a flow graph is reducible. The .
algorithm uses depth-first search to reveal the structure of
the flow graph and a good method for computing disjoint set
unions to determine reducibility from the search information.
When the algorithm is implemented on a random access computer,
it requires O (E log* E) time to analyze a graph with E edges,‘
where log* X = min{illogix < 1}. The time bound compares
favorablyv with the O(E log E) bound of a previously known

algorithm.

Key words and phrases:

Algorithm, code optimization, complexity, depth-first i
search, directed graph, flow analysis, flow graph,
interval analysis, program optimization, reducibility,

set union algorithm, tree.

TESTING FLOW GRAPH REDUCIBILITY
Robert Tarjan
Department of Computer Science’

Cornell University
Ithaca, New York

Introduction

Many code optimization methods model the flow of control

in a computer program by a directed graph, célled a flow graph.
In order for some of these methods to work, the flow graph

must have a special property called reducibility. Such methods

include algorithms for finding dominators [1], finding common
subexpressions [2,3], finding active variables [4,5], determining
constant progagation [6], finding useless definitions [6], and
solving other problems [7,8]. Some interesting classes of
‘computer programs, such as "go-to=less~-programs," give rise
to flow graphs which are necessarily reducible [9], and most
programs may be modelled by a reducible flow graph using a pro-
cess of "node splitting" [10]. However, this can be computationally
expensive. We would like a fast algorithm for determining
whether these optimization methods can be applied to any éiven
program; that is, an algorithm for determining whether a flow
graph is reducible.

A "reducible" flow graph is a flow graph to which a
technique called "interval analysis" may be applied to

determine the graph's structure. Cocke ([2] and Allen [7]

were the original formulators of this notion. Hecht and Ullman
[9] simplified the definition of reducibility, giving two
simple transformations which'charactcrize the class of reducible
graphs. .- They also gave a structural characterization of reduci-
bility. Hopcroft and Ullman have constructea an algorithm
which tests a graph for xeducibility according to Hecht and
Ullman's transformational definition. This élgorithm has

a running time of O(E log E). steps to test a graph with E

edges and V vertices. In most applicatioﬁs, E is proportional
to V, and this algorithm is an improvement over the obvious

way to apply the definition, which requires o(V2) time.

This paper gives an algorithm which is asymptotically
faster than Hopcroft and Ullman's and which always runs at
least as fast as the obvious algorithm. The algorithm tests
for Hecht and Ullman‘sistructural condition. It happens that
the algorithm simultaneously tests the transformational con-
gition, which is more useful for applications. The method
uses depth-first search [11,12] to reveal the structure of
the flow graph and a good set union algorithm [13,14,15] to
test reducibility using the search information. -The exact
running time of the algorithm depends upon the exact running
time of the set union algorithm, which is unknown. However, a
good bound on this running time is known, and the reducibility
algorithm requires O(min{E log*E, V log V + E}) time to test

*
a graph with V vertices and E edges, where log x =

min{i]log® x < 1}. If E > V log V , the algorithm requires

O(E) time and is optimal to within a constant factor, since

every edge must be examined to determine reducibility. The

-new algorithm was independently discovered by Ullman [18].

Basic Notions

To study a graph algorithm we need first a model of

. computation and second some terminology from'graph theory.
We will assume that algorithms are to be implemented on some
sort of random-access computer; data stdraée and retrieval,
arithmetic operations, comparisons, and logical opérations
are assumed to require fixed times. A memory cell is allowed
to hold integers proportional to the size of the problem
(proportional to V, if the problem graph has V vertices).
Cook[16] gives a formal model of this sort of computer. We
ignore constant factors in time and spaée requirements; if

f and g are functions of x we say "f(x) is O(g(x))" if,

for some constants k, and k,, |£(x)| < k;|g(x)|+k, for all x.

1 2
The basic graphical definitions used here are comnon;
see for instance [17]. A directed graph G = V& is an

ordered pair consisting of a set of vertices‘\fand set of

edges &. Each edge is an ordered pair (v,w; of vertices.

We say the edge leaves V and enters w. An edge (v,Vv) is
a loop. A graph G, = Cvaié%) is a subgraph of a graph
G, = (\/2 ,é’z) 1f"Vl_E"ﬂ2 and é"l‘g_gz. A path p from v to w

in a graph G is a sequence of vertices and edges leading from

v to w. There is a path of no edges from any vertex to itself.
A vertex w is reachable from a vertex v if there is a path

from v to w. A flow graph (G,s) is a graph G with a distinguished

"vertex g such that every vertex in G is reachable from s.
A path is simEie if all its edges are distinct. A path from

a vertex to itself is a closed path. A closed path from v

to v is a cycle if all its edges are distinct and the only-
vertex to appear twice is v, which appears exactly twice.
A cycle contains at least one edge. Two cycles which are
cyclic permutations of each other are considered to be the
same cycle. |

.A (directed, rooted) tree T is a graph with one dis-
tinguished vertex, called the root r, such that every vertex
in T is reachable from r, no edges enter r, and exactly one
edge enters every other vertex in T. The relation "(v,w) is
an edge in T" is denoted by v » w. The relation "there is
a patihh from v to w in T" is denoted by Vv 3 w., Ifv - >w, Vv

*
is the father of w and w is a son of v. If v > w, v is an

0f

E

cestor of w and w is a descendant of v. Every vertex is an an-

cestor and a descendant of itself. If v » w and v # w, Vv is a

proper ancestor of w and w is a proper descendant of v. If T, is

a tree and Ty is a subgraph of a tree T,, then T, is a subtree

of T2, If T is a tree which is a subgraph of a directed
graph G and T contains all the vertices of G, then T is a spanning
tree of G.

Given a flow graph (G,s), a .depth-first search of G is an

exploration of G which proceeds in the following way: We
start at vertex s and choose an edge leaving s to explore.
Traversing this edge leads to a vertex, either new or already
reached. 1In general we continue the search by selecting and
traversing an unexplored edge from the most recently reached

vertex which still has unexplored edges. If G has V vertices

and E edges, we may carry out a depth-first search in O (V+E)
time if we are initially given a list of the edges.in the
graph. References [11] and [12] discuss an implemenfation of
this algorithm. Other calculations, such as numbering the
vertices from 1 to V in the order they are reached, may be
performed during the search.

If a depth~-first search of G is carried out from s and
the vertices are numbered in search order, then every vertex
in G is numbered [11]. Furthermore, the search partitions the
edges of G into four classes [11,12]:

(1) A set of tree arcs defining a spanning tree T of G.
These are the edges which lead to a new vertex during
the search. A tree arc (v,w) has v < w if we identify
vertices by their number.

(2) A set of edges (v,w) with w Vv in T, called fronds.

NE N

(3) A set of edges (v,w) with Vv w in T, called reverse

fronds.
* *
(4) A set of edges (v,w) with neither v - W nor w » Vv,

called cross-1links. A cross-1link has w < v,

Figures 1 and 2 show the application of depth-first
search to a graph. Depth-first search simplifies the structure
of the paths in a graph. The following lemma is implicit in

[11] and proved in [12].

Lemma 1l: Let (G,s) be a flow graph which is explored using
depth-first search. Let T be the generated spanning tree of
G. If p is a path from v to w and v < w, then p passes through

some common ancestor of v and w in T.

iFlow Graphs and Reducibility
| Consider the following two transformations on a flow graph
(C,s):
Tl: . Delete a loop (v,v) in G.
T,: If (v,w) is the only edge entering w and w # s,
delete vertex w. For every old edge (w,x) add a new edge
(v,x); for every old edge (x,w) add a new edge (X,V). Delete

duplicate edges. This transformation is called collapsing

vertex w into vertex v.
A flow graph is reducible if it can be transformed into

the graph consisting only of vertex s by repeated application of

Ty and T,. This definition is Hecht and Ullman's simplification

of Cocke and Allen's notion. If G' is obtained from G by

repeated application of T, and Ty

of G. Any reduction of a reducible graph is reducible [9];

then G' is a reduction

thus the order of applying transformations doesn't matter
in a test for reducibility. If G' is = reduction of G,
each vertex v in G' corresponds to a set of vertices in G;

namely those collapsed into v. We say Vv represents this set

of vertices.

The obvious way to test reducibility is to try applying
Tl and T2 to the graph G to be tested. We make-one pass over
the graph, deleting all loops and counting the number of
edges entering each vertex. Then we find a vertex with only
one entering edge and apply T2, updating the number of edges

entering other vertices. We repeat until we reduce the

graph completely or we get stuck. Each application of T2

requires O(V) time, so this algorithm has an O(V2) time ‘bound.
Hopcroft and Ullman have improved this algorithm to Q(E log E)
by applying a ciever method of updating information after T,
is applied. Hopcroft and Ullman's algorithm is only an improve-
ment if E is small relative to V2, but this is almost always
true in any flow graph representing a real program.

Hecht and Ullman give a structural characterization of -
reducible graphs. It is from this characterization that we
shall build a faster reducibility algorithm. Later we shall

see that the algorithm also tests reducibility according to

the definition.

Lemma 2: Let (G,s) be a flow graph. G is reducible if énd
ohly if there do not exist distinct vertices v # s and

w # s, paths Pq from s to v and Py from s to w, and a cycle
c containing v and w, such that c has no edges and only one

vertex in common with each of Py and Ps -
Proof: See [9].

To use this characterization effectively, we need to
strengthen it somewhat. To test the reducibility of G, we
explore G using depth-first search. This process generates
a numbering of the vertices; a spanning tree T, and sets of
frondé, reverse fronds, and cross-links. The search requires
O(V+E) time if G has V vertices and E edges. ~Henceforth we

shall identify vertices by their number. Lemma 2 becomes:

Lemma 3: G is reducible if and only if G contains no simple

path p from s to some point v such that v is a proper ancestor

of some other point on p.

Proof: Suppose G is not reducible. Then vertices v, w and
paths c, Py /P, exist satisfying the condition in Lemma 2.

Without loss of generality assume v < w. Let c., be the part

1

of ¢ from v to w. By Lemma l,c, contains some common ancestor u

1
of v and w. Let p be the path consistinyg 6f‘p2 followed by
the part of ¢ from w to u. Then p satisfies the céndition in
the lemma.

Conversely, suppose p satisfies the condition in the lemma.
Let V be the first ‘Frtex on p which is a proper ancestor of
some earlier vertex on the path. Let w be the first vertex

on p which is a descendant of v. Then v and w satisfy the condition

in Lemma 2 for .,suitable paths c, Py and Py and G is not reducible,

For any vertex v in G, let HIGHPT(v) be the highest numbered
proper ancestor of v such that there is a path p from v to
HIGHPT (v) and p includes no proper ancestors of v except HIGHPT (V) .
By convention HIGHPT(v) = 0 if there is no path from v to a

proper ancestor of v.

Lemma 4: G is reducible if and only if there is no vertex v

with an entering edge (u,v) such that if w is the highest common

ancestor of u and v, w < HIGHPT (v).

Proof: Sﬁppose the condition holds. Then (u,v) is either a
reverse frond (w = u) or (u,v) is a cross-link. Let pl. be
a path from v to HIGHPT(v) which passes through no proper
ancestors of v except HIGHPT(v). Let p be the path of
tree arcs from's to u followed by edge (u,v) followed by Pq-
Then p is simple and satisfies the condition in Lemma 3, so
G 1is not reducible.

Conversely, suppose G 1is not reducible. Then by Lemma
3 there is a path p from s to v with v a proper ancestor
of some other vertex on p. Choose p as short as possible.
Let w be the first vertex on p which is a descendant of v.
Then w , HIGHPT (w), and the edge of p entering w satisfy

the condition above.

To test G for reducibility, we calculate HIGHPT (v). for
each. vertex and apply Lemma 4. For cross-links, we check the
¢condition in Lemma 4 during the HIGHPT calculation. For
feverse fronds, we check the condition in Lemma 4 after the
HIGHPT calculation by testing each reverse frond. This last
step requires O(V+E) time. We may ignore reverse fronds in
the HIGHPT calculation since if p is a path from v to w and
p contains no ancestors of v except v and w, we may substitute
a path of tree arcs for each reverse frond in p and still have
a path from v to w which confains no ancestors of v except v
and w.

To calculate HIGHPT values, we order the fronds (u,v) by -
the number of v. This requires O(V+E) time using a radix sort
and V buckets. Then we process the fronds (u,v) in order, from

highest v to lowest v. Initially all vertices are unlabelled.

- 10 -

To process (u,v) we proceed down the tree path from u to v,
labelling each currently unlabelled vertex with label v. (We
don't label v itself). If a vertex w gets labelled, we exa-
mine all cross~iinks entering w. If (z,w) is such a cross-
link, we proceed down the tree path from z to v labelling each
unlabelled vertex with label v. If z is not an ancestor of

v then G is not reducible by Lemma'4 and the cemlculation stops.
We continue labelling until we run out of cross-links entering
just-labelled vertices; then we process the next frond. When
all fronds are processed, the labels give the HIGHPT values

of the vertices. Each unlabelled vertex has HIGHPT 0. The
algorithm is given in Algol-like notation below.

comment procedure to calculate HIGHPT(v) for each v;

for i: = 1 until V do

begin comment initialization;

HIGHPT (1) : 0;

1l

BUCKET (i) :

the empty list;
end;
a: for each frond (u,w) in G do add (u,w) to BUCKET (w) ;

b: for'w: = Vl step - l"uﬁtil 1 do

while BUCKET (w) is not empty do

delete (u,w) from BUCKET (w) ;

CHECK: = {u}; |

while CHECK is not empty do

begin

delete u from CHECK;
c: if =(w 3 u) then go to not reducible;
d: while u # w do

begin

- 11 -

‘e ig HIGHPT (u) = 0 then
begin
HIGHPT (u) := w;

for each cross-link (v,u) do add v to CHECK;
end;
f: u:i= FATHER (u);
end;
end;
end; -
comment if G is reducible then the program reaches

this point;

Lemma 5: If G with reverse fronds deleted is reducible, then
the algorithm above finishes, and it calculates HIGHPT values
correctly. If G with reverse fronds deleted is not reducible,

then test ¢ succeeds at some time and thé algorithm doesn't
-f;nish.

Proof: If p is a path from v ta HIGHPT (v) and p contains

no proper ancestors of v except HIGHPT(v), then p ends with a .
frond. This follows from Lemma 1. Let us first assume_thaf
.G with reverse frondé delefed is reducible. We prove by
induction. on w that after all fronds entering w ﬁave_been
prqcesged, al,l vertices v with HIGHFT (v) -2 w will be. . .
correétly labelled and all other vertices will be unlabelled.
.?his}isfcertainly true initially,“Suppose it;i&_true.after
all fronds entering w+l have been processed. Then each vertex

u labelled during processing of a frond entering w has HIGHPT (u)

" ?» w, since there is a path of the proper type from u to w,

- 12 -

If HIGHPT (u) » w, u will have been previously labelled.' Thus
HIGHPT (u) = w.

Suppose HIGHPT(u) = w. Let p be a path from u to w which
contains no proper ancestors of u except w. We know p
contains no reverse fronds. Further,‘p can cdntain only one
frpnd singe GAisvreducible. ‘If any vertex on p is labelled,
then G is not reducible, so every vertex on p must be unlabelled.
It follows that u geﬁs:labglledkwhep a,frgndvente;ingiw is’ N
fprqqesséd. , , . . _ ‘ Y : -

Néw suppose G with reve&sé fronds deleted ié not reduciﬁle.
Then G satisfies the condition in Lemma 4 for some v with (u,v)
a cross-link. The calculation will proceed correctly until
a cross-1link satisfying this condition is found. Then tést c
'w.ill,‘isucceed. . This may be proved rj‘_'g’oro'usl'y by i'nduct;i'(;n as'-

above.

. Once we have calculated the HIGHPT values usiﬁg the algorithm
above, we need to check the condition in®' Lemma "4 only with respect
‘to the reverse fronds, since the HIGHPT calculation checks the
condition with respec£ to the\chs§¥links. This last'st?gk?s‘

A'Stréightforward, and réqﬁifés'O(VfE)‘time. TWé p%ifs 6f th§
HIGHPT calculation are a little tricky. First, teéﬁ Cc requires
that we be able to détermine WHétheiia vertex W is‘é_deécehdant:cf"
- another vertex u. Let ND(u) be'the'number'of dé§cenéahts of veftéx
u inh T. Thenu :‘w' if and bniy‘if ‘uf_W-< u +“ﬁbku)A[i25_ i

We can calculate ND(u) during the depth-first search 5; a
straightforward fashion [12]. This gives an ancestry test.

We also need to avoid examining vertices which have

Alreadv heen 1ahellad 1 Ff woa ava +m remd am AELS af e 1 _

—— 2 e

- 13 -

‘We borrow a method used in [12], based on a good algorithm
.fOr computing disjoint set unions. We shall have sets num-
bered 1 to V. A vertex w # 1 will be in set v if v is the
highest numbered, unlabelled proper ancestor of w. Since
vertex 1 néver gets labelled, each vertex is always in a set;
initially a vertex is in the set whose number is its father
in T. To carry out step f, we find the number u' of the set
containing u and let that be the new u. We also combine the
sets numbered u and u' to form a new set numbered u'; when u
becomes labelled,u' becomes the highest numbered, unlabelled
proper ancestor of any vertex in the old set u. The necessary

program modifications are:

comment initialization;

for i: = 1 until V do SET (i) : = the empty set;
for i: = 2 until V do add i to SET(FATHER(i));

comment modified step d;
a: while = (u 3 w) do
g: u':= the number of the set containing u;
e: if HIGHPT(u) = 0 then
HIGHPT(u): = w;
- for each cross-link(v,w) do add v to CHECK:

SET (u') := SET(u) U SET(u');

end;

- 14 -

Lemma 6: The HIGHPT calculation modified as éboye works
correctly and requires O(V) set unions, O(V%E),executions

of step g, and O(V+E) time exclusive of set operations.

EEQEEQ We may verify that the algorithm works'correctly

by showing that each SET(v) contains exactly the vertices w
such that v is the highest numbered, unlabeligd proper
ancestor of w. This is straightforward. Consider the
running time of the algorithm. The while loop is entered-
from the top O(E) times. Test e can oﬂly fail if the

loop is entered from the top; otherwise u must be unlabelled
because u is defined in step g. Each vertex is labelled only
once. Thus there are 0 (V) set unions and O(V+E) executions
of step g. It is easy to see that the tdtal time required

by other steps is O(V+E).

Corollary: The HIGHPT calculations require O (min{V log V + E,
E log*E}) time if a good algorithm for computing disjoint set

unions is used. (Note: log*x = min{i|log'x < 1}.)

Proof: If we use the algorithm described in [13,14,15] for
" computing the set unions and performing step g, the bound
follows from the bounds on the set operations [12,14,15] and

from Lemma 6.

Corollarys The reducibility algorithm requires O(min{V log v + E,
E log* E}) time and O(V+E) space to test a graph with E edges

and V vertices.

- 15 -

Proof: The depth-first search and associated calculations
require O(V+E) time. The last step, to check the condition in
Lemma 4 for reverse fronds, requires O(V+E) time. The HIGHPT
calculations are the slow part of the algorithm, wifh timé bound
~given above. Combining gives the total time bound. It is

clear that the algorithm requires O(V+E) space.

Reducing a Reducible Graph

The algorithin described here is fast but non-constructive;
that is, it does not tell us what sequence of transformations
will reduce a reducible graph G. However, we can get this
information out of the calculations the algorithm performs.
Suppose G' is a reduction of G. Then it is clear that each
vertex v in G' represents a subtree of the spanning tree T
of G, and that v is the root of this subtree.

We can assign numbers, called SNUMBER's, to the vertices
of é so that tree arcs (v,w) satisfy SNUMBER(v) < SNUMBER(w) and
cross-1links (v,w) also satisfy SNUMBER(v) < SNUMBER(w). This
can be done during a depth-first search of G[12], and corresponds
to traversing the spanning tree of G using depth-first search
and proceeding to highest numbered vertices first. Suppose
we apply the recucibility algorithm, and each time we label
a vertek we assbciate with it a pair (HIGHPT(v), SNUMBER(V)).

When the calculation is finished, we order the

vertices so that a vertex labelled (xl,yl) appears before

- 16 -

a vertex labelled (XZ’YZ) if and only if X4 > x5, or x; = X,
and Yy < ¥y This order of vertices is called reduction
order. Note that an unlabelled vertex v has an associated

pair (0, SNUMBER(v)).

Lemma 7: If G is reducible, then we may collapse the
vertices of G 1in reduction order using T, (interspersed

with applications of Tl).

Proof: We prove the lemma by induction on the number of
vertices collapsed. Suppose all the vertices up to v in
reduction order may be collapsed. This creates a graph

G' which is a reduction of G. Consider vertex v. If v

is not the start vertex, a single tree arc enters v in G.

If G contains a frond (u,w) with v 3 w, all vertices x on
the trze path from u to w will have been collapsed befor=

v, since HIGHPT(x) > w and HIGHPT(v) < v < w. If G contains
a reverse frond (u,w) with v 5 w, then HIGHPT(W) < u by
Leﬁma 4; Furthermore HIGHPT (x) i HIGHPT (w) and SNUMBER(x) <
SNUMBER (w) for all vertices x on the tree path from u to w.
It follows that all vertices on the tree path from u to w
have been collapsed before w. Suppose G contains a cross-
link (u,w) with v 3 w. Let x be the least common ancestor
of u and w. Then HIGHPT(w) < x by Lemma 4, and all vertices
y on the tree paths from x to w and from x to u satisfy
HIGHPT (y) > HIGHPT (w) and SNUMBER(y) < SNUMBER (w) . Thus all
vertices on these tree paths have been collapsed before w.
Tt follows that in G' vertex v can have only one edge entering

it, and we may collapse v. By induction the lemma holds.

Thus our originally non-constructive reducibility test

actually gives us a reduction order for any reducible graph.

The>SNUMBER calculations may be done during the depth-first
search aﬁd require only O(V+E) time, so the constructive
reducibility test has the same time bound as the non-constructive
version. Figure 3 gives HIGHPT values and a reduction order

for the graph in Figure 2.

Conclusions:

This paper has presented an algorithm with an almosf‘
linear time bound for determining whether a flow graph is
reducible. The algorithm may be used to determine a way to
reduce the graph if such a way exists. The method uses
depth-first search and a good algorithm for computing dis;
joint set unions, and it improves upon a previously published
algorithm for determining reducibility. The algorithm may be
used as a basic subroutine for various code optimization pro-
cedures [1,2,3,4,5,6,7,8]. Many of these procedures use non-
linear algorithms, some of which may be improvable using the

methods applied here.

[15]

[16]

[17]

[18]

- 19 -

R. Tarjan, "On the Efficiency of a Good but Not Linear Set
Union Algorithm," TR 72-148, Department of Computer Science,
Cornell University (November, 1972).

S.A. Cook, "Linear Time Simulation of Two-Way Pushdown
Automata," Proc. IFIP Congress, 1971, TA-2, North Holland
Publishing Co., Amsterdam, 1972, 174-179.

R.G. Busacker and T.L. Saaty, Finite Graphs and Networks: An
Introduction with Applications, McGraw-Hill Book Co.,
New York, 1965.

J.D. Ullman, private communication, December, 1972,

\

- 18 -

References:

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, "On Finding the
Least Common Ancestors in Trees," submitted to the 1973
ACM Symposium on Theory of Computing, Austin, Texas (April
30-May 2, 1972).

[2] J. Cocke, "Global Common Subexpression Elimination," SIGPLAN
Notices, Vol. 5, No. 7 (July, 1979), 20-24. :

[3] J.D. Ullman, "Fast Algorithms for the Elimination of Common
Subexpressions,"”" 13th Annual Symposium on Switching and
Automata Theory, IEEE (October, 1972), 161-176.

[4] R. Kennedy, "A Global Flow Analysis Algorithm,"™ Internaticnal
J. Computer Mathematics, Vol. 3, No. 1 (December, 1971), 5-16.

[5] M. Shaeffer, "A Mathematical Theory of Global Program Analysis,"
unpublished notes, System Development Corporation, Santa
Monica, Calif., 1971.

[6] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation,
and Compiling , Vol. II: Compilfing, Prentice-Hall, Englewood

Cliffs, N.J., January, 1973.

[7] F.E. Allen, "Control Flow Analysis," SIGPLAN Notices,
Y Vol. 5 (1970), 1-19.

[8] F.E. Allen, "Program Optimization," Annual Review in Automatic
Programming, Vol. 5, Pergammon Press, New York, 1969.

[9] M.S. Hecht and J.D. Ullman, "Flow Graph Reducibility,”
SIAM J. Computing, Vol. 1, No. 2 (June, 1972), 188-202.

[10] J. Cocke and R.E. Miller, "Some Analysis Techniques for
Optimizing Computer Programs," Proc. Second International
Conference on Svstem Sciences, Hcnolulu, Hawaii, 1969.

[11] R. Tarjan, "Depth-First Search and Linear Graph Algorithms,"
SIAM J. Computing, Vol. 1, No. 2(June, 1972), 146-159.

[12] R. Tarjan, "Finding Dominators in Directed Graphs,'
Cornell University, (December, 1972).

unpublished,

[13] M. Fischer, "Efficiency of Equivalence Algorithms,"
Complexity of Computer Computations, R.E. Miller and J.W.
Thatcher (eds.), Plenum Press, New York, 1972, 153-168.

[14] J.E. Hopcroft and J.D. Ullman, "Set Merging Algorithms,”
submitted to SIAM J. Computing.

Figure 1l: A flow graph. Is this graph reducible?

Figure 2: Depth-first search of the graph in Figure 1.
' Vertices are numbered in search order. Tree
arcs are labelled T, fronds F, reverse fronds

R, and cross-links C.

Figure 3: HIGHPT and SNUMBER values (in parentheses) for
the graph in Figure 2. A reduction order is:

A,D,E,H,B,C,G,J,F,I,K.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

