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Abstract
Several combinatorial structures exhibit a duality relation that yields interesting theorems,
and, sometimes useful explanations or interpretations of results that do not concern duality
explicitly. We present a common characterization of the duality relations associated with
matroids, Sperner families, oriented matroids, and weakly oriented mat}'oids. The same
conditions characterize the orthogonality relation on certain families of vector spaces. This
leads to a notion of abstract duality. An example of a combinatorial structure having no

abstract duality comes from antimatroids (convex geometries).



In this paper we will examine some combinatorial structures (Sperner families, matroids,
oriented matroids, and weakly oriented matroids) and some algebraic structures (vector
spaces coordinatized over such fields as IR, Q, or GF (p"), n odd) in which there are inter-
esting duality or orthogonality relations. Although there are known resemblances among the
duality relations in these different settings, a much stronger connection can be made. Spe-
cifically, we give a brief set of conditions that characterize each of the duality relations within

its domain.

Section 1 outlines some of the main results. Section 2 contains brief introductions to the
structures of interest, and introduces some notation. Section 3 offers a géneral notation into
which all of the structures fit and defines the notion of abstract duality. The main result of
the paper is that each of the structures noted above has a unique abstract duality. Section 4
concerns some fundamental properties of abstract dualities that are used in Section 5 to
prove the uniqueness results. This study was initially prompted by the question of whether
antimatroids (also known as convex geometries or anti-exchange closures) [6,7,8,15] admit
a relation reminiscent of the duality relation in matroids. In Section 6 we show how
antimatroids fit in the notation of Section 3 and demonstrate that there is no abstract duality

on these structures.

The research announcement [1]>presents a brief discussion of this work, which was first
presented in the Ph.D. dissertation of the second author [5]. Additional details, beyond those
in Section 2, on the combinatorial structures studied here can be found in [2,3,4,5,9, 10,
11, 13, 19, 21]. Note that our attention is limited to finite structures, i.e., matroids, etc. with

only finitely many elements.



1 INTRODUCTION

Each of the structures under consideration can be put in the following form. Let & be
a family in which each F € # is associated with a finite set E(F). Assume further that there
are operations / (contraction) and \ (deletion) that take each F ¢ & and e € E(F) to
F/e ¢ & and F\e € &, respectively, having E(F/e) = E(F\e) = E(F) —{e}. We are con-

cerned with relations D : - & having such properties as:

(1.1) E(D(F)) = E(F) (VF e &)
(1.2) D(D(F)) = F (VF € &%)
(1.3) D(F/e) = D(F)\e and D(F\e) = D(F)/e (YF € &, e € E(F)).

It is not difficult to construct trivial examples of this type. Given # and, say, the contraction
operation, one could take deletion to be the same as contraction and D to be the identity.
However, there are several interesting and well-known structures in which there are estab-
lished contraction and deletion operations. We show that under these operations, (1.1) -

(1.3) characterize the established duality relation.

We will be examining some structures that are combinatorial and some that are algebraic.
The first example, which concerns vector spaces coordinatized over GF(2), although ex-

plicitly algebraic, has the flavor of some of the combinatorial examples as well.

For the moment, let X denote the binary field GF(2). For a given finite set E let KE
denote the vector space of all maps from E to K. We denote by & the family of all sub-
spaces of vector spaces of the form KE, where E ranges over all finite sets. For any
F € F, the common domain of all maps in F is denoted by E(F). The operations of con-

traction (/) and deletion (\) of a coordinate e* € E(F) correspond to projection of F onto,
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and intersection of F with, the hyperplane x(e') =0. Specifically, F/e' has
E(F/e") = E(F) — {¢'} and F/e' = {x: E(F/e") » K | 3x' € F s.1. X'(e) = x(e),

Yee E(F/e")}, while F\e' has E(F\e") = E(F) — {e'} and
F\e' = {x:E(F\¢') > K | 3x ¢ Fs1.X(e) =0 andx'(e) =x(e), Vee E(F\e")}.

The orthogonality relation Dy having Dx(F) = {y: E(F) - K | yex=0, Vx e F}forev-
ery F € &y, satisfies (1.1) - (1.3). Later we will examine families &, as above, for arbitrary
fields K, so we denote by F ;) and Dgp(p) what had been denoted by & g and Dy in the case

of K = GF(2).

(1.4) Theorem. For F = F (), the orthogonality relation Dgry) is the unique D : & - &

satisfying (1.1) - (1.3).

There is a natural bijection between & ;x() and &, the family of finite binary matroids.
Under this bijection, / and \ act like ordinary matroid contraction and deletion, and
orthogonality acts like matroid duality. This gives another interpretation of (1.4). Let Dy

denote the matroid duality relation restricted to .

(1.5) Corollary. For F = %, the relation D, is the unique D : F - ¥ satisfying (1.1 )-(1.3).

In the next example we expand the viewpoint from &, to &,,, the family of all matroids F
on a finite set of elements E(F). We take / and \, respectively, to be the usual matroid

contraction and deletion operations (see Section 2).

(1.6) Theorem. For % = &, the matroid duality relation Dy is the unique D - & - & sat-

isfying (1.1) - (1.3).



Another example comes from Sperner families (also called clutters). Let F ¢ be the
family of all Sperner families F on a finite set E(F), take / and \, respectively, to be the usual
contraction and deletion operations in this setting, and let Dg be the blocking duality relation

on ¥ (see Section 2).

(1.7) Theorem. For % = ¥, Dy is the unique D : & = & satisfying (1.1) - (1.3).

G. Kalai pointed out to us that Theorem 1.6 is a strengthening of aresult of J. P. S. Kung
[16]. Kung proved the version of Theorem 1.6 in which one imposes the additional re-

striction that D preserves isomorphisms,

(1.8) F; = y(F)) = D(F)) = $(D(F))

(VF,, F, € & and isomorphisms § from F; to F).

An isomorphism v, as in (1.8), is a bijection from E(F,) to E(F}) that takes F, to Fy. Itis
evident that (1.8) holds, not only for D, on &,, but also for Dg on ¥, and for D, on #,,
or, equivalently, for Dgrpy on Fgry). Moreover, (1.1) - (1.3) together with (1.8) charac-
terize the standard duality relations Dy on %, the family of all oriented matroids F on a fi-
nite set E(F), and Dy on Fy, the family of all weakly oriented matroids F on a finite set
E(F). Here we again take / and \ to be the usual contraction and deletion operations in

these settings.

(1.9) Theorem. (a) For ¥ = ¥, Dy is the unique D : & — F satisfying (1.1) - (1.3) and (1.8).

(b) For F = Fy, Dy is the unique D : F > F satisfying (1.1) - (1.3) and (1.8)

The inclusion of (1.8) with (1.1) - (1.3) also enables us to extend Theorem 1.4 to vector

spaces coordinatized over fields other than GF(2). First note that for any field K, all of
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Fx, /, \,and Dy remain well defined. The condition (1.8) on preserving isomorphisms
takes the following form here. Let Fy, F, € F and let ¢ be a bijection from E(F) to

E(F,) such that F, = {xoy | x € F;} . Then we require that D(F,) = {yoy | y e D(F)}.

(1.10) Theorem. For any field K having no nontrivial involutary automorphisms, (e.g.,
K =1, Q, or GF(p"), for p prime and n odd) conditions (1.1), (1.2), (1.3), and (1.8) charac-

terize the orthogonality relation Dy on ¥ g.

The results outlined in this section indicate that properties (1.1), (1.2), (1.3), and (1.8)
characterize the duality relations in each of several different examples, when we take the
operations / and \ in (1.3) to be the standard contraction and deletion operations in the
relevant example. In Section 3 we will also show that there is a common description of the
contraction and deletion operations across these examples. This leads to the definition of
an abstract duality relation. First we will give some background on the combinatorial ex-

amples.

2 BACKGROUND AND NOTATION

Although each of the combinatorial structures of interest can be described in many dif-
ferent, but equivalent, ways, the properties that presently concern us do not depend on the
form of the description. For instance, matroids can be defined it terms of circuits, inde-
pendent sets, bases, hyperplanes, rank, closure, etc.. It is sometimes convenient to think of
the contraction and deletion operations and the duality relation in the notation of one par-
ticular description. However, the properties in Theorem 1.6 do not depend, even in their

form, on whether we think of matroids F in terms of circuits €(F), or independent sets
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#(F), or any other characterizing feature. For example, the duality relation Dy, is a map
from &, to F ,, whose form, as a map, is independent of whether we choose to characterize

it in terms of circuits, or independent sets, etc..

In the introductory remarks about matroids and the other combinatorial structures we
will first give characterizations in terms of circuits. It will then be helpful to give equivalent
characterizations in terms of what we call “spans™ of circuits. The reason for this is that it
will unify the results, in that the contraction operation, as well as the deletion operation, in

the different examples can all be given the same description in terms of their spans.

Matroids

Let E be a finite set and let € be a set of nonempty subsets of E satisfying

(2.2) Cl’ C2 € %, Cl # Cz, ¢ € Cl nCZ % 3 C3 € ?gs.f‘, C3§(C1 U Cz) — {e}.

Then € is the set of circuits of a matroid F on E. Given a matroid F, we denote by E(F) the
set of elements on which it is defined, and by €(F) the set of circuits of F. Given E(F) and
€(F), it is easy to determine #(F), the independent sets of F, B(F), the bases of F, pp,
the rank function of F, etc.. It is also easy to determine the set of unions of circuits of F,
which we denote by &(F) and call the span of F. Like $(F), #B(F), pof, etc, P(F)
together with E(F) determines the matroid F. Later it will be convenient to work with

¥ (F), the set of (0,1) — incidence vectors of x € F(F).



The matroid duality relation D,, associates with each matroid F on a finite set E(F) a
matroid D, (F) with E(Dy(F)) = E(F) and €(Dy/(F)) the collection of setwise minimal

subsets of E(F) among the nonempty sets in
2.3) {BSE(F): |BNC| #1, V¥V C e €}

It is an easy exercise to show that P(Dy{(F)) is the entire set (2.3).

The contraction (/) and deletion (\) operations on matroids can be defined as follows.
For F a matroid and ee E(F), F/e and F\e are matroids having
E(F/e) = E(F\e) = E(F) — {e}, €(F/e) is the collection of setwise minimal subsets of E
among the nonempty members of {C — {e} | Ce4(F)}, and ¥(F\e) is
{C € €(F) | e£C}. The equivalent definition of these operations in terms of the span is
even simpler: F(F/e) = {X — {e}| X ¢ $(F)}and F(F\e) = {X ¢ P(F) | efX}, which

can be verified easily.

Two matroids F; and F, are isomorphic if there is a bijection ¢ : E(F;) - E(F;) such that
E(F)) = Y(B(F)) = {et}c{ziz(e)} | C € €(F,)} or, equivalently, F(F}) = ¢( P(F,)). Itis
well known that the matroid duality relation D), on &, the family of all finite matroids, has

properties (1.1), (1.2), (1.3), and (1.8) (see [19, 21]).

Sperner families

Removing (2.2), the second of the two circuit axioms for matroids, gives a standard
characterization of Sperner families or clutters. Let € be a set of subsets of a finite set E

satisfying



(2.4) Cp, C, €8, CSCy » C =G,

Then we will say that € is the set of circuits of a Sperner family on E. Given F € &g, the
family of all finite Sperner families, we denote by E(F) and 4(F), respectively, the set of
elements on which F is defined and the set of circuits of F. It is in terms of what we have
called circuits that Sperner families are usually described, but, just as for matroids, one could
give a different, but equivalent, description in terms of, say, independent sets - those subsets
of E(F) containing no circuit. It will be useful for us to describe each F € 5 in terms of
its span, P(F) = {X<E(F) | 3 YX, Y ¢ €(F)}. Later we will work with %(F), the set
of (0,1)-incidence vectors of the subsets XS E(F) in &(F). The blocking duality relation
Dy on & g takes each F € &g to Dg(F) € &5 with E(Dg(F)) = E(F) and ¥(Dg(F)) the col-

lection of setwise minimal subsets in
(2.5) [YSE(F) | YNX#9, YXe €}

Tt is easy to see that &(Dg(F)) is the entire set (2.5).

The contraction and deletion operations on &g can be defined as follows. For F € &
and e € E(F), F/e ¢ Fgand F\e € &g have E(F/e) = E(F\e) = E(F) — {e}, %(F/e) is the
collection of setwise minimal subsets of E among {C — {e} | C € €(F)}, and €(F\e) is
{C € G(F) | eC}. The equivalent definition in terms of the span is, again, somewhat
simpler: #(F/e) = {X — {e}| X ¢ P(F)}and P(F\e) = {X ¢ F(F) | e£X}. Thisiseasy
to verify. Note that when described in terms of the span, the contraction and deletion op-
erations on & take the same form as on &,,. Indeed, if we describe the contraction and
deletion operations in terms of ¥ (F) rather than &(F), their form in F s and F g would be
identical with their form in the earlier algebraic example #p(;). This will also be true for

the examples that appear later in this section.

-8-



The definition of isomorphisms between F,, F, € & is identical to the definition for
&, Ttis clear that the blocking duality Dg on &g preserves isomorphisms, i.e., it satisfies

(1.8), and preserves the ground set (1.1). Itis also well-known that Dy satisfies (1.2) and

(1.3).

Oriented Matroids

While matroids can be regarded to be set systems that abstract linear dependence over
a field, oriented matroids can be regarded to be signed-set systems that abstract signed linear
dependence over an ordered field. A signed subset X of Eisapair X = (X*, X™) of disjoint
subsets of E. We can also think of X in terms of its signed incidence vector, the map from
Eto{—,0, +}thattakese € X*to + ,e € X~ to — ,and e € E — (X* UX-)to0. Given
X a signed subset of E, let X denote the underlying set X=X+ U X~, let —X denote the
signed subset of E having ( —X)* = X~ and ( =X)~ = X*, and, fore € E,let X —{e} denote
the signed subset of E having (X — {e})* = X* — {e} and (X — {e})~ = X~ — {e}. Denote

the set of all signed subsets of Eby { —, 0, + }£.

Like matroids, oriented matroids can be axiomatized in many different but equivalent
ways (see [3, 10]). One axiomatization, in terms of signed circuits, follows. Let € be a set

of signed subsets of a finite set E such that the following properties hold:

(2.6) Ce¥ > C#@ and —C € G,
(2‘7) Cl’ C2 € qg, —C-lggz = Cl = + Cz,
(2.8) Cl’ C2 E%, Cl#—'CZ, eeCfﬂC{gE C3 €¥

st G €(CH U CF) —{e}, Gy s(CT UG — et
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Then € is the set of (signed) circuits of an oriented matroid on E. We denote by & the
family of all finite oriented matroids. Given an oriented matroid F € &, we will denote by
E(F) and €(F), respectively, the set of elements on which F is defined, and the set of
(signed) circuits of F. Again in this setting, it will be helpful to associate with each F' € &
a span P(F) that determines F uniquely. Let &(F) be the set of all conformal unions of
circuits of F (see [3]), ie., &(F) is the set of signed subsets X of E(F) that arise as
X+=U{Z*+*| Ze U}, X~ =U{Z- | Ze @}, where #<€(F)issuchthatZ,, Z, ¢ %
implies (Zj N Z5) U(Zy NZ#) = @. Later we will work with ¥(F), the set of signed in-

cidence vectors of all signed sets X € F(F).

The oriented matroid duality relation D, associates with each F € &, an oriented
matroid Dy(F) € &, with E(Dy(F)) = E(F) ‘and ¥(D,(F)) the collection of all setwise

minimal signed subsets of E(F) among the nonempty members of

(2.9) Ye{—,0,+FP | X'NYHUEX NY ) =0

X" NnYHuX*ny ) =0¢,YX € €¢(F}.

That is, €(D,(F)) consists of those Y in (2.9) such that ¥ # ¢ and there is no Y’ in (2.9)

with @ # Y'cY. It follows from [3] that the span P(Dy(F)) is the entire set (2.9).

Contraction and deletion in #, can be defined as follows. Let Fe &, and let
e e E(F). Then F/e € F,and F\e € F, have E(F/e) = E(F\e) = E(F) — {e}, 6(F/e) is
the collection of setwise minimal signed subsets of E among the nonempty
(X - {e} | X € €(F)}, and €(F\e) = {X € €(F) | e£X}. In terms of the span &L(F), we

have P(F/e) = {X — {e}| X e P(F)tand F(F\e) ={X e P(F) | efX} (see[3]).
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Two oriented matroids F,, F, ¢ &, are isomorphic if there is a bijection
1 E(F,) — E(F,) such that €(F}) = $(6(F,)) = {($(X*), Y(X7)) | X € G(F,)} or, equiv-
alently, P(F;) = ¢( L(F,)). Itis easy to show that D, preserves isomorphisms (1.8) and

preserves the ground set (1.1). That it also satisfies (1.2) and (1.3) follows from [3].

Weakly Oriented Matroids

Weakly oriented matroids [2, 13] constitute a natural intermediate between matroids and
oriented matroids. Among several equivalent definitions is one in terms of signed circuits.
Given X € { —,0, + ¥ and e € E, let sgn(e, X) be +1ifee X*, =1 ifee X, and O if

e¢X Let € be a set of signed subsets of a finite set E such that

€ is the set of circuits of a matroid on E;

Ce¥€ » —-Ce6,
VC,C, €6, Ci#—-GCy, e Cf NC;
() fe(Cf—CHUCT -C) » 3G € st feGE(CUG) - {eh;
(i) 3eeCi—-GC, e G—C, C3e€ st
G € (C,UG,) — {e} and sgn(ey, Cy)sgnle,, G) = sgnley, Cy)sgnl(ey, C,).

Then € is the set of (signed) circuits of a weakly oriented matroid on E. The symbol &y
denotes the family of all weakly oriented matroids, and for F € #y, E(F) and G(F), re-

spectively, denote the ground set on which F is defined, and the set of circuits of F.
Some additional notation will ease the definition of the span of F e #y. Given

Xe{—-,0,+ ¥ande,f € E let sgn(ef.X) = sgn(e,X)sgn(f,X). A signed subset Xof Eisa

consistent union of a set & <{ — ,0, + if
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X=U{Z|Ze u}

SUZY | Ze U} —{UZ | Ze @ycsXTc{UZ | Ze %},
SUZ™ | Ze 4} —§UZ" | Ze 4y sX c{UZ | Ze
sgn(xy, X) #0 => 3 Z,,Z, € Uwithxe Zy, ye 24,

s.t. either sgn(x,y, Z;) # —sgn(x,y, X) or sgn(x,y, Z,) # —sgn(x, y, X).

The span P(F) of F € Fy is the set of all consistent unions of circuits of F;, &(F)canalso
be defined in terms of series classes in deletion minors of F. In the next section we will work

with ¥ (F), the set of signed incidence vectors of X € F(F).

The weakly oriented matroid duality relation Dy (see [2, 13]) takes each F ¢ Fy to
DyAF) € &y such that E(DyAF)) = E(F) and €(Dy{F)) is the collection of setwise mini-

mal signed subsets among the nonempty members of

(2.10) (Ye{-0,+¥FP |1 X' NnYyHuE N ) =0 <
X NYHuE Ny )=9¢,¥Xe€F) se |XNY| <2}

The characterizations of contraction and deletion for # in terms of circuits are exactly

the same as for #,. That the characterization in terms of spans are the same -
F(Fle)={X—{e} | Xe P(F)} and P(F\e) = {X ¢ P(F) | efX}

is proved in [5], as is the result that S(DyAF)) is the entire set (2.10). Isomorphism of
weakly oriented matroids is defined as for oriented matroids. Again it is easy to see that
Dy, on Fy satisfies (1.8) and (1.1), and, it is proved in [2,13] that Dy, also satisfies (1.2) and

(1.3).
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3 ABSTRACT DUALITIES

In Section 2 we presented for each of the families # = F,, Fs5, Fpo, Fy, a de-
scription of the F € & in terms of the ground set E(F) and span SF(F). Recall that the
duality relations on these families and the contraction operations take a somewhat simpler
form when described in terms of spans, rather than, say, circuits. More importantly, note
that the descriptions of the contraction operations in terms of spans are essentially identical,
while the descriptions in terms of circuits differ noticeably. This can be carried further by a
simple change in notation, which gives the combinatorial families a closer resemblance to the
algebraic families %. In place of the description of F ¢ # in terms of E(F) and FP(F),
consider the same information presented in the form of ¥(F), the set of incidence vectors
(for &, and &) or signed incidence vectors (for # and Fy)of al X ¢ F(F). The con-
traction operations for &, &g, F,, and Fy have a single characterization in terms of
¥ (F) - contraction of an element e* in the domian of the maps ¥'(F) is just projection onto
x(e") = 0, the same as for F; deletion is intersection with x(e") = 0, again, as for #;. The
significance of a common description of the contraction and deletion operations across all
of the examples is twofold. First it facilitates a common approach to proving the five char-
acterizations embodied in Theorems 1.6, 1.7, 1.9a, I.E_)b, and 1.10. Second, it gives a cleaner
unification of the five dualities under examination, since condition (1.3) can be regarded to
be a universal condition applied in the same way to each of the five, rather than a set of five
distinct conditions of similar form. So, for example, instead of working with the family %,
of all matroids on finitely many elements, we will work with the family
Gy ={V(F) | Fe &y}t The operations of contraction and deletion, and the matroid
duality relation D,,, behave in exactly the same way on &, and %, under the natural

bijection between #,, and 9,,. Therefore, to prove Theorem 1.6, it is sufficient to prove
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the analogous result on %,,. Similarly, we will deal with F g, #, and &, implicitly, through
the consideration of the families %, 9, and 9y, in which the role of each member F of the
relevant family &, is played by G € §; with G = ¥(F); we denote by E(G) the common

domain of the maps in G.

We will now formalize this notation. Given T a nonempty set with a distinguished ele-
ment ¢, let 9 be a family of sets G of maps from E(G), a finite set, to 7. Suppose further
that @ is closed under the operations of contraction (/) and deletion (\), which are defined

as follows. For any G € %and ' ¢ E(G),

E(G/e') = E(G\e') = E — {e'},
(3.0) Gle = ix: E(G/e) » T | 3x € Gwithx'(e) = x(e), Ve e E(G/e)l,

G\e = {x:E(G\e') » T | 3x' e Gwithx'(e) =1,

andx'(e) = x(e), Ve e E(G’\e‘)}.
A function D : € - % is a weak abstract duality on G if it preserves the ground set -
(3.1) E(D(G)) = E(G) (VG € 9),

it is an involution -

(3.2) DD(G)) =G YG 9,

and it interchanges contraction and deletion -

(3.3a) D(G/e) = D(G)\e (VG € 9, e € E(G)),
(3.3h) D(G\e) = D(G)/e (YG € B, e ¢ E(G)).
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An isomorphism from G, € % to G, € 9 is a bijection ¢ : E(G,) - E(Gy) such that

G, = {x0¢ | x € G1}. A weak abstract duality on % is an abstract duality if it preserves

isomorphisms -
(3.4) D(G,) = {yog ye D(G1)}

(VGy, G, € 9, and ¢ an isomorphism from Gy to G,).
Example Y T 1
Matroids G=1{V(F) | FeF} 10,1} 0
Sperner families Gs={V(F)| Fe Fgs} {0,1} 0
Oriented Martroids Gp ={Y(F) | Fe &5} §-,0, +} 0

Weakly Oriented Matroids Gw={V(F) | FeFy} {-=,0,+1 0

Vector spaces coordinatized =% K 0
over a field K

Table 1. The Unifying Framework

Table 1 indicates how the earlier examples fit into this notation. It is important to note that:
(1) there is a natural bijection between #;and §; (i = M, S, O, W, K); (2) for each of these
& ; and the associated D, the natural bijection from &, to 9; permits us to regard D; to (also)
be a function from %; to %;; and (3) contraction and deletion in ¥;, as defined by (3.0)
correspond, under the natural bijection from %, to %;, exactly to the usual contraction and

deletion in &, , as described in Section 2.
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It should be evident that each of %y, s, Do, 9w, and Gy (for arbitrary field X) has at
least one abstract duality, namely Dy, Ds, Dp, Dy, and Dy, respectively. In the next two

sections we will prove

(3.5) Theorem. (a) Dg is the unique weak abstract duality on G;
(b) D,y is the unique weak abstract duality on Gy,
(c) Dy, is the unique abstract duality on G,
(d) Dy is the unique abstract duality on Gy,
(e) for every field K having no nontrivial involutary automorphism Dy is the unique

abstract duality on Gx.

Theorem 3.5 implies Theorems 1.6, 1.7, 1.9a, 1.9b, and 1.10.

4 RECONSTRUCTIBILITY

In this section we present some general results about weak abstract dualities and abstract
dualities. These results facilitate a common approach the the proofs of the five parts of

Theorem 3.5, based on a reconstructibility property that we will describe now.

For each of the five examples in Table 1 of Section 3, it is easy to show that for all

G € ¢ with E(G) sufficiently large, G is determined uniquely by its set of simple minors:
(41)  {G/elee E(G)} U {G\e]|eec E(G)}.

Such a G is called reconstructible. It is not difficult to see why one might expect
reconstructibility. For G € ¢ having | E(G)| > 2, let # be the set (4.1) of simple minors

of G. First note that E(G) is just the union of E(G') over G’ € #. Also note that: (a) for

-16 -



any e € E(G) there are exactly two G’ € # having E(G') = E(G) — {e}, namely G/e and
G\e; (b) it is easy to distinguish between these two because G\eSG/e. Next note that if
we extend each x € G\e to a map x" : E(G) - T having x'(e) = ¢*, then x’ ¢ G. Typically
G can be generated unambiguously from these x’, except in the degenerate cases, where the
structure of G can be determined from the contraction minors. For example, if G € Ggp(n),
then the only ambiguity arises when for every choice of e € E(G), G\econtains only the zero
vector (0,...,0). In this circumstance, G could be either {(0, ..., 0)} or {(0....,0), (1,..., 1),
but the contraction minors G/e immediately reveal which of the two possibilities holds. Note

that if | E(G)| = 1, then G cannot be reconstructed, since we cannot even recover E(G).

Let (%) be the least integer r such that every G € ¢ having | E(G)| >r is
reconstructible; #(%) = «= if there exists no such integer r. It is easy to verify that
H%Gy) = r(%s) = 2; (Gp) = r(%w) = 3; (Gsr@) = 2; and r(%y) = 3 for other K. We will

say that G € @is smallif | E(G)| < 1(9).

(4.2) Theorem. If D, and D, are distinct weak abstract dualities on G, then Di(G) # D,(G)

forasmall G ¢ G.

The proof of Theorem (4.2) uses the following lemma. For g € Z_, denote by %4 the sub-

family {G € 9: 9 > | E(G)|} of &.

(4.3) Lemma. Suppose D, and D, are weak abstract dualities on G and for some positive integer
A
q: (i) D1(G) = Dy(G), YG € 979, (ii) every G € G \ 99 is reconstructible. Then Dy = D,.

, A A A
Proof. Suppose that G € G has | E(G)| = g + 1. Then D;(G) is determined uniquely by
A A A A
(4.4) M = {D|(G)\e | e e E(G)}U{D;(G)/e | e € E(G)}.
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By (3.3) and (4.4)

(4.5) M = (Dy(G /o) | e € E(G)IUID(GNO) | e € E(G)}.

A
Now each simple minor of G in (4.5) has g elements, so by (i)
A A A A
(4.6) M = {D,)(G/e) | e € E(G)IU{D,(G\e) | e € E(G)}.
Again using (3.3) with (4.6) we get

4.7) = (D(G)\e | e € E(G)}UD,(G)/e | e € E(G}.

A A A A
Since E(D,(G)) and E(D,(G)) both have ¢ + 1 elements, by (ii) D;(G) and D,(G) are
reconstructible from their sets of simple minors, which, by (4.4) and (4.7), are identical.
A A A
Therefore, D;(G) = D,(G),forall G € @a+! je., (i) holds with g replaced by ¢ + 1. Since

€ -~ @9+l c @ - @4 (ii) also holds with g replaced by ¢ + 1. By induction, D; = D,. ®

Proof of Theorem 4.2. If (%) = =, then there is nothing to prove, since all G € ¢ are small.
So assume that H(%) is finite. Let D; and D, be weak abstract dualities on G, and, suppose
that the conclusion of (4.2) fails. Then D,(G) = D,(G) for all G € 99, with ¢ = 1 (%) —1.
Conditions (i) and (ii) of Lemma 4.3 both hold for this choice of q. Hence, D, = D,, con-

tradicting the hypothesis that D, and D, are distinct. |

(4.8) Corollary. If all (weak) abstract dualities D, and D, on G agree on all small G € G, then

% has at most one (weak) abstract duality.

Establishing Theorem 3.5 now reduces to establishing the hypothesis of (4.8) in each of
the five families. In the combinatorial cases, Gy, 95, 9o, Gw this is facilitated by the modest
size of r(%) and by the following lemma. For any finite set E let 9(E) be the subfamily

{Ge¥9| E(G) = E}
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(4.9) Lemma. Let D be a weak abstract duality on G, let E be a finite set, and let ' € E and
G* € YE —{e}) be fixed. Then the restriction of D to 9 = {G e 9(E) | G\e' = G'} isa
bijection from %, 10%, = {G € 9(E) | G/e" = D(G")}.

Proof: Suppose G €%, Then G\e'=G", so D(G\e’)=D(G"), and by (3.3)
D(G\e") = D(G)/e*. Therefore, D(G) € %,, so D restricted to @, has its range in%,. Also,
it must be one-to-one, since D is one-to-one on all of ¢, by (3.2). Now suppose that
G € %,, which implies that G/e* = D(G"). Then D(G/e") = D(D(G")), which is G* by
(3.2). Furthermore, by (3.3), D(G/e") = D(G)\e*, so D(G)\e" = G*, which implies that

D(G) € 9;. By (3.2) G is the image under D of D(G), so D restricted to %, is onto 4,.

In the next section we will complete the proofs of the five parts of Theorem 3.5, by es-

tablishing the hypothesis of Corollary 4.8 separately for each of the five cases.

5 UNIQUENESS PROOFS

The details of the proofs of each of the parts of Theorem 3.5 are presented in this section.
First we introduce some additional notation. For each map x € G € %, a family as above,
and each e € E(G) let )/C\e denote the restriction of x to the set E(G) —{e}, that is,
;c\e : E — {e} » T has )/C\e(el) = x(e'), for all € € E(G) — {e}. For an element ef E(G) let
8,(G) denote the extension to E(G) U {e} of the maps in G,

E(G) ={x:E(G)Ufe} > T|x(e) =1, and 3y € G 3 x(e') = y(¢), ¥¢' ¢ E(O)}.
The symbol x denotes the support of a map x € G, that is the set {e € E(G) | x(e) £,
where t* is the distinguished element of the target set 7 of the mapsin G. Foranyz € T let

tE denote the map from E to T having #£(e) = ¢, for all elements e € E. In particular, 0¥

denotes the zero map (vector) on E. The unique map from the empty set to any Tis denoted
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by 0%. Some additional notation will be helpful in the cases where T = {-,0,+1 Givena
mapx: E - { —,0, +}, we write x+ for the set {e € E(G) | x(e) = + } and x~ for the set
fe € E(G) | x(¢) = —}. We write —x to denote the map from E to { —, 0, + } having

(-x)*=x"and (—x)~ =x*.
Matroids and Sperner Families

The following lemmas establish the hypothesis of Corollary 4.8 for the families %,, and

9 of matroids and Sperner families, respectively.

(5.1) Lemma. (a) Every G € %G with | E(G)| > 2 is reconstructible.
(b) All weak abstract dualities on Gy, agree on the subfamily G).

Proof: (a) Choose G €Yy having | E(G)] 2> 2. Let
G ={x:EG) - {01} | x= “g(c)ge, where x, € 8,(G\e)}. If G # {0f©@}, then
G=0G. Suppose G = {0E@}. I G/e= {0E©-¥}} for any e e E(G), then
G = {0E©)}; otherwise G = {0£(©), 1E(G)},

(b) Let D : G, - Gy, be a weak abstract duality. There is only one matroid with E(G) = ¢
and, by (3.1), it must be its own image under D. For E = {¢'1, there are two elements of

Gy(E): G = {(0),(1)} and G’ = {(0)}. Here each map is denoted by the image of the ele-

ment e. For E = {e, €'}, there are five elements of G5, (E'):

G, = {(0,0)}
G, = {(0,0),(1,0)}
G = {(0,0),(0,1)}

G, = {(0,0),(1,0),(0,1),(1,1}.
Gs = {(0,0),(1,1)}

Here each map is denoted by the ordered pair (x(e), x(€)). Let & = {G,;| G;/e = G},
% = {G,| G/e=G'}, Z=1{G;| G\e=G}, and 2’ ={G;| G\e=G'}. Note that

| | =3,|%'| =2, | 2| =2,and | 2’| =3. Lemma 4.9 implies that D: & - 2,
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D:% » 2,D: Z> %', and D: X' > %, s0 D(G) = G'. This is independent of the

choice of ¢, so D is uniquely determined on 9. ]

(5.2) Lemma. (a) Every G € % with | E(G)| > 2 is reconstructible.

(b) All weak abstract dualities on G agree on the subfamily 9.
Proof: (a) Choose G € Gg with | E(G)| > 2. Let G’ = {x: E(G) - {0,1} |3 e ¢ E(G) and
y e 8,(G\e) with y s x}. If G #@, then G=G. If G =¢, and G/e=§ for any
e € E(G), then G = §. Otherwise G = {1E(®},
(b) There are two elements of 9, Gy ; = ¢ which contains no maps, and Gy, = {093, which
contains only the empty map. For E = {e}, there are three elements of 9g(E): Gy = g,

Gy, = {(0),(1)}, and G, 3 = {(1)} respectively. The minors are given by

Gm/e=¢ Gl,2/6= {Oﬂ} G1’3/€= {Og}

Gii\e=0 Gy\e = §0%} Gis\e = 0.

Let D: % - G be a weak abstract duality. Since Lemma 4.9 implies that D takes
§Gy; | Gyi/e= @110 {Gy; | Gy \e = {0%} }, we must have D(Gy;) = Gp,. With property
3.3 and the minors listed above, this implies that D(G; ;) = Gj,- By (3.2), D(Gy5) = Gy 15

and, therefore, D(Gy ;) = Gy 3. This is independent of the choice of e. |
Oriented Matroids and Weakly Oriented Matroids
To show that 9, the family of oriented matroids, has a unique abstract duality, we

demonstrate reconstructibility and then consider the subfamily $,(E) for small sets E. The

proof for Gy, the family of weakly oriented matroids, is similar.
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(5.3) Lemma: (a) Every G € G with | E(G)| > 3 is reconstructible.
(b) All abstract dualities on G agree on the subfamily 43.

Proof: (a) Let G’ be the set of maps from E(G) to { — , 0, +} whose signed support is the
conformal union of the signed supports of maps in U {6,(G\e) | e € E(G)}. If G’ contains
only the zero map, then G ={x:E(G) = {—,0,+}| % € G/e,Vee E(G)}. If
G’ # {0F}, G = G'. Note that this construction holds only for | E(G)| 2 3. For |E| =2,
there are distinct elements of 9,(E) having the same set of minors.

(b) There is only one oriented matroid on ¢ and it must be its own image under any abstract
duality D:9, - %,. For each singleton {e} there are two eclements of Golieh):
G(e) = {0} and G'(e) = {0}, +f}, —{}}. For E = {e;, e,}, there are six elements of

@(E):

G] = {(090)}; G4 = {(an), i ( +90)9 i ( +3 + )1 i (O, + )s i ( +3 - )}
G, =1{(0,0), £ (+,0)};  Gs={(0,0), £ (+, +)}

Here each map is expressed as the image of the ordered pair (e, e;). Note that
1{Gi| Gi/e; = G'(et] = 4, |{Gi| Gi/ey = Gle}] =2, |{Gi|G\ey = G'(e)}| =2 and
| {G;| G\e; = G(e))}| =4. By Lemma 4.9, D(G(e;)) = G'(¢;) and D(G'(e))) = G(ey).
Similarly, D(G(e,)) = G'(¢,) and D(G'(e,)) = G(e,). This, together with (3.2), determines

the value of D on the first four oriented matroids:
(5.4) D(G)) = Gy, D(Gy) = Gs; D(G3) =Gy, D(Gy) = Gy

The remaining two oriented matroids, G5 and G, have the same set of minors, and either (i)
D(Gs) = Ggand D(Gg) = Gs, or (ii) D(Gs) = Gsand D(Gy) = G. Let E' = {ey, ), &}, and
G = {(0,0,0),( +, +, + ), (=, —, =)} € Bo(E"). Foreach i=1,2,3, G/¢ is isomorphic
to G5 and G\g; is isomorphic to Gy. If (ii) holds, by (5.4) and property (3.4) there exists

G' = D(G) € 9, such that
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(5.5) G'/e,-=D(G\e,-) is isomorphic to Gy, (i=1,2,3);

(5.6) G'\e;= D(G/¢) is isomorphic to Gs, (i=12,3).

By (56), G ={+(+,+,+), +(+,+.,0),+(+,0,+),£(0,+,+),00,0)}, as in
the proof of (). This contradicts (5.5) and (ii) cannot hold. Therefore, (i) holds, D is de-

termined on %3, and the lemma is proved. ]

For oriented matroids the unique abstract duality corresponds to oriented matroid

duality. The analogous result holds for the family %y, of weakly oriented matroids.

(5.7) Lemma: (a) Every G € Gy with | E(G)| 2> 3 is reconstructible.

(b) All abstract dualities on Gy, agree on the subfamily Gy,
Proof: (a) Let G’ be the set of maps from E(G) to { —, O, +1} whose signed support is a
;:onsistent union of the signed supports of mapsin U {8,(G\e) | ¢ € E(G)}. From here the

proofs of (a) and (b) follow the proof of Lemma 5.3.

The proof of Lemma 5.3 used the isomorphism-preserving property (3.4) to determine
the behavior of D on 93. The families %, and %y, have many weak abstract dualities. We
will show that each of these weak dualities arises from the usual (weakly) oriented matroid
duality by “reversing signs” on some set of elements. We begin by formalizing the notion
of reversing signs. If x is a map from a finite set Eto { —, 0, + }, and S is a set, thenzx is
the map from E to {-,0,+} having (x)*=Gx*-S)UKx-NS) and
(%)~ = (x~ = §) U (x* N S). The map zx is said to be obtained from x by reversing signs
on S, and for any collection of maps G from Eto { —, 0, + }, we write G for the collection

{sx | x € G}. Note that we do not require that SSE.
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To characterize the weak abstract dualities on 9, we first note that reversing signs on a
set S commutes with oriented matroid duality, weakly oriented matroid duality, and with

contraction and deletion in both %, and %y

(5.8) Lemma. (a)If G € 9y and S is a set, then Dp(5G) = §(Dp(G)).
(D)If G € Gy and S is a set, then Dy(5G) = 5(DyAG)).
(c) If G € Gy and e € E(G) then §(G\e) = (5G)\e and 5(G/e) = (5G)/e.
(d) If G € Gy and e € E(G) then 5(G\e) = (5G)\e and 5(G/e) = (5G)/e.
Part (a) is proved by applying (2.9) and reversing signs on .S. The proof of part (b) uses

(2.10), while (c) and (d) are immediate results of the appropriate definitions.

For each set U, let Gp(U) = {G € %y | E(G)< U}, be the family of oriented matroids
with ground sets in U and let g U) = {G € Gy | E(G)sU}. If SSU, then a weak abstract
duality on 9,(U) (respectively, 9y U) ) is obtained from Dy (Dy,) by reversing signs on S.

Furthermore, every weak abstract duality on %,(0) (9pAU) ) is of this form.

(5.9) Theorem. A function D : Gp(U) - Go(U) is a weak abstract duality if and only if there
exists SSU such that, for every G € Gp(U), D(G) = 5Dp(G).

Proof: Let D : Go(U) - %(U) and suppose that for some set SSU, D(G) = Dp(G), for
every G € Go(U). 1t is clear that the function D preserves ground sets, (3.1). For each
G € Go(U) we have D(D(G)) = D(5Do(G)) = 5Dp(5Do(G)) = G, so D satisfies (3.2).
For every element e € E(G), we have D(G/e) =(Dp(G/e)) = (5Dp(G))\e = D(G)\e
and D(G\e) = (Dp(G\e)) = (5D0(G))/e = D(G)/e. Therefore, D satisfies (3.1), (3.2),

and (3.3), and is a weak abstract duality for the family G,(U).
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The proof of the converse is more difficult. Let D : §(U) - p(U) be a weak abstract
duality. First note that since any G € %,(U) having | E(G)| > 3 is reconstructible, it is
sufficient to determine the behavior of D on the subfamily 4#(U). For each two element
set ECU, there are six G € G,(U) having E(G) = E. Properties (3.1) - (3.3) determine D
on four of these oriented matroids, as in the proof of Lemma 5.3. It is only on the remaining
elements of ¢ 3(U) that the function D can differ from D, For each two element set
E<U, let G(E) = {(0,0), £ (+, + )} € Go(U) and G'(E) = {(0,0), + (+, —)} € Go(1).
Either D(G(E)) = G'(E) or D(G(E)) = G(E). The set S on which signs are reversed is de-

termined from the behavior of D on these elements of 95(U).

For each element e € U, let S(e) = {¢' € U| D(G({e, €})) = G({e,€'}) }. Tt is clear
that f € S(e) if and only if ¢ € S(f). By proving the following series of claims, we show that

590 =550 for all G € ¥3(U), and any choice of e, f € U.

Claim 5.9.1 : If e, f, and g are distinct, f € S(e) and g € S(f), then g¢ S(e).

Suppose that the claim fails for the elements ¢, f, and g. Let E = {e,f.g} and consider

Gefx:E~{-0,+}|x"=Eorx =E}U{05} e Go(U).

Note that G/e= G({fig}), G/f=G(egh), and G/g=G(fesl).  Since fe S(e),
ge S, and ge Sk), (3.3) implies  that D(E)\e = D(g/e) = G({fg}),
D(G)\f = D(G/) = Glieg}), and D(G)\g = D(G/g) = G(jef}). This is impossible,
since reconstructing D(E) from its minors, as in the proof of Lemma 5.3, gives
D(G)={x:E »{—0,+}|xt=0orx— =0, and |x| # 1}, which is not in %,

Claim 5.9.2: If f € U — S(e), then S(e) = S(f).

Suppose that fe U— S(e), g € S(e) — S(f), and let 5 be as above. By property (3.3),

D(G)\e = D(G/e) = G'(ifgh), DIGI\f = D(G/f) = Gieg}), and D(G)\g = D(G /g) =
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G'({e.f}). Again, reconstructing D(G) from its minors yields a collection of maps that is not

in 9,. Therefore S(e)SS(f). Since e € U — S(f), the opposite containment also holds.

Claim 5.9.3: If S(e) N S(f) # @ then S(e) = S(f).
Let g € S(e) N S(f), so f € S(g) and g € S(e). Applying Claim 1, with the roles of fand g

interchanged, f¢ S(e), and by Claim 2, S(e) = S(f).

Claim 5.9.4: For any pair, e,f € U, either S(¢) = S(f), or S(e) = U = S(f).
If S(e) # S(f), then by Claim 3, S()sU — S(e). Suppose g € U — (S(e) US(f)). Then

by Claim 2 S(e) = S(g) = S(f).

Claim 5.9.5: For every G € Gp(U) ,and everye, fe U, 3556 =3556C
If S(e) = S(f) then the result is clear. Otherwise S(¢) = U~ S(f). Since each

G e ﬁo(U) s has G = UG’ we have “S.(j)G = EES(Z/‘G) =mG =-§mG

Choose an element ¢ € U and let S = S(¢%) . We use induction on | E(G)| to show
that D(G) = 5G, for all G € Gp(V). If | E(G)| < 1, the result is obvious, since reversing
signs has no effect. For | E(G)| = 2, the definition of S(e) implies that for either choice of
e e E(G), D(G) = s(EiDo(G)- By Claim 5, we have D(G) = wDp(G). Suppose that the re-
sult holds whenever |E(G)| <k, for some k>2, and let G e G(U) with
| E(G)| = k + 1. By (3.3), for each e € E(G), D(G)/e = D(G\e). By the induction hy-
pothesis, property (3.3) applied to Dy, and Lemma 5.8, D(G)/e = D(G\e) = 5Dp(G\e) =
5(Do(G)/e) = (5(Dp(G)))/e. Similarly, D(G)\e = (5D(G))\e, forall e € E(G). Since

D(G) and $Dy(G) bave the same simple minors and | E(D(G))] 2 3, Lemma 5.3.a implies

that D(G) = Do(G). This completes the induction and the proof of the theorem. |
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It is easy to extend the proof of Theorem 5.9 to the family of weakly oriented matroids

with ground sets in U.

(5.10) Theorem. A function D : GuAU) ~ GpAU) is a weak abstract duality if and only if there

exists S<U such that, for every G € GyAU), D(G) = gDyAG).
Yector Spaces

Uniqueness proofs for families 9, K a field, are more difficult than for the combinatorial
examples. However, as in the matroid case, it is easy to see that for | E(G)| large enough,

G € Yy can be reconstructed from its simple minors.

(5.11) Lemma. Every G € Gy with | E(G)| 2 3 is reconstructible.
Proof: If dim(G) > 2, then G = EG &,(G\e), the vector sum of the sets &.(G\e). Oth-
e E(G)
erwise, dim (| 2 £(G\e)) < 1,and G = {x: E(G) ~ K | X € Gle, Yeec E(G)}. m
eeE

The vector space orthogonality function Dy is an abstract duality for ¥¢. By considering
the behavior on %2, we show that each abstract duality on %y is the composition of vector
space orthogonality with an automorphic involution on K. First we show that any such

composition is indeed an abstract duality.

(5.12) Theorem. Let d: K - K be an involutary automo:phism, and, for each finite set E, let
d:KE > KE be given by (d(x))(e) = d(x(e)), for all ec E. For every G € Gy, let
DAG) = {d(x) | x € Dg(G)}. Then Dy: Gy — G is an abstract duality on Gx.

Proof: Ttis clear that D, preserves the ground set (3.1) and that D, preserves isomorphisms

(3.4). Note that 4(0) = O for any field automorphism. Since 4 is additive, multiplicative,
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and an involution, for each pair x,y e EX, the inner product x » y =0 if and only if
d(x) «d(y) =0. Therefore, D({d(x) | x € G}) = {d(x) | x € Dx(G)}. This implies
that DyDAG)) = {dx)]|xeDx(DAGN} = Dx({d(x)|xeDf&}) =
D ({d(d(x)) | x € Dg(G)}) = {x | x € Dg(Dx(G)} = G, for each G € %y, so Dy satisfies
(3.2). For each e ¢ E(G), d(%) = (@), and x(e) = 0 if and only if (Z(x))(e) = 0, s0
commutes with contraction and deletion. Since Dg(G\e) = (Dx(G))/e, we have
D(G\e) = {d(x) | x € (D(G))/e} = {d(x) | x € (Dx(G))}/e = DAG)/e. Similarly,

D/G/e) = D,(G)\e, so D satisfies (3.3). Therefore, D,is an abstract duality on 9. ™

For now, assume that D : %y - % is an abstract duality. The following lemmas list
conditions that D must satisfy. These conditions imply that D is determined by an involutary
automorphism on the field K, as in Theorem 5.12. For each e € E(G), u° denotes the map
in KE©) having w*(e) = 1 and ue(¢') = O for all ¢ € E(G) — {e}; LS(S) denotes the linear

span of the set of maps S.

(5.13) Lemma. For all finite sets E, D(KE) = {0F} and D({0F}) = KE.

Proof: For | E| = 0 the result is clear, since there is only one vector space in #x(#). For
each one element set E, say E = {e}, there are two vector spaces in 9x(E): {0f} and KE.
For the same choice of e, consider the set E = {e, f}. Then
G (E) = { {0F'}, KE, LS(ue)}U{LS(uw* + ar) | @ € K}. The following minors are

produced by contracting or deleting f:
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1051/ = {05}, 1071\ = {0F};

KF/f = KE; KENf = K

LSG/f = {0°); LSGO\f = {0°};

LS(5)/f = KF; LS\f = KF;

LS + a)/f=KE, Ya#0; LSGE + at)\f = {05}, Ya#0.

If D(OF}) = {0F} then, by Lemma 4.9, 2=]|{G e %(E):G/f=1{0F}}]| =
|{G € Gx(E') : G\f = {0F}}| = |K| + 1, which is impossible. Therefore, D({0F}) = KF
and D(KE) = {0F}. This is independent of the choice of e and so the result holds for all of
%J}. Now assume that the result holds for all E having | E| < g,forsomeq > 1. Let E have
|E'| = g+ 1, and consider {0F'} € Gx(E'). For each e ¢ E/, D({0F)\e = D({0F}/e).
By the induction hypotheses, D({0F'}/e) = KE—{} = (KE)\e, so D({0f}) = KE. By

(3.2), D(KF) = {0F'}, and the lemma is proved. =

(5.14)  Lemma. For any two element set E={e,f}, D(LS(u)) = LS() and
D(LS(u)) = LS(u).

Proof. Note that LS(u)/f = LS@)\f = {0%}}. Hence (D(LS@N)\S = (DLS@N))/f
= K}, by (3.3) and (5.13). The only G € Yx(E) satisfying G/f = G\f = K'} are KE and
LS(#). By (5.13) D(KE) ={0F}, so by (3.2) KE# D(LS()). Therefore,

D(LS(u)) = LS(u®), and by (3.2), D(LS(v®)) = LS(w). =

Since any G € 9y with | E(G)| > 3 is reconstructible, the abstract duality D is deter-
mined by its behavior on 92. Lemmas 5.13 and 5.14 indicate that D is fixed on all G € 92
other than those with | E(G)| =2, dim(G) = 1, and containing no unit vector. Since D

preserves isomorphisms, it suffices now to examine the behavior of D on those G as above
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in Yx(E), where E is a fixed two element set, say {e, ¢'}. A map x € KE will be denoted by
the ordered pair (x(e), x(€')). The behavior of D on {KE, {0F}, LS(0,1)}S%(E) has already
been established. The action of D on the remaining one-dimensional subspaces in %x(E),

{LS(1, @) | @ € K} determines a function f: K - K as follows:
(5.15) D(LS(1, @) = LS(f(a), 1).

Since D(LS(1,0)) = LS(0, 1), we have f(0) = 0. By (3.2), f is a bijection and, since
D({0X}) = KE, dim(D(G)) < n whenever dim(G) > 0. By property (3.3), for each vector

space G € Yy, and each e € E(G),

(5.16) &,(D(G/e)) = E,(D(G)\e) € D(G).

In the following proof, each map x € KE, where E' = {e,, e,, ..., ¢,}, will be denoted by the
ordered n-tuple (x(e,), x(e,), ..., x(e,)). If E' = {€,s € €} SE, i <iy<..< i, and

x € KE', then we will denote x by the ordered s-tuple (x(e,-l), x(e,-z), ey x(e,-s ).

(5.17) Lemma. (a)f(1) = — 1;
() If a € K — {0} then f(1/a) = 1/f(a).
(c) If a, B € K then f(af) = —f(a)f(B).
(d) If a € K then f( — a) = — f(a).
(e) If a € K then f(f(a)) = a.
() Let a, B € K — {0}, | E'| =3 and G = LS{(1,0, 2),(0,1, B)} € G(E).
Then D(G) = LS(f(a), f(B), 1).
(g) The function f is additive: for any a, B € K, f(B) = fla) + f(B — ).
Proof: (a) Let E' = {e|, &5, ¢}, let @ € K — {0}, and let G = LS(1, 1, @) € Gx(E'). Then

G/ep = LS(1, a) € Gx({e,, e33). Applying the definition of f, (withe = e,, ¢ = e;) we have
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D(G)\e; = D(G/e;) = LS(f(a), 1). So LS(0, fla), 1) = &,(D(G)\ey) € D(G), by (5.16).
Similarly, LS(f(a), 0, 1) € D(G) and LS(f(1), 1,0) € D(G). Since dim(D(G)) < 3, the =
vectors (0, f(a), 1), (f(@), 0, 1), and (f(1), 1, 0) are linearly dependent. Taking the deter-
minant of the 3 x 3 matrix given by these vectors, we get 0 = f(a) + f(1)f(a), so
) = -1

(b) Let a € K — {0}, and consider G = LS(1, a~1, 1) € 9x({e}, &, &s}). Applying property
(5.16) to G, for each e, shows that the vectors (0, f(a), 1), (f(1), 0, 1), (f(a~1), 1, 0) are
in D(G). Since dim(D(G)) < 3, these vectors are linearly dependent. Taking the determi-
nant of the 3 x 3 matrix given by these vectors, we get 0 = f(1) + fla~1)f(a), so
f(1/a) = = f(1)/fla) = 1/f(a).

(c) Since f(0) = 0, the result is clear when af =0. Let a, 8 € K — {0}, and consider
G = LS(1,1/a, B) € 9x({e;, &, &3}). Applying property (5.16) to G, for each ¢, shows that
the vectors (0, f(af), 1), (f(B), 0, 1), (1/f(a), 1,0) are in D(G). Since dim(D(G)) < 3,
these vectors are linearly dependent. Taking the determinant of the 3 x 3 matrix given by
these vectors, and applying (b) we get 0 = f(B) + f(aB)/f(a), so flaB) = — f(R)f(a).

(d) Note that =1 = f(1) = f( =1 —=1) = —f( =1) f( —1). Therefore f( —1) = + 1, and
since f(1)=-~1 and f must be a bijection, f(—-1)=1. Moreover,
(=a)=f(~1 a) =~ fla), by (c).

(e) The result is clear for a = 0. Let @ € K — {0}, and let G = LS(a~1,1) € 9x(E). By
property (3.2), LS(a=1,1) = G = D(D(G)) = D(LS(f(a), 1)) = D(LS(1, fla)~1)) =
LS(f(f(a)~1), 1). This implies that a~1 = f(f(«)~!). Taking inverses and applying (b) we
have a = (f(f(a)=1))~! = A(f(@)~H~) = f(f(a)).

(f) Let E' = {e|, e;, 5} and G = LS{(1,0, a),(0, 1, B)} € Gx(E'). The contraction minor
G/e3 = Keal s0 D(G/e3) = D(G)\e; = {(0,0)}. This implies that D(G) = LS(x), for

some xeKE'—-{OE'}. Since the deletion minor G\e¢ = LS(1,p), we have
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D(G)/e; = LS(f(B), 1) and D(G) = LS(Ay, f(B), 1), for some A; € K. Similarly, we have
G\e, = LS(1,a), so D(G)=LS(f(a), A\, 1), some A, ek Therefore,
D(G) = LS(f(a), f(B), 1).
(g) If B=a, then the result is clear. Otherwise, let E = {e,, e, &, ¢,} and consider
G = LS{(1,0,1, a),(0, 1,1, B)} € 9x(E). Taking linear combinations, we can also ex-
press G as G = LS{(B/(B — a), — ¢/(B — @), 1,0),( =1/(B — @), 1/(B — a), 0, 1)}. Ob-
serve, therefore, that

G/e; = LS{( - a/(B~ a),1,0),(1/(B = a),0, D}

G/ey = LS{(B/(B—a),1,0),( =1/(B = a),0, 1)};

G/ey = LS{(1,0,),(0,1, B)};

G/e, = LS{(1,0,1),(0,1, D};

Now, D(G)\e;=D(G/e), for i=172,3, so by applying (5.16), and (f), we have
igl &.(D(G)\e) € D(G) where

D(G)\e; = LS(1, fla)/f(B — @), 1/f(B — @));

D(G)\e, = LS(1, —=f(B)/f(B — a), — 1/f(B — a));

D(G)\e; = LS(f(a), f(B), 1);

D(G)\e, = LS( -1, -1, 1).
By Lemma 5.13, and the fact that D is a bijection, dim(D(G)) < 4, so the set of vectors
{ (0,1, f(a)/f(B = @), 1/f(B — @)), (1,0, =f(B)/f(B — @), — 1/f(B — a)), (f(a), f(B), 0,1),
(=1, - 1,1,0)} is linearly dependent. The determinant of the 4 x 4 matrix given by these

vectors has magnitude 0 = (w + 1)2. Therefore, f(B) — fla) = f(B—a). ™

f(B - a)

Lemma 5.17 implies that the function d = —f is an involutary automorphism on K. The ab-
stract duality D on & is the composition of vector space orthogonality with the natural ex-

tension d : KE - KE of the function d to finite sets.
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(5.18) Theorem: 1If D:%y > Gy is an abstract duality, then there is an involutary
automorphism d:K - K such that D =D, that is, for every G e %,
D(G) = {d() | y € DGV}

Proof: Let f be the function determined by D, as in (5.15). As remarked above, d = —fis
an involutary automorphism. It is clear from Lemmas 5.13, 5.14, and 5.17 that for each
G € 9%, D(G) = D{G). Lemma 5.11 implies that D is determined by its behavior on G2,

hence D = D, ]

For every field X, the identity function is trivially an involutary automorphism. The
theorem implies that if the identity is the unique involutary automorphism on X, then % has
a unique abstract duality, vector space orthogonality. It is easy to show that for Q, the field
of rational numbers, there is no non-trivial automorphism 4. The field R of real numbers
also has no non-trivial automorphism. It is particularly easy to show that R has no non-
trivial involutary automorphism, using the fact that every non-negative real number has a real
square  root. For any real number v>0, d(y)=(d¥))?>0, so
d(a + v) = d(a) + d(y) > d(a), and d is increasing. The only increasing involution on R is

the identity.

A field K has a non-trivial involutary automorphism if and only if it has a subfield X’ such
that, when X is regarded as a vector space over X', the dimension of K is 2. Such a sub-field
is said to have index 2in K. A finite field X has no non-trivial involutary automorphism
if |K| =p2+l. I K has |K| =p?", then K has a unique non-trivial involutary
automorphism given by d(a) = of" for all a € K (see [20]); hence ¥y has exactly two ab-
stract dualities. Infinite fields can also have non-trivial involutary automorphisms. For ex-

ample, the function d4: v2 - V2 having d(a + V2 B)=a-— V2 B is an involutary
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automorphism. In the field C of complex numbers, the function that maps a + Bi to its
complex conjugate, a — Bi is an involutary automorphism. These functions determine ab-

stract dualities on 9, 5 and G, respectively.

If a field K has characteristic two, every element is its own additive inverse, so “reversing
signs” has no effect. For all other fields K, reversing signs on a set S corresponds to re-
placing the image of each element of S by its additive inverse, i.e., foramapx: E - K, the
map x : E » K has gx(e) = —x(e)if ee ENS and 5x(e) = x(e) f e € E— S. FS#£¢
and a # — a for some a € K, then the function consisting of vector spa;:e orthogonality
(Dy) followed by reversing signé on S is a weak abstract duality on Y. It is easy to verify
that reversing signs on a set commutes with Dy and with contraction and deletion. Properties

(3.1)-(3.3) follow immediately.

6 ANTIMATROIDS

Antimatroids generalize the notion of convexity in much the same way that matroids
generalize the notion of linear dependence. They are equivalent to the abstract convexity
structures studied by Edelman and Jamison-Waldner [7, 8, 12]. Both matroids and
antimatroids are subclasses of a more general combinatorial structure, greedoids, introduced
by Korte and Loviasz (see [14, 15]). In this section we define antimatroids in terms of cir-
cuits, by conditions that are reminiscent of the (signed) circuit characterization of (oriented)
matroids. Contraction and deletion operations, analogous to those for matroids, are defined
for antimatroids. It is shown that antimatroids fit naturally into the unifying framework of

Section 3, but that the resulting family % has no abstract duality.
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In the literature, several different, but equivalent, definitions and several different names
(including shelling structures, APS greedoids, and upper interval greedoids) have been given
for antimatroids. Like matroids, antimatroids can be characterized in several ways: in terms
of feasible (independent) sets, rooted circuits, or a convex hull operator. The following
characterization is appealing because of its similarity to the circuit set axiomatization of ori-

ented matroids. Let € be a collection of signed subsets of a finite set E such that the fol-

lowing properties hold.

(6.1) X" | =1, VXe@

(62) Xl" XZ € %, XngZ %Xl == Xz,

(6.3) X, X, €€, xeX]NX; > 3X;¢€

st X s (X UX) - ix}, X5 (X UXy) - ixt

Then € is the set of (rooted) circuits of an antimatroid on E. By (6.1), in (6.3) we have
X5y = X5. This definition differs slightly from the definition of shelling structures found in
[15], which required that | C| > 2, for all C € ¥. Here we allow an antimatroid to have
“loops,” i.e., circuits with only one element. We denote by &, the family of all finite
antimatroids. Given an antimatroid F € # ,, we will denote by E(F) and €(F), respectively,
the set of elements on which F is defined, and the set of circuits of F. Note that the condi-
tions above could have been expressed in terms of the collection rooted sets

§(C,x) | C e €, {x} = C-}; this characterization is presented in [5, 6].

We associate with each F € # ,a span & (F) that determines F uniquely. Some addi-
tional terminology will ease the definition of &(F). We say that a signed set X is a positive
enlargement of a signed set Y if Y*€X+ and Y~ = X~. Then &(F) is the collection of all

positive enlargements of conformal unions of the circuits of F. We will later work with
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¥ (F), the set of all signed incidence vectors of X € F(F). Note that €(F) is the collection

of setwise minimal elements X of &(F) having | X-| = 1.

Contraction and deletion operations can be defined for antimatroids. These operations
act on the circuits and are analogous to oriented matroid contraction and deletion. Let
Fe &, and let e € E(F). Then F/e and F\e have E(F/e) = E(F\e) = E(F) — {el,
@(F/e) is the collection of setwise minimal elements of {X — {e}| X € €(F)} having
|X-] = 1, and €(F\e) = {X € €(F) | e¢X}. The family &, is closed under contraction
and deletion (see [6]). In terms of the span &(F), we have
P(F/e) = {X —fet | X e P(F)}and F(F\e) = {X ¢ F(F) | efX} (see [6]). Note that
when described in terms of the span, the contraction and deletion operations of & , take the
same form as for the earlier combinatorial examples. Indeed, if we take
G, ={V(F) | F e %4} then the operations of contraction and deletion in ¥, are described

by (3.0).

The definitions above of contraction and deletion resemble the circuit definitions of
contraction and deletion in a matroid. However, they are not equivalent to the definitions
given by Korte and Lovdsz [14], which are direct extensions of the independent set defi-
nitions of matroid contraction and deletion to general greedoids. Instead, our contraction
operation is equivalent to the deletion operation of [14], while our deletion operation is
equivalent to the frace operation of [15]. In other words, in ¢, different operations result
from extending the independent set and circuit definitions of matroid deletion to the feasible
sets and circuits, respectively, of antimatroids. This hints that there might not be a duality
relation on 9, which relates contraction and deletion (as defined by (3.0)) in the way that

matroid duality relates contraction and deletion in %,,. Indeed, although antimatroids having
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| E(G)| > 2 can be reconstructed from their proper minors, there is no weak abstract duality

for the family 4

(6.4) Theorem. There is no function D : 9, - 9, satisfying (3.1), (3.2), and (3.3).
Proof: Assume that a function D : 9, - 9, satisfies properties (3.1) , (3.2), and (3.3). For
a fixed e there are two members of 9 ({e}): G = {( —),(0),( + )} and G = {(0),( +)}.
Either D(G) = G or D(G) = G'. For € # e, and E = {¢, e}, there are six antimatroids:
G, = {(0,0),(0, +),( +,0),( +, + )}
Gy = {( —,0),( =, + ),(0,0),(0, + )( +, + ),( +,0)};
Gy = {(0, - ),(0,0),(0, + ),( +, = ),( +,0),( +, +)};
Gy = {( =, = ),(=,0),( =, +),(0, = ),(0,0),(0, + ),( +, = ),( +,0),( +, +)}
Gs = {(0,0),(0, +),( +, = ),(+,00,( +, + )}
G = {( —, +),(0,0),(0, + ),( +,0),( +, + )}
where each ordered pair is the image of (e, ¢'). Let &' = {G;| G/ = G’} = {Gy, G,, Gg}
and let & = {G;| G/¢' = G} = {G3, Gy, Gs}. Then | '| =3 and | #| = 3. Similarly, let
Z' = {G,|G\e = G’} = {Gy, G, Gg, G5}, and let X = {G;| G\¢ = G} = {G3, G4}. Then
| 2’| =4and | X| = 2. By Lemma 4.9, the function D restricted to X’ is a bijection from

Z' to either & or %', both of which are impossible since | #| =| | <| 2/|. n

7 CONCLUSION

It has been appreciated previously that there are resemblances among the duality re-
lations on the combinatorial structures examined here. For example, in each setting there is
a variation on Minty’s Coloring Property (see [17]) that characterizes the duality relation in

that setting (see [ 9, 11, 17, 4, 2, 13]). Here we have shown that in fact there is a common
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characterization of these duality relations, as well as the orthogonality relation on vector

" spaces coordinatized over fields having no subfield of index 2.

Some of the results here can be strengthened. For example under conditions (3.1) and
(3.2), either half of condition (3.3) implies the other. We included both parts of (3.3) to
emphasize symmetry. The combinatorial parts, (a) -(d), of Theorem 3.5 remain valid when
(3.2) is relaxed to require only that D be one-to-one. Furthermore, the form of the proofs
of the five parts of Theorem 3.5 yields similar uniqueness results for subfamilies of

%> 9s, 90, 9w, Yx- Consider first §,,.

Theorem 3.5a is proved by Lemma 5.1, which shows that: (a) all G € §,, — G} are

reconstructible; and (b) all weak abstract dualities agree on 9},. Suppose that

(7.1) G2 SGy is closed under contraction, deletion, and D)y

Reconstructibility of all G € 9, — 9 is immediate. If, in addition to (7.1),

(7.2) Gy S Gy,

then it follows that all weak abstract dualities on é v agree on é ., since the proof of Lemma
5.1.b appealed only to G € 9%. Therefore D,, restricted to %M is the unique weak abstract
duality on éM. Among the subfamilies %M of 9, that satisfy (7.1) and (7.2) are those that
arise from‘ planar graphic matroids, matroids representable over a particular field, matroids
representable over all fields in some specified set, and all unions of the subfamilies noted

above.
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One can extend the other parts of Theorem 3.5 to subfamilies %; ¢ %;in a similar fashion.

The condition analogous to (7.2) is that
gilcy

where g is the maximum cardinality of any G € %; used in our proof that all abstract dualities
on %; agree on 9-¥)-1, For each of the combinatorial examples ¢ = r(%,), for general fields

K,g=4=r%) + 1.
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